]> git.ipfire.org Git - thirdparty/linux.git/blob - arch/x86/kernel/cpu/resctrl/rdtgroup.c
Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[thirdparty/linux.git] / arch / x86 / kernel / cpu / resctrl / rdtgroup.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * User interface for Resource Alloction in Resource Director Technology(RDT)
4 *
5 * Copyright (C) 2016 Intel Corporation
6 *
7 * Author: Fenghua Yu <fenghua.yu@intel.com>
8 *
9 * More information about RDT be found in the Intel (R) x86 Architecture
10 * Software Developer Manual.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cacheinfo.h>
16 #include <linux/cpu.h>
17 #include <linux/debugfs.h>
18 #include <linux/fs.h>
19 #include <linux/fs_parser.h>
20 #include <linux/sysfs.h>
21 #include <linux/kernfs.h>
22 #include <linux/seq_buf.h>
23 #include <linux/seq_file.h>
24 #include <linux/sched/signal.h>
25 #include <linux/sched/task.h>
26 #include <linux/slab.h>
27 #include <linux/task_work.h>
28 #include <linux/user_namespace.h>
29
30 #include <uapi/linux/magic.h>
31
32 #include <asm/resctrl_sched.h>
33 #include "internal.h"
34
35 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
36 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
37 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
38 static struct kernfs_root *rdt_root;
39 struct rdtgroup rdtgroup_default;
40 LIST_HEAD(rdt_all_groups);
41
42 /* Kernel fs node for "info" directory under root */
43 static struct kernfs_node *kn_info;
44
45 /* Kernel fs node for "mon_groups" directory under root */
46 static struct kernfs_node *kn_mongrp;
47
48 /* Kernel fs node for "mon_data" directory under root */
49 static struct kernfs_node *kn_mondata;
50
51 static struct seq_buf last_cmd_status;
52 static char last_cmd_status_buf[512];
53
54 struct dentry *debugfs_resctrl;
55
56 void rdt_last_cmd_clear(void)
57 {
58 lockdep_assert_held(&rdtgroup_mutex);
59 seq_buf_clear(&last_cmd_status);
60 }
61
62 void rdt_last_cmd_puts(const char *s)
63 {
64 lockdep_assert_held(&rdtgroup_mutex);
65 seq_buf_puts(&last_cmd_status, s);
66 }
67
68 void rdt_last_cmd_printf(const char *fmt, ...)
69 {
70 va_list ap;
71
72 va_start(ap, fmt);
73 lockdep_assert_held(&rdtgroup_mutex);
74 seq_buf_vprintf(&last_cmd_status, fmt, ap);
75 va_end(ap);
76 }
77
78 /*
79 * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
80 * we can keep a bitmap of free CLOSIDs in a single integer.
81 *
82 * Using a global CLOSID across all resources has some advantages and
83 * some drawbacks:
84 * + We can simply set "current->closid" to assign a task to a resource
85 * group.
86 * + Context switch code can avoid extra memory references deciding which
87 * CLOSID to load into the PQR_ASSOC MSR
88 * - We give up some options in configuring resource groups across multi-socket
89 * systems.
90 * - Our choices on how to configure each resource become progressively more
91 * limited as the number of resources grows.
92 */
93 static int closid_free_map;
94 static int closid_free_map_len;
95
96 int closids_supported(void)
97 {
98 return closid_free_map_len;
99 }
100
101 static void closid_init(void)
102 {
103 struct rdt_resource *r;
104 int rdt_min_closid = 32;
105
106 /* Compute rdt_min_closid across all resources */
107 for_each_alloc_enabled_rdt_resource(r)
108 rdt_min_closid = min(rdt_min_closid, r->num_closid);
109
110 closid_free_map = BIT_MASK(rdt_min_closid) - 1;
111
112 /* CLOSID 0 is always reserved for the default group */
113 closid_free_map &= ~1;
114 closid_free_map_len = rdt_min_closid;
115 }
116
117 static int closid_alloc(void)
118 {
119 u32 closid = ffs(closid_free_map);
120
121 if (closid == 0)
122 return -ENOSPC;
123 closid--;
124 closid_free_map &= ~(1 << closid);
125
126 return closid;
127 }
128
129 void closid_free(int closid)
130 {
131 closid_free_map |= 1 << closid;
132 }
133
134 /**
135 * closid_allocated - test if provided closid is in use
136 * @closid: closid to be tested
137 *
138 * Return: true if @closid is currently associated with a resource group,
139 * false if @closid is free
140 */
141 static bool closid_allocated(unsigned int closid)
142 {
143 return (closid_free_map & (1 << closid)) == 0;
144 }
145
146 /**
147 * rdtgroup_mode_by_closid - Return mode of resource group with closid
148 * @closid: closid if the resource group
149 *
150 * Each resource group is associated with a @closid. Here the mode
151 * of a resource group can be queried by searching for it using its closid.
152 *
153 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
154 */
155 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
156 {
157 struct rdtgroup *rdtgrp;
158
159 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
160 if (rdtgrp->closid == closid)
161 return rdtgrp->mode;
162 }
163
164 return RDT_NUM_MODES;
165 }
166
167 static const char * const rdt_mode_str[] = {
168 [RDT_MODE_SHAREABLE] = "shareable",
169 [RDT_MODE_EXCLUSIVE] = "exclusive",
170 [RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup",
171 [RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked",
172 };
173
174 /**
175 * rdtgroup_mode_str - Return the string representation of mode
176 * @mode: the resource group mode as &enum rdtgroup_mode
177 *
178 * Return: string representation of valid mode, "unknown" otherwise
179 */
180 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
181 {
182 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
183 return "unknown";
184
185 return rdt_mode_str[mode];
186 }
187
188 /* set uid and gid of rdtgroup dirs and files to that of the creator */
189 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
190 {
191 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
192 .ia_uid = current_fsuid(),
193 .ia_gid = current_fsgid(), };
194
195 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
196 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
197 return 0;
198
199 return kernfs_setattr(kn, &iattr);
200 }
201
202 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
203 {
204 struct kernfs_node *kn;
205 int ret;
206
207 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
208 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
209 0, rft->kf_ops, rft, NULL, NULL);
210 if (IS_ERR(kn))
211 return PTR_ERR(kn);
212
213 ret = rdtgroup_kn_set_ugid(kn);
214 if (ret) {
215 kernfs_remove(kn);
216 return ret;
217 }
218
219 return 0;
220 }
221
222 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
223 {
224 struct kernfs_open_file *of = m->private;
225 struct rftype *rft = of->kn->priv;
226
227 if (rft->seq_show)
228 return rft->seq_show(of, m, arg);
229 return 0;
230 }
231
232 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
233 size_t nbytes, loff_t off)
234 {
235 struct rftype *rft = of->kn->priv;
236
237 if (rft->write)
238 return rft->write(of, buf, nbytes, off);
239
240 return -EINVAL;
241 }
242
243 static struct kernfs_ops rdtgroup_kf_single_ops = {
244 .atomic_write_len = PAGE_SIZE,
245 .write = rdtgroup_file_write,
246 .seq_show = rdtgroup_seqfile_show,
247 };
248
249 static struct kernfs_ops kf_mondata_ops = {
250 .atomic_write_len = PAGE_SIZE,
251 .seq_show = rdtgroup_mondata_show,
252 };
253
254 static bool is_cpu_list(struct kernfs_open_file *of)
255 {
256 struct rftype *rft = of->kn->priv;
257
258 return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
259 }
260
261 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
262 struct seq_file *s, void *v)
263 {
264 struct rdtgroup *rdtgrp;
265 struct cpumask *mask;
266 int ret = 0;
267
268 rdtgrp = rdtgroup_kn_lock_live(of->kn);
269
270 if (rdtgrp) {
271 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
272 if (!rdtgrp->plr->d) {
273 rdt_last_cmd_clear();
274 rdt_last_cmd_puts("Cache domain offline\n");
275 ret = -ENODEV;
276 } else {
277 mask = &rdtgrp->plr->d->cpu_mask;
278 seq_printf(s, is_cpu_list(of) ?
279 "%*pbl\n" : "%*pb\n",
280 cpumask_pr_args(mask));
281 }
282 } else {
283 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
284 cpumask_pr_args(&rdtgrp->cpu_mask));
285 }
286 } else {
287 ret = -ENOENT;
288 }
289 rdtgroup_kn_unlock(of->kn);
290
291 return ret;
292 }
293
294 /*
295 * This is safe against resctrl_sched_in() called from __switch_to()
296 * because __switch_to() is executed with interrupts disabled. A local call
297 * from update_closid_rmid() is proteced against __switch_to() because
298 * preemption is disabled.
299 */
300 static void update_cpu_closid_rmid(void *info)
301 {
302 struct rdtgroup *r = info;
303
304 if (r) {
305 this_cpu_write(pqr_state.default_closid, r->closid);
306 this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
307 }
308
309 /*
310 * We cannot unconditionally write the MSR because the current
311 * executing task might have its own closid selected. Just reuse
312 * the context switch code.
313 */
314 resctrl_sched_in();
315 }
316
317 /*
318 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
319 *
320 * Per task closids/rmids must have been set up before calling this function.
321 */
322 static void
323 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
324 {
325 int cpu = get_cpu();
326
327 if (cpumask_test_cpu(cpu, cpu_mask))
328 update_cpu_closid_rmid(r);
329 smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
330 put_cpu();
331 }
332
333 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
334 cpumask_var_t tmpmask)
335 {
336 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
337 struct list_head *head;
338
339 /* Check whether cpus belong to parent ctrl group */
340 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
341 if (cpumask_weight(tmpmask)) {
342 rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
343 return -EINVAL;
344 }
345
346 /* Check whether cpus are dropped from this group */
347 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
348 if (cpumask_weight(tmpmask)) {
349 /* Give any dropped cpus to parent rdtgroup */
350 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
351 update_closid_rmid(tmpmask, prgrp);
352 }
353
354 /*
355 * If we added cpus, remove them from previous group that owned them
356 * and update per-cpu rmid
357 */
358 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
359 if (cpumask_weight(tmpmask)) {
360 head = &prgrp->mon.crdtgrp_list;
361 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
362 if (crgrp == rdtgrp)
363 continue;
364 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
365 tmpmask);
366 }
367 update_closid_rmid(tmpmask, rdtgrp);
368 }
369
370 /* Done pushing/pulling - update this group with new mask */
371 cpumask_copy(&rdtgrp->cpu_mask, newmask);
372
373 return 0;
374 }
375
376 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
377 {
378 struct rdtgroup *crgrp;
379
380 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
381 /* update the child mon group masks as well*/
382 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
383 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
384 }
385
386 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
387 cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
388 {
389 struct rdtgroup *r, *crgrp;
390 struct list_head *head;
391
392 /* Check whether cpus are dropped from this group */
393 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
394 if (cpumask_weight(tmpmask)) {
395 /* Can't drop from default group */
396 if (rdtgrp == &rdtgroup_default) {
397 rdt_last_cmd_puts("Can't drop CPUs from default group\n");
398 return -EINVAL;
399 }
400
401 /* Give any dropped cpus to rdtgroup_default */
402 cpumask_or(&rdtgroup_default.cpu_mask,
403 &rdtgroup_default.cpu_mask, tmpmask);
404 update_closid_rmid(tmpmask, &rdtgroup_default);
405 }
406
407 /*
408 * If we added cpus, remove them from previous group and
409 * the prev group's child groups that owned them
410 * and update per-cpu closid/rmid.
411 */
412 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
413 if (cpumask_weight(tmpmask)) {
414 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
415 if (r == rdtgrp)
416 continue;
417 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
418 if (cpumask_weight(tmpmask1))
419 cpumask_rdtgrp_clear(r, tmpmask1);
420 }
421 update_closid_rmid(tmpmask, rdtgrp);
422 }
423
424 /* Done pushing/pulling - update this group with new mask */
425 cpumask_copy(&rdtgrp->cpu_mask, newmask);
426
427 /*
428 * Clear child mon group masks since there is a new parent mask
429 * now and update the rmid for the cpus the child lost.
