]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/block/drbd/drbd_main.c
Merge tag 'sound-5.3-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[thirdparty/linux.git] / drivers / block / drbd / drbd_main.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 drbd.c
4
5 This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6
7 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10
11 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
12 from Logicworks, Inc. for making SDP replication support possible.
13
14
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/module.h>
20 #include <linux/jiffies.h>
21 #include <linux/drbd.h>
22 #include <linux/uaccess.h>
23 #include <asm/types.h>
24 #include <net/sock.h>
25 #include <linux/ctype.h>
26 #include <linux/mutex.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/proc_fs.h>
30 #include <linux/init.h>
31 #include <linux/mm.h>
32 #include <linux/memcontrol.h>
33 #include <linux/mm_inline.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/reboot.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/workqueue.h>
40 #define __KERNEL_SYSCALLS__
41 #include <linux/unistd.h>
42 #include <linux/vmalloc.h>
43 #include <linux/sched/signal.h>
44
45 #include <linux/drbd_limits.h>
46 #include "drbd_int.h"
47 #include "drbd_protocol.h"
48 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
49 #include "drbd_vli.h"
50 #include "drbd_debugfs.h"
51
52 static DEFINE_MUTEX(drbd_main_mutex);
53 static int drbd_open(struct block_device *bdev, fmode_t mode);
54 static void drbd_release(struct gendisk *gd, fmode_t mode);
55 static void md_sync_timer_fn(struct timer_list *t);
56 static int w_bitmap_io(struct drbd_work *w, int unused);
57
58 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
59 "Lars Ellenberg <lars@linbit.com>");
60 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
61 MODULE_VERSION(REL_VERSION);
62 MODULE_LICENSE("GPL");
63 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
64 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
65 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
66
67 #include <linux/moduleparam.h>
68 /* thanks to these macros, if compiled into the kernel (not-module),
69 * these become boot parameters (e.g., drbd.minor_count) */
70
71 #ifdef CONFIG_DRBD_FAULT_INJECTION
72 int drbd_enable_faults;
73 int drbd_fault_rate;
74 static int drbd_fault_count;
75 static int drbd_fault_devs;
76 /* bitmap of enabled faults */
77 module_param_named(enable_faults, drbd_enable_faults, int, 0664);
78 /* fault rate % value - applies to all enabled faults */
79 module_param_named(fault_rate, drbd_fault_rate, int, 0664);
80 /* count of faults inserted */
81 module_param_named(fault_count, drbd_fault_count, int, 0664);
82 /* bitmap of devices to insert faults on */
83 module_param_named(fault_devs, drbd_fault_devs, int, 0644);
84 #endif
85
86 /* module parameters we can keep static */
87 static bool drbd_allow_oos; /* allow_open_on_secondary */
88 static bool drbd_disable_sendpage;
89 MODULE_PARM_DESC(allow_oos, "DONT USE!");
90 module_param_named(allow_oos, drbd_allow_oos, bool, 0);
91 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644);
92
93 /* module parameters we share */
94 int drbd_proc_details; /* Detail level in proc drbd*/
95 module_param_named(proc_details, drbd_proc_details, int, 0644);
96 /* module parameters shared with defaults */
97 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF;
98 /* Module parameter for setting the user mode helper program
99 * to run. Default is /sbin/drbdadm */
100 char drbd_usermode_helper[80] = "/sbin/drbdadm";
101 module_param_named(minor_count, drbd_minor_count, uint, 0444);
102 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644);
103
104 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
105 * as member "struct gendisk *vdisk;"
106 */
107 struct idr drbd_devices;
108 struct list_head drbd_resources;
109 struct mutex resources_mutex;
110
111 struct kmem_cache *drbd_request_cache;
112 struct kmem_cache *drbd_ee_cache; /* peer requests */
113 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */
114 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */
115 mempool_t drbd_request_mempool;
116 mempool_t drbd_ee_mempool;
117 mempool_t drbd_md_io_page_pool;
118 struct bio_set drbd_md_io_bio_set;
119 struct bio_set drbd_io_bio_set;
120
121 /* I do not use a standard mempool, because:
122 1) I want to hand out the pre-allocated objects first.
123 2) I want to be able to interrupt sleeping allocation with a signal.
124 Note: This is a single linked list, the next pointer is the private
125 member of struct page.
126 */
127 struct page *drbd_pp_pool;
128 spinlock_t drbd_pp_lock;
129 int drbd_pp_vacant;
130 wait_queue_head_t drbd_pp_wait;
131
132 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
133
134 static const struct block_device_operations drbd_ops = {
135 .owner = THIS_MODULE,
136 .open = drbd_open,
137 .release = drbd_release,
138 };
139
140 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
141 {
142 struct bio *bio;
143
144 if (!bioset_initialized(&drbd_md_io_bio_set))
145 return bio_alloc(gfp_mask, 1);
146
147 bio = bio_alloc_bioset(gfp_mask, 1, &drbd_md_io_bio_set);
148 if (!bio)
149 return NULL;
150 return bio;
151 }
152
153 #ifdef __CHECKER__
154 /* When checking with sparse, and this is an inline function, sparse will
155 give tons of false positives. When this is a real functions sparse works.
156 */
157 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
158 {
159 int io_allowed;
160
161 atomic_inc(&device->local_cnt);
162 io_allowed = (device->state.disk >= mins);
163 if (!io_allowed) {
164 if (atomic_dec_and_test(&device->local_cnt))
165 wake_up(&device->misc_wait);
166 }
167 return io_allowed;
168 }
169
170 #endif
171
172 /**
173 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
174 * @connection: DRBD connection.
175 * @barrier_nr: Expected identifier of the DRBD write barrier packet.
176 * @set_size: Expected number of requests before that barrier.
177 *
178 * In case the passed barrier_nr or set_size does not match the oldest
179 * epoch of not yet barrier-acked requests, this function will cause a
180 * termination of the connection.
181 */
182 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
183 unsigned int set_size)
184 {
185 struct drbd_request *r;
186 struct drbd_request *req = NULL;
187 int expect_epoch = 0;
188 int expect_size = 0;
189
190 spin_lock_irq(&connection->resource->req_lock);
191
192 /* find oldest not yet barrier-acked write request,
193 * count writes in its epoch. */
194 list_for_each_entry(r, &connection->transfer_log, tl_requests) {
195 const unsigned s = r->rq_state;
196 if (!req) {
197 if (!(s & RQ_WRITE))
198 continue;
199 if (!(s & RQ_NET_MASK))
200 continue;
201 if (s & RQ_NET_DONE)
202 continue;
203 req = r;
204 expect_epoch = req->epoch;
205 expect_size ++;
206 } else {
207 if (r->epoch != expect_epoch)
208 break;
209 if (!(s & RQ_WRITE))
210 continue;
211 /* if (s & RQ_DONE): not expected */
212 /* if (!(s & RQ_NET_MASK)): not expected */
213 expect_size++;
214 }
215 }
216
217 /* first some paranoia code */
218 if (req == NULL) {
219 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
220 barrier_nr);
221 goto bail;
222 }
223 if (expect_epoch != barrier_nr) {
224 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
225 barrier_nr, expect_epoch);
226 goto bail;
227 }
228
229 if (expect_size != set_size) {
230 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
231 barrier_nr, set_size, expect_size);
232 goto bail;
233 }
234
235 /* Clean up list of requests processed during current epoch. */
236 /* this extra list walk restart is paranoia,
237 * to catch requests being barrier-acked "unexpectedly".
238 * It usually should find the same req again, or some READ preceding it. */
239 list_for_each_entry(req, &connection->transfer_log, tl_requests)
240 if (req->epoch == expect_epoch)
241 break;
242 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
243 if (req->epoch != expect_epoch)
244 break;
245 _req_mod(req, BARRIER_ACKED);
246 }
247 spin_unlock_irq(&connection->resource->req_lock);
248
249 return;
250
251 bail:
252 spin_unlock_irq(&connection->resource->req_lock);
253 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
254 }
255
256
257 /**
258 * _tl_restart() - Walks the transfer log, and applies an action to all requests
259 * @connection: DRBD connection to operate on.
260 * @what: The action/event to perform with all request objects
261 *
262 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
263 * RESTART_FROZEN_DISK_IO.
264 */
265 /* must hold resource->req_lock */
266 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
267 {
268 struct drbd_request *req, *r;
269
270 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests)
271 _req_mod(req, what);
272 }
273
274 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
275 {
276 spin_lock_irq(&connection->resource->req_lock);
277 _tl_restart(connection, what);
278 spin_unlock_irq(&connection->resource->req_lock);
279 }
280
281 /**
282 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
283 * @device: DRBD device.
284 *
285 * This is called after the connection to the peer was lost. The storage covered
286 * by the requests on the transfer gets marked as our of sync. Called from the
287 * receiver thread and the worker thread.
288 */
289 void tl_clear(struct drbd_connection *connection)
290 {
291 tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
292 }
293
294 /**
295 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
296 * @device: DRBD device.
297 */
298 void tl_abort_disk_io(struct drbd_device *device)
299 {
300 struct drbd_connection *connection = first_peer_device(device)->connection;
301 struct drbd_request *req, *r;
302
303 spin_lock_irq(&connection->resource->req_lock);
304 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
305 if (!(req->rq_state & RQ_LOCAL_PENDING))
306 continue;
307 if (req->device != device)
308 continue;
309 _req_mod(req, ABORT_DISK_IO);
310 }
311 spin_unlock_irq(&connection->resource->req_lock);
312 }
313
314 static int drbd_thread_setup(void *arg)
315 {
316 struct drbd_thread *thi = (struct drbd_thread *) arg;
317 struct drbd_resource *resource = thi->resource;
318 unsigned long flags;
319 int retval;
320
321 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
322 thi->name[0],
323 resource->name);
324
325 restart:
326 retval = thi->function(thi);
327
328 spin_lock_irqsave(&thi->t_lock, flags);
329
330 /* if the receiver has been "EXITING", the last thing it did
331 * was set the conn state to "StandAlone",
332 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
333 * and receiver thread will be "started".
334 * drbd_thread_start needs to set "RESTARTING" in that case.
335 * t_state check and assignment needs to be within the same spinlock,
336 * so either thread_start sees EXITING, and can remap to RESTARTING,
337 * or thread_start see NONE, and can proceed as normal.
338 */
339
340 if (thi->t_state == RESTARTING) {
341 drbd_info(resource, "Restarting %s thread\n", thi->name);
342 thi->t_state = RUNNING;
343 spin_unlock_irqrestore(&thi->t_lock, flags);
344 goto restart;
345 }
346
347 thi->task = NULL;
348 thi->t_state = NONE;
349 smp_mb();
350 complete_all(&thi->stop);
351 spin_unlock_irqrestore(&thi->t_lock, flags);
352
353 drbd_info(resource, "Terminating %s\n", current->comm);
354
355 /* Release mod reference taken when thread was started */
356
357 if (thi->connection)
358 kref_put(&thi->connection->kref, drbd_destroy_connection);
359 kref_put(&resource->kref, drbd_destroy_resource);
360 module_put(THIS_MODULE);
361 return retval;
362 }
363
364 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
365 int (*func) (struct drbd_thread *), const char *name)
366 {
367 spin_lock_init(&thi->t_lock);
368 thi->task = NULL;
369 thi->t_state = NONE;
370 thi->function = func;
371 thi->resource = resource;
372 thi->connection = NULL;
373 thi->name = name;
374 }
375
376 int drbd_thread_start(struct drbd_thread *thi)
377 {
378 struct drbd_resource *resource = thi->resource;
379 struct task_struct *nt;
380 unsigned long flags;
381
382 /* is used from state engine doing drbd_thread_stop_nowait,
383 * while holding the req lock irqsave */
384 spin_lock_irqsave(&thi->t_lock, flags);
385
386 switch (thi->t_state) {
387 case NONE:
388 drbd_info(resource, "Starting %s thread (from %s [%d])\n",
389 thi->name, current->comm, current->pid);
390
391 /* Get ref on module for thread - this is released when thread exits */
392 if (!try_module_get(THIS_MODULE)) {
393 drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
394 spin_unlock_irqrestore(&thi->t_lock, flags);
395 return false;
396 }
397
398 kref_get(&resource->kref);
399 if (thi->connection)
400 kref_get(&thi->connection->kref);
401
402 init_completion(&thi->stop);
403 thi->reset_cpu_mask = 1;
404 thi->t_state = RUNNING;
405 spin_unlock_irqrestore(&thi->t_lock, flags);
406 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
407
408 nt = kthread_create(drbd_thread_setup, (void *) thi,
409 "drbd_%c_%s", thi->name[0], thi->resource->name);
410
411 if (IS_ERR(nt)) {
412 drbd_err(resource, "Couldn't start thread\n");
413
414 if (thi->connection)
415 kref_put(&thi->connection->kref, drbd_destroy_connection);
416 kref_put(&resource->kref, drbd_destroy_resource);
417 module_put(THIS_MODULE);
418 return false;
419 }
420 spin_lock_irqsave(&thi->t_lock, flags);
421 thi->task = nt;
422 thi->t_state = RUNNING;
423 spin_unlock_irqrestore(&thi->t_lock, flags);
424 wake_up_process(nt);
425 break;
426 case EXITING:
427 thi->t_state = RESTARTING;
428 drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
429 thi->name, current->comm, current->pid);
430 /* fall through */
431 case RUNNING:
432 case RESTARTING:
433 default:
434 spin_unlock_irqrestore(&thi->t_lock, flags);
435 break;
436 }
437
438 return true;
439 }
440
441
442 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
443 {
444 unsigned long flags;
445
446 enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
447
448 /* may be called from state engine, holding the req lock irqsave */
449 spin_lock_irqsave(&thi->t_lock, flags);
450
451 if (thi->t_state == NONE) {
452 spin_unlock_irqrestore(&thi->t_lock, flags);
453 if (restart)
454 drbd_thread_start(thi);
455 return;
456 }
457
458 if (thi->t_state != ns) {
459 if (thi->task == NULL) {
460 spin_unlock_irqrestore(&thi->t_lock, flags);
461 return;
462 }
463
464 thi->t_state = ns;
465 smp_mb();
466 init_completion(&thi->stop);
467 if (thi->task != current)
468 send_sig(DRBD_SIGKILL, thi->task, 1);
469 }
470
471 spin_unlock_irqrestore(&thi->t_lock, flags);
472
473 if (wait)
474 wait_for_completion(&thi->stop);
475 }
476
477 int conn_lowest_minor(struct drbd_connection *connection)
478 {
479 struct drbd_peer_device *peer_device;
480 int vnr = 0, minor = -1;
481
482 rcu_read_lock();
483 peer_device = idr_get_next(&connection->peer_devices, &vnr);
484 if (peer_device)
485 minor = device_to_minor(peer_device->device);
486 rcu_read_unlock();
487
488 return minor;
489 }
490
491 #ifdef CONFIG_SMP
492 /**
493 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
494 *
495 * Forces all threads of a resource onto the same CPU. This is beneficial for
496 * DRBD's performance. May be overwritten by user's configuration.
497 */
498 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
499 {
500 unsigned int *resources_per_cpu, min_index = ~0;
501
502 resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu),
503 GFP_KERNEL);
504 if (resources_per_cpu) {
505 struct drbd_resource *resource;
506 unsigned int cpu, min = ~0;
507
508 rcu_read_lock();
509 for_each_resource_rcu(resource, &drbd_resources) {
510 for_each_cpu(cpu, resource->cpu_mask)
511 resources_per_cpu[cpu]++;
512 }
513 rcu_read_unlock();
514 for_each_online_cpu(cpu) {
515 if (resources_per_cpu[cpu] < min) {
516 min = resources_per_cpu[cpu];
517 min_index = cpu;
518 }
519 }
520 kfree(resources_per_cpu);
521 }
522 if (min_index == ~0) {
523 cpumask_setall(*cpu_mask);
524 return;
525 }
526 cpumask_set_cpu(min_index, *cpu_mask);
527 }
528
529 /**
530 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
531 * @device: DRBD device.
