]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/dma-buf/dma-buf.c
Merge branch 'uaccess.__copy_from_user' of git://git.kernel.org/pub/scm/linux/kernel...
[thirdparty/linux.git] / drivers / dma-buf / dma-buf.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Framework for buffer objects that can be shared across devices/subsystems.
4 *
5 * Copyright(C) 2011 Linaro Limited. All rights reserved.
6 * Author: Sumit Semwal <sumit.semwal@ti.com>
7 *
8 * Many thanks to linaro-mm-sig list, and specially
9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11 * refining of this idea.
12 */
13
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/anon_inodes.h>
19 #include <linux/export.h>
20 #include <linux/debugfs.h>
21 #include <linux/module.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/dma-resv.h>
25 #include <linux/mm.h>
26 #include <linux/mount.h>
27 #include <linux/pseudo_fs.h>
28
29 #include <uapi/linux/dma-buf.h>
30 #include <uapi/linux/magic.h>
31
32 static inline int is_dma_buf_file(struct file *);
33
34 struct dma_buf_list {
35 struct list_head head;
36 struct mutex lock;
37 };
38
39 static struct dma_buf_list db_list;
40
41 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
42 {
43 struct dma_buf *dmabuf;
44 char name[DMA_BUF_NAME_LEN];
45 size_t ret = 0;
46
47 dmabuf = dentry->d_fsdata;
48 dma_resv_lock(dmabuf->resv, NULL);
49 if (dmabuf->name)
50 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
51 dma_resv_unlock(dmabuf->resv);
52
53 return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
54 dentry->d_name.name, ret > 0 ? name : "");
55 }
56
57 static const struct dentry_operations dma_buf_dentry_ops = {
58 .d_dname = dmabuffs_dname,
59 };
60
61 static struct vfsmount *dma_buf_mnt;
62
63 static int dma_buf_fs_init_context(struct fs_context *fc)
64 {
65 struct pseudo_fs_context *ctx;
66
67 ctx = init_pseudo(fc, DMA_BUF_MAGIC);
68 if (!ctx)
69 return -ENOMEM;
70 ctx->dops = &dma_buf_dentry_ops;
71 return 0;
72 }
73
74 static struct file_system_type dma_buf_fs_type = {
75 .name = "dmabuf",
76 .init_fs_context = dma_buf_fs_init_context,
77 .kill_sb = kill_anon_super,
78 };
79
80 static int dma_buf_release(struct inode *inode, struct file *file)
81 {
82 struct dma_buf *dmabuf;
83
84 if (!is_dma_buf_file(file))
85 return -EINVAL;
86
87 dmabuf = file->private_data;
88
89 BUG_ON(dmabuf->vmapping_counter);
90
91 /*
92 * Any fences that a dma-buf poll can wait on should be signaled
93 * before releasing dma-buf. This is the responsibility of each
94 * driver that uses the reservation objects.
95 *
96 * If you hit this BUG() it means someone dropped their ref to the
97 * dma-buf while still having pending operation to the buffer.
98 */
99 BUG_ON(dmabuf->cb_shared.active || dmabuf->cb_excl.active);
100
101 dmabuf->ops->release(dmabuf);
102
103 mutex_lock(&db_list.lock);
104 list_del(&dmabuf->list_node);
105 mutex_unlock(&db_list.lock);
106
107 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
108 dma_resv_fini(dmabuf->resv);
109
110 module_put(dmabuf->owner);
111 kfree(dmabuf->name);
112 kfree(dmabuf);
113 return 0;
114 }
115
116 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
117 {
118 struct dma_buf *dmabuf;
119
120 if (!is_dma_buf_file(file))
121 return -EINVAL;
122
123 dmabuf = file->private_data;
124
125 /* check if buffer supports mmap */
126 if (!dmabuf->ops->mmap)
127 return -EINVAL;
128
129 /* check for overflowing the buffer's size */
130 if (vma->vm_pgoff + vma_pages(vma) >
131 dmabuf->size >> PAGE_SHIFT)
132 return -EINVAL;
133
134 return dmabuf->ops->mmap(dmabuf, vma);
135 }
136
137 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
138 {
139 struct dma_buf *dmabuf;
140 loff_t base;
141
142 if (!is_dma_buf_file(file))
143 return -EBADF;
144
145 dmabuf = file->private_data;
146
147 /* only support discovering the end of the buffer,
148 but also allow SEEK_SET to maintain the idiomatic
149 SEEK_END(0), SEEK_CUR(0) pattern */
150 if (whence == SEEK_END)
151 base = dmabuf->size;
152 else if (whence == SEEK_SET)
153 base = 0;
154 else
155 return -EINVAL;
156
157 if (offset != 0)
158 return -EINVAL;
159
160 return base + offset;
161 }
162
163 /**
164 * DOC: fence polling
165 *
166 * To support cross-device and cross-driver synchronization of buffer access
167 * implicit fences (represented internally in the kernel with &struct fence) can
168 * be attached to a &dma_buf. The glue for that and a few related things are
169 * provided in the &dma_resv structure.
170 *
171 * Userspace can query the state of these implicitly tracked fences using poll()
172 * and related system calls:
173 *
174 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
175 * most recent write or exclusive fence.
176 *
177 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
178 * all attached fences, shared and exclusive ones.
179 *
180 * Note that this only signals the completion of the respective fences, i.e. the
181 * DMA transfers are complete. Cache flushing and any other necessary
182 * preparations before CPU access can begin still need to happen.
