]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/amd/amdgpu/amdgpu_vm.c
percpu: stop printing kernel addresses
[thirdparty/linux.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2 * Copyright 2008 Advanced Micro Devices, Inc.
3 * Copyright 2008 Red Hat Inc.
4 * Copyright 2009 Jerome Glisse.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22 * OTHER DEALINGS IN THE SOFTWARE.
23 *
24 * Authors: Dave Airlie
25 * Alex Deucher
26 * Jerome Glisse
27 */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <linux/idr.h>
31 #include <drm/drmP.h>
32 #include <drm/amdgpu_drm.h>
33 #include "amdgpu.h"
34 #include "amdgpu_trace.h"
35 #include "amdgpu_amdkfd.h"
36 #include "amdgpu_gmc.h"
37
38 /**
39 * DOC: GPUVM
40 *
41 * GPUVM is similar to the legacy gart on older asics, however
42 * rather than there being a single global gart table
43 * for the entire GPU, there are multiple VM page tables active
44 * at any given time. The VM page tables can contain a mix
45 * vram pages and system memory pages and system memory pages
46 * can be mapped as snooped (cached system pages) or unsnooped
47 * (uncached system pages).
48 * Each VM has an ID associated with it and there is a page table
49 * associated with each VMID. When execting a command buffer,
50 * the kernel tells the the ring what VMID to use for that command
51 * buffer. VMIDs are allocated dynamically as commands are submitted.
52 * The userspace drivers maintain their own address space and the kernel
53 * sets up their pages tables accordingly when they submit their
54 * command buffers and a VMID is assigned.
55 * Cayman/Trinity support up to 8 active VMs at any given time;
56 * SI supports 16.
57 */
58
59 #define START(node) ((node)->start)
60 #define LAST(node) ((node)->last)
61
62 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
63 START, LAST, static, amdgpu_vm_it)
64
65 #undef START
66 #undef LAST
67
68 /**
69 * struct amdgpu_pte_update_params - Local structure
70 *
71 * Encapsulate some VM table update parameters to reduce
72 * the number of function parameters
73 *
74 */
75 struct amdgpu_pte_update_params {
76
77 /**
78 * @adev: amdgpu device we do this update for
79 */
80 struct amdgpu_device *adev;
81
82 /**
83 * @vm: optional amdgpu_vm we do this update for
84 */
85 struct amdgpu_vm *vm;
86
87 /**
88 * @src: address where to copy page table entries from
89 */
90 uint64_t src;
91
92 /**
93 * @ib: indirect buffer to fill with commands
94 */
95 struct amdgpu_ib *ib;
96
97 /**
98 * @func: Function which actually does the update
99 */
100 void (*func)(struct amdgpu_pte_update_params *params,
101 struct amdgpu_bo *bo, uint64_t pe,
102 uint64_t addr, unsigned count, uint32_t incr,
103 uint64_t flags);
104 /**
105 * @pages_addr:
106 *
107 * DMA addresses to use for mapping, used during VM update by CPU
108 */
109 dma_addr_t *pages_addr;
110 };
111
112 /**
113 * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
114 */
115 struct amdgpu_prt_cb {
116
117 /**
118 * @adev: amdgpu device
119 */
120 struct amdgpu_device *adev;
121
122 /**
123 * @cb: callback
124 */
125 struct dma_fence_cb cb;
126 };
127
128 /**
129 * amdgpu_vm_level_shift - return the addr shift for each level
130 *
131 * @adev: amdgpu_device pointer
132 * @level: VMPT level
133 *
134 * Returns:
135 * The number of bits the pfn needs to be right shifted for a level.
136 */
137 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
138 unsigned level)
139 {
140 unsigned shift = 0xff;
141
142 switch (level) {
143 case AMDGPU_VM_PDB2:
144 case AMDGPU_VM_PDB1:
145 case AMDGPU_VM_PDB0:
146 shift = 9 * (AMDGPU_VM_PDB0 - level) +
147 adev->vm_manager.block_size;
148 break;
149 case AMDGPU_VM_PTB:
150 shift = 0;
151 break;
152 default:
153 dev_err(adev->dev, "the level%d isn't supported.\n", level);
154 }
155
156 return shift;
157 }
158
159 /**
160 * amdgpu_vm_num_entries - return the number of entries in a PD/PT
161 *
162 * @adev: amdgpu_device pointer
163 * @level: VMPT level
164 *
165 * Returns:
166 * The number of entries in a page directory or page table.
167 */
168 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
169 unsigned level)
170 {
171 unsigned shift = amdgpu_vm_level_shift(adev,
172 adev->vm_manager.root_level);
173
174 if (level == adev->vm_manager.root_level)
175 /* For the root directory */
176 return round_up(adev->vm_manager.max_pfn, 1ULL << shift) >> shift;
177 else if (level != AMDGPU_VM_PTB)
178 /* Everything in between */
179 return 512;
180 else
181 /* For the page tables on the leaves */
182 return AMDGPU_VM_PTE_COUNT(adev);
183 }
184
185 /**
186 * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
187 *
188 * @adev: amdgpu_device pointer
189 * @level: VMPT level
190 *
191 * Returns:
192 * The mask to extract the entry number of a PD/PT from an address.
193 */
194 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
195 unsigned int level)
196 {
197 if (level <= adev->vm_manager.root_level)
198 return 0xffffffff;
199 else if (level != AMDGPU_VM_PTB)
200 return 0x1ff;
201 else
202 return AMDGPU_VM_PTE_COUNT(adev) - 1;
203 }
204
205 /**
206 * amdgpu_vm_bo_size - returns the size of the BOs in bytes
207 *
208 * @adev: amdgpu_device pointer
209 * @level: VMPT level
210 *
211 * Returns:
212 * The size of the BO for a page directory or page table in bytes.
213 */
214 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
215 {
216 return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
217 }
218
219 /**
220 * amdgpu_vm_bo_evicted - vm_bo is evicted
221 *
222 * @vm_bo: vm_bo which is evicted
223 *
224 * State for PDs/PTs and per VM BOs which are not at the location they should
225 * be.
226 */
227 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
228 {
229 struct amdgpu_vm *vm = vm_bo->vm;
230 struct amdgpu_bo *bo = vm_bo->bo;
231
232 vm_bo->moved = true;
233 if (bo->tbo.type == ttm_bo_type_kernel)
234 list_move(&vm_bo->vm_status, &vm->evicted);
235 else
236 list_move_tail(&vm_bo->vm_status, &vm->evicted);
237 }
238
239 /**
240 * amdgpu_vm_bo_relocated - vm_bo is reloacted
241 *
242 * @vm_bo: vm_bo which is relocated
243 *
244 * State for PDs/PTs which needs to update their parent PD.
245 */
246 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
247 {
248 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
249 }
250
251 /**
252 * amdgpu_vm_bo_moved - vm_bo is moved
253 *
254 * @vm_bo: vm_bo which is moved
255 *
256 * State for per VM BOs which are moved, but that change is not yet reflected
257 * in the page tables.
258 */
259 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
260 {
261 list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
262 }
263
264 /**
265 * amdgpu_vm_bo_idle - vm_bo is idle
266 *
267 * @vm_bo: vm_bo which is now idle
268 *
269 * State for PDs/PTs and per VM BOs which have gone through the state machine
270 * and are now idle.
271 */
272 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
273 {
274 list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
275 vm_bo->moved = false;
276 }
277
278 /**
279 * amdgpu_vm_bo_invalidated - vm_bo is invalidated
280 *
281 * @vm_bo: vm_bo which is now invalidated
282 *
283 * State for normal BOs which are invalidated and that change not yet reflected
284 * in the PTs.
285 */
286 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
287 {
288 spin_lock(&vm_bo->vm->invalidated_lock);
289 list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
290 spin_unlock(&vm_bo->vm->invalidated_lock);
291 }
292
293 /**
294 * amdgpu_vm_bo_done - vm_bo is done
295 *
296 * @vm_bo: vm_bo which is now done
297 *
298 * State for normal BOs which are invalidated and that change has been updated
299 * in the PTs.
300 */
301 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
302 {
303 spin_lock(&vm_bo->vm->invalidated_lock);
304 list_del_init(&vm_bo->vm_status);
305 spin_unlock(&vm_bo->vm->invalidated_lock);
306 }
307
308 /**
309 * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
310 *
311 * @base: base structure for tracking BO usage in a VM
312 * @vm: vm to which bo is to be added
313 * @bo: amdgpu buffer object
314 *
315 * Initialize a bo_va_base structure and add it to the appropriate lists
316 *
317 */
318 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
319 struct amdgpu_vm *vm,
320 struct amdgpu_bo *bo)
321 {
322 base->vm = vm;
323 base->bo = bo;
324 base->next = NULL;
325 INIT_LIST_HEAD(&base->vm_status);
326
327 if (!bo)
328 return;
329 base->next = bo->vm_bo;
330 bo->vm_bo = base;
331
332 if (bo->tbo.resv != vm->root.base.bo->tbo.resv)
333 return;
334
335 vm->bulk_moveable = false;
336 if (bo->tbo.type == ttm_bo_type_kernel)
337 amdgpu_vm_bo_relocated(base);
338 else
339 amdgpu_vm_bo_idle(base);
340
341 if (bo->preferred_domains &
342 amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
343 return;
344
345 /*
346 * we checked all the prerequisites, but it looks like this per vm bo
347 * is currently evicted. add the bo to the evicted list to make sure it
348 * is validated on next vm use to avoid fault.
349 * */
350 amdgpu_vm_bo_evicted(base);
351 }
352
353 /**
354 * amdgpu_vm_pt_parent - get the parent page directory
355 *
356 * @pt: child page table
357 *
358 * Helper to get the parent entry for the child page table. NULL if we are at
359 * the root page directory.
360 */
361 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
362 {
363 struct amdgpu_bo *parent = pt->base.bo->parent;
364
365 if (!parent)
366 return NULL;
367
368 return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
369 }
370
371 /**
372 * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
373 */
374 struct amdgpu_vm_pt_cursor {
375 uint64_t pfn;
376 struct amdgpu_vm_pt *parent;
377 struct amdgpu_vm_pt *entry;
378 unsigned level;
379 };
380
381 /**
382 * amdgpu_vm_pt_start - start PD/PT walk
383 *
384 * @adev: amdgpu_device pointer
385 * @vm: amdgpu_vm structure
386 * @start: start address of the walk
387 * @cursor: state to initialize
388 *
389 * Initialize a amdgpu_vm_pt_cursor to start a walk.
390 */
391 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
392 struct amdgpu_vm *vm, uint64_t start,
393 struct amdgpu_vm_pt_cursor *cursor)
394 {
395 cursor->pfn = start;
396 cursor->parent = NULL;
397 cursor->entry = &vm->root;
398 cursor->level = adev->vm_manager.root_level;
399 }
400
401 /**
402 * amdgpu_vm_pt_descendant - go to child node
403 *
404 * @adev: amdgpu_device pointer
405 * @cursor: current state
406 *
407 * Walk to the child node of the current node.
408 * Returns:
409 * True if the walk was possible, false otherwise.
410 */
411 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
412 struct amdgpu_vm_pt_cursor *cursor)
413 {
414 unsigned mask, shift, idx;
415
416 if (!cursor->entry->entries)
417 return false;
418
419 BUG_ON(!cursor->entry->base.bo);
420 mask = amdgpu_vm_entries_mask(adev, cursor->level);
421 shift = amdgpu_vm_level_shift(adev, cursor->level);
422
423 ++cursor->level;
424 idx = (cursor->pfn >> shift) & mask;
425 cursor->parent = cursor->entry;
426 cursor->entry = &cursor->entry->entries[idx];
427 return true;
428 }
429
430 /**
431 * amdgpu_vm_pt_sibling - go to sibling node
432 *
433 * @adev: amdgpu_device pointer
434 * @cursor: current state
435 *
436 * Walk to the sibling node of the current node.
437 * Returns:
438 * True if the walk was possible, false otherwise.
439 */
440 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
441 struct amdgpu_vm_pt_cursor *cursor)
442 {
443 unsigned shift, num_entries;
444
445 /* Root doesn't have a sibling */
446 if (!cursor->parent)
447 return false;
448
449 /* Go to our parents and see if we got a sibling */
450 shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
451 num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
452
453 if (cursor->entry == &cursor->parent->entries[num_entries - 1])
454 return false;
455
456 cursor->pfn += 1ULL << shift;
457 cursor->pfn &= ~((1ULL << shift) - 1);
458 ++cursor->entry;
459 return true;
460 }
461
462 /**
463 * amdgpu_vm_pt_ancestor - go to parent node
464 *
465 * @cursor: current state
466 *
467 * Walk to the parent node of the current node.
468 * Returns:
469 * True if the walk was possible, false otherwise.
470 */
471 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
472 {
473 if (!cursor->parent)
474 return false;
475
476 --cursor->level;
477 cursor->entry = cursor->parent;
478 cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
479 return true;
480 }
481
482 /**
483 * amdgpu_vm_pt_next - get next PD/PT in hieratchy
484 *
485 * @adev: amdgpu_device pointer
486 * @cursor: current state
487 *
488 * Walk the PD/PT tree to the next node.
