]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_ttm.c
Merge drm/drm-next into drm-misc-next
[thirdparty/linux.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2 * Copyright 2009 Jerome Glisse.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19 * USE OR OTHER DEALINGS IN THE SOFTWARE.
20 *
21 * The above copyright notice and this permission notice (including the
22 * next paragraph) shall be included in all copies or substantial portions
23 * of the Software.
24 *
25 */
26 /*
27 * Authors:
28 * Jerome Glisse <glisse@freedesktop.org>
29 * Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30 * Dave Airlie
31 */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50
51 #include <drm/amdgpu_drm.h>
52
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63
64 MODULE_IMPORT_NS(DMA_BUF);
65
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ ((size_t)128)
67
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69 struct ttm_tt *ttm,
70 struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72 struct ttm_tt *ttm);
73
74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75 unsigned int type,
76 uint64_t size_in_page)
77 {
78 return ttm_range_man_init(&adev->mman.bdev, type,
79 false, size_in_page);
80 }
81
82 /**
83 * amdgpu_evict_flags - Compute placement flags
84 *
85 * @bo: The buffer object to evict
86 * @placement: Possible destination(s) for evicted BO
87 *
88 * Fill in placement data when ttm_bo_evict() is called
89 */
90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91 struct ttm_placement *placement)
92 {
93 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94 struct amdgpu_bo *abo;
95 static const struct ttm_place placements = {
96 .fpfn = 0,
97 .lpfn = 0,
98 .mem_type = TTM_PL_SYSTEM,
99 .flags = 0
100 };
101
102 /* Don't handle scatter gather BOs */
103 if (bo->type == ttm_bo_type_sg) {
104 placement->num_placement = 0;
105 return;
106 }
107
108 /* Object isn't an AMDGPU object so ignore */
109 if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110 placement->placement = &placements;
111 placement->num_placement = 1;
112 return;
113 }
114
115 abo = ttm_to_amdgpu_bo(bo);
116 if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
117 placement->num_placement = 0;
118 return;
119 }
120
121 switch (bo->resource->mem_type) {
122 case AMDGPU_PL_GDS:
123 case AMDGPU_PL_GWS:
124 case AMDGPU_PL_OA:
125 case AMDGPU_PL_DOORBELL:
126 placement->num_placement = 0;
127 return;
128
129 case TTM_PL_VRAM:
130 if (!adev->mman.buffer_funcs_enabled) {
131 /* Move to system memory */
132 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
133
134 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
135 !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
136 amdgpu_bo_in_cpu_visible_vram(abo)) {
137
138 /* Try evicting to the CPU inaccessible part of VRAM
139 * first, but only set GTT as busy placement, so this
140 * BO will be evicted to GTT rather than causing other
141 * BOs to be evicted from VRAM
142 */
143 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
144 AMDGPU_GEM_DOMAIN_GTT |
145 AMDGPU_GEM_DOMAIN_CPU);
146 abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
147 abo->placements[0].lpfn = 0;
148 abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
149 } else {
150 /* Move to GTT memory */
151 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
152 AMDGPU_GEM_DOMAIN_CPU);
153 }
154 break;
155 case TTM_PL_TT:
156 case AMDGPU_PL_PREEMPT:
157 default:
158 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
159 break;
160 }
161 *placement = abo->placement;
162 }
163
164 /**
165 * amdgpu_ttm_map_buffer - Map memory into the GART windows
166 * @bo: buffer object to map
167 * @mem: memory object to map
168 * @mm_cur: range to map
169 * @window: which GART window to use
170 * @ring: DMA ring to use for the copy
171 * @tmz: if we should setup a TMZ enabled mapping
172 * @size: in number of bytes to map, out number of bytes mapped
173 * @addr: resulting address inside the MC address space
174 *
175 * Setup one of the GART windows to access a specific piece of memory or return
176 * the physical address for local memory.
177 */
178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
179 struct ttm_resource *mem,
180 struct amdgpu_res_cursor *mm_cur,
181 unsigned int window, struct amdgpu_ring *ring,
182 bool tmz, uint64_t *size, uint64_t *addr)
183 {
184 struct amdgpu_device *adev = ring->adev;
185 unsigned int offset, num_pages, num_dw, num_bytes;
186 uint64_t src_addr, dst_addr;
187 struct amdgpu_job *job;
188 void *cpu_addr;
189 uint64_t flags;
190 unsigned int i;
191 int r;
192
193 BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
194 AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
195
196 if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
197 return -EINVAL;
198
199 /* Map only what can't be accessed directly */
200 if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
201 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
202 mm_cur->start;
203 return 0;
204 }
205
206
207 /*
208 * If start begins at an offset inside the page, then adjust the size
209 * and addr accordingly
210 */
211 offset = mm_cur->start & ~PAGE_MASK;
212
213 num_pages = PFN_UP(*size + offset);
214 num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
215
216 *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
217
218 *addr = adev->gmc.gart_start;
219 *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
220 AMDGPU_GPU_PAGE_SIZE;
221 *addr += offset;
222
223 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
224 num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
225
226 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
227 AMDGPU_FENCE_OWNER_UNDEFINED,
228 num_dw * 4 + num_bytes,
229 AMDGPU_IB_POOL_DELAYED, &job);
230 if (r)
231 return r;
232
233 src_addr = num_dw * 4;
234 src_addr += job->ibs[0].gpu_addr;
235
236 dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
237 dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
238 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
239 dst_addr, num_bytes, false);
240
241 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
242 WARN_ON(job->ibs[0].length_dw > num_dw);
243
244 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
245 if (tmz)
246 flags |= AMDGPU_PTE_TMZ;
247
248 cpu_addr = &job->ibs[0].ptr[num_dw];
249
250 if (mem->mem_type == TTM_PL_TT) {
251 dma_addr_t *dma_addr;
252
253 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
254 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
255 } else {
256 dma_addr_t dma_address;
257
258 dma_address = mm_cur->start;
259 dma_address += adev->vm_manager.vram_base_offset;
260
261 for (i = 0; i < num_pages; ++i) {
262 amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
263 flags, cpu_addr);
264 dma_address += PAGE_SIZE;
265 }
266 }
267
268 dma_fence_put(amdgpu_job_submit(job));
269 return 0;
270 }
271
272 /**
273 * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
274 * @adev: amdgpu device
275 * @src: buffer/address where to read from
276 * @dst: buffer/address where to write to
277 * @size: number of bytes to copy
278 * @tmz: if a secure copy should be used
279 * @resv: resv object to sync to
280 * @f: Returns the last fence if multiple jobs are submitted.
281 *
282 * The function copies @size bytes from {src->mem + src->offset} to
283 * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
284 * move and different for a BO to BO copy.
285 *
286 */
287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
288 const struct amdgpu_copy_mem *src,
289 const struct amdgpu_copy_mem *dst,
290 uint64_t size, bool tmz,
291 struct dma_resv *resv,
292 struct dma_fence **f)
293 {
294 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
295 struct amdgpu_res_cursor src_mm, dst_mm;
296 struct dma_fence *fence = NULL;
297 int r = 0;
298
299 if (!adev->mman.buffer_funcs_enabled) {
300 DRM_ERROR("Trying to move memory with ring turned off.\n");
301 return -EINVAL;
302 }
303
304 amdgpu_res_first(src->mem, src->offset, size, &src_mm);
305 amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
306
307 mutex_lock(&adev->mman.gtt_window_lock);
308 while (src_mm.remaining) {
309 uint64_t from, to, cur_size;
310 struct dma_fence *next;
311
312 /* Never copy more than 256MiB at once to avoid a timeout */
313 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
314
315 /* Map src to window 0 and dst to window 1. */
316 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
317 0, ring, tmz, &cur_size, &from);
318 if (r)
319 goto error;
320
321 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
322 1, ring, tmz, &cur_size, &to);
323 if (r)
324 goto error;
325
326 r = amdgpu_copy_buffer(ring, from, to, cur_size,
327 resv, &next, false, true, tmz);
328 if (r)
329 goto error;
330
331 dma_fence_put(fence);
332 fence = next;
333
334 amdgpu_res_next(&src_mm, cur_size);
335 amdgpu_res_next(&dst_mm, cur_size);
336 }
337 error:
338 mutex_unlock(&adev->mman.gtt_window_lock);
339 if (f)
340 *f = dma_fence_get(fence);
341 dma_fence_put(fence);
342 return r;
343 }
344
345 /*
346 * amdgpu_move_blit - Copy an entire buffer to another buffer
347 *
348 * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
349 * help move buffers to and from VRAM.