183 */
184
185 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
186 {
187 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
188 unsigned long flags;
189
190 spin_lock_irqsave(&dcb->poll->lock, flags);
191 wake_up_locked_poll(dcb->poll, dcb->active);
192 dcb->active = 0;
193 spin_unlock_irqrestore(&dcb->poll->lock, flags);
194 }
195
196 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
197 {
198 struct dma_buf *dmabuf;
199 struct dma_resv *resv;
200 struct dma_resv_list *fobj;
201 struct dma_fence *fence_excl;
202 __poll_t events;
203 unsigned shared_count, seq;
204
205 dmabuf = file->private_data;
206 if (!dmabuf || !dmabuf->resv)
207 return EPOLLERR;
208
209 resv = dmabuf->resv;
210
211 poll_wait(file, &dmabuf->poll, poll);
212
213 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
214 if (!events)
215 return 0;
216
217 retry:
218 seq = read_seqcount_begin(&resv->seq);
219 rcu_read_lock();
220
221 fobj = rcu_dereference(resv->fence);
222 if (fobj)
223 shared_count = fobj->shared_count;
224 else
225 shared_count = 0;
226 fence_excl = rcu_dereference(resv->fence_excl);
227 if (read_seqcount_retry(&resv->seq, seq)) {
228 rcu_read_unlock();
229 goto retry;
230 }
231
232 if (fence_excl && (!(events & EPOLLOUT) || shared_count == 0)) {
233 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_excl;
234 __poll_t pevents = EPOLLIN;
235
236 if (shared_count == 0)
237 pevents |= EPOLLOUT;
238
239 spin_lock_irq(&dmabuf->poll.lock);
240 if (dcb->active) {
241 dcb->active |= pevents;
242 events &= ~pevents;
243 } else
244 dcb->active = pevents;
245 spin_unlock_irq(&dmabuf->poll.lock);
246
247 if (events & pevents) {
248 if (!dma_fence_get_rcu(fence_excl)) {
249 /* force a recheck */
250 events &= ~pevents;
251 dma_buf_poll_cb(NULL, &dcb->cb);
252 } else if (!dma_fence_add_callback(fence_excl, &dcb->cb,
253 dma_buf_poll_cb)) {
254 events &= ~pevents;
255 dma_fence_put(fence_excl);
256 } else {
257 /*
258 * No callback queued, wake up any additional
259 * waiters.
260 */
261 dma_fence_put(fence_excl);
262 dma_buf_poll_cb(NULL, &dcb->cb);
263 }
264 }
265 }
266
267 if ((events & EPOLLOUT) && shared_count > 0) {
268 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_shared;
269 int i;
270
271 /* Only queue a new callback if no event has fired yet */
272 spin_lock_irq(&dmabuf->poll.lock);
273 if (dcb->active)
274 events &= ~EPOLLOUT;
275 else
276 dcb->active = EPOLLOUT;
277 spin_unlock_irq(&dmabuf->poll.lock);
278
279 if (!(events & EPOLLOUT))
280 goto out;
281
282 for (i = 0; i < shared_count; ++i) {
283 struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
284
285 if (!dma_fence_get_rcu(fence)) {
286 /*
287 * fence refcount dropped to zero, this means
288 * that fobj has been freed
289 *
290 * call dma_buf_poll_cb and force a recheck!
291 */
292 events &= ~EPOLLOUT;
293 dma_buf_poll_cb(NULL, &dcb->cb);
294 break;
295 }
296 if (!dma_fence_add_callback(fence, &dcb->cb,
297 dma_buf_poll_cb)) {
298 dma_fence_put(fence);
299 events &= ~EPOLLOUT;
300 break;
301 }
302 dma_fence_put(fence);
303 }
304
305 /* No callback queued, wake up any additional waiters. */
306 if (i == shared_count)
307 dma_buf_poll_cb(NULL, &dcb->cb);
308 }
309
310 out:
311 rcu_read_unlock();
312 return events;
313 }
314
315 /**
316 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
317 * The name of the dma-buf buffer can only be set when the dma-buf is not
318 * attached to any devices. It could theoritically support changing the
319 * name of the dma-buf if the same piece of memory is used for multiple
320 * purpose between different devices.
321 *
322 * @dmabuf [in] dmabuf buffer that will be renamed.
323 * @buf: [in] A piece of userspace memory that contains the name of
324 * the dma-buf.
325 *
326 * Returns 0 on success. If the dma-buf buffer is already attached to
327 * devices, return -EBUSY.
