]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/amd/display/dc/dce110/dce110_hw_sequencer.c
Merge tag 'hyperv-fixes-signed' of git://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/linux.git] / drivers / gpu / drm / amd / display / dc / dce110 / dce110_hw_sequencer.c
1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26 #include <linux/delay.h>
27
28 #include "dm_services.h"
29 #include "dc.h"
30 #include "dc_bios_types.h"
31 #include "core_types.h"
32 #include "core_status.h"
33 #include "resource.h"
34 #include "dm_helpers.h"
35 #include "dce110_hw_sequencer.h"
36 #include "dce110_timing_generator.h"
37 #include "dce/dce_hwseq.h"
38 #include "gpio_service_interface.h"
39
40 #include "dce110_compressor.h"
41
42 #include "bios/bios_parser_helper.h"
43 #include "timing_generator.h"
44 #include "mem_input.h"
45 #include "opp.h"
46 #include "ipp.h"
47 #include "transform.h"
48 #include "stream_encoder.h"
49 #include "link_encoder.h"
50 #include "link_hwss.h"
51 #include "clock_source.h"
52 #include "clk_mgr.h"
53 #include "abm.h"
54 #include "audio.h"
55 #include "reg_helper.h"
56
57 /* include DCE11 register header files */
58 #include "dce/dce_11_0_d.h"
59 #include "dce/dce_11_0_sh_mask.h"
60 #include "custom_float.h"
61
62 #include "atomfirmware.h"
63
64 /*
65 * All values are in milliseconds;
66 * For eDP, after power-up/power/down,
67 * 300/500 msec max. delay from LCDVCC to black video generation
68 */
69 #define PANEL_POWER_UP_TIMEOUT 300
70 #define PANEL_POWER_DOWN_TIMEOUT 500
71 #define HPD_CHECK_INTERVAL 10
72
73 #define CTX \
74 hws->ctx
75
76 #define DC_LOGGER_INIT()
77
78 #define REG(reg)\
79 hws->regs->reg
80
81 #undef FN
82 #define FN(reg_name, field_name) \
83 hws->shifts->field_name, hws->masks->field_name
84
85 struct dce110_hw_seq_reg_offsets {
86 uint32_t crtc;
87 };
88
89 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
90 {
91 .crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
92 },
93 {
94 .crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
95 },
96 {
97 .crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
98 },
99 {
100 .crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
101 }
102 };
103
104 #define HW_REG_BLND(reg, id)\
105 (reg + reg_offsets[id].blnd)
106
107 #define HW_REG_CRTC(reg, id)\
108 (reg + reg_offsets[id].crtc)
109
110 #define MAX_WATERMARK 0xFFFF
111 #define SAFE_NBP_MARK 0x7FFF
112
113 /*******************************************************************************
114 * Private definitions
115 ******************************************************************************/
116 /***************************PIPE_CONTROL***********************************/
117 static void dce110_init_pte(struct dc_context *ctx)
118 {
119 uint32_t addr;
120 uint32_t value = 0;
121 uint32_t chunk_int = 0;
122 uint32_t chunk_mul = 0;
123
124 addr = mmUNP_DVMM_PTE_CONTROL;
125 value = dm_read_reg(ctx, addr);
126
127 set_reg_field_value(
128 value,
129 0,
130 DVMM_PTE_CONTROL,
131 DVMM_USE_SINGLE_PTE);
132
133 set_reg_field_value(
134 value,
135 1,
136 DVMM_PTE_CONTROL,
137 DVMM_PTE_BUFFER_MODE0);
138
139 set_reg_field_value(
140 value,
141 1,
142 DVMM_PTE_CONTROL,
143 DVMM_PTE_BUFFER_MODE1);
144
145 dm_write_reg(ctx, addr, value);
146
147 addr = mmDVMM_PTE_REQ;
148 value = dm_read_reg(ctx, addr);
149
150 chunk_int = get_reg_field_value(
151 value,
152 DVMM_PTE_REQ,
153 HFLIP_PTEREQ_PER_CHUNK_INT);
154
155 chunk_mul = get_reg_field_value(
156 value,
157 DVMM_PTE_REQ,
158 HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
159
160 if (chunk_int != 0x4 || chunk_mul != 0x4) {
161
162 set_reg_field_value(
163 value,
164 255,
165 DVMM_PTE_REQ,
166 MAX_PTEREQ_TO_ISSUE);
167
168 set_reg_field_value(
169 value,
170 4,
171 DVMM_PTE_REQ,
172 HFLIP_PTEREQ_PER_CHUNK_INT);
173
174 set_reg_field_value(
175 value,
176 4,
177 DVMM_PTE_REQ,
178 HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
179
180 dm_write_reg(ctx, addr, value);
181 }
182 }
183 /**************************************************************************/
184
185 static void enable_display_pipe_clock_gating(
186 struct dc_context *ctx,
187 bool clock_gating)
188 {
189 /*TODO*/
190 }
191
192 static bool dce110_enable_display_power_gating(
193 struct dc *dc,
194 uint8_t controller_id,
195 struct dc_bios *dcb,
196 enum pipe_gating_control power_gating)
197 {
198 enum bp_result bp_result = BP_RESULT_OK;
199 enum bp_pipe_control_action cntl;
200 struct dc_context *ctx = dc->ctx;
201 unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
202
203 if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment))
204 return true;
205
206 if (power_gating == PIPE_GATING_CONTROL_INIT)
207 cntl = ASIC_PIPE_INIT;
208 else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
209 cntl = ASIC_PIPE_ENABLE;
210 else
211 cntl = ASIC_PIPE_DISABLE;
212
213 if (controller_id == underlay_idx)
214 controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
215
216 if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0){
217
218 bp_result = dcb->funcs->enable_disp_power_gating(
219 dcb, controller_id + 1, cntl);
220
221 /* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
222 * by default when command table is called
223 *
224 * Bios parser accepts controller_id = 6 as indicative of
225 * underlay pipe in dce110. But we do not support more
226 * than 3.
