]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/amd/amdkfd/kfd_device.c
drm/amdkfd: add new vega10 pci ids
[thirdparty/linux.git] / drivers / gpu / drm / amd / amdkfd / kfd_device.c
1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "cwsr_trap_handler.h"
30 #include "kfd_iommu.h"
31
32 #define MQD_SIZE_ALIGNED 768
33
34 /*
35 * kfd_locked is used to lock the kfd driver during suspend or reset
36 * once locked, kfd driver will stop any further GPU execution.
37 * create process (open) will return -EAGAIN.
38 */
39 static atomic_t kfd_locked = ATOMIC_INIT(0);
40
41 #ifdef KFD_SUPPORT_IOMMU_V2
42 static const struct kfd_device_info kaveri_device_info = {
43 .asic_family = CHIP_KAVERI,
44 .max_pasid_bits = 16,
45 /* max num of queues for KV.TODO should be a dynamic value */
46 .max_no_of_hqd = 24,
47 .doorbell_size = 4,
48 .ih_ring_entry_size = 4 * sizeof(uint32_t),
49 .event_interrupt_class = &event_interrupt_class_cik,
50 .num_of_watch_points = 4,
51 .mqd_size_aligned = MQD_SIZE_ALIGNED,
52 .supports_cwsr = false,
53 .needs_iommu_device = true,
54 .needs_pci_atomics = false,
55 .num_sdma_engines = 2,
56 .num_sdma_queues_per_engine = 2,
57 };
58
59 static const struct kfd_device_info carrizo_device_info = {
60 .asic_family = CHIP_CARRIZO,
61 .max_pasid_bits = 16,
62 /* max num of queues for CZ.TODO should be a dynamic value */
63 .max_no_of_hqd = 24,
64 .doorbell_size = 4,
65 .ih_ring_entry_size = 4 * sizeof(uint32_t),
66 .event_interrupt_class = &event_interrupt_class_cik,
67 .num_of_watch_points = 4,
68 .mqd_size_aligned = MQD_SIZE_ALIGNED,
69 .supports_cwsr = true,
70 .needs_iommu_device = true,
71 .needs_pci_atomics = false,
72 .num_sdma_engines = 2,
73 .num_sdma_queues_per_engine = 2,
74 };
75
76 static const struct kfd_device_info raven_device_info = {
77 .asic_family = CHIP_RAVEN,
78 .max_pasid_bits = 16,
79 .max_no_of_hqd = 24,
80 .doorbell_size = 8,
81 .ih_ring_entry_size = 8 * sizeof(uint32_t),
82 .event_interrupt_class = &event_interrupt_class_v9,
83 .num_of_watch_points = 4,
84 .mqd_size_aligned = MQD_SIZE_ALIGNED,
85 .supports_cwsr = true,
86 .needs_iommu_device = true,
87 .needs_pci_atomics = true,
88 .num_sdma_engines = 1,
89 .num_sdma_queues_per_engine = 2,
90 };
91 #endif
92
93 static const struct kfd_device_info hawaii_device_info = {
94 .asic_family = CHIP_HAWAII,
95 .max_pasid_bits = 16,
96 /* max num of queues for KV.TODO should be a dynamic value */
97 .max_no_of_hqd = 24,
98 .doorbell_size = 4,
99 .ih_ring_entry_size = 4 * sizeof(uint32_t),
100 .event_interrupt_class = &event_interrupt_class_cik,
101 .num_of_watch_points = 4,
102 .mqd_size_aligned = MQD_SIZE_ALIGNED,
103 .supports_cwsr = false,
104 .needs_iommu_device = false,
105 .needs_pci_atomics = false,
106 .num_sdma_engines = 2,
107 .num_sdma_queues_per_engine = 2,
108 };
109
110 static const struct kfd_device_info tonga_device_info = {
111 .asic_family = CHIP_TONGA,
112 .max_pasid_bits = 16,
113 .max_no_of_hqd = 24,
114 .doorbell_size = 4,
115 .ih_ring_entry_size = 4 * sizeof(uint32_t),
116 .event_interrupt_class = &event_interrupt_class_cik,
117 .num_of_watch_points = 4,
118 .mqd_size_aligned = MQD_SIZE_ALIGNED,
119 .supports_cwsr = false,
120 .needs_iommu_device = false,
121 .needs_pci_atomics = true,
122 .num_sdma_engines = 2,
123 .num_sdma_queues_per_engine = 2,
124 };
125
126 static const struct kfd_device_info fiji_device_info = {
