]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/firmware/qcom_scm-32.c
lib/test_stackinit: Handle Clang auto-initialization pattern
[thirdparty/linux.git] / drivers / firmware / qcom_scm-32.c
1 /* Copyright (c) 2010,2015, The Linux Foundation. All rights reserved.
2 * Copyright (C) 2015 Linaro Ltd.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 and
6 * only version 2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16 * 02110-1301, USA.
17 */
18
19 #include <linux/slab.h>
20 #include <linux/io.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/errno.h>
24 #include <linux/err.h>
25 #include <linux/qcom_scm.h>
26 #include <linux/dma-mapping.h>
27
28 #include "qcom_scm.h"
29
30 #define QCOM_SCM_FLAG_COLDBOOT_CPU0 0x00
31 #define QCOM_SCM_FLAG_COLDBOOT_CPU1 0x01
32 #define QCOM_SCM_FLAG_COLDBOOT_CPU2 0x08
33 #define QCOM_SCM_FLAG_COLDBOOT_CPU3 0x20
34
35 #define QCOM_SCM_FLAG_WARMBOOT_CPU0 0x04
36 #define QCOM_SCM_FLAG_WARMBOOT_CPU1 0x02
37 #define QCOM_SCM_FLAG_WARMBOOT_CPU2 0x10
38 #define QCOM_SCM_FLAG_WARMBOOT_CPU3 0x40
39
40 struct qcom_scm_entry {
41 int flag;
42 void *entry;
43 };
44
45 static struct qcom_scm_entry qcom_scm_wb[] = {
46 { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU0 },
47 { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU1 },
48 { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU2 },
49 { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU3 },
50 };
51
52 static DEFINE_MUTEX(qcom_scm_lock);
53
54 /**
55 * struct qcom_scm_command - one SCM command buffer
56 * @len: total available memory for command and response
57 * @buf_offset: start of command buffer
58 * @resp_hdr_offset: start of response buffer
59 * @id: command to be executed
60 * @buf: buffer returned from qcom_scm_get_command_buffer()
61 *
62 * An SCM command is laid out in memory as follows:
63 *
64 * ------------------- <--- struct qcom_scm_command
65 * | command header |
66 * ------------------- <--- qcom_scm_get_command_buffer()
67 * | command buffer |
68 * ------------------- <--- struct qcom_scm_response and
69 * | response header | qcom_scm_command_to_response()
70 * ------------------- <--- qcom_scm_get_response_buffer()
71 * | response buffer |
72 * -------------------
73 *
74 * There can be arbitrary padding between the headers and buffers so
75 * you should always use the appropriate qcom_scm_get_*_buffer() routines
76 * to access the buffers in a safe manner.
77 */
78 struct qcom_scm_command {
79 __le32 len;
80 __le32 buf_offset;
81 __le32 resp_hdr_offset;
82 __le32 id;
83 __le32 buf[0];
84 };
85
86 /**
87 * struct qcom_scm_response - one SCM response buffer
88 * @len: total available memory for response
89 * @buf_offset: start of response data relative to start of qcom_scm_response
90 * @is_complete: indicates if the command has finished processing
91 */
92 struct qcom_scm_response {
93 __le32 len;
94 __le32 buf_offset;
95 __le32 is_complete;
96 };
97
98 /**
99 * qcom_scm_command_to_response() - Get a pointer to a qcom_scm_response
100 * @cmd: command
101 *
102 * Returns a pointer to a response for a command.
103 */
104 static inline struct qcom_scm_response *qcom_scm_command_to_response(
105 const struct qcom_scm_command *cmd)
106 {
107 return (void *)cmd + le32_to_cpu(cmd->resp_hdr_offset);
108 }
109
110 /**
111 * qcom_scm_get_command_buffer() - Get a pointer to a command buffer
112 * @cmd: command
113 *
114 * Returns a pointer to the command buffer of a command.
115 */
116 static inline void *qcom_scm_get_command_buffer(const struct qcom_scm_command *cmd)
117 {
118 return (void *)cmd->buf;
119 }
120
121 /**
122 * qcom_scm_get_response_buffer() - Get a pointer to a response buffer
123 * @rsp: response
124 *
125 * Returns a pointer to a response buffer of a response.