227 */
228 if (controller_id < CONTROLLER_ID_MAX - 1)
229 dm_write_reg(ctx,
230 HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
231 0);
232 }
233
234 if (power_gating != PIPE_GATING_CONTROL_ENABLE)
235 dce110_init_pte(ctx);
236
237 if (bp_result == BP_RESULT_OK)
238 return true;
239 else
240 return false;
241 }
242
243 static void build_prescale_params(struct ipp_prescale_params *prescale_params,
244 const struct dc_plane_state *plane_state)
245 {
246 prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
247
248 switch (plane_state->format) {
249 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
250 prescale_params->scale = 0x2082;
251 break;
252 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
253 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
254 prescale_params->scale = 0x2020;
255 break;
256 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
257 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
258 prescale_params->scale = 0x2008;
259 break;
260 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
261 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
262 prescale_params->scale = 0x2000;
263 break;
264 default:
265 ASSERT(false);
266 break;
267 }
268 }
269
270 static bool
271 dce110_set_input_transfer_func(struct pipe_ctx *pipe_ctx,
272 const struct dc_plane_state *plane_state)
273 {
274 struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
275 const struct dc_transfer_func *tf = NULL;
276 struct ipp_prescale_params prescale_params = { 0 };
277 bool result = true;
278
279 if (ipp == NULL)
280 return false;
281
282 if (plane_state->in_transfer_func)
283 tf = plane_state->in_transfer_func;
284
285 build_prescale_params(&prescale_params, plane_state);
286 ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
287
288 if (plane_state->gamma_correction &&
289 !plane_state->gamma_correction->is_identity &&
290 dce_use_lut(plane_state->format))
291 ipp->funcs->ipp_program_input_lut(ipp, plane_state->gamma_correction);
292
293 if (tf == NULL) {
294 /* Default case if no input transfer function specified */
295 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
296 } else if (tf->type == TF_TYPE_PREDEFINED) {
297 switch (tf->tf) {
298 case TRANSFER_FUNCTION_SRGB:
299 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
300 break;
301 case TRANSFER_FUNCTION_BT709:
302 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
303 break;
304 case TRANSFER_FUNCTION_LINEAR:
305 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
306 break;
307 case TRANSFER_FUNCTION_PQ:
308 default:
309 result = false;
310 break;
311 }
312 } else if (tf->type == TF_TYPE_BYPASS) {
313 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
314 } else {
315 /*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
316 result = false;
317 }
318
319 return result;
320 }
321
322 static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
323 struct curve_points *arr_points,
324 uint32_t hw_points_num)
325 {
326 struct custom_float_format fmt;
327
328 struct pwl_result_data *rgb = rgb_resulted;
329
330 uint32_t i = 0;
331
332 fmt.exponenta_bits = 6;
333 fmt.mantissa_bits = 12;
334 fmt.sign = true;
335
336 if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
337 &arr_points[0].custom_float_x)) {
338 BREAK_TO_DEBUGGER();
339 return false;
340 }
341
342 if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
343 &arr_points[0].custom_float_offset)) {
344 BREAK_TO_DEBUGGER();
345 return false;
346 }
347
348 if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
349 &arr_points[0].custom_float_slope)) {
350 BREAK_TO_DEBUGGER();
351 return false;
352 }
353
354 fmt.mantissa_bits = 10;
355 fmt.sign = false;
356
357 if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
358 &arr_points[1].custom_float_x)) {
359 BREAK_TO_DEBUGGER();
360 return false;
361 }
362
363 if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
364 &arr_points[1].custom_float_y)) {
365 BREAK_TO_DEBUGGER();
366 return false;
367 }
368
369 if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
370 &arr_points[1].custom_float_slope)) {
371 BREAK_TO_DEBUGGER();
372 return false;
373 }
374
375 fmt.mantissa_bits = 12;
376 fmt.sign = true;
377
378 while (i != hw_points_num) {
379 if (!convert_to_custom_float_format(rgb->red, &fmt,
380 &rgb->red_reg)) {
381 BREAK_TO_DEBUGGER();
382 return false;
383 }
384
385 if (!convert_to_custom_float_format(rgb->green, &fmt,
386 &rgb->green_reg)) {
387 BREAK_TO_DEBUGGER();
388 return false;
389 }
390
391 if (!convert_to_custom_float_format(rgb->blue, &fmt,
392 &rgb->blue_reg)) {
393 BREAK_TO_DEBUGGER();
394 return false;
395 }
396
397 if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
398 &rgb->delta_red_reg)) {
399 BREAK_TO_DEBUGGER();
400 return false;
401 }
402
403 if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
404 &rgb->delta_green_reg)) {
405 BREAK_TO_DEBUGGER();
406 return false;
407 }
408
409 if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
410 &rgb->delta_blue_reg)) {
411 BREAK_TO_DEBUGGER();
412 return false;
413 }
414
415 ++rgb;
416 ++i;
417 }
418
419 return true;
420 }
421
422 #define MAX_LOW_POINT 25
423 #define NUMBER_REGIONS 16
424 #define NUMBER_SW_SEGMENTS 16
425
426 static bool
427 dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
428 struct pwl_params *regamma_params)
429 {
430 struct curve_points *arr_points;
431 struct pwl_result_data *rgb_resulted;
432 struct pwl_result_data *rgb;
433 struct pwl_result_data *rgb_plus_1;
434 struct fixed31_32 y_r;
435 struct fixed31_32 y_g;
436 struct fixed31_32 y_b;
437 struct fixed31_32 y1_min;
438 struct fixed31_32 y3_max;
439
440 int32_t region_start, region_end;
441 uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
442
443 if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
444 return false;
445
446 arr_points = regamma_params->arr_points;
447 rgb_resulted = regamma_params->rgb_resulted;
448 hw_points = 0;
449
450 memset(regamma_params, 0, sizeof(struct pwl_params));
451
452 if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
453 /* 16 segments
454 * segments are from 2^-11 to 2^5
455 */
456 region_start = -11;
457 region_end = region_start + NUMBER_REGIONS;
458
459 for (i = 0; i < NUMBER_REGIONS; i++)
460 seg_distr[i] = 4;
461
462 } else {
463 /* 10 segments
464 * segment is from 2^-10 to 2^1
465 * We include an extra segment for range [2^0, 2^1). This is to
466 * ensure that colors with normalized values of 1 don't miss the
467 * LUT.