430 */
431 head = &rdtgrp->mon.crdtgrp_list;
432 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
433 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
434 update_closid_rmid(tmpmask, rdtgrp);
435 cpumask_clear(&crgrp->cpu_mask);
436 }
437
438 return 0;
439 }
440
441 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
442 char *buf, size_t nbytes, loff_t off)
443 {
444 cpumask_var_t tmpmask, newmask, tmpmask1;
445 struct rdtgroup *rdtgrp;
446 int ret;
447
448 if (!buf)
449 return -EINVAL;
450
451 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
452 return -ENOMEM;
453 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
454 free_cpumask_var(tmpmask);
455 return -ENOMEM;
456 }
457 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
458 free_cpumask_var(tmpmask);
459 free_cpumask_var(newmask);
460 return -ENOMEM;
461 }
462
463 rdtgrp = rdtgroup_kn_lock_live(of->kn);
464 rdt_last_cmd_clear();
465 if (!rdtgrp) {
466 ret = -ENOENT;
467 rdt_last_cmd_puts("Directory was removed\n");
468 goto unlock;
469 }
470
471 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
472 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
473 ret = -EINVAL;
474 rdt_last_cmd_puts("Pseudo-locking in progress\n");
475 goto unlock;
476 }
477
478 if (is_cpu_list(of))
479 ret = cpulist_parse(buf, newmask);
480 else
481 ret = cpumask_parse(buf, newmask);
482
483 if (ret) {
484 rdt_last_cmd_puts("Bad CPU list/mask\n");
485 goto unlock;
486 }
487
488 /* check that user didn't specify any offline cpus */
489 cpumask_andnot(tmpmask, newmask, cpu_online_mask);
490 if (cpumask_weight(tmpmask)) {
491 ret = -EINVAL;
492 rdt_last_cmd_puts("Can only assign online CPUs\n");
493 goto unlock;
494 }
495
496 if (rdtgrp->type == RDTCTRL_GROUP)
497 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
498 else if (rdtgrp->type == RDTMON_GROUP)
499 ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
500 else
501 ret = -EINVAL;
502
503 unlock:
504 rdtgroup_kn_unlock(of->kn);
505 free_cpumask_var(tmpmask);
506 free_cpumask_var(newmask);
507 free_cpumask_var(tmpmask1);
508
509 return ret ?: nbytes;
510 }
511
512 struct task_move_callback {
513 struct callback_head work;
514 struct rdtgroup *rdtgrp;
515 };
516
517 static void move_myself(struct callback_head *head)
518 {
519 struct task_move_callback *callback;
520 struct rdtgroup *rdtgrp;
521
522 callback = container_of(head, struct task_move_callback, work);
523 rdtgrp = callback->rdtgrp;
524
525 /*
526 * If resource group was deleted before this task work callback
527 * was invoked, then assign the task to root group and free the
528 * resource group.
529 */
530 if (atomic_dec_and_test(&rdtgrp->waitcount) &&
531 (rdtgrp->flags & RDT_DELETED)) {
532 current->closid = 0;
533 current->rmid = 0;
534 kfree(rdtgrp);
535 }
536
537 preempt_disable();
538 /* update PQR_ASSOC MSR to make resource group go into effect */
539 resctrl_sched_in();
540 preempt_enable();
541
542 kfree(callback);
543 }
544
545 static int __rdtgroup_move_task(struct task_struct *tsk,
546 struct rdtgroup *rdtgrp)
547 {
548 struct task_move_callback *callback;
549 int ret;
550
551 callback = kzalloc(sizeof(*callback), GFP_KERNEL);
552 if (!callback)
553 return -ENOMEM;
554 callback->work.func = move_myself;
555 callback->rdtgrp = rdtgrp;
556
557 /*
558 * Take a refcount, so rdtgrp cannot be freed before the
559 * callback has been invoked.
560 */
561 atomic_inc(&rdtgrp->waitcount);
562 ret = task_work_add(tsk, &callback->work, true);
563 if (ret) {
564 /*
565 * Task is exiting. Drop the refcount and free the callback.
566 * No need to check the refcount as the group cannot be
567 * deleted before the write function unlocks rdtgroup_mutex.
568 */
569 atomic_dec(&rdtgrp->waitcount);
570 kfree(callback);
571 rdt_last_cmd_puts("Task exited\n");
572 } else {
573 /*
574 * For ctrl_mon groups move both closid and rmid.
575 * For monitor groups, can move the tasks only from
576 * their parent CTRL group.
577 */
578 if (rdtgrp->type == RDTCTRL_GROUP) {
579 tsk->closid = rdtgrp->closid;
580 tsk->rmid = rdtgrp->mon.rmid;
581 } else if (rdtgrp->type == RDTMON_GROUP) {
582 if (rdtgrp->mon.parent->closid == tsk->closid) {
583 tsk->rmid = rdtgrp->mon.rmid;
584 } else {
585 rdt_last_cmd_puts("Can't move task to different control group\n");
586 ret = -EINVAL;
587 }
588 }
589 }
590 return ret;
591 }
592
593 /**
594 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
595 * @r: Resource group
596 *
597 * Return: 1 if tasks have been assigned to @r, 0 otherwise
598 */
599 int rdtgroup_tasks_assigned(struct rdtgroup *r)
600 {
601 struct task_struct *p, *t;
602 int ret = 0;
603
604 lockdep_assert_held(&rdtgroup_mutex);
605
606 rcu_read_lock();
607 for_each_process_thread(p, t) {
608 if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
609 (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid)) {
610 ret = 1;
611 break;
612 }
613 }
614 rcu_read_unlock();
615
616 return ret;
617 }
618
619 static int rdtgroup_task_write_permission(struct task_struct *task,
620 struct kernfs_open_file *of)
621 {
622 const struct cred *tcred = get_task_cred(task);
623 const struct cred *cred = current_cred();
624 int ret = 0;
625
626 /*
627 * Even if we're attaching all tasks in the thread group, we only
628 * need to check permissions on one of them.
629 */
630 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
631 !uid_eq(cred->euid, tcred->uid) &&
632 !uid_eq(cred->euid, tcred->suid)) {
633 rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
634 ret = -EPERM;
635 }
636
637 put_cred(tcred);
638 return ret;
639 }
640
641 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
642 struct kernfs_open_file *of)
643 {
644 struct task_struct *tsk;
645 int ret;
646
647 rcu_read_lock();
648 if (pid) {
649 tsk = find_task_by_vpid(pid);
650 if (!tsk) {
651 rcu_read_unlock();
652 rdt_last_cmd_printf("No task %d\n", pid);
653 return -ESRCH;
654 }
655 } else {
656 tsk = current;
657 }
658
659 get_task_struct(tsk);
660 rcu_read_unlock();
661
662 ret = rdtgroup_task_write_permission(tsk, of);
663 if (!ret)
664 ret = __rdtgroup_move_task(tsk, rdtgrp);
665
666 put_task_struct(tsk);
667 return ret;
668 }
669
670 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
671 char *buf, size_t nbytes, loff_t off)
672 {
673 struct rdtgroup *rdtgrp;
674 int ret = 0;
675 pid_t pid;
676
677 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
678 return -EINVAL;
679 rdtgrp = rdtgroup_kn_lock_live(of->kn);
680 if (!rdtgrp) {
681 rdtgroup_kn_unlock(of->kn);
682 return -ENOENT;
683 }
684 rdt_last_cmd_clear();
685
686 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
687 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
688 ret = -EINVAL;
689 rdt_last_cmd_puts("Pseudo-locking in progress\n");
690 goto unlock;
691 }
692
693 ret = rdtgroup_move_task(pid, rdtgrp, of);
694
695 unlock:
696 rdtgroup_kn_unlock(of->kn);
697
698 return ret ?: nbytes;
699 }
700
701 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
702 {
703 struct task_struct *p, *t;
704
705 rcu_read_lock();
706 for_each_process_thread(p, t) {
707 if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
708 (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid))
709 seq_printf(s, "%d\n", t->pid);
710 }
711 rcu_read_unlock();
712 }
713
714 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
715 struct seq_file *s, void *v)
716 {
717 struct rdtgroup *rdtgrp;
718 int ret = 0;
719
720 rdtgrp = rdtgroup_kn_lock_live(of->kn);
721 if (rdtgrp)
722 show_rdt_tasks(rdtgrp, s);
723 else
724 ret = -ENOENT;
725 rdtgroup_kn_unlock(of->kn);
726
727 return ret;
728 }
729
730 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
731 struct seq_file *seq, void *v)
732 {
733 int len;
734
735 mutex_lock(&rdtgroup_mutex);
736 len = seq_buf_used(&last_cmd_status);
737 if (len)
738 seq_printf(seq, "%.*s", len, last_cmd_status_buf);
739 else
740 seq_puts(seq, "ok\n");
741 mutex_unlock(&rdtgroup_mutex);
742 return 0;
743 }
744
745 static int rdt_num_closids_show(struct kernfs_open_file *of,
746 struct seq_file *seq, void *v)
747 {
748 struct rdt_resource *r = of->kn->parent->priv;
749
750 seq_printf(seq, "%d\n", r->num_closid);
751 return 0;
752 }
753
754 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
755 struct seq_file *seq, void *v)
756 {
757 struct rdt_resource *r = of->kn->parent->priv;
758
759 seq_printf(seq, "%x\n", r->default_ctrl);
760 return 0;
761 }
762
763 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
764 struct seq_file *seq, void *v)
765 {
766 struct rdt_resource *r = of->kn->parent->priv;
767
768 seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
769 return 0;
770 }
771
772 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
773 struct seq_file *seq, void *v)
774 {
775 struct rdt_resource *r = of->kn->parent->priv;
776
777 seq_printf(seq, "%x\n", r->cache.shareable_bits);
778 return 0;
779 }
780
781 /**
782 * rdt_bit_usage_show - Display current usage of resources
783 *
784 * A domain is a shared resource that can now be allocated differently. Here
785 * we display the current regions of the domain as an annotated bitmask.
786 * For each domain of this resource its allocation bitmask
787 * is annotated as below to indicate the current usage of the corresponding bit:
788 * 0 - currently unused
789 * X - currently available for sharing and used by software and hardware
790 * H - currently used by hardware only but available for software use
791 * S - currently used and shareable by software only
792 * E - currently used exclusively by one resource group
793 * P - currently pseudo-locked by one resource group
794 */
795 static int rdt_bit_usage_show(struct kernfs_open_file *of,
796 struct seq_file *seq, void *v)
797 {
798 struct rdt_resource *r = of->kn->parent->priv;
799 u32 sw_shareable = 0, hw_shareable = 0;
800 u32 exclusive = 0, pseudo_locked = 0;
801 struct rdt_domain *dom;
802 int i, hwb, swb, excl, psl;
803 enum rdtgrp_mode mode;
804 bool sep = false;
805 u32 *ctrl;
806
807 mutex_lock(&rdtgroup_mutex);
808 hw_shareable = r->cache.shareable_bits;
809 list_for_each_entry(dom, &r->domains, list) {
810 if (sep)
811 seq_putc(seq, ';');
812 ctrl = dom->ctrl_val;
813 sw_shareable = 0;
814 exclusive = 0;
815 seq_printf(seq, "%d=", dom->id);
816 for (i = 0; i < closids_supported(); i++, ctrl++) {
817 if (!closid_allocated(i))
818 continue;
819 mode = rdtgroup_mode_by_closid(i);
820 switch (mode) {
821 case RDT_MODE_SHAREABLE:
822 sw_shareable |= *ctrl;
823 break;
824 case RDT_MODE_EXCLUSIVE:
825 exclusive |= *ctrl;
826 break;
827 case RDT_MODE_PSEUDO_LOCKSETUP:
828 /*
829 * RDT_MODE_PSEUDO_LOCKSETUP is possible
830 * here but not included since the CBM
831 * associated with this CLOSID in this mode
832 * is not initialized and no task or cpu can be
833 * assigned this CLOSID.