126 */
127 static inline void *qcom_scm_get_response_buffer(const struct qcom_scm_response *rsp)
128 {
129 return (void *)rsp + le32_to_cpu(rsp->buf_offset);
130 }
131
132 static u32 smc(u32 cmd_addr)
133 {
134 int context_id;
135 register u32 r0 asm("r0") = 1;
136 register u32 r1 asm("r1") = (u32)&context_id;
137 register u32 r2 asm("r2") = cmd_addr;
138 do {
139 asm volatile(
140 __asmeq("%0", "r0")
141 __asmeq("%1", "r0")
142 __asmeq("%2", "r1")
143 __asmeq("%3", "r2")
144 #ifdef REQUIRES_SEC
145 ".arch_extension sec\n"
146 #endif
147 "smc #0 @ switch to secure world\n"
148 : "=r" (r0)
149 : "r" (r0), "r" (r1), "r" (r2)
150 : "r3", "r12");
151 } while (r0 == QCOM_SCM_INTERRUPTED);
152
153 return r0;
154 }
155
156 /**
157 * qcom_scm_call() - Send an SCM command
158 * @dev: struct device
159 * @svc_id: service identifier
160 * @cmd_id: command identifier
161 * @cmd_buf: command buffer
162 * @cmd_len: length of the command buffer
163 * @resp_buf: response buffer
164 * @resp_len: length of the response buffer
165 *
166 * Sends a command to the SCM and waits for the command to finish processing.
167 *
168 * A note on cache maintenance:
169 * Note that any buffers that are expected to be accessed by the secure world
170 * must be flushed before invoking qcom_scm_call and invalidated in the cache
171 * immediately after qcom_scm_call returns. Cache maintenance on the command
172 * and response buffers is taken care of by qcom_scm_call; however, callers are
173 * responsible for any other cached buffers passed over to the secure world.
174 */
175 static int qcom_scm_call(struct device *dev, u32 svc_id, u32 cmd_id,
176 const void *cmd_buf, size_t cmd_len, void *resp_buf,
177 size_t resp_len)
178 {
179 int ret;
180 struct qcom_scm_command *cmd;
181 struct qcom_scm_response *rsp;
182 size_t alloc_len = sizeof(*cmd) + cmd_len + sizeof(*rsp) + resp_len;
183 dma_addr_t cmd_phys;
184
185 cmd = kzalloc(PAGE_ALIGN(alloc_len), GFP_KERNEL);
186 if (!cmd)
187 return -ENOMEM;
188
189 cmd->len = cpu_to_le32(alloc_len);
190 cmd->buf_offset = cpu_to_le32(sizeof(*cmd));
191 cmd->resp_hdr_offset = cpu_to_le32(sizeof(*cmd) + cmd_len);
192
193 cmd->id = cpu_to_le32((svc_id << 10) | cmd_id);
194 if (cmd_buf)
195 memcpy(qcom_scm_get_command_buffer(cmd), cmd_buf, cmd_len);
196
197 rsp = qcom_scm_command_to_response(cmd);
198
199 cmd_phys = dma_map_single(dev, cmd, alloc_len, DMA_TO_DEVICE);
200 if (dma_mapping_error(dev, cmd_phys)) {
201 kfree(cmd);
202 return -ENOMEM;
203 }
204
205 mutex_lock(&qcom_scm_lock);
206 ret = smc(cmd_phys);
207 if (ret < 0)
208 ret = qcom_scm_remap_error(ret);
209 mutex_unlock(&qcom_scm_lock);
210 if (ret)
211 goto out;
212
213 do {
214 dma_sync_single_for_cpu(dev, cmd_phys + sizeof(*cmd) + cmd_len,
215 sizeof(*rsp), DMA_FROM_DEVICE);
216 } while (!rsp->is_complete);
217
218 if (resp_buf) {
219 dma_sync_single_for_cpu(dev, cmd_phys + sizeof(*cmd) + cmd_len +
220 le32_to_cpu(rsp->buf_offset),
221 resp_len, DMA_FROM_DEVICE);
222 memcpy(resp_buf, qcom_scm_get_response_buffer(rsp),
223 resp_len);
224 }
225 out:
226 dma_unmap_single(dev, cmd_phys, alloc_len, DMA_TO_DEVICE);
227 kfree(cmd);
228 return ret;
229 }
230
231 #define SCM_CLASS_REGISTER (0x2 << 8)
232 #define SCM_MASK_IRQS BIT(5)
233 #define SCM_ATOMIC(svc, cmd, n) (((((svc) << 10)|((cmd) & 0x3ff)) << 12) | \
234 SCM_CLASS_REGISTER | \
235 SCM_MASK_IRQS | \
236 (n & 0xf))
237
238 /**
239 * qcom_scm_call_atomic1() - Send an atomic SCM command with one argument
240 * @svc_id: service identifier
241 * @cmd_id: command identifier
242 * @arg1: first argument
243 *
244 * This shall only be used with commands that are guaranteed to be
245 * uninterruptable, atomic and SMP safe.