127 .asic_family = CHIP_FIJI,
128 .max_pasid_bits = 16,
129 .max_no_of_hqd = 24,
130 .doorbell_size = 4,
131 .ih_ring_entry_size = 4 * sizeof(uint32_t),
132 .event_interrupt_class = &event_interrupt_class_cik,
133 .num_of_watch_points = 4,
134 .mqd_size_aligned = MQD_SIZE_ALIGNED,
135 .supports_cwsr = true,
136 .needs_iommu_device = false,
137 .needs_pci_atomics = true,
138 .num_sdma_engines = 2,
139 .num_sdma_queues_per_engine = 2,
140 };
141
142 static const struct kfd_device_info fiji_vf_device_info = {
143 .asic_family = CHIP_FIJI,
144 .max_pasid_bits = 16,
145 .max_no_of_hqd = 24,
146 .doorbell_size = 4,
147 .ih_ring_entry_size = 4 * sizeof(uint32_t),
148 .event_interrupt_class = &event_interrupt_class_cik,
149 .num_of_watch_points = 4,
150 .mqd_size_aligned = MQD_SIZE_ALIGNED,
151 .supports_cwsr = true,
152 .needs_iommu_device = false,
153 .needs_pci_atomics = false,
154 .num_sdma_engines = 2,
155 .num_sdma_queues_per_engine = 2,
156 };
157
158
159 static const struct kfd_device_info polaris10_device_info = {
160 .asic_family = CHIP_POLARIS10,
161 .max_pasid_bits = 16,
162 .max_no_of_hqd = 24,
163 .doorbell_size = 4,
164 .ih_ring_entry_size = 4 * sizeof(uint32_t),
165 .event_interrupt_class = &event_interrupt_class_cik,
166 .num_of_watch_points = 4,
167 .mqd_size_aligned = MQD_SIZE_ALIGNED,
168 .supports_cwsr = true,
169 .needs_iommu_device = false,
170 .needs_pci_atomics = true,
171 .num_sdma_engines = 2,
172 .num_sdma_queues_per_engine = 2,
173 };
174
175 static const struct kfd_device_info polaris10_vf_device_info = {
176 .asic_family = CHIP_POLARIS10,
177 .max_pasid_bits = 16,
178 .max_no_of_hqd = 24,
179 .doorbell_size = 4,
180 .ih_ring_entry_size = 4 * sizeof(uint32_t),
181 .event_interrupt_class = &event_interrupt_class_cik,
182 .num_of_watch_points = 4,
183 .mqd_size_aligned = MQD_SIZE_ALIGNED,
184 .supports_cwsr = true,
185 .needs_iommu_device = false,
186 .needs_pci_atomics = false,
187 .num_sdma_engines = 2,
188 .num_sdma_queues_per_engine = 2,
189 };
190
191 static const struct kfd_device_info polaris11_device_info = {
192 .asic_family = CHIP_POLARIS11,
193 .max_pasid_bits = 16,
194 .max_no_of_hqd = 24,
195 .doorbell_size = 4,
196 .ih_ring_entry_size = 4 * sizeof(uint32_t),
197 .event_interrupt_class = &event_interrupt_class_cik,
198 .num_of_watch_points = 4,
199 .mqd_size_aligned = MQD_SIZE_ALIGNED,
200 .supports_cwsr = true,
201 .needs_iommu_device = false,
202 .needs_pci_atomics = true,
203 .num_sdma_engines = 2,
204 .num_sdma_queues_per_engine = 2,
205 };
206
207 static const struct kfd_device_info vega10_device_info = {
208 .asic_family = CHIP_VEGA10,
209 .max_pasid_bits = 16,
210 .max_no_of_hqd = 24,
211 .doorbell_size = 8,
212 .ih_ring_entry_size = 8 * sizeof(uint32_t),
213 .event_interrupt_class = &event_interrupt_class_v9,
214 .num_of_watch_points = 4,
215 .mqd_size_aligned = MQD_SIZE_ALIGNED,
216 .supports_cwsr = true,
217 .needs_iommu_device = false,
218 .needs_pci_atomics = false,
219 .num_sdma_engines = 2,
220 .num_sdma_queues_per_engine = 2,
221 };
222
223 static const struct kfd_device_info vega10_vf_device_info = {
224 .asic_family = CHIP_VEGA10,
225 .max_pasid_bits = 16,
226 .max_no_of_hqd = 24,
227 .doorbell_size = 8,
228 .ih_ring_entry_size = 8 * sizeof(uint32_t),
229 .event_interrupt_class = &event_interrupt_class_v9,
230 .num_of_watch_points = 4,
231 .mqd_size_aligned = MQD_SIZE_ALIGNED,