328 *
329 */
330 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
331 {
332 char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
333 long ret = 0;
334
335 if (IS_ERR(name))
336 return PTR_ERR(name);
337
338 dma_resv_lock(dmabuf->resv, NULL);
339 if (!list_empty(&dmabuf->attachments)) {
340 ret = -EBUSY;
341 kfree(name);
342 goto out_unlock;
343 }
344 kfree(dmabuf->name);
345 dmabuf->name = name;
346
347 out_unlock:
348 dma_resv_unlock(dmabuf->resv);
349 return ret;
350 }
351
352 static long dma_buf_ioctl(struct file *file,
353 unsigned int cmd, unsigned long arg)
354 {
355 struct dma_buf *dmabuf;
356 struct dma_buf_sync sync;
357 enum dma_data_direction direction;
358 int ret;
359
360 dmabuf = file->private_data;
361
362 switch (cmd) {
363 case DMA_BUF_IOCTL_SYNC:
364 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
365 return -EFAULT;
366
367 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
368 return -EINVAL;
369
370 switch (sync.flags & DMA_BUF_SYNC_RW) {
371 case DMA_BUF_SYNC_READ:
372 direction = DMA_FROM_DEVICE;
373 break;
374 case DMA_BUF_SYNC_WRITE:
375 direction = DMA_TO_DEVICE;
376 break;
377 case DMA_BUF_SYNC_RW:
378 direction = DMA_BIDIRECTIONAL;
379 break;
380 default:
381 return -EINVAL;
382 }
383
384 if (sync.flags & DMA_BUF_SYNC_END)
385 ret = dma_buf_end_cpu_access(dmabuf, direction);
386 else
387 ret = dma_buf_begin_cpu_access(dmabuf, direction);
388
389 return ret;
390
391 case DMA_BUF_SET_NAME_A:
392 case DMA_BUF_SET_NAME_B:
393 return dma_buf_set_name(dmabuf, (const char __user *)arg);
394
395 default:
396 return -ENOTTY;
397 }
398 }
399
400 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
401 {
402 struct dma_buf *dmabuf = file->private_data;
403
404 seq_printf(m, "size:\t%zu\n", dmabuf->size);
405 /* Don't count the temporary reference taken inside procfs seq_show */
406 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
407 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
408 dma_resv_lock(dmabuf->resv, NULL);
409 if (dmabuf->name)
410 seq_printf(m, "name:\t%s\n", dmabuf->name);
411 dma_resv_unlock(dmabuf->resv);
412 }
413
414 static const struct file_operations dma_buf_fops = {
415 .release = dma_buf_release,
416 .mmap = dma_buf_mmap_internal,
417 .llseek = dma_buf_llseek,
418 .poll = dma_buf_poll,
419 .unlocked_ioctl = dma_buf_ioctl,
420 .compat_ioctl = compat_ptr_ioctl,
421 .show_fdinfo = dma_buf_show_fdinfo,
422 };
423
424 /*
425 * is_dma_buf_file - Check if struct file* is associated with dma_buf
426 */
427 static inline int is_dma_buf_file(struct file *file)
428 {
429 return file->f_op == &dma_buf_fops;
430 }
431
432 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
433 {
434 struct file *file;
435 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
436
437 if (IS_ERR(inode))
438 return ERR_CAST(inode);
439
440 inode->i_size = dmabuf->size;
441 inode_set_bytes(inode, dmabuf->size);
442
443 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
444 flags, &dma_buf_fops);
445 if (IS_ERR(file))
446 goto err_alloc_file;
447 file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
448 file->private_data = dmabuf;
449 file->f_path.dentry->d_fsdata = dmabuf;
450
451 return file;
452
453 err_alloc_file:
454 iput(inode);
455 return file;
456 }
457
458 /**
459 * DOC: dma buf device access
460 *
461 * For device DMA access to a shared DMA buffer the usual sequence of operations
462 * is fairly simple:
463 *
464 * 1. The exporter defines his exporter instance using
465 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
466 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace
467 * as a file descriptor by calling dma_buf_fd().
468 *
469 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
470 * to share with: First the filedescriptor is converted to a &dma_buf using
471 * dma_buf_get(). Then the buffer is attached to the device using
472 * dma_buf_attach().
473 *
474 * Up to this stage the exporter is still free to migrate or reallocate the
475 * backing storage.
476 *
477 * 3. Once the buffer is attached to all devices userspace can initiate DMA
478 * access to the shared buffer. In the kernel this is done by calling
479 * dma_buf_map_attachment() and dma_buf_unmap_attachment().
480 *
481 * 4. Once a driver is done with a shared buffer it needs to call
482 * dma_buf_detach() (after cleaning up any mappings) and then release the
483 * reference acquired with dma_buf_get by calling dma_buf_put().
484 *
485 * For the detailed semantics exporters are expected to implement see
486 * &dma_buf_ops.
487 */
488
489 /**
490 * dma_buf_export - Creates a new dma_buf, and associates an anon file
491 * with this buffer, so it can be exported.
492 * Also connect the allocator specific data and ops to the buffer.
493 * Additionally, provide a name string for exporter; useful in debugging.
494 *
495 * @exp_info: [in] holds all the export related information provided
496 * by the exporter. see &struct dma_buf_export_info
497 * for further details.
498 *
499 * Returns, on success, a newly created dma_buf object, which wraps the
500 * supplied private data and operations for dma_buf_ops. On either missing
501 * ops, or error in allocating struct dma_buf, will return negative error.
502 *
503 * For most cases the easiest way to create @exp_info is through the
504 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
505 */
506 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
507 {
508 struct dma_buf *dmabuf;
509 struct dma_resv *resv = exp_info->resv;
510 struct file *file;
511 size_t alloc_size = sizeof(struct dma_buf);
512 int ret;
513
514 if (!exp_info->resv)
515 alloc_size += sizeof(struct dma_resv);
516 else
517 /* prevent &dma_buf[1] == dma_buf->resv */
518 alloc_size += 1;
519
520 if (WARN_ON(!exp_info->priv
521 || !exp_info->ops
522 || !exp_info->ops->map_dma_buf
523 || !exp_info->ops->unmap_dma_buf
524 || !exp_info->ops->release)) {
525 return ERR_PTR(-EINVAL);
526 }
527
528 if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
529 (exp_info->ops->pin || exp_info->ops->unpin)))
530 return ERR_PTR(-EINVAL);
531
532 if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
533 return ERR_PTR(-EINVAL);
534
535 if (!try_module_get(exp_info->owner))
536 return ERR_PTR(-ENOENT);
537
538 dmabuf = kzalloc(alloc_size, GFP_KERNEL);
539 if (!dmabuf) {
540 ret = -ENOMEM;
541 goto err_module;
542 }
543
544 dmabuf->priv = exp_info->priv;
545 dmabuf->ops = exp_info->ops;
546 dmabuf->size = exp_info->size;
547 dmabuf->exp_name = exp_info->exp_name;
548 dmabuf->owner = exp_info->owner;
549 init_waitqueue_head(&dmabuf->poll);
550 dmabuf->cb_excl.poll = dmabuf->cb_shared.poll = &dmabuf->poll;
551 dmabuf->cb_excl.active = dmabuf->cb_shared.active = 0;
552
553 if (!resv) {
554 resv = (struct dma_resv *)&dmabuf[1];
555 dma_resv_init(resv);
556 }
557 dmabuf->resv = resv;
558
559 file = dma_buf_getfile(dmabuf, exp_info->flags);
560 if (IS_ERR(file)) {
561 ret = PTR_ERR(file);
562 goto err_dmabuf;
563 }
564
565 file->f_mode |= FMODE_LSEEK;
566 dmabuf->file = file;
567
568 mutex_init(&dmabuf->lock);
569 INIT_LIST_HEAD(&dmabuf->attachments);
570
571 mutex_lock(&db_list.lock);
572 list_add(&dmabuf->list_node, &db_list.head);
573 mutex_unlock(&db_list.lock);
574
575 return dmabuf;
576
577 err_dmabuf:
578 kfree(dmabuf);
579 err_module:
580 module_put(exp_info->owner);
581 return ERR_PTR(ret);
582 }
583 EXPORT_SYMBOL_GPL(dma_buf_export);
584
585 /**
586 * dma_buf_fd - returns a file descriptor for the given dma_buf
587 * @dmabuf: [in] pointer to dma_buf for which fd is required.