350 */
351 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
352 bool evict,
353 struct ttm_resource *new_mem,
354 struct ttm_resource *old_mem)
355 {
356 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
357 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
358 struct amdgpu_copy_mem src, dst;
359 struct dma_fence *fence = NULL;
360 int r;
361
362 src.bo = bo;
363 dst.bo = bo;
364 src.mem = old_mem;
365 dst.mem = new_mem;
366 src.offset = 0;
367 dst.offset = 0;
368
369 r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
370 new_mem->size,
371 amdgpu_bo_encrypted(abo),
372 bo->base.resv, &fence);
373 if (r)
374 goto error;
375
376 /* clear the space being freed */
377 if (old_mem->mem_type == TTM_PL_VRAM &&
378 (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
379 struct dma_fence *wipe_fence = NULL;
380
381 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
382 false);
383 if (r) {
384 goto error;
385 } else if (wipe_fence) {
386 dma_fence_put(fence);
387 fence = wipe_fence;
388 }
389 }
390
391 /* Always block for VM page tables before committing the new location */
392 if (bo->type == ttm_bo_type_kernel)
393 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
394 else
395 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
396 dma_fence_put(fence);
397 return r;
398
399 error:
400 if (fence)
401 dma_fence_wait(fence, false);
402 dma_fence_put(fence);
403 return r;
404 }
405
406 /*
407 * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
408 *
409 * Called by amdgpu_bo_move()
410 */
411 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
412 struct ttm_resource *mem)
413 {
414 u64 mem_size = (u64)mem->size;
415 struct amdgpu_res_cursor cursor;
416 u64 end;
417
418 if (mem->mem_type == TTM_PL_SYSTEM ||
419 mem->mem_type == TTM_PL_TT)
420 return true;
421 if (mem->mem_type != TTM_PL_VRAM)
422 return false;
423
424 amdgpu_res_first(mem, 0, mem_size, &cursor);
425 end = cursor.start + cursor.size;
426 while (cursor.remaining) {
427 amdgpu_res_next(&cursor, cursor.size);
428
429 if (!cursor.remaining)
430 break;
431
432 /* ttm_resource_ioremap only supports contiguous memory */
433 if (end != cursor.start)
434 return false;
435
436 end = cursor.start + cursor.size;
437 }
438
439 return end <= adev->gmc.visible_vram_size;
440 }
441
442 /*
443 * amdgpu_bo_move - Move a buffer object to a new memory location
444 *
445 * Called by ttm_bo_handle_move_mem()
446 */
447 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
448 struct ttm_operation_ctx *ctx,
449 struct ttm_resource *new_mem,
450 struct ttm_place *hop)
451 {
452 struct amdgpu_device *adev;
453 struct amdgpu_bo *abo;
454 struct ttm_resource *old_mem = bo->resource;
455 int r;
456
457 if (new_mem->mem_type == TTM_PL_TT ||
458 new_mem->mem_type == AMDGPU_PL_PREEMPT) {
459 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
460 if (r)
461 return r;
462 }
463
464 abo = ttm_to_amdgpu_bo(bo);
465 adev = amdgpu_ttm_adev(bo->bdev);
466
467 if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
468 bo->ttm == NULL)) {
469 ttm_bo_move_null(bo, new_mem);
470 goto out;
471 }
472 if (old_mem->mem_type == TTM_PL_SYSTEM &&
473 (new_mem->mem_type == TTM_PL_TT ||
474 new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
475 ttm_bo_move_null(bo, new_mem);
476 goto out;
477 }
478 if ((old_mem->mem_type == TTM_PL_TT ||
479 old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
480 new_mem->mem_type == TTM_PL_SYSTEM) {
481 r = ttm_bo_wait_ctx(bo, ctx);
482 if (r)
483 return r;
484
485 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
486 ttm_resource_free(bo, &bo->resource);
487 ttm_bo_assign_mem(bo, new_mem);
488 goto out;
489 }
490
491 if (old_mem->mem_type == AMDGPU_PL_GDS ||
492 old_mem->mem_type == AMDGPU_PL_GWS ||
493 old_mem->mem_type == AMDGPU_PL_OA ||
494 old_mem->mem_type == AMDGPU_PL_DOORBELL ||
495 new_mem->mem_type == AMDGPU_PL_GDS ||
496 new_mem->mem_type == AMDGPU_PL_GWS ||
497 new_mem->mem_type == AMDGPU_PL_OA ||
498 new_mem->mem_type == AMDGPU_PL_DOORBELL) {
499 /* Nothing to save here */
500 ttm_bo_move_null(bo, new_mem);
501 goto out;
502 }
503
504 if (bo->type == ttm_bo_type_device &&
505 new_mem->mem_type == TTM_PL_VRAM &&
506 old_mem->mem_type != TTM_PL_VRAM) {
507 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
508 * accesses the BO after it's moved.
509 */
510 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
511 }
512
513 if (adev->mman.buffer_funcs_enabled) {
514 if (((old_mem->mem_type == TTM_PL_SYSTEM &&
515 new_mem->mem_type == TTM_PL_VRAM) ||
516 (old_mem->mem_type == TTM_PL_VRAM &&
517 new_mem->mem_type == TTM_PL_SYSTEM))) {
518 hop->fpfn = 0;
519 hop->lpfn = 0;
520 hop->mem_type = TTM_PL_TT;
521 hop->flags = TTM_PL_FLAG_TEMPORARY;
522 return -EMULTIHOP;
523 }
524
525 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
526 } else {
527 r = -ENODEV;
528 }
529
530 if (r) {
531 /* Check that all memory is CPU accessible */
532 if (!amdgpu_mem_visible(adev, old_mem) ||
533 !amdgpu_mem_visible(adev, new_mem)) {
534 pr_err("Move buffer fallback to memcpy unavailable\n");
535 return r;
536 }
537
538 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
539 if (r)
540 return r;
541 }
542
543 trace_amdgpu_bo_move(abo, new_mem->mem_type, old_mem->mem_type);
544 out:
545 /* update statistics */
546 atomic64_add(bo->base.size, &adev->num_bytes_moved);
547 amdgpu_bo_move_notify(bo, evict);
548 return 0;
549 }
550
551 /*
552 * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
553 *
554 * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
555 */
556 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
557 struct ttm_resource *mem)
558 {
559 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
560 size_t bus_size = (size_t)mem->size;
561
562 switch (mem->mem_type) {
563 case TTM_PL_SYSTEM:
564 /* system memory */
565 return 0;
566 case TTM_PL_TT:
567 case AMDGPU_PL_PREEMPT:
568 break;
569 case TTM_PL_VRAM:
570 mem->bus.offset = mem->start << PAGE_SHIFT;
571 /* check if it's visible */
572 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
573 return -EINVAL;
574
575 if (adev->mman.aper_base_kaddr &&
576 mem->placement & TTM_PL_FLAG_CONTIGUOUS)
577 mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
578 mem->bus.offset;
579
580 mem->bus.offset += adev->gmc.aper_base;
581 mem->bus.is_iomem = true;
582 break;
583 case AMDGPU_PL_DOORBELL:
584 mem->bus.offset = mem->start << PAGE_SHIFT;
585 mem->bus.offset += adev->doorbell.base;
586 mem->bus.is_iomem = true;
587 mem->bus.caching = ttm_uncached;
588 break;
589 default:
590 return -EINVAL;
591 }
592 return 0;
593 }
594
595 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
596 unsigned long page_offset)
597 {
598 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
599 struct amdgpu_res_cursor cursor;
600
601 amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
602 &cursor);
603
604 if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
605 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
606
607 return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
608 }
609
610 /**
611 * amdgpu_ttm_domain_start - Returns GPU start address
612 * @adev: amdgpu device object
613 * @type: type of the memory
614 *
615 * Returns:
616 * GPU start address of a memory domain
617 */
618
619 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
620 {
621 switch (type) {
622 case TTM_PL_TT:
623 return adev->gmc.gart_start;
624 case TTM_PL_VRAM:
625 return adev->gmc.vram_start;
626 }
627
628 return 0;
629 }
630
631 /*
632 * TTM backend functions.