468 */
469 region_start = -10;
470 region_end = 1;
471
472 seg_distr[0] = 4;
473 seg_distr[1] = 4;
474 seg_distr[2] = 4;
475 seg_distr[3] = 4;
476 seg_distr[4] = 4;
477 seg_distr[5] = 4;
478 seg_distr[6] = 4;
479 seg_distr[7] = 4;
480 seg_distr[8] = 4;
481 seg_distr[9] = 4;
482 seg_distr[10] = 0;
483 seg_distr[11] = -1;
484 seg_distr[12] = -1;
485 seg_distr[13] = -1;
486 seg_distr[14] = -1;
487 seg_distr[15] = -1;
488 }
489
490 for (k = 0; k < 16; k++) {
491 if (seg_distr[k] != -1)
492 hw_points += (1 << seg_distr[k]);
493 }
494
495 j = 0;
496 for (k = 0; k < (region_end - region_start); k++) {
497 increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
498 start_index = (region_start + k + MAX_LOW_POINT) *
499 NUMBER_SW_SEGMENTS;
500 for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
501 i += increment) {
502 if (j == hw_points - 1)
503 break;
504 rgb_resulted[j].red = output_tf->tf_pts.red[i];
505 rgb_resulted[j].green = output_tf->tf_pts.green[i];
506 rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
507 j++;
508 }
509 }
510
511 /* last point */
512 start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
513 rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
514 rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
515 rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
516
517 arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
518 dc_fixpt_from_int(region_start));
519 arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
520 dc_fixpt_from_int(region_end));
521
522 y_r = rgb_resulted[0].red;
523 y_g = rgb_resulted[0].green;
524 y_b = rgb_resulted[0].blue;
525
526 y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
527
528 arr_points[0].y = y1_min;
529 arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
530 arr_points[0].x);
531
532 y_r = rgb_resulted[hw_points - 1].red;
533 y_g = rgb_resulted[hw_points - 1].green;
534 y_b = rgb_resulted[hw_points - 1].blue;
535
536 /* see comment above, m_arrPoints[1].y should be the Y value for the
537 * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
538 */
539 y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
540
541 arr_points[1].y = y3_max;
542
543 arr_points[1].slope = dc_fixpt_zero;
544
545 if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
546 /* for PQ, we want to have a straight line from last HW X point,
547 * and the slope to be such that we hit 1.0 at 10000 nits.
548 */
549 const struct fixed31_32 end_value = dc_fixpt_from_int(125);
550
551 arr_points[1].slope = dc_fixpt_div(
552 dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
553 dc_fixpt_sub(end_value, arr_points[1].x));
554 }
555
556 regamma_params->hw_points_num = hw_points;
557
558 k = 0;
559 for (i = 1; i < 16; i++) {
560 if (seg_distr[k] != -1) {
561 regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
562 regamma_params->arr_curve_points[i].offset =
563 regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
564 }
565 k++;
566 }
567
568 if (seg_distr[k] != -1)
569 regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
570
571 rgb = rgb_resulted;
572 rgb_plus_1 = rgb_resulted + 1;
573
574 i = 1;
575
576 while (i != hw_points + 1) {
577 if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
578 rgb_plus_1->red = rgb->red;
579 if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
580 rgb_plus_1->green = rgb->green;
581 if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
582 rgb_plus_1->blue = rgb->blue;
583
584 rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
585 rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
586 rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
587
588 ++rgb_plus_1;
589 ++rgb;
590 ++i;
591 }
592
593 convert_to_custom_float(rgb_resulted, arr_points, hw_points);
594
595 return true;
596 }
597
598 static bool
599 dce110_set_output_transfer_func(struct pipe_ctx *pipe_ctx,
600 const struct dc_stream_state *stream)
601 {
602 struct transform *xfm = pipe_ctx->plane_res.xfm;
603
604 xfm->funcs->opp_power_on_regamma_lut(xfm, true);
605 xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
606
607 if (stream->out_transfer_func &&
608 stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
609 stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB) {
610 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
611 } else if (dce110_translate_regamma_to_hw_format(stream->out_transfer_func,
612 &xfm->regamma_params)) {
613 xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
614 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
615 } else {
616 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
617 }
618
619 xfm->funcs->opp_power_on_regamma_lut(xfm, false);
620
621 return true;
622 }
623
624 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
625 {
626 bool is_hdmi_tmds;
627 bool is_dp;
628
629 ASSERT(pipe_ctx->stream);
630
631 if (pipe_ctx->stream_res.stream_enc == NULL)
632 return; /* this is not root pipe */
633
634 is_hdmi_tmds = dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal);
635 is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
636
637 if (!is_hdmi_tmds && !is_dp)
638 return;
639
640 if (is_hdmi_tmds)
641 pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
642 pipe_ctx->stream_res.stream_enc,
643 &pipe_ctx->stream_res.encoder_info_frame);
644 else
645 pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
646 pipe_ctx->stream_res.stream_enc,
647 &pipe_ctx->stream_res.encoder_info_frame);
648 }
649
650 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
651 {
652 enum dc_lane_count lane_count =
653 pipe_ctx->stream->link->cur_link_settings.lane_count;
654
655 struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
656 struct dc_link *link = pipe_ctx->stream->link;
657
658
659 uint32_t active_total_with_borders;
660 uint32_t early_control = 0;
661 struct timing_generator *tg = pipe_ctx->stream_res.tg;
662
663 /* For MST, there are multiply stream go to only one link.