588 * @flags: [in] flags to give to fd
589 *
590 * On success, returns an associated 'fd'. Else, returns error.
591 */
592 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
593 {
594 int fd;
595
596 if (!dmabuf || !dmabuf->file)
597 return -EINVAL;
598
599 fd = get_unused_fd_flags(flags);
600 if (fd < 0)
601 return fd;
602
603 fd_install(fd, dmabuf->file);
604
605 return fd;
606 }
607 EXPORT_SYMBOL_GPL(dma_buf_fd);
608
609 /**
610 * dma_buf_get - returns the dma_buf structure related to an fd
611 * @fd: [in] fd associated with the dma_buf to be returned
612 *
613 * On success, returns the dma_buf structure associated with an fd; uses
614 * file's refcounting done by fget to increase refcount. returns ERR_PTR
615 * otherwise.
616 */
617 struct dma_buf *dma_buf_get(int fd)
618 {
619 struct file *file;
620
621 file = fget(fd);
622
623 if (!file)
624 return ERR_PTR(-EBADF);
625
626 if (!is_dma_buf_file(file)) {
627 fput(file);
628 return ERR_PTR(-EINVAL);
629 }
630
631 return file->private_data;
632 }
633 EXPORT_SYMBOL_GPL(dma_buf_get);
634
635 /**
636 * dma_buf_put - decreases refcount of the buffer
637 * @dmabuf: [in] buffer to reduce refcount of
638 *
639 * Uses file's refcounting done implicitly by fput().
640 *
641 * If, as a result of this call, the refcount becomes 0, the 'release' file
642 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
643 * in turn, and frees the memory allocated for dmabuf when exported.
644 */
645 void dma_buf_put(struct dma_buf *dmabuf)
646 {
647 if (WARN_ON(!dmabuf || !dmabuf->file))
648 return;
649
650 fput(dmabuf->file);
651 }
652 EXPORT_SYMBOL_GPL(dma_buf_put);
653
654 /**
655 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list; optionally,
656 * calls attach() of dma_buf_ops to allow device-specific attach functionality
657 * @dmabuf: [in] buffer to attach device to.
658 * @dev: [in] device to be attached.
659 * @importer_ops: [in] importer operations for the attachment
660 * @importer_priv: [in] importer private pointer for the attachment
661 *
662 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
663 * must be cleaned up by calling dma_buf_detach().
664 *
665 * Returns:
666 *
667 * A pointer to newly created &dma_buf_attachment on success, or a negative
668 * error code wrapped into a pointer on failure.
669 *
670 * Note that this can fail if the backing storage of @dmabuf is in a place not
671 * accessible to @dev, and cannot be moved to a more suitable place. This is
672 * indicated with the error code -EBUSY.
673 */
674 struct dma_buf_attachment *
675 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
676 const struct dma_buf_attach_ops *importer_ops,
677 void *importer_priv)
678 {
679 struct dma_buf_attachment *attach;
680 int ret;
681
682 if (WARN_ON(!dmabuf || !dev))
683 return ERR_PTR(-EINVAL);
684
685 if (WARN_ON(importer_ops && !importer_ops->move_notify))
686 return ERR_PTR(-EINVAL);
687
688 attach = kzalloc(sizeof(*attach), GFP_KERNEL);
689 if (!attach)
690 return ERR_PTR(-ENOMEM);
691
692 attach->dev = dev;
693 attach->dmabuf = dmabuf;
694 attach->importer_ops = importer_ops;
695 attach->importer_priv = importer_priv;
696
697 if (dmabuf->ops->attach) {
698 ret = dmabuf->ops->attach(dmabuf, attach);
699 if (ret)
700 goto err_attach;
701 }
702 dma_resv_lock(dmabuf->resv, NULL);
703 list_add(&attach->node, &dmabuf->attachments);
704 dma_resv_unlock(dmabuf->resv);
705
706 /* When either the importer or the exporter can't handle dynamic
707 * mappings we cache the mapping here to avoid issues with the
708 * reservation object lock.