489 */
490 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
491 struct amdgpu_vm_pt_cursor *cursor)
492 {
493 /* First try a newborn child */
494 if (amdgpu_vm_pt_descendant(adev, cursor))
495 return;
496
497 /* If that didn't worked try to find a sibling */
498 while (!amdgpu_vm_pt_sibling(adev, cursor)) {
499 /* No sibling, go to our parents and grandparents */
500 if (!amdgpu_vm_pt_ancestor(cursor)) {
501 cursor->pfn = ~0ll;
502 return;
503 }
504 }
505 }
506
507 /**
508 * amdgpu_vm_pt_first_leaf - get first leaf PD/PT
509 *
510 * @adev: amdgpu_device pointer
511 * @vm: amdgpu_vm structure
512 * @start: start addr of the walk
513 * @cursor: state to initialize
514 *
515 * Start a walk and go directly to the leaf node.
516 */
517 static void amdgpu_vm_pt_first_leaf(struct amdgpu_device *adev,
518 struct amdgpu_vm *vm, uint64_t start,
519 struct amdgpu_vm_pt_cursor *cursor)
520 {
521 amdgpu_vm_pt_start(adev, vm, start, cursor);
522 while (amdgpu_vm_pt_descendant(adev, cursor));
523 }
524
525 /**
526 * amdgpu_vm_pt_next_leaf - get next leaf PD/PT
527 *
528 * @adev: amdgpu_device pointer
529 * @cursor: current state
530 *
531 * Walk the PD/PT tree to the next leaf node.
532 */
533 static void amdgpu_vm_pt_next_leaf(struct amdgpu_device *adev,
534 struct amdgpu_vm_pt_cursor *cursor)
535 {
536 amdgpu_vm_pt_next(adev, cursor);
537 if (cursor->pfn != ~0ll)
538 while (amdgpu_vm_pt_descendant(adev, cursor));
539 }
540
541 /**
542 * for_each_amdgpu_vm_pt_leaf - walk over all leaf PDs/PTs in the hierarchy
543 */
544 #define for_each_amdgpu_vm_pt_leaf(adev, vm, start, end, cursor) \
545 for (amdgpu_vm_pt_first_leaf((adev), (vm), (start), &(cursor)); \
546 (cursor).pfn <= end; amdgpu_vm_pt_next_leaf((adev), &(cursor)))
547
548 /**
549 * amdgpu_vm_pt_first_dfs - start a deep first search
550 *
551 * @adev: amdgpu_device structure
552 * @vm: amdgpu_vm structure
553 * @cursor: state to initialize
554 *
555 * Starts a deep first traversal of the PD/PT tree.
556 */
557 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
558 struct amdgpu_vm *vm,
559 struct amdgpu_vm_pt_cursor *cursor)
560 {
561 amdgpu_vm_pt_start(adev, vm, 0, cursor);
562 while (amdgpu_vm_pt_descendant(adev, cursor));
563 }
564
565 /**
566 * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
567 *
568 * @adev: amdgpu_device structure
569 * @cursor: current state
570 *
571 * Move the cursor to the next node in a deep first search.
572 */
573 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
574 struct amdgpu_vm_pt_cursor *cursor)
575 {
576 if (!cursor->entry)
577 return;
578
579 if (!cursor->parent)
580 cursor->entry = NULL;
581 else if (amdgpu_vm_pt_sibling(adev, cursor))
582 while (amdgpu_vm_pt_descendant(adev, cursor));
583 else
584 amdgpu_vm_pt_ancestor(cursor);
585 }
586
587 /**
588 * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
589 */
590 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) \
591 for (amdgpu_vm_pt_first_dfs((adev), (vm), &(cursor)), \
592 (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
593 (entry); (entry) = (cursor).entry, \
594 amdgpu_vm_pt_next_dfs((adev), &(cursor)))
595
596 /**
597 * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
598 *
599 * @vm: vm providing the BOs
600 * @validated: head of validation list
601 * @entry: entry to add
602 *
603 * Add the page directory to the list of BOs to
604 * validate for command submission.
605 */
606 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
607 struct list_head *validated,
608 struct amdgpu_bo_list_entry *entry)
609 {
610 entry->priority = 0;
611 entry->tv.bo = &vm->root.base.bo->tbo;
612 /* One for the VM updates, one for TTM and one for the CS job */
613 entry->tv.num_shared = 3;
614 entry->user_pages = NULL;
615 list_add(&entry->tv.head, validated);
616 }
617
618 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
619 {
620 struct amdgpu_bo *abo;
621 struct amdgpu_vm_bo_base *bo_base;
622
623 if (!amdgpu_bo_is_amdgpu_bo(bo))
624 return;
625
626 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT)
627 return;
628
629 abo = ttm_to_amdgpu_bo(bo);
630 if (!abo->parent)
631 return;
632 for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
633 struct amdgpu_vm *vm = bo_base->vm;
634
635 if (abo->tbo.resv == vm->root.base.bo->tbo.resv)
636 vm->bulk_moveable = false;
637 }
638
639 }
640 /**
641 * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
642 *
643 * @adev: amdgpu device pointer
644 * @vm: vm providing the BOs
645 *
646 * Move all BOs to the end of LRU and remember their positions to put them
647 * together.
648 */
649 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
650 struct amdgpu_vm *vm)
651 {
652 struct ttm_bo_global *glob = adev->mman.bdev.glob;
653 struct amdgpu_vm_bo_base *bo_base;
654
655 #if 0
656 if (vm->bulk_moveable) {
657 spin_lock(&glob->lru_lock);
658 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
659 spin_unlock(&glob->lru_lock);
660 return;
661 }
662 #endif
663
664 memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
665
666 spin_lock(&glob->lru_lock);
667 list_for_each_entry(bo_base, &vm->idle, vm_status) {
668 struct amdgpu_bo *bo = bo_base->bo;
669
670 if (!bo->parent)
671 continue;
672
673 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move);
674 if (bo->shadow)
675 ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
676 &vm->lru_bulk_move);
677 }
678 spin_unlock(&glob->lru_lock);
679
680 vm->bulk_moveable = true;
681 }
682
683 /**
684 * amdgpu_vm_validate_pt_bos - validate the page table BOs
685 *
686 * @adev: amdgpu device pointer
687 * @vm: vm providing the BOs
688 * @validate: callback to do the validation
689 * @param: parameter for the validation callback
690 *
691 * Validate the page table BOs on command submission if neccessary.
692 *
693 * Returns:
694 * Validation result.
695 */
696 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
697 int (*validate)(void *p, struct amdgpu_bo *bo),
698 void *param)
699 {
700 struct amdgpu_vm_bo_base *bo_base, *tmp;
701 int r = 0;
702
703 list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
704 struct amdgpu_bo *bo = bo_base->bo;
705
706 r = validate(param, bo);
707 if (r)
708 break;
709
710 if (bo->tbo.type != ttm_bo_type_kernel) {
711 amdgpu_vm_bo_moved(bo_base);
712 } else {
713 if (vm->use_cpu_for_update)
714 r = amdgpu_bo_kmap(bo, NULL);
715 else
716 r = amdgpu_ttm_alloc_gart(&bo->tbo);
717 if (r)
718 break;
719 if (bo->shadow) {
720 r = amdgpu_ttm_alloc_gart(&bo->shadow->tbo);
721 if (r)
722 break;
723 }
724 amdgpu_vm_bo_relocated(bo_base);
725 }
726 }
727
728 return r;
729 }
730
731 /**
732 * amdgpu_vm_ready - check VM is ready for updates
733 *
734 * @vm: VM to check
735 *
736 * Check if all VM PDs/PTs are ready for updates
737 *
738 * Returns:
739 * True if eviction list is empty.
740 */
741 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
742 {
743 return list_empty(&vm->evicted);
744 }
745
746 /**
747 * amdgpu_vm_clear_bo - initially clear the PDs/PTs
748 *
749 * @adev: amdgpu_device pointer
750 * @vm: VM to clear BO from
751 * @bo: BO to clear
752 * @level: level this BO is at
753 * @pte_support_ats: indicate ATS support from PTE
754 *
755 * Root PD needs to be reserved when calling this.
756 *
757 * Returns:
758 * 0 on success, errno otherwise.
759 */
760 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
761 struct amdgpu_vm *vm, struct amdgpu_bo *bo,
762 unsigned level, bool pte_support_ats)
763 {
764 struct ttm_operation_ctx ctx = { true, false };
765 struct dma_fence *fence = NULL;
766 unsigned entries, ats_entries;
767 struct amdgpu_ring *ring;
768 struct amdgpu_job *job;
769 uint64_t addr;
770 int r;
771
772 entries = amdgpu_bo_size(bo) / 8;
773
774 if (pte_support_ats) {
775 if (level == adev->vm_manager.root_level) {
776 ats_entries = amdgpu_vm_level_shift(adev, level);
777 ats_entries += AMDGPU_GPU_PAGE_SHIFT;
778 ats_entries = AMDGPU_GMC_HOLE_START >> ats_entries;
779 ats_entries = min(ats_entries, entries);
780 entries -= ats_entries;
781 } else {
782 ats_entries = entries;
783 entries = 0;
784 }
785 } else {
786 ats_entries = 0;
787 }
788
789 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched);
790
791 r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
792 if (r)
793 goto error;
794
795 r = amdgpu_ttm_alloc_gart(&bo->tbo);
796 if (r)
797 return r;
798
799 r = amdgpu_job_alloc_with_ib(adev, 64, &job);
800 if (r)
801 goto error;
802
803 addr = amdgpu_bo_gpu_offset(bo);
804 if (ats_entries) {
805 uint64_t ats_value;
806
807 ats_value = AMDGPU_PTE_DEFAULT_ATC;
808 if (level != AMDGPU_VM_PTB)
809 ats_value |= AMDGPU_PDE_PTE;
810
811 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0,
812 ats_entries, 0, ats_value);
813 addr += ats_entries * 8;
814 }
815
816 if (entries) {
817 uint64_t value = 0;
818
819 /* Workaround for fault priority problem on GMC9 */
820 if (level == AMDGPU_VM_PTB && adev->asic_type >= CHIP_VEGA10)
821 value = AMDGPU_PTE_EXECUTABLE;
822
823 amdgpu_vm_set_pte_pde(adev, &job->ibs[0], addr, 0,
824 entries, 0, value);
825 }
826
827 amdgpu_ring_pad_ib(ring, &job->ibs[0]);
828
829 WARN_ON(job->ibs[0].length_dw > 64);
830 r = amdgpu_sync_resv(adev, &job->sync, bo->tbo.resv,
831 AMDGPU_FENCE_OWNER_KFD, false);
832 if (r)
833 goto error_free;
834
835 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_UNDEFINED,
836 &fence);
837 if (r)
838 goto error_free;
839
840 amdgpu_bo_fence(bo, fence, true);
841 dma_fence_put(fence);
842
843 if (bo->shadow)
844 return amdgpu_vm_clear_bo(adev, vm, bo->shadow,
845 level, pte_support_ats);
846
847 return 0;
848
849 error_free:
850 amdgpu_job_free(job);
851
852 error:
853 return r;
854 }
855
856 /**
857 * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation
858 *
859 * @adev: amdgpu_device pointer
860 * @vm: requesting vm
861 * @bp: resulting BO allocation parameters
862 */
863 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm,
864 int level, struct amdgpu_bo_param *bp)
865 {
866 memset(bp, 0, sizeof(*bp));
867
868 bp->size = amdgpu_vm_bo_size(adev, level);
869 bp->byte_align = AMDGPU_GPU_PAGE_SIZE;
870 bp->domain = AMDGPU_GEM_DOMAIN_VRAM;
871 bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain);
872 bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
873 AMDGPU_GEM_CREATE_CPU_GTT_USWC;
874 if (vm->use_cpu_for_update)
875 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
876 else if (!vm->root.base.bo || vm->root.base.bo->shadow)
877 bp->flags |= AMDGPU_GEM_CREATE_SHADOW;
878 bp->type = ttm_bo_type_kernel;
879 if (vm->root.base.bo)
880 bp->resv = vm->root.base.bo->tbo.resv;
881 }
882
883 /**
884 * amdgpu_vm_alloc_pts - Allocate page tables.
885 *
886 * @adev: amdgpu_device pointer
887 * @vm: VM to allocate page tables for
888 * @saddr: Start address which needs to be allocated
889 * @size: Size from start address we need.
890 *
891 * Make sure the page directories and page tables are allocated
892 *
893 * Returns:
894 * 0 on success, errno otherwise.
895 */
896 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
897 struct amdgpu_vm *vm,
898 uint64_t saddr, uint64_t size)
899 {
900 struct amdgpu_vm_pt_cursor cursor;
901 struct amdgpu_bo *pt;
902 bool ats = false;
903 uint64_t eaddr;
904 int r;
905
906 /* validate the parameters */
907 if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK)
908 return -EINVAL;
909
910 eaddr = saddr + size - 1;
911
912 if (vm->pte_support_ats)
913 ats = saddr < AMDGPU_GMC_HOLE_START;
914
915 saddr /= AMDGPU_GPU_PAGE_SIZE;
916 eaddr /= AMDGPU_GPU_PAGE_SIZE;
917
918 if (eaddr >= adev->vm_manager.max_pfn) {
919 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n",
920 eaddr, adev->vm_manager.max_pfn);
921 return -EINVAL;
922 }
923
924 for_each_amdgpu_vm_pt_leaf(adev, vm, saddr, eaddr, cursor) {
925 struct amdgpu_vm_pt *entry = cursor.entry;
926 struct amdgpu_bo_param bp;
927
928 if (cursor.level < AMDGPU_VM_PTB) {
929 unsigned num_entries;
930
931 num_entries = amdgpu_vm_num_entries(adev, cursor.level);
932 entry->entries = kvmalloc_array(num_entries,
933 sizeof(*entry->entries),
934 GFP_KERNEL |
935 __GFP_ZERO);
936 if (!entry->entries)
937 return -ENOMEM;
938 }
939
940
941 if (entry->base.bo)
942 continue;
943
944 amdgpu_vm_bo_param(adev, vm, cursor.level, &bp);
945
946 r = amdgpu_bo_create(adev, &bp, &pt);
947 if (r)
948 return r;
949
950 if (vm->use_cpu_for_update) {
951 r = amdgpu_bo_kmap(pt, NULL);
952 if (r)
953 goto error_free_pt;
954 }
955
956 /* Keep a reference to the root directory to avoid
957 * freeing them up in the wrong order.