532 * @thi: drbd_thread object
533 *
534 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
535 * prematurely.
536 */
537 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
538 {
539 struct drbd_resource *resource = thi->resource;
540 struct task_struct *p = current;
541
542 if (!thi->reset_cpu_mask)
543 return;
544 thi->reset_cpu_mask = 0;
545 set_cpus_allowed_ptr(p, resource->cpu_mask);
546 }
547 #else
548 #define drbd_calc_cpu_mask(A) ({})
549 #endif
550
551 /**
552 * drbd_header_size - size of a packet header
553 *
554 * The header size is a multiple of 8, so any payload following the header is
555 * word aligned on 64-bit architectures. (The bitmap send and receive code
556 * relies on this.)
557 */
558 unsigned int drbd_header_size(struct drbd_connection *connection)
559 {
560 if (connection->agreed_pro_version >= 100) {
561 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
562 return sizeof(struct p_header100);
563 } else {
564 BUILD_BUG_ON(sizeof(struct p_header80) !=
565 sizeof(struct p_header95));
566 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
567 return sizeof(struct p_header80);
568 }
569 }
570
571 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
572 {
573 h->magic = cpu_to_be32(DRBD_MAGIC);
574 h->command = cpu_to_be16(cmd);
575 h->length = cpu_to_be16(size);
576 return sizeof(struct p_header80);
577 }
578
579 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
580 {
581 h->magic = cpu_to_be16(DRBD_MAGIC_BIG);
582 h->command = cpu_to_be16(cmd);
583 h->length = cpu_to_be32(size);
584 return sizeof(struct p_header95);
585 }
586
587 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
588 int size, int vnr)
589 {
590 h->magic = cpu_to_be32(DRBD_MAGIC_100);
591 h->volume = cpu_to_be16(vnr);
592 h->command = cpu_to_be16(cmd);
593 h->length = cpu_to_be32(size);
594 h->pad = 0;
595 return sizeof(struct p_header100);
596 }
597
598 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
599 void *buffer, enum drbd_packet cmd, int size)
600 {
601 if (connection->agreed_pro_version >= 100)
602 return prepare_header100(buffer, cmd, size, vnr);
603 else if (connection->agreed_pro_version >= 95 &&
604 size > DRBD_MAX_SIZE_H80_PACKET)
605 return prepare_header95(buffer, cmd, size);
606 else
607 return prepare_header80(buffer, cmd, size);
608 }
609
610 static void *__conn_prepare_command(struct drbd_connection *connection,
611 struct drbd_socket *sock)
612 {
613 if (!sock->socket)
614 return NULL;
615 return sock->sbuf + drbd_header_size(connection);
616 }
617
618 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
619 {
620 void *p;
621
622 mutex_lock(&sock->mutex);
623 p = __conn_prepare_command(connection, sock);
624 if (!p)
625 mutex_unlock(&sock->mutex);
626
627 return p;
628 }
629
630 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
631 {
632 return conn_prepare_command(peer_device->connection, sock);
633 }
634
635 static int __send_command(struct drbd_connection *connection, int vnr,
636 struct drbd_socket *sock, enum drbd_packet cmd,
637 unsigned int header_size, void *data,
638 unsigned int size)
639 {
640 int msg_flags;
641 int err;
642
643 /*
644 * Called with @data == NULL and the size of the data blocks in @size
645 * for commands that send data blocks. For those commands, omit the
646 * MSG_MORE flag: this will increase the likelihood that data blocks
647 * which are page aligned on the sender will end up page aligned on the
648 * receiver.
649 */
650 msg_flags = data ? MSG_MORE : 0;
651
652 header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
653 header_size + size);
654 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
655 msg_flags);
656 if (data && !err)
657 err = drbd_send_all(connection, sock->socket, data, size, 0);
658 /* DRBD protocol "pings" are latency critical.
659 * This is supposed to trigger tcp_push_pending_frames() */
660 if (!err && (cmd == P_PING || cmd == P_PING_ACK))
661 drbd_tcp_nodelay(sock->socket);
662
663 return err;
664 }
665
666 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
667 enum drbd_packet cmd, unsigned int header_size,
668 void *data, unsigned int size)
669 {
670 return __send_command(connection, 0, sock, cmd, header_size, data, size);
671 }
672
673 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
674 enum drbd_packet cmd, unsigned int header_size,
675 void *data, unsigned int size)
676 {
677 int err;
678
679 err = __conn_send_command(connection, sock, cmd, header_size, data, size);
680 mutex_unlock(&sock->mutex);
681 return err;
682 }
683
684 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
685 enum drbd_packet cmd, unsigned int header_size,
686 void *data, unsigned int size)
687 {
688 int err;
689
690 err = __send_command(peer_device->connection, peer_device->device->vnr,
691 sock, cmd, header_size, data, size);
692 mutex_unlock(&sock->mutex);
693 return err;
694 }
695
696 int drbd_send_ping(struct drbd_connection *connection)
697 {
698 struct drbd_socket *sock;
699
700 sock = &connection->meta;
701 if (!conn_prepare_command(connection, sock))
702 return -EIO;
703 return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
704 }
705
706 int drbd_send_ping_ack(struct drbd_connection *connection)
707 {
708 struct drbd_socket *sock;
709
710 sock = &connection->meta;
711 if (!conn_prepare_command(connection, sock))
712 return -EIO;
713 return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
714 }
715
716 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
717 {
718 struct drbd_socket *sock;
719 struct p_rs_param_95 *p;
720 int size;
721 const int apv = peer_device->connection->agreed_pro_version;
722 enum drbd_packet cmd;
723 struct net_conf *nc;
724 struct disk_conf *dc;
725
726 sock = &peer_device->connection->data;
727 p = drbd_prepare_command(peer_device, sock);
728 if (!p)
729 return -EIO;
730
731 rcu_read_lock();
732 nc = rcu_dereference(peer_device->connection->net_conf);
733
734 size = apv <= 87 ? sizeof(struct p_rs_param)
735 : apv == 88 ? sizeof(struct p_rs_param)
736 + strlen(nc->verify_alg) + 1
737 : apv <= 94 ? sizeof(struct p_rs_param_89)
738 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
739
740 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
741
742 /* initialize verify_alg and csums_alg */
743 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
744
745 if (get_ldev(peer_device->device)) {
746 dc = rcu_dereference(peer_device->device->ldev->disk_conf);
747 p->resync_rate = cpu_to_be32(dc->resync_rate);
748 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
749 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
750 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
751 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
752 put_ldev(peer_device->device);
753 } else {
754 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
755 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
756 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
757 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
758 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
759 }
760
761 if (apv >= 88)
762 strcpy(p->verify_alg, nc->verify_alg);
763 if (apv >= 89)
764 strcpy(p->csums_alg, nc->csums_alg);
765 rcu_read_unlock();
766
767 return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
768 }
769
770 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
771 {
772 struct drbd_socket *sock;
773 struct p_protocol *p;
774 struct net_conf *nc;
775 int size, cf;
776
777 sock = &connection->data;
778 p = __conn_prepare_command(connection, sock);
779 if (!p)
780 return -EIO;
781
782 rcu_read_lock();
783 nc = rcu_dereference(connection->net_conf);
784
785 if (nc->tentative && connection->agreed_pro_version < 92) {
786 rcu_read_unlock();
787 mutex_unlock(&sock->mutex);
788 drbd_err(connection, "--dry-run is not supported by peer");
789 return -EOPNOTSUPP;
790 }
791
792 size = sizeof(*p);
793 if (connection->agreed_pro_version >= 87)
794 size += strlen(nc->integrity_alg) + 1;
795
796 p->protocol = cpu_to_be32(nc->wire_protocol);
797 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p);
798 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p);
799 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p);
800 p->two_primaries = cpu_to_be32(nc->two_primaries);
801 cf = 0;
802 if (nc->discard_my_data)
803 cf |= CF_DISCARD_MY_DATA;
804 if (nc->tentative)
805 cf |= CF_DRY_RUN;
806 p->conn_flags = cpu_to_be32(cf);
807
808 if (connection->agreed_pro_version >= 87)
809 strcpy(p->integrity_alg, nc->integrity_alg);
810 rcu_read_unlock();
811
812 return __conn_send_command(connection, sock, cmd, size, NULL, 0);
813 }
814
815 int drbd_send_protocol(struct drbd_connection *connection)
816 {
817 int err;
818
819 mutex_lock(&connection->data.mutex);
820 err = __drbd_send_protocol(connection, P_PROTOCOL);
821 mutex_unlock(&connection->data.mutex);
822
823 return err;
824 }
825
826 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
827 {
828 struct drbd_device *device = peer_device->device;
829 struct drbd_socket *sock;
830 struct p_uuids *p;
831 int i;
832
833 if (!get_ldev_if_state(device, D_NEGOTIATING))
834 return 0;
835
836 sock = &peer_device->connection->data;
837 p = drbd_prepare_command(peer_device, sock);
838 if (!p) {
839 put_ldev(device);
840 return -EIO;
841 }
842 spin_lock_irq(&device->ldev->md.uuid_lock);
843 for (i = UI_CURRENT; i < UI_SIZE; i++)
844 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
845 spin_unlock_irq(&device->ldev->md.uuid_lock);
846
847 device->comm_bm_set = drbd_bm_total_weight(device);
848 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
849 rcu_read_lock();
850 uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
851 rcu_read_unlock();
852 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
853 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
854 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
855
856 put_ldev(device);
857 return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
858 }
859
860 int drbd_send_uuids(struct drbd_peer_device *peer_device)
861 {
862 return _drbd_send_uuids(peer_device, 0);
863 }
864
865 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
866 {
867 return _drbd_send_uuids(peer_device, 8);
868 }
869
870 void drbd_print_uuids(struct drbd_device *device, const char *text)
871 {
872 if (get_ldev_if_state(device, D_NEGOTIATING)) {
873 u64 *uuid = device->ldev->md.uuid;
874 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
875 text,
876 (unsigned long long)uuid[UI_CURRENT],
877 (unsigned long long)uuid[UI_BITMAP],
878 (unsigned long long)uuid[UI_HISTORY_START],
879 (unsigned long long)uuid[UI_HISTORY_END]);
880 put_ldev(device);
881 } else {
882 drbd_info(device, "%s effective data uuid: %016llX\n",
883 text,
884 (unsigned long long)device->ed_uuid);
885 }
886 }
887
888 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
889 {
890 struct drbd_device *device = peer_device->device;
891 struct drbd_socket *sock;
892 struct p_rs_uuid *p;
893 u64 uuid;
894
895 D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
896
897 uuid = device->ldev->md.uuid[UI_BITMAP];
898 if (uuid && uuid != UUID_JUST_CREATED)
899 uuid = uuid + UUID_NEW_BM_OFFSET;
900 else
901 get_random_bytes(&uuid, sizeof(u64));
902 drbd_uuid_set(device, UI_BITMAP, uuid);
903 drbd_print_uuids(device, "updated sync UUID");
904 drbd_md_sync(device);
905
906 sock = &peer_device->connection->data;
907 p = drbd_prepare_command(peer_device, sock);
908 if (p) {
909 p->uuid = cpu_to_be64(uuid);
910 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
911 }
912 }
913
914 /* communicated if (agreed_features & DRBD_FF_WSAME) */
915 static void
916 assign_p_sizes_qlim(struct drbd_device *device, struct p_sizes *p,
917 struct request_queue *q)
918 {
919 if (q) {
920 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
921 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
922 p->qlim->alignment_offset = cpu_to_be32(queue_alignment_offset(q));
923 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
924 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
925 p->qlim->discard_enabled = blk_queue_discard(q);
926 p->qlim->write_same_capable = !!q->limits.max_write_same_sectors;
927 } else {
928 q = device->rq_queue;
929 p->qlim->physical_block_size = cpu_to_be32(queue_physical_block_size(q));
930 p->qlim->logical_block_size = cpu_to_be32(queue_logical_block_size(q));
931 p->qlim->alignment_offset = 0;
932 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
933 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
934 p->qlim->discard_enabled = 0;
935 p->qlim->write_same_capable = 0;
936 }
937 }
938
939 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
940 {
941 struct drbd_device *device = peer_device->device;
942 struct drbd_socket *sock;
943 struct p_sizes *p;
944 sector_t d_size, u_size;
945 int q_order_type;
946 unsigned int max_bio_size;
947 unsigned int packet_size;
948
949 sock = &peer_device->connection->data;
950 p = drbd_prepare_command(peer_device, sock);
951 if (!p)
952 return -EIO;
953
954 packet_size = sizeof(*p);
955 if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
956 packet_size += sizeof(p->qlim[0]);
957
958 memset(p, 0, packet_size);
959 if (get_ldev_if_state(device, D_NEGOTIATING)) {
960 struct request_queue *q = bdev_get_queue(device->ldev->backing_bdev);
961 d_size = drbd_get_max_capacity(device->ldev);
962 rcu_read_lock();
963 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
964 rcu_read_unlock();
965 q_order_type = drbd_queue_order_type(device);
966 max_bio_size = queue_max_hw_sectors(q) << 9;
967 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
968 assign_p_sizes_qlim(device, p, q);
969 put_ldev(device);
970 } else {
971 d_size = 0;
972 u_size = 0;
973 q_order_type = QUEUE_ORDERED_NONE;
974 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
975 assign_p_sizes_qlim(device, p, NULL);
976 }
977
978 if (peer_device->connection->agreed_pro_version <= 94)
979 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
980 else if (peer_device->connection->agreed_pro_version < 100)
981 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
982
983 p->d_size = cpu_to_be64(d_size);
984 p->u_size = cpu_to_be64(u_size);
985 p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(device->this_bdev));
986 p->max_bio_size = cpu_to_be32(max_bio_size);
987 p->queue_order_type = cpu_to_be16(q_order_type);
988 p->dds_flags = cpu_to_be16(flags);
989
990 return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
991 }
992
993 /**
994 * drbd_send_current_state() - Sends the drbd state to the peer
995 * @peer_device: DRBD peer device.
996 */
997 int drbd_send_current_state(struct drbd_peer_device *peer_device)
998 {
999 struct drbd_socket *sock;
1000 struct p_state *p;
1001
1002 sock = &peer_device->connection->data;
1003 p = drbd_prepare_command(peer_device, sock);
1004 if (!p)
1005 return -EIO;
1006 p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
1007 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1008 }
1009
1010 /**
1011 * drbd_send_state() - After a state change, sends the new state to the peer
1012 * @peer_device: DRBD peer device.
1013 * @state: the state to send, not necessarily the current state.
1014 *
1015 * Each state change queues an "after_state_ch" work, which will eventually
1016 * send the resulting new state to the peer. If more state changes happen
1017 * between queuing and processing of the after_state_ch work, we still
1018 * want to send each intermediary state in the order it occurred.