834 */
835 break;
836 case RDT_MODE_PSEUDO_LOCKED:
837 case RDT_NUM_MODES:
838 WARN(1,
839 "invalid mode for closid %d\n", i);
840 break;
841 }
842 }
843 for (i = r->cache.cbm_len - 1; i >= 0; i--) {
844 pseudo_locked = dom->plr ? dom->plr->cbm : 0;
845 hwb = test_bit(i, (unsigned long *)&hw_shareable);
846 swb = test_bit(i, (unsigned long *)&sw_shareable);
847 excl = test_bit(i, (unsigned long *)&exclusive);
848 psl = test_bit(i, (unsigned long *)&pseudo_locked);
849 if (hwb && swb)
850 seq_putc(seq, 'X');
851 else if (hwb && !swb)
852 seq_putc(seq, 'H');
853 else if (!hwb && swb)
854 seq_putc(seq, 'S');
855 else if (excl)
856 seq_putc(seq, 'E');
857 else if (psl)
858 seq_putc(seq, 'P');
859 else /* Unused bits remain */
860 seq_putc(seq, '0');
861 }
862 sep = true;
863 }
864 seq_putc(seq, '\n');
865 mutex_unlock(&rdtgroup_mutex);
866 return 0;
867 }
868
869 static int rdt_min_bw_show(struct kernfs_open_file *of,
870 struct seq_file *seq, void *v)
871 {
872 struct rdt_resource *r = of->kn->parent->priv;
873
874 seq_printf(seq, "%u\n", r->membw.min_bw);
875 return 0;
876 }
877
878 static int rdt_num_rmids_show(struct kernfs_open_file *of,
879 struct seq_file *seq, void *v)
880 {
881 struct rdt_resource *r = of->kn->parent->priv;
882
883 seq_printf(seq, "%d\n", r->num_rmid);
884
885 return 0;
886 }
887
888 static int rdt_mon_features_show(struct kernfs_open_file *of,
889 struct seq_file *seq, void *v)
890 {
891 struct rdt_resource *r = of->kn->parent->priv;
892 struct mon_evt *mevt;
893
894 list_for_each_entry(mevt, &r->evt_list, list)
895 seq_printf(seq, "%s\n", mevt->name);
896
897 return 0;
898 }
899
900 static int rdt_bw_gran_show(struct kernfs_open_file *of,
901 struct seq_file *seq, void *v)
902 {
903 struct rdt_resource *r = of->kn->parent->priv;
904
905 seq_printf(seq, "%u\n", r->membw.bw_gran);
906 return 0;
907 }
908
909 static int rdt_delay_linear_show(struct kernfs_open_file *of,
910 struct seq_file *seq, void *v)
911 {
912 struct rdt_resource *r = of->kn->parent->priv;
913
914 seq_printf(seq, "%u\n", r->membw.delay_linear);
915 return 0;
916 }
917
918 static int max_threshold_occ_show(struct kernfs_open_file *of,
919 struct seq_file *seq, void *v)
920 {
921 struct rdt_resource *r = of->kn->parent->priv;
922
923 seq_printf(seq, "%u\n", resctrl_cqm_threshold * r->mon_scale);
924
925 return 0;
926 }
927
928 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
929 char *buf, size_t nbytes, loff_t off)
930 {
931 struct rdt_resource *r = of->kn->parent->priv;
932 unsigned int bytes;
933 int ret;
934
935 ret = kstrtouint(buf, 0, &bytes);
936 if (ret)
937 return ret;
938
939 if (bytes > (boot_cpu_data.x86_cache_size * 1024))
940 return -EINVAL;
941
942 resctrl_cqm_threshold = bytes / r->mon_scale;
943
944 return nbytes;
945 }
946
947 /*
948 * rdtgroup_mode_show - Display mode of this resource group
949 */
950 static int rdtgroup_mode_show(struct kernfs_open_file *of,
951 struct seq_file *s, void *v)
952 {
953 struct rdtgroup *rdtgrp;
954
955 rdtgrp = rdtgroup_kn_lock_live(of->kn);
956 if (!rdtgrp) {
957 rdtgroup_kn_unlock(of->kn);
958 return -ENOENT;
959 }
960
961 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
962
963 rdtgroup_kn_unlock(of->kn);
964 return 0;
965 }
966
967 /**
968 * rdt_cdp_peer_get - Retrieve CDP peer if it exists
969 * @r: RDT resource to which RDT domain @d belongs
970 * @d: Cache instance for which a CDP peer is requested
971 * @r_cdp: RDT resource that shares hardware with @r (RDT resource peer)
972 * Used to return the result.
973 * @d_cdp: RDT domain that shares hardware with @d (RDT domain peer)
974 * Used to return the result.
975 *
976 * RDT resources are managed independently and by extension the RDT domains
977 * (RDT resource instances) are managed independently also. The Code and
978 * Data Prioritization (CDP) RDT resources, while managed independently,
979 * could refer to the same underlying hardware. For example,
980 * RDT_RESOURCE_L2CODE and RDT_RESOURCE_L2DATA both refer to the L2 cache.
981 *
982 * When provided with an RDT resource @r and an instance of that RDT
983 * resource @d rdt_cdp_peer_get() will return if there is a peer RDT
984 * resource and the exact instance that shares the same hardware.
985 *
986 * Return: 0 if a CDP peer was found, <0 on error or if no CDP peer exists.
987 * If a CDP peer was found, @r_cdp will point to the peer RDT resource
988 * and @d_cdp will point to the peer RDT domain.
989 */
990 static int rdt_cdp_peer_get(struct rdt_resource *r, struct rdt_domain *d,
991 struct rdt_resource **r_cdp,
992 struct rdt_domain **d_cdp)
993 {
994 struct rdt_resource *_r_cdp = NULL;
995 struct rdt_domain *_d_cdp = NULL;
996 int ret = 0;
997
998 switch (r->rid) {
999 case RDT_RESOURCE_L3DATA:
1000 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L3CODE];
1001 break;
1002 case RDT_RESOURCE_L3CODE:
1003 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L3DATA];
1004 break;
1005 case RDT_RESOURCE_L2DATA:
1006 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L2CODE];
1007 break;
1008 case RDT_RESOURCE_L2CODE:
1009 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L2DATA];
1010 break;
1011 default:
1012 ret = -ENOENT;
1013 goto out;
1014 }
1015
1016 /*
1017 * When a new CPU comes online and CDP is enabled then the new
1018 * RDT domains (if any) associated with both CDP RDT resources
1019 * are added in the same CPU online routine while the
1020 * rdtgroup_mutex is held. It should thus not happen for one
1021 * RDT domain to exist and be associated with its RDT CDP
1022 * resource but there is no RDT domain associated with the
1023 * peer RDT CDP resource. Hence the WARN.
1024 */
1025 _d_cdp = rdt_find_domain(_r_cdp, d->id, NULL);
1026 if (WARN_ON(IS_ERR_OR_NULL(_d_cdp))) {
1027 _r_cdp = NULL;
1028 ret = -EINVAL;
1029 }
1030
1031 out:
1032 *r_cdp = _r_cdp;
1033 *d_cdp = _d_cdp;
1034
1035 return ret;
1036 }
1037
1038 /**
1039 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1040 * @r: Resource to which domain instance @d belongs.
1041 * @d: The domain instance for which @closid is being tested.
1042 * @cbm: Capacity bitmask being tested.
1043 * @closid: Intended closid for @cbm.
1044 * @exclusive: Only check if overlaps with exclusive resource groups
1045 *
1046 * Checks if provided @cbm intended to be used for @closid on domain
1047 * @d overlaps with any other closids or other hardware usage associated
1048 * with this domain. If @exclusive is true then only overlaps with
1049 * resource groups in exclusive mode will be considered. If @exclusive
1050 * is false then overlaps with any resource group or hardware entities
1051 * will be considered.
1052 *
1053 * @cbm is unsigned long, even if only 32 bits are used, to make the
1054 * bitmap functions work correctly.
1055 *
1056 * Return: false if CBM does not overlap, true if it does.
1057 */
1058 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1059 unsigned long cbm, int closid, bool exclusive)
1060 {
1061 enum rdtgrp_mode mode;
1062 unsigned long ctrl_b;
1063 u32 *ctrl;
1064 int i;
1065
1066 /* Check for any overlap with regions used by hardware directly */
1067 if (!exclusive) {
1068 ctrl_b = r->cache.shareable_bits;
1069 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1070 return true;
1071 }
1072
1073 /* Check for overlap with other resource groups */
1074 ctrl = d->ctrl_val;
1075 for (i = 0; i < closids_supported(); i++, ctrl++) {
1076 ctrl_b = *ctrl;
1077 mode = rdtgroup_mode_by_closid(i);
1078 if (closid_allocated(i) && i != closid &&
1079 mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1080 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1081 if (exclusive) {
1082 if (mode == RDT_MODE_EXCLUSIVE)
1083 return true;
1084 continue;
1085 }
1086 return true;
1087 }
1088 }
1089 }
1090
1091 return false;
1092 }
1093
1094 /**
1095 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1096 * @r: Resource to which domain instance @d belongs.
1097 * @d: The domain instance for which @closid is being tested.
1098 * @cbm: Capacity bitmask being tested.
1099 * @closid: Intended closid for @cbm.
1100 * @exclusive: Only check if overlaps with exclusive resource groups
1101 *
1102 * Resources that can be allocated using a CBM can use the CBM to control
1103 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1104 * for overlap. Overlap test is not limited to the specific resource for
1105 * which the CBM is intended though - when dealing with CDP resources that
1106 * share the underlying hardware the overlap check should be performed on
1107 * the CDP resource sharing the hardware also.
1108 *
1109 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1110 * overlap test.
1111 *
1112 * Return: true if CBM overlap detected, false if there is no overlap
1113 */
1114 bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1115 unsigned long cbm, int closid, bool exclusive)
1116 {
1117 struct rdt_resource *r_cdp;
1118 struct rdt_domain *d_cdp;
1119
1120 if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, exclusive))
1121 return true;
1122
1123 if (rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp) < 0)
1124 return false;
1125
1126 return __rdtgroup_cbm_overlaps(r_cdp, d_cdp, cbm, closid, exclusive);
1127 }
1128
1129 /**
1130 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1131 *
1132 * An exclusive resource group implies that there should be no sharing of
1133 * its allocated resources. At the time this group is considered to be
1134 * exclusive this test can determine if its current schemata supports this
1135 * setting by testing for overlap with all other resource groups.
1136 *
1137 * Return: true if resource group can be exclusive, false if there is overlap
1138 * with allocations of other resource groups and thus this resource group
1139 * cannot be exclusive.
1140 */
1141 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1142 {
1143 int closid = rdtgrp->closid;
1144 struct rdt_resource *r;
1145 bool has_cache = false;
1146 struct rdt_domain *d;
1147
1148 for_each_alloc_enabled_rdt_resource(r) {
1149 if (r->rid == RDT_RESOURCE_MBA)
1150 continue;
1151 has_cache = true;
1152 list_for_each_entry(d, &r->domains, list) {
1153 if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid],
1154 rdtgrp->closid, false)) {
1155 rdt_last_cmd_puts("Schemata overlaps\n");
1156 return false;
1157 }
1158 }
1159 }
1160
1161 if (!has_cache) {
1162 rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1163 return false;
1164 }
1165
1166 return true;
1167 }
1168
1169 /**
1170 * rdtgroup_mode_write - Modify the resource group's mode
1171 *
1172 */
1173 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1174 char *buf, size_t nbytes, loff_t off)
1175 {
1176 struct rdtgroup *rdtgrp;
1177 enum rdtgrp_mode mode;
1178 int ret = 0;
1179
1180 /* Valid input requires a trailing newline */
1181 if (nbytes == 0 || buf[nbytes - 1] != '\n')
1182 return -EINVAL;
1183 buf[nbytes - 1] = '\0';
1184
1185 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1186 if (!rdtgrp) {
1187 rdtgroup_kn_unlock(of->kn);
1188 return -ENOENT;
1189 }
1190
1191 rdt_last_cmd_clear();
1192
1193 mode = rdtgrp->mode;
1194
1195 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1196 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1197 (!strcmp(buf, "pseudo-locksetup") &&
1198 mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1199 (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1200 goto out;
1201
1202 if (mode == RDT_MODE_PSEUDO_LOCKED) {
1203 rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1204 ret = -EINVAL;
1205 goto out;
1206 }
1207
1208 if (!strcmp(buf, "shareable")) {
1209 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1210 ret = rdtgroup_locksetup_exit(rdtgrp);
1211 if (ret)
1212 goto out;
1213 }
1214 rdtgrp->mode = RDT_MODE_SHAREABLE;
1215 } else if (!strcmp(buf, "exclusive")) {
1216 if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1217 ret = -EINVAL;
1218 goto out;
1219 }
1220 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1221 ret = rdtgroup_locksetup_exit(rdtgrp);
1222 if (ret)
1223 goto out;
1224 }
1225 rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1226 } else if (!strcmp(buf, "pseudo-locksetup")) {
1227 ret = rdtgroup_locksetup_enter(rdtgrp);
1228 if (ret)
1229 goto out;
1230 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1231 } else {
1232 rdt_last_cmd_puts("Unknown or unsupported mode\n");
1233 ret = -EINVAL;
1234 }
1235
1236 out:
1237 rdtgroup_kn_unlock(of->kn);
1238 return ret ?: nbytes;
1239 }
1240
1241 /**
1242 * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1243 * @r: RDT resource to which @d belongs.