633 */
634 struct amdgpu_ttm_tt {
635 struct ttm_tt ttm;
636 struct drm_gem_object *gobj;
637 u64 offset;
638 uint64_t userptr;
639 struct task_struct *usertask;
640 uint32_t userflags;
641 bool bound;
642 int32_t pool_id;
643 };
644
645 #define ttm_to_amdgpu_ttm_tt(ptr) container_of(ptr, struct amdgpu_ttm_tt, ttm)
646
647 #ifdef CONFIG_DRM_AMDGPU_USERPTR
648 /*
649 * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
650 * memory and start HMM tracking CPU page table update
651 *
652 * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
653 * once afterwards to stop HMM tracking
654 */
655 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
656 struct hmm_range **range)
657 {
658 struct ttm_tt *ttm = bo->tbo.ttm;
659 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
660 unsigned long start = gtt->userptr;
661 struct vm_area_struct *vma;
662 struct mm_struct *mm;
663 bool readonly;
664 int r = 0;
665
666 /* Make sure get_user_pages_done() can cleanup gracefully */
667 *range = NULL;
668
669 mm = bo->notifier.mm;
670 if (unlikely(!mm)) {
671 DRM_DEBUG_DRIVER("BO is not registered?\n");
672 return -EFAULT;
673 }
674
675 if (!mmget_not_zero(mm)) /* Happens during process shutdown */
676 return -ESRCH;
677
678 mmap_read_lock(mm);
679 vma = vma_lookup(mm, start);
680 if (unlikely(!vma)) {
681 r = -EFAULT;
682 goto out_unlock;
683 }
684 if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
685 vma->vm_file)) {
686 r = -EPERM;
687 goto out_unlock;
688 }
689
690 readonly = amdgpu_ttm_tt_is_readonly(ttm);
691 r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
692 readonly, NULL, pages, range);
693 out_unlock:
694 mmap_read_unlock(mm);
695 if (r)
696 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
697
698 mmput(mm);
699
700 return r;
701 }
702
703 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
704 */
705 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
706 struct hmm_range *range)
707 {
708 struct amdgpu_ttm_tt *gtt = (void *)ttm;
709
710 if (gtt && gtt->userptr && range)
711 amdgpu_hmm_range_get_pages_done(range);
712 }
713
714 /*
715 * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
716 * Check if the pages backing this ttm range have been invalidated
717 *
718 * Returns: true if pages are still valid
719 */
720 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
721 struct hmm_range *range)
722 {
723 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
724
725 if (!gtt || !gtt->userptr || !range)
726 return false;
727
728 DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
729 gtt->userptr, ttm->num_pages);
730
731 WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
732
733 return !amdgpu_hmm_range_get_pages_done(range);
734 }
735 #endif
736
737 /*
738 * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
739 *
740 * Called by amdgpu_cs_list_validate(). This creates the page list
741 * that backs user memory and will ultimately be mapped into the device
742 * address space.
743 */
744 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
745 {
746 unsigned long i;
747
748 for (i = 0; i < ttm->num_pages; ++i)
749 ttm->pages[i] = pages ? pages[i] : NULL;
750 }
751
752 /*
753 * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
754 *
755 * Called by amdgpu_ttm_backend_bind()
756 **/
757 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
758 struct ttm_tt *ttm)
759 {
760 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
761 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
762 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
763 enum dma_data_direction direction = write ?
764 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
765 int r;
766
767 /* Allocate an SG array and squash pages into it */
768 r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
769 (u64)ttm->num_pages << PAGE_SHIFT,
770 GFP_KERNEL);
771 if (r)
772 goto release_sg;
773
774 /* Map SG to device */
775 r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
776 if (r)
777 goto release_sg;
778
779 /* convert SG to linear array of pages and dma addresses */
780 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
781 ttm->num_pages);
782
783 return 0;
784
785 release_sg:
786 kfree(ttm->sg);
787 ttm->sg = NULL;
788 return r;
789 }
790
791 /*
792 * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
793 */
794 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
795 struct ttm_tt *ttm)
796 {
797 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
798 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
799 int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
800 enum dma_data_direction direction = write ?
801 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
802
803 /* double check that we don't free the table twice */
804 if (!ttm->sg || !ttm->sg->sgl)
805 return;
806
807 /* unmap the pages mapped to the device */
808 dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
809 sg_free_table(ttm->sg);
810 }
811
812 /*
813 * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
814 * MQDn+CtrlStackn where n is the number of XCCs per partition.
815 * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
816 * and uses memory type default, UC. The rest of pages_per_xcc are
817 * Ctrl stack and modify their memory type to NC.
818 */
819 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
820 struct ttm_tt *ttm, uint64_t flags)
821 {
822 struct amdgpu_ttm_tt *gtt = (void *)ttm;
823 uint64_t total_pages = ttm->num_pages;
824 int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
825 uint64_t page_idx, pages_per_xcc;
826 int i;
827 uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
828 AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
829
830 pages_per_xcc = total_pages;
831 do_div(pages_per_xcc, num_xcc);
832
833 for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
834 /* MQD page: use default flags */
835 amdgpu_gart_bind(adev,
836 gtt->offset + (page_idx << PAGE_SHIFT),
837 1, &gtt->ttm.dma_address[page_idx], flags);
838 /*
839 * Ctrl pages - modify the memory type to NC (ctrl_flags) from
840 * the second page of the BO onward.
841 */
842 amdgpu_gart_bind(adev,
843 gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
844 pages_per_xcc - 1,
845 &gtt->ttm.dma_address[page_idx + 1],
846 ctrl_flags);
847 }
848 }
849
850 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
851 struct ttm_buffer_object *tbo,
852 uint64_t flags)
853 {
854 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
855 struct ttm_tt *ttm = tbo->ttm;
856 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
857
858 if (amdgpu_bo_encrypted(abo))
859 flags |= AMDGPU_PTE_TMZ;
860
861 if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
862 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
863 } else {
864 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
865 gtt->ttm.dma_address, flags);
866 }
867 }
868
869 /*
870 * amdgpu_ttm_backend_bind - Bind GTT memory
871 *
872 * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
873 * This handles binding GTT memory to the device address space.
874 */
875 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
876 struct ttm_tt *ttm,
877 struct ttm_resource *bo_mem)
878 {
879 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
880 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
881 uint64_t flags;
882 int r;
883
884 if (!bo_mem)
885 return -EINVAL;
886
887 if (gtt->bound)
888 return 0;
889
890 if (gtt->userptr) {
891 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
892 if (r) {
893 DRM_ERROR("failed to pin userptr\n");
894 return r;
895 }
896 } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
897 if (!ttm->sg) {
898 struct dma_buf_attachment *attach;
899 struct sg_table *sgt;
900
901 attach = gtt->gobj->import_attach;
902 sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
903 if (IS_ERR(sgt))
904 return PTR_ERR(sgt);
905
906 ttm->sg = sgt;
907 }
908
909 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
910 ttm->num_pages);
911 }
912
913 if (!ttm->num_pages) {
914 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
915 ttm->num_pages, bo_mem, ttm);
916 }
917
918 if (bo_mem->mem_type != TTM_PL_TT ||
919 !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
920 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
921 return 0;
922 }
923
924 /* compute PTE flags relevant to this BO memory */
925 flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
926
927 /* bind pages into GART page tables */
928 gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
929 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
930 gtt->ttm.dma_address, flags);
931 gtt->bound = true;
932 return 0;
933 }
934
935 /*
936 * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
937 * through AGP or GART aperture.
938 *
939 * If bo is accessible through AGP aperture, then use AGP aperture
940 * to access bo; otherwise allocate logical space in GART aperture
941 * and map bo to GART aperture.
942 */
943 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
944 {
945 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
946 struct ttm_operation_ctx ctx = { false, false };
947 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
948 struct ttm_placement placement;
949 struct ttm_place placements;
950 struct ttm_resource *tmp;
951 uint64_t addr, flags;
952 int r;
953
954 if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
955 return 0;
956
957 addr = amdgpu_gmc_agp_addr(bo);
958 if (addr != AMDGPU_BO_INVALID_OFFSET)
959 return 0;
960
961 /* allocate GART space */
962 placement.num_placement = 1;
963 placement.placement = &placements;
964 placements.fpfn = 0;
965 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
966 placements.mem_type = TTM_PL_TT;
967 placements.flags = bo->resource->placement;
968
969 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
970 if (unlikely(r))
971 return r;
972
973 /* compute PTE flags for this buffer object */
974 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
975
976 /* Bind pages */
977 gtt->offset = (u64)tmp->start << PAGE_SHIFT;
978 amdgpu_ttm_gart_bind(adev, bo, flags);
979 amdgpu_gart_invalidate_tlb(adev);
980 ttm_resource_free(bo, &bo->resource);
981 ttm_bo_assign_mem(bo, tmp);
982
983 return 0;
984 }
985
986 /*
987 * amdgpu_ttm_recover_gart - Rebind GTT pages
988 *
989 * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
990 * rebind GTT pages during a GPU reset.