958 */
959 pt->parent = amdgpu_bo_ref(cursor.parent->base.bo);
960
961 amdgpu_vm_bo_base_init(&entry->base, vm, pt);
962
963 r = amdgpu_vm_clear_bo(adev, vm, pt, cursor.level, ats);
964 if (r)
965 goto error_free_pt;
966 }
967
968 return 0;
969
970 error_free_pt:
971 amdgpu_bo_unref(&pt->shadow);
972 amdgpu_bo_unref(&pt);
973 return r;
974 }
975
976 /**
977 * amdgpu_vm_free_pts - free PD/PT levels
978 *
979 * @adev: amdgpu device structure
980 * @vm: amdgpu vm structure
981 *
982 * Free the page directory or page table level and all sub levels.
983 */
984 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
985 struct amdgpu_vm *vm)
986 {
987 struct amdgpu_vm_pt_cursor cursor;
988 struct amdgpu_vm_pt *entry;
989
990 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry) {
991
992 if (entry->base.bo) {
993 entry->base.bo->vm_bo = NULL;
994 list_del(&entry->base.vm_status);
995 amdgpu_bo_unref(&entry->base.bo->shadow);
996 amdgpu_bo_unref(&entry->base.bo);
997 }
998 kvfree(entry->entries);
999 }
1000
1001 BUG_ON(vm->root.base.bo);
1002 }
1003
1004 /**
1005 * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
1006 *
1007 * @adev: amdgpu_device pointer
1008 */
1009 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
1010 {
1011 const struct amdgpu_ip_block *ip_block;
1012 bool has_compute_vm_bug;
1013 struct amdgpu_ring *ring;
1014 int i;
1015
1016 has_compute_vm_bug = false;
1017
1018 ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
1019 if (ip_block) {
1020 /* Compute has a VM bug for GFX version < 7.
1021 Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1022 if (ip_block->version->major <= 7)
1023 has_compute_vm_bug = true;
1024 else if (ip_block->version->major == 8)
1025 if (adev->gfx.mec_fw_version < 673)
1026 has_compute_vm_bug = true;
1027 }
1028
1029 for (i = 0; i < adev->num_rings; i++) {
1030 ring = adev->rings[i];
1031 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1032 /* only compute rings */
1033 ring->has_compute_vm_bug = has_compute_vm_bug;
1034 else
1035 ring->has_compute_vm_bug = false;
1036 }
1037 }
1038
1039 /**
1040 * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1041 *
1042 * @ring: ring on which the job will be submitted
1043 * @job: job to submit
1044 *
1045 * Returns:
1046 * True if sync is needed.
1047 */
1048 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1049 struct amdgpu_job *job)
1050 {
1051 struct amdgpu_device *adev = ring->adev;
1052 unsigned vmhub = ring->funcs->vmhub;
1053 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1054 struct amdgpu_vmid *id;
1055 bool gds_switch_needed;
1056 bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1057
1058 if (job->vmid == 0)
1059 return false;
1060 id = &id_mgr->ids[job->vmid];
1061 gds_switch_needed = ring->funcs->emit_gds_switch && (
1062 id->gds_base != job->gds_base ||
1063 id->gds_size != job->gds_size ||
1064 id->gws_base != job->gws_base ||
1065 id->gws_size != job->gws_size ||
1066 id->oa_base != job->oa_base ||
1067 id->oa_size != job->oa_size);
1068
1069 if (amdgpu_vmid_had_gpu_reset(adev, id))
1070 return true;
1071
1072 return vm_flush_needed || gds_switch_needed;
1073 }
1074
1075 /**
1076 * amdgpu_vm_flush - hardware flush the vm
1077 *
1078 * @ring: ring to use for flush
1079 * @job: related job
1080 * @need_pipe_sync: is pipe sync needed
1081 *
1082 * Emit a VM flush when it is necessary.
1083 *
1084 * Returns:
1085 * 0 on success, errno otherwise.
1086 */
1087 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync)
1088 {
1089 struct amdgpu_device *adev = ring->adev;
1090 unsigned vmhub = ring->funcs->vmhub;
1091 struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1092 struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1093 bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1094 id->gds_base != job->gds_base ||
1095 id->gds_size != job->gds_size ||
1096 id->gws_base != job->gws_base ||
1097 id->gws_size != job->gws_size ||
1098 id->oa_base != job->oa_base ||
1099 id->oa_size != job->oa_size);
1100 bool vm_flush_needed = job->vm_needs_flush;
1101 bool pasid_mapping_needed = id->pasid != job->pasid ||
1102 !id->pasid_mapping ||
1103 !dma_fence_is_signaled(id->pasid_mapping);
1104 struct dma_fence *fence = NULL;
1105 unsigned patch_offset = 0;
1106 int r;
1107
1108 if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1109 gds_switch_needed = true;
1110 vm_flush_needed = true;
1111 pasid_mapping_needed = true;
1112 }
1113
1114 gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1115 vm_flush_needed &= !!ring->funcs->emit_vm_flush &&
1116 job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1117 pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1118 ring->funcs->emit_wreg;
1119
1120 if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1121 return 0;
1122
1123 if (ring->funcs->init_cond_exec)
1124 patch_offset = amdgpu_ring_init_cond_exec(ring);
1125
1126 if (need_pipe_sync)
1127 amdgpu_ring_emit_pipeline_sync(ring);
1128
1129 if (vm_flush_needed) {
1130 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1131 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1132 }
1133
1134 if (pasid_mapping_needed)
1135 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1136
1137 if (vm_flush_needed || pasid_mapping_needed) {
1138 r = amdgpu_fence_emit(ring, &fence, 0);
1139 if (r)
1140 return r;
1141 }
1142
1143 if (vm_flush_needed) {
1144 mutex_lock(&id_mgr->lock);
1145 dma_fence_put(id->last_flush);
1146 id->last_flush = dma_fence_get(fence);
1147 id->current_gpu_reset_count =
1148 atomic_read(&adev->gpu_reset_counter);
1149 mutex_unlock(&id_mgr->lock);
1150 }
1151
1152 if (pasid_mapping_needed) {
1153 id->pasid = job->pasid;
1154 dma_fence_put(id->pasid_mapping);
1155 id->pasid_mapping = dma_fence_get(fence);
1156 }
1157 dma_fence_put(fence);
1158
1159 if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1160 id->gds_base = job->gds_base;
1161 id->gds_size = job->gds_size;
1162 id->gws_base = job->gws_base;
1163 id->gws_size = job->gws_size;
1164 id->oa_base = job->oa_base;
1165 id->oa_size = job->oa_size;
1166 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1167 job->gds_size, job->gws_base,
1168 job->gws_size, job->oa_base,
1169 job->oa_size);
1170 }
1171
1172 if (ring->funcs->patch_cond_exec)
1173 amdgpu_ring_patch_cond_exec(ring, patch_offset);
1174
1175 /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1176 if (ring->funcs->emit_switch_buffer) {
1177 amdgpu_ring_emit_switch_buffer(ring);
1178 amdgpu_ring_emit_switch_buffer(ring);
1179 }
1180 return 0;
1181 }
1182
1183 /**
1184 * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1185 *
1186 * @vm: requested vm
1187 * @bo: requested buffer object
1188 *
1189 * Find @bo inside the requested vm.
1190 * Search inside the @bos vm list for the requested vm
1191 * Returns the found bo_va or NULL if none is found
1192 *
1193 * Object has to be reserved!
1194 *
1195 * Returns:
1196 * Found bo_va or NULL.
1197 */
1198 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1199 struct amdgpu_bo *bo)
1200 {
1201 struct amdgpu_vm_bo_base *base;
1202
1203 for (base = bo->vm_bo; base; base = base->next) {
1204 if (base->vm != vm)
1205 continue;
1206
1207 return container_of(base, struct amdgpu_bo_va, base);
1208 }
1209 return NULL;
1210 }
1211
1212 /**
1213 * amdgpu_vm_do_set_ptes - helper to call the right asic function
1214 *
1215 * @params: see amdgpu_pte_update_params definition
1216 * @bo: PD/PT to update
1217 * @pe: addr of the page entry
1218 * @addr: dst addr to write into pe
1219 * @count: number of page entries to update
1220 * @incr: increase next addr by incr bytes
1221 * @flags: hw access flags
1222 *
1223 * Traces the parameters and calls the right asic functions
1224 * to setup the page table using the DMA.
1225 */
1226 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
1227 struct amdgpu_bo *bo,
1228 uint64_t pe, uint64_t addr,
1229 unsigned count, uint32_t incr,
1230 uint64_t flags)
1231 {
1232 pe += amdgpu_bo_gpu_offset(bo);
1233 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
1234
1235 if (count < 3) {
1236 amdgpu_vm_write_pte(params->adev, params->ib, pe,
1237 addr | flags, count, incr);
1238
1239 } else {
1240 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
1241 count, incr, flags);
1242 }
1243 }
1244
1245 /**
1246 * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
1247 *
1248 * @params: see amdgpu_pte_update_params definition
1249 * @bo: PD/PT to update
1250 * @pe: addr of the page entry
1251 * @addr: dst addr to write into pe
1252 * @count: number of page entries to update
1253 * @incr: increase next addr by incr bytes
1254 * @flags: hw access flags
1255 *
1256 * Traces the parameters and calls the DMA function to copy the PTEs.
1257 */
1258 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
1259 struct amdgpu_bo *bo,
1260 uint64_t pe, uint64_t addr,
1261 unsigned count, uint32_t incr,
1262 uint64_t flags)
1263 {
1264 uint64_t src = (params->src + (addr >> 12) * 8);
1265
1266 pe += amdgpu_bo_gpu_offset(bo);
1267 trace_amdgpu_vm_copy_ptes(pe, src, count);
1268
1269 amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count);
1270 }
1271
1272 /**
1273 * amdgpu_vm_map_gart - Resolve gart mapping of addr
1274 *
1275 * @pages_addr: optional DMA address to use for lookup
1276 * @addr: the unmapped addr
1277 *
1278 * Look up the physical address of the page that the pte resolves
1279 * to.
1280 *
1281 * Returns:
1282 * The pointer for the page table entry.
1283 */
1284 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1285 {
1286 uint64_t result;
1287
1288 /* page table offset */
1289 result = pages_addr[addr >> PAGE_SHIFT];
1290
1291 /* in case cpu page size != gpu page size*/
1292 result |= addr & (~PAGE_MASK);
1293
1294 result &= 0xFFFFFFFFFFFFF000ULL;
1295
1296 return result;
1297 }
1298
1299 /**
1300 * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU
1301 *
1302 * @params: see amdgpu_pte_update_params definition
1303 * @bo: PD/PT to update
1304 * @pe: kmap addr of the page entry
1305 * @addr: dst addr to write into pe
1306 * @count: number of page entries to update
1307 * @incr: increase next addr by incr bytes
1308 * @flags: hw access flags
1309 *
1310 * Write count number of PT/PD entries directly.
1311 */
1312 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params,
1313 struct amdgpu_bo *bo,
1314 uint64_t pe, uint64_t addr,
1315 unsigned count, uint32_t incr,
1316 uint64_t flags)
1317 {
1318 unsigned int i;
1319 uint64_t value;
1320
1321 pe += (unsigned long)amdgpu_bo_kptr(bo);
1322
1323 trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
1324
1325 for (i = 0; i < count; i++) {
1326 value = params->pages_addr ?
1327 amdgpu_vm_map_gart(params->pages_addr, addr) :
1328 addr;
1329 amdgpu_gmc_set_pte_pde(params->adev, (void *)(uintptr_t)pe,
1330 i, value, flags);
1331 addr += incr;
1332 }
1333 }
1334
1335 /**
1336 * amdgpu_vm_update_func - helper to call update function
1337 *
1338 * Calls the update function for both the given BO as well as its shadow.
1339 */
1340 static void amdgpu_vm_update_func(struct amdgpu_pte_update_params *params,
1341 struct amdgpu_bo *bo,
1342 uint64_t pe, uint64_t addr,
1343 unsigned count, uint32_t incr,
1344 uint64_t flags)
1345 {
1346 if (bo->shadow)
1347 params->func(params, bo->shadow, pe, addr, count, incr, flags);
1348 params->func(params, bo, pe, addr, count, incr, flags);
1349 }
1350
1351 /*
1352 * amdgpu_vm_update_pde - update a single level in the hierarchy
1353 *
1354 * @param: parameters for the update
1355 * @vm: requested vm
1356 * @parent: parent directory
1357 * @entry: entry to update
1358 *
1359 * Makes sure the requested entry in parent is up to date.
