]> git.ipfire.org Git - thirdparty/linux.git/blob - block/blk-flush.c
Merge branch 'uaccess.csum' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[thirdparty/linux.git] / block / blk-flush.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Functions to sequence PREFLUSH and FUA writes.
4 *
5 * Copyright (C) 2011 Max Planck Institute for Gravitational Physics
6 * Copyright (C) 2011 Tejun Heo <tj@kernel.org>
7 *
8 * REQ_{PREFLUSH|FUA} requests are decomposed to sequences consisted of three
9 * optional steps - PREFLUSH, DATA and POSTFLUSH - according to the request
10 * properties and hardware capability.
11 *
12 * If a request doesn't have data, only REQ_PREFLUSH makes sense, which
13 * indicates a simple flush request. If there is data, REQ_PREFLUSH indicates
14 * that the device cache should be flushed before the data is executed, and
15 * REQ_FUA means that the data must be on non-volatile media on request
16 * completion.
17 *
18 * If the device doesn't have writeback cache, PREFLUSH and FUA don't make any
19 * difference. The requests are either completed immediately if there's no data
20 * or executed as normal requests otherwise.
21 *
22 * If the device has writeback cache and supports FUA, REQ_PREFLUSH is
23 * translated to PREFLUSH but REQ_FUA is passed down directly with DATA.
24 *
25 * If the device has writeback cache and doesn't support FUA, REQ_PREFLUSH
26 * is translated to PREFLUSH and REQ_FUA to POSTFLUSH.
27 *
28 * The actual execution of flush is double buffered. Whenever a request
29 * needs to execute PRE or POSTFLUSH, it queues at
30 * fq->flush_queue[fq->flush_pending_idx]. Once certain criteria are met, a
31 * REQ_OP_FLUSH is issued and the pending_idx is toggled. When the flush
32 * completes, all the requests which were pending are proceeded to the next
33 * step. This allows arbitrary merging of different types of PREFLUSH/FUA
34 * requests.
35 *
36 * Currently, the following conditions are used to determine when to issue
37 * flush.
38 *
39 * C1. At any given time, only one flush shall be in progress. This makes
40 * double buffering sufficient.
41 *
42 * C2. Flush is deferred if any request is executing DATA of its sequence.
43 * This avoids issuing separate POSTFLUSHes for requests which shared
44 * PREFLUSH.
45 *
46 * C3. The second condition is ignored if there is a request which has
47 * waited longer than FLUSH_PENDING_TIMEOUT. This is to avoid
48 * starvation in the unlikely case where there are continuous stream of
49 * FUA (without PREFLUSH) requests.
50 *
51 * For devices which support FUA, it isn't clear whether C2 (and thus C3)
52 * is beneficial.
53 *
54 * Note that a sequenced PREFLUSH/FUA request with DATA is completed twice.
55 * Once while executing DATA and again after the whole sequence is
56 * complete. The first completion updates the contained bio but doesn't
57 * finish it so that the bio submitter is notified only after the whole
58 * sequence is complete. This is implemented by testing RQF_FLUSH_SEQ in
59 * req_bio_endio().
60 *
61 * The above peculiarity requires that each PREFLUSH/FUA request has only one
62 * bio attached to it, which is guaranteed as they aren't allowed to be
63 * merged in the usual way.
64 */
65
66 #include <linux/kernel.h>
67 #include <linux/module.h>
68 #include <linux/bio.h>
69 #include <linux/blkdev.h>
70 #include <linux/gfp.h>
71 #include <linux/blk-mq.h>
72 #include <linux/lockdep.h>
73
74 #include "blk.h"
75 #include "blk-mq.h"
76 #include "blk-mq-tag.h"
77 #include "blk-mq-sched.h"
78
79 /* PREFLUSH/FUA sequences */
80 enum {
81 REQ_FSEQ_PREFLUSH = (1 << 0), /* pre-flushing in progress */
82 REQ_FSEQ_DATA = (1 << 1), /* data write in progress */
83 REQ_FSEQ_POSTFLUSH = (1 << 2), /* post-flushing in progress */
84 REQ_FSEQ_DONE = (1 << 3),
85
86 REQ_FSEQ_ACTIONS = REQ_FSEQ_PREFLUSH | REQ_FSEQ_DATA |
87 REQ_FSEQ_POSTFLUSH,
88
89 /*
90 * If flush has been pending longer than the following timeout,
91 * it's issued even if flush_data requests are still in flight.