991 */
992 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
993 {
994 struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
995 uint64_t flags;
996
997 if (!tbo->ttm)
998 return;
999
1000 flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1001 amdgpu_ttm_gart_bind(adev, tbo, flags);
1002 }
1003
1004 /*
1005 * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1006 *
1007 * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1008 * ttm_tt_destroy().
1009 */
1010 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1011 struct ttm_tt *ttm)
1012 {
1013 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1014 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1015
1016 /* if the pages have userptr pinning then clear that first */
1017 if (gtt->userptr) {
1018 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1019 } else if (ttm->sg && gtt->gobj->import_attach) {
1020 struct dma_buf_attachment *attach;
1021
1022 attach = gtt->gobj->import_attach;
1023 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1024 ttm->sg = NULL;
1025 }
1026
1027 if (!gtt->bound)
1028 return;
1029
1030 if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1031 return;
1032
1033 /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1034 amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1035 gtt->bound = false;
1036 }
1037
1038 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1039 struct ttm_tt *ttm)
1040 {
1041 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1042
1043 if (gtt->usertask)
1044 put_task_struct(gtt->usertask);
1045
1046 ttm_tt_fini(&gtt->ttm);
1047 kfree(gtt);
1048 }
1049
1050 /**
1051 * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1052 *
1053 * @bo: The buffer object to create a GTT ttm_tt object around
1054 * @page_flags: Page flags to be added to the ttm_tt object
1055 *
1056 * Called by ttm_tt_create().
1057 */
1058 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1059 uint32_t page_flags)
1060 {
1061 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1062 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1063 struct amdgpu_ttm_tt *gtt;
1064 enum ttm_caching caching;
1065
1066 gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1067 if (!gtt)
1068 return NULL;
1069
1070 gtt->gobj = &bo->base;
1071 if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1072 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1073 else
1074 gtt->pool_id = abo->xcp_id;
1075
1076 if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1077 caching = ttm_write_combined;
1078 else
1079 caching = ttm_cached;
1080
1081 /* allocate space for the uninitialized page entries */
1082 if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1083 kfree(gtt);
1084 return NULL;
1085 }
1086 return &gtt->ttm;
1087 }
1088
1089 /*
1090 * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1091 *
1092 * Map the pages of a ttm_tt object to an address space visible
1093 * to the underlying device.
1094 */
1095 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1096 struct ttm_tt *ttm,
1097 struct ttm_operation_ctx *ctx)
1098 {
1099 struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1100 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1101 struct ttm_pool *pool;
1102 pgoff_t i;
1103 int ret;
1104
1105 /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1106 if (gtt->userptr) {
1107 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1108 if (!ttm->sg)
1109 return -ENOMEM;
1110 return 0;
1111 }
1112
1113 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1114 return 0;
1115
1116 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1117 pool = &adev->mman.ttm_pools[gtt->pool_id];
1118 else
1119 pool = &adev->mman.bdev.pool;
1120 ret = ttm_pool_alloc(pool, ttm, ctx);
1121 if (ret)
1122 return ret;
1123
1124 for (i = 0; i < ttm->num_pages; ++i)
1125 ttm->pages[i]->mapping = bdev->dev_mapping;
1126
1127 return 0;
1128 }
1129
1130 /*
1131 * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1132 *
1133 * Unmaps pages of a ttm_tt object from the device address space and
1134 * unpopulates the page array backing it.
1135 */
1136 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1137 struct ttm_tt *ttm)
1138 {
1139 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1140 struct amdgpu_device *adev;
1141 struct ttm_pool *pool;
1142 pgoff_t i;
1143
1144 amdgpu_ttm_backend_unbind(bdev, ttm);
1145
1146 if (gtt->userptr) {
1147 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1148 kfree(ttm->sg);
1149 ttm->sg = NULL;
1150 return;
1151 }
1152
1153 if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1154 return;
1155
1156 for (i = 0; i < ttm->num_pages; ++i)
1157 ttm->pages[i]->mapping = NULL;
1158
1159 adev = amdgpu_ttm_adev(bdev);
1160
1161 if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1162 pool = &adev->mman.ttm_pools[gtt->pool_id];
1163 else
1164 pool = &adev->mman.bdev.pool;
1165
1166 return ttm_pool_free(pool, ttm);
1167 }
1168
1169 /**
1170 * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1171 * task
1172 *
1173 * @tbo: The ttm_buffer_object that contains the userptr
1174 * @user_addr: The returned value
1175 */
1176 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1177 uint64_t *user_addr)
1178 {
1179 struct amdgpu_ttm_tt *gtt;
1180
1181 if (!tbo->ttm)
1182 return -EINVAL;
1183
1184 gtt = (void *)tbo->ttm;
1185 *user_addr = gtt->userptr;
1186 return 0;
1187 }
1188
1189 /**
1190 * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1191 * task
1192 *
1193 * @bo: The ttm_buffer_object to bind this userptr to
1194 * @addr: The address in the current tasks VM space to use
1195 * @flags: Requirements of userptr object.
1196 *
1197 * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1198 * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1199 * initialize GPU VM for a KFD process.
1200 */
1201 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1202 uint64_t addr, uint32_t flags)
1203 {
1204 struct amdgpu_ttm_tt *gtt;
1205
1206 if (!bo->ttm) {
1207 /* TODO: We want a separate TTM object type for userptrs */
1208 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1209 if (bo->ttm == NULL)
1210 return -ENOMEM;
1211 }
1212
1213 /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1214 bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1215
1216 gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1217 gtt->userptr = addr;
1218 gtt->userflags = flags;
1219
1220 if (gtt->usertask)
1221 put_task_struct(gtt->usertask);
1222 gtt->usertask = current->group_leader;
1223 get_task_struct(gtt->usertask);
1224
1225 return 0;
1226 }
1227
1228 /*
1229 * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1230 */
1231 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1232 {
1233 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1234
1235 if (gtt == NULL)
1236 return NULL;
1237
1238 if (gtt->usertask == NULL)
1239 return NULL;
1240
1241 return gtt->usertask->mm;
1242 }
1243
1244 /*
1245 * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1246 * address range for the current task.
1247 *
1248 */
1249 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1250 unsigned long end, unsigned long *userptr)
1251 {
1252 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1253 unsigned long size;
1254
1255 if (gtt == NULL || !gtt->userptr)
1256 return false;
1257
1258 /* Return false if no part of the ttm_tt object lies within
1259 * the range
1260 */
1261 size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1262 if (gtt->userptr > end || gtt->userptr + size <= start)
1263 return false;
1264
1265 if (userptr)
1266 *userptr = gtt->userptr;
1267 return true;
1268 }
1269
1270 /*
1271 * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1272 */
1273 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1274 {
1275 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1276
1277 if (gtt == NULL || !gtt->userptr)
1278 return false;
1279
1280 return true;
1281 }
1282
1283 /*
1284 * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1285 */
1286 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1287 {
1288 struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1289
1290 if (gtt == NULL)
1291 return false;
1292
1293 return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1294 }
1295
1296 /**
1297 * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1298 *
1299 * @ttm: The ttm_tt object to compute the flags for
1300 * @mem: The memory registry backing this ttm_tt object
1301 *
1302 * Figure out the flags to use for a VM PDE (Page Directory Entry).
1303 */
1304 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1305 {
1306 uint64_t flags = 0;
1307
1308 if (mem && mem->mem_type != TTM_PL_SYSTEM)
1309 flags |= AMDGPU_PTE_VALID;
1310
1311 if (mem && (mem->mem_type == TTM_PL_TT ||
1312 mem->mem_type == AMDGPU_PL_DOORBELL ||
1313 mem->mem_type == AMDGPU_PL_PREEMPT)) {
1314 flags |= AMDGPU_PTE_SYSTEM;
1315
1316 if (ttm->caching == ttm_cached)
1317 flags |= AMDGPU_PTE_SNOOPED;
1318 }
1319
1320 if (mem && mem->mem_type == TTM_PL_VRAM &&
1321 mem->bus.caching == ttm_cached)
1322 flags |= AMDGPU_PTE_SNOOPED;
1323
1324 return flags;
1325 }
1326
1327 /**
1328 * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1329 *
1330 * @adev: amdgpu_device pointer
1331 * @ttm: The ttm_tt object to compute the flags for
1332 * @mem: The memory registry backing this ttm_tt object
1333 *
1334 * Figure out the flags to use for a VM PTE (Page Table Entry).