664 * connect DIG back_end to front_end while enable_stream and
665 * disconnect them during disable_stream
666 * BY this, it is logic clean to separate stream and link */
667 link->link_enc->funcs->connect_dig_be_to_fe(link->link_enc,
668 pipe_ctx->stream_res.stream_enc->id, true);
669
670 /* update AVI info frame (HDMI, DP)*/
671 /* TODO: FPGA may change to hwss.update_info_frame */
672
673 #if defined(CONFIG_DRM_AMD_DC_DCN2_0)
674 if (pipe_ctx->stream_res.stream_enc->funcs->set_dynamic_metadata != NULL &&
675 pipe_ctx->plane_res.hubp != NULL) {
676 if (pipe_ctx->stream->dmdata_address.quad_part != 0) {
677 /* if using dynamic meta, don't set up generic infopackets */
678 pipe_ctx->stream_res.encoder_info_frame.hdrsmd.valid = false;
679 pipe_ctx->stream_res.stream_enc->funcs->set_dynamic_metadata(
680 pipe_ctx->stream_res.stream_enc,
681 true, pipe_ctx->plane_res.hubp->inst,
682 dc_is_dp_signal(pipe_ctx->stream->signal) ?
683 dmdata_dp : dmdata_hdmi);
684 } else
685 pipe_ctx->stream_res.stream_enc->funcs->set_dynamic_metadata(
686 pipe_ctx->stream_res.stream_enc,
687 false, pipe_ctx->plane_res.hubp->inst,
688 dc_is_dp_signal(pipe_ctx->stream->signal) ?
689 dmdata_dp : dmdata_hdmi);
690 }
691 #endif
692 dce110_update_info_frame(pipe_ctx);
693
694 /* enable early control to avoid corruption on DP monitor*/
695 active_total_with_borders =
696 timing->h_addressable
697 + timing->h_border_left
698 + timing->h_border_right;
699
700 if (lane_count != 0)
701 early_control = active_total_with_borders % lane_count;
702
703 if (early_control == 0)
704 early_control = lane_count;
705
706 tg->funcs->set_early_control(tg, early_control);
707
708 /* enable audio only within mode set */
709 if (pipe_ctx->stream_res.audio != NULL) {
710 if (dc_is_dp_signal(pipe_ctx->stream->signal))
711 pipe_ctx->stream_res.stream_enc->funcs->dp_audio_enable(pipe_ctx->stream_res.stream_enc);
712 }
713
714
715
716
717 }
718
719 /*todo: cloned in stream enc, fix*/
720 static bool is_panel_backlight_on(struct dce_hwseq *hws)
721 {
722 uint32_t value;
723
724 REG_GET(LVTMA_PWRSEQ_CNTL, LVTMA_BLON, &value);
725
726 return value;
727 }
728
729 static bool is_panel_powered_on(struct dce_hwseq *hws)
730 {
731 uint32_t pwr_seq_state, dig_on, dig_on_ovrd;
732
733
734 REG_GET(LVTMA_PWRSEQ_STATE, LVTMA_PWRSEQ_TARGET_STATE_R, &pwr_seq_state);
735
736 REG_GET_2(LVTMA_PWRSEQ_CNTL, LVTMA_DIGON, &dig_on, LVTMA_DIGON_OVRD, &dig_on_ovrd);
737
738 return (pwr_seq_state == 1) || (dig_on == 1 && dig_on_ovrd == 1);
739 }
740
741 static enum bp_result link_transmitter_control(
742 struct dc_bios *bios,
743 struct bp_transmitter_control *cntl)
744 {
745 enum bp_result result;
746
747 result = bios->funcs->transmitter_control(bios, cntl);
748
749 return result;
750 }
751
752 /*
753 * @brief
754 * eDP only.
755 */
756 void hwss_edp_wait_for_hpd_ready(
757 struct dc_link *link,
758 bool power_up)
759 {
760 struct dc_context *ctx = link->ctx;
761 struct graphics_object_id connector = link->link_enc->connector;
762 struct gpio *hpd;
763 bool edp_hpd_high = false;
764 uint32_t time_elapsed = 0;
765 uint32_t timeout = power_up ?
766 PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
767
768 if (dal_graphics_object_id_get_connector_id(connector)
769 != CONNECTOR_ID_EDP) {
770 BREAK_TO_DEBUGGER();
771 return;
772 }
773
774 if (!power_up)
775 /*
776 * From KV, we will not HPD low after turning off VCC -
777 * instead, we will check the SW timer in power_up().
778 */
779 return;
780
781 /*
782 * When we power on/off the eDP panel,
783 * we need to wait until SENSE bit is high/low.
