]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/base/core.c
Merge tag 'x86-vdso-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/linux.git] / drivers / base / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sysfs.h>
30
31 #include "base.h"
32 #include "power/power.h"
33
34 #ifdef CONFIG_SYSFS_DEPRECATED
35 #ifdef CONFIG_SYSFS_DEPRECATED_V2
36 long sysfs_deprecated = 1;
37 #else
38 long sysfs_deprecated = 0;
39 #endif
40 static int __init sysfs_deprecated_setup(char *arg)
41 {
42 return kstrtol(arg, 10, &sysfs_deprecated);
43 }
44 early_param("sysfs.deprecated", sysfs_deprecated_setup);
45 #endif
46
47 /* Device links support. */
48 static LIST_HEAD(wait_for_suppliers);
49 static DEFINE_MUTEX(wfs_lock);
50 static LIST_HEAD(deferred_sync);
51 static unsigned int defer_sync_state_count = 1;
52
53 #ifdef CONFIG_SRCU
54 static DEFINE_MUTEX(device_links_lock);
55 DEFINE_STATIC_SRCU(device_links_srcu);
56
57 static inline void device_links_write_lock(void)
58 {
59 mutex_lock(&device_links_lock);
60 }
61
62 static inline void device_links_write_unlock(void)
63 {
64 mutex_unlock(&device_links_lock);
65 }
66
67 int device_links_read_lock(void) __acquires(&device_links_srcu)
68 {
69 return srcu_read_lock(&device_links_srcu);
70 }
71
72 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
73 {
74 srcu_read_unlock(&device_links_srcu, idx);
75 }
76
77 int device_links_read_lock_held(void)
78 {
79 return srcu_read_lock_held(&device_links_srcu);
80 }
81 #else /* !CONFIG_SRCU */
82 static DECLARE_RWSEM(device_links_lock);
83
84 static inline void device_links_write_lock(void)
85 {
86 down_write(&device_links_lock);
87 }
88
89 static inline void device_links_write_unlock(void)
90 {
91 up_write(&device_links_lock);
92 }
93
94 int device_links_read_lock(void)
95 {
96 down_read(&device_links_lock);
97 return 0;
98 }
99
100 void device_links_read_unlock(int not_used)
101 {
102 up_read(&device_links_lock);
103 }
104
105 #ifdef CONFIG_DEBUG_LOCK_ALLOC
106 int device_links_read_lock_held(void)
107 {
108 return lockdep_is_held(&device_links_lock);
109 }
110 #endif
111 #endif /* !CONFIG_SRCU */
112
113 /**
114 * device_is_dependent - Check if one device depends on another one
115 * @dev: Device to check dependencies for.
116 * @target: Device to check against.
117 *
118 * Check if @target depends on @dev or any device dependent on it (its child or
119 * its consumer etc). Return 1 if that is the case or 0 otherwise.
120 */
121 static int device_is_dependent(struct device *dev, void *target)
122 {
123 struct device_link *link;
124 int ret;
125
126 if (dev == target)
127 return 1;
128
129 ret = device_for_each_child(dev, target, device_is_dependent);
130 if (ret)
131 return ret;
132
133 list_for_each_entry(link, &dev->links.consumers, s_node) {
134 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
135 continue;
136
137 if (link->consumer == target)
138 return 1;
139
140 ret = device_is_dependent(link->consumer, target);
141 if (ret)
142 break;
143 }
144 return ret;
145 }
146
147 static void device_link_init_status(struct device_link *link,
148 struct device *consumer,
149 struct device *supplier)
150 {
151 switch (supplier->links.status) {
152 case DL_DEV_PROBING:
153 switch (consumer->links.status) {
154 case DL_DEV_PROBING:
155 /*
156 * A consumer driver can create a link to a supplier
157 * that has not completed its probing yet as long as it
158 * knows that the supplier is already functional (for
159 * example, it has just acquired some resources from the
160 * supplier).
161 */
162 link->status = DL_STATE_CONSUMER_PROBE;
163 break;
164 default:
165 link->status = DL_STATE_DORMANT;
166 break;
167 }
168 break;
169 case DL_DEV_DRIVER_BOUND:
170 switch (consumer->links.status) {
171 case DL_DEV_PROBING:
172 link->status = DL_STATE_CONSUMER_PROBE;
173 break;
174 case DL_DEV_DRIVER_BOUND:
175 link->status = DL_STATE_ACTIVE;
176 break;
177 default:
178 link->status = DL_STATE_AVAILABLE;
179 break;
180 }
181 break;
182 case DL_DEV_UNBINDING:
183 link->status = DL_STATE_SUPPLIER_UNBIND;
184 break;
185 default:
186 link->status = DL_STATE_DORMANT;
187 break;
188 }
189 }
190
191 static int device_reorder_to_tail(struct device *dev, void *not_used)
192 {
193 struct device_link *link;
194
195 /*
196 * Devices that have not been registered yet will be put to the ends
197 * of the lists during the registration, so skip them here.
198 */
199 if (device_is_registered(dev))
200 devices_kset_move_last(dev);
201
202 if (device_pm_initialized(dev))
203 device_pm_move_last(dev);
204
205 device_for_each_child(dev, NULL, device_reorder_to_tail);
206 list_for_each_entry(link, &dev->links.consumers, s_node) {
207 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
208 continue;
209 device_reorder_to_tail(link->consumer, NULL);
210 }
211
212 return 0;
213 }
214
215 /**
216 * device_pm_move_to_tail - Move set of devices to the end of device lists
217 * @dev: Device to move
218 *
219 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
220 *
221 * It moves the @dev along with all of its children and all of its consumers
222 * to the ends of the device_kset and dpm_list, recursively.
223 */
224 void device_pm_move_to_tail(struct device *dev)
225 {
226 int idx;
227
228 idx = device_links_read_lock();
229 device_pm_lock();
230 device_reorder_to_tail(dev, NULL);
231 device_pm_unlock();
232 device_links_read_unlock(idx);
233 }
234
235 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
236 DL_FLAG_AUTOREMOVE_SUPPLIER | \
237 DL_FLAG_AUTOPROBE_CONSUMER | \
238 DL_FLAG_SYNC_STATE_ONLY)
239
240 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
241 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
242
243 /**
244 * device_link_add - Create a link between two devices.
245 * @consumer: Consumer end of the link.
246 * @supplier: Supplier end of the link.
247 * @flags: Link flags.
248 *
249 * The caller is responsible for the proper synchronization of the link creation
250 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
251 * runtime PM framework to take the link into account. Second, if the
252 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
253 * be forced into the active metastate and reference-counted upon the creation
254 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
255 * ignored.
256 *
257 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
258 * expected to release the link returned by it directly with the help of either
259 * device_link_del() or device_link_remove().
260 *
261 * If that flag is not set, however, the caller of this function is handing the
262 * management of the link over to the driver core entirely and its return value
263 * can only be used to check whether or not the link is present. In that case,
264 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
265 * flags can be used to indicate to the driver core when the link can be safely
266 * deleted. Namely, setting one of them in @flags indicates to the driver core
267 * that the link is not going to be used (by the given caller of this function)
268 * after unbinding the consumer or supplier driver, respectively, from its
269 * device, so the link can be deleted at that point. If none of them is set,
270 * the link will be maintained until one of the devices pointed to by it (either
271 * the consumer or the supplier) is unregistered.
272 *
273 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
274 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
275 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
276 * be used to request the driver core to automaticall probe for a consmer
277 * driver after successfully binding a driver to the supplier device.
278 *
279 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
280 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
281 * the same time is invalid and will cause NULL to be returned upfront.
282 * However, if a device link between the given @consumer and @supplier pair
283 * exists already when this function is called for them, the existing link will
284 * be returned regardless of its current type and status (the link's flags may
285 * be modified then). The caller of this function is then expected to treat
286 * the link as though it has just been created, so (in particular) if
287 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
288 * explicitly when not needed any more (as stated above).
289 *
290 * A side effect of the link creation is re-ordering of dpm_list and the
291 * devices_kset list by moving the consumer device and all devices depending
292 * on it to the ends of these lists (that does not happen to devices that have
293 * not been registered when this function is called).
294 *
295 * The supplier device is required to be registered when this function is called
296 * and NULL will be returned if that is not the case. The consumer device need
297 * not be registered, however.
298 */
299 struct device_link *device_link_add(struct device *consumer,
300 struct device *supplier, u32 flags)
301 {
302 struct device_link *link;
303
304 if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
305 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
306 (flags & DL_FLAG_SYNC_STATE_ONLY &&
307 flags != DL_FLAG_SYNC_STATE_ONLY) ||
308 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
309 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
310 DL_FLAG_AUTOREMOVE_SUPPLIER)))
311 return NULL;
312
313 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
314 if (pm_runtime_get_sync(supplier) < 0) {
315 pm_runtime_put_noidle(supplier);
316 return NULL;
317 }
318 }
319
320 if (!(flags & DL_FLAG_STATELESS))
321 flags |= DL_FLAG_MANAGED;
322
323 device_links_write_lock();
324 device_pm_lock();
325
326 /*
327 * If the supplier has not been fully registered yet or there is a
328 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
329 * the supplier already in the graph, return NULL. If the link is a
330 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
331 * because it only affects sync_state() callbacks.
332 */
333 if (!device_pm_initialized(supplier)
334 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
335 device_is_dependent(consumer, supplier))) {
336 link = NULL;
337 goto out;
338 }
339
340 /*
341 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
342 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
343 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
344 */
345 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
346 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
347
348 list_for_each_entry(link, &supplier->links.consumers, s_node) {
349 if (link->consumer != consumer)
350 continue;
351
352 if (flags & DL_FLAG_PM_RUNTIME) {
353 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
354 pm_runtime_new_link(consumer);
355 link->flags |= DL_FLAG_PM_RUNTIME;
356 }
357 if (flags & DL_FLAG_RPM_ACTIVE)
358 refcount_inc(&link->rpm_active);
359 }
360
361 if (flags & DL_FLAG_STATELESS) {
362 kref_get(&link->kref);
363 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
364 !(link->flags & DL_FLAG_STATELESS)) {
365 link->flags |= DL_FLAG_STATELESS;
366 goto reorder;
367 } else {
368 link->flags |= DL_FLAG_STATELESS;
369 goto out;
370 }
371 }
372
373 /*
374 * If the life time of the link following from the new flags is
375 * longer than indicated by the flags of the existing link,
376 * update the existing link to stay around longer.
377 */
378 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
379 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
380 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
381 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
382 }
383 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
384 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
385 DL_FLAG_AUTOREMOVE_SUPPLIER);
386 }
387 if (!(link->flags & DL_FLAG_MANAGED)) {
388 kref_get(&link->kref);
389 link->flags |= DL_FLAG_MANAGED;
390 device_link_init_status(link, consumer, supplier);
391 }
392 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
393 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
394 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
395 goto reorder;
396 }
397
398 goto out;
399 }
400
401 link = kzalloc(sizeof(*link), GFP_KERNEL);
402 if (!link)
403 goto out;
404
405 refcount_set(&link->rpm_active, 1);
406
407 if (flags & DL_FLAG_PM_RUNTIME) {
408 if (flags & DL_FLAG_RPM_ACTIVE)
409 refcount_inc(&link->rpm_active);
410
411 pm_runtime_new_link(consumer);
412 }
413
414 get_device(supplier);
415 link->supplier = supplier;
416 INIT_LIST_HEAD(&link->s_node);
417 get_device(consumer);
418 link->consumer = consumer;
419 INIT_LIST_HEAD(&link->c_node);
420 link->flags = flags;
421 kref_init(&link->kref);
422
423 /* Determine the initial link state. */
424 if (flags & DL_FLAG_STATELESS)
425 link->status = DL_STATE_NONE;
426 else
427 device_link_init_status(link, consumer, supplier);
428
429 /*
430 * Some callers expect the link creation during consumer driver probe to
431 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
432 */
433 if (link->status == DL_STATE_CONSUMER_PROBE &&
434 flags & DL_FLAG_PM_RUNTIME)
435 pm_runtime_resume(supplier);
436
437 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
438 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
439
440 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
441 dev_dbg(consumer,
442 "Linked as a sync state only consumer to %s\n",
443 dev_name(supplier));
444 goto out;
445 }
446
447 reorder:
448 /*
449 * Move the consumer and all of the devices depending on it to the end
450 * of dpm_list and the devices_kset list.
451 *
452 * It is necessary to hold dpm_list locked throughout all that or else
453 * we may end up suspending with a wrong ordering of it.
454 */
455 device_reorder_to_tail(consumer, NULL);
456
457 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
458
459 out:
460 device_pm_unlock();
461 device_links_write_unlock();
462
463 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
464 pm_runtime_put(supplier);
465
466 return link;
467 }
468 EXPORT_SYMBOL_GPL(device_link_add);
469
470 /**
471 * device_link_wait_for_supplier - Add device to wait_for_suppliers list
472 * @consumer: Consumer device
473 *
474 * Marks the @consumer device as waiting for suppliers to become available by
475 * adding it to the wait_for_suppliers list. The consumer device will never be
476 * probed until it's removed from the wait_for_suppliers list.
477 *
478 * The caller is responsible for adding the links to the supplier devices once
479 * they are available and removing the @consumer device from the
480 * wait_for_suppliers list once links to all the suppliers have been created.
481 *
482 * This function is NOT meant to be called from the probe function of the
483 * consumer but rather from code that creates/adds the consumer device.
484 */
485 static void device_link_wait_for_supplier(struct device *consumer,
486 bool need_for_probe)
487 {
488 mutex_lock(&wfs_lock);
489 list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers);
490 consumer->links.need_for_probe = need_for_probe;
491 mutex_unlock(&wfs_lock);
492 }
493
494 static void device_link_wait_for_mandatory_supplier(struct device *consumer)
495 {
496 device_link_wait_for_supplier(consumer, true);
497 }
498
499 static void device_link_wait_for_optional_supplier(struct device *consumer)
500 {
501 device_link_wait_for_supplier(consumer, false);
502 }
503
504 /**
505 * device_link_add_missing_supplier_links - Add links from consumer devices to
506 * supplier devices, leaving any
507 * consumer with inactive suppliers on
508 * the wait_for_suppliers list
509 *
510 * Loops through all consumers waiting on suppliers and tries to add all their
511 * supplier links. If that succeeds, the consumer device is removed from
512 * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers
513 * list. Devices left on the wait_for_suppliers list will not be probed.
514 *
515 * The fwnode add_links callback is expected to return 0 if it has found and
516 * added all the supplier links for the consumer device. It should return an
517 * error if it isn't able to do so.
518 *
519 * The caller of device_link_wait_for_supplier() is expected to call this once
520 * it's aware of potential suppliers becoming available.