246 */
247 static s32 qcom_scm_call_atomic1(u32 svc, u32 cmd, u32 arg1)
248 {
249 int context_id;
250
251 register u32 r0 asm("r0") = SCM_ATOMIC(svc, cmd, 1);
252 register u32 r1 asm("r1") = (u32)&context_id;
253 register u32 r2 asm("r2") = arg1;
254
255 asm volatile(
256 __asmeq("%0", "r0")
257 __asmeq("%1", "r0")
258 __asmeq("%2", "r1")
259 __asmeq("%3", "r2")
260 #ifdef REQUIRES_SEC
261 ".arch_extension sec\n"
262 #endif
263 "smc #0 @ switch to secure world\n"
264 : "=r" (r0)
265 : "r" (r0), "r" (r1), "r" (r2)
266 : "r3", "r12");
267 return r0;
268 }
269
270 /**
271 * qcom_scm_call_atomic2() - Send an atomic SCM command with two arguments
272 * @svc_id: service identifier
273 * @cmd_id: command identifier
274 * @arg1: first argument
275 * @arg2: second argument
276 *
277 * This shall only be used with commands that are guaranteed to be
278 * uninterruptable, atomic and SMP safe.
279 */
280 static s32 qcom_scm_call_atomic2(u32 svc, u32 cmd, u32 arg1, u32 arg2)
281 {
282 int context_id;
283
284 register u32 r0 asm("r0") = SCM_ATOMIC(svc, cmd, 2);
285 register u32 r1 asm("r1") = (u32)&context_id;
286 register u32 r2 asm("r2") = arg1;
287 register u32 r3 asm("r3") = arg2;
288
289 asm volatile(
290 __asmeq("%0", "r0")
291 __asmeq("%1", "r0")
292 __asmeq("%2", "r1")
293 __asmeq("%3", "r2")
294 __asmeq("%4", "r3")
295 #ifdef REQUIRES_SEC
296 ".arch_extension sec\n"
297 #endif
298 "smc #0 @ switch to secure world\n"
299 : "=r" (r0)
300 : "r" (r0), "r" (r1), "r" (r2), "r" (r3)
301 : "r12");
302 return r0;
303 }
304
305 u32 qcom_scm_get_version(void)
306 {
307 int context_id;
308 static u32 version = -1;
309 register u32 r0 asm("r0");
310 register u32 r1 asm("r1");
311
312 if (version != -1)
313 return version;
314
315 mutex_lock(&qcom_scm_lock);
316
317 r0 = 0x1 << 8;
318 r1 = (u32)&context_id;
319 do {
320 asm volatile(
321 __asmeq("%0", "r0")
322 __asmeq("%1", "r1")
323 __asmeq("%2", "r0")
324 __asmeq("%3", "r1")
325 #ifdef REQUIRES_SEC
326 ".arch_extension sec\n"
327 #endif
328 "smc #0 @ switch to secure world\n"
329 : "=r" (r0), "=r" (r1)
330 : "r" (r0), "r" (r1)
331 : "r2", "r3", "r12");
332 } while (r0 == QCOM_SCM_INTERRUPTED);
333
334 version = r1;
335 mutex_unlock(&qcom_scm_lock);
336
337 return version;
338 }
339 EXPORT_SYMBOL(qcom_scm_get_version);
340
341 /**
342 * qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus
343 * @entry: Entry point function for the cpus
344 * @cpus: The cpumask of cpus that will use the entry point
345 *
346 * Set the cold boot address of the cpus. Any cpu outside the supported
347 * range would be removed from the cpu present mask.
348 */
349 int __qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus)
350 {
351 int flags = 0;
352 int cpu;
353 int scm_cb_flags[] = {
354 QCOM_SCM_FLAG_COLDBOOT_CPU0,
355 QCOM_SCM_FLAG_COLDBOOT_CPU1,
356 QCOM_SCM_FLAG_COLDBOOT_CPU2,
357 QCOM_SCM_FLAG_COLDBOOT_CPU3,
358 };
359
360 if (!cpus || (cpus && cpumask_empty(cpus)))
361 return -EINVAL;
362
363 for_each_cpu(cpu, cpus) {
364 if (cpu < ARRAY_SIZE(scm_cb_flags))
365 flags |= scm_cb_flags[cpu];
366 else
367 set_cpu_present(cpu, false);
368 }
369
370 return qcom_scm_call_atomic2(QCOM_SCM_SVC_BOOT, QCOM_SCM_BOOT_ADDR,
371 flags, virt_to_phys(entry));
372 }
373
374 /**
375 * qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus
376 * @entry: Entry point function for the cpus
377 * @cpus: The cpumask of cpus that will use the entry point
378 *
379 * Set the Linux entry point for the SCM to transfer control to when coming
380 * out of a power down. CPU power down may be executed on cpuidle or hotplug.