232 .supports_cwsr = true,
233 .needs_iommu_device = false,
234 .needs_pci_atomics = false,
235 .num_sdma_engines = 2,
236 .num_sdma_queues_per_engine = 2,
237 };
238
239 static const struct kfd_device_info vega20_device_info = {
240 .asic_family = CHIP_VEGA20,
241 .max_pasid_bits = 16,
242 .max_no_of_hqd = 24,
243 .doorbell_size = 8,
244 .ih_ring_entry_size = 8 * sizeof(uint32_t),
245 .event_interrupt_class = &event_interrupt_class_v9,
246 .num_of_watch_points = 4,
247 .mqd_size_aligned = MQD_SIZE_ALIGNED,
248 .supports_cwsr = true,
249 .needs_iommu_device = false,
250 .needs_pci_atomics = false,
251 .num_sdma_engines = 2,
252 .num_sdma_queues_per_engine = 8,
253 };
254
255 struct kfd_deviceid {
256 unsigned short did;
257 const struct kfd_device_info *device_info;
258 };
259
260 static const struct kfd_deviceid supported_devices[] = {
261 #ifdef KFD_SUPPORT_IOMMU_V2
262 { 0x1304, &kaveri_device_info }, /* Kaveri */
263 { 0x1305, &kaveri_device_info }, /* Kaveri */
264 { 0x1306, &kaveri_device_info }, /* Kaveri */
265 { 0x1307, &kaveri_device_info }, /* Kaveri */
266 { 0x1309, &kaveri_device_info }, /* Kaveri */
267 { 0x130A, &kaveri_device_info }, /* Kaveri */
268 { 0x130B, &kaveri_device_info }, /* Kaveri */
269 { 0x130C, &kaveri_device_info }, /* Kaveri */
270 { 0x130D, &kaveri_device_info }, /* Kaveri */
271 { 0x130E, &kaveri_device_info }, /* Kaveri */
272 { 0x130F, &kaveri_device_info }, /* Kaveri */
273 { 0x1310, &kaveri_device_info }, /* Kaveri */
274 { 0x1311, &kaveri_device_info }, /* Kaveri */
275 { 0x1312, &kaveri_device_info }, /* Kaveri */
276 { 0x1313, &kaveri_device_info }, /* Kaveri */
277 { 0x1315, &kaveri_device_info }, /* Kaveri */
278 { 0x1316, &kaveri_device_info }, /* Kaveri */
279 { 0x1317, &kaveri_device_info }, /* Kaveri */
280 { 0x1318, &kaveri_device_info }, /* Kaveri */
281 { 0x131B, &kaveri_device_info }, /* Kaveri */
282 { 0x131C, &kaveri_device_info }, /* Kaveri */
283 { 0x131D, &kaveri_device_info }, /* Kaveri */
284 { 0x9870, &carrizo_device_info }, /* Carrizo */
285 { 0x9874, &carrizo_device_info }, /* Carrizo */
286 { 0x9875, &carrizo_device_info }, /* Carrizo */
287 { 0x9876, &carrizo_device_info }, /* Carrizo */
288 { 0x9877, &carrizo_device_info }, /* Carrizo */
289 { 0x15DD, &raven_device_info }, /* Raven */
290 #endif
291 { 0x67A0, &hawaii_device_info }, /* Hawaii */
292 { 0x67A1, &hawaii_device_info }, /* Hawaii */
293 { 0x67A2, &hawaii_device_info }, /* Hawaii */
294 { 0x67A8, &hawaii_device_info }, /* Hawaii */
295 { 0x67A9, &hawaii_device_info }, /* Hawaii */
296 { 0x67AA, &hawaii_device_info }, /* Hawaii */
297 { 0x67B0, &hawaii_device_info }, /* Hawaii */
298 { 0x67B1, &hawaii_device_info }, /* Hawaii */
299 { 0x67B8, &hawaii_device_info }, /* Hawaii */
300 { 0x67B9, &hawaii_device_info }, /* Hawaii */
301 { 0x67BA, &hawaii_device_info }, /* Hawaii */
302 { 0x67BE, &hawaii_device_info }, /* Hawaii */
303 { 0x6920, &tonga_device_info }, /* Tonga */
304 { 0x6921, &tonga_device_info }, /* Tonga */
305 { 0x6928, &tonga_device_info }, /* Tonga */
306 { 0x6929, &tonga_device_info }, /* Tonga */
307 { 0x692B, &tonga_device_info }, /* Tonga */
308 { 0x6938, &tonga_device_info }, /* Tonga */
309 { 0x6939, &tonga_device_info }, /* Tonga */
310 { 0x7300, &fiji_device_info }, /* Fiji */
311 { 0x730F, &fiji_vf_device_info }, /* Fiji vf*/
312 { 0x67C0, &polaris10_device_info }, /* Polaris10 */