709 */
710 if (dma_buf_attachment_is_dynamic(attach) !=
711 dma_buf_is_dynamic(dmabuf)) {
712 struct sg_table *sgt;
713
714 if (dma_buf_is_dynamic(attach->dmabuf)) {
715 dma_resv_lock(attach->dmabuf->resv, NULL);
716 ret = dma_buf_pin(attach);
717 if (ret)
718 goto err_unlock;
719 }
720
721 sgt = dmabuf->ops->map_dma_buf(attach, DMA_BIDIRECTIONAL);
722 if (!sgt)
723 sgt = ERR_PTR(-ENOMEM);
724 if (IS_ERR(sgt)) {
725 ret = PTR_ERR(sgt);
726 goto err_unpin;
727 }
728 if (dma_buf_is_dynamic(attach->dmabuf))
729 dma_resv_unlock(attach->dmabuf->resv);
730 attach->sgt = sgt;
731 attach->dir = DMA_BIDIRECTIONAL;
732 }
733
734 return attach;
735
736 err_attach:
737 kfree(attach);
738 return ERR_PTR(ret);
739
740 err_unpin:
741 if (dma_buf_is_dynamic(attach->dmabuf))
742 dma_buf_unpin(attach);
743
744 err_unlock:
745 if (dma_buf_is_dynamic(attach->dmabuf))
746 dma_resv_unlock(attach->dmabuf->resv);
747
748 dma_buf_detach(dmabuf, attach);
749 return ERR_PTR(ret);
750 }
751 EXPORT_SYMBOL_GPL(dma_buf_dynamic_attach);
752
753 /**
754 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
755 * @dmabuf: [in] buffer to attach device to.
756 * @dev: [in] device to be attached.
757 *
758 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
759 * mapping.
760 */
761 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
762 struct device *dev)
763 {
764 return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
765 }
766 EXPORT_SYMBOL_GPL(dma_buf_attach);
767
768 /**
769 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list;
770 * optionally calls detach() of dma_buf_ops for device-specific detach
771 * @dmabuf: [in] buffer to detach from.
772 * @attach: [in] attachment to be detached; is free'd after this call.
773 *
774 * Clean up a device attachment obtained by calling dma_buf_attach().
775 */
776 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
777 {
778 if (WARN_ON(!dmabuf || !attach))
779 return;
780
781 if (attach->sgt) {
782 if (dma_buf_is_dynamic(attach->dmabuf))
783 dma_resv_lock(attach->dmabuf->resv, NULL);
784
785 dmabuf->ops->unmap_dma_buf(attach, attach->sgt, attach->dir);
786
787 if (dma_buf_is_dynamic(attach->dmabuf)) {
788 dma_buf_unpin(attach);
789 dma_resv_unlock(attach->dmabuf->resv);
790 }
791 }
792
793 dma_resv_lock(dmabuf->resv, NULL);
794 list_del(&attach->node);
795 dma_resv_unlock(dmabuf->resv);
796 if (dmabuf->ops->detach)
797 dmabuf->ops->detach(dmabuf, attach);
798
799 kfree(attach);
800 }
801 EXPORT_SYMBOL_GPL(dma_buf_detach);
802
803 /**
804 * dma_buf_pin - Lock down the DMA-buf
805 *
806 * @attach: [in] attachment which should be pinned
807 *
808 * Returns:
809 * 0 on success, negative error code on failure.
810 */
811 int dma_buf_pin(struct dma_buf_attachment *attach)
812 {
813 struct dma_buf *dmabuf = attach->dmabuf;
814 int ret = 0;
815
816 dma_resv_assert_held(dmabuf->resv);
817
818 if (dmabuf->ops->pin)
819 ret = dmabuf->ops->pin(attach);
820
821 return ret;
822 }
823 EXPORT_SYMBOL_GPL(dma_buf_pin);
824
825 /**
826 * dma_buf_unpin - Remove lock from DMA-buf
827 *
828 * @attach: [in] attachment which should be unpinned
829 */
830 void dma_buf_unpin(struct dma_buf_attachment *attach)
831 {
832 struct dma_buf *dmabuf = attach->dmabuf;
833
834 dma_resv_assert_held(dmabuf->resv);
835
836 if (dmabuf->ops->unpin)
837 dmabuf->ops->unpin(attach);
838 }
839 EXPORT_SYMBOL_GPL(dma_buf_unpin);
840
841 /**
842 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
843 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
844 * dma_buf_ops.
845 * @attach: [in] attachment whose scatterlist is to be returned
846 * @direction: [in] direction of DMA transfer
847 *
848 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
849 * on error. May return -EINTR if it is interrupted by a signal.
850 *
851 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
852 * the underlying backing storage is pinned for as long as a mapping exists,
853 * therefore users/importers should not hold onto a mapping for undue amounts of
854 * time.
855 */
856 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
857 enum dma_data_direction direction)
858 {
859 struct sg_table *sg_table;
860 int r;
861
862 might_sleep();
863
864 if (WARN_ON(!attach || !attach->dmabuf))
865 return ERR_PTR(-EINVAL);
866
867 if (dma_buf_attachment_is_dynamic(attach))
868 dma_resv_assert_held(attach->dmabuf->resv);
869
870 if (attach->sgt) {
871 /*
872 * Two mappings with different directions for the same
873 * attachment are not allowed.
874 */
875 if (attach->dir != direction &&
876 attach->dir != DMA_BIDIRECTIONAL)
877 return ERR_PTR(-EBUSY);
878
879 return attach->sgt;
880 }
881
882 if (dma_buf_is_dynamic(attach->dmabuf)) {
883 dma_resv_assert_held(attach->dmabuf->resv);
884 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
885 r = dma_buf_pin(attach);
886 if (r)
887 return ERR_PTR(r);
888 }
889 }
890
891 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
892 if (!sg_table)
893 sg_table = ERR_PTR(-ENOMEM);
894
895 if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
896 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
897 dma_buf_unpin(attach);
898
899 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
900 attach->sgt = sg_table;
901 attach->dir = direction;
902 }
903
904 return sg_table;
905 }
906 EXPORT_SYMBOL_GPL(dma_buf_map_attachment);
907
908 /**
909 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
910 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
911 * dma_buf_ops.