1335 */
1336 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1337 struct ttm_resource *mem)
1338 {
1339 uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1340
1341 flags |= adev->gart.gart_pte_flags;
1342 flags |= AMDGPU_PTE_READABLE;
1343
1344 if (!amdgpu_ttm_tt_is_readonly(ttm))
1345 flags |= AMDGPU_PTE_WRITEABLE;
1346
1347 return flags;
1348 }
1349
1350 /*
1351 * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1352 * object.
1353 *
1354 * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1355 * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1356 * it can find space for a new object and by ttm_bo_force_list_clean() which is
1357 * used to clean out a memory space.
1358 */
1359 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1360 const struct ttm_place *place)
1361 {
1362 struct dma_resv_iter resv_cursor;
1363 struct dma_fence *f;
1364
1365 if (!amdgpu_bo_is_amdgpu_bo(bo))
1366 return ttm_bo_eviction_valuable(bo, place);
1367
1368 /* Swapout? */
1369 if (bo->resource->mem_type == TTM_PL_SYSTEM)
1370 return true;
1371
1372 if (bo->type == ttm_bo_type_kernel &&
1373 !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1374 return false;
1375
1376 /* If bo is a KFD BO, check if the bo belongs to the current process.
1377 * If true, then return false as any KFD process needs all its BOs to
1378 * be resident to run successfully
1379 */
1380 dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1381 DMA_RESV_USAGE_BOOKKEEP, f) {
1382 if (amdkfd_fence_check_mm(f, current->mm))
1383 return false;
1384 }
1385
1386 /* Preemptible BOs don't own system resources managed by the
1387 * driver (pages, VRAM, GART space). They point to resources
1388 * owned by someone else (e.g. pageable memory in user mode
1389 * or a DMABuf). They are used in a preemptible context so we
1390 * can guarantee no deadlocks and good QoS in case of MMU
1391 * notifiers or DMABuf move notifiers from the resource owner.
1392 */
1393 if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1394 return false;
1395
1396 if (bo->resource->mem_type == TTM_PL_TT &&
1397 amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1398 return false;
1399
1400 return ttm_bo_eviction_valuable(bo, place);
1401 }
1402
1403 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1404 void *buf, size_t size, bool write)
1405 {
1406 while (size) {
1407 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1408 uint64_t bytes = 4 - (pos & 0x3);
1409 uint32_t shift = (pos & 0x3) * 8;
1410 uint32_t mask = 0xffffffff << shift;
1411 uint32_t value = 0;
1412
1413 if (size < bytes) {
1414 mask &= 0xffffffff >> (bytes - size) * 8;
1415 bytes = size;
1416 }
1417
1418 if (mask != 0xffffffff) {
1419 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1420 if (write) {
1421 value &= ~mask;
1422 value |= (*(uint32_t *)buf << shift) & mask;
1423 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1424 } else {
1425 value = (value & mask) >> shift;
1426 memcpy(buf, &value, bytes);
1427 }
1428 } else {
1429 amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1430 }
1431
1432 pos += bytes;
1433 buf += bytes;
1434 size -= bytes;
1435 }
1436 }
1437
1438 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1439 unsigned long offset, void *buf,
1440 int len, int write)
1441 {
1442 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1443 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1444 struct amdgpu_res_cursor src_mm;
1445 struct amdgpu_job *job;
1446 struct dma_fence *fence;
1447 uint64_t src_addr, dst_addr;
1448 unsigned int num_dw;
1449 int r, idx;
1450
1451 if (len != PAGE_SIZE)
1452 return -EINVAL;
1453
1454 if (!adev->mman.sdma_access_ptr)
1455 return -EACCES;
1456
1457 if (!drm_dev_enter(adev_to_drm(adev), &idx))
1458 return -ENODEV;
1459
1460 if (write)
1461 memcpy(adev->mman.sdma_access_ptr, buf, len);
1462
1463 num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1464 r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1465 AMDGPU_FENCE_OWNER_UNDEFINED,
1466 num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1467 &job);
1468 if (r)
1469 goto out;
1470
1471 amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1472 src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1473 src_mm.start;
1474 dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1475 if (write)
1476 swap(src_addr, dst_addr);
1477
1478 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1479 PAGE_SIZE, false);
1480
1481 amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1482 WARN_ON(job->ibs[0].length_dw > num_dw);
1483
1484 fence = amdgpu_job_submit(job);
1485
1486 if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1487 r = -ETIMEDOUT;
1488 dma_fence_put(fence);
1489
1490 if (!(r || write))
1491 memcpy(buf, adev->mman.sdma_access_ptr, len);
1492 out:
1493 drm_dev_exit(idx);
1494 return r;
1495 }
1496
1497 /**
1498 * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1499 *
1500 * @bo: The buffer object to read/write
1501 * @offset: Offset into buffer object
1502 * @buf: Secondary buffer to write/read from
1503 * @len: Length in bytes of access
1504 * @write: true if writing
1505 *
1506 * This is used to access VRAM that backs a buffer object via MMIO
1507 * access for debugging purposes.
1508 */
1509 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1510 unsigned long offset, void *buf, int len,
1511 int write)
1512 {
1513 struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1514 struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1515 struct amdgpu_res_cursor cursor;
1516 int ret = 0;
1517
1518 if (bo->resource->mem_type != TTM_PL_VRAM)
1519 return -EIO;
1520
1521 if (amdgpu_device_has_timeouts_enabled(adev) &&
1522 !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1523 return len;
1524
1525 amdgpu_res_first(bo->resource, offset, len, &cursor);
1526 while (cursor.remaining) {
1527 size_t count, size = cursor.size;
1528 loff_t pos = cursor.start;
1529
1530 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1531 size -= count;
1532 if (size) {
1533 /* using MM to access rest vram and handle un-aligned address */
1534 pos += count;
1535 buf += count;
1536 amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1537 }
1538
1539 ret += cursor.size;
1540 buf += cursor.size;
1541 amdgpu_res_next(&cursor, cursor.size);
1542 }
1543
1544 return ret;
1545 }
1546
1547 static void
1548 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1549 {
1550 amdgpu_bo_move_notify(bo, false);
1551 }
1552
1553 static struct ttm_device_funcs amdgpu_bo_driver = {
1554 .ttm_tt_create = &amdgpu_ttm_tt_create,
1555 .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1556 .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1557 .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1558 .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1559 .evict_flags = &amdgpu_evict_flags,
1560 .move = &amdgpu_bo_move,
1561 .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1562 .release_notify = &amdgpu_bo_release_notify,
1563 .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1564 .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1565 .access_memory = &amdgpu_ttm_access_memory,
1566 };
1567
1568 /*
1569 * Firmware Reservation functions
1570 */
1571 /**
1572 * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1573 *
1574 * @adev: amdgpu_device pointer
1575 *
1576 * free fw reserved vram if it has been reserved.
1577 */
1578 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1579 {
1580 amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1581 NULL, &adev->mman.fw_vram_usage_va);
1582 }
1583
1584 /*
1585 * Driver Reservation functions
1586 */
1587 /**
1588 * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1589 *
1590 * @adev: amdgpu_device pointer
1591 *
1592 * free drv reserved vram if it has been reserved.
1593 */
1594 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1595 {
1596 amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1597 NULL,
1598 &adev->mman.drv_vram_usage_va);
1599 }
1600
1601 /**
1602 * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1603 *
1604 * @adev: amdgpu_device pointer
1605 *
1606 * create bo vram reservation from fw.
1607 */
1608 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1609 {
1610 uint64_t vram_size = adev->gmc.visible_vram_size;
1611
1612 adev->mman.fw_vram_usage_va = NULL;
1613 adev->mman.fw_vram_usage_reserved_bo = NULL;
1614
1615 if (adev->mman.fw_vram_usage_size == 0 ||
1616 adev->mman.fw_vram_usage_size > vram_size)
1617 return 0;
1618
1619 return amdgpu_bo_create_kernel_at(adev,
1620 adev->mman.fw_vram_usage_start_offset,
1621 adev->mman.fw_vram_usage_size,
1622 &adev->mman.fw_vram_usage_reserved_bo,
1623 &adev->mman.fw_vram_usage_va);
1624 }
1625
1626 /**
1627 * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1628 *
1629 * @adev: amdgpu_device pointer
1630 *
1631 * create bo vram reservation from drv.