313 { 0x67C1, &polaris10_device_info }, /* Polaris10 */
314 { 0x67C2, &polaris10_device_info }, /* Polaris10 */
315 { 0x67C4, &polaris10_device_info }, /* Polaris10 */
316 { 0x67C7, &polaris10_device_info }, /* Polaris10 */
317 { 0x67C8, &polaris10_device_info }, /* Polaris10 */
318 { 0x67C9, &polaris10_device_info }, /* Polaris10 */
319 { 0x67CA, &polaris10_device_info }, /* Polaris10 */
320 { 0x67CC, &polaris10_device_info }, /* Polaris10 */
321 { 0x67CF, &polaris10_device_info }, /* Polaris10 */
322 { 0x67D0, &polaris10_vf_device_info }, /* Polaris10 vf*/
323 { 0x67DF, &polaris10_device_info }, /* Polaris10 */
324 { 0x67E0, &polaris11_device_info }, /* Polaris11 */
325 { 0x67E1, &polaris11_device_info }, /* Polaris11 */
326 { 0x67E3, &polaris11_device_info }, /* Polaris11 */
327 { 0x67E7, &polaris11_device_info }, /* Polaris11 */
328 { 0x67E8, &polaris11_device_info }, /* Polaris11 */
329 { 0x67E9, &polaris11_device_info }, /* Polaris11 */
330 { 0x67EB, &polaris11_device_info }, /* Polaris11 */
331 { 0x67EF, &polaris11_device_info }, /* Polaris11 */
332 { 0x67FF, &polaris11_device_info }, /* Polaris11 */
333 { 0x6860, &vega10_device_info }, /* Vega10 */
334 { 0x6861, &vega10_device_info }, /* Vega10 */
335 { 0x6862, &vega10_device_info }, /* Vega10 */
336 { 0x6863, &vega10_device_info }, /* Vega10 */
337 { 0x6864, &vega10_device_info }, /* Vega10 */
338 { 0x6867, &vega10_device_info }, /* Vega10 */
339 { 0x6868, &vega10_device_info }, /* Vega10 */
340 { 0x6869, &vega10_device_info }, /* Vega10 */
341 { 0x686A, &vega10_device_info }, /* Vega10 */
342 { 0x686B, &vega10_device_info }, /* Vega10 */
343 { 0x686C, &vega10_vf_device_info }, /* Vega10 vf*/
344 { 0x686D, &vega10_device_info }, /* Vega10 */
345 { 0x686E, &vega10_device_info }, /* Vega10 */
346 { 0x686F, &vega10_device_info }, /* Vega10 */
347 { 0x687F, &vega10_device_info }, /* Vega10 */
348 { 0x66a0, &vega20_device_info }, /* Vega20 */
349 { 0x66a1, &vega20_device_info }, /* Vega20 */
350 { 0x66a2, &vega20_device_info }, /* Vega20 */
351 { 0x66a3, &vega20_device_info }, /* Vega20 */
352 { 0x66a7, &vega20_device_info }, /* Vega20 */
353 { 0x66af, &vega20_device_info } /* Vega20 */
354 };
355
356 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
357 unsigned int chunk_size);
358 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
359
360 static int kfd_resume(struct kfd_dev *kfd);
361
362 static const struct kfd_device_info *lookup_device_info(unsigned short did)
363 {
364 size_t i;
365
366 for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
367 if (supported_devices[i].did == did) {
368 WARN_ON(!supported_devices[i].device_info);
369 return supported_devices[i].device_info;
370 }
371 }
372
373 dev_warn(kfd_device, "DID %04x is missing in supported_devices\n",
374 did);
375
376 return NULL;
377 }
378
379 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
380 struct pci_dev *pdev, const struct kfd2kgd_calls *f2g)
381 {
382 struct kfd_dev *kfd;
383 int ret;
384 const struct kfd_device_info *device_info =
385 lookup_device_info(pdev->device);
386
387 if (!device_info) {
388 dev_err(kfd_device, "kgd2kfd_probe failed\n");
389 return NULL;
390 }
391
392 kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
393 if (!kfd)
394 return NULL;
395
396 /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
397 * 32 and 64-bit requests are possible and must be
398 * supported.