912 * @attach: [in] attachment to unmap buffer from
913 * @sg_table: [in] scatterlist info of the buffer to unmap
914 * @direction: [in] direction of DMA transfer
915 *
916 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
917 */
918 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
919 struct sg_table *sg_table,
920 enum dma_data_direction direction)
921 {
922 might_sleep();
923
924 if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
925 return;
926
927 if (dma_buf_attachment_is_dynamic(attach))
928 dma_resv_assert_held(attach->dmabuf->resv);
929
930 if (attach->sgt == sg_table)
931 return;
932
933 if (dma_buf_is_dynamic(attach->dmabuf))
934 dma_resv_assert_held(attach->dmabuf->resv);
935
936 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
937
938 if (dma_buf_is_dynamic(attach->dmabuf) &&
939 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
940 dma_buf_unpin(attach);
941 }
942 EXPORT_SYMBOL_GPL(dma_buf_unmap_attachment);
943
944 /**
945 * dma_buf_move_notify - notify attachments that DMA-buf is moving
946 *
947 * @dmabuf: [in] buffer which is moving
948 *
949 * Informs all attachmenst that they need to destroy and recreated all their
950 * mappings.
951 */
952 void dma_buf_move_notify(struct dma_buf *dmabuf)
953 {
954 struct dma_buf_attachment *attach;
955
956 dma_resv_assert_held(dmabuf->resv);
957
958 list_for_each_entry(attach, &dmabuf->attachments, node)
959 if (attach->importer_ops)
960 attach->importer_ops->move_notify(attach);
961 }
962 EXPORT_SYMBOL_GPL(dma_buf_move_notify);
963
964 /**
965 * DOC: cpu access
966 *
967 * There are mutliple reasons for supporting CPU access to a dma buffer object:
968 *
969 * - Fallback operations in the kernel, for example when a device is connected
970 * over USB and the kernel needs to shuffle the data around first before
971 * sending it away. Cache coherency is handled by braketing any transactions
972 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
973 * access.
974 *
975 * Since for most kernel internal dma-buf accesses need the entire buffer, a
976 * vmap interface is introduced. Note that on very old 32-bit architectures
977 * vmalloc space might be limited and result in vmap calls failing.
978 *
979 * Interfaces::
980 * void \*dma_buf_vmap(struct dma_buf \*dmabuf)
981 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
982 *
983 * The vmap call can fail if there is no vmap support in the exporter, or if
984 * it runs out of vmalloc space. Fallback to kmap should be implemented. Note
985 * that the dma-buf layer keeps a reference count for all vmap access and
986 * calls down into the exporter's vmap function only when no vmapping exists,
987 * and only unmaps it once. Protection against concurrent vmap/vunmap calls is
988 * provided by taking the dma_buf->lock mutex.
989 *
990 * - For full compatibility on the importer side with existing userspace
991 * interfaces, which might already support mmap'ing buffers. This is needed in
992 * many processing pipelines (e.g. feeding a software rendered image into a
993 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
994 * framework already supported this and for DMA buffer file descriptors to
995 * replace ION buffers mmap support was needed.
996 *
997 * There is no special interfaces, userspace simply calls mmap on the dma-buf
998 * fd. But like for CPU access there's a need to braket the actual access,
999 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1000 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1001 * be restarted.
1002 *
1003 * Some systems might need some sort of cache coherency management e.g. when
1004 * CPU and GPU domains are being accessed through dma-buf at the same time.
1005 * To circumvent this problem there are begin/end coherency markers, that
1006 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1007 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1008 * sequence would be used like following:
1009 *
1010 * - mmap dma-buf fd
1011 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1012 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1013 * want (with the new data being consumed by say the GPU or the scanout
1014 * device)
1015 * - munmap once you don't need the buffer any more
1016 *
1017 * For correctness and optimal performance, it is always required to use
1018 * SYNC_START and SYNC_END before and after, respectively, when accessing the
1019 * mapped address. Userspace cannot rely on coherent access, even when there
1020 * are systems where it just works without calling these ioctls.
1021 *
1022 * - And as a CPU fallback in userspace processing pipelines.
1023 *
1024 * Similar to the motivation for kernel cpu access it is again important that
1025 * the userspace code of a given importing subsystem can use the same
1026 * interfaces with a imported dma-buf buffer object as with a native buffer
1027 * object. This is especially important for drm where the userspace part of
1028 * contemporary OpenGL, X, and other drivers is huge, and reworking them to
1029 * use a different way to mmap a buffer rather invasive.
1030 *
1031 * The assumption in the current dma-buf interfaces is that redirecting the
1032 * initial mmap is all that's needed. A survey of some of the existing
1033 * subsystems shows that no driver seems to do any nefarious thing like
1034 * syncing up with outstanding asynchronous processing on the device or
1035 * allocating special resources at fault time. So hopefully this is good
1036 * enough, since adding interfaces to intercept pagefaults and allow pte
1037 * shootdowns would increase the complexity quite a bit.
1038 *
1039 * Interface::
1040 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1041 * unsigned long);
1042 *
1043 * If the importing subsystem simply provides a special-purpose mmap call to
1044 * set up a mapping in userspace, calling do_mmap with dma_buf->file will
1045 * equally achieve that for a dma-buf object.
1046 */
1047
1048 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1049 enum dma_data_direction direction)
1050 {
1051 bool write = (direction == DMA_BIDIRECTIONAL ||
1052 direction == DMA_TO_DEVICE);
1053 struct dma_resv *resv = dmabuf->resv;
1054 long ret;
1055
1056 /* Wait on any implicit rendering fences */
1057 ret = dma_resv_wait_timeout_rcu(resv, write, true,
1058 MAX_SCHEDULE_TIMEOUT);
1059 if (ret < 0)
1060 return ret;
1061
1062 return 0;
1063 }
1064
1065 /**
1066 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1067 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1068 * preparations. Coherency is only guaranteed in the specified range for the
1069 * specified access direction.