1244 * @d: RDT domain instance.
1245 * @cbm: bitmask for which the size should be computed.
1246 *
1247 * The bitmask provided associated with the RDT domain instance @d will be
1248 * translated into how many bytes it represents. The size in bytes is
1249 * computed by first dividing the total cache size by the CBM length to
1250 * determine how many bytes each bit in the bitmask represents. The result
1251 * is multiplied with the number of bits set in the bitmask.
1252 *
1253 * @cbm is unsigned long, even if only 32 bits are used to make the
1254 * bitmap functions work correctly.
1255 */
1256 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1257 struct rdt_domain *d, unsigned long cbm)
1258 {
1259 struct cpu_cacheinfo *ci;
1260 unsigned int size = 0;
1261 int num_b, i;
1262
1263 num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1264 ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1265 for (i = 0; i < ci->num_leaves; i++) {
1266 if (ci->info_list[i].level == r->cache_level) {
1267 size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1268 break;
1269 }
1270 }
1271
1272 return size;
1273 }
1274
1275 /**
1276 * rdtgroup_size_show - Display size in bytes of allocated regions
1277 *
1278 * The "size" file mirrors the layout of the "schemata" file, printing the
1279 * size in bytes of each region instead of the capacity bitmask.
1280 *
1281 */
1282 static int rdtgroup_size_show(struct kernfs_open_file *of,
1283 struct seq_file *s, void *v)
1284 {
1285 struct rdtgroup *rdtgrp;
1286 struct rdt_resource *r;
1287 struct rdt_domain *d;
1288 unsigned int size;
1289 int ret = 0;
1290 bool sep;
1291 u32 ctrl;
1292
1293 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1294 if (!rdtgrp) {
1295 rdtgroup_kn_unlock(of->kn);
1296 return -ENOENT;
1297 }
1298
1299 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1300 if (!rdtgrp->plr->d) {
1301 rdt_last_cmd_clear();
1302 rdt_last_cmd_puts("Cache domain offline\n");
1303 ret = -ENODEV;
1304 } else {
1305 seq_printf(s, "%*s:", max_name_width,
1306 rdtgrp->plr->r->name);
1307 size = rdtgroup_cbm_to_size(rdtgrp->plr->r,
1308 rdtgrp->plr->d,
1309 rdtgrp->plr->cbm);
1310 seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1311 }
1312 goto out;
1313 }
1314
1315 for_each_alloc_enabled_rdt_resource(r) {
1316 sep = false;
1317 seq_printf(s, "%*s:", max_name_width, r->name);
1318 list_for_each_entry(d, &r->domains, list) {
1319 if (sep)
1320 seq_putc(s, ';');
1321 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1322 size = 0;
1323 } else {
1324 ctrl = (!is_mba_sc(r) ?
1325 d->ctrl_val[rdtgrp->closid] :
1326 d->mbps_val[rdtgrp->closid]);
1327 if (r->rid == RDT_RESOURCE_MBA)
1328 size = ctrl;
1329 else
1330 size = rdtgroup_cbm_to_size(r, d, ctrl);
1331 }
1332 seq_printf(s, "%d=%u", d->id, size);
1333 sep = true;
1334 }
1335 seq_putc(s, '\n');
1336 }
1337
1338 out:
1339 rdtgroup_kn_unlock(of->kn);
1340
1341 return ret;
1342 }
1343
1344 /* rdtgroup information files for one cache resource. */
1345 static struct rftype res_common_files[] = {
1346 {
1347 .name = "last_cmd_status",
1348 .mode = 0444,
1349 .kf_ops = &rdtgroup_kf_single_ops,
1350 .seq_show = rdt_last_cmd_status_show,
1351 .fflags = RF_TOP_INFO,
1352 },
1353 {
1354 .name = "num_closids",
1355 .mode = 0444,
1356 .kf_ops = &rdtgroup_kf_single_ops,
1357 .seq_show = rdt_num_closids_show,
1358 .fflags = RF_CTRL_INFO,
1359 },
1360 {
1361 .name = "mon_features",
1362 .mode = 0444,
1363 .kf_ops = &rdtgroup_kf_single_ops,
1364 .seq_show = rdt_mon_features_show,
1365 .fflags = RF_MON_INFO,
1366 },
1367 {
1368 .name = "num_rmids",
1369 .mode = 0444,
1370 .kf_ops = &rdtgroup_kf_single_ops,
1371 .seq_show = rdt_num_rmids_show,
1372 .fflags = RF_MON_INFO,
1373 },
1374 {
1375 .name = "cbm_mask",
1376 .mode = 0444,
1377 .kf_ops = &rdtgroup_kf_single_ops,
1378 .seq_show = rdt_default_ctrl_show,
1379 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1380 },
1381 {
1382 .name = "min_cbm_bits",
1383 .mode = 0444,
1384 .kf_ops = &rdtgroup_kf_single_ops,
1385 .seq_show = rdt_min_cbm_bits_show,
1386 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1387 },
1388 {
1389 .name = "shareable_bits",
1390 .mode = 0444,
1391 .kf_ops = &rdtgroup_kf_single_ops,
1392 .seq_show = rdt_shareable_bits_show,
1393 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1394 },
1395 {
1396 .name = "bit_usage",
1397 .mode = 0444,
1398 .kf_ops = &rdtgroup_kf_single_ops,
1399 .seq_show = rdt_bit_usage_show,
1400 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1401 },
1402 {
1403 .name = "min_bandwidth",
1404 .mode = 0444,
1405 .kf_ops = &rdtgroup_kf_single_ops,
1406 .seq_show = rdt_min_bw_show,
1407 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
1408 },
1409 {
1410 .name = "bandwidth_gran",
1411 .mode = 0444,
1412 .kf_ops = &rdtgroup_kf_single_ops,
1413 .seq_show = rdt_bw_gran_show,
1414 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
1415 },
1416 {
1417 .name = "delay_linear",
1418 .mode = 0444,
1419 .kf_ops = &rdtgroup_kf_single_ops,
1420 .seq_show = rdt_delay_linear_show,
1421 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
1422 },
1423 {
1424 .name = "max_threshold_occupancy",
1425 .mode = 0644,
1426 .kf_ops = &rdtgroup_kf_single_ops,
1427 .write = max_threshold_occ_write,
1428 .seq_show = max_threshold_occ_show,
1429 .fflags = RF_MON_INFO | RFTYPE_RES_CACHE,
1430 },
1431 {
1432 .name = "cpus",
1433 .mode = 0644,
1434 .kf_ops = &rdtgroup_kf_single_ops,
1435 .write = rdtgroup_cpus_write,
1436 .seq_show = rdtgroup_cpus_show,
1437 .fflags = RFTYPE_BASE,
1438 },
1439 {
1440 .name = "cpus_list",
1441 .mode = 0644,
1442 .kf_ops = &rdtgroup_kf_single_ops,
1443 .write = rdtgroup_cpus_write,
1444 .seq_show = rdtgroup_cpus_show,
1445 .flags = RFTYPE_FLAGS_CPUS_LIST,
1446 .fflags = RFTYPE_BASE,
1447 },
1448 {
1449 .name = "tasks",
1450 .mode = 0644,
1451 .kf_ops = &rdtgroup_kf_single_ops,
1452 .write = rdtgroup_tasks_write,
1453 .seq_show = rdtgroup_tasks_show,
1454 .fflags = RFTYPE_BASE,
1455 },
1456 {
1457 .name = "schemata",
1458 .mode = 0644,
1459 .kf_ops = &rdtgroup_kf_single_ops,
1460 .write = rdtgroup_schemata_write,
1461 .seq_show = rdtgroup_schemata_show,
1462 .fflags = RF_CTRL_BASE,
1463 },
1464 {
1465 .name = "mode",
1466 .mode = 0644,
1467 .kf_ops = &rdtgroup_kf_single_ops,
1468 .write = rdtgroup_mode_write,
1469 .seq_show = rdtgroup_mode_show,
1470 .fflags = RF_CTRL_BASE,
1471 },
1472 {
1473 .name = "size",
1474 .mode = 0444,
1475 .kf_ops = &rdtgroup_kf_single_ops,
1476 .seq_show = rdtgroup_size_show,
1477 .fflags = RF_CTRL_BASE,
1478 },
1479
1480 };
1481
1482 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1483 {
1484 struct rftype *rfts, *rft;
1485 int ret, len;
1486
1487 rfts = res_common_files;
1488 len = ARRAY_SIZE(res_common_files);
1489
1490 lockdep_assert_held(&rdtgroup_mutex);
1491
1492 for (rft = rfts; rft < rfts + len; rft++) {
1493 if ((fflags & rft->fflags) == rft->fflags) {
1494 ret = rdtgroup_add_file(kn, rft);
1495 if (ret)
1496 goto error;
1497 }
1498 }
1499
1500 return 0;
1501 error:
1502 pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
1503 while (--rft >= rfts) {
1504 if ((fflags & rft->fflags) == rft->fflags)
1505 kernfs_remove_by_name(kn, rft->name);
1506 }
1507 return ret;
1508 }
1509
1510 /**
1511 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
1512 * @r: The resource group with which the file is associated.
1513 * @name: Name of the file
1514 *
1515 * The permissions of named resctrl file, directory, or link are modified
1516 * to not allow read, write, or execute by any user.
1517 *
1518 * WARNING: This function is intended to communicate to the user that the
1519 * resctrl file has been locked down - that it is not relevant to the
1520 * particular state the system finds itself in. It should not be relied
1521 * on to protect from user access because after the file's permissions
1522 * are restricted the user can still change the permissions using chmod
1523 * from the command line.
1524 *
1525 * Return: 0 on success, <0 on failure.
1526 */
1527 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
1528 {
1529 struct iattr iattr = {.ia_valid = ATTR_MODE,};
1530 struct kernfs_node *kn;
1531 int ret = 0;
1532
1533 kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1534 if (!kn)
1535 return -ENOENT;
1536
1537 switch (kernfs_type(kn)) {
1538 case KERNFS_DIR:
1539 iattr.ia_mode = S_IFDIR;
1540 break;
1541 case KERNFS_FILE:
1542 iattr.ia_mode = S_IFREG;
1543 break;
1544 case KERNFS_LINK:
1545 iattr.ia_mode = S_IFLNK;
1546 break;
1547 }
1548
1549 ret = kernfs_setattr(kn, &iattr);
1550 kernfs_put(kn);
1551 return ret;
1552 }
1553
1554 /**
1555 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
1556 * @r: The resource group with which the file is associated.
1557 * @name: Name of the file
1558 * @mask: Mask of permissions that should be restored
1559 *
1560 * Restore the permissions of the named file. If @name is a directory the
1561 * permissions of its parent will be used.
1562 *
1563 * Return: 0 on success, <0 on failure.