784 */
785
786 /* obtain HPD */
787 /* TODO what to do with this? */
788 hpd = get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
789
790 if (!hpd) {
791 BREAK_TO_DEBUGGER();
792 return;
793 }
794
795 dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
796
797 /* wait until timeout or panel detected */
798
799 do {
800 uint32_t detected = 0;
801
802 dal_gpio_get_value(hpd, &detected);
803
804 if (!(detected ^ power_up)) {
805 edp_hpd_high = true;
806 break;
807 }
808
809 msleep(HPD_CHECK_INTERVAL);
810
811 time_elapsed += HPD_CHECK_INTERVAL;
812 } while (time_elapsed < timeout);
813
814 dal_gpio_close(hpd);
815
816 dal_gpio_destroy_irq(&hpd);
817
818 if (false == edp_hpd_high) {
819 DC_LOG_ERROR(
820 "%s: wait timed out!\n", __func__);
821 }
822 }
823
824 void hwss_edp_power_control(
825 struct dc_link *link,
826 bool power_up)
827 {
828 struct dc_context *ctx = link->ctx;
829 struct dce_hwseq *hwseq = ctx->dc->hwseq;
830 struct bp_transmitter_control cntl = { 0 };
831 enum bp_result bp_result;
832
833
834 if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
835 != CONNECTOR_ID_EDP) {
836 BREAK_TO_DEBUGGER();
837 return;
838 }
839
840 if (power_up != is_panel_powered_on(hwseq)) {
841 /* Send VBIOS command to prompt eDP panel power */
842 if (power_up) {
843 unsigned long long current_ts = dm_get_timestamp(ctx);
844 unsigned long long duration_in_ms =
845 div64_u64(dm_get_elapse_time_in_ns(
846 ctx,
847 current_ts,
848 link->link_trace.time_stamp.edp_poweroff), 1000000);
849 unsigned long long wait_time_ms = 0;
850
851 /* max 500ms from LCDVDD off to on */
852 unsigned long long edp_poweroff_time_ms = 500;
853
854 if (link->local_sink != NULL)
855 edp_poweroff_time_ms =
856 500 + link->local_sink->edid_caps.panel_patch.extra_t12_ms;
857 if (link->link_trace.time_stamp.edp_poweroff == 0)
858 wait_time_ms = edp_poweroff_time_ms;
859 else if (duration_in_ms < edp_poweroff_time_ms)
860 wait_time_ms = edp_poweroff_time_ms - duration_in_ms;
861
862 if (wait_time_ms) {
863 msleep(wait_time_ms);
864 dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
865 __func__, wait_time_ms);
866 }
867
868 }
869
870 DC_LOG_HW_RESUME_S3(
871 "%s: Panel Power action: %s\n",
872 __func__, (power_up ? "On":"Off"));
873
874 cntl.action = power_up ?
875 TRANSMITTER_CONTROL_POWER_ON :
876 TRANSMITTER_CONTROL_POWER_OFF;
877 cntl.transmitter = link->link_enc->transmitter;
878 cntl.connector_obj_id = link->link_enc->connector;
879 cntl.coherent = false;
880 cntl.lanes_number = LANE_COUNT_FOUR;
881 cntl.hpd_sel = link->link_enc->hpd_source;
882 bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
883
884 if (!power_up)
885 /*save driver power off time stamp*/
886 link->link_trace.time_stamp.edp_poweroff = dm_get_timestamp(ctx);
887 else
888 link->link_trace.time_stamp.edp_poweron = dm_get_timestamp(ctx);
889
890 if (bp_result != BP_RESULT_OK)
891 DC_LOG_ERROR(
892 "%s: Panel Power bp_result: %d\n",
893 __func__, bp_result);
894 } else {
895 DC_LOG_HW_RESUME_S3(
896 "%s: Skipping Panel Power action: %s\n",
897 __func__, (power_up ? "On":"Off"));
898 }
899 }
900
901 /*todo: cloned in stream enc, fix*/
902 /*
903 * @brief
904 * eDP only. Control the backlight of the eDP panel
905 */
906 void hwss_edp_backlight_control(
907 struct dc_link *link,
908 bool enable)
909 {
910 struct dc_context *ctx = link->ctx;
911 struct dce_hwseq *hws = ctx->dc->hwseq;
912 struct bp_transmitter_control cntl = { 0 };
913
914 if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
915 != CONNECTOR_ID_EDP) {
916 BREAK_TO_DEBUGGER();
917 return;
918 }
919
920 if (enable && is_panel_backlight_on(hws)) {
921 DC_LOG_HW_RESUME_S3(
922 "%s: panel already powered up. Do nothing.\n",
923 __func__);
924 return;
925 }
926
927 /* Send VBIOS command to control eDP panel backlight */
928
929 DC_LOG_HW_RESUME_S3(
930 "%s: backlight action: %s\n",
931 __func__, (enable ? "On":"Off"));
932
933 cntl.action = enable ?
934 TRANSMITTER_CONTROL_BACKLIGHT_ON :
935 TRANSMITTER_CONTROL_BACKLIGHT_OFF;
936
937 /*cntl.engine_id = ctx->engine;*/
938 cntl.transmitter = link->link_enc->transmitter;
939 cntl.connector_obj_id = link->link_enc->connector;
940 /*todo: unhardcode*/
941 cntl.lanes_number = LANE_COUNT_FOUR;
942 cntl.hpd_sel = link->link_enc->hpd_source;
943 cntl.signal = SIGNAL_TYPE_EDP;
944
945 /* For eDP, the following delays might need to be considered
946 * after link training completed:
947 * idle period - min. accounts for required BS-Idle pattern,
948 * max. allows for source frame synchronization);
949 * 50 msec max. delay from valid video data from source
950 * to video on dislpay or backlight enable.
951 *
952 * Disable the delay for now.
953 * Enable it in the future if necessary.