1632 */
1633 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1634 {
1635 u64 vram_size = adev->gmc.visible_vram_size;
1636
1637 adev->mman.drv_vram_usage_va = NULL;
1638 adev->mman.drv_vram_usage_reserved_bo = NULL;
1639
1640 if (adev->mman.drv_vram_usage_size == 0 ||
1641 adev->mman.drv_vram_usage_size > vram_size)
1642 return 0;
1643
1644 return amdgpu_bo_create_kernel_at(adev,
1645 adev->mman.drv_vram_usage_start_offset,
1646 adev->mman.drv_vram_usage_size,
1647 &adev->mman.drv_vram_usage_reserved_bo,
1648 &adev->mman.drv_vram_usage_va);
1649 }
1650
1651 /*
1652 * Memoy training reservation functions
1653 */
1654
1655 /**
1656 * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1657 *
1658 * @adev: amdgpu_device pointer
1659 *
1660 * free memory training reserved vram if it has been reserved.
1661 */
1662 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1663 {
1664 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1665
1666 ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1667 amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1668 ctx->c2p_bo = NULL;
1669
1670 return 0;
1671 }
1672
1673 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1674 uint32_t reserve_size)
1675 {
1676 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1677
1678 memset(ctx, 0, sizeof(*ctx));
1679
1680 ctx->c2p_train_data_offset =
1681 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1682 ctx->p2c_train_data_offset =
1683 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1684 ctx->train_data_size =
1685 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1686
1687 DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1688 ctx->train_data_size,
1689 ctx->p2c_train_data_offset,
1690 ctx->c2p_train_data_offset);
1691 }
1692
1693 /*
1694 * reserve TMR memory at the top of VRAM which holds
1695 * IP Discovery data and is protected by PSP.
1696 */
1697 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1698 {
1699 struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1700 bool mem_train_support = false;
1701 uint32_t reserve_size = 0;
1702 int ret;
1703
1704 if (adev->bios && !amdgpu_sriov_vf(adev)) {
1705 if (amdgpu_atomfirmware_mem_training_supported(adev))
1706 mem_train_support = true;
1707 else
1708 DRM_DEBUG("memory training does not support!\n");
1709 }
1710
1711 /*
1712 * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1713 * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1714 *
1715 * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1716 * discovery data and G6 memory training data respectively
1717 */
1718 if (adev->bios)
1719 reserve_size =
1720 amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1721
1722 if (!adev->bios &&
1723 amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3))
1724 reserve_size = max(reserve_size, (uint32_t)280 << 20);
1725 else if (!reserve_size)
1726 reserve_size = DISCOVERY_TMR_OFFSET;
1727
1728 if (mem_train_support) {
1729 /* reserve vram for mem train according to TMR location */
1730 amdgpu_ttm_training_data_block_init(adev, reserve_size);
1731 ret = amdgpu_bo_create_kernel_at(adev,
1732 ctx->c2p_train_data_offset,
1733 ctx->train_data_size,
1734 &ctx->c2p_bo,
1735 NULL);
1736 if (ret) {
1737 DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1738 amdgpu_ttm_training_reserve_vram_fini(adev);
1739 return ret;
1740 }
1741 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1742 }
1743
1744 if (!adev->gmc.is_app_apu) {
1745 ret = amdgpu_bo_create_kernel_at(
1746 adev, adev->gmc.real_vram_size - reserve_size,
1747 reserve_size, &adev->mman.fw_reserved_memory, NULL);
1748 if (ret) {
1749 DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1750 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1751 NULL, NULL);
1752 return ret;
1753 }
1754 } else {
1755 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1756 }
1757
1758 return 0;
1759 }
1760
1761 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1762 {
1763 int i;
1764
1765 if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1766 return 0;
1767
1768 adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1769 sizeof(*adev->mman.ttm_pools),
1770 GFP_KERNEL);
1771 if (!adev->mman.ttm_pools)
1772 return -ENOMEM;
1773
1774 for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1775 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1776 adev->gmc.mem_partitions[i].numa.node,
1777 false, false);
1778 }
1779 return 0;
1780 }
1781
1782 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1783 {
1784 int i;
1785
1786 if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1787 return;
1788
1789 for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1790 ttm_pool_fini(&adev->mman.ttm_pools[i]);
1791
1792 kfree(adev->mman.ttm_pools);
1793 adev->mman.ttm_pools = NULL;
1794 }
1795
1796 /*
1797 * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1798 * gtt/vram related fields.
1799 *
1800 * This initializes all of the memory space pools that the TTM layer
1801 * will need such as the GTT space (system memory mapped to the device),
1802 * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1803 * can be mapped per VMID.
1804 */
1805 int amdgpu_ttm_init(struct amdgpu_device *adev)
1806 {
1807 uint64_t gtt_size;
1808 int r;
1809
1810 mutex_init(&adev->mman.gtt_window_lock);
1811
1812 /* No others user of address space so set it to 0 */
1813 r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1814 adev_to_drm(adev)->anon_inode->i_mapping,
1815 adev_to_drm(adev)->vma_offset_manager,
1816 adev->need_swiotlb,
1817 dma_addressing_limited(adev->dev));
1818 if (r) {
1819 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1820 return r;
1821 }
1822
1823 r = amdgpu_ttm_pools_init(adev);
1824 if (r) {
1825 DRM_ERROR("failed to init ttm pools(%d).\n", r);
1826 return r;
1827 }
1828 adev->mman.initialized = true;
1829
1830 /* Initialize VRAM pool with all of VRAM divided into pages */
1831 r = amdgpu_vram_mgr_init(adev);
1832 if (r) {
1833 DRM_ERROR("Failed initializing VRAM heap.\n");
1834 return r;
1835 }
1836
1837 /* Change the size here instead of the init above so only lpfn is affected */
1838 amdgpu_ttm_set_buffer_funcs_status(adev, false);
1839 #ifdef CONFIG_64BIT
1840 #ifdef CONFIG_X86
1841 if (adev->gmc.xgmi.connected_to_cpu)
1842 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1843 adev->gmc.visible_vram_size);
1844
1845 else if (adev->gmc.is_app_apu)
1846 DRM_DEBUG_DRIVER(
1847 "No need to ioremap when real vram size is 0\n");
1848 else
1849 #endif
1850 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1851 adev->gmc.visible_vram_size);
1852 #endif
1853
1854 /*
1855 *The reserved vram for firmware must be pinned to the specified
1856 *place on the VRAM, so reserve it early.
1857 */
1858 r = amdgpu_ttm_fw_reserve_vram_init(adev);
1859 if (r)
1860 return r;
1861
1862 /*
1863 *The reserved vram for driver must be pinned to the specified
1864 *place on the VRAM, so reserve it early.
1865 */
1866 r = amdgpu_ttm_drv_reserve_vram_init(adev);
1867 if (r)
1868 return r;
1869
1870 /*
1871 * only NAVI10 and onwards ASIC support for IP discovery.
1872 * If IP discovery enabled, a block of memory should be
1873 * reserved for IP discovey.
1874 */
1875 if (adev->mman.discovery_bin) {
1876 r = amdgpu_ttm_reserve_tmr(adev);
1877 if (r)
1878 return r;
1879 }
1880
1881 /* allocate memory as required for VGA
1882 * This is used for VGA emulation and pre-OS scanout buffers to
1883 * avoid display artifacts while transitioning between pre-OS
1884 * and driver.
1885 */
1886 if (!adev->gmc.is_app_apu) {
1887 r = amdgpu_bo_create_kernel_at(adev, 0,
1888 adev->mman.stolen_vga_size,
1889 &adev->mman.stolen_vga_memory,
1890 NULL);
1891 if (r)
1892 return r;
1893
1894 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1895 adev->mman.stolen_extended_size,
1896 &adev->mman.stolen_extended_memory,
1897 NULL);
1898
1899 if (r)
1900 return r;
1901
1902 r = amdgpu_bo_create_kernel_at(adev,
1903 adev->mman.stolen_reserved_offset,
1904 adev->mman.stolen_reserved_size,
1905 &adev->mman.stolen_reserved_memory,
1906 NULL);
1907 if (r)
1908 return r;
1909 } else {
1910 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1911 }
1912
1913 DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1914 (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1915
1916 /* Compute GTT size, either based on TTM limit
1917 * or whatever the user passed on module init.