1019 */
1020 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1021 {
1022 struct drbd_socket *sock;
1023 struct p_state *p;
1024
1025 sock = &peer_device->connection->data;
1026 p = drbd_prepare_command(peer_device, sock);
1027 if (!p)
1028 return -EIO;
1029 p->state = cpu_to_be32(state.i); /* Within the send mutex */
1030 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1031 }
1032
1033 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1034 {
1035 struct drbd_socket *sock;
1036 struct p_req_state *p;
1037
1038 sock = &peer_device->connection->data;
1039 p = drbd_prepare_command(peer_device, sock);
1040 if (!p)
1041 return -EIO;
1042 p->mask = cpu_to_be32(mask.i);
1043 p->val = cpu_to_be32(val.i);
1044 return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1045 }
1046
1047 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1048 {
1049 enum drbd_packet cmd;
1050 struct drbd_socket *sock;
1051 struct p_req_state *p;
1052
1053 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1054 sock = &connection->data;
1055 p = conn_prepare_command(connection, sock);
1056 if (!p)
1057 return -EIO;
1058 p->mask = cpu_to_be32(mask.i);
1059 p->val = cpu_to_be32(val.i);
1060 return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1061 }
1062
1063 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1064 {
1065 struct drbd_socket *sock;
1066 struct p_req_state_reply *p;
1067
1068 sock = &peer_device->connection->meta;
1069 p = drbd_prepare_command(peer_device, sock);
1070 if (p) {
1071 p->retcode = cpu_to_be32(retcode);
1072 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1073 }
1074 }
1075
1076 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1077 {
1078 struct drbd_socket *sock;
1079 struct p_req_state_reply *p;
1080 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1081
1082 sock = &connection->meta;
1083 p = conn_prepare_command(connection, sock);
1084 if (p) {
1085 p->retcode = cpu_to_be32(retcode);
1086 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1087 }
1088 }
1089
1090 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1091 {
1092 BUG_ON(code & ~0xf);
1093 p->encoding = (p->encoding & ~0xf) | code;
1094 }
1095
1096 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1097 {
1098 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1099 }
1100
1101 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1102 {
1103 BUG_ON(n & ~0x7);
1104 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1105 }
1106
1107 static int fill_bitmap_rle_bits(struct drbd_device *device,
1108 struct p_compressed_bm *p,
1109 unsigned int size,
1110 struct bm_xfer_ctx *c)
1111 {
1112 struct bitstream bs;
1113 unsigned long plain_bits;
1114 unsigned long tmp;
1115 unsigned long rl;
1116 unsigned len;
1117 unsigned toggle;
1118 int bits, use_rle;
1119
1120 /* may we use this feature? */
1121 rcu_read_lock();
1122 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1123 rcu_read_unlock();
1124 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1125 return 0;
1126
1127 if (c->bit_offset >= c->bm_bits)
1128 return 0; /* nothing to do. */
1129
1130 /* use at most thus many bytes */
1131 bitstream_init(&bs, p->code, size, 0);
1132 memset(p->code, 0, size);
1133 /* plain bits covered in this code string */
1134 plain_bits = 0;
1135
1136 /* p->encoding & 0x80 stores whether the first run length is set.
1137 * bit offset is implicit.
1138 * start with toggle == 2 to be able to tell the first iteration */
1139 toggle = 2;
1140
1141 /* see how much plain bits we can stuff into one packet
1142 * using RLE and VLI. */
1143 do {
1144 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1145 : _drbd_bm_find_next(device, c->bit_offset);
1146 if (tmp == -1UL)
1147 tmp = c->bm_bits;
1148 rl = tmp - c->bit_offset;
1149
1150 if (toggle == 2) { /* first iteration */
1151 if (rl == 0) {
1152 /* the first checked bit was set,
1153 * store start value, */
1154 dcbp_set_start(p, 1);
1155 /* but skip encoding of zero run length */
1156 toggle = !toggle;
1157 continue;
1158 }
1159 dcbp_set_start(p, 0);
1160 }
1161
1162 /* paranoia: catch zero runlength.
1163 * can only happen if bitmap is modified while we scan it. */
1164 if (rl == 0) {
1165 drbd_err(device, "unexpected zero runlength while encoding bitmap "
1166 "t:%u bo:%lu\n", toggle, c->bit_offset);
1167 return -1;
1168 }
1169
1170 bits = vli_encode_bits(&bs, rl);
1171 if (bits == -ENOBUFS) /* buffer full */
1172 break;
1173 if (bits <= 0) {
1174 drbd_err(device, "error while encoding bitmap: %d\n", bits);
1175 return 0;
1176 }
1177
1178 toggle = !toggle;
1179 plain_bits += rl;
1180 c->bit_offset = tmp;
1181 } while (c->bit_offset < c->bm_bits);
1182
1183 len = bs.cur.b - p->code + !!bs.cur.bit;
1184
1185 if (plain_bits < (len << 3)) {
1186 /* incompressible with this method.
1187 * we need to rewind both word and bit position. */
1188 c->bit_offset -= plain_bits;
1189 bm_xfer_ctx_bit_to_word_offset(c);
1190 c->bit_offset = c->word_offset * BITS_PER_LONG;
1191 return 0;
1192 }
1193
1194 /* RLE + VLI was able to compress it just fine.
1195 * update c->word_offset. */
1196 bm_xfer_ctx_bit_to_word_offset(c);
1197
1198 /* store pad_bits */
1199 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1200
1201 return len;
1202 }
1203
1204 /**
1205 * send_bitmap_rle_or_plain
1206 *
1207 * Return 0 when done, 1 when another iteration is needed, and a negative error
1208 * code upon failure.
1209 */
1210 static int
1211 send_bitmap_rle_or_plain(struct drbd_device *device, struct bm_xfer_ctx *c)
1212 {
1213 struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1214 unsigned int header_size = drbd_header_size(first_peer_device(device)->connection);
1215 struct p_compressed_bm *p = sock->sbuf + header_size;
1216 int len, err;
1217
1218 len = fill_bitmap_rle_bits(device, p,
1219 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1220 if (len < 0)
1221 return -EIO;
1222
1223 if (len) {
1224 dcbp_set_code(p, RLE_VLI_Bits);
1225 err = __send_command(first_peer_device(device)->connection, device->vnr, sock,
1226 P_COMPRESSED_BITMAP, sizeof(*p) + len,
1227 NULL, 0);
1228 c->packets[0]++;
1229 c->bytes[0] += header_size + sizeof(*p) + len;
1230
1231 if (c->bit_offset >= c->bm_bits)
1232 len = 0; /* DONE */
1233 } else {
1234 /* was not compressible.
1235 * send a buffer full of plain text bits instead. */
1236 unsigned int data_size;
1237 unsigned long num_words;
1238 unsigned long *p = sock->sbuf + header_size;
1239
1240 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1241 num_words = min_t(size_t, data_size / sizeof(*p),
1242 c->bm_words - c->word_offset);
1243 len = num_words * sizeof(*p);
1244 if (len)
1245 drbd_bm_get_lel(device, c->word_offset, num_words, p);
1246 err = __send_command(first_peer_device(device)->connection, device->vnr, sock, P_BITMAP, len, NULL, 0);
1247 c->word_offset += num_words;
1248 c->bit_offset = c->word_offset * BITS_PER_LONG;
1249
1250 c->packets[1]++;
1251 c->bytes[1] += header_size + len;
1252
1253 if (c->bit_offset > c->bm_bits)
1254 c->bit_offset = c->bm_bits;
1255 }
1256 if (!err) {
1257 if (len == 0) {
1258 INFO_bm_xfer_stats(device, "send", c);
1259 return 0;
1260 } else
1261 return 1;
1262 }
1263 return -EIO;
1264 }
1265
1266 /* See the comment at receive_bitmap() */
1267 static int _drbd_send_bitmap(struct drbd_device *device)
1268 {
1269 struct bm_xfer_ctx c;
1270 int err;
1271
1272 if (!expect(device->bitmap))
1273 return false;
1274
1275 if (get_ldev(device)) {
1276 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1277 drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1278 drbd_bm_set_all(device);
1279 if (drbd_bm_write(device)) {
1280 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1281 * but otherwise process as per normal - need to tell other
1282 * side that a full resync is required! */
1283 drbd_err(device, "Failed to write bitmap to disk!\n");
1284 } else {
1285 drbd_md_clear_flag(device, MDF_FULL_SYNC);
1286 drbd_md_sync(device);
1287 }
1288 }
1289 put_ldev(device);
1290 }
1291
1292 c = (struct bm_xfer_ctx) {
1293 .bm_bits = drbd_bm_bits(device),
1294 .bm_words = drbd_bm_words(device),
1295 };
1296
1297 do {
1298 err = send_bitmap_rle_or_plain(device, &c);
1299 } while (err > 0);
1300
1301 return err == 0;
1302 }
1303
1304 int drbd_send_bitmap(struct drbd_device *device)
1305 {
1306 struct drbd_socket *sock = &first_peer_device(device)->connection->data;
1307 int err = -1;
1308
1309 mutex_lock(&sock->mutex);
1310 if (sock->socket)
1311 err = !_drbd_send_bitmap(device);
1312 mutex_unlock(&sock->mutex);
1313 return err;
1314 }
1315
1316 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1317 {
1318 struct drbd_socket *sock;
1319 struct p_barrier_ack *p;
1320
1321 if (connection->cstate < C_WF_REPORT_PARAMS)
1322 return;
1323
1324 sock = &connection->meta;
1325 p = conn_prepare_command(connection, sock);
1326 if (!p)
1327 return;
1328 p->barrier = barrier_nr;
1329 p->set_size = cpu_to_be32(set_size);
1330 conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1331 }
1332
1333 /**
1334 * _drbd_send_ack() - Sends an ack packet
1335 * @device: DRBD device.
1336 * @cmd: Packet command code.
1337 * @sector: sector, needs to be in big endian byte order
1338 * @blksize: size in byte, needs to be in big endian byte order
1339 * @block_id: Id, big endian byte order
1340 */
1341 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1342 u64 sector, u32 blksize, u64 block_id)
1343 {
1344 struct drbd_socket *sock;
1345 struct p_block_ack *p;
1346
1347 if (peer_device->device->state.conn < C_CONNECTED)
1348 return -EIO;
1349
1350 sock = &peer_device->connection->meta;
1351 p = drbd_prepare_command(peer_device, sock);
1352 if (!p)
1353 return -EIO;
1354 p->sector = sector;
1355 p->block_id = block_id;
1356 p->blksize = blksize;
1357 p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1358 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1359 }
1360
1361 /* dp->sector and dp->block_id already/still in network byte order,
1362 * data_size is payload size according to dp->head,
1363 * and may need to be corrected for digest size. */
1364 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1365 struct p_data *dp, int data_size)
1366 {
1367 if (peer_device->connection->peer_integrity_tfm)
1368 data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1369 _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1370 dp->block_id);
1371 }
1372
1373 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1374 struct p_block_req *rp)
1375 {
1376 _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1377 }
1378
1379 /**
1380 * drbd_send_ack() - Sends an ack packet
1381 * @device: DRBD device
1382 * @cmd: packet command code
1383 * @peer_req: peer request
1384 */
1385 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1386 struct drbd_peer_request *peer_req)
1387 {
1388 return _drbd_send_ack(peer_device, cmd,
1389 cpu_to_be64(peer_req->i.sector),
1390 cpu_to_be32(peer_req->i.size),
1391 peer_req->block_id);
1392 }
1393
1394 /* This function misuses the block_id field to signal if the blocks
1395 * are is sync or not. */
1396 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1397 sector_t sector, int blksize, u64 block_id)
1398 {
1399 return _drbd_send_ack(peer_device, cmd,
1400 cpu_to_be64(sector),
1401 cpu_to_be32(blksize),
1402 cpu_to_be64(block_id));
1403 }
1404
1405 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1406 struct drbd_peer_request *peer_req)
1407 {
1408 struct drbd_socket *sock;
1409 struct p_block_desc *p;
1410
1411 sock = &peer_device->connection->data;
1412 p = drbd_prepare_command(peer_device, sock);
1413 if (!p)
1414 return -EIO;
1415 p->sector = cpu_to_be64(peer_req->i.sector);
1416 p->blksize = cpu_to_be32(peer_req->i.size);
1417 p->pad = 0;
1418 return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1419 }
1420
1421 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1422 sector_t sector, int size, u64 block_id)
1423 {
1424 struct drbd_socket *sock;
1425 struct p_block_req *p;
1426
1427 sock = &peer_device->connection->data;
1428 p = drbd_prepare_command(peer_device, sock);
1429 if (!p)
1430 return -EIO;
1431 p->sector = cpu_to_be64(sector);
1432 p->block_id = block_id;
1433 p->blksize = cpu_to_be32(size);
1434 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1435 }
1436
1437 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1438 void *digest, int digest_size, enum drbd_packet cmd)
1439 {
1440 struct drbd_socket *sock;
1441 struct p_block_req *p;
1442
1443 /* FIXME: Put the digest into the preallocated socket buffer. */
1444
1445 sock = &peer_device->connection->data;
1446 p = drbd_prepare_command(peer_device, sock);
1447 if (!p)
1448 return -EIO;
1449 p->sector = cpu_to_be64(sector);
1450 p->block_id = ID_SYNCER /* unused */;
1451 p->blksize = cpu_to_be32(size);
1452 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1453 }
1454
1455 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1456 {
1457 struct drbd_socket *sock;
1458 struct p_block_req *p;
1459
1460 sock = &peer_device->connection->data;
1461 p = drbd_prepare_command(peer_device, sock);
1462 if (!p)
1463 return -EIO;
1464 p->sector = cpu_to_be64(sector);
1465 p->block_id = ID_SYNCER /* unused */;
1466 p->blksize = cpu_to_be32(size);
1467 return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1468 }
1469
1470 /* called on sndtimeo
1471 * returns false if we should retry,
1472 * true if we think connection is dead
1473 */
1474 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1475 {
1476 int drop_it;
1477 /* long elapsed = (long)(jiffies - device->last_received); */
1478
1479 drop_it = connection->meta.socket == sock
1480 || !connection->ack_receiver.task
1481 || get_t_state(&connection->ack_receiver) != RUNNING
1482 || connection->cstate < C_WF_REPORT_PARAMS;
1483
1484 if (drop_it)
1485 return true;
1486
1487 drop_it = !--connection->ko_count;
1488 if (!drop_it) {
1489 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1490 current->comm, current->pid, connection->ko_count);
1491 request_ping(connection);
1492 }
1493
1494 return drop_it; /* && (device->state == R_PRIMARY) */;
1495 }
1496
1497 static void drbd_update_congested(struct drbd_connection *connection)
1498 {
1499 struct sock *sk = connection->data.socket->sk;
1500 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1501 set_bit(NET_CONGESTED, &connection->flags);
1502 }
1503
1504 /* The idea of sendpage seems to be to put some kind of reference
1505 * to the page into the skb, and to hand it over to the NIC. In
1506 * this process get_page() gets called.
1507 *
1508 * As soon as the page was really sent over the network put_page()
1509 * gets called by some part of the network layer. [ NIC driver? ]
1510 *
1511 * [ get_page() / put_page() increment/decrement the count. If count
1512 * reaches 0 the page will be freed. ]
1513 *
1514 * This works nicely with pages from FSs.
1515 * But this means that in protocol A we might signal IO completion too early!
1516 *
1517 * In order not to corrupt data during a resync we must make sure
1518 * that we do not reuse our own buffer pages (EEs) to early, therefore
1519 * we have the net_ee list.
1520 *
1521 * XFS seems to have problems, still, it submits pages with page_count == 0!
1522 * As a workaround, we disable sendpage on pages
1523 * with page_count == 0 or PageSlab.