1564 */
1565 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
1566 umode_t mask)
1567 {
1568 struct iattr iattr = {.ia_valid = ATTR_MODE,};
1569 struct kernfs_node *kn, *parent;
1570 struct rftype *rfts, *rft;
1571 int ret, len;
1572
1573 rfts = res_common_files;
1574 len = ARRAY_SIZE(res_common_files);
1575
1576 for (rft = rfts; rft < rfts + len; rft++) {
1577 if (!strcmp(rft->name, name))
1578 iattr.ia_mode = rft->mode & mask;
1579 }
1580
1581 kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1582 if (!kn)
1583 return -ENOENT;
1584
1585 switch (kernfs_type(kn)) {
1586 case KERNFS_DIR:
1587 parent = kernfs_get_parent(kn);
1588 if (parent) {
1589 iattr.ia_mode |= parent->mode;
1590 kernfs_put(parent);
1591 }
1592 iattr.ia_mode |= S_IFDIR;
1593 break;
1594 case KERNFS_FILE:
1595 iattr.ia_mode |= S_IFREG;
1596 break;
1597 case KERNFS_LINK:
1598 iattr.ia_mode |= S_IFLNK;
1599 break;
1600 }
1601
1602 ret = kernfs_setattr(kn, &iattr);
1603 kernfs_put(kn);
1604 return ret;
1605 }
1606
1607 static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name,
1608 unsigned long fflags)
1609 {
1610 struct kernfs_node *kn_subdir;
1611 int ret;
1612
1613 kn_subdir = kernfs_create_dir(kn_info, name,
1614 kn_info->mode, r);
1615 if (IS_ERR(kn_subdir))
1616 return PTR_ERR(kn_subdir);
1617
1618 kernfs_get(kn_subdir);
1619 ret = rdtgroup_kn_set_ugid(kn_subdir);
1620 if (ret)
1621 return ret;
1622
1623 ret = rdtgroup_add_files(kn_subdir, fflags);
1624 if (!ret)
1625 kernfs_activate(kn_subdir);
1626
1627 return ret;
1628 }
1629
1630 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
1631 {
1632 struct rdt_resource *r;
1633 unsigned long fflags;
1634 char name[32];
1635 int ret;
1636
1637 /* create the directory */
1638 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
1639 if (IS_ERR(kn_info))
1640 return PTR_ERR(kn_info);
1641 kernfs_get(kn_info);
1642
1643 ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
1644 if (ret)
1645 goto out_destroy;
1646
1647 for_each_alloc_enabled_rdt_resource(r) {
1648 fflags = r->fflags | RF_CTRL_INFO;
1649 ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags);
1650 if (ret)
1651 goto out_destroy;
1652 }
1653
1654 for_each_mon_enabled_rdt_resource(r) {
1655 fflags = r->fflags | RF_MON_INFO;
1656 sprintf(name, "%s_MON", r->name);
1657 ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
1658 if (ret)
1659 goto out_destroy;
1660 }
1661
1662 /*
1663 * This extra ref will be put in kernfs_remove() and guarantees
1664 * that @rdtgrp->kn is always accessible.
1665 */
1666 kernfs_get(kn_info);
1667
1668 ret = rdtgroup_kn_set_ugid(kn_info);
1669 if (ret)
1670 goto out_destroy;
1671
1672 kernfs_activate(kn_info);
1673
1674 return 0;
1675
1676 out_destroy:
1677 kernfs_remove(kn_info);
1678 return ret;
1679 }
1680
1681 static int
1682 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
1683 char *name, struct kernfs_node **dest_kn)
1684 {
1685 struct kernfs_node *kn;
1686 int ret;
1687
1688 /* create the directory */
1689 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
1690 if (IS_ERR(kn))
1691 return PTR_ERR(kn);
1692
1693 if (dest_kn)
1694 *dest_kn = kn;
1695
1696 /*
1697 * This extra ref will be put in kernfs_remove() and guarantees
1698 * that @rdtgrp->kn is always accessible.
1699 */
1700 kernfs_get(kn);
1701
1702 ret = rdtgroup_kn_set_ugid(kn);
1703 if (ret)
1704 goto out_destroy;
1705
1706 kernfs_activate(kn);
1707
1708 return 0;
1709
1710 out_destroy:
1711 kernfs_remove(kn);
1712 return ret;
1713 }
1714
1715 static void l3_qos_cfg_update(void *arg)
1716 {
1717 bool *enable = arg;
1718
1719 wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
1720 }
1721
1722 static void l2_qos_cfg_update(void *arg)
1723 {
1724 bool *enable = arg;
1725
1726 wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
1727 }
1728
1729 static inline bool is_mba_linear(void)
1730 {
1731 return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear;
1732 }
1733
1734 static int set_cache_qos_cfg(int level, bool enable)
1735 {
1736 void (*update)(void *arg);
1737 struct rdt_resource *r_l;
1738 cpumask_var_t cpu_mask;
1739 struct rdt_domain *d;
1740 int cpu;
1741
1742 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1743 return -ENOMEM;
1744
1745 if (level == RDT_RESOURCE_L3)
1746 update = l3_qos_cfg_update;
1747 else if (level == RDT_RESOURCE_L2)
1748 update = l2_qos_cfg_update;
1749 else
1750 return -EINVAL;
1751
1752 r_l = &rdt_resources_all[level];
1753 list_for_each_entry(d, &r_l->domains, list) {
1754 /* Pick one CPU from each domain instance to update MSR */
1755 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
1756 }
1757 cpu = get_cpu();
1758 /* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */
1759 if (cpumask_test_cpu(cpu, cpu_mask))
1760 update(&enable);
1761 /* Update QOS_CFG MSR on all other cpus in cpu_mask. */
1762 smp_call_function_many(cpu_mask, update, &enable, 1);
1763 put_cpu();
1764
1765 free_cpumask_var(cpu_mask);
1766
1767 return 0;
1768 }
1769
1770 /*
1771 * Enable or disable the MBA software controller
1772 * which helps user specify bandwidth in MBps.
1773 * MBA software controller is supported only if
1774 * MBM is supported and MBA is in linear scale.
1775 */
1776 static int set_mba_sc(bool mba_sc)
1777 {
1778 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA];
1779 struct rdt_domain *d;
1780
1781 if (!is_mbm_enabled() || !is_mba_linear() ||
1782 mba_sc == is_mba_sc(r))
1783 return -EINVAL;
1784
1785 r->membw.mba_sc = mba_sc;
1786 list_for_each_entry(d, &r->domains, list)
1787 setup_default_ctrlval(r, d->ctrl_val, d->mbps_val);
1788
1789 return 0;
1790 }
1791
1792 static int cdp_enable(int level, int data_type, int code_type)
1793 {
1794 struct rdt_resource *r_ldata = &rdt_resources_all[data_type];
1795 struct rdt_resource *r_lcode = &rdt_resources_all[code_type];
1796 struct rdt_resource *r_l = &rdt_resources_all[level];
1797 int ret;
1798
1799 if (!r_l->alloc_capable || !r_ldata->alloc_capable ||
1800 !r_lcode->alloc_capable)
1801 return -EINVAL;
1802
1803 ret = set_cache_qos_cfg(level, true);
1804 if (!ret) {
1805 r_l->alloc_enabled = false;
1806 r_ldata->alloc_enabled = true;
1807 r_lcode->alloc_enabled = true;
1808 }
1809 return ret;
1810 }
1811
1812 static int cdpl3_enable(void)
1813 {
1814 return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA,
1815 RDT_RESOURCE_L3CODE);
1816 }
1817
1818 static int cdpl2_enable(void)
1819 {
1820 return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA,
1821 RDT_RESOURCE_L2CODE);
1822 }
1823
1824 static void cdp_disable(int level, int data_type, int code_type)
1825 {
1826 struct rdt_resource *r = &rdt_resources_all[level];
1827
1828 r->alloc_enabled = r->alloc_capable;
1829
1830 if (rdt_resources_all[data_type].alloc_enabled) {
1831 rdt_resources_all[data_type].alloc_enabled = false;
1832 rdt_resources_all[code_type].alloc_enabled = false;
1833 set_cache_qos_cfg(level, false);
1834 }
1835 }
1836
1837 static void cdpl3_disable(void)
1838 {
1839 cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE);
1840 }
1841
1842 static void cdpl2_disable(void)
1843 {
1844 cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE);
1845 }
1846
1847 static void cdp_disable_all(void)
1848 {
1849 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
1850 cdpl3_disable();
1851 if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
1852 cdpl2_disable();
1853 }
1854
1855 /*
1856 * We don't allow rdtgroup directories to be created anywhere
1857 * except the root directory. Thus when looking for the rdtgroup
1858 * structure for a kernfs node we are either looking at a directory,
1859 * in which case the rdtgroup structure is pointed at by the "priv"
1860 * field, otherwise we have a file, and need only look to the parent
1861 * to find the rdtgroup.
1862 */
1863 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
1864 {
1865 if (kernfs_type(kn) == KERNFS_DIR) {
1866 /*
1867 * All the resource directories use "kn->priv"
1868 * to point to the "struct rdtgroup" for the
1869 * resource. "info" and its subdirectories don't
1870 * have rdtgroup structures, so return NULL here.
1871 */
1872 if (kn == kn_info || kn->parent == kn_info)
1873 return NULL;
1874 else
1875 return kn->priv;
1876 } else {
1877 return kn->parent->priv;
1878 }
1879 }
1880
1881 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
1882 {
1883 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
1884
1885 if (!rdtgrp)
1886 return NULL;
1887
1888 atomic_inc(&rdtgrp->waitcount);
1889 kernfs_break_active_protection(kn);
1890
1891 mutex_lock(&rdtgroup_mutex);
1892
1893 /* Was this group deleted while we waited? */
1894 if (rdtgrp->flags & RDT_DELETED)
1895 return NULL;
1896
1897 return rdtgrp;
1898 }
1899
1900 void rdtgroup_kn_unlock(struct kernfs_node *kn)
1901 {
1902 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
1903
1904 if (!rdtgrp)
1905 return;
1906
1907 mutex_unlock(&rdtgroup_mutex);
1908
1909 if (atomic_dec_and_test(&rdtgrp->waitcount) &&
1910 (rdtgrp->flags & RDT_DELETED)) {
1911 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
1912 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
1913 rdtgroup_pseudo_lock_remove(rdtgrp);
1914 kernfs_unbreak_active_protection(kn);
1915 kernfs_put(rdtgrp->kn);
1916 kfree(rdtgrp);
1917 } else {
1918 kernfs_unbreak_active_protection(kn);
1919 }
1920 }
1921
1922 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
1923 struct rdtgroup *prgrp,
1924 struct kernfs_node **mon_data_kn);
1925
1926 static int rdt_enable_ctx(struct rdt_fs_context *ctx)
1927 {
1928 int ret = 0;
1929
1930 if (ctx->enable_cdpl2)
1931 ret = cdpl2_enable();
1932
1933 if (!ret && ctx->enable_cdpl3)
1934 ret = cdpl3_enable();
1935
1936 if (!ret && ctx->enable_mba_mbps)
1937 ret = set_mba_sc(true);
1938
1939 return ret;
1940 }
1941
1942 static int rdt_get_tree(struct fs_context *fc)
1943 {
1944 struct rdt_fs_context *ctx = rdt_fc2context(fc);
1945 struct rdt_domain *dom;
1946 struct rdt_resource *r;
1947 int ret;
1948
1949 cpus_read_lock();
1950 mutex_lock(&rdtgroup_mutex);
1951 /*
1952 * resctrl file system can only be mounted once.