1070 * @dmabuf: [in] buffer to prepare cpu access for.
1071 * @direction: [in] length of range for cpu access.
1072 *
1073 * After the cpu access is complete the caller should call
1074 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1075 * it guaranteed to be coherent with other DMA access.
1076 *
1077 * Can return negative error values, returns 0 on success.
1078 */
1079 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1080 enum dma_data_direction direction)
1081 {
1082 int ret = 0;
1083
1084 if (WARN_ON(!dmabuf))
1085 return -EINVAL;
1086
1087 if (dmabuf->ops->begin_cpu_access)
1088 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1089
1090 /* Ensure that all fences are waited upon - but we first allow
1091 * the native handler the chance to do so more efficiently if it
1092 * chooses. A double invocation here will be reasonably cheap no-op.
1093 */
1094 if (ret == 0)
1095 ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1096
1097 return ret;
1098 }
1099 EXPORT_SYMBOL_GPL(dma_buf_begin_cpu_access);
1100
1101 /**
1102 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1103 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1104 * actions. Coherency is only guaranteed in the specified range for the
1105 * specified access direction.
1106 * @dmabuf: [in] buffer to complete cpu access for.
1107 * @direction: [in] length of range for cpu access.
1108 *
1109 * This terminates CPU access started with dma_buf_begin_cpu_access().
1110 *
1111 * Can return negative error values, returns 0 on success.
1112 */
1113 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1114 enum dma_data_direction direction)
1115 {
1116 int ret = 0;
1117
1118 WARN_ON(!dmabuf);
1119
1120 if (dmabuf->ops->end_cpu_access)
1121 ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1122
1123 return ret;
1124 }
1125 EXPORT_SYMBOL_GPL(dma_buf_end_cpu_access);
1126
1127
1128 /**
1129 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1130 * @dmabuf: [in] buffer that should back the vma
1131 * @vma: [in] vma for the mmap
1132 * @pgoff: [in] offset in pages where this mmap should start within the
1133 * dma-buf buffer.
1134 *
1135 * This function adjusts the passed in vma so that it points at the file of the
1136 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1137 * checking on the size of the vma. Then it calls the exporters mmap function to
1138 * set up the mapping.
1139 *
1140 * Can return negative error values, returns 0 on success.
1141 */
1142 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1143 unsigned long pgoff)
1144 {
1145 struct file *oldfile;
1146 int ret;
1147
1148 if (WARN_ON(!dmabuf || !vma))
1149 return -EINVAL;
1150
1151 /* check if buffer supports mmap */
1152 if (!dmabuf->ops->mmap)
1153 return -EINVAL;
1154
1155 /* check for offset overflow */
1156 if (pgoff + vma_pages(vma) < pgoff)
1157 return -EOVERFLOW;
1158
1159 /* check for overflowing the buffer's size */
1160 if (pgoff + vma_pages(vma) >
1161 dmabuf->size >> PAGE_SHIFT)
1162 return -EINVAL;
1163
1164 /* readjust the vma */
1165 get_file(dmabuf->file);
1166 oldfile = vma->vm_file;
1167 vma->vm_file = dmabuf->file;
1168 vma->vm_pgoff = pgoff;
1169
1170 ret = dmabuf->ops->mmap(dmabuf, vma);
1171 if (ret) {
1172 /* restore old parameters on failure */
1173 vma->vm_file = oldfile;
1174 fput(dmabuf->file);
1175 } else {
1176 if (oldfile)
1177 fput(oldfile);
1178 }
1179 return ret;
1180
1181 }
1182 EXPORT_SYMBOL_GPL(dma_buf_mmap);
1183
1184 /**
1185 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1186 * address space. Same restrictions as for vmap and friends apply.
1187 * @dmabuf: [in] buffer to vmap
1188 *
1189 * This call may fail due to lack of virtual mapping address space.
1190 * These calls are optional in drivers. The intended use for them
1191 * is for mapping objects linear in kernel space for high use objects.
1192 * Please attempt to use kmap/kunmap before thinking about these interfaces.
1193 *
1194 * Returns NULL on error.