1360 */
1361 static void amdgpu_vm_update_pde(struct amdgpu_pte_update_params *params,
1362 struct amdgpu_vm *vm,
1363 struct amdgpu_vm_pt *parent,
1364 struct amdgpu_vm_pt *entry)
1365 {
1366 struct amdgpu_bo *bo = parent->base.bo, *pbo;
1367 uint64_t pde, pt, flags;
1368 unsigned level;
1369
1370 /* Don't update huge pages here */
1371 if (entry->huge)
1372 return;
1373
1374 for (level = 0, pbo = bo->parent; pbo; ++level)
1375 pbo = pbo->parent;
1376
1377 level += params->adev->vm_manager.root_level;
1378 amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1379 pde = (entry - parent->entries) * 8;
1380 amdgpu_vm_update_func(params, bo, pde, pt, 1, 0, flags);
1381 }
1382
1383 /*
1384 * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1385 *
1386 * @adev: amdgpu_device pointer
1387 * @vm: related vm
1388 *
1389 * Mark all PD level as invalid after an error.
1390 */
1391 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1392 struct amdgpu_vm *vm)
1393 {
1394 struct amdgpu_vm_pt_cursor cursor;
1395 struct amdgpu_vm_pt *entry;
1396
1397 for_each_amdgpu_vm_pt_dfs_safe(adev, vm, cursor, entry)
1398 if (entry->base.bo && !entry->base.moved)
1399 amdgpu_vm_bo_relocated(&entry->base);
1400 }
1401
1402 /*
1403 * amdgpu_vm_update_directories - make sure that all directories are valid
1404 *
1405 * @adev: amdgpu_device pointer
1406 * @vm: requested vm
1407 *
1408 * Makes sure all directories are up to date.
1409 *
1410 * Returns:
1411 * 0 for success, error for failure.
1412 */
1413 int amdgpu_vm_update_directories(struct amdgpu_device *adev,
1414 struct amdgpu_vm *vm)
1415 {
1416 struct amdgpu_pte_update_params params;
1417 struct amdgpu_job *job;
1418 unsigned ndw = 0;
1419 int r = 0;
1420
1421 if (list_empty(&vm->relocated))
1422 return 0;
1423
1424 restart:
1425 memset(&params, 0, sizeof(params));
1426 params.adev = adev;
1427
1428 if (vm->use_cpu_for_update) {
1429 r = amdgpu_bo_sync_wait(vm->root.base.bo,
1430 AMDGPU_FENCE_OWNER_VM, true);
1431 if (unlikely(r))
1432 return r;
1433
1434 params.func = amdgpu_vm_cpu_set_ptes;
1435 } else {
1436 ndw = 512 * 8;
1437 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1438 if (r)
1439 return r;
1440
1441 params.ib = &job->ibs[0];
1442 params.func = amdgpu_vm_do_set_ptes;
1443 }
1444
1445 while (!list_empty(&vm->relocated)) {
1446 struct amdgpu_vm_pt *pt, *entry;
1447
1448 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1449 base.vm_status);
1450 amdgpu_vm_bo_idle(&entry->base);
1451
1452 pt = amdgpu_vm_pt_parent(entry);
1453 if (!pt)
1454 continue;
1455
1456 amdgpu_vm_update_pde(&params, vm, pt, entry);
1457
1458 if (!vm->use_cpu_for_update &&
1459 (ndw - params.ib->length_dw) < 32)
1460 break;
1461 }
1462
1463 if (vm->use_cpu_for_update) {
1464 /* Flush HDP */
1465 mb();
1466 amdgpu_asic_flush_hdp(adev, NULL);
1467 } else if (params.ib->length_dw == 0) {
1468 amdgpu_job_free(job);
1469 } else {
1470 struct amdgpu_bo *root = vm->root.base.bo;
1471 struct amdgpu_ring *ring;
1472 struct dma_fence *fence;
1473
1474 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring,
1475 sched);
1476
1477 amdgpu_ring_pad_ib(ring, params.ib);
1478 amdgpu_sync_resv(adev, &job->sync, root->tbo.resv,
1479 AMDGPU_FENCE_OWNER_VM, false);
1480 WARN_ON(params.ib->length_dw > ndw);
1481 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM,
1482 &fence);
1483 if (r)
1484 goto error;
1485
1486 amdgpu_bo_fence(root, fence, true);
1487 dma_fence_put(vm->last_update);
1488 vm->last_update = fence;
1489 }
1490
1491 if (!list_empty(&vm->relocated))
1492 goto restart;
1493
1494 return 0;
1495
1496 error:
1497 amdgpu_vm_invalidate_pds(adev, vm);
1498 amdgpu_job_free(job);
1499 return r;
1500 }
1501
1502 /**
1503 * amdgpu_vm_update_flags - figure out flags for PTE updates
1504 *
1505 * Make sure to set the right flags for the PTEs at the desired level.
1506 */
1507 static void amdgpu_vm_update_flags(struct amdgpu_pte_update_params *params,
1508 struct amdgpu_bo *bo, unsigned level,
1509 uint64_t pe, uint64_t addr,
1510 unsigned count, uint32_t incr,
1511 uint64_t flags)
1512
1513 {
1514 if (level != AMDGPU_VM_PTB) {
1515 flags |= AMDGPU_PDE_PTE;
1516 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1517
1518 } else if (params->adev->asic_type >= CHIP_VEGA10 &&
1519 !(flags & AMDGPU_PTE_VALID) &&
1520 !(flags & AMDGPU_PTE_PRT)) {
1521
1522 /* Workaround for fault priority problem on GMC9 */
1523 flags |= AMDGPU_PTE_EXECUTABLE;
1524 }
1525
1526 amdgpu_vm_update_func(params, bo, pe, addr, count, incr, flags);
1527 }
1528
1529 /**
1530 * amdgpu_vm_fragment - get fragment for PTEs
1531 *
1532 * @params: see amdgpu_pte_update_params definition
1533 * @start: first PTE to handle
1534 * @end: last PTE to handle
1535 * @flags: hw mapping flags
1536 * @frag: resulting fragment size
1537 * @frag_end: end of this fragment
1538 *
1539 * Returns the first possible fragment for the start and end address.
1540 */
1541 static void amdgpu_vm_fragment(struct amdgpu_pte_update_params *params,
1542 uint64_t start, uint64_t end, uint64_t flags,
1543 unsigned int *frag, uint64_t *frag_end)
1544 {
1545 /**
1546 * The MC L1 TLB supports variable sized pages, based on a fragment
1547 * field in the PTE. When this field is set to a non-zero value, page
1548 * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1549 * flags are considered valid for all PTEs within the fragment range
1550 * and corresponding mappings are assumed to be physically contiguous.
1551 *
1552 * The L1 TLB can store a single PTE for the whole fragment,
1553 * significantly increasing the space available for translation
1554 * caching. This leads to large improvements in throughput when the
1555 * TLB is under pressure.
1556 *
1557 * The L2 TLB distributes small and large fragments into two
1558 * asymmetric partitions. The large fragment cache is significantly
1559 * larger. Thus, we try to use large fragments wherever possible.
1560 * Userspace can support this by aligning virtual base address and
1561 * allocation size to the fragment size.
1562 *
1563 * Starting with Vega10 the fragment size only controls the L1. The L2
1564 * is now directly feed with small/huge/giant pages from the walker.
1565 */
1566 unsigned max_frag;
1567
1568 if (params->adev->asic_type < CHIP_VEGA10)
1569 max_frag = params->adev->vm_manager.fragment_size;
1570 else
1571 max_frag = 31;
1572
1573 /* system pages are non continuously */
1574 if (params->src) {
1575 *frag = 0;
1576 *frag_end = end;
1577 return;
1578 }
1579
1580 /* This intentionally wraps around if no bit is set */
1581 *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1582 if (*frag >= max_frag) {
1583 *frag = max_frag;
1584 *frag_end = end & ~((1ULL << max_frag) - 1);
1585 } else {
1586 *frag_end = start + (1 << *frag);
1587 }
1588 }
1589
1590 /**
1591 * amdgpu_vm_update_ptes - make sure that page tables are valid
1592 *
1593 * @params: see amdgpu_pte_update_params definition
1594 * @start: start of GPU address range
1595 * @end: end of GPU address range
1596 * @dst: destination address to map to, the next dst inside the function
1597 * @flags: mapping flags
1598 *
1599 * Update the page tables in the range @start - @end.
1600 *
1601 * Returns:
1602 * 0 for success, -EINVAL for failure.
1603 */
1604 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
1605 uint64_t start, uint64_t end,
1606 uint64_t dst, uint64_t flags)
1607 {
1608 struct amdgpu_device *adev = params->adev;
1609 struct amdgpu_vm_pt_cursor cursor;
1610 uint64_t frag_start = start, frag_end;
1611 unsigned int frag;
1612
1613 /* figure out the initial fragment */
1614 amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1615
1616 /* walk over the address space and update the PTs */
1617 amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1618 while (cursor.pfn < end) {
1619 struct amdgpu_bo *pt = cursor.entry->base.bo;
1620 unsigned shift, parent_shift, mask;
1621 uint64_t incr, entry_end, pe_start;
1622
1623 if (!pt)
1624 return -ENOENT;
1625
1626 /* The root level can't be a huge page */
1627 if (cursor.level == adev->vm_manager.root_level) {
1628 if (!amdgpu_vm_pt_descendant(adev, &cursor))
1629 return -ENOENT;
1630 continue;
1631 }
1632
1633 /* If it isn't already handled it can't be a huge page */
1634 if (cursor.entry->huge) {
1635 /* Add the entry to the relocated list to update it. */
1636 cursor.entry->huge = false;
1637 amdgpu_vm_bo_relocated(&cursor.entry->base);
1638 }
1639
1640 shift = amdgpu_vm_level_shift(adev, cursor.level);
1641 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1642 if (adev->asic_type < CHIP_VEGA10) {
1643 /* No huge page support before GMC v9 */
1644 if (cursor.level != AMDGPU_VM_PTB) {
1645 if (!amdgpu_vm_pt_descendant(adev, &cursor))
1646 return -ENOENT;
1647 continue;
1648 }
1649 } else if (frag < shift) {
1650 /* We can't use this level when the fragment size is
1651 * smaller than the address shift. Go to the next
1652 * child entry and try again.
1653 */
1654 if (!amdgpu_vm_pt_descendant(adev, &cursor))
1655 return -ENOENT;
1656 continue;
1657 } else if (frag >= parent_shift &&
1658 cursor.level - 1 != adev->vm_manager.root_level) {
1659 /* If the fragment size is even larger than the parent
1660 * shift we should go up one level and check it again
1661 * unless one level up is the root level.
1662 */
1663 if (!amdgpu_vm_pt_ancestor(&cursor))
1664 return -ENOENT;
1665 continue;
1666 }
1667
1668 /* Looks good so far, calculate parameters for the update */
1669 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1670 mask = amdgpu_vm_entries_mask(adev, cursor.level);
1671 pe_start = ((cursor.pfn >> shift) & mask) * 8;
1672 entry_end = (uint64_t)(mask + 1) << shift;
1673 entry_end += cursor.pfn & ~(entry_end - 1);
1674 entry_end = min(entry_end, end);
1675
1676 do {
1677 uint64_t upd_end = min(entry_end, frag_end);
1678 unsigned nptes = (upd_end - frag_start) >> shift;
1679
1680 amdgpu_vm_update_flags(params, pt, cursor.level,
1681 pe_start, dst, nptes, incr,
1682 flags | AMDGPU_PTE_FRAG(frag));
1683
1684 pe_start += nptes * 8;
1685 dst += (uint64_t)nptes * AMDGPU_GPU_PAGE_SIZE << shift;
1686
1687 frag_start = upd_end;
1688 if (frag_start >= frag_end) {
1689 /* figure out the next fragment */
1690 amdgpu_vm_fragment(params, frag_start, end,
1691 flags, &frag, &frag_end);
1692 if (frag < shift)
1693 break;
1694 }
1695 } while (frag_start < entry_end);
1696
1697 if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1698 /* Mark all child entries as huge */
1699 while (cursor.pfn < frag_start) {
1700 cursor.entry->huge = true;
1701 amdgpu_vm_pt_next(adev, &cursor);
1702 }
1703
1704 } else if (frag >= shift) {
1705 /* or just move on to the next on the same level. */
1706 amdgpu_vm_pt_next(adev, &cursor);
1707 }
1708 }
1709
1710 return 0;
1711 }
1712
1713 /**
1714 * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1715 *
1716 * @adev: amdgpu_device pointer
1717 * @exclusive: fence we need to sync to
1718 * @pages_addr: DMA addresses to use for mapping
1719 * @vm: requested vm
1720 * @start: start of mapped range
1721 * @last: last mapped entry
1722 * @flags: flags for the entries
1723 * @addr: addr to set the area to
1724 * @fence: optional resulting fence
1725 *
1726 * Fill in the page table entries between @start and @last.
1727 *
1728 * Returns:
1729 * 0 for success, -EINVAL for failure.