92 */
93 FLUSH_PENDING_TIMEOUT = 5 * HZ,
94 };
95
96 static void blk_kick_flush(struct request_queue *q,
97 struct blk_flush_queue *fq, unsigned int flags);
98
99 static unsigned int blk_flush_policy(unsigned long fflags, struct request *rq)
100 {
101 unsigned int policy = 0;
102
103 if (blk_rq_sectors(rq))
104 policy |= REQ_FSEQ_DATA;
105
106 if (fflags & (1UL << QUEUE_FLAG_WC)) {
107 if (rq->cmd_flags & REQ_PREFLUSH)
108 policy |= REQ_FSEQ_PREFLUSH;
109 if (!(fflags & (1UL << QUEUE_FLAG_FUA)) &&
110 (rq->cmd_flags & REQ_FUA))
111 policy |= REQ_FSEQ_POSTFLUSH;
112 }
113 return policy;
114 }
115
116 static unsigned int blk_flush_cur_seq(struct request *rq)
117 {
118 return 1 << ffz(rq->flush.seq);
119 }
120
121 static void blk_flush_restore_request(struct request *rq)
122 {
123 /*
124 * After flush data completion, @rq->bio is %NULL but we need to
125 * complete the bio again. @rq->biotail is guaranteed to equal the
126 * original @rq->bio. Restore it.
127 */
128 rq->bio = rq->biotail;
129
130 /* make @rq a normal request */
131 rq->rq_flags &= ~RQF_FLUSH_SEQ;
132 rq->end_io = rq->flush.saved_end_io;
133 }
134
135 static void blk_flush_queue_rq(struct request *rq, bool add_front)
136 {
137 blk_mq_add_to_requeue_list(rq, add_front, true);
138 }
139
140 static void blk_account_io_flush(struct request *rq)
141 {
142 struct hd_struct *part = &rq->rq_disk->part0;
143
144 part_stat_lock();
145 part_stat_inc(part, ios[STAT_FLUSH]);
146 part_stat_add(part, nsecs[STAT_FLUSH],
147 ktime_get_ns() - rq->start_time_ns);
148 part_stat_unlock();
149 }
150
151 /**
152 * blk_flush_complete_seq - complete flush sequence
153 * @rq: PREFLUSH/FUA request being sequenced
154 * @fq: flush queue
155 * @seq: sequences to complete (mask of %REQ_FSEQ_*, can be zero)
156 * @error: whether an error occurred
157 *
158 * @rq just completed @seq part of its flush sequence, record the
159 * completion and trigger the next step.
160 *
161 * CONTEXT:
162 * spin_lock_irq(fq->mq_flush_lock)
163 */
164 static void blk_flush_complete_seq(struct request *rq,
165 struct blk_flush_queue *fq,
166 unsigned int seq, blk_status_t error)
167 {
168 struct request_queue *q = rq->q;
169 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
170 unsigned int cmd_flags;
171
172 BUG_ON(rq->flush.seq & seq);
173 rq->flush.seq |= seq;
174 cmd_flags = rq->cmd_flags;
175
176 if (likely(!error))
177 seq = blk_flush_cur_seq(rq);
178 else
179 seq = REQ_FSEQ_DONE;
180
181 switch (seq) {
182 case REQ_FSEQ_PREFLUSH:
183 case REQ_FSEQ_POSTFLUSH:
184 /* queue for flush */
185 if (list_empty(pending))
186 fq->flush_pending_since = jiffies;
187 list_move_tail(&rq->flush.list, pending);
188 break;
189
190 case REQ_FSEQ_DATA:
191 list_move_tail(&rq->flush.list, &fq->flush_data_in_flight);
192 blk_flush_queue_rq(rq, true);
193 break;
194
195 case REQ_FSEQ_DONE:
196 /*
197 * @rq was previously adjusted by blk_insert_flush() for
198 * flush sequencing and may already have gone through the
199 * flush data request completion path. Restore @rq for
200 * normal completion and end it.