1524 */
1525 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1526 int offset, size_t size, unsigned msg_flags)
1527 {
1528 struct socket *socket;
1529 void *addr;
1530 int err;
1531
1532 socket = peer_device->connection->data.socket;
1533 addr = kmap(page) + offset;
1534 err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1535 kunmap(page);
1536 if (!err)
1537 peer_device->device->send_cnt += size >> 9;
1538 return err;
1539 }
1540
1541 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1542 int offset, size_t size, unsigned msg_flags)
1543 {
1544 struct socket *socket = peer_device->connection->data.socket;
1545 int len = size;
1546 int err = -EIO;
1547
1548 /* e.g. XFS meta- & log-data is in slab pages, which have a
1549 * page_count of 0 and/or have PageSlab() set.
1550 * we cannot use send_page for those, as that does get_page();
1551 * put_page(); and would cause either a VM_BUG directly, or
1552 * __page_cache_release a page that would actually still be referenced
1553 * by someone, leading to some obscure delayed Oops somewhere else. */
1554 if (drbd_disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1555 return _drbd_no_send_page(peer_device, page, offset, size, msg_flags);
1556
1557 msg_flags |= MSG_NOSIGNAL;
1558 drbd_update_congested(peer_device->connection);
1559 do {
1560 int sent;
1561
1562 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1563 if (sent <= 0) {
1564 if (sent == -EAGAIN) {
1565 if (we_should_drop_the_connection(peer_device->connection, socket))
1566 break;
1567 continue;
1568 }
1569 drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1570 __func__, (int)size, len, sent);
1571 if (sent < 0)
1572 err = sent;
1573 break;
1574 }
1575 len -= sent;
1576 offset += sent;
1577 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1578 clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1579
1580 if (len == 0) {
1581 err = 0;
1582 peer_device->device->send_cnt += size >> 9;
1583 }
1584 return err;
1585 }
1586
1587 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1588 {
1589 struct bio_vec bvec;
1590 struct bvec_iter iter;
1591
1592 /* hint all but last page with MSG_MORE */
1593 bio_for_each_segment(bvec, bio, iter) {
1594 int err;
1595
1596 err = _drbd_no_send_page(peer_device, bvec.bv_page,
1597 bvec.bv_offset, bvec.bv_len,
1598 bio_iter_last(bvec, iter)
1599 ? 0 : MSG_MORE);
1600 if (err)
1601 return err;
1602 /* REQ_OP_WRITE_SAME has only one segment */
1603 if (bio_op(bio) == REQ_OP_WRITE_SAME)
1604 break;
1605 }
1606 return 0;
1607 }
1608
1609 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1610 {
1611 struct bio_vec bvec;
1612 struct bvec_iter iter;
1613
1614 /* hint all but last page with MSG_MORE */
1615 bio_for_each_segment(bvec, bio, iter) {
1616 int err;
1617
1618 err = _drbd_send_page(peer_device, bvec.bv_page,
1619 bvec.bv_offset, bvec.bv_len,
1620 bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1621 if (err)
1622 return err;
1623 /* REQ_OP_WRITE_SAME has only one segment */
1624 if (bio_op(bio) == REQ_OP_WRITE_SAME)
1625 break;
1626 }
1627 return 0;
1628 }
1629
1630 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1631 struct drbd_peer_request *peer_req)
1632 {
1633 struct page *page = peer_req->pages;
1634 unsigned len = peer_req->i.size;
1635 int err;
1636
1637 /* hint all but last page with MSG_MORE */
1638 page_chain_for_each(page) {
1639 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1640
1641 err = _drbd_send_page(peer_device, page, 0, l,
1642 page_chain_next(page) ? MSG_MORE : 0);
1643 if (err)
1644 return err;
1645 len -= l;
1646 }
1647 return 0;
1648 }
1649
1650 static u32 bio_flags_to_wire(struct drbd_connection *connection,
1651 struct bio *bio)
1652 {
1653 if (connection->agreed_pro_version >= 95)
1654 return (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1655 (bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1656 (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1657 (bio_op(bio) == REQ_OP_WRITE_SAME ? DP_WSAME : 0) |
1658 (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) |
1659 (bio_op(bio) == REQ_OP_WRITE_ZEROES ?
1660 ((connection->agreed_features & DRBD_FF_WZEROES) ?
1661 (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0))
1662 : DP_DISCARD)
1663 : 0);
1664 else
1665 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1666 }
1667
1668 /* Used to send write or TRIM aka REQ_OP_DISCARD requests
1669 * R_PRIMARY -> Peer (P_DATA, P_TRIM)
1670 */
1671 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1672 {
1673 struct drbd_device *device = peer_device->device;
1674 struct drbd_socket *sock;
1675 struct p_data *p;
1676 struct p_wsame *wsame = NULL;
1677 void *digest_out;
1678 unsigned int dp_flags = 0;
1679 int digest_size;
1680 int err;
1681
1682 sock = &peer_device->connection->data;
1683 p = drbd_prepare_command(peer_device, sock);
1684 digest_size = peer_device->connection->integrity_tfm ?
1685 crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1686
1687 if (!p)
1688 return -EIO;
1689 p->sector = cpu_to_be64(req->i.sector);
1690 p->block_id = (unsigned long)req;
1691 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1692 dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1693 if (device->state.conn >= C_SYNC_SOURCE &&
1694 device->state.conn <= C_PAUSED_SYNC_T)
1695 dp_flags |= DP_MAY_SET_IN_SYNC;
1696 if (peer_device->connection->agreed_pro_version >= 100) {
1697 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1698 dp_flags |= DP_SEND_RECEIVE_ACK;
1699 /* During resync, request an explicit write ack,
1700 * even in protocol != C */
1701 if (req->rq_state & RQ_EXP_WRITE_ACK
1702 || (dp_flags & DP_MAY_SET_IN_SYNC))
1703 dp_flags |= DP_SEND_WRITE_ACK;
1704 }
1705 p->dp_flags = cpu_to_be32(dp_flags);
1706
1707 if (dp_flags & (DP_DISCARD|DP_ZEROES)) {
1708 enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM;
1709 struct p_trim *t = (struct p_trim*)p;
1710 t->size = cpu_to_be32(req->i.size);
1711 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0);
1712 goto out;
1713 }
1714 if (dp_flags & DP_WSAME) {
1715 /* this will only work if DRBD_FF_WSAME is set AND the
1716 * handshake agreed that all nodes and backend devices are
1717 * WRITE_SAME capable and agree on logical_block_size */
1718 wsame = (struct p_wsame*)p;
1719 digest_out = wsame + 1;
1720 wsame->size = cpu_to_be32(req->i.size);
1721 } else
1722 digest_out = p + 1;
1723
1724 /* our digest is still only over the payload.
1725 * TRIM does not carry any payload. */
1726 if (digest_size)
1727 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1728 if (wsame) {
1729 err =
1730 __send_command(peer_device->connection, device->vnr, sock, P_WSAME,
1731 sizeof(*wsame) + digest_size, NULL,
1732 bio_iovec(req->master_bio).bv_len);
1733 } else
1734 err =
1735 __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1736 sizeof(*p) + digest_size, NULL, req->i.size);
1737 if (!err) {
1738 /* For protocol A, we have to memcpy the payload into
1739 * socket buffers, as we may complete right away
1740 * as soon as we handed it over to tcp, at which point the data
1741 * pages may become invalid.
1742 *
1743 * For data-integrity enabled, we copy it as well, so we can be
1744 * sure that even if the bio pages may still be modified, it
1745 * won't change the data on the wire, thus if the digest checks
1746 * out ok after sending on this side, but does not fit on the
1747 * receiving side, we sure have detected corruption elsewhere.
1748 */
1749 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1750 err = _drbd_send_bio(peer_device, req->master_bio);
1751 else
1752 err = _drbd_send_zc_bio(peer_device, req->master_bio);
1753
1754 /* double check digest, sometimes buffers have been modified in flight. */
1755 if (digest_size > 0 && digest_size <= 64) {
1756 /* 64 byte, 512 bit, is the largest digest size
1757 * currently supported in kernel crypto. */
1758 unsigned char digest[64];
1759 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1760 if (memcmp(p + 1, digest, digest_size)) {
1761 drbd_warn(device,
1762 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1763 (unsigned long long)req->i.sector, req->i.size);
1764 }
1765 } /* else if (digest_size > 64) {
1766 ... Be noisy about digest too large ...
1767 } */
1768 }
1769 out:
1770 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1771
1772 return err;
1773 }
1774
1775 /* answer packet, used to send data back for read requests:
1776 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY)
1777 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY)
1778 */
1779 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1780 struct drbd_peer_request *peer_req)
1781 {
1782 struct drbd_device *device = peer_device->device;
1783 struct drbd_socket *sock;
1784 struct p_data *p;
1785 int err;
1786 int digest_size;
1787
1788 sock = &peer_device->connection->data;
1789 p = drbd_prepare_command(peer_device, sock);
1790
1791 digest_size = peer_device->connection->integrity_tfm ?
1792 crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1793
1794 if (!p)
1795 return -EIO;
1796 p->sector = cpu_to_be64(peer_req->i.sector);
1797 p->block_id = peer_req->block_id;
1798 p->seq_num = 0; /* unused */
1799 p->dp_flags = 0;
1800 if (digest_size)
1801 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1802 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1803 if (!err)
1804 err = _drbd_send_zc_ee(peer_device, peer_req);
1805 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1806
1807 return err;
1808 }
1809
1810 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1811 {
1812 struct drbd_socket *sock;
1813 struct p_block_desc *p;
1814
1815 sock = &peer_device->connection->data;
1816 p = drbd_prepare_command(peer_device, sock);
1817 if (!p)
1818 return -EIO;
1819 p->sector = cpu_to_be64(req->i.sector);
1820 p->blksize = cpu_to_be32(req->i.size);
1821 return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1822 }
1823
1824 /*
1825 drbd_send distinguishes two cases:
1826
1827 Packets sent via the data socket "sock"
1828 and packets sent via the meta data socket "msock"
1829
1830 sock msock
1831 -----------------+-------------------------+------------------------------
1832 timeout conf.timeout / 2 conf.timeout / 2
1833 timeout action send a ping via msock Abort communication
1834 and close all sockets
1835 */
1836
1837 /*
1838 * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1839 */
1840 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1841 void *buf, size_t size, unsigned msg_flags)
1842 {
1843 struct kvec iov = {.iov_base = buf, .iov_len = size};
1844 struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL};
1845 int rv, sent = 0;
1846
1847 if (!sock)
1848 return -EBADR;
1849
1850 /* THINK if (signal_pending) return ... ? */
1851
1852 iov_iter_kvec(&msg.msg_iter, WRITE, &iov, 1, size);
1853
1854 if (sock == connection->data.socket) {
1855 rcu_read_lock();
1856 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1857 rcu_read_unlock();
1858 drbd_update_congested(connection);
1859 }
1860 do {
1861 rv = sock_sendmsg(sock, &msg);
1862 if (rv == -EAGAIN) {
1863 if (we_should_drop_the_connection(connection, sock))
1864 break;
1865 else
1866 continue;
1867 }
1868 if (rv == -EINTR) {
1869 flush_signals(current);
1870 rv = 0;
1871 }
1872 if (rv < 0)
1873 break;
1874 sent += rv;
1875 } while (sent < size);
1876
1877 if (sock == connection->data.socket)
1878 clear_bit(NET_CONGESTED, &connection->flags);
1879
1880 if (rv <= 0) {
1881 if (rv != -EAGAIN) {
1882 drbd_err(connection, "%s_sendmsg returned %d\n",
1883 sock == connection->meta.socket ? "msock" : "sock",
1884 rv);
1885 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1886 } else
1887 conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1888 }
1889
1890 return sent;
1891 }
1892
1893 /**
1894 * drbd_send_all - Send an entire buffer
1895 *
1896 * Returns 0 upon success and a negative error value otherwise.
1897 */
1898 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1899 size_t size, unsigned msg_flags)
1900 {
1901 int err;
1902
1903 err = drbd_send(connection, sock, buffer, size, msg_flags);
1904 if (err < 0)
1905 return err;
1906 if (err != size)
1907 return -EIO;
1908 return 0;
1909 }
1910
1911 static int drbd_open(struct block_device *bdev, fmode_t mode)
1912 {
1913 struct drbd_device *device = bdev->bd_disk->private_data;
1914 unsigned long flags;
1915 int rv = 0;
1916
1917 mutex_lock(&drbd_main_mutex);
1918 spin_lock_irqsave(&device->resource->req_lock, flags);
1919 /* to have a stable device->state.role
1920 * and no race with updating open_cnt */
1921
1922 if (device->state.role != R_PRIMARY) {
1923 if (mode & FMODE_WRITE)
1924 rv = -EROFS;
1925 else if (!drbd_allow_oos)
1926 rv = -EMEDIUMTYPE;
1927 }
1928
1929 if (!rv)
1930 device->open_cnt++;
1931 spin_unlock_irqrestore(&device->resource->req_lock, flags);
1932 mutex_unlock(&drbd_main_mutex);
1933
1934 return rv;
1935 }
1936
1937 static void drbd_release(struct gendisk *gd, fmode_t mode)
1938 {
1939 struct drbd_device *device = gd->private_data;
1940 mutex_lock(&drbd_main_mutex);
1941 device->open_cnt--;
1942 mutex_unlock(&drbd_main_mutex);
1943 }
1944
1945 /* need to hold resource->req_lock */
1946 void drbd_queue_unplug(struct drbd_device *device)
1947 {
1948 if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) {
1949 D_ASSERT(device, device->state.role == R_PRIMARY);
1950 if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) {
1951 drbd_queue_work_if_unqueued(
1952 &first_peer_device(device)->connection->sender_work,
1953 &device->unplug_work);
1954 }
1955 }
1956 }
1957
1958 static void drbd_set_defaults(struct drbd_device *device)
1959 {
1960 /* Beware! The actual layout differs
1961 * between big endian and little endian */
1962 device->state = (union drbd_dev_state) {
1963 { .role = R_SECONDARY,
1964 .peer = R_UNKNOWN,
1965 .conn = C_STANDALONE,
1966 .disk = D_DISKLESS,
1967 .pdsk = D_UNKNOWN,
1968 } };
1969 }
1970
1971 void drbd_init_set_defaults(struct drbd_device *device)
1972 {
1973 /* the memset(,0,) did most of this.