1953 */
1954 if (static_branch_unlikely(&rdt_enable_key)) {
1955 ret = -EBUSY;
1956 goto out;
1957 }
1958
1959 ret = rdt_enable_ctx(ctx);
1960 if (ret < 0)
1961 goto out_cdp;
1962
1963 closid_init();
1964
1965 ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
1966 if (ret < 0)
1967 goto out_mba;
1968
1969 if (rdt_mon_capable) {
1970 ret = mongroup_create_dir(rdtgroup_default.kn,
1971 NULL, "mon_groups",
1972 &kn_mongrp);
1973 if (ret < 0)
1974 goto out_info;
1975 kernfs_get(kn_mongrp);
1976
1977 ret = mkdir_mondata_all(rdtgroup_default.kn,
1978 &rdtgroup_default, &kn_mondata);
1979 if (ret < 0)
1980 goto out_mongrp;
1981 kernfs_get(kn_mondata);
1982 rdtgroup_default.mon.mon_data_kn = kn_mondata;
1983 }
1984
1985 ret = rdt_pseudo_lock_init();
1986 if (ret)
1987 goto out_mondata;
1988
1989 ret = kernfs_get_tree(fc);
1990 if (ret < 0)
1991 goto out_psl;
1992
1993 if (rdt_alloc_capable)
1994 static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
1995 if (rdt_mon_capable)
1996 static_branch_enable_cpuslocked(&rdt_mon_enable_key);
1997
1998 if (rdt_alloc_capable || rdt_mon_capable)
1999 static_branch_enable_cpuslocked(&rdt_enable_key);
2000
2001 if (is_mbm_enabled()) {
2002 r = &rdt_resources_all[RDT_RESOURCE_L3];
2003 list_for_each_entry(dom, &r->domains, list)
2004 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
2005 }
2006
2007 goto out;
2008
2009 out_psl:
2010 rdt_pseudo_lock_release();
2011 out_mondata:
2012 if (rdt_mon_capable)
2013 kernfs_remove(kn_mondata);
2014 out_mongrp:
2015 if (rdt_mon_capable)
2016 kernfs_remove(kn_mongrp);
2017 out_info:
2018 kernfs_remove(kn_info);
2019 out_mba:
2020 if (ctx->enable_mba_mbps)
2021 set_mba_sc(false);
2022 out_cdp:
2023 cdp_disable_all();
2024 out:
2025 rdt_last_cmd_clear();
2026 mutex_unlock(&rdtgroup_mutex);
2027 cpus_read_unlock();
2028 return ret;
2029 }
2030
2031 enum rdt_param {
2032 Opt_cdp,
2033 Opt_cdpl2,
2034 Opt_mba_mbps,
2035 nr__rdt_params
2036 };
2037
2038 static const struct fs_parameter_spec rdt_param_specs[] = {
2039 fsparam_flag("cdp", Opt_cdp),
2040 fsparam_flag("cdpl2", Opt_cdpl2),
2041 fsparam_flag("mba_MBps", Opt_mba_mbps),
2042 {}
2043 };
2044
2045 static const struct fs_parameter_description rdt_fs_parameters = {
2046 .name = "rdt",
2047 .specs = rdt_param_specs,
2048 };
2049
2050 static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2051 {
2052 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2053 struct fs_parse_result result;
2054 int opt;
2055
2056 opt = fs_parse(fc, &rdt_fs_parameters, param, &result);
2057 if (opt < 0)
2058 return opt;
2059
2060 switch (opt) {
2061 case Opt_cdp:
2062 ctx->enable_cdpl3 = true;
2063 return 0;
2064 case Opt_cdpl2:
2065 ctx->enable_cdpl2 = true;
2066 return 0;
2067 case Opt_mba_mbps:
2068 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2069 return -EINVAL;
2070 ctx->enable_mba_mbps = true;
2071 return 0;
2072 }
2073
2074 return -EINVAL;
2075 }
2076
2077 static void rdt_fs_context_free(struct fs_context *fc)
2078 {
2079 struct rdt_fs_context *ctx = rdt_fc2context(fc);
2080
2081 kernfs_free_fs_context(fc);
2082 kfree(ctx);
2083 }
2084
2085 static const struct fs_context_operations rdt_fs_context_ops = {
2086 .free = rdt_fs_context_free,
2087 .parse_param = rdt_parse_param,
2088 .get_tree = rdt_get_tree,
2089 };
2090
2091 static int rdt_init_fs_context(struct fs_context *fc)
2092 {
2093 struct rdt_fs_context *ctx;
2094
2095 ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2096 if (!ctx)
2097 return -ENOMEM;
2098
2099 ctx->kfc.root = rdt_root;
2100 ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2101 fc->fs_private = &ctx->kfc;
2102 fc->ops = &rdt_fs_context_ops;
2103 if (fc->user_ns)
2104 put_user_ns(fc->user_ns);
2105 fc->user_ns = get_user_ns(&init_user_ns);
2106 fc->global = true;
2107 return 0;
2108 }
2109
2110 static int reset_all_ctrls(struct rdt_resource *r)
2111 {
2112 struct msr_param msr_param;
2113 cpumask_var_t cpu_mask;
2114 struct rdt_domain *d;
2115 int i, cpu;
2116
2117 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2118 return -ENOMEM;
2119
2120 msr_param.res = r;
2121 msr_param.low = 0;
2122 msr_param.high = r->num_closid;
2123
2124 /*
2125 * Disable resource control for this resource by setting all
2126 * CBMs in all domains to the maximum mask value. Pick one CPU
2127 * from each domain to update the MSRs below.
2128 */
2129 list_for_each_entry(d, &r->domains, list) {
2130 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2131
2132 for (i = 0; i < r->num_closid; i++)
2133 d->ctrl_val[i] = r->default_ctrl;
2134 }
2135 cpu = get_cpu();
2136 /* Update CBM on this cpu if it's in cpu_mask. */
2137 if (cpumask_test_cpu(cpu, cpu_mask))
2138 rdt_ctrl_update(&msr_param);
2139 /* Update CBM on all other cpus in cpu_mask. */
2140 smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2141 put_cpu();
2142
2143 free_cpumask_var(cpu_mask);
2144
2145 return 0;
2146 }
2147
2148 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
2149 {
2150 return (rdt_alloc_capable &&
2151 (r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
2152 }
2153
2154 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
2155 {
2156 return (rdt_mon_capable &&
2157 (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
2158 }
2159
2160 /*
2161 * Move tasks from one to the other group. If @from is NULL, then all tasks
2162 * in the systems are moved unconditionally (used for teardown).
2163 *
2164 * If @mask is not NULL the cpus on which moved tasks are running are set
2165 * in that mask so the update smp function call is restricted to affected
2166 * cpus.
2167 */
2168 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2169 struct cpumask *mask)
2170 {
2171 struct task_struct *p, *t;
2172
2173 read_lock(&tasklist_lock);
2174 for_each_process_thread(p, t) {
2175 if (!from || is_closid_match(t, from) ||
2176 is_rmid_match(t, from)) {
2177 t->closid = to->closid;
2178 t->rmid = to->mon.rmid;
2179
2180 #ifdef CONFIG_SMP
2181 /*
2182 * This is safe on x86 w/o barriers as the ordering
2183 * of writing to task_cpu() and t->on_cpu is
2184 * reverse to the reading here. The detection is
2185 * inaccurate as tasks might move or schedule
2186 * before the smp function call takes place. In
2187 * such a case the function call is pointless, but
2188 * there is no other side effect.
2189 */
2190 if (mask && t->on_cpu)
2191 cpumask_set_cpu(task_cpu(t), mask);
2192 #endif
2193 }
2194 }
2195 read_unlock(&tasklist_lock);
2196 }
2197
2198 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2199 {
2200 struct rdtgroup *sentry, *stmp;
2201 struct list_head *head;
2202
2203 head = &rdtgrp->mon.crdtgrp_list;
2204 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2205 free_rmid(sentry->mon.rmid);
2206 list_del(&sentry->mon.crdtgrp_list);
2207 kfree(sentry);
2208 }
2209 }
2210
2211 /*
2212 * Forcibly remove all of subdirectories under root.
2213 */
2214 static void rmdir_all_sub(void)
2215 {
2216 struct rdtgroup *rdtgrp, *tmp;
2217
2218 /* Move all tasks to the default resource group */
2219 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2220
2221 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2222 /* Free any child rmids */
2223 free_all_child_rdtgrp(rdtgrp);
2224
2225 /* Remove each rdtgroup other than root */
2226 if (rdtgrp == &rdtgroup_default)
2227 continue;
2228
2229 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2230 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2231 rdtgroup_pseudo_lock_remove(rdtgrp);
2232
2233 /*
2234 * Give any CPUs back to the default group. We cannot copy
2235 * cpu_online_mask because a CPU might have executed the
2236 * offline callback already, but is still marked online.
2237 */
2238 cpumask_or(&rdtgroup_default.cpu_mask,
2239 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2240
2241 free_rmid(rdtgrp->mon.rmid);
2242
2243 kernfs_remove(rdtgrp->kn);
2244 list_del(&rdtgrp->rdtgroup_list);
2245 kfree(rdtgrp);
2246 }
2247 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2248 update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2249
2250 kernfs_remove(kn_info);
2251 kernfs_remove(kn_mongrp);
2252 kernfs_remove(kn_mondata);
2253 }
2254
2255 static void rdt_kill_sb(struct super_block *sb)
2256 {
2257 struct rdt_resource *r;
2258
2259 cpus_read_lock();
2260 mutex_lock(&rdtgroup_mutex);
2261
2262 set_mba_sc(false);
2263
2264 /*Put everything back to default values. */
2265 for_each_alloc_enabled_rdt_resource(r)
2266 reset_all_ctrls(r);
2267 cdp_disable_all();
2268 rmdir_all_sub();
2269 rdt_pseudo_lock_release();
2270 rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2271 static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
2272 static_branch_disable_cpuslocked(&rdt_mon_enable_key);
2273 static_branch_disable_cpuslocked(&rdt_enable_key);
2274 kernfs_kill_sb(sb);
2275 mutex_unlock(&rdtgroup_mutex);
2276 cpus_read_unlock();
2277 }
2278
2279 static struct file_system_type rdt_fs_type = {
2280 .name = "resctrl",
2281 .init_fs_context = rdt_init_fs_context,
2282 .parameters = &rdt_fs_parameters,
2283 .kill_sb = rdt_kill_sb,
2284 };
2285
2286 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2287 void *priv)
2288 {
2289 struct kernfs_node *kn;
2290 int ret = 0;
2291
2292 kn = __kernfs_create_file(parent_kn, name, 0444,
2293 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2294 &kf_mondata_ops, priv, NULL, NULL);
2295 if (IS_ERR(kn))
2296 return PTR_ERR(kn);
2297
2298 ret = rdtgroup_kn_set_ugid(kn);
2299 if (ret) {
2300 kernfs_remove(kn);
2301 return ret;
2302 }
2303
2304 return ret;
2305 }
2306
2307 /*
2308 * Remove all subdirectories of mon_data of ctrl_mon groups
2309 * and monitor groups with given domain id.
2310 */
2311 void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id)
2312 {
2313 struct rdtgroup *prgrp, *crgrp;
2314 char name[32];
2315
2316 if (!r->mon_enabled)
2317 return;
2318
2319 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2320 sprintf(name, "mon_%s_%02d", r->name, dom_id);
2321 kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
2322
2323 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
2324 kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
2325 }
2326 }
2327
2328 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
2329 struct rdt_domain *d,
2330 struct rdt_resource *r, struct rdtgroup *prgrp)
2331 {
2332 union mon_data_bits priv;
2333 struct kernfs_node *kn;
2334 struct mon_evt *mevt;
2335 struct rmid_read rr;
2336 char name[32];
2337 int ret;
2338
2339 sprintf(name, "mon_%s_%02d", r->name, d->id);
2340 /* create the directory */
2341 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2342 if (IS_ERR(kn))
2343 return PTR_ERR(kn);
2344
2345 /*
2346 * This extra ref will be put in kernfs_remove() and guarantees
2347 * that kn is always accessible.
2348 */
2349 kernfs_get(kn);
2350 ret = rdtgroup_kn_set_ugid(kn);
2351 if (ret)
2352 goto out_destroy;
2353
2354 if (WARN_ON(list_empty(&r->evt_list))) {
2355 ret = -EPERM;
2356 goto out_destroy;
2357 }
2358
2359 priv.u.rid = r->rid;
2360 priv.u.domid = d->id;
2361 list_for_each_entry(mevt, &r->evt_list, list) {
2362 priv.u.evtid = mevt->evtid;
2363 ret = mon_addfile(kn, mevt->name, priv.priv);
2364 if (ret)
2365 goto out_destroy;
2366
2367 if (is_mbm_event(mevt->evtid))
2368 mon_event_read(&rr, d, prgrp, mevt->evtid, true);
2369 }
2370 kernfs_activate(kn);
2371 return 0;
2372
2373 out_destroy:
2374 kernfs_remove(kn);
2375 return ret;
2376 }
2377
2378 /*
2379 * Add all subdirectories of mon_data for "ctrl_mon" groups
2380 * and "monitor" groups with given domain id.