1918 */
1919 if (amdgpu_gtt_size == -1)
1920 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1921 else
1922 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1923
1924 /* Initialize GTT memory pool */
1925 r = amdgpu_gtt_mgr_init(adev, gtt_size);
1926 if (r) {
1927 DRM_ERROR("Failed initializing GTT heap.\n");
1928 return r;
1929 }
1930 DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1931 (unsigned int)(gtt_size / (1024 * 1024)));
1932
1933 /* Initiailize doorbell pool on PCI BAR */
1934 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1935 if (r) {
1936 DRM_ERROR("Failed initializing doorbell heap.\n");
1937 return r;
1938 }
1939
1940 /* Create a boorbell page for kernel usages */
1941 r = amdgpu_doorbell_create_kernel_doorbells(adev);
1942 if (r) {
1943 DRM_ERROR("Failed to initialize kernel doorbells.\n");
1944 return r;
1945 }
1946
1947 /* Initialize preemptible memory pool */
1948 r = amdgpu_preempt_mgr_init(adev);
1949 if (r) {
1950 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1951 return r;
1952 }
1953
1954 /* Initialize various on-chip memory pools */
1955 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1956 if (r) {
1957 DRM_ERROR("Failed initializing GDS heap.\n");
1958 return r;
1959 }
1960
1961 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1962 if (r) {
1963 DRM_ERROR("Failed initializing gws heap.\n");
1964 return r;
1965 }
1966
1967 r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1968 if (r) {
1969 DRM_ERROR("Failed initializing oa heap.\n");
1970 return r;
1971 }
1972 if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1973 AMDGPU_GEM_DOMAIN_GTT,
1974 &adev->mman.sdma_access_bo, NULL,
1975 &adev->mman.sdma_access_ptr))
1976 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1977
1978 return 0;
1979 }
1980
1981 /*
1982 * amdgpu_ttm_fini - De-initialize the TTM memory pools
1983 */
1984 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1985 {
1986 int idx;
1987
1988 if (!adev->mman.initialized)
1989 return;
1990
1991 amdgpu_ttm_pools_fini(adev);
1992
1993 amdgpu_ttm_training_reserve_vram_fini(adev);
1994 /* return the stolen vga memory back to VRAM */
1995 if (!adev->gmc.is_app_apu) {
1996 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1997 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1998 /* return the FW reserved memory back to VRAM */
1999 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2000 NULL);
2001 if (adev->mman.stolen_reserved_size)
2002 amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2003 NULL, NULL);
2004 }
2005 amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2006 &adev->mman.sdma_access_ptr);
2007 amdgpu_ttm_fw_reserve_vram_fini(adev);
2008 amdgpu_ttm_drv_reserve_vram_fini(adev);
2009
2010 if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2011
2012 if (adev->mman.aper_base_kaddr)
2013 iounmap(adev->mman.aper_base_kaddr);
2014 adev->mman.aper_base_kaddr = NULL;
2015
2016 drm_dev_exit(idx);
2017 }
2018
2019 amdgpu_vram_mgr_fini(adev);
2020 amdgpu_gtt_mgr_fini(adev);
2021 amdgpu_preempt_mgr_fini(adev);
2022 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2023 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2024 ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2025 ttm_device_fini(&adev->mman.bdev);
2026 adev->mman.initialized = false;
2027 DRM_INFO("amdgpu: ttm finalized\n");
2028 }
2029
2030 /**
2031 * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2032 *
2033 * @adev: amdgpu_device pointer
2034 * @enable: true when we can use buffer functions.
2035 *
2036 * Enable/disable use of buffer functions during suspend/resume. This should
2037 * only be called at bootup or when userspace isn't running.
2038 */
2039 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2040 {
2041 struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2042 uint64_t size;
2043 int r;
2044
2045 if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2046 adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2047 return;
2048
2049 if (enable) {
2050 struct amdgpu_ring *ring;
2051 struct drm_gpu_scheduler *sched;
2052
2053 ring = adev->mman.buffer_funcs_ring;
2054 sched = &ring->sched;
2055 r = drm_sched_entity_init(&adev->mman.high_pr,
2056 DRM_SCHED_PRIORITY_KERNEL, &sched,
2057 1, NULL);
2058 if (r) {
2059 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2060 r);
2061 return;
2062 }
2063
2064 r = drm_sched_entity_init(&adev->mman.low_pr,
2065 DRM_SCHED_PRIORITY_NORMAL, &sched,
2066 1, NULL);
2067 if (r) {
2068 DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2069 r);
2070 goto error_free_entity;
2071 }
2072 } else {
2073 drm_sched_entity_destroy(&adev->mman.high_pr);
2074 drm_sched_entity_destroy(&adev->mman.low_pr);
2075 dma_fence_put(man->move);
2076 man->move = NULL;
2077 }
2078
2079 /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2080 if (enable)
2081 size = adev->gmc.real_vram_size;
2082 else
2083 size = adev->gmc.visible_vram_size;
2084 man->size = size;
2085 adev->mman.buffer_funcs_enabled = enable;
2086
2087 return;
2088
2089 error_free_entity:
2090 drm_sched_entity_destroy(&adev->mman.high_pr);
2091 }
2092
2093 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2094 bool direct_submit,
2095 unsigned int num_dw,
2096 struct dma_resv *resv,
2097 bool vm_needs_flush,
2098 struct amdgpu_job **job,
2099 bool delayed)
2100 {
2101 enum amdgpu_ib_pool_type pool = direct_submit ?
2102 AMDGPU_IB_POOL_DIRECT :
2103 AMDGPU_IB_POOL_DELAYED;
2104 int r;
2105 struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2106 &adev->mman.high_pr;
2107 r = amdgpu_job_alloc_with_ib(adev, entity,
2108 AMDGPU_FENCE_OWNER_UNDEFINED,
2109 num_dw * 4, pool, job);
2110 if (r)
2111 return r;
2112
2113 if (vm_needs_flush) {
2114 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2115 adev->gmc.pdb0_bo :
2116 adev->gart.bo);
2117 (*job)->vm_needs_flush = true;
2118 }
2119 if (!resv)
2120 return 0;
2121
2122 return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2123 DMA_RESV_USAGE_BOOKKEEP);
2124 }
2125
2126 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2127 uint64_t dst_offset, uint32_t byte_count,
2128 struct dma_resv *resv,
2129 struct dma_fence **fence, bool direct_submit,
2130 bool vm_needs_flush, bool tmz)
2131 {
2132 struct amdgpu_device *adev = ring->adev;
2133 unsigned int num_loops, num_dw;
2134 struct amdgpu_job *job;
2135 uint32_t max_bytes;
2136 unsigned int i;
2137 int r;
2138
2139 if (!direct_submit && !ring->sched.ready) {
2140 DRM_ERROR("Trying to move memory with ring turned off.\n");
2141 return -EINVAL;
2142 }
2143
2144 max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2145 num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2146 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2147 r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2148 resv, vm_needs_flush, &job, false);
2149 if (r)
2150 return r;
2151
2152 for (i = 0; i < num_loops; i++) {
2153 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2154
2155 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2156 dst_offset, cur_size_in_bytes, tmz);
2157
2158 src_offset += cur_size_in_bytes;
2159 dst_offset += cur_size_in_bytes;
2160 byte_count -= cur_size_in_bytes;
2161 }
2162
2163 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2164 WARN_ON(job->ibs[0].length_dw > num_dw);
2165 if (direct_submit)
2166 r = amdgpu_job_submit_direct(job, ring, fence);
2167 else
2168 *fence = amdgpu_job_submit(job);
2169 if (r)
2170 goto error_free;
2171
2172 return r;
2173
2174 error_free:
2175 amdgpu_job_free(job);
2176 DRM_ERROR("Error scheduling IBs (%d)\n", r);
2177 return r;
2178 }
2179
2180 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2181 uint64_t dst_addr, uint32_t byte_count,
2182 struct dma_resv *resv,
2183 struct dma_fence **fence,
2184 bool vm_needs_flush, bool delayed)
2185 {
2186 struct amdgpu_device *adev = ring->adev;
2187 unsigned int num_loops, num_dw;
2188 struct amdgpu_job *job;
2189 uint32_t max_bytes;
2190 unsigned int i;
2191 int r;
2192
2193 max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2194 num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2195 num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2196 r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2197 &job, delayed);
2198 if (r)
2199 return r;
2200
2201 for (i = 0; i < num_loops; i++) {
2202 uint32_t cur_size = min(byte_count, max_bytes);
2203
2204 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2205 cur_size);
2206
2207 dst_addr += cur_size;
2208 byte_count -= cur_size;
2209 }
2210
2211 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2212 WARN_ON(job->ibs[0].length_dw > num_dw);
2213 *fence = amdgpu_job_submit(job);
2214 return 0;
2215 }
2216
2217 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2218 uint32_t src_data,
2219 struct dma_resv *resv,
2220 struct dma_fence **f,
2221 bool delayed)
2222 {
2223 struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2224 struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2225 struct dma_fence *fence = NULL;
2226 struct amdgpu_res_cursor dst;
2227 int r;
2228
2229 if (!adev->mman.buffer_funcs_enabled) {
2230 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2231 return -EINVAL;
2232 }
2233
2234 amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2235
2236 mutex_lock(&adev->mman.gtt_window_lock);
2237 while (dst.remaining) {
2238 struct dma_fence *next;
2239 uint64_t cur_size, to;
2240
2241 /* Never fill more than 256MiB at once to avoid timeouts */
2242 cur_size = min(dst.size, 256ULL << 20);
2243
2244 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2245 1, ring, false, &cur_size, &to);
2246 if (r)
2247 goto error;
2248
2249 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2250 &next, true, delayed);
2251 if (r)
2252 goto error;
2253
2254 dma_fence_put(fence);
2255 fence = next;
2256
2257 amdgpu_res_next(&dst, cur_size);
2258 }
2259 error:
2260 mutex_unlock(&adev->mman.gtt_window_lock);
2261 if (f)
2262 *f = dma_fence_get(fence);
2263 dma_fence_put(fence);
2264 return r;
2265 }
2266
2267 /**
2268 * amdgpu_ttm_evict_resources - evict memory buffers
2269 * @adev: amdgpu device object
2270 * @mem_type: evicted BO's memory type
2271 *
2272 * Evicts all @mem_type buffers on the lru list of the memory type.