399 */
400 ret = pci_enable_atomic_ops_to_root(pdev,
401 PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
402 PCI_EXP_DEVCAP2_ATOMIC_COMP64);
403 if (device_info->needs_pci_atomics && ret < 0) {
404 dev_info(kfd_device,
405 "skipped device %x:%x, PCI rejects atomics\n",
406 pdev->vendor, pdev->device);
407 kfree(kfd);
408 return NULL;
409 } else if (!ret)
410 kfd->pci_atomic_requested = true;
411
412 kfd->kgd = kgd;
413 kfd->device_info = device_info;
414 kfd->pdev = pdev;
415 kfd->init_complete = false;
416 kfd->kfd2kgd = f2g;
417
418 mutex_init(&kfd->doorbell_mutex);
419 memset(&kfd->doorbell_available_index, 0,
420 sizeof(kfd->doorbell_available_index));
421
422 return kfd;
423 }
424
425 static void kfd_cwsr_init(struct kfd_dev *kfd)
426 {
427 if (cwsr_enable && kfd->device_info->supports_cwsr) {
428 if (kfd->device_info->asic_family < CHIP_VEGA10) {
429 BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
430 kfd->cwsr_isa = cwsr_trap_gfx8_hex;
431 kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
432 } else {
433 BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
434 kfd->cwsr_isa = cwsr_trap_gfx9_hex;
435 kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
436 }
437
438 kfd->cwsr_enabled = true;
439 }
440 }
441
442 bool kgd2kfd_device_init(struct kfd_dev *kfd,
443 const struct kgd2kfd_shared_resources *gpu_resources)
444 {
445 unsigned int size;
446
447 kfd->mec_fw_version = kfd->kfd2kgd->get_fw_version(kfd->kgd,
448 KGD_ENGINE_MEC1);
449 kfd->sdma_fw_version = kfd->kfd2kgd->get_fw_version(kfd->kgd,
450 KGD_ENGINE_SDMA1);
451 kfd->shared_resources = *gpu_resources;
452
453 kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
454 kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
455 kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
456 - kfd->vm_info.first_vmid_kfd + 1;
457
458 /* Verify module parameters regarding mapped process number*/
459 if ((hws_max_conc_proc < 0)
460 || (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
461 dev_err(kfd_device,
462 "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
463 hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
464 kfd->vm_info.vmid_num_kfd);
465 kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
466 } else
467 kfd->max_proc_per_quantum = hws_max_conc_proc;
468
469 /* calculate max size of mqds needed for queues */
470 size = max_num_of_queues_per_device *
471 kfd->device_info->mqd_size_aligned;
472
473 /*
474 * calculate max size of runlist packet.
475 * There can be only 2 packets at once
476 */
477 size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
478 max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
479 + sizeof(struct pm4_mes_runlist)) * 2;
480
481 /* Add size of HIQ & DIQ */
482 size += KFD_KERNEL_QUEUE_SIZE * 2;
483
484 /* add another 512KB for all other allocations on gart (HPD, fences) */
485 size += 512 * 1024;
486
487 if (kfd->kfd2kgd->init_gtt_mem_allocation(
488 kfd->kgd, size, &kfd->gtt_mem,
489 &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
490 false)) {
491 dev_err(kfd_device, "Could not allocate %d bytes\n", size);
492 goto out;
493 }
494
495 dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
496
497 /* Initialize GTT sa with 512 byte chunk size */
498 if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
499 dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
500 goto kfd_gtt_sa_init_error;
501 }
502
503 if (kfd_doorbell_init(kfd)) {
504 dev_err(kfd_device,
505 "Error initializing doorbell aperture\n");
506 goto kfd_doorbell_error;
507 }
508
509 if (kfd->kfd2kgd->get_hive_id)
510 kfd->hive_id = kfd->kfd2kgd->get_hive_id(kfd->kgd);
511
512 if (kfd_topology_add_device(kfd)) {
513 dev_err(kfd_device, "Error adding device to topology\n");
514 goto kfd_topology_add_device_error;
515 }
516
517 if (kfd_interrupt_init(kfd)) {
518 dev_err(kfd_device, "Error initializing interrupts\n");
519 goto kfd_interrupt_error;
520 }
521
522 kfd->dqm = device_queue_manager_init(kfd);
523 if (!kfd->dqm) {
524 dev_err(kfd_device, "Error initializing queue manager\n");
525 goto device_queue_manager_error;
526 }
527
528 if (kfd_iommu_device_init(kfd)) {
529 dev_err(kfd_device, "Error initializing iommuv2\n");
530 goto device_iommu_error;
531 }
532
533 kfd_cwsr_init(kfd);
534
535 if (kfd_resume(kfd))
536 goto kfd_resume_error;
537
538 kfd->dbgmgr = NULL;
539