1195 */
1196 void *dma_buf_vmap(struct dma_buf *dmabuf)
1197 {
1198 void *ptr;
1199
1200 if (WARN_ON(!dmabuf))
1201 return NULL;
1202
1203 if (!dmabuf->ops->vmap)
1204 return NULL;
1205
1206 mutex_lock(&dmabuf->lock);
1207 if (dmabuf->vmapping_counter) {
1208 dmabuf->vmapping_counter++;
1209 BUG_ON(!dmabuf->vmap_ptr);
1210 ptr = dmabuf->vmap_ptr;
1211 goto out_unlock;
1212 }
1213
1214 BUG_ON(dmabuf->vmap_ptr);
1215
1216 ptr = dmabuf->ops->vmap(dmabuf);
1217 if (WARN_ON_ONCE(IS_ERR(ptr)))
1218 ptr = NULL;
1219 if (!ptr)
1220 goto out_unlock;
1221
1222 dmabuf->vmap_ptr = ptr;
1223 dmabuf->vmapping_counter = 1;
1224
1225 out_unlock:
1226 mutex_unlock(&dmabuf->lock);
1227 return ptr;
1228 }
1229 EXPORT_SYMBOL_GPL(dma_buf_vmap);
1230
1231 /**
1232 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1233 * @dmabuf: [in] buffer to vunmap
1234 * @vaddr: [in] vmap to vunmap
1235 */
1236 void dma_buf_vunmap(struct dma_buf *dmabuf, void *vaddr)
1237 {
1238 if (WARN_ON(!dmabuf))
1239 return;
1240
1241 BUG_ON(!dmabuf->vmap_ptr);
1242 BUG_ON(dmabuf->vmapping_counter == 0);
1243 BUG_ON(dmabuf->vmap_ptr != vaddr);
1244
1245 mutex_lock(&dmabuf->lock);
1246 if (--dmabuf->vmapping_counter == 0) {
1247 if (dmabuf->ops->vunmap)
1248 dmabuf->ops->vunmap(dmabuf, vaddr);
1249 dmabuf->vmap_ptr = NULL;
1250 }
1251 mutex_unlock(&dmabuf->lock);
1252 }
1253 EXPORT_SYMBOL_GPL(dma_buf_vunmap);
1254
1255 #ifdef CONFIG_DEBUG_FS
1256 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1257 {
1258 int ret;
1259 struct dma_buf *buf_obj;
1260 struct dma_buf_attachment *attach_obj;
1261 struct dma_resv *robj;
1262 struct dma_resv_list *fobj;
1263 struct dma_fence *fence;
1264 unsigned seq;
1265 int count = 0, attach_count, shared_count, i;
1266 size_t size = 0;
1267
1268 ret = mutex_lock_interruptible(&db_list.lock);
1269
1270 if (ret)
1271 return ret;
1272
1273 seq_puts(s, "\nDma-buf Objects:\n");
1274 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1275 "size", "flags", "mode", "count", "ino");
1276
1277 list_for_each_entry(buf_obj, &db_list.head, list_node) {
1278
1279 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1280 if (ret)
1281 goto error_unlock;
1282
1283 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1284 buf_obj->size,
1285 buf_obj->file->f_flags, buf_obj->file->f_mode,
1286 file_count(buf_obj->file),
1287 buf_obj->exp_name,
1288 file_inode(buf_obj->file)->i_ino,
1289 buf_obj->name ?: "");
1290
1291 robj = buf_obj->resv;
1292 while (true) {
1293 seq = read_seqcount_begin(&robj->seq);
1294 rcu_read_lock();
1295 fobj = rcu_dereference(robj->fence);
1296 shared_count = fobj ? fobj->shared_count : 0;
1297 fence = rcu_dereference(robj->fence_excl);
1298 if (!read_seqcount_retry(&robj->seq, seq))
1299 break;
1300 rcu_read_unlock();
1301 }
1302
1303 if (fence)
1304 seq_printf(s, "\tExclusive fence: %s %s %ssignalled\n",
1305 fence->ops->get_driver_name(fence),
1306 fence->ops->get_timeline_name(fence),
1307 dma_fence_is_signaled(fence) ? "" : "un");
1308 for (i = 0; i < shared_count; i++) {
1309 fence = rcu_dereference(fobj->shared[i]);
1310 if (!dma_fence_get_rcu(fence))
1311 continue;
1312 seq_printf(s, "\tShared fence: %s %s %ssignalled\n",
1313 fence->ops->get_driver_name(fence),
1314 fence->ops->get_timeline_name(fence),
1315 dma_fence_is_signaled(fence) ? "" : "un");
1316 dma_fence_put(fence);
1317 }
1318 rcu_read_unlock();
1319
1320 seq_puts(s, "\tAttached Devices:\n");
1321 attach_count = 0;
1322
1323 list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1324 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1325 attach_count++;
1326 }
1327 dma_resv_unlock(buf_obj->resv);
1328
1329 seq_printf(s, "Total %d devices attached\n\n",
1330 attach_count);
1331
1332 count++;
1333 size += buf_obj->size;
1334 }
1335
1336 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1337
1338 mutex_unlock(&db_list.lock);
1339 return 0;
1340
1341 error_unlock:
1342 mutex_unlock(&db_list.lock);
1343 return ret;
1344 }
1345
1346 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1347
1348 static struct dentry *dma_buf_debugfs_dir;
1349
1350 static int dma_buf_init_debugfs(void)
1351 {
1352 struct dentry *d;
1353 int err = 0;
1354
1355 d = debugfs_create_dir("dma_buf", NULL);
1356 if (IS_ERR(d))
1357 return PTR_ERR(d);
1358
1359 dma_buf_debugfs_dir = d;
1360
1361 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1362 NULL, &dma_buf_debug_fops);
1363 if (IS_ERR(d)) {
1364 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1365 debugfs_remove_recursive(dma_buf_debugfs_dir);
1366 dma_buf_debugfs_dir = NULL;
1367 err = PTR_ERR(d);
1368 }
1369
1370 return err;
1371 }
1372
1373 static void dma_buf_uninit_debugfs(void)
1374 {
1375 debugfs_remove_recursive(dma_buf_debugfs_dir);
1376 }
1377 #else
1378 static inline int dma_buf_init_debugfs(void)
1379 {
1380 return 0;
1381 }
1382 static inline void dma_buf_uninit_debugfs(void)
1383 {
1384 }
1385 #endif
1386
1387 static int __init dma_buf_init(void)
1388 {
1389 dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1390 if (IS_ERR(dma_buf_mnt))
1391 return PTR_ERR(dma_buf_mnt);
1392
1393 mutex_init(&db_list.lock);
1394 INIT_LIST_HEAD(&db_list.head);
1395 dma_buf_init_debugfs();
1396 return 0;
1397 }
1398 subsys_initcall(dma_buf_init);
1399
1400 static void __exit dma_buf_deinit(void)
1401 {
1402 dma_buf_uninit_debugfs();
1403 kern_unmount(dma_buf_mnt);
1404 }
1405 __exitcall(dma_buf_deinit);