521 */
522 static void device_link_add_missing_supplier_links(void)
523 {
524 struct device *dev, *tmp;
525
526 mutex_lock(&wfs_lock);
527 list_for_each_entry_safe(dev, tmp, &wait_for_suppliers,
528 links.needs_suppliers) {
529 int ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
530 if (!ret)
531 list_del_init(&dev->links.needs_suppliers);
532 else if (ret != -ENODEV)
533 dev->links.need_for_probe = false;
534 }
535 mutex_unlock(&wfs_lock);
536 }
537
538 static void device_link_free(struct device_link *link)
539 {
540 while (refcount_dec_not_one(&link->rpm_active))
541 pm_runtime_put(link->supplier);
542
543 put_device(link->consumer);
544 put_device(link->supplier);
545 kfree(link);
546 }
547
548 #ifdef CONFIG_SRCU
549 static void __device_link_free_srcu(struct rcu_head *rhead)
550 {
551 device_link_free(container_of(rhead, struct device_link, rcu_head));
552 }
553
554 static void __device_link_del(struct kref *kref)
555 {
556 struct device_link *link = container_of(kref, struct device_link, kref);
557
558 dev_dbg(link->consumer, "Dropping the link to %s\n",
559 dev_name(link->supplier));
560
561 if (link->flags & DL_FLAG_PM_RUNTIME)
562 pm_runtime_drop_link(link->consumer);
563
564 list_del_rcu(&link->s_node);
565 list_del_rcu(&link->c_node);
566 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
567 }
568 #else /* !CONFIG_SRCU */
569 static void __device_link_del(struct kref *kref)
570 {
571 struct device_link *link = container_of(kref, struct device_link, kref);
572
573 dev_info(link->consumer, "Dropping the link to %s\n",
574 dev_name(link->supplier));
575
576 if (link->flags & DL_FLAG_PM_RUNTIME)
577 pm_runtime_drop_link(link->consumer);
578
579 list_del(&link->s_node);
580 list_del(&link->c_node);
581 device_link_free(link);
582 }
583 #endif /* !CONFIG_SRCU */
584
585 static void device_link_put_kref(struct device_link *link)
586 {
587 if (link->flags & DL_FLAG_STATELESS)
588 kref_put(&link->kref, __device_link_del);
589 else
590 WARN(1, "Unable to drop a managed device link reference\n");
591 }
592
593 /**
594 * device_link_del - Delete a stateless link between two devices.
595 * @link: Device link to delete.
596 *
597 * The caller must ensure proper synchronization of this function with runtime
598 * PM. If the link was added multiple times, it needs to be deleted as often.
599 * Care is required for hotplugged devices: Their links are purged on removal
600 * and calling device_link_del() is then no longer allowed.
601 */
602 void device_link_del(struct device_link *link)
603 {
604 device_links_write_lock();
605 device_pm_lock();
606 device_link_put_kref(link);
607 device_pm_unlock();
608 device_links_write_unlock();
609 }
610 EXPORT_SYMBOL_GPL(device_link_del);
611
612 /**
613 * device_link_remove - Delete a stateless link between two devices.
614 * @consumer: Consumer end of the link.
615 * @supplier: Supplier end of the link.
616 *
617 * The caller must ensure proper synchronization of this function with runtime
618 * PM.
619 */
620 void device_link_remove(void *consumer, struct device *supplier)
621 {
622 struct device_link *link;
623
624 if (WARN_ON(consumer == supplier))
625 return;
626
627 device_links_write_lock();
628 device_pm_lock();
629
630 list_for_each_entry(link, &supplier->links.consumers, s_node) {
631 if (link->consumer == consumer) {
632 device_link_put_kref(link);
633 break;
634 }
635 }
636
637 device_pm_unlock();
638 device_links_write_unlock();
639 }
640 EXPORT_SYMBOL_GPL(device_link_remove);
641
642 static void device_links_missing_supplier(struct device *dev)
643 {
644 struct device_link *link;
645
646 list_for_each_entry(link, &dev->links.suppliers, c_node)
647 if (link->status == DL_STATE_CONSUMER_PROBE)
648 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
649 }
650
651 /**
652 * device_links_check_suppliers - Check presence of supplier drivers.
653 * @dev: Consumer device.
654 *
655 * Check links from this device to any suppliers. Walk the list of the device's
656 * links to suppliers and see if all of them are available. If not, simply
657 * return -EPROBE_DEFER.
658 *
659 * We need to guarantee that the supplier will not go away after the check has
660 * been positive here. It only can go away in __device_release_driver() and
661 * that function checks the device's links to consumers. This means we need to
662 * mark the link as "consumer probe in progress" to make the supplier removal
663 * wait for us to complete (or bad things may happen).
664 *
665 * Links without the DL_FLAG_MANAGED flag set are ignored.
666 */
667 int device_links_check_suppliers(struct device *dev)
668 {
669 struct device_link *link;
670 int ret = 0;
671
672 /*
673 * Device waiting for supplier to become available is not allowed to
674 * probe.
675 */
676 mutex_lock(&wfs_lock);
677 if (!list_empty(&dev->links.needs_suppliers) &&
678 dev->links.need_for_probe) {
679 mutex_unlock(&wfs_lock);
680 return -EPROBE_DEFER;
681 }
682 mutex_unlock(&wfs_lock);
683
684 device_links_write_lock();
685
686 list_for_each_entry(link, &dev->links.suppliers, c_node) {
687 if (!(link->flags & DL_FLAG_MANAGED) ||
688 link->flags & DL_FLAG_SYNC_STATE_ONLY)
689 continue;
690
691 if (link->status != DL_STATE_AVAILABLE) {
692 device_links_missing_supplier(dev);
693 ret = -EPROBE_DEFER;
694 break;
695 }
696 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
697 }
698 dev->links.status = DL_DEV_PROBING;
699
700 device_links_write_unlock();
701 return ret;
702 }
703
704 /**
705 * __device_links_queue_sync_state - Queue a device for sync_state() callback
706 * @dev: Device to call sync_state() on
707 * @list: List head to queue the @dev on
708 *
709 * Queues a device for a sync_state() callback when the device links write lock
710 * isn't held. This allows the sync_state() execution flow to use device links
711 * APIs. The caller must ensure this function is called with
712 * device_links_write_lock() held.
713 *
714 * This function does a get_device() to make sure the device is not freed while
715 * on this list.
716 *
717 * So the caller must also ensure that device_links_flush_sync_list() is called
718 * as soon as the caller releases device_links_write_lock(). This is necessary
719 * to make sure the sync_state() is called in a timely fashion and the
720 * put_device() is called on this device.
721 */
722 static void __device_links_queue_sync_state(struct device *dev,
723 struct list_head *list)
724 {
725 struct device_link *link;
726
727 if (!dev_has_sync_state(dev))
728 return;
729 if (dev->state_synced)
730 return;
731
732 list_for_each_entry(link, &dev->links.consumers, s_node) {
733 if (!(link->flags & DL_FLAG_MANAGED))
734 continue;
735 if (link->status != DL_STATE_ACTIVE)
736 return;
737 }
738
739 /*
740 * Set the flag here to avoid adding the same device to a list more
741 * than once. This can happen if new consumers get added to the device
742 * and probed before the list is flushed.
743 */
744 dev->state_synced = true;
745
746 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
747 return;
748
749 get_device(dev);
750 list_add_tail(&dev->links.defer_sync, list);
751 }
752
753 /**
754 * device_links_flush_sync_list - Call sync_state() on a list of devices
755 * @list: List of devices to call sync_state() on
756 * @dont_lock_dev: Device for which lock is already held by the caller
757 *
758 * Calls sync_state() on all the devices that have been queued for it. This
759 * function is used in conjunction with __device_links_queue_sync_state(). The
760 * @dont_lock_dev parameter is useful when this function is called from a
761 * context where a device lock is already held.
762 */
763 static void device_links_flush_sync_list(struct list_head *list,
764 struct device *dont_lock_dev)
765 {
766 struct device *dev, *tmp;
767
768 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
769 list_del_init(&dev->links.defer_sync);
770
771 if (dev != dont_lock_dev)
772 device_lock(dev);
773
774 if (dev->bus->sync_state)
775 dev->bus->sync_state(dev);
776 else if (dev->driver && dev->driver->sync_state)
777 dev->driver->sync_state(dev);
778
779 if (dev != dont_lock_dev)
780 device_unlock(dev);
781
782 put_device(dev);
783 }
784 }
785
786 void device_links_supplier_sync_state_pause(void)
787 {
788 device_links_write_lock();
789 defer_sync_state_count++;
790 device_links_write_unlock();
791 }
792
793 void device_links_supplier_sync_state_resume(void)
794 {
795 struct device *dev, *tmp;
796 LIST_HEAD(sync_list);
797
798 device_links_write_lock();
799 if (!defer_sync_state_count) {
800 WARN(true, "Unmatched sync_state pause/resume!");
801 goto out;
802 }
803 defer_sync_state_count--;
804 if (defer_sync_state_count)
805 goto out;
806
807 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
808 /*
809 * Delete from deferred_sync list before queuing it to
810 * sync_list because defer_sync is used for both lists.
811 */
812 list_del_init(&dev->links.defer_sync);
813 __device_links_queue_sync_state(dev, &sync_list);
814 }
815 out:
816 device_links_write_unlock();
817
818 device_links_flush_sync_list(&sync_list, NULL);
819 }
820
821 static int sync_state_resume_initcall(void)
822 {
823 device_links_supplier_sync_state_resume();
824 return 0;
825 }
826 late_initcall(sync_state_resume_initcall);
827
828 static void __device_links_supplier_defer_sync(struct device *sup)
829 {
830 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
831 list_add_tail(&sup->links.defer_sync, &deferred_sync);
832 }
833
834 static void device_link_drop_managed(struct device_link *link)
835 {
836 link->flags &= ~DL_FLAG_MANAGED;
837 WRITE_ONCE(link->status, DL_STATE_NONE);
838 kref_put(&link->kref, __device_link_del);
839 }
840
841 /**
842 * device_links_driver_bound - Update device links after probing its driver.
843 * @dev: Device to update the links for.
844 *
845 * The probe has been successful, so update links from this device to any
846 * consumers by changing their status to "available".
847 *
848 * Also change the status of @dev's links to suppliers to "active".
849 *
850 * Links without the DL_FLAG_MANAGED flag set are ignored.
851 */
852 void device_links_driver_bound(struct device *dev)
853 {
854 struct device_link *link, *ln;
855 LIST_HEAD(sync_list);
856
857 /*
858 * If a device probes successfully, it's expected to have created all
859 * the device links it needs to or make new device links as it needs
860 * them. So, it no longer needs to wait on any suppliers.
861 */
862 mutex_lock(&wfs_lock);
863 list_del_init(&dev->links.needs_suppliers);
864 mutex_unlock(&wfs_lock);
865
866 device_links_write_lock();
867
868 list_for_each_entry(link, &dev->links.consumers, s_node) {
869 if (!(link->flags & DL_FLAG_MANAGED))
870 continue;
871
872 /*
873 * Links created during consumer probe may be in the "consumer
874 * probe" state to start with if the supplier is still probing
875 * when they are created and they may become "active" if the
876 * consumer probe returns first. Skip them here.
877 */
878 if (link->status == DL_STATE_CONSUMER_PROBE ||
879 link->status == DL_STATE_ACTIVE)
880 continue;
881
882 WARN_ON(link->status != DL_STATE_DORMANT);
883 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
884
885 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
886 driver_deferred_probe_add(link->consumer);
887 }
888
889 if (defer_sync_state_count)
890 __device_links_supplier_defer_sync(dev);
891 else
892 __device_links_queue_sync_state(dev, &sync_list);
893
894 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
895 struct device *supplier;
896
897 if (!(link->flags & DL_FLAG_MANAGED))
898 continue;
899
900 supplier = link->supplier;
901 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
902 /*
903 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
904 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
905 * save to drop the managed link completely.
906 */
907 device_link_drop_managed(link);
908 } else {
909 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
910 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
911 }
912
913 /*
914 * This needs to be done even for the deleted
915 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
916 * device link that was preventing the supplier from getting a
917 * sync_state() call.
918 */
919 if (defer_sync_state_count)
920 __device_links_supplier_defer_sync(supplier);
921 else
922 __device_links_queue_sync_state(supplier, &sync_list);
923 }
924
925 dev->links.status = DL_DEV_DRIVER_BOUND;
926
927 device_links_write_unlock();
928
929 device_links_flush_sync_list(&sync_list, dev);
930 }
931
932 /**
933 * __device_links_no_driver - Update links of a device without a driver.
934 * @dev: Device without a drvier.
935 *
936 * Delete all non-persistent links from this device to any suppliers.
937 *
938 * Persistent links stay around, but their status is changed to "available",
939 * unless they already are in the "supplier unbind in progress" state in which
940 * case they need not be updated.
941 *
942 * Links without the DL_FLAG_MANAGED flag set are ignored.
943 */
944 static void __device_links_no_driver(struct device *dev)
945 {
946 struct device_link *link, *ln;
947
948 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
949 if (!(link->flags & DL_FLAG_MANAGED))
950 continue;
951
952 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
953 device_link_drop_managed(link);
954 else if (link->status == DL_STATE_CONSUMER_PROBE ||
955 link->status == DL_STATE_ACTIVE)
956 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
957 }
958
959 dev->links.status = DL_DEV_NO_DRIVER;
960 }
961
962 /**
963 * device_links_no_driver - Update links after failing driver probe.
964 * @dev: Device whose driver has just failed to probe.
965 *
966 * Clean up leftover links to consumers for @dev and invoke
967 * %__device_links_no_driver() to update links to suppliers for it as
968 * appropriate.
969 *
970 * Links without the DL_FLAG_MANAGED flag set are ignored.
971 */
972 void device_links_no_driver(struct device *dev)
973 {
974 struct device_link *link;
975
976 device_links_write_lock();
977
978 list_for_each_entry(link, &dev->links.consumers, s_node) {
979 if (!(link->flags & DL_FLAG_MANAGED))
980 continue;
981
982 /*
983 * The probe has failed, so if the status of the link is
984 * "consumer probe" or "active", it must have been added by
985 * a probing consumer while this device was still probing.
986 * Change its state to "dormant", as it represents a valid
987 * relationship, but it is not functionally meaningful.
988 */
989 if (link->status == DL_STATE_CONSUMER_PROBE ||
990 link->status == DL_STATE_ACTIVE)
991 WRITE_ONCE(link->status, DL_STATE_DORMANT);
992 }
993
994 __device_links_no_driver(dev);
995
996 device_links_write_unlock();
997 }
998
999 /**
1000 * device_links_driver_cleanup - Update links after driver removal.
1001 * @dev: Device whose driver has just gone away.
1002 *
1003 * Update links to consumers for @dev by changing their status to "dormant" and
1004 * invoke %__device_links_no_driver() to update links to suppliers for it as
1005 * appropriate.
1006 *
1007 * Links without the DL_FLAG_MANAGED flag set are ignored.
1008 */
1009 void device_links_driver_cleanup(struct device *dev)
1010 {
1011 struct device_link *link, *ln;
1012
1013 device_links_write_lock();
1014
1015 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1016 if (!(link->flags & DL_FLAG_MANAGED))
1017 continue;
1018
1019 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1020 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1021
1022 /*
1023 * autoremove the links between this @dev and its consumer
1024 * devices that are not active, i.e. where the link state
1025 * has moved to DL_STATE_SUPPLIER_UNBIND.
1026 */
1027 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1028 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1029 device_link_drop_managed(link);
1030
1031 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1032 }
1033
1034 list_del_init(&dev->links.defer_sync);
1035 __device_links_no_driver(dev);
1036
1037 device_links_write_unlock();
1038 }
1039
1040 /**
1041 * device_links_busy - Check if there are any busy links to consumers.
1042 * @dev: Device to check.