540 kfd->init_complete = true;
541 dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
542 kfd->pdev->device);
543
544 pr_debug("Starting kfd with the following scheduling policy %d\n",
545 kfd->dqm->sched_policy);
546
547 goto out;
548
549 kfd_resume_error:
550 device_iommu_error:
551 device_queue_manager_uninit(kfd->dqm);
552 device_queue_manager_error:
553 kfd_interrupt_exit(kfd);
554 kfd_interrupt_error:
555 kfd_topology_remove_device(kfd);
556 kfd_topology_add_device_error:
557 kfd_doorbell_fini(kfd);
558 kfd_doorbell_error:
559 kfd_gtt_sa_fini(kfd);
560 kfd_gtt_sa_init_error:
561 kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
562 dev_err(kfd_device,
563 "device %x:%x NOT added due to errors\n",
564 kfd->pdev->vendor, kfd->pdev->device);
565 out:
566 return kfd->init_complete;
567 }
568
569 void kgd2kfd_device_exit(struct kfd_dev *kfd)
570 {
571 if (kfd->init_complete) {
572 kgd2kfd_suspend(kfd);
573 device_queue_manager_uninit(kfd->dqm);
574 kfd_interrupt_exit(kfd);
575 kfd_topology_remove_device(kfd);
576 kfd_doorbell_fini(kfd);
577 kfd_gtt_sa_fini(kfd);
578 kfd->kfd2kgd->free_gtt_mem(kfd->kgd, kfd->gtt_mem);
579 }
580
581 kfree(kfd);
582 }
583
584 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
585 {
586 if (!kfd->init_complete)
587 return 0;
588 kgd2kfd_suspend(kfd);
589
590 /* hold dqm->lock to prevent further execution*/
591 dqm_lock(kfd->dqm);
592
593 kfd_signal_reset_event(kfd);
594 return 0;
595 }
596
597 /*
598 * Fix me. KFD won't be able to resume existing process for now.
599 * We will keep all existing process in a evicted state and
600 * wait the process to be terminated.
601 */
602
603 int kgd2kfd_post_reset(struct kfd_dev *kfd)
604 {
605 int ret, count;
606
607 if (!kfd->init_complete)
608 return 0;
609
610 dqm_unlock(kfd->dqm);
611
612 ret = kfd_resume(kfd);
613 if (ret)
614 return ret;
615 count = atomic_dec_return(&kfd_locked);
616 WARN_ONCE(count != 0, "KFD reset ref. error");
617 return 0;
618 }
619
620 bool kfd_is_locked(void)
621 {
622 return (atomic_read(&kfd_locked) > 0);
623 }
624
625 void kgd2kfd_suspend(struct kfd_dev *kfd)
626 {
627 if (!kfd->init_complete)
628 return;
629
630 /* For first KFD device suspend all the KFD processes */
631 if (atomic_inc_return(&kfd_locked) == 1)
632 kfd_suspend_all_processes();
633
634 kfd->dqm->ops.stop(kfd->dqm);
635
636 kfd_iommu_suspend(kfd);
637 }
638
639 int kgd2kfd_resume(struct kfd_dev *kfd)
640 {
641 int ret, count;
642
643 if (!kfd->init_complete)
644 return 0;
645
646 ret = kfd_resume(kfd);
647 if (ret)
648 return ret;
649
650 count = atomic_dec_return(&kfd_locked);
651 WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
652 if (count == 0)
653 ret = kfd_resume_all_processes();
654
655 return ret;
656 }
657
658 static int kfd_resume(struct kfd_dev *kfd)
659 {
660 int err = 0;
661
662 err = kfd_iommu_resume(kfd);
663 if (err) {
664 dev_err(kfd_device,
665 "Failed to resume IOMMU for device %x:%x\n",
666 kfd->pdev->vendor, kfd->pdev->device);
667 return err;
668 }
669
670 err = kfd->dqm->ops.start(kfd->dqm);
671 if (err) {
672 dev_err(kfd_device,
673 "Error starting queue manager for device %x:%x\n",
674 kfd->pdev->vendor, kfd->pdev->device);
675 goto dqm_start_error;
676 }
677
678 return err;
679
680 dqm_start_error:
681 kfd_iommu_suspend(kfd);
682 return err;
683 }
684
685 /* This is called directly from KGD at ISR. */
686 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
687 {
688 uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
689 bool is_patched = false;
690
691 if (!kfd->init_complete)
692 return;
693
694 if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
695 dev_err_once(kfd_device, "Ring entry too small\n");
696 return;
697 }
698
699 spin_lock(&kfd->interrupt_lock);
700
701 if (kfd->interrupts_active
702 && interrupt_is_wanted(kfd, ih_ring_entry,
703 patched_ihre, &is_patched)
704 && enqueue_ih_ring_entry(kfd,
705 is_patched ? patched_ihre : ih_ring_entry))
706 queue_work(kfd->ih_wq, &kfd->interrupt_work);
707
708 spin_unlock(&kfd->interrupt_lock);
709 }
710
711 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
712 {
713 struct kfd_process *p;
714 int r;
715
716 /* Because we are called from arbitrary context (workqueue) as opposed
717 * to process context, kfd_process could attempt to exit while we are
718 * running so the lookup function increments the process ref count.