201 */
202 BUG_ON(!list_empty(&rq->queuelist));
203 list_del_init(&rq->flush.list);
204 blk_flush_restore_request(rq);
205 blk_mq_end_request(rq, error);
206 break;
207
208 default:
209 BUG();
210 }
211
212 blk_kick_flush(q, fq, cmd_flags);
213 }
214
215 static void flush_end_io(struct request *flush_rq, blk_status_t error)
216 {
217 struct request_queue *q = flush_rq->q;
218 struct list_head *running;
219 struct request *rq, *n;
220 unsigned long flags = 0;
221 struct blk_flush_queue *fq = blk_get_flush_queue(q, flush_rq->mq_ctx);
222 struct blk_mq_hw_ctx *hctx;
223
224 blk_account_io_flush(flush_rq);
225
226 /* release the tag's ownership to the req cloned from */
227 spin_lock_irqsave(&fq->mq_flush_lock, flags);
228
229 if (!refcount_dec_and_test(&flush_rq->ref)) {
230 fq->rq_status = error;
231 spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
232 return;
233 }
234
235 if (fq->rq_status != BLK_STS_OK)
236 error = fq->rq_status;
237
238 hctx = flush_rq->mq_hctx;
239 if (!q->elevator) {
240 blk_mq_tag_set_rq(hctx, flush_rq->tag, fq->orig_rq);
241 flush_rq->tag = -1;
242 } else {
243 blk_mq_put_driver_tag(flush_rq);
244 flush_rq->internal_tag = -1;
245 }
246
247 running = &fq->flush_queue[fq->flush_running_idx];
248 BUG_ON(fq->flush_pending_idx == fq->flush_running_idx);
249
250 /* account completion of the flush request */
251 fq->flush_running_idx ^= 1;
252
253 /* and push the waiting requests to the next stage */
254 list_for_each_entry_safe(rq, n, running, flush.list) {
255 unsigned int seq = blk_flush_cur_seq(rq);
256
257 BUG_ON(seq != REQ_FSEQ_PREFLUSH && seq != REQ_FSEQ_POSTFLUSH);
258 blk_flush_complete_seq(rq, fq, seq, error);
259 }
260
261 spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
262 }
263
264 /**
265 * blk_kick_flush - consider issuing flush request
266 * @q: request_queue being kicked
267 * @fq: flush queue
268 * @flags: cmd_flags of the original request
269 *
270 * Flush related states of @q have changed, consider issuing flush request.
271 * Please read the comment at the top of this file for more info.
272 *
273 * CONTEXT:
274 * spin_lock_irq(fq->mq_flush_lock)
275 *
276 */
277 static void blk_kick_flush(struct request_queue *q, struct blk_flush_queue *fq,
278 unsigned int flags)
279 {
280 struct list_head *pending = &fq->flush_queue[fq->flush_pending_idx];
281 struct request *first_rq =
282 list_first_entry(pending, struct request, flush.list);
283 struct request *flush_rq = fq->flush_rq;
284
285 /* C1 described at the top of this file */
286 if (fq->flush_pending_idx != fq->flush_running_idx || list_empty(pending))
287 return;
288
289 /* C2 and C3
290 *
291 * For blk-mq + scheduling, we can risk having all driver tags
292 * assigned to empty flushes, and we deadlock if we are expecting
293 * other requests to make progress. Don't defer for that case.