1043 *
1044 * Check each consumer of the device and return 'true' if its link's status
1045 * is one of "consumer probe" or "active" (meaning that the given consumer is
1046 * probing right now or its driver is present). Otherwise, change the link
1047 * state to "supplier unbind" to prevent the consumer from being probed
1048 * successfully going forward.
1049 *
1050 * Return 'false' if there are no probing or active consumers.
1051 *
1052 * Links without the DL_FLAG_MANAGED flag set are ignored.
1053 */
1054 bool device_links_busy(struct device *dev)
1055 {
1056 struct device_link *link;
1057 bool ret = false;
1058
1059 device_links_write_lock();
1060
1061 list_for_each_entry(link, &dev->links.consumers, s_node) {
1062 if (!(link->flags & DL_FLAG_MANAGED))
1063 continue;
1064
1065 if (link->status == DL_STATE_CONSUMER_PROBE
1066 || link->status == DL_STATE_ACTIVE) {
1067 ret = true;
1068 break;
1069 }
1070 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1071 }
1072
1073 dev->links.status = DL_DEV_UNBINDING;
1074
1075 device_links_write_unlock();
1076 return ret;
1077 }
1078
1079 /**
1080 * device_links_unbind_consumers - Force unbind consumers of the given device.
1081 * @dev: Device to unbind the consumers of.
1082 *
1083 * Walk the list of links to consumers for @dev and if any of them is in the
1084 * "consumer probe" state, wait for all device probes in progress to complete
1085 * and start over.
1086 *
1087 * If that's not the case, change the status of the link to "supplier unbind"
1088 * and check if the link was in the "active" state. If so, force the consumer
1089 * driver to unbind and start over (the consumer will not re-probe as we have
1090 * changed the state of the link already).
1091 *
1092 * Links without the DL_FLAG_MANAGED flag set are ignored.
1093 */
1094 void device_links_unbind_consumers(struct device *dev)
1095 {
1096 struct device_link *link;
1097
1098 start:
1099 device_links_write_lock();
1100
1101 list_for_each_entry(link, &dev->links.consumers, s_node) {
1102 enum device_link_state status;
1103
1104 if (!(link->flags & DL_FLAG_MANAGED) ||
1105 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1106 continue;
1107
1108 status = link->status;
1109 if (status == DL_STATE_CONSUMER_PROBE) {
1110 device_links_write_unlock();
1111
1112 wait_for_device_probe();
1113 goto start;
1114 }
1115 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1116 if (status == DL_STATE_ACTIVE) {
1117 struct device *consumer = link->consumer;
1118
1119 get_device(consumer);
1120
1121 device_links_write_unlock();
1122
1123 device_release_driver_internal(consumer, NULL,
1124 consumer->parent);
1125 put_device(consumer);
1126 goto start;
1127 }
1128 }
1129
1130 device_links_write_unlock();
1131 }
1132
1133 /**
1134 * device_links_purge - Delete existing links to other devices.
1135 * @dev: Target device.
1136 */
1137 static void device_links_purge(struct device *dev)
1138 {
1139 struct device_link *link, *ln;
1140
1141 mutex_lock(&wfs_lock);
1142 list_del(&dev->links.needs_suppliers);
1143 mutex_unlock(&wfs_lock);
1144
1145 /*
1146 * Delete all of the remaining links from this device to any other
1147 * devices (either consumers or suppliers).
1148 */
1149 device_links_write_lock();
1150
1151 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1152 WARN_ON(link->status == DL_STATE_ACTIVE);
1153 __device_link_del(&link->kref);
1154 }
1155
1156 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1157 WARN_ON(link->status != DL_STATE_DORMANT &&
1158 link->status != DL_STATE_NONE);
1159 __device_link_del(&link->kref);
1160 }
1161
1162 device_links_write_unlock();
1163 }
1164
1165 /* Device links support end. */
1166
1167 int (*platform_notify)(struct device *dev) = NULL;
1168 int (*platform_notify_remove)(struct device *dev) = NULL;
1169 static struct kobject *dev_kobj;
1170 struct kobject *sysfs_dev_char_kobj;
1171 struct kobject *sysfs_dev_block_kobj;
1172
1173 static DEFINE_MUTEX(device_hotplug_lock);
1174
1175 void lock_device_hotplug(void)
1176 {
1177 mutex_lock(&device_hotplug_lock);
1178 }
1179
1180 void unlock_device_hotplug(void)
1181 {
1182 mutex_unlock(&device_hotplug_lock);
1183 }
1184
1185 int lock_device_hotplug_sysfs(void)
1186 {
1187 if (mutex_trylock(&device_hotplug_lock))
1188 return 0;
1189
1190 /* Avoid busy looping (5 ms of sleep should do). */
1191 msleep(5);
1192 return restart_syscall();
1193 }
1194
1195 #ifdef CONFIG_BLOCK
1196 static inline int device_is_not_partition(struct device *dev)
1197 {
1198 return !(dev->type == &part_type);
1199 }
1200 #else
1201 static inline int device_is_not_partition(struct device *dev)
1202 {
1203 return 1;
1204 }
1205 #endif
1206
1207 static int
1208 device_platform_notify(struct device *dev, enum kobject_action action)
1209 {
1210 int ret;
1211
1212 ret = acpi_platform_notify(dev, action);
1213 if (ret)
1214 return ret;
1215
1216 ret = software_node_notify(dev, action);
1217 if (ret)
1218 return ret;
1219
1220 if (platform_notify && action == KOBJ_ADD)
1221 platform_notify(dev);
1222 else if (platform_notify_remove && action == KOBJ_REMOVE)
1223 platform_notify_remove(dev);
1224 return 0;
1225 }
1226
1227 /**
1228 * dev_driver_string - Return a device's driver name, if at all possible
1229 * @dev: struct device to get the name of
1230 *
1231 * Will return the device's driver's name if it is bound to a device. If
1232 * the device is not bound to a driver, it will return the name of the bus
1233 * it is attached to. If it is not attached to a bus either, an empty
1234 * string will be returned.
1235 */
1236 const char *dev_driver_string(const struct device *dev)
1237 {
1238 struct device_driver *drv;
1239
1240 /* dev->driver can change to NULL underneath us because of unbinding,
1241 * so be careful about accessing it. dev->bus and dev->class should
1242 * never change once they are set, so they don't need special care.
1243 */
1244 drv = READ_ONCE(dev->driver);
1245 return drv ? drv->name :
1246 (dev->bus ? dev->bus->name :
1247 (dev->class ? dev->class->name : ""));
1248 }
1249 EXPORT_SYMBOL(dev_driver_string);
1250
1251 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1252
1253 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1254 char *buf)
1255 {
1256 struct device_attribute *dev_attr = to_dev_attr(attr);
1257 struct device *dev = kobj_to_dev(kobj);
1258 ssize_t ret = -EIO;
1259
1260 if (dev_attr->show)
1261 ret = dev_attr->show(dev, dev_attr, buf);
1262 if (ret >= (ssize_t)PAGE_SIZE) {
1263 printk("dev_attr_show: %pS returned bad count\n",
1264 dev_attr->show);
1265 }
1266 return ret;
1267 }
1268
1269 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1270 const char *buf, size_t count)
1271 {
1272 struct device_attribute *dev_attr = to_dev_attr(attr);
1273 struct device *dev = kobj_to_dev(kobj);
1274 ssize_t ret = -EIO;
1275
1276 if (dev_attr->store)
1277 ret = dev_attr->store(dev, dev_attr, buf, count);
1278 return ret;
1279 }
1280
1281 static const struct sysfs_ops dev_sysfs_ops = {
1282 .show = dev_attr_show,
1283 .store = dev_attr_store,
1284 };
1285
1286 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
1287
1288 ssize_t device_store_ulong(struct device *dev,
1289 struct device_attribute *attr,
1290 const char *buf, size_t size)
1291 {
1292 struct dev_ext_attribute *ea = to_ext_attr(attr);
1293 int ret;
1294 unsigned long new;
1295
1296 ret = kstrtoul(buf, 0, &new);
1297 if (ret)
1298 return ret;
1299 *(unsigned long *)(ea->var) = new;
1300 /* Always return full write size even if we didn't consume all */
1301 return size;
1302 }
1303 EXPORT_SYMBOL_GPL(device_store_ulong);
1304
1305 ssize_t device_show_ulong(struct device *dev,
1306 struct device_attribute *attr,
1307 char *buf)
1308 {
1309 struct dev_ext_attribute *ea = to_ext_attr(attr);
1310 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
1311 }
1312 EXPORT_SYMBOL_GPL(device_show_ulong);
1313
1314 ssize_t device_store_int(struct device *dev,
1315 struct device_attribute *attr,
1316 const char *buf, size_t size)
1317 {
1318 struct dev_ext_attribute *ea = to_ext_attr(attr);
1319 int ret;
1320 long new;
1321
1322 ret = kstrtol(buf, 0, &new);
1323 if (ret)
1324 return ret;
1325
1326 if (new > INT_MAX || new < INT_MIN)
1327 return -EINVAL;
1328 *(int *)(ea->var) = new;
1329 /* Always return full write size even if we didn't consume all */
1330 return size;
1331 }
1332 EXPORT_SYMBOL_GPL(device_store_int);
1333
1334 ssize_t device_show_int(struct device *dev,
1335 struct device_attribute *attr,
1336 char *buf)
1337 {
1338 struct dev_ext_attribute *ea = to_ext_attr(attr);
1339
1340 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1341 }
1342 EXPORT_SYMBOL_GPL(device_show_int);
1343
1344 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1345 const char *buf, size_t size)
1346 {
1347 struct dev_ext_attribute *ea = to_ext_attr(attr);
1348
1349 if (strtobool(buf, ea->var) < 0)
1350 return -EINVAL;
1351
1352 return size;
1353 }
1354 EXPORT_SYMBOL_GPL(device_store_bool);
1355
1356 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1357 char *buf)
1358 {
1359 struct dev_ext_attribute *ea = to_ext_attr(attr);
1360
1361 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1362 }
1363 EXPORT_SYMBOL_GPL(device_show_bool);
1364
1365 /**
1366 * device_release - free device structure.
1367 * @kobj: device's kobject.
1368 *
1369 * This is called once the reference count for the object
1370 * reaches 0. We forward the call to the device's release
1371 * method, which should handle actually freeing the structure.
1372 */
1373 static void device_release(struct kobject *kobj)
1374 {
1375 struct device *dev = kobj_to_dev(kobj);
1376 struct device_private *p = dev->p;
1377
1378 /*
1379 * Some platform devices are driven without driver attached
1380 * and managed resources may have been acquired. Make sure
1381 * all resources are released.
1382 *
1383 * Drivers still can add resources into device after device
1384 * is deleted but alive, so release devres here to avoid
1385 * possible memory leak.
1386 */
1387 devres_release_all(dev);
1388
1389 if (dev->release)
1390 dev->release(dev);
1391 else if (dev->type && dev->type->release)
1392 dev->type->release(dev);
1393 else if (dev->class && dev->class->dev_release)
1394 dev->class->dev_release(dev);
1395 else
1396 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/kobject.txt.\n",
1397 dev_name(dev));
1398 kfree(p);
1399 }
1400
1401 static const void *device_namespace(struct kobject *kobj)
1402 {
1403 struct device *dev = kobj_to_dev(kobj);
1404 const void *ns = NULL;
1405
1406 if (dev->class && dev->class->ns_type)
1407 ns = dev->class->namespace(dev);
1408
1409 return ns;
1410 }
1411
1412 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1413 {
1414 struct device *dev = kobj_to_dev(kobj);
1415
1416 if (dev->class && dev->class->get_ownership)
1417 dev->class->get_ownership(dev, uid, gid);
1418 }
1419
1420 static struct kobj_type device_ktype = {
1421 .release = device_release,
1422 .sysfs_ops = &dev_sysfs_ops,
1423 .namespace = device_namespace,
1424 .get_ownership = device_get_ownership,
1425 };
1426
1427
1428 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1429 {
1430 struct kobj_type *ktype = get_ktype(kobj);
1431
1432 if (ktype == &device_ktype) {
1433 struct device *dev = kobj_to_dev(kobj);
1434 if (dev->bus)
1435 return 1;
1436 if (dev->class)
1437 return 1;
1438 }
1439 return 0;
1440 }
1441
1442 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1443 {
1444 struct device *dev = kobj_to_dev(kobj);
1445
1446 if (dev->bus)
1447 return dev->bus->name;
1448 if (dev->class)
1449 return dev->class->name;
1450 return NULL;
1451 }
1452
1453 static int dev_uevent(struct kset *kset, struct kobject *kobj,
1454 struct kobj_uevent_env *env)
1455 {
1456 struct device *dev = kobj_to_dev(kobj);
1457 int retval = 0;
1458
1459 /* add device node properties if present */
1460 if (MAJOR(dev->devt)) {
1461 const char *tmp;
1462 const char *name;
1463 umode_t mode = 0;
1464 kuid_t uid = GLOBAL_ROOT_UID;
1465 kgid_t gid = GLOBAL_ROOT_GID;
1466
1467 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1468 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1469 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1470 if (name) {
1471 add_uevent_var(env, "DEVNAME=%s", name);
1472 if (mode)
1473 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1474 if (!uid_eq(uid, GLOBAL_ROOT_UID))
1475 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1476 if (!gid_eq(gid, GLOBAL_ROOT_GID))
1477 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1478 kfree(tmp);
1479 }
1480 }
1481
1482 if (dev->type && dev->type->name)
1483 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1484
1485 if (dev->driver)
1486 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1487
1488 /* Add common DT information about the device */
1489 of_device_uevent(dev, env);
1490
1491 /* have the bus specific function add its stuff */
1492 if (dev->bus && dev->bus->uevent) {
1493 retval = dev->bus->uevent(dev, env);
1494 if (retval)
1495 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1496 dev_name(dev), __func__, retval);
1497 }
1498
1499 /* have the class specific function add its stuff */
1500 if (dev->class && dev->class->dev_uevent) {
1501 retval = dev->class->dev_uevent(dev, env);
1502 if (retval)
1503 pr_debug("device: '%s': %s: class uevent() "
1504 "returned %d\n", dev_name(dev),
1505 __func__, retval);
1506 }
1507
1508 /* have the device type specific function add its stuff */
1509 if (dev->type && dev->type->uevent) {
1510 retval = dev->type->uevent(dev, env);
1511 if (retval)
1512 pr_debug("device: '%s': %s: dev_type uevent() "
1513 "returned %d\n", dev_name(dev),
1514 __func__, retval);
1515 }
1516
1517 return retval;
1518 }
1519
1520 static const struct kset_uevent_ops device_uevent_ops = {
1521 .filter = dev_uevent_filter,
1522 .name = dev_uevent_name,
1523 .uevent = dev_uevent,
1524 };
1525
1526 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1527 char *buf)
1528 {
1529 struct kobject *top_kobj;
1530 struct kset *kset;
1531 struct kobj_uevent_env *env = NULL;
1532 int i;
1533 size_t count = 0;
1534 int retval;
1535
1536 /* search the kset, the device belongs to */
1537 top_kobj = &dev->kobj;
1538 while (!top_kobj->kset && top_kobj->parent)
1539 top_kobj = top_kobj->parent;
1540 if (!top_kobj->kset)
1541 goto out;
1542
1543 kset = top_kobj->kset;
1544 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1545 goto out;
1546
1547 /* respect filter */
1548 if (kset->uevent_ops && kset->uevent_ops->filter)
1549 if (!kset->uevent_ops->filter(kset, &dev->kobj))
1550 goto out;
1551
1552 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1553 if (!env)
1554 return -ENOMEM;
1555
1556 /* let the kset specific function add its keys */
1557 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1558 if (retval)
1559 goto out;
1560
1561 /* copy keys to file */
1562 for (i = 0; i < env->envp_idx; i++)
1563 count += sprintf(&buf[count], "%s\n", env->envp[i]);
1564 out:
1565 kfree(env);
1566 return count;
1567 }
1568
1569 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1570 const char *buf, size_t count)
1571 {
1572 int rc;
1573
1574 rc = kobject_synth_uevent(&dev->kobj, buf, count);
1575
1576 if (rc) {
1577 dev_err(dev, "uevent: failed to send synthetic uevent\n");
1578 return rc;
1579 }
1580
1581 return count;
1582 }
1583 static DEVICE_ATTR_RW(uevent);
1584
1585 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1586 char *buf)
1587 {
1588 bool val;
1589
1590 device_lock(dev);
1591 val = !dev->offline;
1592 device_unlock(dev);
1593 return sprintf(buf, "%u\n", val);
1594 }
1595
1596 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1597 const char *buf, size_t count)
1598 {
1599 bool val;
1600 int ret;
1601
1602 ret = strtobool(buf, &val);
1603 if (ret < 0)
1604 return ret;
1605
1606 ret = lock_device_hotplug_sysfs();
1607 if (ret)
1608 return ret;
1609
1610 ret = val ? device_online(dev) : device_offline(dev);
1611 unlock_device_hotplug();
1612 return ret < 0 ? ret : count;
1613 }
1614 static DEVICE_ATTR_RW(online);
1615
1616 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1617 {
1618 return sysfs_create_groups(&dev->kobj, groups);
1619 }
1620 EXPORT_SYMBOL_GPL(device_add_groups);
1621
1622 void device_remove_groups(struct device *dev,
1623 const struct attribute_group **groups)
1624 {
1625 sysfs_remove_groups(&dev->kobj, groups);
1626 }
1627 EXPORT_SYMBOL_GPL(device_remove_groups);
1628
1629 union device_attr_group_devres {
1630 const struct attribute_group *group;
1631 const struct attribute_group **groups;
1632 };
1633
1634 static int devm_attr_group_match(struct device *dev, void *res, void *data)
1635 {
1636 return ((union device_attr_group_devres *)res)->group == data;
1637 }
1638
1639 static void devm_attr_group_remove(struct device *dev, void *res)
1640 {
1641 union device_attr_group_devres *devres = res;
1642 const struct attribute_group *group = devres->group;
1643
1644 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1645 sysfs_remove_group(&dev->kobj, group);
1646 }
1647
1648 static void devm_attr_groups_remove(struct device *dev, void *res)
1649 {
1650 union device_attr_group_devres *devres = res;
1651 const struct attribute_group **groups = devres->groups;
1652
1653 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1654 sysfs_remove_groups(&dev->kobj, groups);
1655 }
1656
1657 /**
1658 * devm_device_add_group - given a device, create a managed attribute group
1659 * @dev: The device to create the group for
1660 * @grp: The attribute group to create
1661 *
1662 * This function creates a group for the first time. It will explicitly
1663 * warn and error if any of the attribute files being created already exist.