1730 */
1731 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1732 struct dma_fence *exclusive,
1733 dma_addr_t *pages_addr,
1734 struct amdgpu_vm *vm,
1735 uint64_t start, uint64_t last,
1736 uint64_t flags, uint64_t addr,
1737 struct dma_fence **fence)
1738 {
1739 struct amdgpu_ring *ring;
1740 void *owner = AMDGPU_FENCE_OWNER_VM;
1741 unsigned nptes, ncmds, ndw;
1742 struct amdgpu_job *job;
1743 struct amdgpu_pte_update_params params;
1744 struct dma_fence *f = NULL;
1745 int r;
1746
1747 memset(&params, 0, sizeof(params));
1748 params.adev = adev;
1749 params.vm = vm;
1750
1751 /* sync to everything except eviction fences on unmapping */
1752 if (!(flags & AMDGPU_PTE_VALID))
1753 owner = AMDGPU_FENCE_OWNER_KFD;
1754
1755 if (vm->use_cpu_for_update) {
1756 /* params.src is used as flag to indicate system Memory */
1757 if (pages_addr)
1758 params.src = ~0;
1759
1760 /* Wait for PT BOs to be idle. PTs share the same resv. object
1761 * as the root PD BO
1762 */
1763 r = amdgpu_bo_sync_wait(vm->root.base.bo, owner, true);
1764 if (unlikely(r))
1765 return r;
1766
1767 /* Wait for any BO move to be completed */
1768 if (exclusive) {
1769 r = dma_fence_wait(exclusive, true);
1770 if (unlikely(r))
1771 return r;
1772 }
1773
1774 params.func = amdgpu_vm_cpu_set_ptes;
1775 params.pages_addr = pages_addr;
1776 return amdgpu_vm_update_ptes(&params, start, last + 1,
1777 addr, flags);
1778 }
1779
1780 ring = container_of(vm->entity.rq->sched, struct amdgpu_ring, sched);
1781
1782 nptes = last - start + 1;
1783
1784 /*
1785 * reserve space for two commands every (1 << BLOCK_SIZE)
1786 * entries or 2k dwords (whatever is smaller)
1787 */
1788 ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1);
1789
1790 /* The second command is for the shadow pagetables. */
1791 if (vm->root.base.bo->shadow)
1792 ncmds *= 2;
1793
1794 /* padding, etc. */
1795 ndw = 64;
1796
1797 if (pages_addr) {
1798 /* copy commands needed */
1799 ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw;
1800
1801 /* and also PTEs */
1802 ndw += nptes * 2;
1803
1804 params.func = amdgpu_vm_do_copy_ptes;
1805
1806 } else {
1807 /* set page commands needed */
1808 ndw += ncmds * 10;
1809
1810 /* extra commands for begin/end fragments */
1811 ncmds = 2 * adev->vm_manager.fragment_size;
1812 if (vm->root.base.bo->shadow)
1813 ncmds *= 2;
1814
1815 ndw += 10 * ncmds;
1816
1817 params.func = amdgpu_vm_do_set_ptes;
1818 }
1819
1820 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1821 if (r)
1822 return r;
1823
1824 params.ib = &job->ibs[0];
1825
1826 if (pages_addr) {
1827 uint64_t *pte;
1828 unsigned i;
1829
1830 /* Put the PTEs at the end of the IB. */
1831 i = ndw - nptes * 2;
1832 pte= (uint64_t *)&(job->ibs->ptr[i]);
1833 params.src = job->ibs->gpu_addr + i * 4;
1834
1835 for (i = 0; i < nptes; ++i) {
1836 pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
1837 AMDGPU_GPU_PAGE_SIZE);
1838 pte[i] |= flags;
1839 }
1840 addr = 0;
1841 }
1842
1843 r = amdgpu_sync_fence(adev, &job->sync, exclusive, false);
1844 if (r)
1845 goto error_free;
1846
1847 r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv,
1848 owner, false);
1849 if (r)
1850 goto error_free;
1851
1852 r = amdgpu_vm_update_ptes(&params, start, last + 1, addr, flags);
1853 if (r)
1854 goto error_free;
1855
1856 amdgpu_ring_pad_ib(ring, params.ib);
1857 WARN_ON(params.ib->length_dw > ndw);
1858 r = amdgpu_job_submit(job, &vm->entity, AMDGPU_FENCE_OWNER_VM, &f);
1859 if (r)
1860 goto error_free;
1861
1862 amdgpu_bo_fence(vm->root.base.bo, f, true);
1863 dma_fence_put(*fence);
1864 *fence = f;
1865 return 0;
1866
1867 error_free:
1868 amdgpu_job_free(job);
1869 return r;
1870 }
1871
1872 /**
1873 * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1874 *
1875 * @adev: amdgpu_device pointer
1876 * @exclusive: fence we need to sync to
1877 * @pages_addr: DMA addresses to use for mapping
1878 * @vm: requested vm
1879 * @mapping: mapped range and flags to use for the update
1880 * @flags: HW flags for the mapping
1881 * @nodes: array of drm_mm_nodes with the MC addresses
1882 * @fence: optional resulting fence
1883 *
1884 * Split the mapping into smaller chunks so that each update fits
1885 * into a SDMA IB.
1886 *
1887 * Returns:
1888 * 0 for success, -EINVAL for failure.
1889 */
1890 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1891 struct dma_fence *exclusive,
1892 dma_addr_t *pages_addr,
1893 struct amdgpu_vm *vm,
1894 struct amdgpu_bo_va_mapping *mapping,
1895 uint64_t flags,
1896 struct drm_mm_node *nodes,
1897 struct dma_fence **fence)
1898 {
1899 unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1900 uint64_t pfn, start = mapping->start;
1901 int r;
1902
1903 /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1904 * but in case of something, we filter the flags in first place
1905 */
1906 if (!(mapping->flags & AMDGPU_PTE_READABLE))
1907 flags &= ~AMDGPU_PTE_READABLE;
1908 if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1909 flags &= ~AMDGPU_PTE_WRITEABLE;
1910
1911 flags &= ~AMDGPU_PTE_EXECUTABLE;
1912 flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
1913
1914 flags &= ~AMDGPU_PTE_MTYPE_MASK;
1915 flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK);
1916
1917 if ((mapping->flags & AMDGPU_PTE_PRT) &&
1918 (adev->asic_type >= CHIP_VEGA10)) {
1919 flags |= AMDGPU_PTE_PRT;
1920 flags &= ~AMDGPU_PTE_VALID;
1921 }
1922
1923 trace_amdgpu_vm_bo_update(mapping);
1924
1925 pfn = mapping->offset >> PAGE_SHIFT;
1926 if (nodes) {
1927 while (pfn >= nodes->size) {
1928 pfn -= nodes->size;
1929 ++nodes;
1930 }
1931 }
1932
1933 do {
1934 dma_addr_t *dma_addr = NULL;
1935 uint64_t max_entries;
1936 uint64_t addr, last;
1937
1938 if (nodes) {
1939 addr = nodes->start << PAGE_SHIFT;
1940 max_entries = (nodes->size - pfn) *
1941 AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1942 } else {
1943 addr = 0;
1944 max_entries = S64_MAX;
1945 }
1946
1947 if (pages_addr) {
1948 uint64_t count;
1949
1950 max_entries = min(max_entries, 16ull * 1024ull);
1951 for (count = 1;
1952 count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1953 ++count) {
1954 uint64_t idx = pfn + count;
1955
1956 if (pages_addr[idx] !=
1957 (pages_addr[idx - 1] + PAGE_SIZE))
1958 break;
1959 }
1960
1961 if (count < min_linear_pages) {
1962 addr = pfn << PAGE_SHIFT;
1963 dma_addr = pages_addr;
1964 } else {
1965 addr = pages_addr[pfn];
1966 max_entries = count * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1967 }
1968
1969 } else if (flags & AMDGPU_PTE_VALID) {
1970 addr += adev->vm_manager.vram_base_offset;
1971 addr += pfn << PAGE_SHIFT;
1972 }
1973
1974 last = min((uint64_t)mapping->last, start + max_entries - 1);
1975 r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm,
1976 start, last, flags, addr,
1977 fence);
1978 if (r)
1979 return r;
1980
1981 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1982 if (nodes && nodes->size == pfn) {
1983 pfn = 0;
1984 ++nodes;
1985 }
1986 start = last + 1;
1987
1988 } while (unlikely(start != mapping->last + 1));
1989
1990 return 0;
1991 }
1992
1993 /**
1994 * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1995 *
1996 * @adev: amdgpu_device pointer
1997 * @bo_va: requested BO and VM object
1998 * @clear: if true clear the entries
1999 *
2000 * Fill in the page table entries for @bo_va.
2001 *
2002 * Returns:
2003 * 0 for success, -EINVAL for failure.
2004 */
2005 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
2006 struct amdgpu_bo_va *bo_va,
2007 bool clear)
2008 {
2009 struct amdgpu_bo *bo = bo_va->base.bo;
2010 struct amdgpu_vm *vm = bo_va->base.vm;
2011 struct amdgpu_bo_va_mapping *mapping;
2012 dma_addr_t *pages_addr = NULL;
2013 struct ttm_mem_reg *mem;
2014 struct drm_mm_node *nodes;
2015 struct dma_fence *exclusive, **last_update;
2016 uint64_t flags;
2017 int r;
2018
2019 if (clear || !bo) {
2020 mem = NULL;
2021 nodes = NULL;
2022 exclusive = NULL;
2023 } else {
2024 struct ttm_dma_tt *ttm;
2025
2026 mem = &bo->tbo.mem;
2027 nodes = mem->mm_node;
2028 if (mem->mem_type == TTM_PL_TT) {
2029 ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm);
2030 pages_addr = ttm->dma_address;
2031 }
2032 exclusive = reservation_object_get_excl(bo->tbo.resv);
2033 }
2034
2035 if (bo)
2036 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
2037 else
2038 flags = 0x0;
2039
2040 if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv))
2041 last_update = &vm->last_update;
2042 else
2043 last_update = &bo_va->last_pt_update;
2044
2045 if (!clear && bo_va->base.moved) {
2046 bo_va->base.moved = false;
2047 list_splice_init(&bo_va->valids, &bo_va->invalids);
2048
2049 } else if (bo_va->cleared != clear) {
2050 list_splice_init(&bo_va->valids, &bo_va->invalids);
2051 }
2052
2053 list_for_each_entry(mapping, &bo_va->invalids, list) {
2054 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm,
2055 mapping, flags, nodes,
2056 last_update);
2057 if (r)
2058 return r;
2059 }
2060
2061 if (vm->use_cpu_for_update) {
2062 /* Flush HDP */
2063 mb();
2064 amdgpu_asic_flush_hdp(adev, NULL);
2065 }
2066
2067 /* If the BO is not in its preferred location add it back to
2068 * the evicted list so that it gets validated again on the
2069 * next command submission.
2070 */
2071 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
2072 uint32_t mem_type = bo->tbo.mem.mem_type;
2073
2074 if (!(bo->preferred_domains & amdgpu_mem_type_to_domain(mem_type)))
2075 amdgpu_vm_bo_evicted(&bo_va->base);
2076 else
2077 amdgpu_vm_bo_idle(&bo_va->base);
2078 } else {
2079 amdgpu_vm_bo_done(&bo_va->base);
2080 }
2081
2082 list_splice_init(&bo_va->invalids, &bo_va->valids);
2083 bo_va->cleared = clear;
2084
2085 if (trace_amdgpu_vm_bo_mapping_enabled()) {
2086 list_for_each_entry(mapping, &bo_va->valids, list)
2087 trace_amdgpu_vm_bo_mapping(mapping);
2088 }
2089
2090 return 0;
2091 }
2092
2093 /**
2094 * amdgpu_vm_update_prt_state - update the global PRT state
2095 *
2096 * @adev: amdgpu_device pointer
2097 */
2098 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
2099 {
2100 unsigned long flags;
2101 bool enable;
2102
2103 spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
2104 enable = !!atomic_read(&adev->vm_manager.num_prt_users);
2105 adev->gmc.gmc_funcs->set_prt(adev, enable);
2106 spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
2107 }
2108
2109 /**
2110 * amdgpu_vm_prt_get - add a PRT user
2111 *
2112 * @adev: amdgpu_device pointer
2113 */
2114 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
2115 {
2116 if (!adev->gmc.gmc_funcs->set_prt)
2117 return;
2118
2119 if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
2120 amdgpu_vm_update_prt_state(adev);
2121 }
2122
2123 /**
2124 * amdgpu_vm_prt_put - drop a PRT user
2125 *
2126 * @adev: amdgpu_device pointer
2127 */
2128 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
2129 {
2130 if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
2131 amdgpu_vm_update_prt_state(adev);
2132 }
2133
2134 /**
2135 * amdgpu_vm_prt_cb - callback for updating the PRT status
2136 *
2137 * @fence: fence for the callback
2138 * @_cb: the callback function
2139 */
2140 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
2141 {
2142 struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
2143
2144 amdgpu_vm_prt_put(cb->adev);
2145 kfree(cb);
2146 }
2147
2148 /**
2149 * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
2150 *
2151 * @adev: amdgpu_device pointer
2152 * @fence: fence for the callback
2153 */
2154 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
2155 struct dma_fence *fence)
2156 {
2157 struct amdgpu_prt_cb *cb;
2158
2159 if (!adev->gmc.gmc_funcs->set_prt)
2160 return;
2161
2162 cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
2163 if (!cb) {
2164 /* Last resort when we are OOM */
2165 if (fence)
2166 dma_fence_wait(fence, false);
2167
2168 amdgpu_vm_prt_put(adev);
2169 } else {
2170 cb->adev = adev;
2171 if (!fence || dma_fence_add_callback(fence, &cb->cb,
2172 amdgpu_vm_prt_cb))
2173 amdgpu_vm_prt_cb(fence, &cb->cb);
2174 }
2175 }
2176
2177 /**
2178 * amdgpu_vm_free_mapping - free a mapping
2179 *
2180 * @adev: amdgpu_device pointer
2181 * @vm: requested vm
2182 * @mapping: mapping to be freed
2183 * @fence: fence of the unmap operation
2184 *
2185 * Free a mapping and make sure we decrease the PRT usage count if applicable.