2381 */
2382 void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2383 struct rdt_domain *d)
2384 {
2385 struct kernfs_node *parent_kn;
2386 struct rdtgroup *prgrp, *crgrp;
2387 struct list_head *head;
2388
2389 if (!r->mon_enabled)
2390 return;
2391
2392 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2393 parent_kn = prgrp->mon.mon_data_kn;
2394 mkdir_mondata_subdir(parent_kn, d, r, prgrp);
2395
2396 head = &prgrp->mon.crdtgrp_list;
2397 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
2398 parent_kn = crgrp->mon.mon_data_kn;
2399 mkdir_mondata_subdir(parent_kn, d, r, crgrp);
2400 }
2401 }
2402 }
2403
2404 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
2405 struct rdt_resource *r,
2406 struct rdtgroup *prgrp)
2407 {
2408 struct rdt_domain *dom;
2409 int ret;
2410
2411 list_for_each_entry(dom, &r->domains, list) {
2412 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
2413 if (ret)
2414 return ret;
2415 }
2416
2417 return 0;
2418 }
2419
2420 /*
2421 * This creates a directory mon_data which contains the monitored data.
2422 *
2423 * mon_data has one directory for each domain whic are named
2424 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
2425 * with L3 domain looks as below:
2426 * ./mon_data:
2427 * mon_L3_00
2428 * mon_L3_01
2429 * mon_L3_02
2430 * ...
2431 *
2432 * Each domain directory has one file per event:
2433 * ./mon_L3_00/:
2434 * llc_occupancy
2435 *
2436 */
2437 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2438 struct rdtgroup *prgrp,
2439 struct kernfs_node **dest_kn)
2440 {
2441 struct rdt_resource *r;
2442 struct kernfs_node *kn;
2443 int ret;
2444
2445 /*
2446 * Create the mon_data directory first.
2447 */
2448 ret = mongroup_create_dir(parent_kn, NULL, "mon_data", &kn);
2449 if (ret)
2450 return ret;
2451
2452 if (dest_kn)
2453 *dest_kn = kn;
2454
2455 /*
2456 * Create the subdirectories for each domain. Note that all events
2457 * in a domain like L3 are grouped into a resource whose domain is L3
2458 */
2459 for_each_mon_enabled_rdt_resource(r) {
2460 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
2461 if (ret)
2462 goto out_destroy;
2463 }
2464
2465 return 0;
2466
2467 out_destroy:
2468 kernfs_remove(kn);
2469 return ret;
2470 }
2471
2472 /**
2473 * cbm_ensure_valid - Enforce validity on provided CBM
2474 * @_val: Candidate CBM
2475 * @r: RDT resource to which the CBM belongs
2476 *
2477 * The provided CBM represents all cache portions available for use. This
2478 * may be represented by a bitmap that does not consist of contiguous ones
2479 * and thus be an invalid CBM.
2480 * Here the provided CBM is forced to be a valid CBM by only considering
2481 * the first set of contiguous bits as valid and clearing all bits.
2482 * The intention here is to provide a valid default CBM with which a new
2483 * resource group is initialized. The user can follow this with a
2484 * modification to the CBM if the default does not satisfy the
2485 * requirements.
2486 */
2487 static void cbm_ensure_valid(u32 *_val, struct rdt_resource *r)
2488 {
2489 /*
2490 * Convert the u32 _val to an unsigned long required by all the bit
2491 * operations within this function. No more than 32 bits of this
2492 * converted value can be accessed because all bit operations are
2493 * additionally provided with cbm_len that is initialized during
2494 * hardware enumeration using five bits from the EAX register and
2495 * thus never can exceed 32 bits.
2496 */
2497 unsigned long *val = (unsigned long *)_val;
2498 unsigned int cbm_len = r->cache.cbm_len;
2499 unsigned long first_bit, zero_bit;
2500
2501 if (*val == 0)
2502 return;
2503
2504 first_bit = find_first_bit(val, cbm_len);
2505 zero_bit = find_next_zero_bit(val, cbm_len, first_bit);
2506
2507 /* Clear any remaining bits to ensure contiguous region */
2508 bitmap_clear(val, zero_bit, cbm_len - zero_bit);
2509 }
2510
2511 /*
2512 * Initialize cache resources per RDT domain
2513 *
2514 * Set the RDT domain up to start off with all usable allocations. That is,
2515 * all shareable and unused bits. All-zero CBM is invalid.
2516 */
2517 static int __init_one_rdt_domain(struct rdt_domain *d, struct rdt_resource *r,
2518 u32 closid)
2519 {
2520 struct rdt_resource *r_cdp = NULL;
2521 struct rdt_domain *d_cdp = NULL;
2522 u32 used_b = 0, unused_b = 0;
2523 unsigned long tmp_cbm;
2524 enum rdtgrp_mode mode;
2525 u32 peer_ctl, *ctrl;
2526 int i;
2527
2528 rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp);
2529 d->have_new_ctrl = false;
2530 d->new_ctrl = r->cache.shareable_bits;
2531 used_b = r->cache.shareable_bits;
2532 ctrl = d->ctrl_val;
2533 for (i = 0; i < closids_supported(); i++, ctrl++) {
2534 if (closid_allocated(i) && i != closid) {
2535 mode = rdtgroup_mode_by_closid(i);
2536 if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
2537 /*
2538 * ctrl values for locksetup aren't relevant
2539 * until the schemata is written, and the mode
2540 * becomes RDT_MODE_PSEUDO_LOCKED.
2541 */
2542 continue;
2543 /*
2544 * If CDP is active include peer domain's
2545 * usage to ensure there is no overlap
2546 * with an exclusive group.
2547 */
2548 if (d_cdp)
2549 peer_ctl = d_cdp->ctrl_val[i];
2550 else
2551 peer_ctl = 0;
2552 used_b |= *ctrl | peer_ctl;
2553 if (mode == RDT_MODE_SHAREABLE)
2554 d->new_ctrl |= *ctrl | peer_ctl;
2555 }
2556 }
2557 if (d->plr && d->plr->cbm > 0)
2558 used_b |= d->plr->cbm;
2559 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
2560 unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
2561 d->new_ctrl |= unused_b;
2562 /*
2563 * Force the initial CBM to be valid, user can
2564 * modify the CBM based on system availability.
2565 */
2566 cbm_ensure_valid(&d->new_ctrl, r);
2567 /*
2568 * Assign the u32 CBM to an unsigned long to ensure that
2569 * bitmap_weight() does not access out-of-bound memory.
2570 */
2571 tmp_cbm = d->new_ctrl;
2572 if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
2573 rdt_last_cmd_printf("No space on %s:%d\n", r->name, d->id);
2574 return -ENOSPC;
2575 }
2576 d->have_new_ctrl = true;
2577
2578 return 0;
2579 }
2580
2581 /*
2582 * Initialize cache resources with default values.
2583 *
2584 * A new RDT group is being created on an allocation capable (CAT)
2585 * supporting system. Set this group up to start off with all usable
2586 * allocations.
2587 *
2588 * If there are no more shareable bits available on any domain then
2589 * the entire allocation will fail.
2590 */
2591 static int rdtgroup_init_cat(struct rdt_resource *r, u32 closid)
2592 {
2593 struct rdt_domain *d;
2594 int ret;
2595
2596 list_for_each_entry(d, &r->domains, list) {
2597 ret = __init_one_rdt_domain(d, r, closid);
2598 if (ret < 0)
2599 return ret;
2600 }
2601
2602 return 0;
2603 }
2604
2605 /* Initialize MBA resource with default values. */
2606 static void rdtgroup_init_mba(struct rdt_resource *r)
2607 {
2608 struct rdt_domain *d;
2609
2610 list_for_each_entry(d, &r->domains, list) {
2611 d->new_ctrl = is_mba_sc(r) ? MBA_MAX_MBPS : r->default_ctrl;
2612 d->have_new_ctrl = true;
2613 }
2614 }
2615
2616 /* Initialize the RDT group's allocations. */
2617 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
2618 {
2619 struct rdt_resource *r;
2620 int ret;
2621
2622 for_each_alloc_enabled_rdt_resource(r) {
2623 if (r->rid == RDT_RESOURCE_MBA) {
2624 rdtgroup_init_mba(r);
2625 } else {
2626 ret = rdtgroup_init_cat(r, rdtgrp->closid);
2627 if (ret < 0)
2628 return ret;
2629 }
2630
2631 ret = update_domains(r, rdtgrp->closid);
2632 if (ret < 0) {
2633 rdt_last_cmd_puts("Failed to initialize allocations\n");
2634 return ret;
2635 }
2636
2637 }
2638
2639 rdtgrp->mode = RDT_MODE_SHAREABLE;
2640
2641 return 0;
2642 }
2643
2644 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
2645 struct kernfs_node *prgrp_kn,
2646 const char *name, umode_t mode,
2647 enum rdt_group_type rtype, struct rdtgroup **r)
2648 {
2649 struct rdtgroup *prdtgrp, *rdtgrp;
2650 struct kernfs_node *kn;
2651 uint files = 0;
2652 int ret;
2653
2654 prdtgrp = rdtgroup_kn_lock_live(prgrp_kn);
2655 rdt_last_cmd_clear();
2656 if (!prdtgrp) {
2657 ret = -ENODEV;
2658 rdt_last_cmd_puts("Directory was removed\n");
2659 goto out_unlock;
2660 }
2661
2662 if (rtype == RDTMON_GROUP &&
2663 (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2664 prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
2665 ret = -EINVAL;
2666 rdt_last_cmd_puts("Pseudo-locking in progress\n");
2667 goto out_unlock;
2668 }
2669
2670 /* allocate the rdtgroup. */
2671 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
2672 if (!rdtgrp) {
2673 ret = -ENOSPC;
2674 rdt_last_cmd_puts("Kernel out of memory\n");
2675 goto out_unlock;
2676 }
2677 *r = rdtgrp;
2678 rdtgrp->mon.parent = prdtgrp;
2679 rdtgrp->type = rtype;
2680 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
2681
2682 /* kernfs creates the directory for rdtgrp */
2683 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
2684 if (IS_ERR(kn)) {
2685 ret = PTR_ERR(kn);
2686 rdt_last_cmd_puts("kernfs create error\n");
2687 goto out_free_rgrp;
2688 }
2689 rdtgrp->kn = kn;
2690
2691 /*
2692 * kernfs_remove() will drop the reference count on "kn" which
2693 * will free it. But we still need it to stick around for the
2694 * rdtgroup_kn_unlock(kn} call below. Take one extra reference
2695 * here, which will be dropped inside rdtgroup_kn_unlock().
2696 */
2697 kernfs_get(kn);
2698
2699 ret = rdtgroup_kn_set_ugid(kn);
2700 if (ret) {
2701 rdt_last_cmd_puts("kernfs perm error\n");
2702 goto out_destroy;
2703 }
2704
2705 files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
2706 ret = rdtgroup_add_files(kn, files);
2707 if (ret) {
2708 rdt_last_cmd_puts("kernfs fill error\n");
2709 goto out_destroy;
2710 }
2711
2712 if (rdt_mon_capable) {
2713 ret = alloc_rmid();
2714 if (ret < 0) {
2715 rdt_last_cmd_puts("Out of RMIDs\n");
2716 goto out_destroy;
2717 }
2718 rdtgrp->mon.rmid = ret;
2719
2720 ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
2721 if (ret) {
2722 rdt_last_cmd_puts("kernfs subdir error\n");
2723 goto out_idfree;
2724 }
2725 }
2726 kernfs_activate(kn);
2727
2728 /*
2729 * The caller unlocks the prgrp_kn upon success.
2730 */
2731 return 0;
2732
2733 out_idfree:
2734 free_rmid(rdtgrp->mon.rmid);
2735 out_destroy:
2736 kernfs_remove(rdtgrp->kn);
2737 out_free_rgrp:
2738 kfree(rdtgrp);
2739 out_unlock:
2740 rdtgroup_kn_unlock(prgrp_kn);
2741 return ret;
2742 }
2743
2744 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
2745 {
2746 kernfs_remove(rgrp->kn);
2747 free_rmid(rgrp->mon.rmid);
2748 kfree(rgrp);
2749 }
2750
2751 /*
2752 * Create a monitor group under "mon_groups" directory of a control
2753 * and monitor group(ctrl_mon). This is a resource group
2754 * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
2755 */
2756 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
2757 struct kernfs_node *prgrp_kn,
2758 const char *name,
2759 umode_t mode)
2760 {
2761 struct rdtgroup *rdtgrp, *prgrp;
2762 int ret;
2763
2764 ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTMON_GROUP,
2765 &rdtgrp);
2766 if (ret)
2767 return ret;
2768
2769 prgrp = rdtgrp->mon.parent;
2770 rdtgrp->closid = prgrp->closid;
2771
2772 /*
2773 * Add the rdtgrp to the list of rdtgrps the parent
2774 * ctrl_mon group has to track.