1664 *
1665 * Returns 0 on success or error code on failure.
1666 */
1667 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1668 {
1669 union device_attr_group_devres *devres;
1670 int error;
1671
1672 devres = devres_alloc(devm_attr_group_remove,
1673 sizeof(*devres), GFP_KERNEL);
1674 if (!devres)
1675 return -ENOMEM;
1676
1677 error = sysfs_create_group(&dev->kobj, grp);
1678 if (error) {
1679 devres_free(devres);
1680 return error;
1681 }
1682
1683 devres->group = grp;
1684 devres_add(dev, devres);
1685 return 0;
1686 }
1687 EXPORT_SYMBOL_GPL(devm_device_add_group);
1688
1689 /**
1690 * devm_device_remove_group: remove a managed group from a device
1691 * @dev: device to remove the group from
1692 * @grp: group to remove
1693 *
1694 * This function removes a group of attributes from a device. The attributes
1695 * previously have to have been created for this group, otherwise it will fail.
1696 */
1697 void devm_device_remove_group(struct device *dev,
1698 const struct attribute_group *grp)
1699 {
1700 WARN_ON(devres_release(dev, devm_attr_group_remove,
1701 devm_attr_group_match,
1702 /* cast away const */ (void *)grp));
1703 }
1704 EXPORT_SYMBOL_GPL(devm_device_remove_group);
1705
1706 /**
1707 * devm_device_add_groups - create a bunch of managed attribute groups
1708 * @dev: The device to create the group for
1709 * @groups: The attribute groups to create, NULL terminated
1710 *
1711 * This function creates a bunch of managed attribute groups. If an error
1712 * occurs when creating a group, all previously created groups will be
1713 * removed, unwinding everything back to the original state when this
1714 * function was called. It will explicitly warn and error if any of the
1715 * attribute files being created already exist.
1716 *
1717 * Returns 0 on success or error code from sysfs_create_group on failure.
1718 */
1719 int devm_device_add_groups(struct device *dev,
1720 const struct attribute_group **groups)
1721 {
1722 union device_attr_group_devres *devres;
1723 int error;
1724
1725 devres = devres_alloc(devm_attr_groups_remove,
1726 sizeof(*devres), GFP_KERNEL);
1727 if (!devres)
1728 return -ENOMEM;
1729
1730 error = sysfs_create_groups(&dev->kobj, groups);
1731 if (error) {
1732 devres_free(devres);
1733 return error;
1734 }
1735
1736 devres->groups = groups;
1737 devres_add(dev, devres);
1738 return 0;
1739 }
1740 EXPORT_SYMBOL_GPL(devm_device_add_groups);
1741
1742 /**
1743 * devm_device_remove_groups - remove a list of managed groups
1744 *
1745 * @dev: The device for the groups to be removed from
1746 * @groups: NULL terminated list of groups to be removed
1747 *
1748 * If groups is not NULL, remove the specified groups from the device.
1749 */
1750 void devm_device_remove_groups(struct device *dev,
1751 const struct attribute_group **groups)
1752 {
1753 WARN_ON(devres_release(dev, devm_attr_groups_remove,
1754 devm_attr_group_match,
1755 /* cast away const */ (void *)groups));
1756 }
1757 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1758
1759 static int device_add_attrs(struct device *dev)
1760 {
1761 struct class *class = dev->class;
1762 const struct device_type *type = dev->type;
1763 int error;
1764
1765 if (class) {
1766 error = device_add_groups(dev, class->dev_groups);
1767 if (error)
1768 return error;
1769 }
1770
1771 if (type) {
1772 error = device_add_groups(dev, type->groups);
1773 if (error)
1774 goto err_remove_class_groups;
1775 }
1776
1777 error = device_add_groups(dev, dev->groups);
1778 if (error)
1779 goto err_remove_type_groups;
1780
1781 if (device_supports_offline(dev) && !dev->offline_disabled) {
1782 error = device_create_file(dev, &dev_attr_online);
1783 if (error)
1784 goto err_remove_dev_groups;
1785 }
1786
1787 return 0;
1788
1789 err_remove_dev_groups:
1790 device_remove_groups(dev, dev->groups);
1791 err_remove_type_groups:
1792 if (type)
1793 device_remove_groups(dev, type->groups);
1794 err_remove_class_groups:
1795 if (class)
1796 device_remove_groups(dev, class->dev_groups);
1797
1798 return error;
1799 }
1800
1801 static void device_remove_attrs(struct device *dev)
1802 {
1803 struct class *class = dev->class;
1804 const struct device_type *type = dev->type;
1805
1806 device_remove_file(dev, &dev_attr_online);
1807 device_remove_groups(dev, dev->groups);
1808
1809 if (type)
1810 device_remove_groups(dev, type->groups);
1811
1812 if (class)
1813 device_remove_groups(dev, class->dev_groups);
1814 }
1815
1816 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1817 char *buf)
1818 {
1819 return print_dev_t(buf, dev->devt);
1820 }
1821 static DEVICE_ATTR_RO(dev);
1822
1823 /* /sys/devices/ */
1824 struct kset *devices_kset;
1825
1826 /**
1827 * devices_kset_move_before - Move device in the devices_kset's list.
1828 * @deva: Device to move.
1829 * @devb: Device @deva should come before.
1830 */
1831 static void devices_kset_move_before(struct device *deva, struct device *devb)
1832 {
1833 if (!devices_kset)
1834 return;
1835 pr_debug("devices_kset: Moving %s before %s\n",
1836 dev_name(deva), dev_name(devb));
1837 spin_lock(&devices_kset->list_lock);
1838 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1839 spin_unlock(&devices_kset->list_lock);
1840 }
1841
1842 /**
1843 * devices_kset_move_after - Move device in the devices_kset's list.
1844 * @deva: Device to move
1845 * @devb: Device @deva should come after.
1846 */
1847 static void devices_kset_move_after(struct device *deva, struct device *devb)
1848 {
1849 if (!devices_kset)
1850 return;
1851 pr_debug("devices_kset: Moving %s after %s\n",
1852 dev_name(deva), dev_name(devb));
1853 spin_lock(&devices_kset->list_lock);
1854 list_move(&deva->kobj.entry, &devb->kobj.entry);
1855 spin_unlock(&devices_kset->list_lock);
1856 }
1857
1858 /**
1859 * devices_kset_move_last - move the device to the end of devices_kset's list.
1860 * @dev: device to move
1861 */
1862 void devices_kset_move_last(struct device *dev)
1863 {
1864 if (!devices_kset)
1865 return;
1866 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1867 spin_lock(&devices_kset->list_lock);
1868 list_move_tail(&dev->kobj.entry, &devices_kset->list);
1869 spin_unlock(&devices_kset->list_lock);
1870 }
1871
1872 /**
1873 * device_create_file - create sysfs attribute file for device.
1874 * @dev: device.
1875 * @attr: device attribute descriptor.
1876 */
1877 int device_create_file(struct device *dev,
1878 const struct device_attribute *attr)
1879 {
1880 int error = 0;
1881
1882 if (dev) {
1883 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1884 "Attribute %s: write permission without 'store'\n",
1885 attr->attr.name);
1886 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1887 "Attribute %s: read permission without 'show'\n",
1888 attr->attr.name);
1889 error = sysfs_create_file(&dev->kobj, &attr->attr);
1890 }
1891
1892 return error;
1893 }
1894 EXPORT_SYMBOL_GPL(device_create_file);
1895
1896 /**
1897 * device_remove_file - remove sysfs attribute file.
1898 * @dev: device.
1899 * @attr: device attribute descriptor.
1900 */
1901 void device_remove_file(struct device *dev,
1902 const struct device_attribute *attr)
1903 {
1904 if (dev)
1905 sysfs_remove_file(&dev->kobj, &attr->attr);
1906 }
1907 EXPORT_SYMBOL_GPL(device_remove_file);
1908
1909 /**
1910 * device_remove_file_self - remove sysfs attribute file from its own method.
1911 * @dev: device.
1912 * @attr: device attribute descriptor.
1913 *
1914 * See kernfs_remove_self() for details.
1915 */
1916 bool device_remove_file_self(struct device *dev,
1917 const struct device_attribute *attr)
1918 {
1919 if (dev)
1920 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1921 else
1922 return false;
1923 }
1924 EXPORT_SYMBOL_GPL(device_remove_file_self);
1925
1926 /**
1927 * device_create_bin_file - create sysfs binary attribute file for device.
1928 * @dev: device.
1929 * @attr: device binary attribute descriptor.
1930 */
1931 int device_create_bin_file(struct device *dev,
1932 const struct bin_attribute *attr)
1933 {
1934 int error = -EINVAL;
1935 if (dev)
1936 error = sysfs_create_bin_file(&dev->kobj, attr);
1937 return error;
1938 }
1939 EXPORT_SYMBOL_GPL(device_create_bin_file);
1940
1941 /**
1942 * device_remove_bin_file - remove sysfs binary attribute file
1943 * @dev: device.
1944 * @attr: device binary attribute descriptor.
1945 */
1946 void device_remove_bin_file(struct device *dev,
1947 const struct bin_attribute *attr)
1948 {
1949 if (dev)
1950 sysfs_remove_bin_file(&dev->kobj, attr);
1951 }
1952 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1953
1954 static void klist_children_get(struct klist_node *n)
1955 {
1956 struct device_private *p = to_device_private_parent(n);
1957 struct device *dev = p->device;
1958
1959 get_device(dev);
1960 }
1961
1962 static void klist_children_put(struct klist_node *n)
1963 {
1964 struct device_private *p = to_device_private_parent(n);
1965 struct device *dev = p->device;
1966
1967 put_device(dev);
1968 }
1969
1970 /**
1971 * device_initialize - init device structure.
1972 * @dev: device.
1973 *
1974 * This prepares the device for use by other layers by initializing
1975 * its fields.
1976 * It is the first half of device_register(), if called by
1977 * that function, though it can also be called separately, so one
1978 * may use @dev's fields. In particular, get_device()/put_device()
1979 * may be used for reference counting of @dev after calling this
1980 * function.
1981 *
1982 * All fields in @dev must be initialized by the caller to 0, except
1983 * for those explicitly set to some other value. The simplest
1984 * approach is to use kzalloc() to allocate the structure containing
1985 * @dev.
1986 *
1987 * NOTE: Use put_device() to give up your reference instead of freeing
1988 * @dev directly once you have called this function.