294 */
295 if (!list_empty(&fq->flush_data_in_flight) && q->elevator &&
296 time_before(jiffies,
297 fq->flush_pending_since + FLUSH_PENDING_TIMEOUT))
298 return;
299
300 /*
301 * Issue flush and toggle pending_idx. This makes pending_idx
302 * different from running_idx, which means flush is in flight.
303 */
304 fq->flush_pending_idx ^= 1;
305
306 blk_rq_init(q, flush_rq);
307
308 /*
309 * In case of none scheduler, borrow tag from the first request
310 * since they can't be in flight at the same time. And acquire
311 * the tag's ownership for flush req.
312 *
313 * In case of IO scheduler, flush rq need to borrow scheduler tag
314 * just for cheating put/get driver tag.
315 */
316 flush_rq->mq_ctx = first_rq->mq_ctx;
317 flush_rq->mq_hctx = first_rq->mq_hctx;
318
319 if (!q->elevator) {
320 fq->orig_rq = first_rq;
321 flush_rq->tag = first_rq->tag;
322 blk_mq_tag_set_rq(flush_rq->mq_hctx, first_rq->tag, flush_rq);
323 } else {
324 flush_rq->internal_tag = first_rq->internal_tag;
325 }
326
327 flush_rq->cmd_flags = REQ_OP_FLUSH | REQ_PREFLUSH;
328 flush_rq->cmd_flags |= (flags & REQ_DRV) | (flags & REQ_FAILFAST_MASK);
329 flush_rq->rq_flags |= RQF_FLUSH_SEQ;
330 flush_rq->rq_disk = first_rq->rq_disk;
331 flush_rq->end_io = flush_end_io;
332
333 blk_flush_queue_rq(flush_rq, false);
334 }
335
336 static void mq_flush_data_end_io(struct request *rq, blk_status_t error)
337 {
338 struct request_queue *q = rq->q;
339 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
340 struct blk_mq_ctx *ctx = rq->mq_ctx;
341 unsigned long flags;
342 struct blk_flush_queue *fq = blk_get_flush_queue(q, ctx);
343
344 if (q->elevator) {
345 WARN_ON(rq->tag < 0);
346 blk_mq_put_driver_tag(rq);
347 }
348
349 /*
350 * After populating an empty queue, kick it to avoid stall. Read
351 * the comment in flush_end_io().
352 */
353 spin_lock_irqsave(&fq->mq_flush_lock, flags);
354 blk_flush_complete_seq(rq, fq, REQ_FSEQ_DATA, error);
355 spin_unlock_irqrestore(&fq->mq_flush_lock, flags);
356
357 blk_mq_sched_restart(hctx);
358 }
359
360 /**
361 * blk_insert_flush - insert a new PREFLUSH/FUA request
362 * @rq: request to insert
363 *
364 * To be called from __elv_add_request() for %ELEVATOR_INSERT_FLUSH insertions.
365 * or __blk_mq_run_hw_queue() to dispatch request.
366 * @rq is being submitted. Analyze what needs to be done and put it on the
367 * right queue.
368 */
369 void blk_insert_flush(struct request *rq)
370 {
371 struct request_queue *q = rq->q;
372 unsigned long fflags = q->queue_flags; /* may change, cache */
373 unsigned int policy = blk_flush_policy(fflags, rq);
374 struct blk_flush_queue *fq = blk_get_flush_queue(q, rq->mq_ctx);
375
376 /*
377 * @policy now records what operations need to be done. Adjust
378 * REQ_PREFLUSH and FUA for the driver.
379 */
380 rq->cmd_flags &= ~REQ_PREFLUSH;
381 if (!(fflags & (1UL << QUEUE_FLAG_FUA)))
382 rq->cmd_flags &= ~REQ_FUA;
383
384 /*
385 * REQ_PREFLUSH|REQ_FUA implies REQ_SYNC, so if we clear any
386 * of those flags, we have to set REQ_SYNC to avoid skewing
387 * the request accounting.