381 */
382 int __qcom_scm_set_warm_boot_addr(struct device *dev, void *entry,
383 const cpumask_t *cpus)
384 {
385 int ret;
386 int flags = 0;
387 int cpu;
388 struct {
389 __le32 flags;
390 __le32 addr;
391 } cmd;
392
393 /*
394 * Reassign only if we are switching from hotplug entry point
395 * to cpuidle entry point or vice versa.
396 */
397 for_each_cpu(cpu, cpus) {
398 if (entry == qcom_scm_wb[cpu].entry)
399 continue;
400 flags |= qcom_scm_wb[cpu].flag;
401 }
402
403 /* No change in entry function */
404 if (!flags)
405 return 0;
406
407 cmd.addr = cpu_to_le32(virt_to_phys(entry));
408 cmd.flags = cpu_to_le32(flags);
409 ret = qcom_scm_call(dev, QCOM_SCM_SVC_BOOT, QCOM_SCM_BOOT_ADDR,
410 &cmd, sizeof(cmd), NULL, 0);
411 if (!ret) {
412 for_each_cpu(cpu, cpus)
413 qcom_scm_wb[cpu].entry = entry;
414 }
415
416 return ret;
417 }
418
419 /**
420 * qcom_scm_cpu_power_down() - Power down the cpu
421 * @flags - Flags to flush cache
422 *
423 * This is an end point to power down cpu. If there was a pending interrupt,
424 * the control would return from this function, otherwise, the cpu jumps to the
425 * warm boot entry point set for this cpu upon reset.
426 */
427 void __qcom_scm_cpu_power_down(u32 flags)
428 {
429 qcom_scm_call_atomic1(QCOM_SCM_SVC_BOOT, QCOM_SCM_CMD_TERMINATE_PC,
430 flags & QCOM_SCM_FLUSH_FLAG_MASK);
431 }
432
433 int __qcom_scm_is_call_available(struct device *dev, u32 svc_id, u32 cmd_id)
434 {
435 int ret;
436 __le32 svc_cmd = cpu_to_le32((svc_id << 10) | cmd_id);
437 __le32 ret_val = 0;
438
439 ret = qcom_scm_call(dev, QCOM_SCM_SVC_INFO, QCOM_IS_CALL_AVAIL_CMD,
440 &svc_cmd, sizeof(svc_cmd), &ret_val,
441 sizeof(ret_val));
442 if (ret)
443 return ret;
444
445 return le32_to_cpu(ret_val);
446 }
447
448 int __qcom_scm_hdcp_req(struct device *dev, struct qcom_scm_hdcp_req *req,
449 u32 req_cnt, u32 *resp)
450 {
451 if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
452 return -ERANGE;
453
454 return qcom_scm_call(dev, QCOM_SCM_SVC_HDCP, QCOM_SCM_CMD_HDCP,
455 req, req_cnt * sizeof(*req), resp, sizeof(*resp));
456 }
457
458 void __qcom_scm_init(void)
459 {
460 }
461
462 bool __qcom_scm_pas_supported(struct device *dev, u32 peripheral)
463 {
464 __le32 out;
465 __le32 in;
466 int ret;
467
468 in = cpu_to_le32(peripheral);
469 ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL,
470 QCOM_SCM_PAS_IS_SUPPORTED_CMD,
471 &in, sizeof(in),
472 &out, sizeof(out));
473
474 return ret ? false : !!out;
475 }
476
477 int __qcom_scm_pas_init_image(struct device *dev, u32 peripheral,
478 dma_addr_t metadata_phys)
479 {
480 __le32 scm_ret;
481 int ret;
482 struct {
483 __le32 proc;
484 __le32 image_addr;
485 } request;
486
487 request.proc = cpu_to_le32(peripheral);
488 request.image_addr = cpu_to_le32(metadata_phys);
489
490 ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL,
491 QCOM_SCM_PAS_INIT_IMAGE_CMD,
492 &request, sizeof(request),
493 &scm_ret, sizeof(scm_ret));
494
495 return ret ? : le32_to_cpu(scm_ret);
496 }
497
498 int __qcom_scm_pas_mem_setup(struct device *dev, u32 peripheral,
499 phys_addr_t addr, phys_addr_t size)