719 */
720 p = kfd_lookup_process_by_mm(mm);
721 if (!p)
722 return -ESRCH;
723
724 r = kfd_process_evict_queues(p);
725
726 kfd_unref_process(p);
727 return r;
728 }
729
730 int kgd2kfd_resume_mm(struct mm_struct *mm)
731 {
732 struct kfd_process *p;
733 int r;
734
735 /* Because we are called from arbitrary context (workqueue) as opposed
736 * to process context, kfd_process could attempt to exit while we are
737 * running so the lookup function increments the process ref count.
738 */
739 p = kfd_lookup_process_by_mm(mm);
740 if (!p)
741 return -ESRCH;
742
743 r = kfd_process_restore_queues(p);
744
745 kfd_unref_process(p);
746 return r;
747 }
748
749 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
750 * prepare for safe eviction of KFD BOs that belong to the specified
751 * process.
752 *
753 * @mm: mm_struct that identifies the specified KFD process
754 * @fence: eviction fence attached to KFD process BOs
755 *
756 */
757 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
758 struct dma_fence *fence)
759 {
760 struct kfd_process *p;
761 unsigned long active_time;
762 unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
763
764 if (!fence)
765 return -EINVAL;
766
767 if (dma_fence_is_signaled(fence))
768 return 0;
769
770 p = kfd_lookup_process_by_mm(mm);
771 if (!p)
772 return -ENODEV;
773
774 if (fence->seqno == p->last_eviction_seqno)
775 goto out;
776
777 p->last_eviction_seqno = fence->seqno;
778
779 /* Avoid KFD process starvation. Wait for at least
780 * PROCESS_ACTIVE_TIME_MS before evicting the process again
781 */
782 active_time = get_jiffies_64() - p->last_restore_timestamp;
783 if (delay_jiffies > active_time)
784 delay_jiffies -= active_time;
785 else
786 delay_jiffies = 0;
787
788 /* During process initialization eviction_work.dwork is initialized
789 * to kfd_evict_bo_worker
790 */
791 schedule_delayed_work(&p->eviction_work, delay_jiffies);
792 out:
793 kfd_unref_process(p);
794 return 0;
795 }
796
797 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
798 unsigned int chunk_size)
799 {
800 unsigned int num_of_longs;
801
802 if (WARN_ON(buf_size < chunk_size))
803 return -EINVAL;
804 if (WARN_ON(buf_size == 0))
805 return -EINVAL;
806 if (WARN_ON(chunk_size == 0))
807 return -EINVAL;
808
809 kfd->gtt_sa_chunk_size = chunk_size;
810 kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
811
812 num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
813 BITS_PER_LONG;
814
815 kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
816
817 if (!kfd->gtt_sa_bitmap)
818 return -ENOMEM;
819
820 pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
821 kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
822
823 mutex_init(&kfd->gtt_sa_lock);
824
825 return 0;
826
827 }
828
829 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
830 {
831 mutex_destroy(&kfd->gtt_sa_lock);
832 kfree(kfd->gtt_sa_bitmap);
833 }
834
835 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
836 unsigned int bit_num,
837 unsigned int chunk_size)
838 {
839 return start_addr + bit_num * chunk_size;
840 }
841
842 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
843 unsigned int bit_num,
844 unsigned int chunk_size)
845 {
846 return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
847 }
848
849 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
850 struct kfd_mem_obj **mem_obj)
851 {
852 unsigned int found, start_search, cur_size;
853
854 if (size == 0)
855 return -EINVAL;
856
857 if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
858 return -ENOMEM;
859
860 *mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
861 if (!(*mem_obj))
862 return -ENOMEM;
863