1989 */
1990 void device_initialize(struct device *dev)
1991 {
1992 dev->kobj.kset = devices_kset;
1993 kobject_init(&dev->kobj, &device_ktype);
1994 INIT_LIST_HEAD(&dev->dma_pools);
1995 mutex_init(&dev->mutex);
1996 #ifdef CONFIG_PROVE_LOCKING
1997 mutex_init(&dev->lockdep_mutex);
1998 #endif
1999 lockdep_set_novalidate_class(&dev->mutex);
2000 spin_lock_init(&dev->devres_lock);
2001 INIT_LIST_HEAD(&dev->devres_head);
2002 device_pm_init(dev);
2003 set_dev_node(dev, -1);
2004 #ifdef CONFIG_GENERIC_MSI_IRQ
2005 INIT_LIST_HEAD(&dev->msi_list);
2006 #endif
2007 INIT_LIST_HEAD(&dev->links.consumers);
2008 INIT_LIST_HEAD(&dev->links.suppliers);
2009 INIT_LIST_HEAD(&dev->links.needs_suppliers);
2010 INIT_LIST_HEAD(&dev->links.defer_sync);
2011 dev->links.status = DL_DEV_NO_DRIVER;
2012 }
2013 EXPORT_SYMBOL_GPL(device_initialize);
2014
2015 struct kobject *virtual_device_parent(struct device *dev)
2016 {
2017 static struct kobject *virtual_dir = NULL;
2018
2019 if (!virtual_dir)
2020 virtual_dir = kobject_create_and_add("virtual",
2021 &devices_kset->kobj);
2022
2023 return virtual_dir;
2024 }
2025
2026 struct class_dir {
2027 struct kobject kobj;
2028 struct class *class;
2029 };
2030
2031 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2032
2033 static void class_dir_release(struct kobject *kobj)
2034 {
2035 struct class_dir *dir = to_class_dir(kobj);
2036 kfree(dir);
2037 }
2038
2039 static const
2040 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2041 {
2042 struct class_dir *dir = to_class_dir(kobj);
2043 return dir->class->ns_type;
2044 }
2045
2046 static struct kobj_type class_dir_ktype = {
2047 .release = class_dir_release,
2048 .sysfs_ops = &kobj_sysfs_ops,
2049 .child_ns_type = class_dir_child_ns_type
2050 };
2051
2052 static struct kobject *
2053 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2054 {
2055 struct class_dir *dir;
2056 int retval;
2057
2058 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2059 if (!dir)
2060 return ERR_PTR(-ENOMEM);
2061
2062 dir->class = class;
2063 kobject_init(&dir->kobj, &class_dir_ktype);
2064
2065 dir->kobj.kset = &class->p->glue_dirs;
2066
2067 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2068 if (retval < 0) {
2069 kobject_put(&dir->kobj);
2070 return ERR_PTR(retval);
2071 }
2072 return &dir->kobj;
2073 }
2074
2075 static DEFINE_MUTEX(gdp_mutex);
2076
2077 static struct kobject *get_device_parent(struct device *dev,
2078 struct device *parent)
2079 {
2080 if (dev->class) {
2081 struct kobject *kobj = NULL;
2082 struct kobject *parent_kobj;
2083 struct kobject *k;
2084
2085 #ifdef CONFIG_BLOCK
2086 /* block disks show up in /sys/block */
2087 if (sysfs_deprecated && dev->class == &block_class) {
2088 if (parent && parent->class == &block_class)
2089 return &parent->kobj;
2090 return &block_class.p->subsys.kobj;
2091 }
2092 #endif
2093
2094 /*
2095 * If we have no parent, we live in "virtual".
2096 * Class-devices with a non class-device as parent, live
2097 * in a "glue" directory to prevent namespace collisions.
2098 */
2099 if (parent == NULL)
2100 parent_kobj = virtual_device_parent(dev);
2101 else if (parent->class && !dev->class->ns_type)
2102 return &parent->kobj;
2103 else
2104 parent_kobj = &parent->kobj;
2105
2106 mutex_lock(&gdp_mutex);
2107
2108 /* find our class-directory at the parent and reference it */
2109 spin_lock(&dev->class->p->glue_dirs.list_lock);
2110 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2111 if (k->parent == parent_kobj) {
2112 kobj = kobject_get(k);
2113 break;
2114 }
2115 spin_unlock(&dev->class->p->glue_dirs.list_lock);
2116 if (kobj) {
2117 mutex_unlock(&gdp_mutex);
2118 return kobj;
2119 }
2120
2121 /* or create a new class-directory at the parent device */
2122 k = class_dir_create_and_add(dev->class, parent_kobj);
2123 /* do not emit an uevent for this simple "glue" directory */
2124 mutex_unlock(&gdp_mutex);
2125 return k;
2126 }
2127
2128 /* subsystems can specify a default root directory for their devices */
2129 if (!parent && dev->bus && dev->bus->dev_root)
2130 return &dev->bus->dev_root->kobj;
2131
2132 if (parent)
2133 return &parent->kobj;
2134 return NULL;
2135 }
2136
2137 static inline bool live_in_glue_dir(struct kobject *kobj,
2138 struct device *dev)
2139 {
2140 if (!kobj || !dev->class ||
2141 kobj->kset != &dev->class->p->glue_dirs)
2142 return false;
2143 return true;
2144 }
2145
2146 static inline struct kobject *get_glue_dir(struct device *dev)
2147 {
2148 return dev->kobj.parent;
2149 }
2150
2151 /*
2152 * make sure cleaning up dir as the last step, we need to make
2153 * sure .release handler of kobject is run with holding the
2154 * global lock
2155 */
2156 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2157 {
2158 unsigned int ref;
2159
2160 /* see if we live in a "glue" directory */
2161 if (!live_in_glue_dir(glue_dir, dev))
2162 return;
2163
2164 mutex_lock(&gdp_mutex);
2165 /**
2166 * There is a race condition between removing glue directory
2167 * and adding a new device under the glue directory.
2168 *
2169 * CPU1: CPU2:
2170 *
2171 * device_add()
2172 * get_device_parent()
2173 * class_dir_create_and_add()
2174 * kobject_add_internal()
2175 * create_dir() // create glue_dir
2176 *
2177 * device_add()
2178 * get_device_parent()
2179 * kobject_get() // get glue_dir
2180 *
2181 * device_del()
2182 * cleanup_glue_dir()
2183 * kobject_del(glue_dir)
2184 *
2185 * kobject_add()
2186 * kobject_add_internal()
2187 * create_dir() // in glue_dir
2188 * sysfs_create_dir_ns()
2189 * kernfs_create_dir_ns(sd)
2190 *
2191 * sysfs_remove_dir() // glue_dir->sd=NULL
2192 * sysfs_put() // free glue_dir->sd
2193 *
2194 * // sd is freed
2195 * kernfs_new_node(sd)
2196 * kernfs_get(glue_dir)
2197 * kernfs_add_one()
2198 * kernfs_put()
2199 *
2200 * Before CPU1 remove last child device under glue dir, if CPU2 add
2201 * a new device under glue dir, the glue_dir kobject reference count
2202 * will be increase to 2 in kobject_get(k). And CPU2 has been called
2203 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2204 * and sysfs_put(). This result in glue_dir->sd is freed.
2205 *
2206 * Then the CPU2 will see a stale "empty" but still potentially used
2207 * glue dir around in kernfs_new_node().
2208 *
2209 * In order to avoid this happening, we also should make sure that
2210 * kernfs_node for glue_dir is released in CPU1 only when refcount
2211 * for glue_dir kobj is 1.
2212 */
2213 ref = kref_read(&glue_dir->kref);
2214 if (!kobject_has_children(glue_dir) && !--ref)
2215 kobject_del(glue_dir);
2216 kobject_put(glue_dir);
2217 mutex_unlock(&gdp_mutex);
2218 }
2219
2220 static int device_add_class_symlinks(struct device *dev)
2221 {
2222 struct device_node *of_node = dev_of_node(dev);
2223 int error;
2224
2225 if (of_node) {
2226 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2227 if (error)
2228 dev_warn(dev, "Error %d creating of_node link\n",error);
2229 /* An error here doesn't warrant bringing down the device */
2230 }
2231
2232 if (!dev->class)
2233 return 0;
2234
2235 error = sysfs_create_link(&dev->kobj,
2236 &dev->class->p->subsys.kobj,
2237 "subsystem");
2238 if (error)
2239 goto out_devnode;
2240
2241 if (dev->parent && device_is_not_partition(dev)) {
2242 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2243 "device");
2244 if (error)
2245 goto out_subsys;
2246 }
2247
2248 #ifdef CONFIG_BLOCK
2249 /* /sys/block has directories and does not need symlinks */
2250 if (sysfs_deprecated && dev->class == &block_class)
2251 return 0;
2252 #endif
2253
2254 /* link in the class directory pointing to the device */
2255 error = sysfs_create_link(&dev->class->p->subsys.kobj,
2256 &dev->kobj, dev_name(dev));
2257 if (error)
2258 goto out_device;
2259
2260 return 0;
2261
2262 out_device:
2263 sysfs_remove_link(&dev->kobj, "device");
2264
2265 out_subsys:
2266 sysfs_remove_link(&dev->kobj, "subsystem");
2267 out_devnode:
2268 sysfs_remove_link(&dev->kobj, "of_node");
2269 return error;
2270 }
2271
2272 static void device_remove_class_symlinks(struct device *dev)
2273 {
2274 if (dev_of_node(dev))
2275 sysfs_remove_link(&dev->kobj, "of_node");
2276
2277 if (!dev->class)
2278 return;
2279
2280 if (dev->parent && device_is_not_partition(dev))
2281 sysfs_remove_link(&dev->kobj, "device");
2282 sysfs_remove_link(&dev->kobj, "subsystem");
2283 #ifdef CONFIG_BLOCK
2284 if (sysfs_deprecated && dev->class == &block_class)
2285 return;
2286 #endif
2287 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
2288 }
2289
2290 /**
2291 * dev_set_name - set a device name
2292 * @dev: device
2293 * @fmt: format string for the device's name
2294 */
2295 int dev_set_name(struct device *dev, const char *fmt, ...)
2296 {
2297 va_list vargs;
2298 int err;
2299
2300 va_start(vargs, fmt);
2301 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2302 va_end(vargs);
2303 return err;
2304 }
2305 EXPORT_SYMBOL_GPL(dev_set_name);
2306
2307 /**
2308 * device_to_dev_kobj - select a /sys/dev/ directory for the device
2309 * @dev: device
2310 *
2311 * By default we select char/ for new entries. Setting class->dev_obj
2312 * to NULL prevents an entry from being created. class->dev_kobj must
2313 * be set (or cleared) before any devices are registered to the class
2314 * otherwise device_create_sys_dev_entry() and
2315 * device_remove_sys_dev_entry() will disagree about the presence of
2316 * the link.
2317 */
2318 static struct kobject *device_to_dev_kobj(struct device *dev)
2319 {
2320 struct kobject *kobj;
2321
2322 if (dev->class)
2323 kobj = dev->class->dev_kobj;
2324 else
2325 kobj = sysfs_dev_char_kobj;
2326
2327 return kobj;
2328 }
2329
2330 static int device_create_sys_dev_entry(struct device *dev)
2331 {
2332 struct kobject *kobj = device_to_dev_kobj(dev);
2333 int error = 0;
2334 char devt_str[15];
2335
2336 if (kobj) {
2337 format_dev_t(devt_str, dev->devt);
2338 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2339 }
2340
2341 return error;
2342 }
2343
2344 static void device_remove_sys_dev_entry(struct device *dev)
2345 {
2346 struct kobject *kobj = device_to_dev_kobj(dev);
2347 char devt_str[15];
2348
2349 if (kobj) {
2350 format_dev_t(devt_str, dev->devt);
2351 sysfs_remove_link(kobj, devt_str);
2352 }
2353 }
2354
2355 static int device_private_init(struct device *dev)
2356 {
2357 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2358 if (!dev->p)
2359 return -ENOMEM;
2360 dev->p->device = dev;
2361 klist_init(&dev->p->klist_children, klist_children_get,
2362 klist_children_put);
2363 INIT_LIST_HEAD(&dev->p->deferred_probe);
2364 return 0;
2365 }
2366
2367 static u32 fw_devlink_flags;
2368 static int __init fw_devlink_setup(char *arg)
2369 {
2370 if (!arg)
2371 return -EINVAL;
2372
2373 if (strcmp(arg, "off") == 0) {
2374 fw_devlink_flags = 0;
2375 } else if (strcmp(arg, "permissive") == 0) {
2376 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
2377 } else if (strcmp(arg, "on") == 0) {
2378 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER;
2379 } else if (strcmp(arg, "rpm") == 0) {
2380 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER |
2381 DL_FLAG_PM_RUNTIME;
2382 }
2383 return 0;
2384 }
2385 early_param("fw_devlink", fw_devlink_setup);
2386
2387 u32 fw_devlink_get_flags(void)
2388 {
2389 return fw_devlink_flags;
2390 }
2391
2392 static bool fw_devlink_is_permissive(void)
2393 {
2394 return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY;
2395 }
2396
2397 /**
2398 * device_add - add device to device hierarchy.
2399 * @dev: device.
2400 *
2401 * This is part 2 of device_register(), though may be called
2402 * separately _iff_ device_initialize() has been called separately.
2403 *
2404 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2405 * to the global and sibling lists for the device, then
2406 * adds it to the other relevant subsystems of the driver model.
2407 *
2408 * Do not call this routine or device_register() more than once for
2409 * any device structure. The driver model core is not designed to work
2410 * with devices that get unregistered and then spring back to life.
2411 * (Among other things, it's very hard to guarantee that all references
2412 * to the previous incarnation of @dev have been dropped.) Allocate
2413 * and register a fresh new struct device instead.
2414 *
2415 * NOTE: _Never_ directly free @dev after calling this function, even
2416 * if it returned an error! Always use put_device() to give up your
2417 * reference instead.
2418 *
2419 * Rule of thumb is: if device_add() succeeds, you should call
2420 * device_del() when you want to get rid of it. If device_add() has
2421 * *not* succeeded, use *only* put_device() to drop the reference
2422 * count.
2423 */
2424 int device_add(struct device *dev)
2425 {
2426 struct device *parent;
2427 struct kobject *kobj;
2428 struct class_interface *class_intf;
2429 int error = -EINVAL, fw_ret;
2430 struct kobject *glue_dir = NULL;
2431 bool is_fwnode_dev = false;
2432
2433 dev = get_device(dev);
2434 if (!dev)
2435 goto done;
2436
2437 if (!dev->p) {
2438 error = device_private_init(dev);
2439 if (error)
2440 goto done;
2441 }
2442
2443 /*
2444 * for statically allocated devices, which should all be converted
2445 * some day, we need to initialize the name. We prevent reading back
2446 * the name, and force the use of dev_name()
2447 */
2448 if (dev->init_name) {
2449 dev_set_name(dev, "%s", dev->init_name);
2450 dev->init_name = NULL;
2451 }
2452
2453 /* subsystems can specify simple device enumeration */
2454 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2455 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2456
2457 if (!dev_name(dev)) {
2458 error = -EINVAL;
2459 goto name_error;
2460 }
2461
2462 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2463
2464 parent = get_device(dev->parent);
2465 kobj = get_device_parent(dev, parent);
2466 if (IS_ERR(kobj)) {
2467 error = PTR_ERR(kobj);
2468 goto parent_error;
2469 }
2470 if (kobj)
2471 dev->kobj.parent = kobj;
2472
2473 /* use parent numa_node */
2474 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2475 set_dev_node(dev, dev_to_node(parent));
2476
2477 /* first, register with generic layer. */
2478 /* we require the name to be set before, and pass NULL */
2479 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2480 if (error) {
2481 glue_dir = get_glue_dir(dev);
2482 goto Error;
2483 }
2484
2485 /* notify platform of device entry */
2486 error = device_platform_notify(dev, KOBJ_ADD);
2487 if (error)
2488 goto platform_error;
2489
2490 error = device_create_file(dev, &dev_attr_uevent);
2491 if (error)
2492 goto attrError;
2493
2494 error = device_add_class_symlinks(dev);
2495 if (error)
2496 goto SymlinkError;
2497 error = device_add_attrs(dev);
2498 if (error)
2499 goto AttrsError;
2500 error = bus_add_device(dev);
2501 if (error)
2502 goto BusError;
2503 error = dpm_sysfs_add(dev);
2504 if (error)
2505 goto DPMError;
2506 device_pm_add(dev);
2507
2508 if (MAJOR(dev->devt)) {
2509 error = device_create_file(dev, &dev_attr_dev);
2510 if (error)
2511 goto DevAttrError;
2512
2513 error = device_create_sys_dev_entry(dev);
2514 if (error)
2515 goto SysEntryError;
2516
2517 devtmpfs_create_node(dev);
2518 }
2519
2520 /* Notify clients of device addition. This call must come
2521 * after dpm_sysfs_add() and before kobject_uevent().