2775 */
2776 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
2777
2778 rdtgroup_kn_unlock(prgrp_kn);
2779 return ret;
2780 }
2781
2782 /*
2783 * These are rdtgroups created under the root directory. Can be used
2784 * to allocate and monitor resources.
2785 */
2786 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
2787 struct kernfs_node *prgrp_kn,
2788 const char *name, umode_t mode)
2789 {
2790 struct rdtgroup *rdtgrp;
2791 struct kernfs_node *kn;
2792 u32 closid;
2793 int ret;
2794
2795 ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTCTRL_GROUP,
2796 &rdtgrp);
2797 if (ret)
2798 return ret;
2799
2800 kn = rdtgrp->kn;
2801 ret = closid_alloc();
2802 if (ret < 0) {
2803 rdt_last_cmd_puts("Out of CLOSIDs\n");
2804 goto out_common_fail;
2805 }
2806 closid = ret;
2807 ret = 0;
2808
2809 rdtgrp->closid = closid;
2810 ret = rdtgroup_init_alloc(rdtgrp);
2811 if (ret < 0)
2812 goto out_id_free;
2813
2814 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
2815
2816 if (rdt_mon_capable) {
2817 /*
2818 * Create an empty mon_groups directory to hold the subset
2819 * of tasks and cpus to monitor.
2820 */
2821 ret = mongroup_create_dir(kn, NULL, "mon_groups", NULL);
2822 if (ret) {
2823 rdt_last_cmd_puts("kernfs subdir error\n");
2824 goto out_del_list;
2825 }
2826 }
2827
2828 goto out_unlock;
2829
2830 out_del_list:
2831 list_del(&rdtgrp->rdtgroup_list);
2832 out_id_free:
2833 closid_free(closid);
2834 out_common_fail:
2835 mkdir_rdt_prepare_clean(rdtgrp);
2836 out_unlock:
2837 rdtgroup_kn_unlock(prgrp_kn);
2838 return ret;
2839 }
2840
2841 /*
2842 * We allow creating mon groups only with in a directory called "mon_groups"
2843 * which is present in every ctrl_mon group. Check if this is a valid
2844 * "mon_groups" directory.
2845 *
2846 * 1. The directory should be named "mon_groups".
2847 * 2. The mon group itself should "not" be named "mon_groups".
2848 * This makes sure "mon_groups" directory always has a ctrl_mon group
2849 * as parent.
2850 */
2851 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
2852 {
2853 return (!strcmp(kn->name, "mon_groups") &&
2854 strcmp(name, "mon_groups"));
2855 }
2856
2857 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
2858 umode_t mode)
2859 {
2860 /* Do not accept '\n' to avoid unparsable situation. */
2861 if (strchr(name, '\n'))
2862 return -EINVAL;
2863
2864 /*
2865 * If the parent directory is the root directory and RDT
2866 * allocation is supported, add a control and monitoring
2867 * subdirectory
2868 */
2869 if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
2870 return rdtgroup_mkdir_ctrl_mon(parent_kn, parent_kn, name, mode);
2871
2872 /*
2873 * If RDT monitoring is supported and the parent directory is a valid
2874 * "mon_groups" directory, add a monitoring subdirectory.
2875 */
2876 if (rdt_mon_capable && is_mon_groups(parent_kn, name))
2877 return rdtgroup_mkdir_mon(parent_kn, parent_kn->parent, name, mode);
2878
2879 return -EPERM;
2880 }
2881
2882 static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
2883 cpumask_var_t tmpmask)
2884 {
2885 struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
2886 int cpu;
2887
2888 /* Give any tasks back to the parent group */
2889 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
2890
2891 /* Update per cpu rmid of the moved CPUs first */
2892 for_each_cpu(cpu, &rdtgrp->cpu_mask)
2893 per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
2894 /*
2895 * Update the MSR on moved CPUs and CPUs which have moved
2896 * task running on them.
2897 */
2898 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2899 update_closid_rmid(tmpmask, NULL);
2900
2901 rdtgrp->flags = RDT_DELETED;
2902 free_rmid(rdtgrp->mon.rmid);
2903
2904 /*
2905 * Remove the rdtgrp from the parent ctrl_mon group's list
2906 */
2907 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
2908 list_del(&rdtgrp->mon.crdtgrp_list);
2909
2910 /*
2911 * one extra hold on this, will drop when we kfree(rdtgrp)
2912 * in rdtgroup_kn_unlock()
2913 */
2914 kernfs_get(kn);
2915 kernfs_remove(rdtgrp->kn);
2916
2917 return 0;
2918 }
2919
2920 static int rdtgroup_ctrl_remove(struct kernfs_node *kn,
2921 struct rdtgroup *rdtgrp)
2922 {
2923 rdtgrp->flags = RDT_DELETED;
2924 list_del(&rdtgrp->rdtgroup_list);
2925
2926 /*
2927 * one extra hold on this, will drop when we kfree(rdtgrp)
2928 * in rdtgroup_kn_unlock()
2929 */
2930 kernfs_get(kn);
2931 kernfs_remove(rdtgrp->kn);
2932 return 0;
2933 }
2934
2935 static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
2936 cpumask_var_t tmpmask)
2937 {
2938 int cpu;
2939
2940 /* Give any tasks back to the default group */
2941 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
2942
2943 /* Give any CPUs back to the default group */
2944 cpumask_or(&rdtgroup_default.cpu_mask,
2945 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2946
2947 /* Update per cpu closid and rmid of the moved CPUs first */
2948 for_each_cpu(cpu, &rdtgrp->cpu_mask) {
2949 per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
2950 per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
2951 }
2952
2953 /*
2954 * Update the MSR on moved CPUs and CPUs which have moved
2955 * task running on them.
2956 */
2957 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2958 update_closid_rmid(tmpmask, NULL);
2959
2960 closid_free(rdtgrp->closid);
2961 free_rmid(rdtgrp->mon.rmid);
2962
2963 /*
2964 * Free all the child monitor group rmids.
2965 */
2966 free_all_child_rdtgrp(rdtgrp);
2967
2968 rdtgroup_ctrl_remove(kn, rdtgrp);
2969
2970 return 0;
2971 }
2972
2973 static int rdtgroup_rmdir(struct kernfs_node *kn)
2974 {
2975 struct kernfs_node *parent_kn = kn->parent;
2976 struct rdtgroup *rdtgrp;
2977 cpumask_var_t tmpmask;
2978 int ret = 0;
2979
2980 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
2981 return -ENOMEM;
2982
2983 rdtgrp = rdtgroup_kn_lock_live(kn);
2984 if (!rdtgrp) {
2985 ret = -EPERM;
2986 goto out;
2987 }
2988
2989 /*
2990 * If the rdtgroup is a ctrl_mon group and parent directory
2991 * is the root directory, remove the ctrl_mon group.
2992 *
2993 * If the rdtgroup is a mon group and parent directory
2994 * is a valid "mon_groups" directory, remove the mon group.
2995 */
2996 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn) {
2997 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2998 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
2999 ret = rdtgroup_ctrl_remove(kn, rdtgrp);
3000 } else {
3001 ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask);
3002 }
3003 } else if (rdtgrp->type == RDTMON_GROUP &&
3004 is_mon_groups(parent_kn, kn->name)) {
3005 ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask);
3006 } else {
3007 ret = -EPERM;
3008 }
3009
3010 out:
3011 rdtgroup_kn_unlock(kn);
3012 free_cpumask_var(tmpmask);
3013 return ret;
3014 }
3015
3016 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3017 {
3018 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
3019 seq_puts(seq, ",cdp");
3020
3021 if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
3022 seq_puts(seq, ",cdpl2");
3023
3024 if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA]))
3025 seq_puts(seq, ",mba_MBps");
3026
3027 return 0;
3028 }
3029
3030 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3031 .mkdir = rdtgroup_mkdir,
3032 .rmdir = rdtgroup_rmdir,
3033 .show_options = rdtgroup_show_options,
3034 };
3035
3036 static int __init rdtgroup_setup_root(void)
3037 {
3038 int ret;
3039
3040 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3041 KERNFS_ROOT_CREATE_DEACTIVATED |
3042 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3043 &rdtgroup_default);
3044 if (IS_ERR(rdt_root))
3045 return PTR_ERR(rdt_root);
3046
3047 mutex_lock(&rdtgroup_mutex);
3048
3049 rdtgroup_default.closid = 0;
3050 rdtgroup_default.mon.rmid = 0;
3051 rdtgroup_default.type = RDTCTRL_GROUP;
3052 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3053
3054 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3055
3056 ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE);
3057 if (ret) {
3058 kernfs_destroy_root(rdt_root);
3059 goto out;
3060 }
3061
3062 rdtgroup_default.kn = rdt_root->kn;
3063 kernfs_activate(rdtgroup_default.kn);
3064
3065 out:
3066 mutex_unlock(&rdtgroup_mutex);
3067
3068 return ret;
3069 }
3070
3071 /*
3072 * rdtgroup_init - rdtgroup initialization
3073 *
3074 * Setup resctrl file system including set up root, create mount point,
3075 * register rdtgroup filesystem, and initialize files under root directory.
3076 *
3077 * Return: 0 on success or -errno
3078 */
3079 int __init rdtgroup_init(void)
3080 {
3081 int ret = 0;
3082
3083 seq_buf_init(&last_cmd_status, last_cmd_status_buf,
3084 sizeof(last_cmd_status_buf));
3085
3086 ret = rdtgroup_setup_root();
3087 if (ret)
3088 return ret;
3089
3090 ret = sysfs_create_mount_point(fs_kobj, "resctrl");
3091 if (ret)
3092 goto cleanup_root;
3093
3094 ret = register_filesystem(&rdt_fs_type);
3095 if (ret)
3096 goto cleanup_mountpoint;
3097
3098 /*
3099 * Adding the resctrl debugfs directory here may not be ideal since
3100 * it would let the resctrl debugfs directory appear on the debugfs
3101 * filesystem before the resctrl filesystem is mounted.
3102 * It may also be ok since that would enable debugging of RDT before
3103 * resctrl is mounted.
3104 * The reason why the debugfs directory is created here and not in
3105 * rdt_mount() is because rdt_mount() takes rdtgroup_mutex and
3106 * during the debugfs directory creation also &sb->s_type->i_mutex_key
3107 * (the lockdep class of inode->i_rwsem). Other filesystem
3108 * interactions (eg. SyS_getdents) have the lock ordering:
3109 * &sb->s_type->i_mutex_key --> &mm->mmap_sem
3110 * During mmap(), called with &mm->mmap_sem, the rdtgroup_mutex
3111 * is taken, thus creating dependency:
3112 * &mm->mmap_sem --> rdtgroup_mutex for the latter that can cause
3113 * issues considering the other two lock dependencies.
3114 * By creating the debugfs directory here we avoid a dependency
3115 * that may cause deadlock (even though file operations cannot
3116 * occur until the filesystem is mounted, but I do not know how to
3117 * tell lockdep that).
3118 */
3119 debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
3120
3121 return 0;
3122
3123 cleanup_mountpoint:
3124 sysfs_remove_mount_point(fs_kobj, "resctrl");
3125 cleanup_root:
3126 kernfs_destroy_root(rdt_root);
3127
3128 return ret;
3129 }
3130
3131 void __exit rdtgroup_exit(void)
3132 {
3133 debugfs_remove_recursive(debugfs_resctrl);
3134 unregister_filesystem(&rdt_fs_type);
3135 sysfs_remove_mount_point(fs_kobj, "resctrl");
3136 kernfs_destroy_root(rdt_root);
3137 }