500 {
501 __le32 scm_ret;
502 int ret;
503 struct {
504 __le32 proc;
505 __le32 addr;
506 __le32 len;
507 } request;
508
509 request.proc = cpu_to_le32(peripheral);
510 request.addr = cpu_to_le32(addr);
511 request.len = cpu_to_le32(size);
512
513 ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL,
514 QCOM_SCM_PAS_MEM_SETUP_CMD,
515 &request, sizeof(request),
516 &scm_ret, sizeof(scm_ret));
517
518 return ret ? : le32_to_cpu(scm_ret);
519 }
520
521 int __qcom_scm_pas_auth_and_reset(struct device *dev, u32 peripheral)
522 {
523 __le32 out;
524 __le32 in;
525 int ret;
526
527 in = cpu_to_le32(peripheral);
528 ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL,
529 QCOM_SCM_PAS_AUTH_AND_RESET_CMD,
530 &in, sizeof(in),
531 &out, sizeof(out));
532
533 return ret ? : le32_to_cpu(out);
534 }
535
536 int __qcom_scm_pas_shutdown(struct device *dev, u32 peripheral)
537 {
538 __le32 out;
539 __le32 in;
540 int ret;
541
542 in = cpu_to_le32(peripheral);
543 ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL,
544 QCOM_SCM_PAS_SHUTDOWN_CMD,
545 &in, sizeof(in),
546 &out, sizeof(out));
547
548 return ret ? : le32_to_cpu(out);
549 }
550
551 int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
552 {
553 __le32 out;
554 __le32 in = cpu_to_le32(reset);
555 int ret;
556
557 ret = qcom_scm_call(dev, QCOM_SCM_SVC_PIL, QCOM_SCM_PAS_MSS_RESET,
558 &in, sizeof(in),
559 &out, sizeof(out));
560
561 return ret ? : le32_to_cpu(out);
562 }
563
564 int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
565 {
566 return qcom_scm_call_atomic2(QCOM_SCM_SVC_BOOT, QCOM_SCM_SET_DLOAD_MODE,
567 enable ? QCOM_SCM_SET_DLOAD_MODE : 0, 0);
568 }
569
570 int __qcom_scm_set_remote_state(struct device *dev, u32 state, u32 id)
571 {
572 struct {
573 __le32 state;
574 __le32 id;
575 } req;
576 __le32 scm_ret = 0;
577 int ret;
578
579 req.state = cpu_to_le32(state);
580 req.id = cpu_to_le32(id);
581
582 ret = qcom_scm_call(dev, QCOM_SCM_SVC_BOOT, QCOM_SCM_SET_REMOTE_STATE,
583 &req, sizeof(req), &scm_ret, sizeof(scm_ret));
584
585 return ret ? : le32_to_cpu(scm_ret);
586 }
587
588 int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
589 size_t mem_sz, phys_addr_t src, size_t src_sz,
590 phys_addr_t dest, size_t dest_sz)
591 {
592 return -ENODEV;
593 }
594
595 int __qcom_scm_restore_sec_cfg(struct device *dev, u32 device_id,
596 u32 spare)
597 {
598 return -ENODEV;
599 }
600
601 int __qcom_scm_iommu_secure_ptbl_size(struct device *dev, u32 spare,
602 size_t *size)
603 {
604 return -ENODEV;
605 }
606
607 int __qcom_scm_iommu_secure_ptbl_init(struct device *dev, u64 addr, u32 size,
608 u32 spare)
609 {
610 return -ENODEV;
611 }
612
613 int __qcom_scm_io_readl(struct device *dev, phys_addr_t addr,
614 unsigned int *val)
615 {
616 int ret;
617
618 ret = qcom_scm_call_atomic1(QCOM_SCM_SVC_IO, QCOM_SCM_IO_READ, addr);
619 if (ret >= 0)
620 *val = ret;
621
622 return ret < 0 ? ret : 0;
623 }
624
625 int __qcom_scm_io_writel(struct device *dev, phys_addr_t addr, unsigned int val)
626 {
627 return qcom_scm_call_atomic2(QCOM_SCM_SVC_IO, QCOM_SCM_IO_WRITE,
628 addr, val);
629 }