2522 */
2523 if (dev->bus)
2524 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2525 BUS_NOTIFY_ADD_DEVICE, dev);
2526
2527 kobject_uevent(&dev->kobj, KOBJ_ADD);
2528
2529 if (dev->fwnode && !dev->fwnode->dev) {
2530 dev->fwnode->dev = dev;
2531 is_fwnode_dev = true;
2532 }
2533
2534 /*
2535 * Check if any of the other devices (consumers) have been waiting for
2536 * this device (supplier) to be added so that they can create a device
2537 * link to it.
2538 *
2539 * This needs to happen after device_pm_add() because device_link_add()
2540 * requires the supplier be registered before it's called.
2541 *
2542 * But this also needs to happe before bus_probe_device() to make sure
2543 * waiting consumers can link to it before the driver is bound to the
2544 * device and the driver sync_state callback is called for this device.
2545 */
2546 device_link_add_missing_supplier_links();
2547
2548 if (fw_devlink_flags && is_fwnode_dev &&
2549 fwnode_has_op(dev->fwnode, add_links)) {
2550 fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
2551 if (fw_ret == -ENODEV && !fw_devlink_is_permissive())
2552 device_link_wait_for_mandatory_supplier(dev);
2553 else if (fw_ret)
2554 device_link_wait_for_optional_supplier(dev);
2555 }
2556
2557 bus_probe_device(dev);
2558 if (parent)
2559 klist_add_tail(&dev->p->knode_parent,
2560 &parent->p->klist_children);
2561
2562 if (dev->class) {
2563 mutex_lock(&dev->class->p->mutex);
2564 /* tie the class to the device */
2565 klist_add_tail(&dev->p->knode_class,
2566 &dev->class->p->klist_devices);
2567
2568 /* notify any interfaces that the device is here */
2569 list_for_each_entry(class_intf,
2570 &dev->class->p->interfaces, node)
2571 if (class_intf->add_dev)
2572 class_intf->add_dev(dev, class_intf);
2573 mutex_unlock(&dev->class->p->mutex);
2574 }
2575 done:
2576 put_device(dev);
2577 return error;
2578 SysEntryError:
2579 if (MAJOR(dev->devt))
2580 device_remove_file(dev, &dev_attr_dev);
2581 DevAttrError:
2582 device_pm_remove(dev);
2583 dpm_sysfs_remove(dev);
2584 DPMError:
2585 bus_remove_device(dev);
2586 BusError:
2587 device_remove_attrs(dev);
2588 AttrsError:
2589 device_remove_class_symlinks(dev);
2590 SymlinkError:
2591 device_remove_file(dev, &dev_attr_uevent);
2592 attrError:
2593 device_platform_notify(dev, KOBJ_REMOVE);
2594 platform_error:
2595 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2596 glue_dir = get_glue_dir(dev);
2597 kobject_del(&dev->kobj);
2598 Error:
2599 cleanup_glue_dir(dev, glue_dir);
2600 parent_error:
2601 put_device(parent);
2602 name_error:
2603 kfree(dev->p);
2604 dev->p = NULL;
2605 goto done;
2606 }
2607 EXPORT_SYMBOL_GPL(device_add);
2608
2609 /**
2610 * device_register - register a device with the system.
2611 * @dev: pointer to the device structure
2612 *
2613 * This happens in two clean steps - initialize the device
2614 * and add it to the system. The two steps can be called
2615 * separately, but this is the easiest and most common.
2616 * I.e. you should only call the two helpers separately if
2617 * have a clearly defined need to use and refcount the device
2618 * before it is added to the hierarchy.
2619 *
2620 * For more information, see the kerneldoc for device_initialize()
2621 * and device_add().
2622 *
2623 * NOTE: _Never_ directly free @dev after calling this function, even
2624 * if it returned an error! Always use put_device() to give up the
2625 * reference initialized in this function instead.
2626 */
2627 int device_register(struct device *dev)
2628 {
2629 device_initialize(dev);
2630 return device_add(dev);
2631 }
2632 EXPORT_SYMBOL_GPL(device_register);
2633
2634 /**
2635 * get_device - increment reference count for device.
2636 * @dev: device.
2637 *
2638 * This simply forwards the call to kobject_get(), though
2639 * we do take care to provide for the case that we get a NULL
2640 * pointer passed in.
2641 */
2642 struct device *get_device(struct device *dev)
2643 {
2644 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
2645 }
2646 EXPORT_SYMBOL_GPL(get_device);
2647
2648 /**
2649 * put_device - decrement reference count.
2650 * @dev: device in question.
2651 */
2652 void put_device(struct device *dev)
2653 {
2654 /* might_sleep(); */
2655 if (dev)
2656 kobject_put(&dev->kobj);
2657 }
2658 EXPORT_SYMBOL_GPL(put_device);
2659
2660 bool kill_device(struct device *dev)
2661 {
2662 /*
2663 * Require the device lock and set the "dead" flag to guarantee that
2664 * the update behavior is consistent with the other bitfields near
2665 * it and that we cannot have an asynchronous probe routine trying
2666 * to run while we are tearing out the bus/class/sysfs from
2667 * underneath the device.
2668 */
2669 lockdep_assert_held(&dev->mutex);
2670
2671 if (dev->p->dead)
2672 return false;
2673 dev->p->dead = true;
2674 return true;
2675 }
2676 EXPORT_SYMBOL_GPL(kill_device);
2677
2678 /**
2679 * device_del - delete device from system.
2680 * @dev: device.
2681 *
2682 * This is the first part of the device unregistration
2683 * sequence. This removes the device from the lists we control
2684 * from here, has it removed from the other driver model
2685 * subsystems it was added to in device_add(), and removes it
2686 * from the kobject hierarchy.
2687 *
2688 * NOTE: this should be called manually _iff_ device_add() was
2689 * also called manually.
2690 */
2691 void device_del(struct device *dev)
2692 {
2693 struct device *parent = dev->parent;
2694 struct kobject *glue_dir = NULL;
2695 struct class_interface *class_intf;
2696
2697 device_lock(dev);
2698 kill_device(dev);
2699 device_unlock(dev);
2700
2701 if (dev->fwnode && dev->fwnode->dev == dev)
2702 dev->fwnode->dev = NULL;
2703
2704 /* Notify clients of device removal. This call must come
2705 * before dpm_sysfs_remove().
2706 */
2707 if (dev->bus)
2708 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2709 BUS_NOTIFY_DEL_DEVICE, dev);
2710
2711 dpm_sysfs_remove(dev);
2712 if (parent)
2713 klist_del(&dev->p->knode_parent);
2714 if (MAJOR(dev->devt)) {
2715 devtmpfs_delete_node(dev);
2716 device_remove_sys_dev_entry(dev);
2717 device_remove_file(dev, &dev_attr_dev);
2718 }
2719 if (dev->class) {
2720 device_remove_class_symlinks(dev);
2721
2722 mutex_lock(&dev->class->p->mutex);
2723 /* notify any interfaces that the device is now gone */
2724 list_for_each_entry(class_intf,
2725 &dev->class->p->interfaces, node)
2726 if (class_intf->remove_dev)
2727 class_intf->remove_dev(dev, class_intf);
2728 /* remove the device from the class list */
2729 klist_del(&dev->p->knode_class);
2730 mutex_unlock(&dev->class->p->mutex);
2731 }
2732 device_remove_file(dev, &dev_attr_uevent);
2733 device_remove_attrs(dev);
2734 bus_remove_device(dev);
2735 device_pm_remove(dev);
2736 driver_deferred_probe_del(dev);
2737 device_platform_notify(dev, KOBJ_REMOVE);
2738 device_remove_properties(dev);
2739 device_links_purge(dev);
2740
2741 if (dev->bus)
2742 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2743 BUS_NOTIFY_REMOVED_DEVICE, dev);
2744 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2745 glue_dir = get_glue_dir(dev);
2746 kobject_del(&dev->kobj);
2747 cleanup_glue_dir(dev, glue_dir);
2748 put_device(parent);
2749 }
2750 EXPORT_SYMBOL_GPL(device_del);
2751
2752 /**
2753 * device_unregister - unregister device from system.
2754 * @dev: device going away.
2755 *
2756 * We do this in two parts, like we do device_register(). First,
2757 * we remove it from all the subsystems with device_del(), then
2758 * we decrement the reference count via put_device(). If that
2759 * is the final reference count, the device will be cleaned up
2760 * via device_release() above. Otherwise, the structure will
2761 * stick around until the final reference to the device is dropped.
2762 */
2763 void device_unregister(struct device *dev)
2764 {
2765 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2766 device_del(dev);
2767 put_device(dev);
2768 }
2769 EXPORT_SYMBOL_GPL(device_unregister);
2770
2771 static struct device *prev_device(struct klist_iter *i)
2772 {
2773 struct klist_node *n = klist_prev(i);
2774 struct device *dev = NULL;
2775 struct device_private *p;
2776
2777 if (n) {
2778 p = to_device_private_parent(n);
2779 dev = p->device;
2780 }
2781 return dev;
2782 }
2783
2784 static struct device *next_device(struct klist_iter *i)
2785 {
2786 struct klist_node *n = klist_next(i);
2787 struct device *dev = NULL;
2788 struct device_private *p;
2789
2790 if (n) {
2791 p = to_device_private_parent(n);
2792 dev = p->device;
2793 }
2794 return dev;
2795 }
2796
2797 /**
2798 * device_get_devnode - path of device node file
2799 * @dev: device
2800 * @mode: returned file access mode
2801 * @uid: returned file owner
2802 * @gid: returned file group
2803 * @tmp: possibly allocated string
2804 *
2805 * Return the relative path of a possible device node.
2806 * Non-default names may need to allocate a memory to compose
2807 * a name. This memory is returned in tmp and needs to be
2808 * freed by the caller.
2809 */
2810 const char *device_get_devnode(struct device *dev,
2811 umode_t *mode, kuid_t *uid, kgid_t *gid,
2812 const char **tmp)
2813 {
2814 char *s;
2815
2816 *tmp = NULL;
2817
2818 /* the device type may provide a specific name */
2819 if (dev->type && dev->type->devnode)
2820 *tmp = dev->type->devnode(dev, mode, uid, gid);
2821 if (*tmp)
2822 return *tmp;
2823
2824 /* the class may provide a specific name */
2825 if (dev->class && dev->class->devnode)
2826 *tmp = dev->class->devnode(dev, mode);
2827 if (*tmp)
2828 return *tmp;
2829
2830 /* return name without allocation, tmp == NULL */
2831 if (strchr(dev_name(dev), '!') == NULL)
2832 return dev_name(dev);
2833
2834 /* replace '!' in the name with '/' */
2835 s = kstrdup(dev_name(dev), GFP_KERNEL);
2836 if (!s)
2837 return NULL;
2838 strreplace(s, '!', '/');
2839 return *tmp = s;
2840 }
2841
2842 /**
2843 * device_for_each_child - device child iterator.
2844 * @parent: parent struct device.
2845 * @fn: function to be called for each device.
2846 * @data: data for the callback.
2847 *
2848 * Iterate over @parent's child devices, and call @fn for each,
2849 * passing it @data.
2850 *
2851 * We check the return of @fn each time. If it returns anything
2852 * other than 0, we break out and return that value.
2853 */
2854 int device_for_each_child(struct device *parent, void *data,
2855 int (*fn)(struct device *dev, void *data))
2856 {
2857 struct klist_iter i;
2858 struct device *child;
2859 int error = 0;
2860
2861 if (!parent->p)
2862 return 0;
2863
2864 klist_iter_init(&parent->p->klist_children, &i);
2865 while (!error && (child = next_device(&i)))
2866 error = fn(child, data);
2867 klist_iter_exit(&i);
2868 return error;
2869 }
2870 EXPORT_SYMBOL_GPL(device_for_each_child);
2871
2872 /**
2873 * device_for_each_child_reverse - device child iterator in reversed order.
2874 * @parent: parent struct device.
2875 * @fn: function to be called for each device.
2876 * @data: data for the callback.
2877 *
2878 * Iterate over @parent's child devices, and call @fn for each,
2879 * passing it @data.
2880 *
2881 * We check the return of @fn each time. If it returns anything
2882 * other than 0, we break out and return that value.
2883 */
2884 int device_for_each_child_reverse(struct device *parent, void *data,
2885 int (*fn)(struct device *dev, void *data))
2886 {
2887 struct klist_iter i;
2888 struct device *child;
2889 int error = 0;
2890
2891 if (!parent->p)
2892 return 0;
2893
2894 klist_iter_init(&parent->p->klist_children, &i);
2895 while ((child = prev_device(&i)) && !error)
2896 error = fn(child, data);
2897 klist_iter_exit(&i);
2898 return error;
2899 }
2900 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2901
2902 /**
2903 * device_find_child - device iterator for locating a particular device.
2904 * @parent: parent struct device
2905 * @match: Callback function to check device
2906 * @data: Data to pass to match function
2907 *
2908 * This is similar to the device_for_each_child() function above, but it
2909 * returns a reference to a device that is 'found' for later use, as
2910 * determined by the @match callback.
2911 *
2912 * The callback should return 0 if the device doesn't match and non-zero
2913 * if it does. If the callback returns non-zero and a reference to the
2914 * current device can be obtained, this function will return to the caller
2915 * and not iterate over any more devices.
2916 *
2917 * NOTE: you will need to drop the reference with put_device() after use.
2918 */
2919 struct device *device_find_child(struct device *parent, void *data,
2920 int (*match)(struct device *dev, void *data))
2921 {
2922 struct klist_iter i;
2923 struct device *child;
2924
2925 if (!parent)
2926 return NULL;
2927
2928 klist_iter_init(&parent->p->klist_children, &i);
2929 while ((child = next_device(&i)))
2930 if (match(child, data) && get_device(child))
2931 break;
2932 klist_iter_exit(&i);
2933 return child;
2934 }
2935 EXPORT_SYMBOL_GPL(device_find_child);
2936
2937 /**
2938 * device_find_child_by_name - device iterator for locating a child device.
2939 * @parent: parent struct device
2940 * @name: name of the child device
2941 *
2942 * This is similar to the device_find_child() function above, but it
2943 * returns a reference to a device that has the name @name.
2944 *
2945 * NOTE: you will need to drop the reference with put_device() after use.
2946 */
2947 struct device *device_find_child_by_name(struct device *parent,
2948 const char *name)
2949 {
2950 struct klist_iter i;
2951 struct device *child;
2952
2953 if (!parent)
2954 return NULL;
2955
2956 klist_iter_init(&parent->p->klist_children, &i);
2957 while ((child = next_device(&i)))
2958 if (!strcmp(dev_name(child), name) && get_device(child))
2959 break;
2960 klist_iter_exit(&i);
2961 return child;
2962 }
2963 EXPORT_SYMBOL_GPL(device_find_child_by_name);
2964
2965 int __init devices_init(void)
2966 {
2967 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2968 if (!devices_kset)
2969 return -ENOMEM;
2970 dev_kobj = kobject_create_and_add("dev", NULL);
2971 if (!dev_kobj)
2972 goto dev_kobj_err;
2973 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2974 if (!sysfs_dev_block_kobj)
2975 goto block_kobj_err;
2976 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2977 if (!sysfs_dev_char_kobj)
2978 goto char_kobj_err;
2979
2980 return 0;
2981
2982 char_kobj_err:
2983 kobject_put(sysfs_dev_block_kobj);
2984 block_kobj_err:
2985 kobject_put(dev_kobj);
2986 dev_kobj_err:
2987 kset_unregister(devices_kset);
2988 return -ENOMEM;
2989 }
2990
2991 static int device_check_offline(struct device *dev, void *not_used)
2992 {
2993 int ret;
2994
2995 ret = device_for_each_child(dev, NULL, device_check_offline);
2996 if (ret)
2997 return ret;
2998
2999 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3000 }
3001
3002 /**
3003 * device_offline - Prepare the device for hot-removal.