2273 *
2274 * Returns:
2275 * 0 for success or a negative error code on failure.
2276 */
2277 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2278 {
2279 struct ttm_resource_manager *man;
2280
2281 switch (mem_type) {
2282 case TTM_PL_VRAM:
2283 case TTM_PL_TT:
2284 case AMDGPU_PL_GWS:
2285 case AMDGPU_PL_GDS:
2286 case AMDGPU_PL_OA:
2287 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2288 break;
2289 default:
2290 DRM_ERROR("Trying to evict invalid memory type\n");
2291 return -EINVAL;
2292 }
2293
2294 return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2295 }
2296
2297 #if defined(CONFIG_DEBUG_FS)
2298
2299 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2300 {
2301 struct amdgpu_device *adev = m->private;
2302
2303 return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2304 }
2305
2306 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2307
2308 /*
2309 * amdgpu_ttm_vram_read - Linear read access to VRAM
2310 *
2311 * Accesses VRAM via MMIO for debugging purposes.
2312 */
2313 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2314 size_t size, loff_t *pos)
2315 {
2316 struct amdgpu_device *adev = file_inode(f)->i_private;
2317 ssize_t result = 0;
2318
2319 if (size & 0x3 || *pos & 0x3)
2320 return -EINVAL;
2321
2322 if (*pos >= adev->gmc.mc_vram_size)
2323 return -ENXIO;
2324
2325 size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2326 while (size) {
2327 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2328 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2329
2330 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2331 if (copy_to_user(buf, value, bytes))
2332 return -EFAULT;
2333
2334 result += bytes;
2335 buf += bytes;
2336 *pos += bytes;
2337 size -= bytes;
2338 }
2339
2340 return result;
2341 }
2342
2343 /*
2344 * amdgpu_ttm_vram_write - Linear write access to VRAM
2345 *
2346 * Accesses VRAM via MMIO for debugging purposes.
2347 */
2348 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2349 size_t size, loff_t *pos)
2350 {
2351 struct amdgpu_device *adev = file_inode(f)->i_private;
2352 ssize_t result = 0;
2353 int r;
2354
2355 if (size & 0x3 || *pos & 0x3)
2356 return -EINVAL;
2357
2358 if (*pos >= adev->gmc.mc_vram_size)
2359 return -ENXIO;
2360
2361 while (size) {
2362 uint32_t value;
2363
2364 if (*pos >= adev->gmc.mc_vram_size)
2365 return result;
2366
2367 r = get_user(value, (uint32_t *)buf);
2368 if (r)
2369 return r;
2370
2371 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2372
2373 result += 4;
2374 buf += 4;
2375 *pos += 4;
2376 size -= 4;
2377 }
2378
2379 return result;
2380 }
2381
2382 static const struct file_operations amdgpu_ttm_vram_fops = {
2383 .owner = THIS_MODULE,
2384 .read = amdgpu_ttm_vram_read,
2385 .write = amdgpu_ttm_vram_write,
2386 .llseek = default_llseek,
2387 };
2388
2389 /*
2390 * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2391 *
2392 * This function is used to read memory that has been mapped to the
2393 * GPU and the known addresses are not physical addresses but instead
2394 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2395 */
2396 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2397 size_t size, loff_t *pos)
2398 {
2399 struct amdgpu_device *adev = file_inode(f)->i_private;
2400 struct iommu_domain *dom;
2401 ssize_t result = 0;
2402 int r;
2403
2404 /* retrieve the IOMMU domain if any for this device */
2405 dom = iommu_get_domain_for_dev(adev->dev);
2406
2407 while (size) {
2408 phys_addr_t addr = *pos & PAGE_MASK;
2409 loff_t off = *pos & ~PAGE_MASK;
2410 size_t bytes = PAGE_SIZE - off;
2411 unsigned long pfn;
2412 struct page *p;
2413 void *ptr;
2414
2415 bytes = min(bytes, size);
2416
2417 /* Translate the bus address to a physical address. If
2418 * the domain is NULL it means there is no IOMMU active
2419 * and the address translation is the identity
2420 */
2421 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2422
2423 pfn = addr >> PAGE_SHIFT;
2424 if (!pfn_valid(pfn))
2425 return -EPERM;
2426
2427 p = pfn_to_page(pfn);
2428 if (p->mapping != adev->mman.bdev.dev_mapping)
2429 return -EPERM;
2430
2431 ptr = kmap_local_page(p);
2432 r = copy_to_user(buf, ptr + off, bytes);
2433 kunmap_local(ptr);
2434 if (r)
2435 return -EFAULT;
2436
2437 size -= bytes;
2438 *pos += bytes;
2439 result += bytes;
2440 }
2441
2442 return result;
2443 }
2444
2445 /*
2446 * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2447 *
2448 * This function is used to write memory that has been mapped to the
2449 * GPU and the known addresses are not physical addresses but instead
2450 * bus addresses (e.g., what you'd put in an IB or ring buffer).
2451 */
2452 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2453 size_t size, loff_t *pos)
2454 {
2455 struct amdgpu_device *adev = file_inode(f)->i_private;
2456 struct iommu_domain *dom;
2457 ssize_t result = 0;
2458 int r;
2459
2460 dom = iommu_get_domain_for_dev(adev->dev);
2461
2462 while (size) {
2463 phys_addr_t addr = *pos & PAGE_MASK;
2464 loff_t off = *pos & ~PAGE_MASK;
2465 size_t bytes = PAGE_SIZE - off;
2466 unsigned long pfn;
2467 struct page *p;
2468 void *ptr;
2469
2470 bytes = min(bytes, size);
2471
2472 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2473
2474 pfn = addr >> PAGE_SHIFT;
2475 if (!pfn_valid(pfn))
2476 return -EPERM;
2477
2478 p = pfn_to_page(pfn);
2479 if (p->mapping != adev->mman.bdev.dev_mapping)
2480 return -EPERM;
2481
2482 ptr = kmap_local_page(p);
2483 r = copy_from_user(ptr + off, buf, bytes);
2484 kunmap_local(ptr);
2485 if (r)
2486 return -EFAULT;
2487
2488 size -= bytes;
2489 *pos += bytes;
2490 result += bytes;
2491 }
2492
2493 return result;
2494 }
2495
2496 static const struct file_operations amdgpu_ttm_iomem_fops = {
2497 .owner = THIS_MODULE,
2498 .read = amdgpu_iomem_read,
2499 .write = amdgpu_iomem_write,
2500 .llseek = default_llseek
2501 };
2502
2503 #endif
2504
2505 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2506 {
2507 #if defined(CONFIG_DEBUG_FS)
2508 struct drm_minor *minor = adev_to_drm(adev)->primary;
2509 struct dentry *root = minor->debugfs_root;
2510
2511 debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2512 &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2513 debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2514 &amdgpu_ttm_iomem_fops);
2515 debugfs_create_file("ttm_page_pool", 0444, root, adev,
2516 &amdgpu_ttm_page_pool_fops);
2517 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2518 TTM_PL_VRAM),
2519 root, "amdgpu_vram_mm");
2520 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2521 TTM_PL_TT),
2522 root, "amdgpu_gtt_mm");
2523 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2524 AMDGPU_PL_GDS),
2525 root, "amdgpu_gds_mm");
2526 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2527 AMDGPU_PL_GWS),
2528 root, "amdgpu_gws_mm");
2529 ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2530 AMDGPU_PL_OA),
2531 root, "amdgpu_oa_mm");
2532
2533 #endif
2534 }