1974 * note: only assignments, no allocation in here */
1975
1976 drbd_set_defaults(device);
1977
1978 atomic_set(&device->ap_bio_cnt, 0);
1979 atomic_set(&device->ap_actlog_cnt, 0);
1980 atomic_set(&device->ap_pending_cnt, 0);
1981 atomic_set(&device->rs_pending_cnt, 0);
1982 atomic_set(&device->unacked_cnt, 0);
1983 atomic_set(&device->local_cnt, 0);
1984 atomic_set(&device->pp_in_use_by_net, 0);
1985 atomic_set(&device->rs_sect_in, 0);
1986 atomic_set(&device->rs_sect_ev, 0);
1987 atomic_set(&device->ap_in_flight, 0);
1988 atomic_set(&device->md_io.in_use, 0);
1989
1990 mutex_init(&device->own_state_mutex);
1991 device->state_mutex = &device->own_state_mutex;
1992
1993 spin_lock_init(&device->al_lock);
1994 spin_lock_init(&device->peer_seq_lock);
1995
1996 INIT_LIST_HEAD(&device->active_ee);
1997 INIT_LIST_HEAD(&device->sync_ee);
1998 INIT_LIST_HEAD(&device->done_ee);
1999 INIT_LIST_HEAD(&device->read_ee);
2000 INIT_LIST_HEAD(&device->net_ee);
2001 INIT_LIST_HEAD(&device->resync_reads);
2002 INIT_LIST_HEAD(&device->resync_work.list);
2003 INIT_LIST_HEAD(&device->unplug_work.list);
2004 INIT_LIST_HEAD(&device->bm_io_work.w.list);
2005 INIT_LIST_HEAD(&device->pending_master_completion[0]);
2006 INIT_LIST_HEAD(&device->pending_master_completion[1]);
2007 INIT_LIST_HEAD(&device->pending_completion[0]);
2008 INIT_LIST_HEAD(&device->pending_completion[1]);
2009
2010 device->resync_work.cb = w_resync_timer;
2011 device->unplug_work.cb = w_send_write_hint;
2012 device->bm_io_work.w.cb = w_bitmap_io;
2013
2014 timer_setup(&device->resync_timer, resync_timer_fn, 0);
2015 timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0);
2016 timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0);
2017 timer_setup(&device->request_timer, request_timer_fn, 0);
2018
2019 init_waitqueue_head(&device->misc_wait);
2020 init_waitqueue_head(&device->state_wait);
2021 init_waitqueue_head(&device->ee_wait);
2022 init_waitqueue_head(&device->al_wait);
2023 init_waitqueue_head(&device->seq_wait);
2024
2025 device->resync_wenr = LC_FREE;
2026 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2027 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
2028 }
2029
2030 static void _drbd_set_my_capacity(struct drbd_device *device, sector_t size)
2031 {
2032 /* set_capacity(device->this_bdev->bd_disk, size); */
2033 set_capacity(device->vdisk, size);
2034 device->this_bdev->bd_inode->i_size = (loff_t)size << 9;
2035 }
2036
2037 void drbd_set_my_capacity(struct drbd_device *device, sector_t size)
2038 {
2039 char ppb[10];
2040 _drbd_set_my_capacity(device, size);
2041 drbd_info(device, "size = %s (%llu KB)\n",
2042 ppsize(ppb, size>>1), (unsigned long long)size>>1);
2043 }
2044
2045 void drbd_device_cleanup(struct drbd_device *device)
2046 {
2047 int i;
2048 if (first_peer_device(device)->connection->receiver.t_state != NONE)
2049 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2050 first_peer_device(device)->connection->receiver.t_state);
2051
2052 device->al_writ_cnt =
2053 device->bm_writ_cnt =
2054 device->read_cnt =
2055 device->recv_cnt =
2056 device->send_cnt =
2057 device->writ_cnt =
2058 device->p_size =
2059 device->rs_start =
2060 device->rs_total =
2061 device->rs_failed = 0;
2062 device->rs_last_events = 0;
2063 device->rs_last_sect_ev = 0;
2064 for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2065 device->rs_mark_left[i] = 0;
2066 device->rs_mark_time[i] = 0;
2067 }
2068 D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2069
2070 _drbd_set_my_capacity(device, 0);
2071 if (device->bitmap) {
2072 /* maybe never allocated. */
2073 drbd_bm_resize(device, 0, 1);
2074 drbd_bm_cleanup(device);
2075 }
2076
2077 drbd_backing_dev_free(device, device->ldev);
2078 device->ldev = NULL;
2079
2080 clear_bit(AL_SUSPENDED, &device->flags);
2081
2082 D_ASSERT(device, list_empty(&device->active_ee));
2083 D_ASSERT(device, list_empty(&device->sync_ee));
2084 D_ASSERT(device, list_empty(&device->done_ee));
2085 D_ASSERT(device, list_empty(&device->read_ee));
2086 D_ASSERT(device, list_empty(&device->net_ee));
2087 D_ASSERT(device, list_empty(&device->resync_reads));
2088 D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2089 D_ASSERT(device, list_empty(&device->resync_work.list));
2090 D_ASSERT(device, list_empty(&device->unplug_work.list));
2091
2092 drbd_set_defaults(device);
2093 }
2094
2095
2096 static void drbd_destroy_mempools(void)
2097 {
2098 struct page *page;
2099
2100 while (drbd_pp_pool) {
2101 page = drbd_pp_pool;
2102 drbd_pp_pool = (struct page *)page_private(page);
2103 __free_page(page);
2104 drbd_pp_vacant--;
2105 }
2106
2107 /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2108
2109 bioset_exit(&drbd_io_bio_set);
2110 bioset_exit(&drbd_md_io_bio_set);
2111 mempool_exit(&drbd_md_io_page_pool);
2112 mempool_exit(&drbd_ee_mempool);
2113 mempool_exit(&drbd_request_mempool);
2114 kmem_cache_destroy(drbd_ee_cache);
2115 kmem_cache_destroy(drbd_request_cache);
2116 kmem_cache_destroy(drbd_bm_ext_cache);
2117 kmem_cache_destroy(drbd_al_ext_cache);
2118
2119 drbd_ee_cache = NULL;
2120 drbd_request_cache = NULL;
2121 drbd_bm_ext_cache = NULL;
2122 drbd_al_ext_cache = NULL;
2123
2124 return;
2125 }
2126
2127 static int drbd_create_mempools(void)
2128 {
2129 struct page *page;
2130 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count;
2131 int i, ret;
2132
2133 /* caches */
2134 drbd_request_cache = kmem_cache_create(
2135 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2136 if (drbd_request_cache == NULL)
2137 goto Enomem;
2138
2139 drbd_ee_cache = kmem_cache_create(
2140 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2141 if (drbd_ee_cache == NULL)
2142 goto Enomem;
2143
2144 drbd_bm_ext_cache = kmem_cache_create(
2145 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2146 if (drbd_bm_ext_cache == NULL)
2147 goto Enomem;
2148
2149 drbd_al_ext_cache = kmem_cache_create(
2150 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2151 if (drbd_al_ext_cache == NULL)
2152 goto Enomem;
2153
2154 /* mempools */
2155 ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0);
2156 if (ret)
2157 goto Enomem;
2158
2159 ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0,
2160 BIOSET_NEED_BVECS);
2161 if (ret)
2162 goto Enomem;
2163
2164 ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0);
2165 if (ret)
2166 goto Enomem;
2167
2168 ret = mempool_init_slab_pool(&drbd_request_mempool, number,
2169 drbd_request_cache);
2170 if (ret)
2171 goto Enomem;
2172
2173 ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache);
2174 if (ret)
2175 goto Enomem;
2176
2177 /* drbd's page pool */
2178 spin_lock_init(&drbd_pp_lock);
2179
2180 for (i = 0; i < number; i++) {
2181 page = alloc_page(GFP_HIGHUSER);
2182 if (!page)
2183 goto Enomem;
2184 set_page_private(page, (unsigned long)drbd_pp_pool);
2185 drbd_pp_pool = page;
2186 }
2187 drbd_pp_vacant = number;
2188
2189 return 0;
2190
2191 Enomem:
2192 drbd_destroy_mempools(); /* in case we allocated some */
2193 return -ENOMEM;
2194 }
2195
2196 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2197 {
2198 int rr;
2199
2200 rr = drbd_free_peer_reqs(device, &device->active_ee);
2201 if (rr)
2202 drbd_err(device, "%d EEs in active list found!\n", rr);
2203
2204 rr = drbd_free_peer_reqs(device, &device->sync_ee);
2205 if (rr)
2206 drbd_err(device, "%d EEs in sync list found!\n", rr);
2207
2208 rr = drbd_free_peer_reqs(device, &device->read_ee);
2209 if (rr)
2210 drbd_err(device, "%d EEs in read list found!\n", rr);
2211
2212 rr = drbd_free_peer_reqs(device, &device->done_ee);
2213 if (rr)
2214 drbd_err(device, "%d EEs in done list found!\n", rr);
2215
2216 rr = drbd_free_peer_reqs(device, &device->net_ee);
2217 if (rr)
2218 drbd_err(device, "%d EEs in net list found!\n", rr);
2219 }
2220
2221 /* caution. no locking. */
2222 void drbd_destroy_device(struct kref *kref)
2223 {
2224 struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2225 struct drbd_resource *resource = device->resource;
2226 struct drbd_peer_device *peer_device, *tmp_peer_device;
2227
2228 del_timer_sync(&device->request_timer);
2229
2230 /* paranoia asserts */
2231 D_ASSERT(device, device->open_cnt == 0);
2232 /* end paranoia asserts */
2233
2234 /* cleanup stuff that may have been allocated during
2235 * device (re-)configuration or state changes */
2236
2237 if (device->this_bdev)
2238 bdput(device->this_bdev);
2239
2240 drbd_backing_dev_free(device, device->ldev);
2241 device->ldev = NULL;
2242
2243 drbd_release_all_peer_reqs(device);
2244
2245 lc_destroy(device->act_log);
2246 lc_destroy(device->resync);
2247
2248 kfree(device->p_uuid);
2249 /* device->p_uuid = NULL; */
2250
2251 if (device->bitmap) /* should no longer be there. */
2252 drbd_bm_cleanup(device);
2253 __free_page(device->md_io.page);
2254 put_disk(device->vdisk);
2255 blk_cleanup_queue(device->rq_queue);
2256 kfree(device->rs_plan_s);
2257
2258 /* not for_each_connection(connection, resource):
2259 * those may have been cleaned up and disassociated already.
2260 */
2261 for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2262 kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2263 kfree(peer_device);
2264 }
2265 memset(device, 0xfd, sizeof(*device));
2266 kfree(device);
2267 kref_put(&resource->kref, drbd_destroy_resource);
2268 }
2269
2270 /* One global retry thread, if we need to push back some bio and have it
2271 * reinserted through our make request function.
2272 */
2273 static struct retry_worker {
2274 struct workqueue_struct *wq;
2275 struct work_struct worker;
2276
2277 spinlock_t lock;
2278 struct list_head writes;
2279 } retry;
2280
2281 static void do_retry(struct work_struct *ws)
2282 {
2283 struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2284 LIST_HEAD(writes);
2285 struct drbd_request *req, *tmp;
2286
2287 spin_lock_irq(&retry->lock);
2288 list_splice_init(&retry->writes, &writes);
2289 spin_unlock_irq(&retry->lock);
2290
2291 list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2292 struct drbd_device *device = req->device;
2293 struct bio *bio = req->master_bio;
2294 unsigned long start_jif = req->start_jif;
2295 bool expected;
2296
2297 expected =
2298 expect(atomic_read(&req->completion_ref) == 0) &&
2299 expect(req->rq_state & RQ_POSTPONED) &&
2300 expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2301 (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2302
2303 if (!expected)
2304 drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2305 req, atomic_read(&req->completion_ref),
2306 req->rq_state);
2307
2308 /* We still need to put one kref associated with the
2309 * "completion_ref" going zero in the code path that queued it
2310 * here. The request object may still be referenced by a
2311 * frozen local req->private_bio, in case we force-detached.
2312 */
2313 kref_put(&req->kref, drbd_req_destroy);
2314
2315 /* A single suspended or otherwise blocking device may stall
2316 * all others as well. Fortunately, this code path is to
2317 * recover from a situation that "should not happen":
2318 * concurrent writes in multi-primary setup.
2319 * In a "normal" lifecycle, this workqueue is supposed to be
2320 * destroyed without ever doing anything.
2321 * If it turns out to be an issue anyways, we can do per
2322 * resource (replication group) or per device (minor) retry
2323 * workqueues instead.
2324 */
2325
2326 /* We are not just doing generic_make_request(),
2327 * as we want to keep the start_time information. */
2328 inc_ap_bio(device);
2329 __drbd_make_request(device, bio, start_jif);
2330 }
2331 }
2332
2333 /* called via drbd_req_put_completion_ref(),
2334 * holds resource->req_lock */
2335 void drbd_restart_request(struct drbd_request *req)
2336 {
2337 unsigned long flags;
2338 spin_lock_irqsave(&retry.lock, flags);
2339 list_move_tail(&req->tl_requests, &retry.writes);
2340 spin_unlock_irqrestore(&retry.lock, flags);
2341
2342 /* Drop the extra reference that would otherwise
2343 * have been dropped by complete_master_bio.
2344 * do_retry() needs to grab a new one. */
2345 dec_ap_bio(req->device);
2346
2347 queue_work(retry.wq, &retry.worker);
2348 }
2349
2350 void drbd_destroy_resource(struct kref *kref)
2351 {
2352 struct drbd_resource *resource =
2353 container_of(kref, struct drbd_resource, kref);
2354
2355 idr_destroy(&resource->devices);
2356 free_cpumask_var(resource->cpu_mask);
2357 kfree(resource->name);
2358 memset(resource, 0xf2, sizeof(*resource));
2359 kfree(resource);
2360 }
2361
2362 void drbd_free_resource(struct drbd_resource *resource)
2363 {
2364 struct drbd_connection *connection, *tmp;
2365
2366 for_each_connection_safe(connection, tmp, resource) {
2367 list_del(&connection->connections);
2368 drbd_debugfs_connection_cleanup(connection);
2369 kref_put(&connection->kref, drbd_destroy_connection);
2370 }
2371 drbd_debugfs_resource_cleanup(resource);
2372 kref_put(&resource->kref, drbd_destroy_resource);
2373 }
2374
2375 static void drbd_cleanup(void)
2376 {
2377 unsigned int i;
2378 struct drbd_device *device;
2379 struct drbd_resource *resource, *tmp;
2380
2381 /* first remove proc,
2382 * drbdsetup uses it's presence to detect
2383 * whether DRBD is loaded.
2384 * If we would get stuck in proc removal,
2385 * but have netlink already deregistered,
2386 * some drbdsetup commands may wait forever
2387 * for an answer.
2388 */
2389 if (drbd_proc)
2390 remove_proc_entry("drbd", NULL);
2391
2392 if (retry.wq)
2393 destroy_workqueue(retry.wq);
2394
2395 drbd_genl_unregister();
2396
2397 idr_for_each_entry(&drbd_devices, device, i)
2398 drbd_delete_device(device);
2399
2400 /* not _rcu since, no other updater anymore. Genl already unregistered */
2401 for_each_resource_safe(resource, tmp, &drbd_resources) {
2402 list_del(&resource->resources);
2403 drbd_free_resource(resource);
2404 }
2405
2406 drbd_debugfs_cleanup();
2407
2408 drbd_destroy_mempools();
2409 unregister_blkdev(DRBD_MAJOR, "drbd");
2410
2411 idr_destroy(&drbd_devices);
2412
2413 pr_info("module cleanup done.\n");
2414 }
2415
2416 /**
2417 * drbd_congested() - Callback for the flusher thread
2418 * @congested_data: User data
2419 * @bdi_bits: Bits the BDI flusher thread is currently interested in
2420 *
2421 * Returns 1<<WB_async_congested and/or 1<<WB_sync_congested if we are congested.
2422 */
2423 static int drbd_congested(void *congested_data, int bdi_bits)
2424 {
2425 struct drbd_device *device = congested_data;
2426 struct request_queue *q;
2427 char reason = '-';
2428 int r = 0;
2429
2430 if (!may_inc_ap_bio(device)) {
2431 /* DRBD has frozen IO */
2432 r = bdi_bits;
2433 reason = 'd';
2434 goto out;
2435 }
2436
2437 if (test_bit(CALLBACK_PENDING, &first_peer_device(device)->connection->flags)) {
2438 r |= (1 << WB_async_congested);
2439 /* Without good local data, we would need to read from remote,
2440 * and that would need the worker thread as well, which is
2441 * currently blocked waiting for that usermode helper to
2442 * finish.