2186 */
2187 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
2188 struct amdgpu_vm *vm,
2189 struct amdgpu_bo_va_mapping *mapping,
2190 struct dma_fence *fence)
2191 {
2192 if (mapping->flags & AMDGPU_PTE_PRT)
2193 amdgpu_vm_add_prt_cb(adev, fence);
2194 kfree(mapping);
2195 }
2196
2197 /**
2198 * amdgpu_vm_prt_fini - finish all prt mappings
2199 *
2200 * @adev: amdgpu_device pointer
2201 * @vm: requested vm
2202 *
2203 * Register a cleanup callback to disable PRT support after VM dies.
2204 */
2205 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2206 {
2207 struct reservation_object *resv = vm->root.base.bo->tbo.resv;
2208 struct dma_fence *excl, **shared;
2209 unsigned i, shared_count;
2210 int r;
2211
2212 r = reservation_object_get_fences_rcu(resv, &excl,
2213 &shared_count, &shared);
2214 if (r) {
2215 /* Not enough memory to grab the fence list, as last resort
2216 * block for all the fences to complete.
2217 */
2218 reservation_object_wait_timeout_rcu(resv, true, false,
2219 MAX_SCHEDULE_TIMEOUT);
2220 return;
2221 }
2222
2223 /* Add a callback for each fence in the reservation object */
2224 amdgpu_vm_prt_get(adev);
2225 amdgpu_vm_add_prt_cb(adev, excl);
2226
2227 for (i = 0; i < shared_count; ++i) {
2228 amdgpu_vm_prt_get(adev);
2229 amdgpu_vm_add_prt_cb(adev, shared[i]);
2230 }
2231
2232 kfree(shared);
2233 }
2234
2235 /**
2236 * amdgpu_vm_clear_freed - clear freed BOs in the PT
2237 *
2238 * @adev: amdgpu_device pointer
2239 * @vm: requested vm
2240 * @fence: optional resulting fence (unchanged if no work needed to be done
2241 * or if an error occurred)
2242 *
2243 * Make sure all freed BOs are cleared in the PT.
2244 * PTs have to be reserved and mutex must be locked!
2245 *
2246 * Returns:
2247 * 0 for success.
2248 *
2249 */
2250 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2251 struct amdgpu_vm *vm,
2252 struct dma_fence **fence)
2253 {
2254 struct amdgpu_bo_va_mapping *mapping;
2255 uint64_t init_pte_value = 0;
2256 struct dma_fence *f = NULL;
2257 int r;
2258
2259 while (!list_empty(&vm->freed)) {
2260 mapping = list_first_entry(&vm->freed,
2261 struct amdgpu_bo_va_mapping, list);
2262 list_del(&mapping->list);
2263
2264 if (vm->pte_support_ats &&
2265 mapping->start < AMDGPU_GMC_HOLE_START)
2266 init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2267
2268 r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm,
2269 mapping->start, mapping->last,
2270 init_pte_value, 0, &f);
2271 amdgpu_vm_free_mapping(adev, vm, mapping, f);
2272 if (r) {
2273 dma_fence_put(f);
2274 return r;
2275 }
2276 }
2277
2278 if (fence && f) {
2279 dma_fence_put(*fence);
2280 *fence = f;
2281 } else {
2282 dma_fence_put(f);
2283 }
2284
2285 return 0;
2286
2287 }
2288
2289 /**
2290 * amdgpu_vm_handle_moved - handle moved BOs in the PT
2291 *
2292 * @adev: amdgpu_device pointer
2293 * @vm: requested vm
2294 *
2295 * Make sure all BOs which are moved are updated in the PTs.
2296 *
2297 * Returns:
2298 * 0 for success.
2299 *
2300 * PTs have to be reserved!
2301 */
2302 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2303 struct amdgpu_vm *vm)
2304 {
2305 struct amdgpu_bo_va *bo_va, *tmp;
2306 struct reservation_object *resv;
2307 bool clear;
2308 int r;
2309
2310 list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2311 /* Per VM BOs never need to bo cleared in the page tables */
2312 r = amdgpu_vm_bo_update(adev, bo_va, false);
2313 if (r)
2314 return r;
2315 }
2316
2317 spin_lock(&vm->invalidated_lock);
2318 while (!list_empty(&vm->invalidated)) {
2319 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2320 base.vm_status);
2321 resv = bo_va->base.bo->tbo.resv;
2322 spin_unlock(&vm->invalidated_lock);
2323
2324 /* Try to reserve the BO to avoid clearing its ptes */
2325 if (!amdgpu_vm_debug && reservation_object_trylock(resv))
2326 clear = false;
2327 /* Somebody else is using the BO right now */
2328 else
2329 clear = true;
2330
2331 r = amdgpu_vm_bo_update(adev, bo_va, clear);
2332 if (r)
2333 return r;
2334
2335 if (!clear)
2336 reservation_object_unlock(resv);
2337 spin_lock(&vm->invalidated_lock);
2338 }
2339 spin_unlock(&vm->invalidated_lock);
2340
2341 return 0;
2342 }
2343
2344 /**
2345 * amdgpu_vm_bo_add - add a bo to a specific vm
2346 *
2347 * @adev: amdgpu_device pointer
2348 * @vm: requested vm
2349 * @bo: amdgpu buffer object
2350 *
2351 * Add @bo into the requested vm.
2352 * Add @bo to the list of bos associated with the vm
2353 *
2354 * Returns:
2355 * Newly added bo_va or NULL for failure
2356 *
2357 * Object has to be reserved!
2358 */
2359 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2360 struct amdgpu_vm *vm,
2361 struct amdgpu_bo *bo)
2362 {
2363 struct amdgpu_bo_va *bo_va;
2364
2365 bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2366 if (bo_va == NULL) {
2367 return NULL;
2368 }
2369 amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2370
2371 bo_va->ref_count = 1;
2372 INIT_LIST_HEAD(&bo_va->valids);
2373 INIT_LIST_HEAD(&bo_va->invalids);
2374
2375 return bo_va;
2376 }
2377
2378
2379 /**
2380 * amdgpu_vm_bo_insert_mapping - insert a new mapping
2381 *
2382 * @adev: amdgpu_device pointer
2383 * @bo_va: bo_va to store the address
2384 * @mapping: the mapping to insert
2385 *
2386 * Insert a new mapping into all structures.
2387 */
2388 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2389 struct amdgpu_bo_va *bo_va,
2390 struct amdgpu_bo_va_mapping *mapping)
2391 {
2392 struct amdgpu_vm *vm = bo_va->base.vm;
2393 struct amdgpu_bo *bo = bo_va->base.bo;
2394
2395 mapping->bo_va = bo_va;
2396 list_add(&mapping->list, &bo_va->invalids);
2397 amdgpu_vm_it_insert(mapping, &vm->va);
2398
2399 if (mapping->flags & AMDGPU_PTE_PRT)
2400 amdgpu_vm_prt_get(adev);
2401
2402 if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv &&
2403 !bo_va->base.moved) {
2404 list_move(&bo_va->base.vm_status, &vm->moved);
2405 }
2406 trace_amdgpu_vm_bo_map(bo_va, mapping);
2407 }
2408
2409 /**
2410 * amdgpu_vm_bo_map - map bo inside a vm
2411 *
2412 * @adev: amdgpu_device pointer
2413 * @bo_va: bo_va to store the address
2414 * @saddr: where to map the BO
2415 * @offset: requested offset in the BO
2416 * @size: BO size in bytes
2417 * @flags: attributes of pages (read/write/valid/etc.)
2418 *
2419 * Add a mapping of the BO at the specefied addr into the VM.
2420 *
2421 * Returns:
2422 * 0 for success, error for failure.
2423 *
2424 * Object has to be reserved and unreserved outside!
2425 */
2426 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2427 struct amdgpu_bo_va *bo_va,
2428 uint64_t saddr, uint64_t offset,
2429 uint64_t size, uint64_t flags)
2430 {
2431 struct amdgpu_bo_va_mapping *mapping, *tmp;
2432 struct amdgpu_bo *bo = bo_va->base.bo;
2433 struct amdgpu_vm *vm = bo_va->base.vm;
2434 uint64_t eaddr;
2435
2436 /* validate the parameters */
2437 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2438 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2439 return -EINVAL;
2440
2441 /* make sure object fit at this offset */
2442 eaddr = saddr + size - 1;
2443 if (saddr >= eaddr ||
2444 (bo && offset + size > amdgpu_bo_size(bo)))
2445 return -EINVAL;
2446
2447 saddr /= AMDGPU_GPU_PAGE_SIZE;
2448 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2449
2450 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2451 if (tmp) {
2452 /* bo and tmp overlap, invalid addr */
2453 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2454 "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2455 tmp->start, tmp->last + 1);
2456 return -EINVAL;
2457 }
2458
2459 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2460 if (!mapping)
2461 return -ENOMEM;
2462
2463 mapping->start = saddr;
2464 mapping->last = eaddr;
2465 mapping->offset = offset;
2466 mapping->flags = flags;
2467
2468 amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2469
2470 return 0;
2471 }
2472
2473 /**
2474 * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2475 *
2476 * @adev: amdgpu_device pointer
2477 * @bo_va: bo_va to store the address
2478 * @saddr: where to map the BO
2479 * @offset: requested offset in the BO
2480 * @size: BO size in bytes
2481 * @flags: attributes of pages (read/write/valid/etc.)
2482 *
2483 * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2484 * mappings as we do so.
2485 *
2486 * Returns:
2487 * 0 for success, error for failure.
2488 *
2489 * Object has to be reserved and unreserved outside!
2490 */
2491 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2492 struct amdgpu_bo_va *bo_va,
2493 uint64_t saddr, uint64_t offset,
2494 uint64_t size, uint64_t flags)
2495 {
2496 struct amdgpu_bo_va_mapping *mapping;
2497 struct amdgpu_bo *bo = bo_va->base.bo;
2498 uint64_t eaddr;
2499 int r;
2500
2501 /* validate the parameters */
2502 if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2503 size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2504 return -EINVAL;
2505
2506 /* make sure object fit at this offset */
2507 eaddr = saddr + size - 1;
2508 if (saddr >= eaddr ||
2509 (bo && offset + size > amdgpu_bo_size(bo)))
2510 return -EINVAL;
2511
2512 /* Allocate all the needed memory */
2513 mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2514 if (!mapping)
2515 return -ENOMEM;
2516
2517 r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2518 if (r) {
2519 kfree(mapping);
2520 return r;
2521 }
2522
2523 saddr /= AMDGPU_GPU_PAGE_SIZE;
2524 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2525
2526 mapping->start = saddr;
2527 mapping->last = eaddr;
2528 mapping->offset = offset;
2529 mapping->flags = flags;
2530
2531 amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2532
2533 return 0;
2534 }
2535
2536 /**
2537 * amdgpu_vm_bo_unmap - remove bo mapping from vm
2538 *
2539 * @adev: amdgpu_device pointer
2540 * @bo_va: bo_va to remove the address from
2541 * @saddr: where to the BO is mapped
2542 *
2543 * Remove a mapping of the BO at the specefied addr from the VM.
2544 *
2545 * Returns:
2546 * 0 for success, error for failure.
2547 *
2548 * Object has to be reserved and unreserved outside!
2549 */
2550 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2551 struct amdgpu_bo_va *bo_va,
2552 uint64_t saddr)
2553 {
2554 struct amdgpu_bo_va_mapping *mapping;
2555 struct amdgpu_vm *vm = bo_va->base.vm;
2556 bool valid = true;
2557
2558 saddr /= AMDGPU_GPU_PAGE_SIZE;
2559
2560 list_for_each_entry(mapping, &bo_va->valids, list) {
2561 if (mapping->start == saddr)
2562 break;
2563 }
2564
2565 if (&mapping->list == &bo_va->valids) {
2566 valid = false;
2567
2568 list_for_each_entry(mapping, &bo_va->invalids, list) {
2569 if (mapping->start == saddr)
2570 break;
2571 }
2572
2573 if (&mapping->list == &bo_va->invalids)
2574 return -ENOENT;
2575 }
2576
2577 list_del(&mapping->list);
2578 amdgpu_vm_it_remove(mapping, &vm->va);
2579 mapping->bo_va = NULL;
2580 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2581
2582 if (valid)
2583 list_add(&mapping->list, &vm->freed);
2584 else
2585 amdgpu_vm_free_mapping(adev, vm, mapping,
2586 bo_va->last_pt_update);
2587
2588 return 0;
2589 }
2590
2591 /**
2592 * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2593 *
2594 * @adev: amdgpu_device pointer
2595 * @vm: VM structure to use
2596 * @saddr: start of the range
2597 * @size: size of the range
2598 *
2599 * Remove all mappings in a range, split them as appropriate.
2600 *
2601 * Returns:
2602 * 0 for success, error for failure.