954 */
955 /* dc_service_sleep_in_milliseconds(50); */
956 /*edp 1.2*/
957 if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
958 edp_receiver_ready_T7(link);
959 link_transmitter_control(ctx->dc_bios, &cntl);
960 /*edp 1.2*/
961 if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF)
962 edp_receiver_ready_T9(link);
963 }
964
965 void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
966 {
967 /* notify audio driver for audio modes of monitor */
968 struct dc *core_dc;
969 struct pp_smu_funcs *pp_smu = NULL;
970 struct clk_mgr *clk_mgr;
971 unsigned int i, num_audio = 1;
972
973 if (!pipe_ctx->stream)
974 return;
975
976 core_dc = pipe_ctx->stream->ctx->dc;
977 clk_mgr = core_dc->clk_mgr;
978
979 if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == true)
980 return;
981
982 if (core_dc->res_pool->pp_smu)
983 pp_smu = core_dc->res_pool->pp_smu;
984
985 if (pipe_ctx->stream_res.audio) {
986 for (i = 0; i < MAX_PIPES; i++) {
987 /*current_state not updated yet*/
988 if (core_dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
989 num_audio++;
990 }
991
992 pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
993
994 if (num_audio >= 1 && clk_mgr->funcs->enable_pme_wa)
995 /*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
996 clk_mgr->funcs->enable_pme_wa(clk_mgr);
997 /* un-mute audio */
998 /* TODO: audio should be per stream rather than per link */
999 pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1000 pipe_ctx->stream_res.stream_enc, false);
1001 if (pipe_ctx->stream_res.audio)
1002 pipe_ctx->stream_res.audio->enabled = true;
1003 }
1004 }
1005
1006 void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx, int option)
1007 {
1008 struct dc *dc;
1009 struct pp_smu_funcs *pp_smu = NULL;
1010 struct clk_mgr *clk_mgr;
1011
1012 if (!pipe_ctx || !pipe_ctx->stream)
1013 return;
1014
1015 dc = pipe_ctx->stream->ctx->dc;
1016 clk_mgr = dc->clk_mgr;
1017
1018 if (pipe_ctx->stream_res.audio && pipe_ctx->stream_res.audio->enabled == false)
1019 return;
1020
1021 pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1022 pipe_ctx->stream_res.stream_enc, true);
1023 if (pipe_ctx->stream_res.audio) {
1024 pipe_ctx->stream_res.audio->enabled = false;
1025
1026 if (dc->res_pool->pp_smu)
1027 pp_smu = dc->res_pool->pp_smu;
1028
1029 if (option != KEEP_ACQUIRED_RESOURCE ||
1030 !dc->debug.az_endpoint_mute_only)
1031 /*only disalbe az_endpoint if power down or free*/
1032 pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
1033
1034 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1035 pipe_ctx->stream_res.stream_enc->funcs->dp_audio_disable(
1036 pipe_ctx->stream_res.stream_enc);
1037 else
1038 pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_disable(
1039 pipe_ctx->stream_res.stream_enc);
1040 /*don't free audio if it is from retrain or internal disable stream*/
1041 if (option == FREE_ACQUIRED_RESOURCE && dc->caps.dynamic_audio == true) {
1042 /*we have to dynamic arbitrate the audio endpoints*/
1043 /*we free the resource, need reset is_audio_acquired*/
1044 update_audio_usage(&dc->current_state->res_ctx, dc->res_pool, pipe_ctx->stream_res.audio, false);
1045 pipe_ctx->stream_res.audio = NULL;
1046 }
1047 if (clk_mgr->funcs->enable_pme_wa)
1048 /*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1049 clk_mgr->funcs->enable_pme_wa(clk_mgr);
1050
1051 /* TODO: notify audio driver for if audio modes list changed
1052 * add audio mode list change flag */
1053 /* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
1054 * stream->stream_engine_id);
1055 */
1056 }
1057 }
1058
1059 void dce110_disable_stream(struct pipe_ctx *pipe_ctx, int option)
1060 {
1061 struct dc_stream_state *stream = pipe_ctx->stream;
1062 struct dc_link *link = stream->link;
1063 struct dc *dc = pipe_ctx->stream->ctx->dc;
1064
1065 if (dc_is_hdmi_tmds_signal(pipe_ctx->stream->signal))
1066 pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
1067 pipe_ctx->stream_res.stream_enc);
1068
1069 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1070 pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
1071 pipe_ctx->stream_res.stream_enc);
1072
1073 dc->hwss.disable_audio_stream(pipe_ctx, option);
1074
1075 link->link_enc->funcs->connect_dig_be_to_fe(
1076 link->link_enc,
1077 pipe_ctx->stream_res.stream_enc->id,
1078 false);
1079
1080 }
1081
1082 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
1083 struct dc_link_settings *link_settings)
1084 {
1085 struct encoder_unblank_param params = { { 0 } };
1086 struct dc_stream_state *stream = pipe_ctx->stream;
1087 struct dc_link *link = stream->link;
1088
1089 /* only 3 items below are used by unblank */
1090 params.timing = pipe_ctx->stream->timing;
1091 params.link_settings.link_rate = link_settings->link_rate;
1092
1093 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1094 pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(pipe_ctx->stream_res.stream_enc, &params);
1095
1096 if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1097 link->dc->hwss.edp_backlight_control(link, true);
1098 }
1099 }
1100
1101 void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
1102 {
1103 struct dc_stream_state *stream = pipe_ctx->stream;
1104 struct dc_link *link = stream->link;
1105