864 pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
865
866 start_search = 0;
867
868 mutex_lock(&kfd->gtt_sa_lock);
869
870 kfd_gtt_restart_search:
871 /* Find the first chunk that is free */
872 found = find_next_zero_bit(kfd->gtt_sa_bitmap,
873 kfd->gtt_sa_num_of_chunks,
874 start_search);
875
876 pr_debug("Found = %d\n", found);
877
878 /* If there wasn't any free chunk, bail out */
879 if (found == kfd->gtt_sa_num_of_chunks)
880 goto kfd_gtt_no_free_chunk;
881
882 /* Update fields of mem_obj */
883 (*mem_obj)->range_start = found;
884 (*mem_obj)->range_end = found;
885 (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
886 kfd->gtt_start_gpu_addr,
887 found,
888 kfd->gtt_sa_chunk_size);
889 (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
890 kfd->gtt_start_cpu_ptr,
891 found,
892 kfd->gtt_sa_chunk_size);
893
894 pr_debug("gpu_addr = %p, cpu_addr = %p\n",
895 (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
896
897 /* If we need only one chunk, mark it as allocated and get out */
898 if (size <= kfd->gtt_sa_chunk_size) {
899 pr_debug("Single bit\n");
900 set_bit(found, kfd->gtt_sa_bitmap);
901 goto kfd_gtt_out;
902 }
903
904 /* Otherwise, try to see if we have enough contiguous chunks */
905 cur_size = size - kfd->gtt_sa_chunk_size;
906 do {
907 (*mem_obj)->range_end =
908 find_next_zero_bit(kfd->gtt_sa_bitmap,
909 kfd->gtt_sa_num_of_chunks, ++found);
910 /*
911 * If next free chunk is not contiguous than we need to
912 * restart our search from the last free chunk we found (which
913 * wasn't contiguous to the previous ones
914 */
915 if ((*mem_obj)->range_end != found) {
916 start_search = found;
917 goto kfd_gtt_restart_search;
918 }
919
920 /*
921 * If we reached end of buffer, bail out with error
922 */
923 if (found == kfd->gtt_sa_num_of_chunks)
924 goto kfd_gtt_no_free_chunk;
925
926 /* Check if we don't need another chunk */
927 if (cur_size <= kfd->gtt_sa_chunk_size)
928 cur_size = 0;
929 else
930 cur_size -= kfd->gtt_sa_chunk_size;
931
932 } while (cur_size > 0);
933
934 pr_debug("range_start = %d, range_end = %d\n",
935 (*mem_obj)->range_start, (*mem_obj)->range_end);
936
937 /* Mark the chunks as allocated */
938 for (found = (*mem_obj)->range_start;
939 found <= (*mem_obj)->range_end;
940 found++)
941 set_bit(found, kfd->gtt_sa_bitmap);
942
943 kfd_gtt_out:
944 mutex_unlock(&kfd->gtt_sa_lock);
945 return 0;
946
947 kfd_gtt_no_free_chunk:
948 pr_debug("Allocation failed with mem_obj = %p\n", mem_obj);
949 mutex_unlock(&kfd->gtt_sa_lock);
950 kfree(mem_obj);
951 return -ENOMEM;
952 }
953
954 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
955 {
956 unsigned int bit;
957
958 /* Act like kfree when trying to free a NULL object */
959 if (!mem_obj)
960 return 0;
961
962 pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
963 mem_obj, mem_obj->range_start, mem_obj->range_end);
964
965 mutex_lock(&kfd->gtt_sa_lock);
966
967 /* Mark the chunks as free */
968 for (bit = mem_obj->range_start;
969 bit <= mem_obj->range_end;
970 bit++)
971 clear_bit(bit, kfd->gtt_sa_bitmap);
972
973 mutex_unlock(&kfd->gtt_sa_lock);
974
975 kfree(mem_obj);
976 return 0;
977 }
978
979 #if defined(CONFIG_DEBUG_FS)
980
981 /* This function will send a package to HIQ to hang the HWS
982 * which will trigger a GPU reset and bring the HWS back to normal state
983 */
984 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
985 {
986 int r = 0;
987
988 if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
989 pr_err("HWS is not enabled");
990 return -EINVAL;
991 }
992
993 r = pm_debugfs_hang_hws(&dev->dqm->packets);
994 if (!r)
995 r = dqm_debugfs_execute_queues(dev->dqm);
996
997 return r;
998 }
999
1000 #endif