2603 */
2604 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2605 struct amdgpu_vm *vm,
2606 uint64_t saddr, uint64_t size)
2607 {
2608 struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2609 LIST_HEAD(removed);
2610 uint64_t eaddr;
2611
2612 eaddr = saddr + size - 1;
2613 saddr /= AMDGPU_GPU_PAGE_SIZE;
2614 eaddr /= AMDGPU_GPU_PAGE_SIZE;
2615
2616 /* Allocate all the needed memory */
2617 before = kzalloc(sizeof(*before), GFP_KERNEL);
2618 if (!before)
2619 return -ENOMEM;
2620 INIT_LIST_HEAD(&before->list);
2621
2622 after = kzalloc(sizeof(*after), GFP_KERNEL);
2623 if (!after) {
2624 kfree(before);
2625 return -ENOMEM;
2626 }
2627 INIT_LIST_HEAD(&after->list);
2628
2629 /* Now gather all removed mappings */
2630 tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2631 while (tmp) {
2632 /* Remember mapping split at the start */
2633 if (tmp->start < saddr) {
2634 before->start = tmp->start;
2635 before->last = saddr - 1;
2636 before->offset = tmp->offset;
2637 before->flags = tmp->flags;
2638 before->bo_va = tmp->bo_va;
2639 list_add(&before->list, &tmp->bo_va->invalids);
2640 }
2641
2642 /* Remember mapping split at the end */
2643 if (tmp->last > eaddr) {
2644 after->start = eaddr + 1;
2645 after->last = tmp->last;
2646 after->offset = tmp->offset;
2647 after->offset += after->start - tmp->start;
2648 after->flags = tmp->flags;
2649 after->bo_va = tmp->bo_va;
2650 list_add(&after->list, &tmp->bo_va->invalids);
2651 }
2652
2653 list_del(&tmp->list);
2654 list_add(&tmp->list, &removed);
2655
2656 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2657 }
2658
2659 /* And free them up */
2660 list_for_each_entry_safe(tmp, next, &removed, list) {
2661 amdgpu_vm_it_remove(tmp, &vm->va);
2662 list_del(&tmp->list);
2663
2664 if (tmp->start < saddr)
2665 tmp->start = saddr;
2666 if (tmp->last > eaddr)
2667 tmp->last = eaddr;
2668
2669 tmp->bo_va = NULL;
2670 list_add(&tmp->list, &vm->freed);
2671 trace_amdgpu_vm_bo_unmap(NULL, tmp);
2672 }
2673
2674 /* Insert partial mapping before the range */
2675 if (!list_empty(&before->list)) {
2676 amdgpu_vm_it_insert(before, &vm->va);
2677 if (before->flags & AMDGPU_PTE_PRT)
2678 amdgpu_vm_prt_get(adev);
2679 } else {
2680 kfree(before);
2681 }
2682
2683 /* Insert partial mapping after the range */
2684 if (!list_empty(&after->list)) {
2685 amdgpu_vm_it_insert(after, &vm->va);
2686 if (after->flags & AMDGPU_PTE_PRT)
2687 amdgpu_vm_prt_get(adev);
2688 } else {
2689 kfree(after);
2690 }
2691
2692 return 0;
2693 }
2694
2695 /**
2696 * amdgpu_vm_bo_lookup_mapping - find mapping by address
2697 *
2698 * @vm: the requested VM
2699 * @addr: the address
2700 *
2701 * Find a mapping by it's address.
2702 *
2703 * Returns:
2704 * The amdgpu_bo_va_mapping matching for addr or NULL
2705 *
2706 */
2707 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2708 uint64_t addr)
2709 {
2710 return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2711 }
2712
2713 /**
2714 * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2715 *
2716 * @vm: the requested vm
2717 * @ticket: CS ticket
2718 *
2719 * Trace all mappings of BOs reserved during a command submission.
2720 */
2721 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2722 {
2723 struct amdgpu_bo_va_mapping *mapping;
2724
2725 if (!trace_amdgpu_vm_bo_cs_enabled())
2726 return;
2727
2728 for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2729 mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2730 if (mapping->bo_va && mapping->bo_va->base.bo) {
2731 struct amdgpu_bo *bo;
2732
2733 bo = mapping->bo_va->base.bo;
2734 if (READ_ONCE(bo->tbo.resv->lock.ctx) != ticket)
2735 continue;
2736 }
2737
2738 trace_amdgpu_vm_bo_cs(mapping);
2739 }
2740 }
2741
2742 /**
2743 * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2744 *
2745 * @adev: amdgpu_device pointer
2746 * @bo_va: requested bo_va
2747 *
2748 * Remove @bo_va->bo from the requested vm.
2749 *
2750 * Object have to be reserved!
2751 */
2752 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2753 struct amdgpu_bo_va *bo_va)
2754 {
2755 struct amdgpu_bo_va_mapping *mapping, *next;
2756 struct amdgpu_bo *bo = bo_va->base.bo;
2757 struct amdgpu_vm *vm = bo_va->base.vm;
2758 struct amdgpu_vm_bo_base **base;
2759
2760 if (bo) {
2761 if (bo->tbo.resv == vm->root.base.bo->tbo.resv)
2762 vm->bulk_moveable = false;
2763
2764 for (base = &bo_va->base.bo->vm_bo; *base;
2765 base = &(*base)->next) {
2766 if (*base != &bo_va->base)
2767 continue;
2768
2769 *base = bo_va->base.next;
2770 break;
2771 }
2772 }
2773
2774 spin_lock(&vm->invalidated_lock);
2775 list_del(&bo_va->base.vm_status);
2776 spin_unlock(&vm->invalidated_lock);
2777
2778 list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2779 list_del(&mapping->list);
2780 amdgpu_vm_it_remove(mapping, &vm->va);
2781 mapping->bo_va = NULL;
2782 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2783 list_add(&mapping->list, &vm->freed);
2784 }
2785 list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2786 list_del(&mapping->list);
2787 amdgpu_vm_it_remove(mapping, &vm->va);
2788 amdgpu_vm_free_mapping(adev, vm, mapping,
2789 bo_va->last_pt_update);
2790 }
2791
2792 dma_fence_put(bo_va->last_pt_update);
2793 kfree(bo_va);
2794 }
2795
2796 /**
2797 * amdgpu_vm_bo_invalidate - mark the bo as invalid
2798 *
2799 * @adev: amdgpu_device pointer
2800 * @bo: amdgpu buffer object
2801 * @evicted: is the BO evicted
2802 *
2803 * Mark @bo as invalid.
2804 */
2805 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2806 struct amdgpu_bo *bo, bool evicted)
2807 {
2808 struct amdgpu_vm_bo_base *bo_base;
2809
2810 /* shadow bo doesn't have bo base, its validation needs its parent */
2811 if (bo->parent && bo->parent->shadow == bo)
2812 bo = bo->parent;
2813
2814 for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2815 struct amdgpu_vm *vm = bo_base->vm;
2816
2817 if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
2818 amdgpu_vm_bo_evicted(bo_base);
2819 continue;
2820 }
2821
2822 if (bo_base->moved)
2823 continue;
2824 bo_base->moved = true;
2825
2826 if (bo->tbo.type == ttm_bo_type_kernel)
2827 amdgpu_vm_bo_relocated(bo_base);
2828 else if (bo->tbo.resv == vm->root.base.bo->tbo.resv)
2829 amdgpu_vm_bo_moved(bo_base);
2830 else
2831 amdgpu_vm_bo_invalidated(bo_base);
2832 }
2833 }
2834
2835 /**
2836 * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2837 *
2838 * @vm_size: VM size
2839 *
2840 * Returns:
2841 * VM page table as power of two
2842 */
2843 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2844 {
2845 /* Total bits covered by PD + PTs */
2846 unsigned bits = ilog2(vm_size) + 18;
2847
2848 /* Make sure the PD is 4K in size up to 8GB address space.
2849 Above that split equal between PD and PTs */
2850 if (vm_size <= 8)
2851 return (bits - 9);
2852 else
2853 return ((bits + 3) / 2);
2854 }
2855
2856 /**
2857 * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2858 *
2859 * @adev: amdgpu_device pointer
2860 * @min_vm_size: the minimum vm size in GB if it's set auto
2861 * @fragment_size_default: Default PTE fragment size
2862 * @max_level: max VMPT level
2863 * @max_bits: max address space size in bits
2864 *
2865 */
2866 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2867 uint32_t fragment_size_default, unsigned max_level,
2868 unsigned max_bits)
2869 {
2870 unsigned int max_size = 1 << (max_bits - 30);
2871 unsigned int vm_size;
2872 uint64_t tmp;
2873
2874 /* adjust vm size first */
2875 if (amdgpu_vm_size != -1) {
2876 vm_size = amdgpu_vm_size;
2877 if (vm_size > max_size) {
2878 dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2879 amdgpu_vm_size, max_size);
2880 vm_size = max_size;
2881 }
2882 } else {
2883 struct sysinfo si;
2884 unsigned int phys_ram_gb;
2885
2886 /* Optimal VM size depends on the amount of physical
2887 * RAM available. Underlying requirements and
2888 * assumptions:
2889 *
2890 * - Need to map system memory and VRAM from all GPUs
2891 * - VRAM from other GPUs not known here
2892 * - Assume VRAM <= system memory
2893 * - On GFX8 and older, VM space can be segmented for
2894 * different MTYPEs
2895 * - Need to allow room for fragmentation, guard pages etc.
2896 *
2897 * This adds up to a rough guess of system memory x3.
2898 * Round up to power of two to maximize the available
2899 * VM size with the given page table size.
2900 */
2901 si_meminfo(&si);
2902 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2903 (1 << 30) - 1) >> 30;
2904 vm_size = roundup_pow_of_two(
2905 min(max(phys_ram_gb * 3, min_vm_size), max_size));
2906 }
2907
2908 adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2909
2910 tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2911 if (amdgpu_vm_block_size != -1)
2912 tmp >>= amdgpu_vm_block_size - 9;
2913 tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2914 adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2915 switch (adev->vm_manager.num_level) {
2916 case 3:
2917 adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2918 break;
2919 case 2:
2920 adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2921 break;
2922 case 1:
2923 adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2924 break;
2925 default:
2926 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2927 }
2928 /* block size depends on vm size and hw setup*/
2929 if (amdgpu_vm_block_size != -1)
2930 adev->vm_manager.block_size =
2931 min((unsigned)amdgpu_vm_block_size, max_bits
2932 - AMDGPU_GPU_PAGE_SHIFT
2933 - 9 * adev->vm_manager.num_level);
2934 else if (adev->vm_manager.num_level > 1)
2935 adev->vm_manager.block_size = 9;
2936 else
2937 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2938
2939 if (amdgpu_vm_fragment_size == -1)
2940 adev->vm_manager.fragment_size = fragment_size_default;
2941 else
2942 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2943
2944 DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2945 vm_size, adev->vm_manager.num_level + 1,
2946 adev->vm_manager.block_size,
2947 adev->vm_manager.fragment_size);
2948 }
2949
2950 static struct amdgpu_retryfault_hashtable *init_fault_hash(void)
2951 {
2952 struct amdgpu_retryfault_hashtable *fault_hash;
2953
2954 fault_hash = kmalloc(sizeof(*fault_hash), GFP_KERNEL);
2955 if (!fault_hash)
2956 return fault_hash;
2957
2958 INIT_CHASH_TABLE(fault_hash->hash,
2959 AMDGPU_PAGEFAULT_HASH_BITS, 8, 0);
2960 spin_lock_init(&fault_hash->lock);
2961 fault_hash->count = 0;
2962
2963 return fault_hash;
2964 }
2965
2966 /**
2967 * amdgpu_vm_init - initialize a vm instance
2968 *
2969 * @adev: amdgpu_device pointer
2970 * @vm: requested vm
2971 * @vm_context: Indicates if it GFX or Compute context
2972 * @pasid: Process address space identifier
2973 *
2974 * Init @vm fields.
2975 *
2976 * Returns:
2977 * 0 for success, error for failure.
2978 */
2979 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2980 int vm_context, unsigned int pasid)
2981 {
2982 struct amdgpu_bo_param bp;
2983 struct amdgpu_bo *root;
2984 int r, i;
2985
2986 vm->va = RB_ROOT_CACHED;
2987 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2988 vm->reserved_vmid[i] = NULL;
2989 INIT_LIST_HEAD(&vm->evicted);
2990 INIT_LIST_HEAD(&vm->relocated);
2991 INIT_LIST_HEAD(&vm->moved);
2992 INIT_LIST_HEAD(&vm->idle);
2993 INIT_LIST_HEAD(&vm->invalidated);
2994 spin_lock_init(&vm->invalidated_lock);
2995 INIT_LIST_HEAD(&vm->freed);
2996
2997 /* create scheduler entity for page table updates */
2998 r = drm_sched_entity_init(&vm->entity, adev->vm_manager.vm_pte_rqs,
2999 adev->vm_manager.vm_pte_num_rqs, NULL);
3000 if (r)
3001 return r;
3002
3003 vm->pte_support_ats = false;
3004
3005 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
3006 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3007 AMDGPU_VM_USE_CPU_FOR_COMPUTE);
3008
3009 if (adev->asic_type == CHIP_RAVEN)
3010 vm->pte_support_ats = true;
3011 } else {
3012 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3013 AMDGPU_VM_USE_CPU_FOR_GFX);
3014 }
3015 DRM_DEBUG_DRIVER("VM update mode is %s\n",
3016 vm->use_cpu_for_update ? "CPU" : "SDMA");
3017 WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3018 "CPU update of VM recommended only for large BAR system\n");
3019 vm->last_update = NULL;
3020
3021 amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, &bp);
3022 if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
3023 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW;
3024 r = amdgpu_bo_create(adev, &bp, &root);
3025 if (r)
3026 goto error_free_sched_entity;
3027
3028 r = amdgpu_bo_reserve(root, true);
3029 if (r)
3030 goto error_free_root;
3031
3032 r = reservation_object_reserve_shared(root->tbo.resv, 1);
3033 if (r)
3034 goto error_unreserve;
3035
3036 amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
3037
3038 r = amdgpu_vm_clear_bo(adev, vm, root,
3039 adev->vm_manager.root_level,
3040 vm->pte_support_ats);
3041 if (r)
3042 goto error_unreserve;
3043
3044 amdgpu_bo_unreserve(vm->root.base.bo);
3045
3046 if (pasid) {
3047 unsigned long flags;
3048
3049 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3050 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
3051 GFP_ATOMIC);
3052 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3053 if (r < 0)
3054 goto error_free_root;
3055
3056 vm->pasid = pasid;
3057 }
3058
3059 vm->fault_hash = init_fault_hash();
3060 if (!vm->fault_hash) {
3061 r = -ENOMEM;
3062 goto error_free_root;
3063 }
3064
3065 INIT_KFIFO(vm->faults);
3066
3067 return 0;
3068
3069 error_unreserve:
3070 amdgpu_bo_unreserve(vm->root.base.bo);
3071
3072 error_free_root:
3073 amdgpu_bo_unref(&vm->root.base.bo->shadow);
3074 amdgpu_bo_unref(&vm->root.base.bo);
3075 vm->root.base.bo = NULL;
3076
3077 error_free_sched_entity:
3078 drm_sched_entity_destroy(&vm->entity);
3079
3080 return r;
3081 }
3082
3083 /**
3084 * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
3085 *
3086 * @adev: amdgpu_device pointer
3087 * @vm: requested vm
3088 *
3089 * This only works on GFX VMs that don't have any BOs added and no
3090 * page tables allocated yet.