2443 */
2444 if (!get_ldev_if_state(device, D_UP_TO_DATE))
2445 r |= (1 << WB_sync_congested);
2446 else
2447 put_ldev(device);
2448 r &= bdi_bits;
2449 reason = 'c';
2450 goto out;
2451 }
2452
2453 if (get_ldev(device)) {
2454 q = bdev_get_queue(device->ldev->backing_bdev);
2455 r = bdi_congested(q->backing_dev_info, bdi_bits);
2456 put_ldev(device);
2457 if (r)
2458 reason = 'b';
2459 }
2460
2461 if (bdi_bits & (1 << WB_async_congested) &&
2462 test_bit(NET_CONGESTED, &first_peer_device(device)->connection->flags)) {
2463 r |= (1 << WB_async_congested);
2464 reason = reason == 'b' ? 'a' : 'n';
2465 }
2466
2467 out:
2468 device->congestion_reason = reason;
2469 return r;
2470 }
2471
2472 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2473 {
2474 spin_lock_init(&wq->q_lock);
2475 INIT_LIST_HEAD(&wq->q);
2476 init_waitqueue_head(&wq->q_wait);
2477 }
2478
2479 struct completion_work {
2480 struct drbd_work w;
2481 struct completion done;
2482 };
2483
2484 static int w_complete(struct drbd_work *w, int cancel)
2485 {
2486 struct completion_work *completion_work =
2487 container_of(w, struct completion_work, w);
2488
2489 complete(&completion_work->done);
2490 return 0;
2491 }
2492
2493 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2494 {
2495 struct completion_work completion_work;
2496
2497 completion_work.w.cb = w_complete;
2498 init_completion(&completion_work.done);
2499 drbd_queue_work(work_queue, &completion_work.w);
2500 wait_for_completion(&completion_work.done);
2501 }
2502
2503 struct drbd_resource *drbd_find_resource(const char *name)
2504 {
2505 struct drbd_resource *resource;
2506
2507 if (!name || !name[0])
2508 return NULL;
2509
2510 rcu_read_lock();
2511 for_each_resource_rcu(resource, &drbd_resources) {
2512 if (!strcmp(resource->name, name)) {
2513 kref_get(&resource->kref);
2514 goto found;
2515 }
2516 }
2517 resource = NULL;
2518 found:
2519 rcu_read_unlock();
2520 return resource;
2521 }
2522
2523 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2524 void *peer_addr, int peer_addr_len)
2525 {
2526 struct drbd_resource *resource;
2527 struct drbd_connection *connection;
2528
2529 rcu_read_lock();
2530 for_each_resource_rcu(resource, &drbd_resources) {
2531 for_each_connection_rcu(connection, resource) {
2532 if (connection->my_addr_len == my_addr_len &&
2533 connection->peer_addr_len == peer_addr_len &&
2534 !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2535 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2536 kref_get(&connection->kref);
2537 goto found;
2538 }
2539 }
2540 }
2541 connection = NULL;
2542 found:
2543 rcu_read_unlock();
2544 return connection;
2545 }
2546
2547 static int drbd_alloc_socket(struct drbd_socket *socket)
2548 {
2549 socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2550 if (!socket->rbuf)
2551 return -ENOMEM;
2552 socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2553 if (!socket->sbuf)
2554 return -ENOMEM;
2555 return 0;
2556 }
2557
2558 static void drbd_free_socket(struct drbd_socket *socket)
2559 {
2560 free_page((unsigned long) socket->sbuf);
2561 free_page((unsigned long) socket->rbuf);
2562 }
2563
2564 void conn_free_crypto(struct drbd_connection *connection)
2565 {
2566 drbd_free_sock(connection);
2567
2568 crypto_free_shash(connection->csums_tfm);
2569 crypto_free_shash(connection->verify_tfm);
2570 crypto_free_shash(connection->cram_hmac_tfm);
2571 crypto_free_shash(connection->integrity_tfm);
2572 crypto_free_shash(connection->peer_integrity_tfm);
2573 kfree(connection->int_dig_in);
2574 kfree(connection->int_dig_vv);
2575
2576 connection->csums_tfm = NULL;
2577 connection->verify_tfm = NULL;
2578 connection->cram_hmac_tfm = NULL;
2579 connection->integrity_tfm = NULL;
2580 connection->peer_integrity_tfm = NULL;
2581 connection->int_dig_in = NULL;
2582 connection->int_dig_vv = NULL;
2583 }
2584
2585 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2586 {
2587 struct drbd_connection *connection;
2588 cpumask_var_t new_cpu_mask;
2589 int err;
2590
2591 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2592 return -ENOMEM;
2593
2594 /* silently ignore cpu mask on UP kernel */
2595 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2596 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2597 cpumask_bits(new_cpu_mask), nr_cpu_ids);
2598 if (err == -EOVERFLOW) {
2599 /* So what. mask it out. */
2600 cpumask_var_t tmp_cpu_mask;
2601 if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2602 cpumask_setall(tmp_cpu_mask);
2603 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2604 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2605 res_opts->cpu_mask,
2606 strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2607 nr_cpu_ids);
2608 free_cpumask_var(tmp_cpu_mask);
2609 err = 0;
2610 }
2611 }
2612 if (err) {
2613 drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2614 /* retcode = ERR_CPU_MASK_PARSE; */
2615 goto fail;
2616 }
2617 }
2618 resource->res_opts = *res_opts;
2619 if (cpumask_empty(new_cpu_mask))
2620 drbd_calc_cpu_mask(&new_cpu_mask);
2621 if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2622 cpumask_copy(resource->cpu_mask, new_cpu_mask);
2623 for_each_connection_rcu(connection, resource) {
2624 connection->receiver.reset_cpu_mask = 1;
2625 connection->ack_receiver.reset_cpu_mask = 1;
2626 connection->worker.reset_cpu_mask = 1;
2627 }
2628 }
2629 err = 0;
2630
2631 fail:
2632 free_cpumask_var(new_cpu_mask);
2633 return err;
2634
2635 }
2636
2637 struct drbd_resource *drbd_create_resource(const char *name)
2638 {
2639 struct drbd_resource *resource;
2640
2641 resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2642 if (!resource)
2643 goto fail;
2644 resource->name = kstrdup(name, GFP_KERNEL);
2645 if (!resource->name)
2646 goto fail_free_resource;
2647 if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2648 goto fail_free_name;
2649 kref_init(&resource->kref);
2650 idr_init(&resource->devices);
2651 INIT_LIST_HEAD(&resource->connections);
2652 resource->write_ordering = WO_BDEV_FLUSH;
2653 list_add_tail_rcu(&resource->resources, &drbd_resources);
2654 mutex_init(&resource->conf_update);
2655 mutex_init(&resource->adm_mutex);
2656 spin_lock_init(&resource->req_lock);
2657 drbd_debugfs_resource_add(resource);
2658 return resource;
2659
2660 fail_free_name:
2661 kfree(resource->name);
2662 fail_free_resource:
2663 kfree(resource);
2664 fail:
2665 return NULL;
2666 }
2667
2668 /* caller must be under adm_mutex */
2669 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2670 {
2671 struct drbd_resource *resource;
2672 struct drbd_connection *connection;
2673
2674 connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2675 if (!connection)
2676 return NULL;
2677
2678 if (drbd_alloc_socket(&connection->data))
2679 goto fail;
2680 if (drbd_alloc_socket(&connection->meta))
2681 goto fail;
2682
2683 connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2684 if (!connection->current_epoch)
2685 goto fail;
2686
2687 INIT_LIST_HEAD(&connection->transfer_log);
2688
2689 INIT_LIST_HEAD(&connection->current_epoch->list);
2690 connection->epochs = 1;
2691 spin_lock_init(&connection->epoch_lock);
2692
2693 connection->send.seen_any_write_yet = false;
2694 connection->send.current_epoch_nr = 0;
2695 connection->send.current_epoch_writes = 0;
2696
2697 resource = drbd_create_resource(name);
2698 if (!resource)
2699 goto fail;
2700
2701 connection->cstate = C_STANDALONE;
2702 mutex_init(&connection->cstate_mutex);
2703 init_waitqueue_head(&connection->ping_wait);
2704 idr_init(&connection->peer_devices);
2705
2706 drbd_init_workqueue(&connection->sender_work);
2707 mutex_init(&connection->data.mutex);
2708 mutex_init(&connection->meta.mutex);
2709
2710 drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2711 connection->receiver.connection = connection;
2712 drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2713 connection->worker.connection = connection;
2714 drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2715 connection->ack_receiver.connection = connection;
2716
2717 kref_init(&connection->kref);
2718
2719 connection->resource = resource;
2720
2721 if (set_resource_options(resource, res_opts))
2722 goto fail_resource;
2723
2724 kref_get(&resource->kref);
2725 list_add_tail_rcu(&connection->connections, &resource->connections);
2726 drbd_debugfs_connection_add(connection);
2727 return connection;
2728
2729 fail_resource:
2730 list_del(&resource->resources);
2731 drbd_free_resource(resource);
2732 fail:
2733 kfree(connection->current_epoch);
2734 drbd_free_socket(&connection->meta);
2735 drbd_free_socket(&connection->data);
2736 kfree(connection);
2737 return NULL;
2738 }
2739
2740 void drbd_destroy_connection(struct kref *kref)
2741 {
2742 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2743 struct drbd_resource *resource = connection->resource;
2744
2745 if (atomic_read(&connection->current_epoch->epoch_size) != 0)
2746 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2747 kfree(connection->current_epoch);
2748
2749 idr_destroy(&connection->peer_devices);
2750
2751 drbd_free_socket(&connection->meta);
2752 drbd_free_socket(&connection->data);
2753 kfree(connection->int_dig_in);
2754 kfree(connection->int_dig_vv);
2755 memset(connection, 0xfc, sizeof(*connection));
2756 kfree(connection);
2757 kref_put(&resource->kref, drbd_destroy_resource);
2758 }
2759
2760 static int init_submitter(struct drbd_device *device)
2761 {
2762 /* opencoded create_singlethread_workqueue(),
2763 * to be able to say "drbd%d", ..., minor */
2764 device->submit.wq =
2765 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2766 if (!device->submit.wq)
2767 return -ENOMEM;
2768
2769 INIT_WORK(&device->submit.worker, do_submit);
2770 INIT_LIST_HEAD(&device->submit.writes);
2771 return 0;
2772 }
2773
2774 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2775 {
2776 struct drbd_resource *resource = adm_ctx->resource;
2777 struct drbd_connection *connection;
2778 struct drbd_device *device;
2779 struct drbd_peer_device *peer_device, *tmp_peer_device;
2780 struct gendisk *disk;
2781 struct request_queue *q;
2782 int id;
2783 int vnr = adm_ctx->volume;
2784 enum drbd_ret_code err = ERR_NOMEM;
2785
2786 device = minor_to_device(minor);
2787 if (device)
2788 return ERR_MINOR_OR_VOLUME_EXISTS;
2789
2790 /* GFP_KERNEL, we are outside of all write-out paths */
2791 device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2792 if (!device)
2793 return ERR_NOMEM;
2794 kref_init(&device->kref);
2795
2796 kref_get(&resource->kref);
2797 device->resource = resource;
2798 device->minor = minor;
2799 device->vnr = vnr;
2800
2801 drbd_init_set_defaults(device);
2802
2803 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE);
2804 if (!q)
2805 goto out_no_q;
2806 device->rq_queue = q;
2807 q->queuedata = device;
2808
2809 disk = alloc_disk(1);
2810 if (!disk)
2811 goto out_no_disk;
2812 device->vdisk = disk;
2813
2814 set_disk_ro(disk, true);
2815
2816 disk->queue = q;
2817 disk->major = DRBD_MAJOR;
2818 disk->first_minor = minor;
2819 disk->fops = &drbd_ops;
2820 sprintf(disk->disk_name, "drbd%d", minor);
2821 disk->private_data = device;
2822
2823 device->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2824 /* we have no partitions. we contain only ourselves. */
2825 device->this_bdev->bd_contains = device->this_bdev;
2826
2827 q->backing_dev_info->congested_fn = drbd_congested;
2828 q->backing_dev_info->congested_data = device;
2829
2830 blk_queue_make_request(q, drbd_make_request);
2831 blk_queue_write_cache(q, true, true);
2832 /* Setting the max_hw_sectors to an odd value of 8kibyte here
2833 This triggers a max_bio_size message upon first attach or connect */
2834 blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2835
2836 device->md_io.page = alloc_page(GFP_KERNEL);
2837 if (!device->md_io.page)
2838 goto out_no_io_page;
2839
2840 if (drbd_bm_init(device))
2841 goto out_no_bitmap;
2842 device->read_requests = RB_ROOT;
2843 device->write_requests = RB_ROOT;
2844
2845 id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2846 if (id < 0) {
2847 if (id == -ENOSPC)
2848 err = ERR_MINOR_OR_VOLUME_EXISTS;
2849 goto out_no_minor_idr;
2850 }
2851 kref_get(&device->kref);
2852
2853 id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2854 if (id < 0) {
2855 if (id == -ENOSPC)
2856 err = ERR_MINOR_OR_VOLUME_EXISTS;
2857 goto out_idr_remove_minor;
2858 }
2859 kref_get(&device->kref);
2860
2861 INIT_LIST_HEAD(&device->peer_devices);
2862 INIT_LIST_HEAD(&device->pending_bitmap_io);
2863 for_each_connection(connection, resource) {
2864 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2865 if (!peer_device)
2866 goto out_idr_remove_from_resource;
2867 peer_device->connection = connection;
2868 peer_device->device = device;
2869
2870 list_add(&peer_device->peer_devices, &device->peer_devices);
2871 kref_get(&device->kref);
2872
2873 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2874 if (id < 0) {
2875 if (id == -ENOSPC)
2876 err = ERR_INVALID_REQUEST;
2877 goto out_idr_remove_from_resource;
2878 }
2879 kref_get(&connection->kref);
2880 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2881 }
2882
2883 if (init_submitter(device)) {
2884 err = ERR_NOMEM;
2885 goto out_idr_remove_vol;
2886 }
2887
2888 add_disk(disk);
2889
2890 /* inherit the connection state */
2891 device->state.conn = first_connection(resource)->cstate;
2892 if (device->state.conn == C_WF_REPORT_PARAMS) {
2893 for_each_peer_device(peer_device, device)
2894 drbd_connected(peer_device);
2895 }
2896 /* move to create_peer_device() */
2897 for_each_peer_device(peer_device, device)
2898 drbd_debugfs_peer_device_add(peer_device);
2899 drbd_debugfs_device_add(device);
2900 return NO_ERROR;
2901
2902 out_idr_remove_vol:
2903 idr_remove(&connection->peer_devices, vnr);
2904 out_idr_remove_from_resource:
2905 for_each_connection(connection, resource) {
2906 peer_device = idr_remove(&connection->peer_devices, vnr);
2907 if (peer_device)
2908 kref_put(&connection->kref, drbd_destroy_connection);
2909 }
2910 for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2911 list_del(&peer_device->peer_devices);
2912 kfree(peer_device);
2913 }
2914 idr_remove(&resource->devices, vnr);
2915 out_idr_remove_minor:
2916 idr_remove(&drbd_devices, minor);
2917 synchronize_rcu();
2918 out_no_minor_idr:
2919 drbd_bm_cleanup(device);
2920 out_no_bitmap:
2921 __free_page(device->md_io.page);
2922 out_no_io_page:
2923 put_disk(disk);
2924 out_no_disk:
2925 blk_cleanup_queue(q);
2926 out_no_q:
2927 kref_put(&resource->kref, drbd_destroy_resource);
2928 kfree(device);
2929 return err;
2930 }
2931
2932 void drbd_delete_device(struct drbd_device *device)
2933 {
2934 struct drbd_resource *resource = device->resource;
2935 struct drbd_connection *connection;
2936 struct drbd_peer_device *peer_device;
2937
2938 /* move to free_peer_device() */
2939 for_each_peer_device(peer_device, device)
2940 drbd_debugfs_peer_device_cleanup(peer_device);
2941 drbd_debugfs_device_cleanup(device);
2942 for_each_connection(connection, resource) {
2943 idr_remove(&connection->peer_devices, device->vnr);
2944 kref_put(&device->kref, drbd_destroy_device);
2945 }
2946 idr_remove(&resource->devices, device->vnr);
2947 kref_put(&device->kref, drbd_destroy_device);
2948 idr_remove(&drbd_devices, device_to_minor(device));
2949 kref_put(&device->kref, drbd_destroy_device);
2950 del_gendisk(device->vdisk);
2951 synchronize_rcu();
2952 kref_put(&device->kref, drbd_destroy_device);
2953 }
2954
2955 static int __init drbd_init(void)
2956 {
2957 int err;
2958
2959 if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) {
2960 pr_err("invalid minor_count (%d)\n", drbd_minor_count);
2961 #ifdef MODULE
2962 return -EINVAL;
2963 #else
2964 drbd_minor_count = DRBD_MINOR_COUNT_DEF;
2965 #endif
2966 }
2967
2968 err = register_blkdev(DRBD_MAJOR, "drbd");
2969 if (err) {
2970 pr_err("unable to register block device major %d\n",
2971 DRBD_MAJOR);
2972 return err;
2973 }
2974
2975 /*
2976 * allocate all necessary structs
2977 */