1106 if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1107 link->dc->hwss.edp_backlight_control(link, false);
1108 dc_link_set_abm_disable(link);
1109 }
1110
1111 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1112 pipe_ctx->stream_res.stream_enc->funcs->dp_blank(pipe_ctx->stream_res.stream_enc);
1113 }
1114
1115
1116 void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
1117 {
1118 if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
1119 pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
1120 }
1121
1122 static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
1123 {
1124 switch (crtc_id) {
1125 case CONTROLLER_ID_D0:
1126 return DTO_SOURCE_ID0;
1127 case CONTROLLER_ID_D1:
1128 return DTO_SOURCE_ID1;
1129 case CONTROLLER_ID_D2:
1130 return DTO_SOURCE_ID2;
1131 case CONTROLLER_ID_D3:
1132 return DTO_SOURCE_ID3;
1133 case CONTROLLER_ID_D4:
1134 return DTO_SOURCE_ID4;
1135 case CONTROLLER_ID_D5:
1136 return DTO_SOURCE_ID5;
1137 default:
1138 return DTO_SOURCE_UNKNOWN;
1139 }
1140 }
1141
1142 static void build_audio_output(
1143 struct dc_state *state,
1144 const struct pipe_ctx *pipe_ctx,
1145 struct audio_output *audio_output)
1146 {
1147 const struct dc_stream_state *stream = pipe_ctx->stream;
1148 audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
1149
1150 audio_output->signal = pipe_ctx->stream->signal;
1151
1152 /* audio_crtc_info */
1153
1154 audio_output->crtc_info.h_total =
1155 stream->timing.h_total;
1156
1157 /*
1158 * Audio packets are sent during actual CRTC blank physical signal, we
1159 * need to specify actual active signal portion
1160 */
1161 audio_output->crtc_info.h_active =
1162 stream->timing.h_addressable
1163 + stream->timing.h_border_left
1164 + stream->timing.h_border_right;
1165
1166 audio_output->crtc_info.v_active =
1167 stream->timing.v_addressable
1168 + stream->timing.v_border_top
1169 + stream->timing.v_border_bottom;
1170
1171 audio_output->crtc_info.pixel_repetition = 1;
1172
1173 audio_output->crtc_info.interlaced =
1174 stream->timing.flags.INTERLACE;
1175
1176 audio_output->crtc_info.refresh_rate =
1177 (stream->timing.pix_clk_100hz*10000)/
1178 (stream->timing.h_total*stream->timing.v_total);
1179
1180 audio_output->crtc_info.color_depth =
1181 stream->timing.display_color_depth;
1182
1183 audio_output->crtc_info.requested_pixel_clock =
1184 pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz / 10;
1185
1186 audio_output->crtc_info.calculated_pixel_clock =
1187 pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz / 10;
1188
1189 /*for HDMI, audio ACR is with deep color ratio factor*/
1190 if (dc_is_hdmi_signal(pipe_ctx->stream->signal) &&
1191 audio_output->crtc_info.requested_pixel_clock ==
1192 (stream->timing.pix_clk_100hz / 10)) {
1193 if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1194 audio_output->crtc_info.requested_pixel_clock =
1195 audio_output->crtc_info.requested_pixel_clock/2;
1196 audio_output->crtc_info.calculated_pixel_clock =
1197 pipe_ctx->stream_res.pix_clk_params.requested_pix_clk_100hz/20;
1198
1199 }
1200 }
1201
1202 if (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
1203 pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST) {
1204 audio_output->pll_info.dp_dto_source_clock_in_khz =
1205 state->clk_mgr->funcs->get_dp_ref_clk_frequency(
1206 state->clk_mgr);
1207 }
1208
1209 audio_output->pll_info.feed_back_divider =
1210 pipe_ctx->pll_settings.feedback_divider;
1211
1212 audio_output->pll_info.dto_source =
1213 translate_to_dto_source(
1214 pipe_ctx->stream_res.tg->inst + 1);
1215
1216 /* TODO hard code to enable for now. Need get from stream */
1217 audio_output->pll_info.ss_enabled = true;
1218
1219 audio_output->pll_info.ss_percentage =
1220 pipe_ctx->pll_settings.ss_percentage;
1221 }
1222
1223 static void get_surface_visual_confirm_color(const struct pipe_ctx *pipe_ctx,
1224 struct tg_color *color)
1225 {
1226 uint32_t color_value = MAX_TG_COLOR_VALUE * (4 - pipe_ctx->stream_res.tg->inst) / 4;
1227
1228 switch (pipe_ctx->plane_res.scl_data.format) {
1229 case PIXEL_FORMAT_ARGB8888:
1230 /* set boarder color to red */
1231 color->color_r_cr = color_value;
1232 break;
1233
1234 case PIXEL_FORMAT_ARGB2101010:
1235 /* set boarder color to blue */
1236 color->color_b_cb = color_value;
1237 break;
1238 case PIXEL_FORMAT_420BPP8:
1239 /* set boarder color to green */
1240 color->color_g_y = color_value;
1241 break;
1242 case PIXEL_FORMAT_420BPP10:
1243 /* set boarder color to yellow */
1244 color->color_g_y = color_value;
1245 color->color_r_cr = color_value;
1246 break;
1247 case PIXEL_FORMAT_FP16:
1248 /* set boarder color to white */
1249 color->color_r_cr = color_value;
1250 color->color_b_cb = color_value;
1251 color->color_g_y = color_value;
1252 break;
1253 default:
1254 break;
1255 }
1256 }
1257
1258 static void program_scaler(const struct dc *dc,
1259 const struct pipe_ctx *pipe_ctx)
1260 {
1261 struct tg_color color = {0};
1262
1263 #if defined(CONFIG_DRM_AMD_DC_DCN1_0)
1264 /* TOFPGA */
1265 if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
1266 return;
1267 #endif
1268
1269 if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1270 get_surface_visual_confirm_color(pipe_ctx, &color);
1271 else
1272 color_space_to_black_color(dc,