3091 *
3092 * Changes the following VM parameters:
3093 * - use_cpu_for_update
3094 * - pte_supports_ats
3095 * - pasid (old PASID is released, because compute manages its own PASIDs)
3096 *
3097 * Reinitializes the page directory to reflect the changed ATS
3098 * setting.
3099 *
3100 * Returns:
3101 * 0 for success, -errno for errors.
3102 */
3103 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm, unsigned int pasid)
3104 {
3105 bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
3106 int r;
3107
3108 r = amdgpu_bo_reserve(vm->root.base.bo, true);
3109 if (r)
3110 return r;
3111
3112 /* Sanity checks */
3113 if (!RB_EMPTY_ROOT(&vm->va.rb_root) || vm->root.entries) {
3114 r = -EINVAL;
3115 goto unreserve_bo;
3116 }
3117
3118 if (pasid) {
3119 unsigned long flags;
3120
3121 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3122 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
3123 GFP_ATOMIC);
3124 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3125
3126 if (r == -ENOSPC)
3127 goto unreserve_bo;
3128 r = 0;
3129 }
3130
3131 /* Check if PD needs to be reinitialized and do it before
3132 * changing any other state, in case it fails.
3133 */
3134 if (pte_support_ats != vm->pte_support_ats) {
3135 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo,
3136 adev->vm_manager.root_level,
3137 pte_support_ats);
3138 if (r)
3139 goto free_idr;
3140 }
3141
3142 /* Update VM state */
3143 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3144 AMDGPU_VM_USE_CPU_FOR_COMPUTE);
3145 vm->pte_support_ats = pte_support_ats;
3146 DRM_DEBUG_DRIVER("VM update mode is %s\n",
3147 vm->use_cpu_for_update ? "CPU" : "SDMA");
3148 WARN_ONCE((vm->use_cpu_for_update && !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3149 "CPU update of VM recommended only for large BAR system\n");
3150
3151 if (vm->pasid) {
3152 unsigned long flags;
3153
3154 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3155 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3156 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3157
3158 /* Free the original amdgpu allocated pasid
3159 * Will be replaced with kfd allocated pasid
3160 */
3161 amdgpu_pasid_free(vm->pasid);
3162 vm->pasid = 0;
3163 }
3164
3165 /* Free the shadow bo for compute VM */
3166 amdgpu_bo_unref(&vm->root.base.bo->shadow);
3167
3168 if (pasid)
3169 vm->pasid = pasid;
3170
3171 goto unreserve_bo;
3172
3173 free_idr:
3174 if (pasid) {
3175 unsigned long flags;
3176
3177 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3178 idr_remove(&adev->vm_manager.pasid_idr, pasid);
3179 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3180 }
3181 unreserve_bo:
3182 amdgpu_bo_unreserve(vm->root.base.bo);
3183 return r;
3184 }
3185
3186 /**
3187 * amdgpu_vm_release_compute - release a compute vm
3188 * @adev: amdgpu_device pointer
3189 * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3190 *
3191 * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3192 * pasid from vm. Compute should stop use of vm after this call.
3193 */
3194 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3195 {
3196 if (vm->pasid) {
3197 unsigned long flags;
3198
3199 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3200 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3201 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3202 }
3203 vm->pasid = 0;
3204 }
3205
3206 /**
3207 * amdgpu_vm_fini - tear down a vm instance
3208 *
3209 * @adev: amdgpu_device pointer
3210 * @vm: requested vm
3211 *
3212 * Tear down @vm.
3213 * Unbind the VM and remove all bos from the vm bo list
3214 */
3215 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3216 {
3217 struct amdgpu_bo_va_mapping *mapping, *tmp;
3218 bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3219 struct amdgpu_bo *root;
3220 u64 fault;
3221 int i, r;
3222
3223 amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3224
3225 /* Clear pending page faults from IH when the VM is destroyed */
3226 while (kfifo_get(&vm->faults, &fault))
3227 amdgpu_vm_clear_fault(vm->fault_hash, fault);
3228
3229 if (vm->pasid) {
3230 unsigned long flags;
3231
3232 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3233 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3234 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3235 }
3236
3237 kfree(vm->fault_hash);
3238 vm->fault_hash = NULL;
3239
3240 drm_sched_entity_destroy(&vm->entity);
3241
3242 if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3243 dev_err(adev->dev, "still active bo inside vm\n");
3244 }
3245 rbtree_postorder_for_each_entry_safe(mapping, tmp,
3246 &vm->va.rb_root, rb) {
3247 /* Don't remove the mapping here, we don't want to trigger a
3248 * rebalance and the tree is about to be destroyed anyway.
3249 */
3250 list_del(&mapping->list);
3251 kfree(mapping);
3252 }
3253 list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3254 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3255 amdgpu_vm_prt_fini(adev, vm);
3256 prt_fini_needed = false;
3257 }
3258
3259 list_del(&mapping->list);
3260 amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3261 }
3262
3263 root = amdgpu_bo_ref(vm->root.base.bo);
3264 r = amdgpu_bo_reserve(root, true);
3265 if (r) {
3266 dev_err(adev->dev, "Leaking page tables because BO reservation failed\n");
3267 } else {
3268 amdgpu_vm_free_pts(adev, vm);
3269 amdgpu_bo_unreserve(root);
3270 }
3271 amdgpu_bo_unref(&root);
3272 dma_fence_put(vm->last_update);
3273 for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3274 amdgpu_vmid_free_reserved(adev, vm, i);
3275 }
3276
3277 /**
3278 * amdgpu_vm_manager_init - init the VM manager
3279 *
3280 * @adev: amdgpu_device pointer
3281 *
3282 * Initialize the VM manager structures
3283 */
3284 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3285 {
3286 unsigned i;
3287
3288 amdgpu_vmid_mgr_init(adev);
3289
3290 adev->vm_manager.fence_context =
3291 dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3292 for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3293 adev->vm_manager.seqno[i] = 0;
3294
3295 spin_lock_init(&adev->vm_manager.prt_lock);
3296 atomic_set(&adev->vm_manager.num_prt_users, 0);
3297
3298 /* If not overridden by the user, by default, only in large BAR systems
3299 * Compute VM tables will be updated by CPU
3300 */
3301 #ifdef CONFIG_X86_64
3302 if (amdgpu_vm_update_mode == -1) {
3303 if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3304 adev->vm_manager.vm_update_mode =
3305 AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3306 else
3307 adev->vm_manager.vm_update_mode = 0;
3308 } else
3309 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3310 #else
3311 adev->vm_manager.vm_update_mode = 0;
3312 #endif
3313
3314 idr_init(&adev->vm_manager.pasid_idr);
3315 spin_lock_init(&adev->vm_manager.pasid_lock);
3316 }
3317
3318 /**
3319 * amdgpu_vm_manager_fini - cleanup VM manager
3320 *
3321 * @adev: amdgpu_device pointer
3322 *
3323 * Cleanup the VM manager and free resources.
3324 */
3325 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3326 {
3327 WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3328 idr_destroy(&adev->vm_manager.pasid_idr);
3329
3330 amdgpu_vmid_mgr_fini(adev);
3331 }
3332
3333 /**
3334 * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3335 *
3336 * @dev: drm device pointer
3337 * @data: drm_amdgpu_vm
3338 * @filp: drm file pointer
3339 *
3340 * Returns:
3341 * 0 for success, -errno for errors.
3342 */
3343 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3344 {
3345 union drm_amdgpu_vm *args = data;
3346 struct amdgpu_device *adev = dev->dev_private;
3347 struct amdgpu_fpriv *fpriv = filp->driver_priv;
3348 int r;
3349
3350 switch (args->in.op) {
3351 case AMDGPU_VM_OP_RESERVE_VMID:
3352 /* current, we only have requirement to reserve vmid from gfxhub */
3353 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB);
3354 if (r)
3355 return r;
3356 break;
3357 case AMDGPU_VM_OP_UNRESERVE_VMID:
3358 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB);
3359 break;
3360 default:
3361 return -EINVAL;
3362 }
3363
3364 return 0;
3365 }
3366
3367 /**
3368 * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3369 *
3370 * @adev: drm device pointer
3371 * @pasid: PASID identifier for VM
3372 * @task_info: task_info to fill.
3373 */
3374 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, unsigned int pasid,
3375 struct amdgpu_task_info *task_info)
3376 {
3377 struct amdgpu_vm *vm;
3378 unsigned long flags;
3379
3380 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3381
3382 vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3383 if (vm)
3384 *task_info = vm->task_info;
3385
3386 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3387 }
3388
3389 /**
3390 * amdgpu_vm_set_task_info - Sets VMs task info.
3391 *
3392 * @vm: vm for which to set the info
3393 */
3394 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3395 {
3396 if (!vm->task_info.pid) {
3397 vm->task_info.pid = current->pid;
3398 get_task_comm(vm->task_info.task_name, current);
3399
3400 if (current->group_leader->mm == current->mm) {
3401 vm->task_info.tgid = current->group_leader->pid;
3402 get_task_comm(vm->task_info.process_name, current->group_leader);
3403 }
3404 }
3405 }
3406
3407 /**
3408 * amdgpu_vm_add_fault - Add a page fault record to fault hash table
3409 *
3410 * @fault_hash: fault hash table
3411 * @key: 64-bit encoding of PASID and address
3412 *
3413 * This should be called when a retry page fault interrupt is
3414 * received. If this is a new page fault, it will be added to a hash
3415 * table. The return value indicates whether this is a new fault, or
3416 * a fault that was already known and is already being handled.
3417 *
3418 * If there are too many pending page faults, this will fail. Retry
3419 * interrupts should be ignored in this case until there is enough
3420 * free space.
3421 *
3422 * Returns 0 if the fault was added, 1 if the fault was already known,
3423 * -ENOSPC if there are too many pending faults.
3424 */
3425 int amdgpu_vm_add_fault(struct amdgpu_retryfault_hashtable *fault_hash, u64 key)
3426 {
3427 unsigned long flags;
3428 int r = -ENOSPC;
3429
3430 if (WARN_ON_ONCE(!fault_hash))
3431 /* Should be allocated in amdgpu_vm_init
3432 */
3433 return r;
3434
3435 spin_lock_irqsave(&fault_hash->lock, flags);
3436
3437 /* Only let the hash table fill up to 50% for best performance */
3438 if (fault_hash->count >= (1 << (AMDGPU_PAGEFAULT_HASH_BITS-1)))
3439 goto unlock_out;
3440
3441 r = chash_table_copy_in(&fault_hash->hash, key, NULL);
3442 if (!r)
3443 fault_hash->count++;
3444
3445 /* chash_table_copy_in should never fail unless we're losing count */
3446 WARN_ON_ONCE(r < 0);
3447
3448 unlock_out:
3449 spin_unlock_irqrestore(&fault_hash->lock, flags);
3450 return r;
3451 }
3452
3453 /**
3454 * amdgpu_vm_clear_fault - Remove a page fault record
3455 *
3456 * @fault_hash: fault hash table
3457 * @key: 64-bit encoding of PASID and address
3458 *
3459 * This should be called when a page fault has been handled. Any
3460 * future interrupt with this key will be processed as a new
3461 * page fault.
3462 */
3463 void amdgpu_vm_clear_fault(struct amdgpu_retryfault_hashtable *fault_hash, u64 key)
3464 {
3465 unsigned long flags;
3466 int r;
3467
3468 if (!fault_hash)
3469 return;
3470
3471 spin_lock_irqsave(&fault_hash->lock, flags);
3472
3473 r = chash_table_remove(&fault_hash->hash, key, NULL);
3474 if (!WARN_ON_ONCE(r < 0)) {
3475 fault_hash->count--;
3476 WARN_ON_ONCE(fault_hash->count < 0);
3477 }
3478
3479 spin_unlock_irqrestore(&fault_hash->lock, flags);
3480 }