2978 init_waitqueue_head(&drbd_pp_wait);
2979
2980 drbd_proc = NULL; /* play safe for drbd_cleanup */
2981 idr_init(&drbd_devices);
2982
2983 mutex_init(&resources_mutex);
2984 INIT_LIST_HEAD(&drbd_resources);
2985
2986 err = drbd_genl_register();
2987 if (err) {
2988 pr_err("unable to register generic netlink family\n");
2989 goto fail;
2990 }
2991
2992 err = drbd_create_mempools();
2993 if (err)
2994 goto fail;
2995
2996 err = -ENOMEM;
2997 drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show);
2998 if (!drbd_proc) {
2999 pr_err("unable to register proc file\n");
3000 goto fail;
3001 }
3002
3003 retry.wq = create_singlethread_workqueue("drbd-reissue");
3004 if (!retry.wq) {
3005 pr_err("unable to create retry workqueue\n");
3006 goto fail;
3007 }
3008 INIT_WORK(&retry.worker, do_retry);
3009 spin_lock_init(&retry.lock);
3010 INIT_LIST_HEAD(&retry.writes);
3011
3012 drbd_debugfs_init();
3013
3014 pr_info("initialized. "
3015 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
3016 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
3017 pr_info("%s\n", drbd_buildtag());
3018 pr_info("registered as block device major %d\n", DRBD_MAJOR);
3019 return 0; /* Success! */
3020
3021 fail:
3022 drbd_cleanup();
3023 if (err == -ENOMEM)
3024 pr_err("ran out of memory\n");
3025 else
3026 pr_err("initialization failure\n");
3027 return err;
3028 }
3029
3030 static void drbd_free_one_sock(struct drbd_socket *ds)
3031 {
3032 struct socket *s;
3033 mutex_lock(&ds->mutex);
3034 s = ds->socket;
3035 ds->socket = NULL;
3036 mutex_unlock(&ds->mutex);
3037 if (s) {
3038 /* so debugfs does not need to mutex_lock() */
3039 synchronize_rcu();
3040 kernel_sock_shutdown(s, SHUT_RDWR);
3041 sock_release(s);
3042 }
3043 }
3044
3045 void drbd_free_sock(struct drbd_connection *connection)
3046 {
3047 if (connection->data.socket)
3048 drbd_free_one_sock(&connection->data);
3049 if (connection->meta.socket)
3050 drbd_free_one_sock(&connection->meta);
3051 }
3052
3053 /* meta data management */
3054
3055 void conn_md_sync(struct drbd_connection *connection)
3056 {
3057 struct drbd_peer_device *peer_device;
3058 int vnr;
3059
3060 rcu_read_lock();
3061 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
3062 struct drbd_device *device = peer_device->device;
3063
3064 kref_get(&device->kref);
3065 rcu_read_unlock();
3066 drbd_md_sync(device);
3067 kref_put(&device->kref, drbd_destroy_device);
3068 rcu_read_lock();
3069 }
3070 rcu_read_unlock();
3071 }
3072
3073 /* aligned 4kByte */
3074 struct meta_data_on_disk {
3075 u64 la_size_sect; /* last agreed size. */
3076 u64 uuid[UI_SIZE]; /* UUIDs. */
3077 u64 device_uuid;
3078 u64 reserved_u64_1;
3079 u32 flags; /* MDF */
3080 u32 magic;
3081 u32 md_size_sect;
3082 u32 al_offset; /* offset to this block */
3083 u32 al_nr_extents; /* important for restoring the AL (userspace) */
3084 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
3085 u32 bm_offset; /* offset to the bitmap, from here */
3086 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */
3087 u32 la_peer_max_bio_size; /* last peer max_bio_size */
3088
3089 /* see al_tr_number_to_on_disk_sector() */
3090 u32 al_stripes;
3091 u32 al_stripe_size_4k;
3092
3093 u8 reserved_u8[4096 - (7*8 + 10*4)];
3094 } __packed;
3095
3096
3097
3098 void drbd_md_write(struct drbd_device *device, void *b)
3099 {
3100 struct meta_data_on_disk *buffer = b;
3101 sector_t sector;
3102 int i;
3103
3104 memset(buffer, 0, sizeof(*buffer));
3105
3106 buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(device->this_bdev));
3107 for (i = UI_CURRENT; i < UI_SIZE; i++)
3108 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3109 buffer->flags = cpu_to_be32(device->ldev->md.flags);
3110 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3111
3112 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect);
3113 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset);
3114 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3115 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3116 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3117
3118 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3119 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3120
3121 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3122 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3123
3124 D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3125 sector = device->ldev->md.md_offset;
3126
3127 if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3128 /* this was a try anyways ... */
3129 drbd_err(device, "meta data update failed!\n");
3130 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3131 }
3132 }
3133
3134 /**
3135 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3136 * @device: DRBD device.
3137 */
3138 void drbd_md_sync(struct drbd_device *device)
3139 {
3140 struct meta_data_on_disk *buffer;
3141
3142 /* Don't accidentally change the DRBD meta data layout. */
3143 BUILD_BUG_ON(UI_SIZE != 4);
3144 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3145
3146 del_timer(&device->md_sync_timer);
3147 /* timer may be rearmed by drbd_md_mark_dirty() now. */
3148 if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3149 return;
3150
3151 /* We use here D_FAILED and not D_ATTACHING because we try to write
3152 * metadata even if we detach due to a disk failure! */
3153 if (!get_ldev_if_state(device, D_FAILED))
3154 return;
3155
3156 buffer = drbd_md_get_buffer(device, __func__);
3157 if (!buffer)
3158 goto out;
3159
3160 drbd_md_write(device, buffer);
3161
3162 /* Update device->ldev->md.la_size_sect,
3163 * since we updated it on metadata. */
3164 device->ldev->md.la_size_sect = drbd_get_capacity(device->this_bdev);
3165
3166 drbd_md_put_buffer(device);
3167 out:
3168 put_ldev(device);
3169 }
3170
3171 static int check_activity_log_stripe_size(struct drbd_device *device,
3172 struct meta_data_on_disk *on_disk,
3173 struct drbd_md *in_core)
3174 {
3175 u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3176 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3177 u64 al_size_4k;
3178
3179 /* both not set: default to old fixed size activity log */
3180 if (al_stripes == 0 && al_stripe_size_4k == 0) {
3181 al_stripes = 1;
3182 al_stripe_size_4k = MD_32kB_SECT/8;
3183 }
3184
3185 /* some paranoia plausibility checks */
3186
3187 /* we need both values to be set */
3188 if (al_stripes == 0 || al_stripe_size_4k == 0)
3189 goto err;
3190
3191 al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3192
3193 /* Upper limit of activity log area, to avoid potential overflow
3194 * problems in al_tr_number_to_on_disk_sector(). As right now, more
3195 * than 72 * 4k blocks total only increases the amount of history,
3196 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */
3197 if (al_size_4k > (16 * 1024 * 1024/4))
3198 goto err;
3199
3200 /* Lower limit: we need at least 8 transaction slots (32kB)
3201 * to not break existing setups */
3202 if (al_size_4k < MD_32kB_SECT/8)
3203 goto err;
3204
3205 in_core->al_stripe_size_4k = al_stripe_size_4k;
3206 in_core->al_stripes = al_stripes;
3207 in_core->al_size_4k = al_size_4k;
3208
3209 return 0;
3210 err:
3211 drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3212 al_stripes, al_stripe_size_4k);
3213 return -EINVAL;
3214 }
3215
3216 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3217 {
3218 sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3219 struct drbd_md *in_core = &bdev->md;
3220 s32 on_disk_al_sect;
3221 s32 on_disk_bm_sect;
3222
3223 /* The on-disk size of the activity log, calculated from offsets, and
3224 * the size of the activity log calculated from the stripe settings,
3225 * should match.
3226 * Though we could relax this a bit: it is ok, if the striped activity log
3227 * fits in the available on-disk activity log size.
3228 * Right now, that would break how resize is implemented.
3229 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3230 * of possible unused padding space in the on disk layout. */
3231 if (in_core->al_offset < 0) {
3232 if (in_core->bm_offset > in_core->al_offset)
3233 goto err;
3234 on_disk_al_sect = -in_core->al_offset;
3235 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3236 } else {
3237 if (in_core->al_offset != MD_4kB_SECT)
3238 goto err;
3239 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3240 goto err;
3241
3242 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3243 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3244 }
3245
3246 /* old fixed size meta data is exactly that: fixed. */
3247 if (in_core->meta_dev_idx >= 0) {
3248 if (in_core->md_size_sect != MD_128MB_SECT
3249 || in_core->al_offset != MD_4kB_SECT
3250 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3251 || in_core->al_stripes != 1
3252 || in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3253 goto err;
3254 }
3255
3256 if (capacity < in_core->md_size_sect)
3257 goto err;
3258 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3259 goto err;
3260
3261 /* should be aligned, and at least 32k */
3262 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3263 goto err;
3264
3265 /* should fit (for now: exactly) into the available on-disk space;
3266 * overflow prevention is in check_activity_log_stripe_size() above. */
3267 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3268 goto err;
3269
3270 /* again, should be aligned */
3271 if (in_core->bm_offset & 7)
3272 goto err;
3273
3274 /* FIXME check for device grow with flex external meta data? */
3275
3276 /* can the available bitmap space cover the last agreed device size? */
3277 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3278 goto err;
3279
3280 return 0;
3281
3282 err:
3283 drbd_err(device, "meta data offsets don't make sense: idx=%d "
3284 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3285 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3286 in_core->meta_dev_idx,
3287 in_core->al_stripes, in_core->al_stripe_size_4k,
3288 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3289 (unsigned long long)in_core->la_size_sect,
3290 (unsigned long long)capacity);
3291
3292 return -EINVAL;
3293 }
3294
3295
3296 /**
3297 * drbd_md_read() - Reads in the meta data super block
3298 * @device: DRBD device.
3299 * @bdev: Device from which the meta data should be read in.
3300 *
3301 * Return NO_ERROR on success, and an enum drbd_ret_code in case
3302 * something goes wrong.
3303 *
3304 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3305 * even before @bdev is assigned to @device->ldev.
3306 */
3307 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3308 {
3309 struct meta_data_on_disk *buffer;
3310 u32 magic, flags;
3311 int i, rv = NO_ERROR;
3312
3313 if (device->state.disk != D_DISKLESS)
3314 return ERR_DISK_CONFIGURED;
3315
3316 buffer = drbd_md_get_buffer(device, __func__);
3317 if (!buffer)
3318 return ERR_NOMEM;
3319
3320 /* First, figure out where our meta data superblock is located,
3321 * and read it. */
3322 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3323 bdev->md.md_offset = drbd_md_ss(bdev);
3324 /* Even for (flexible or indexed) external meta data,
3325 * initially restrict us to the 4k superblock for now.
3326 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3327 bdev->md.md_size_sect = 8;
3328
3329 if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3330 REQ_OP_READ)) {
3331 /* NOTE: can't do normal error processing here as this is
3332 called BEFORE disk is attached */
3333 drbd_err(device, "Error while reading metadata.\n");
3334 rv = ERR_IO_MD_DISK;
3335 goto err;
3336 }
3337
3338 magic = be32_to_cpu(buffer->magic);
3339 flags = be32_to_cpu(buffer->flags);
3340 if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3341 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3342 /* btw: that's Activity Log clean, not "all" clean. */
3343 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3344 rv = ERR_MD_UNCLEAN;
3345 goto err;
3346 }
3347
3348 rv = ERR_MD_INVALID;
3349 if (magic != DRBD_MD_MAGIC_08) {
3350 if (magic == DRBD_MD_MAGIC_07)
3351 drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3352 else
3353 drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3354 goto err;
3355 }
3356
3357 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3358 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3359 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3360 goto err;
3361 }
3362
3363
3364 /* convert to in_core endian */
3365 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3366 for (i = UI_CURRENT; i < UI_SIZE; i++)
3367 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3368 bdev->md.flags = be32_to_cpu(buffer->flags);
3369 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3370
3371 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3372 bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3373 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3374
3375 if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3376 goto err;
3377 if (check_offsets_and_sizes(device, bdev))
3378 goto err;
3379
3380 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3381 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3382 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3383 goto err;
3384 }
3385 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3386 drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3387 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3388 goto err;
3389 }
3390
3391 rv = NO_ERROR;
3392
3393 spin_lock_irq(&device->resource->req_lock);
3394 if (device->state.conn < C_CONNECTED) {
3395 unsigned int peer;
3396 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3397 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3398 device->peer_max_bio_size = peer;
3399 }
3400 spin_unlock_irq(&device->resource->req_lock);
3401
3402 err:
3403 drbd_md_put_buffer(device);
3404
3405 return rv;
3406 }
3407
3408 /**
3409 * drbd_md_mark_dirty() - Mark meta data super block as dirty
3410 * @device: DRBD device.
3411 *
3412 * Call this function if you change anything that should be written to
3413 * the meta-data super block. This function sets MD_DIRTY, and starts a
3414 * timer that ensures that within five seconds you have to call drbd_md_sync().
3415 */
3416 #ifdef DEBUG
3417 void drbd_md_mark_dirty_(struct drbd_device *device, unsigned int line, const char *func)
3418 {
3419 if (!test_and_set_bit(MD_DIRTY, &device->flags)) {
3420 mod_timer(&device->md_sync_timer, jiffies + HZ);
3421 device->last_md_mark_dirty.line = line;
3422 device->last_md_mark_dirty.func = func;
3423 }
3424 }
3425 #else
3426 void drbd_md_mark_dirty(struct drbd_device *device)
3427 {
3428 if (!test_and_set_bit(MD_DIRTY, &device->flags))
3429 mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3430 }
3431 #endif
3432
3433 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3434 {
3435 int i;
3436
3437 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3438 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3439 }
3440
3441 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3442 {
3443 if (idx == UI_CURRENT) {
3444 if (device->state.role == R_PRIMARY)
3445 val |= 1;
3446 else
3447 val &= ~((u64)1);
3448
3449 drbd_set_ed_uuid(device, val);
3450 }
3451
3452 device->ldev->md.uuid[idx] = val;
3453 drbd_md_mark_dirty(device);
3454 }
3455
3456 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3457 {
3458 unsigned long flags;
3459 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3460 __drbd_uuid_set(device, idx, val);
3461 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3462 }
3463
3464 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3465 {
3466 unsigned long flags;
3467 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3468 if (device->ldev->md.uuid[idx]) {
3469 drbd_uuid_move_history(device);
3470 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3471 }
3472 __drbd_uuid_set(device, idx, val);
3473 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3474 }
3475
3476 /**
3477 * drbd_uuid_new_current() - Creates a new current UUID
3478 * @device: DRBD device.