3004 * @dev: Device to be put offline.
3005 *
3006 * Execute the device bus type's .offline() callback, if present, to prepare
3007 * the device for a subsequent hot-removal. If that succeeds, the device must
3008 * not be used until either it is removed or its bus type's .online() callback
3009 * is executed.
3010 *
3011 * Call under device_hotplug_lock.
3012 */
3013 int device_offline(struct device *dev)
3014 {
3015 int ret;
3016
3017 if (dev->offline_disabled)
3018 return -EPERM;
3019
3020 ret = device_for_each_child(dev, NULL, device_check_offline);
3021 if (ret)
3022 return ret;
3023
3024 device_lock(dev);
3025 if (device_supports_offline(dev)) {
3026 if (dev->offline) {
3027 ret = 1;
3028 } else {
3029 ret = dev->bus->offline(dev);
3030 if (!ret) {
3031 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3032 dev->offline = true;
3033 }
3034 }
3035 }
3036 device_unlock(dev);
3037
3038 return ret;
3039 }
3040
3041 /**
3042 * device_online - Put the device back online after successful device_offline().
3043 * @dev: Device to be put back online.
3044 *
3045 * If device_offline() has been successfully executed for @dev, but the device
3046 * has not been removed subsequently, execute its bus type's .online() callback
3047 * to indicate that the device can be used again.
3048 *
3049 * Call under device_hotplug_lock.
3050 */
3051 int device_online(struct device *dev)
3052 {
3053 int ret = 0;
3054
3055 device_lock(dev);
3056 if (device_supports_offline(dev)) {
3057 if (dev->offline) {
3058 ret = dev->bus->online(dev);
3059 if (!ret) {
3060 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3061 dev->offline = false;
3062 }
3063 } else {
3064 ret = 1;
3065 }
3066 }
3067 device_unlock(dev);
3068
3069 return ret;
3070 }
3071
3072 struct root_device {
3073 struct device dev;
3074 struct module *owner;
3075 };
3076
3077 static inline struct root_device *to_root_device(struct device *d)
3078 {
3079 return container_of(d, struct root_device, dev);
3080 }
3081
3082 static void root_device_release(struct device *dev)
3083 {
3084 kfree(to_root_device(dev));
3085 }
3086
3087 /**
3088 * __root_device_register - allocate and register a root device
3089 * @name: root device name
3090 * @owner: owner module of the root device, usually THIS_MODULE
3091 *
3092 * This function allocates a root device and registers it
3093 * using device_register(). In order to free the returned
3094 * device, use root_device_unregister().
3095 *
3096 * Root devices are dummy devices which allow other devices
3097 * to be grouped under /sys/devices. Use this function to
3098 * allocate a root device and then use it as the parent of
3099 * any device which should appear under /sys/devices/{name}
3100 *
3101 * The /sys/devices/{name} directory will also contain a
3102 * 'module' symlink which points to the @owner directory
3103 * in sysfs.
3104 *
3105 * Returns &struct device pointer on success, or ERR_PTR() on error.
3106 *
3107 * Note: You probably want to use root_device_register().
3108 */
3109 struct device *__root_device_register(const char *name, struct module *owner)
3110 {
3111 struct root_device *root;
3112 int err = -ENOMEM;
3113
3114 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3115 if (!root)
3116 return ERR_PTR(err);
3117
3118 err = dev_set_name(&root->dev, "%s", name);
3119 if (err) {
3120 kfree(root);
3121 return ERR_PTR(err);
3122 }
3123
3124 root->dev.release = root_device_release;
3125
3126 err = device_register(&root->dev);
3127 if (err) {
3128 put_device(&root->dev);
3129 return ERR_PTR(err);
3130 }
3131
3132 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
3133 if (owner) {
3134 struct module_kobject *mk = &owner->mkobj;
3135
3136 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3137 if (err) {
3138 device_unregister(&root->dev);
3139 return ERR_PTR(err);
3140 }
3141 root->owner = owner;
3142 }
3143 #endif
3144
3145 return &root->dev;
3146 }
3147 EXPORT_SYMBOL_GPL(__root_device_register);
3148
3149 /**
3150 * root_device_unregister - unregister and free a root device
3151 * @dev: device going away
3152 *
3153 * This function unregisters and cleans up a device that was created by
3154 * root_device_register().
3155 */
3156 void root_device_unregister(struct device *dev)
3157 {
3158 struct root_device *root = to_root_device(dev);
3159
3160 if (root->owner)
3161 sysfs_remove_link(&root->dev.kobj, "module");
3162
3163 device_unregister(dev);
3164 }
3165 EXPORT_SYMBOL_GPL(root_device_unregister);
3166
3167
3168 static void device_create_release(struct device *dev)
3169 {
3170 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3171 kfree(dev);
3172 }
3173
3174 static __printf(6, 0) struct device *
3175 device_create_groups_vargs(struct class *class, struct device *parent,
3176 dev_t devt, void *drvdata,
3177 const struct attribute_group **groups,
3178 const char *fmt, va_list args)
3179 {
3180 struct device *dev = NULL;
3181 int retval = -ENODEV;
3182
3183 if (class == NULL || IS_ERR(class))
3184 goto error;
3185
3186 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3187 if (!dev) {
3188 retval = -ENOMEM;
3189 goto error;
3190 }
3191
3192 device_initialize(dev);
3193 dev->devt = devt;
3194 dev->class = class;
3195 dev->parent = parent;
3196 dev->groups = groups;
3197 dev->release = device_create_release;
3198 dev_set_drvdata(dev, drvdata);
3199
3200 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3201 if (retval)
3202 goto error;
3203
3204 retval = device_add(dev);
3205 if (retval)
3206 goto error;
3207
3208 return dev;
3209
3210 error:
3211 put_device(dev);
3212 return ERR_PTR(retval);
3213 }
3214
3215 /**
3216 * device_create_vargs - creates a device and registers it with sysfs
3217 * @class: pointer to the struct class that this device should be registered to
3218 * @parent: pointer to the parent struct device of this new device, if any
3219 * @devt: the dev_t for the char device to be added
3220 * @drvdata: the data to be added to the device for callbacks
3221 * @fmt: string for the device's name
3222 * @args: va_list for the device's name
3223 *
3224 * This function can be used by char device classes. A struct device
3225 * will be created in sysfs, registered to the specified class.
3226 *
3227 * A "dev" file will be created, showing the dev_t for the device, if
3228 * the dev_t is not 0,0.
3229 * If a pointer to a parent struct device is passed in, the newly created
3230 * struct device will be a child of that device in sysfs.
3231 * The pointer to the struct device will be returned from the call.
3232 * Any further sysfs files that might be required can be created using this
3233 * pointer.
3234 *
3235 * Returns &struct device pointer on success, or ERR_PTR() on error.
3236 *
3237 * Note: the struct class passed to this function must have previously
3238 * been created with a call to class_create().
3239 */
3240 struct device *device_create_vargs(struct class *class, struct device *parent,
3241 dev_t devt, void *drvdata, const char *fmt,
3242 va_list args)
3243 {
3244 return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3245 fmt, args);
3246 }
3247 EXPORT_SYMBOL_GPL(device_create_vargs);
3248
3249 /**
3250 * device_create - creates a device and registers it with sysfs
3251 * @class: pointer to the struct class that this device should be registered to
3252 * @parent: pointer to the parent struct device of this new device, if any
3253 * @devt: the dev_t for the char device to be added
3254 * @drvdata: the data to be added to the device for callbacks
3255 * @fmt: string for the device's name
3256 *
3257 * This function can be used by char device classes. A struct device
3258 * will be created in sysfs, registered to the specified class.
3259 *
3260 * A "dev" file will be created, showing the dev_t for the device, if
3261 * the dev_t is not 0,0.
3262 * If a pointer to a parent struct device is passed in, the newly created
3263 * struct device will be a child of that device in sysfs.
3264 * The pointer to the struct device will be returned from the call.
3265 * Any further sysfs files that might be required can be created using this
3266 * pointer.
3267 *
3268 * Returns &struct device pointer on success, or ERR_PTR() on error.
3269 *
3270 * Note: the struct class passed to this function must have previously
3271 * been created with a call to class_create().
3272 */
3273 struct device *device_create(struct class *class, struct device *parent,
3274 dev_t devt, void *drvdata, const char *fmt, ...)
3275 {
3276 va_list vargs;
3277 struct device *dev;
3278
3279 va_start(vargs, fmt);
3280 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
3281 va_end(vargs);
3282 return dev;
3283 }
3284 EXPORT_SYMBOL_GPL(device_create);
3285
3286 /**
3287 * device_create_with_groups - creates a device and registers it with sysfs
3288 * @class: pointer to the struct class that this device should be registered to
3289 * @parent: pointer to the parent struct device of this new device, if any
3290 * @devt: the dev_t for the char device to be added
3291 * @drvdata: the data to be added to the device for callbacks
3292 * @groups: NULL-terminated list of attribute groups to be created
3293 * @fmt: string for the device's name
3294 *
3295 * This function can be used by char device classes. A struct device
3296 * will be created in sysfs, registered to the specified class.
3297 * Additional attributes specified in the groups parameter will also
3298 * be created automatically.
3299 *
3300 * A "dev" file will be created, showing the dev_t for the device, if
3301 * the dev_t is not 0,0.
3302 * If a pointer to a parent struct device is passed in, the newly created
3303 * struct device will be a child of that device in sysfs.
3304 * The pointer to the struct device will be returned from the call.
3305 * Any further sysfs files that might be required can be created using this
3306 * pointer.
3307 *
3308 * Returns &struct device pointer on success, or ERR_PTR() on error.
3309 *
3310 * Note: the struct class passed to this function must have previously
3311 * been created with a call to class_create().
3312 */
3313 struct device *device_create_with_groups(struct class *class,
3314 struct device *parent, dev_t devt,
3315 void *drvdata,
3316 const struct attribute_group **groups,
3317 const char *fmt, ...)
3318 {
3319 va_list vargs;
3320 struct device *dev;
3321
3322 va_start(vargs, fmt);
3323 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3324 fmt, vargs);
3325 va_end(vargs);
3326 return dev;
3327 }
3328 EXPORT_SYMBOL_GPL(device_create_with_groups);
3329
3330 /**
3331 * device_destroy - removes a device that was created with device_create()
3332 * @class: pointer to the struct class that this device was registered with
3333 * @devt: the dev_t of the device that was previously registered
3334 *
3335 * This call unregisters and cleans up a device that was created with a
3336 * call to device_create().
3337 */
3338 void device_destroy(struct class *class, dev_t devt)
3339 {
3340 struct device *dev;
3341
3342 dev = class_find_device_by_devt(class, devt);
3343 if (dev) {
3344 put_device(dev);
3345 device_unregister(dev);
3346 }
3347 }
3348 EXPORT_SYMBOL_GPL(device_destroy);
3349
3350 /**
3351 * device_rename - renames a device
3352 * @dev: the pointer to the struct device to be renamed
3353 * @new_name: the new name of the device
3354 *
3355 * It is the responsibility of the caller to provide mutual
3356 * exclusion between two different calls of device_rename
3357 * on the same device to ensure that new_name is valid and
3358 * won't conflict with other devices.
3359 *
3360 * Note: Don't call this function. Currently, the networking layer calls this
3361 * function, but that will change. The following text from Kay Sievers offers
3362 * some insight:
3363 *
3364 * Renaming devices is racy at many levels, symlinks and other stuff are not
3365 * replaced atomically, and you get a "move" uevent, but it's not easy to
3366 * connect the event to the old and new device. Device nodes are not renamed at
3367 * all, there isn't even support for that in the kernel now.
3368 *
3369 * In the meantime, during renaming, your target name might be taken by another
3370 * driver, creating conflicts. Or the old name is taken directly after you
3371 * renamed it -- then you get events for the same DEVPATH, before you even see
3372 * the "move" event. It's just a mess, and nothing new should ever rely on
3373 * kernel device renaming. Besides that, it's not even implemented now for
3374 * other things than (driver-core wise very simple) network devices.
3375 *
3376 * We are currently about to change network renaming in udev to completely
3377 * disallow renaming of devices in the same namespace as the kernel uses,
3378 * because we can't solve the problems properly, that arise with swapping names
3379 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3380 * be allowed to some other name than eth[0-9]*, for the aforementioned
3381 * reasons.