388 */
389 rq->cmd_flags |= REQ_SYNC;
390
391 /*
392 * An empty flush handed down from a stacking driver may
393 * translate into nothing if the underlying device does not
394 * advertise a write-back cache. In this case, simply
395 * complete the request.
396 */
397 if (!policy) {
398 blk_mq_end_request(rq, 0);
399 return;
400 }
401
402 BUG_ON(rq->bio != rq->biotail); /*assumes zero or single bio rq */
403
404 /*
405 * If there's data but flush is not necessary, the request can be
406 * processed directly without going through flush machinery. Queue
407 * for normal execution.
408 */
409 if ((policy & REQ_FSEQ_DATA) &&
410 !(policy & (REQ_FSEQ_PREFLUSH | REQ_FSEQ_POSTFLUSH))) {
411 blk_mq_request_bypass_insert(rq, false, false);
412 return;
413 }
414
415 /*
416 * @rq should go through flush machinery. Mark it part of flush
417 * sequence and submit for further processing.
418 */
419 memset(&rq->flush, 0, sizeof(rq->flush));
420 INIT_LIST_HEAD(&rq->flush.list);
421 rq->rq_flags |= RQF_FLUSH_SEQ;
422 rq->flush.saved_end_io = rq->end_io; /* Usually NULL */
423
424 rq->end_io = mq_flush_data_end_io;
425
426 spin_lock_irq(&fq->mq_flush_lock);
427 blk_flush_complete_seq(rq, fq, REQ_FSEQ_ACTIONS & ~policy, 0);
428 spin_unlock_irq(&fq->mq_flush_lock);
429 }
430
431 /**
432 * blkdev_issue_flush - queue a flush
433 * @bdev: blockdev to issue flush for
434 * @gfp_mask: memory allocation flags (for bio_alloc)
435 *
436 * Description:
437 * Issue a flush for the block device in question.
438 */
439 int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask)
440 {
441 struct bio *bio;
442 int ret = 0;
443
444 bio = bio_alloc(gfp_mask, 0);
445 bio_set_dev(bio, bdev);
446 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
447
448 ret = submit_bio_wait(bio);
449 bio_put(bio);
450 return ret;
451 }
452 EXPORT_SYMBOL(blkdev_issue_flush);
453
454 struct blk_flush_queue *blk_alloc_flush_queue(int node, int cmd_size,
455 gfp_t flags)
456 {
457 struct blk_flush_queue *fq;
458 int rq_sz = sizeof(struct request);
459
460 fq = kzalloc_node(sizeof(*fq), flags, node);
461 if (!fq)
462 goto fail;
463
464 spin_lock_init(&fq->mq_flush_lock);
465
466 rq_sz = round_up(rq_sz + cmd_size, cache_line_size());
467 fq->flush_rq = kzalloc_node(rq_sz, flags, node);
468 if (!fq->flush_rq)
469 goto fail_rq;
470
471 INIT_LIST_HEAD(&fq->flush_queue[0]);
472 INIT_LIST_HEAD(&fq->flush_queue[1]);
473 INIT_LIST_HEAD(&fq->flush_data_in_flight);
474
475 lockdep_register_key(&fq->key);
476 lockdep_set_class(&fq->mq_flush_lock, &fq->key);
477
478 return fq;
479
480 fail_rq:
481 kfree(fq);
482 fail:
483 return NULL;
484 }
485
486 void blk_free_flush_queue(struct blk_flush_queue *fq)
487 {
488 /* bio based request queue hasn't flush queue */
489 if (!fq)
490 return;
491
492 lockdep_unregister_key(&fq->key);
493 kfree(fq->flush_rq);
494 kfree(fq);
495 }