3479 *
3480 * Creates a new current UUID, and rotates the old current UUID into
3481 * the bitmap slot. Causes an incremental resync upon next connect.
3482 */
3483 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3484 {
3485 u64 val;
3486 unsigned long long bm_uuid;
3487
3488 get_random_bytes(&val, sizeof(u64));
3489
3490 spin_lock_irq(&device->ldev->md.uuid_lock);
3491 bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3492
3493 if (bm_uuid)
3494 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3495
3496 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3497 __drbd_uuid_set(device, UI_CURRENT, val);
3498 spin_unlock_irq(&device->ldev->md.uuid_lock);
3499
3500 drbd_print_uuids(device, "new current UUID");
3501 /* get it to stable storage _now_ */
3502 drbd_md_sync(device);
3503 }
3504
3505 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3506 {
3507 unsigned long flags;
3508 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3509 return;
3510
3511 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3512 if (val == 0) {
3513 drbd_uuid_move_history(device);
3514 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3515 device->ldev->md.uuid[UI_BITMAP] = 0;
3516 } else {
3517 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3518 if (bm_uuid)
3519 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3520
3521 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3522 }
3523 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3524
3525 drbd_md_mark_dirty(device);
3526 }
3527
3528 /**
3529 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3530 * @device: DRBD device.
3531 *
3532 * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3533 */
3534 int drbd_bmio_set_n_write(struct drbd_device *device) __must_hold(local)
3535 {
3536 int rv = -EIO;
3537
3538 drbd_md_set_flag(device, MDF_FULL_SYNC);
3539 drbd_md_sync(device);
3540 drbd_bm_set_all(device);
3541
3542 rv = drbd_bm_write(device);
3543
3544 if (!rv) {
3545 drbd_md_clear_flag(device, MDF_FULL_SYNC);
3546 drbd_md_sync(device);
3547 }
3548
3549 return rv;
3550 }
3551
3552 /**
3553 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3554 * @device: DRBD device.
3555 *
3556 * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3557 */
3558 int drbd_bmio_clear_n_write(struct drbd_device *device) __must_hold(local)
3559 {
3560 drbd_resume_al(device);
3561 drbd_bm_clear_all(device);
3562 return drbd_bm_write(device);
3563 }
3564
3565 static int w_bitmap_io(struct drbd_work *w, int unused)
3566 {
3567 struct drbd_device *device =
3568 container_of(w, struct drbd_device, bm_io_work.w);
3569 struct bm_io_work *work = &device->bm_io_work;
3570 int rv = -EIO;
3571
3572 if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3573 int cnt = atomic_read(&device->ap_bio_cnt);
3574 if (cnt)
3575 drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3576 cnt, work->why);
3577 }
3578
3579 if (get_ldev(device)) {
3580 drbd_bm_lock(device, work->why, work->flags);
3581 rv = work->io_fn(device);
3582 drbd_bm_unlock(device);
3583 put_ldev(device);
3584 }
3585
3586 clear_bit_unlock(BITMAP_IO, &device->flags);
3587 wake_up(&device->misc_wait);
3588
3589 if (work->done)
3590 work->done(device, rv);
3591
3592 clear_bit(BITMAP_IO_QUEUED, &device->flags);
3593 work->why = NULL;
3594 work->flags = 0;
3595
3596 return 0;
3597 }
3598
3599 /**
3600 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3601 * @device: DRBD device.
3602 * @io_fn: IO callback to be called when bitmap IO is possible
3603 * @done: callback to be called after the bitmap IO was performed
3604 * @why: Descriptive text of the reason for doing the IO
3605 *
3606 * While IO on the bitmap happens we freeze application IO thus we ensure
3607 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3608 * called from worker context. It MUST NOT be used while a previous such
3609 * work is still pending!
3610 *
3611 * Its worker function encloses the call of io_fn() by get_ldev() and
3612 * put_ldev().
3613 */
3614 void drbd_queue_bitmap_io(struct drbd_device *device,
3615 int (*io_fn)(struct drbd_device *),
3616 void (*done)(struct drbd_device *, int),
3617 char *why, enum bm_flag flags)
3618 {
3619 D_ASSERT(device, current == first_peer_device(device)->connection->worker.task);
3620
3621 D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3622 D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3623 D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3624 if (device->bm_io_work.why)
3625 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3626 why, device->bm_io_work.why);
3627
3628 device->bm_io_work.io_fn = io_fn;
3629 device->bm_io_work.done = done;
3630 device->bm_io_work.why = why;
3631 device->bm_io_work.flags = flags;
3632
3633 spin_lock_irq(&device->resource->req_lock);
3634 set_bit(BITMAP_IO, &device->flags);
3635 /* don't wait for pending application IO if the caller indicates that
3636 * application IO does not conflict anyways. */
3637 if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3638 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3639 drbd_queue_work(&first_peer_device(device)->connection->sender_work,
3640 &device->bm_io_work.w);
3641 }
3642 spin_unlock_irq(&device->resource->req_lock);
3643 }
3644
3645 /**
3646 * drbd_bitmap_io() - Does an IO operation on the whole bitmap
3647 * @device: DRBD device.
3648 * @io_fn: IO callback to be called when bitmap IO is possible
3649 * @why: Descriptive text of the reason for doing the IO
3650 *
3651 * freezes application IO while that the actual IO operations runs. This
3652 * functions MAY NOT be called from worker context.
3653 */
3654 int drbd_bitmap_io(struct drbd_device *device, int (*io_fn)(struct drbd_device *),
3655 char *why, enum bm_flag flags)
3656 {
3657 /* Only suspend io, if some operation is supposed to be locked out */
3658 const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3659 int rv;
3660
3661 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3662
3663 if (do_suspend_io)
3664 drbd_suspend_io(device);
3665
3666 drbd_bm_lock(device, why, flags);
3667 rv = io_fn(device);
3668 drbd_bm_unlock(device);
3669
3670 if (do_suspend_io)
3671 drbd_resume_io(device);
3672
3673 return rv;
3674 }
3675
3676 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3677 {
3678 if ((device->ldev->md.flags & flag) != flag) {
3679 drbd_md_mark_dirty(device);
3680 device->ldev->md.flags |= flag;
3681 }
3682 }
3683
3684 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3685 {
3686 if ((device->ldev->md.flags & flag) != 0) {
3687 drbd_md_mark_dirty(device);
3688 device->ldev->md.flags &= ~flag;
3689 }
3690 }
3691 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3692 {
3693 return (bdev->md.flags & flag) != 0;
3694 }
3695
3696 static void md_sync_timer_fn(struct timer_list *t)
3697 {
3698 struct drbd_device *device = from_timer(device, t, md_sync_timer);
3699 drbd_device_post_work(device, MD_SYNC);
3700 }
3701
3702 const char *cmdname(enum drbd_packet cmd)
3703 {
3704 /* THINK may need to become several global tables
3705 * when we want to support more than
3706 * one PRO_VERSION */
3707 static const char *cmdnames[] = {
3708 [P_DATA] = "Data",
3709 [P_WSAME] = "WriteSame",
3710 [P_TRIM] = "Trim",
3711 [P_DATA_REPLY] = "DataReply",
3712 [P_RS_DATA_REPLY] = "RSDataReply",
3713 [P_BARRIER] = "Barrier",
3714 [P_BITMAP] = "ReportBitMap",
3715 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget",
3716 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource",
3717 [P_UNPLUG_REMOTE] = "UnplugRemote",
3718 [P_DATA_REQUEST] = "DataRequest",
3719 [P_RS_DATA_REQUEST] = "RSDataRequest",
3720 [P_SYNC_PARAM] = "SyncParam",
3721 [P_SYNC_PARAM89] = "SyncParam89",
3722 [P_PROTOCOL] = "ReportProtocol",
3723 [P_UUIDS] = "ReportUUIDs",
3724 [P_SIZES] = "ReportSizes",
3725 [P_STATE] = "ReportState",
3726 [P_SYNC_UUID] = "ReportSyncUUID",
3727 [P_AUTH_CHALLENGE] = "AuthChallenge",
3728 [P_AUTH_RESPONSE] = "AuthResponse",
3729 [P_PING] = "Ping",
3730 [P_PING_ACK] = "PingAck",
3731 [P_RECV_ACK] = "RecvAck",
3732 [P_WRITE_ACK] = "WriteAck",
3733 [P_RS_WRITE_ACK] = "RSWriteAck",
3734 [P_SUPERSEDED] = "Superseded",
3735 [P_NEG_ACK] = "NegAck",
3736 [P_NEG_DREPLY] = "NegDReply",
3737 [P_NEG_RS_DREPLY] = "NegRSDReply",
3738 [P_BARRIER_ACK] = "BarrierAck",
3739 [P_STATE_CHG_REQ] = "StateChgRequest",
3740 [P_STATE_CHG_REPLY] = "StateChgReply",
3741 [P_OV_REQUEST] = "OVRequest",
3742 [P_OV_REPLY] = "OVReply",
3743 [P_OV_RESULT] = "OVResult",
3744 [P_CSUM_RS_REQUEST] = "CsumRSRequest",
3745 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync",
3746 [P_COMPRESSED_BITMAP] = "CBitmap",
3747 [P_DELAY_PROBE] = "DelayProbe",
3748 [P_OUT_OF_SYNC] = "OutOfSync",
3749 [P_RETRY_WRITE] = "RetryWrite",
3750 [P_RS_CANCEL] = "RSCancel",
3751 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req",
3752 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply",
3753 [P_RETRY_WRITE] = "retry_write",
3754 [P_PROTOCOL_UPDATE] = "protocol_update",
3755 [P_RS_THIN_REQ] = "rs_thin_req",
3756 [P_RS_DEALLOCATED] = "rs_deallocated",
3757
3758 /* enum drbd_packet, but not commands - obsoleted flags:
3759 * P_MAY_IGNORE
3760 * P_MAX_OPT_CMD
3761 */
3762 };
3763
3764 /* too big for the array: 0xfffX */
3765 if (cmd == P_INITIAL_META)
3766 return "InitialMeta";
3767 if (cmd == P_INITIAL_DATA)
3768 return "InitialData";
3769 if (cmd == P_CONNECTION_FEATURES)
3770 return "ConnectionFeatures";
3771 if (cmd >= ARRAY_SIZE(cmdnames))
3772 return "Unknown";
3773 return cmdnames[cmd];
3774 }
3775
3776 /**
3777 * drbd_wait_misc - wait for a request to make progress
3778 * @device: device associated with the request
3779 * @i: the struct drbd_interval embedded in struct drbd_request or
3780 * struct drbd_peer_request
3781 */
3782 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3783 {
3784 struct net_conf *nc;
3785 DEFINE_WAIT(wait);
3786 long timeout;
3787
3788 rcu_read_lock();
3789 nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3790 if (!nc) {
3791 rcu_read_unlock();
3792 return -ETIMEDOUT;
3793 }
3794 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3795 rcu_read_unlock();
3796
3797 /* Indicate to wake up device->misc_wait on progress. */
3798 i->waiting = true;
3799 prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3800 spin_unlock_irq(&device->resource->req_lock);
3801 timeout = schedule_timeout(timeout);
3802 finish_wait(&device->misc_wait, &wait);
3803 spin_lock_irq(&device->resource->req_lock);
3804 if (!timeout || device->state.conn < C_CONNECTED)
3805 return -ETIMEDOUT;
3806 if (signal_pending(current))
3807 return -ERESTARTSYS;
3808 return 0;
3809 }
3810
3811 void lock_all_resources(void)
3812 {
3813 struct drbd_resource *resource;
3814 int __maybe_unused i = 0;
3815
3816 mutex_lock(&resources_mutex);
3817 local_irq_disable();
3818 for_each_resource(resource, &drbd_resources)
3819 spin_lock_nested(&resource->req_lock, i++);
3820 }
3821
3822 void unlock_all_resources(void)
3823 {
3824 struct drbd_resource *resource;
3825
3826 for_each_resource(resource, &drbd_resources)
3827 spin_unlock(&resource->req_lock);
3828 local_irq_enable();
3829 mutex_unlock(&resources_mutex);
3830 }
3831
3832 #ifdef CONFIG_DRBD_FAULT_INJECTION
3833 /* Fault insertion support including random number generator shamelessly
3834 * stolen from kernel/rcutorture.c */
3835 struct fault_random_state {
3836 unsigned long state;
3837 unsigned long count;
3838 };
3839
3840 #define FAULT_RANDOM_MULT 39916801 /* prime */
3841 #define FAULT_RANDOM_ADD 479001701 /* prime */
3842 #define FAULT_RANDOM_REFRESH 10000
3843
3844 /*
3845 * Crude but fast random-number generator. Uses a linear congruential
3846 * generator, with occasional help from get_random_bytes().
3847 */
3848 static unsigned long
3849 _drbd_fault_random(struct fault_random_state *rsp)
3850 {
3851 long refresh;
3852
3853 if (!rsp->count--) {
3854 get_random_bytes(&refresh, sizeof(refresh));
3855 rsp->state += refresh;
3856 rsp->count = FAULT_RANDOM_REFRESH;
3857 }
3858 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3859 return swahw32(rsp->state);
3860 }
3861
3862 static char *
3863 _drbd_fault_str(unsigned int type) {
3864 static char *_faults[] = {
3865 [DRBD_FAULT_MD_WR] = "Meta-data write",
3866 [DRBD_FAULT_MD_RD] = "Meta-data read",
3867 [DRBD_FAULT_RS_WR] = "Resync write",
3868 [DRBD_FAULT_RS_RD] = "Resync read",
3869 [DRBD_FAULT_DT_WR] = "Data write",
3870 [DRBD_FAULT_DT_RD] = "Data read",
3871 [DRBD_FAULT_DT_RA] = "Data read ahead",
3872 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3873 [DRBD_FAULT_AL_EE] = "EE allocation",
3874 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3875 };
3876
3877 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3878 }
3879
3880 unsigned int
3881 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3882 {
3883 static struct fault_random_state rrs = {0, 0};
3884
3885 unsigned int ret = (
3886 (drbd_fault_devs == 0 ||
3887 ((1 << device_to_minor(device)) & drbd_fault_devs) != 0) &&
3888 (((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate));
3889
3890 if (ret) {
3891 drbd_fault_count++;
3892
3893 if (__ratelimit(&drbd_ratelimit_state))
3894 drbd_warn(device, "***Simulating %s failure\n",
3895 _drbd_fault_str(type));
3896 }
3897
3898 return ret;
3899 }
3900 #endif
3901
3902 const char *drbd_buildtag(void)
3903 {
3904 /* DRBD built from external sources has here a reference to the
3905 git hash of the source code. */
3906
3907 static char buildtag[38] = "\0uilt-in";
3908
3909 if (buildtag[0] == 0) {
3910 #ifdef MODULE
3911 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3912 #else
3913 buildtag[0] = 'b';
3914 #endif
3915 }
3916
3917 return buildtag;
3918 }
3919
3920 module_init(drbd_init)
3921 module_exit(drbd_cleanup)
3922
3923 EXPORT_SYMBOL(drbd_conn_str);
3924 EXPORT_SYMBOL(drbd_role_str);
3925 EXPORT_SYMBOL(drbd_disk_str);
3926 EXPORT_SYMBOL(drbd_set_st_err_str);