3382 *
3383 * Make up a "real" name in the driver before you register anything, or add
3384 * some other attributes for userspace to find the device, or use udev to add
3385 * symlinks -- but never rename kernel devices later, it's a complete mess. We
3386 * don't even want to get into that and try to implement the missing pieces in
3387 * the core. We really have other pieces to fix in the driver core mess. :)
3388 */
3389 int device_rename(struct device *dev, const char *new_name)
3390 {
3391 struct kobject *kobj = &dev->kobj;
3392 char *old_device_name = NULL;
3393 int error;
3394
3395 dev = get_device(dev);
3396 if (!dev)
3397 return -EINVAL;
3398
3399 dev_dbg(dev, "renaming to %s\n", new_name);
3400
3401 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3402 if (!old_device_name) {
3403 error = -ENOMEM;
3404 goto out;
3405 }
3406
3407 if (dev->class) {
3408 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3409 kobj, old_device_name,
3410 new_name, kobject_namespace(kobj));
3411 if (error)
3412 goto out;
3413 }
3414
3415 error = kobject_rename(kobj, new_name);
3416 if (error)
3417 goto out;
3418
3419 out:
3420 put_device(dev);
3421
3422 kfree(old_device_name);
3423
3424 return error;
3425 }
3426 EXPORT_SYMBOL_GPL(device_rename);
3427
3428 static int device_move_class_links(struct device *dev,
3429 struct device *old_parent,
3430 struct device *new_parent)
3431 {
3432 int error = 0;
3433
3434 if (old_parent)
3435 sysfs_remove_link(&dev->kobj, "device");
3436 if (new_parent)
3437 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3438 "device");
3439 return error;
3440 }
3441
3442 /**
3443 * device_move - moves a device to a new parent
3444 * @dev: the pointer to the struct device to be moved
3445 * @new_parent: the new parent of the device (can be NULL)
3446 * @dpm_order: how to reorder the dpm_list
3447 */
3448 int device_move(struct device *dev, struct device *new_parent,
3449 enum dpm_order dpm_order)
3450 {
3451 int error;
3452 struct device *old_parent;
3453 struct kobject *new_parent_kobj;
3454
3455 dev = get_device(dev);
3456 if (!dev)
3457 return -EINVAL;
3458
3459 device_pm_lock();
3460 new_parent = get_device(new_parent);
3461 new_parent_kobj = get_device_parent(dev, new_parent);
3462 if (IS_ERR(new_parent_kobj)) {
3463 error = PTR_ERR(new_parent_kobj);
3464 put_device(new_parent);
3465 goto out;
3466 }
3467
3468 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3469 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3470 error = kobject_move(&dev->kobj, new_parent_kobj);
3471 if (error) {
3472 cleanup_glue_dir(dev, new_parent_kobj);
3473 put_device(new_parent);
3474 goto out;
3475 }
3476 old_parent = dev->parent;
3477 dev->parent = new_parent;
3478 if (old_parent)
3479 klist_remove(&dev->p->knode_parent);
3480 if (new_parent) {
3481 klist_add_tail(&dev->p->knode_parent,
3482 &new_parent->p->klist_children);
3483 set_dev_node(dev, dev_to_node(new_parent));
3484 }
3485
3486 if (dev->class) {
3487 error = device_move_class_links(dev, old_parent, new_parent);
3488 if (error) {
3489 /* We ignore errors on cleanup since we're hosed anyway... */
3490 device_move_class_links(dev, new_parent, old_parent);
3491 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3492 if (new_parent)
3493 klist_remove(&dev->p->knode_parent);
3494 dev->parent = old_parent;
3495 if (old_parent) {
3496 klist_add_tail(&dev->p->knode_parent,
3497 &old_parent->p->klist_children);
3498 set_dev_node(dev, dev_to_node(old_parent));
3499 }
3500 }
3501 cleanup_glue_dir(dev, new_parent_kobj);
3502 put_device(new_parent);
3503 goto out;
3504 }
3505 }
3506 switch (dpm_order) {
3507 case DPM_ORDER_NONE:
3508 break;
3509 case DPM_ORDER_DEV_AFTER_PARENT:
3510 device_pm_move_after(dev, new_parent);
3511 devices_kset_move_after(dev, new_parent);
3512 break;
3513 case DPM_ORDER_PARENT_BEFORE_DEV:
3514 device_pm_move_before(new_parent, dev);
3515 devices_kset_move_before(new_parent, dev);
3516 break;
3517 case DPM_ORDER_DEV_LAST:
3518 device_pm_move_last(dev);
3519 devices_kset_move_last(dev);
3520 break;
3521 }
3522
3523 put_device(old_parent);
3524 out:
3525 device_pm_unlock();
3526 put_device(dev);
3527 return error;
3528 }
3529 EXPORT_SYMBOL_GPL(device_move);
3530
3531 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
3532 kgid_t kgid)
3533 {
3534 struct kobject *kobj = &dev->kobj;
3535 struct class *class = dev->class;
3536 const struct device_type *type = dev->type;
3537 int error;
3538
3539 if (class) {
3540 /*
3541 * Change the device groups of the device class for @dev to
3542 * @kuid/@kgid.
3543 */
3544 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
3545 kgid);
3546 if (error)
3547 return error;
3548 }
3549
3550 if (type) {
3551 /*
3552 * Change the device groups of the device type for @dev to
3553 * @kuid/@kgid.
3554 */
3555 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
3556 kgid);
3557 if (error)
3558 return error;
3559 }
3560
3561 /* Change the device groups of @dev to @kuid/@kgid. */
3562 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
3563 if (error)
3564 return error;
3565
3566 if (device_supports_offline(dev) && !dev->offline_disabled) {
3567 /* Change online device attributes of @dev to @kuid/@kgid. */
3568 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
3569 kuid, kgid);
3570 if (error)
3571 return error;
3572 }
3573
3574 return 0;
3575 }
3576
3577 /**
3578 * device_change_owner - change the owner of an existing device.
3579 * @dev: device.
3580 * @kuid: new owner's kuid
3581 * @kgid: new owner's kgid
3582 *
3583 * This changes the owner of @dev and its corresponding sysfs entries to
3584 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
3585 * core.
3586 *
3587 * Returns 0 on success or error code on failure.
3588 */
3589 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
3590 {
3591 int error;
3592 struct kobject *kobj = &dev->kobj;
3593
3594 dev = get_device(dev);
3595 if (!dev)
3596 return -EINVAL;
3597
3598 /*
3599 * Change the kobject and the default attributes and groups of the
3600 * ktype associated with it to @kuid/@kgid.
3601 */
3602 error = sysfs_change_owner(kobj, kuid, kgid);
3603 if (error)
3604 goto out;
3605
3606 /*
3607 * Change the uevent file for @dev to the new owner. The uevent file
3608 * was created in a separate step when @dev got added and we mirror
3609 * that step here.
3610 */
3611 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
3612 kgid);
3613 if (error)
3614 goto out;
3615
3616 /*
3617 * Change the device groups, the device groups associated with the
3618 * device class, and the groups associated with the device type of @dev
3619 * to @kuid/@kgid.
3620 */
3621 error = device_attrs_change_owner(dev, kuid, kgid);
3622 if (error)
3623 goto out;
3624
3625 error = dpm_sysfs_change_owner(dev, kuid, kgid);
3626 if (error)
3627 goto out;
3628
3629 #ifdef CONFIG_BLOCK
3630 if (sysfs_deprecated && dev->class == &block_class)
3631 goto out;
3632 #endif
3633
3634 /*
3635 * Change the owner of the symlink located in the class directory of
3636 * the device class associated with @dev which points to the actual
3637 * directory entry for @dev to @kuid/@kgid. This ensures that the
3638 * symlink shows the same permissions as its target.
3639 */
3640 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
3641 dev_name(dev), kuid, kgid);
3642 if (error)
3643 goto out;
3644
3645 out:
3646 put_device(dev);
3647 return error;
3648 }
3649 EXPORT_SYMBOL_GPL(device_change_owner);
3650
3651 /**
3652 * device_shutdown - call ->shutdown() on each device to shutdown.
3653 */
3654 void device_shutdown(void)
3655 {
3656 struct device *dev, *parent;
3657
3658 wait_for_device_probe();
3659 device_block_probing();
3660
3661 cpufreq_suspend();
3662
3663 spin_lock(&devices_kset->list_lock);
3664 /*
3665 * Walk the devices list backward, shutting down each in turn.
3666 * Beware that device unplug events may also start pulling
3667 * devices offline, even as the system is shutting down.
3668 */
3669 while (!list_empty(&devices_kset->list)) {
3670 dev = list_entry(devices_kset->list.prev, struct device,
3671 kobj.entry);
3672
3673 /*
3674 * hold reference count of device's parent to
3675 * prevent it from being freed because parent's
3676 * lock is to be held
3677 */
3678 parent = get_device(dev->parent);
3679 get_device(dev);
3680 /*
3681 * Make sure the device is off the kset list, in the
3682 * event that dev->*->shutdown() doesn't remove it.
3683 */
3684 list_del_init(&dev->kobj.entry);
3685 spin_unlock(&devices_kset->list_lock);
3686
3687 /* hold lock to avoid race with probe/release */
3688 if (parent)
3689 device_lock(parent);
3690 device_lock(dev);
3691
3692 /* Don't allow any more runtime suspends */
3693 pm_runtime_get_noresume(dev);
3694 pm_runtime_barrier(dev);
3695
3696 if (dev->class && dev->class->shutdown_pre) {
3697 if (initcall_debug)
3698 dev_info(dev, "shutdown_pre\n");
3699 dev->class->shutdown_pre(dev);
3700 }
3701 if (dev->bus && dev->bus->shutdown) {
3702 if (initcall_debug)
3703 dev_info(dev, "shutdown\n");
3704 dev->bus->shutdown(dev);
3705 } else if (dev->driver && dev->driver->shutdown) {
3706 if (initcall_debug)
3707 dev_info(dev, "shutdown\n");
3708 dev->driver->shutdown(dev);
3709 }
3710
3711 device_unlock(dev);
3712 if (parent)
3713 device_unlock(parent);
3714
3715 put_device(dev);
3716 put_device(parent);
3717
3718 spin_lock(&devices_kset->list_lock);
3719 }
3720 spin_unlock(&devices_kset->list_lock);
3721 }
3722
3723 /*
3724 * Device logging functions
3725 */
3726
3727 #ifdef CONFIG_PRINTK
3728 static int
3729 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
3730 {
3731 const char *subsys;
3732 size_t pos = 0;
3733
3734 if (dev->class)
3735 subsys = dev->class->name;
3736 else if (dev->bus)
3737 subsys = dev->bus->name;
3738 else
3739 return 0;
3740
3741 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
3742 if (pos >= hdrlen)
3743 goto overflow;
3744
3745 /*
3746 * Add device identifier DEVICE=:
3747 * b12:8 block dev_t
3748 * c127:3 char dev_t
3749 * n8 netdev ifindex
3750 * +sound:card0 subsystem:devname
3751 */
3752 if (MAJOR(dev->devt)) {
3753 char c;
3754
3755 if (strcmp(subsys, "block") == 0)
3756 c = 'b';
3757 else
3758 c = 'c';
3759 pos++;
3760 pos += snprintf(hdr + pos, hdrlen - pos,
3761 "DEVICE=%c%u:%u",
3762 c, MAJOR(dev->devt), MINOR(dev->devt));
3763 } else if (strcmp(subsys, "net") == 0) {
3764 struct net_device *net = to_net_dev(dev);
3765
3766 pos++;
3767 pos += snprintf(hdr + pos, hdrlen - pos,
3768 "DEVICE=n%u", net->ifindex);
3769 } else {
3770 pos++;
3771 pos += snprintf(hdr + pos, hdrlen - pos,
3772 "DEVICE=+%s:%s", subsys, dev_name(dev));
3773 }
3774
3775 if (pos >= hdrlen)
3776 goto overflow;
3777
3778 return pos;
3779
3780 overflow:
3781 dev_WARN(dev, "device/subsystem name too long");
3782 return 0;
3783 }
3784
3785 int dev_vprintk_emit(int level, const struct device *dev,
3786 const char *fmt, va_list args)
3787 {
3788 char hdr[128];
3789 size_t hdrlen;
3790
3791 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
3792
3793 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
3794 }
3795 EXPORT_SYMBOL(dev_vprintk_emit);
3796
3797 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
3798 {
3799 va_list args;
3800 int r;
3801
3802 va_start(args, fmt);
3803
3804 r = dev_vprintk_emit(level, dev, fmt, args);
3805
3806 va_end(args);
3807
3808 return r;
3809 }
3810 EXPORT_SYMBOL(dev_printk_emit);
3811
3812 static void __dev_printk(const char *level, const struct device *dev,
3813 struct va_format *vaf)
3814 {
3815 if (dev)
3816 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
3817 dev_driver_string(dev), dev_name(dev), vaf);
3818 else
3819 printk("%s(NULL device *): %pV", level, vaf);
3820 }
3821
3822 void dev_printk(const char *level, const struct device *dev,
3823 const char *fmt, ...)
3824 {
3825 struct va_format vaf;
3826 va_list args;
3827
3828 va_start(args, fmt);
3829
3830 vaf.fmt = fmt;
3831 vaf.va = &args;
3832
3833 __dev_printk(level, dev, &vaf);
3834
3835 va_end(args);
3836 }
3837 EXPORT_SYMBOL(dev_printk);
3838
3839 #define define_dev_printk_level(func, kern_level) \
3840 void func(const struct device *dev, const char *fmt, ...) \
3841 { \
3842 struct va_format vaf; \
3843 va_list args; \
3844 \
3845 va_start(args, fmt); \
3846 \
3847 vaf.fmt = fmt; \
3848 vaf.va = &args; \
3849 \
3850 __dev_printk(kern_level, dev, &vaf); \
3851 \
3852 va_end(args); \
3853 } \
3854 EXPORT_SYMBOL(func);
3855
3856 define_dev_printk_level(_dev_emerg, KERN_EMERG);
3857 define_dev_printk_level(_dev_alert, KERN_ALERT);
3858 define_dev_printk_level(_dev_crit, KERN_CRIT);
3859 define_dev_printk_level(_dev_err, KERN_ERR);
3860 define_dev_printk_level(_dev_warn, KERN_WARNING);
3861 define_dev_printk_level(_dev_notice, KERN_NOTICE);
3862 define_dev_printk_level(_dev_info, KERN_INFO);
3863
3864 #endif
3865
3866 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3867 {
3868 return fwnode && !IS_ERR(fwnode->secondary);
3869 }
3870
3871 /**
3872 * set_primary_fwnode - Change the primary firmware node of a given device.
3873 * @dev: Device to handle.
3874 * @fwnode: New primary firmware node of the device.
3875 *
3876 * Set the device's firmware node pointer to @fwnode, but if a secondary
3877 * firmware node of the device is present, preserve it.
3878 */
3879 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3880 {
3881 if (fwnode) {
3882 struct fwnode_handle *fn = dev->fwnode;
3883
3884 if (fwnode_is_primary(fn))
3885 fn = fn->secondary;
3886
3887 if (fn) {
3888 WARN_ON(fwnode->secondary);
3889 fwnode->secondary = fn;
3890 }
3891 dev->fwnode = fwnode;
3892 } else {
3893 dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3894 dev->fwnode->secondary : NULL;
3895 }
3896 }
3897 EXPORT_SYMBOL_GPL(set_primary_fwnode);
3898
3899 /**
3900 * set_secondary_fwnode - Change the secondary firmware node of a given device.
3901 * @dev: Device to handle.
3902 * @fwnode: New secondary firmware node of the device.
3903 *
3904 * If a primary firmware node of the device is present, set its secondary
3905 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
3906 * @fwnode.
3907 */
3908 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3909 {
3910 if (fwnode)
3911 fwnode->secondary = ERR_PTR(-ENODEV);
3912
3913 if (fwnode_is_primary(dev->fwnode))
3914 dev->fwnode->secondary = fwnode;
3915 else
3916 dev->fwnode = fwnode;
3917 }
3918
3919 /**
3920 * device_set_of_node_from_dev - reuse device-tree node of another device
3921 * @dev: device whose device-tree node is being set
3922 * @dev2: device whose device-tree node is being reused
3923 *
3924 * Takes another reference to the new device-tree node after first dropping
3925 * any reference held to the old node.
3926 */
3927 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3928 {
3929 of_node_put(dev->of_node);
3930 dev->of_node = of_node_get(dev2->of_node);
3931 dev->of_node_reused = true;
3932 }
3933 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
3934
3935 int device_match_name(struct device *dev, const void *name)
3936 {
3937 return sysfs_streq(dev_name(dev), name);
3938 }
3939 EXPORT_SYMBOL_GPL(device_match_name);
3940
3941 int device_match_of_node(struct device *dev, const void *np)
3942 {
3943 return dev->of_node == np;
3944 }
3945 EXPORT_SYMBOL_GPL(device_match_of_node);
3946
3947 int device_match_fwnode(struct device *dev, const void *fwnode)
3948 {
3949 return dev_fwnode(dev) == fwnode;
3950 }
3951 EXPORT_SYMBOL_GPL(device_match_fwnode);
3952
3953 int device_match_devt(struct device *dev, const void *pdevt)
3954 {
3955 return dev->devt == *(dev_t *)pdevt;
3956 }
3957 EXPORT_SYMBOL_GPL(device_match_devt);
3958
3959 int device_match_acpi_dev(struct device *dev, const void *adev)
3960 {
3961 return ACPI_COMPANION(dev) == adev;
3962 }
3963 EXPORT_SYMBOL(device_match_acpi_dev);
3964
3965 int device_match_any(struct device *dev, const void *unused)
3966 {
3967 return 1;
3968 }
3969 EXPORT_SYMBOL_GPL(device_match_any);