1273 pipe_ctx->stream->output_color_space,
1274 &color);
1275
1276 pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
1277 pipe_ctx->plane_res.xfm,
1278 pipe_ctx->plane_res.scl_data.lb_params.depth,
1279 &pipe_ctx->stream->bit_depth_params);
1280
1281 if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color) {
1282 /*
1283 * The way 420 is packed, 2 channels carry Y component, 1 channel
1284 * alternate between Cb and Cr, so both channels need the pixel
1285 * value for Y
1286 */
1287 if (pipe_ctx->stream->timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
1288 color.color_r_cr = color.color_g_y;
1289
1290 pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
1291 pipe_ctx->stream_res.tg,
1292 &color);
1293 }
1294
1295 pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
1296 &pipe_ctx->plane_res.scl_data);
1297 }
1298
1299 static enum dc_status dce110_enable_stream_timing(
1300 struct pipe_ctx *pipe_ctx,
1301 struct dc_state *context,
1302 struct dc *dc)
1303 {
1304 struct dc_stream_state *stream = pipe_ctx->stream;
1305 struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1306 pipe_ctx[pipe_ctx->pipe_idx];
1307 struct tg_color black_color = {0};
1308
1309 if (!pipe_ctx_old->stream) {
1310
1311 /* program blank color */
1312 color_space_to_black_color(dc,
1313 stream->output_color_space, &black_color);
1314 pipe_ctx->stream_res.tg->funcs->set_blank_color(
1315 pipe_ctx->stream_res.tg,
1316 &black_color);
1317
1318 /*
1319 * Must blank CRTC after disabling power gating and before any
1320 * programming, otherwise CRTC will be hung in bad state
1321 */
1322 pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1323
1324 if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1325 pipe_ctx->clock_source,
1326 &pipe_ctx->stream_res.pix_clk_params,
1327 &pipe_ctx->pll_settings)) {
1328 BREAK_TO_DEBUGGER();
1329 return DC_ERROR_UNEXPECTED;
1330 }
1331
1332 pipe_ctx->stream_res.tg->funcs->program_timing(
1333 pipe_ctx->stream_res.tg,
1334 &stream->timing,
1335 0,
1336 0,
1337 0,
1338 0,
1339 pipe_ctx->stream->signal,
1340 true);
1341 }
1342
1343 if (!pipe_ctx_old->stream) {
1344 if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
1345 pipe_ctx->stream_res.tg)) {
1346 BREAK_TO_DEBUGGER();
1347 return DC_ERROR_UNEXPECTED;
1348 }
1349 }
1350
1351 return DC_OK;
1352 }
1353
1354 static enum dc_status apply_single_controller_ctx_to_hw(
1355 struct pipe_ctx *pipe_ctx,
1356 struct dc_state *context,
1357 struct dc *dc)
1358 {
1359 struct dc_stream_state *stream = pipe_ctx->stream;
1360 struct drr_params params = {0};
1361 unsigned int event_triggers = 0;
1362 #if defined(CONFIG_DRM_AMD_DC_DCN2_0)
1363 struct pipe_ctx *odm_pipe = dc_res_get_odm_bottom_pipe(pipe_ctx);
1364 #endif
1365
1366 if (dc->hwss.disable_stream_gating) {
1367 dc->hwss.disable_stream_gating(dc, pipe_ctx);
1368 }
1369
1370 if (pipe_ctx->stream_res.audio != NULL) {
1371 struct audio_output audio_output;
1372
1373 build_audio_output(context, pipe_ctx, &audio_output);
1374
1375 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1376 pipe_ctx->stream_res.stream_enc->funcs->dp_audio_setup(
1377 pipe_ctx->stream_res.stream_enc,
1378 pipe_ctx->stream_res.audio->inst,
1379 &pipe_ctx->stream->audio_info);
1380 else
1381 pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_setup(
1382 pipe_ctx->stream_res.stream_enc,
1383 pipe_ctx->stream_res.audio->inst,
1384 &pipe_ctx->stream->audio_info,
1385 &audio_output.crtc_info);
1386
1387 pipe_ctx->stream_res.audio->funcs->az_configure(
1388 pipe_ctx->stream_res.audio,
1389 pipe_ctx->stream->signal,
1390 &audio_output.crtc_info,
1391 &pipe_ctx->stream->audio_info);
1392 }
1393
1394 /* */
1395 /* Do not touch stream timing on seamless boot optimization. */
1396 if (!pipe_ctx->stream->apply_seamless_boot_optimization)
1397 dc->hwss.enable_stream_timing(pipe_ctx, context, dc);
1398
1399 if (dc->hwss.setup_vupdate_interrupt)
1400 dc->hwss.setup_vupdate_interrupt(pipe_ctx);
1401
1402 params.vertical_total_min = stream->adjust.v_total_min;
1403 params.vertical_total_max = stream->adjust.v_total_max;
1404 if (pipe_ctx->stream_res.tg->funcs->set_drr)
1405 pipe_ctx->stream_res.tg->funcs->set_drr(
1406 pipe_ctx->stream_res.tg, &params);
1407
1408 // DRR should set trigger event to monitor surface update event
1409 if (stream->adjust.v_total_min != 0 && stream->adjust.v_total_max != 0)
1410 event_triggers = 0x80;
1411 if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
1412 pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
1413 pipe_ctx->stream_res.tg, event_triggers);
1414
1415 if (!dc_is_virtual_signal(pipe_ctx->stream->signal))
1416 pipe_ctx->stream_res.stream_enc->funcs->dig_connect_to_otg(
1417 pipe_ctx->stream_res.stream_enc,
1418 pipe_ctx->stream_res.tg->inst);
1419
1420 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1421 pipe_ctx->stream_res.opp,
1422 COLOR_SPACE_YCBCR601,
1423 stream->timing.display_color_depth,
1424 stream->signal);
1425
1426 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1427 pipe_ctx->stream_res.opp,
1428 &stream->bit_depth_params,
1429 &stream->clamping);
1430 #if defined(CONFIG_DRM_AMD_DC_DCN2_0)
1431 if (odm_pipe) {
1432 odm_pipe->stream_res.opp->funcs->opp_set_dyn_expansion(
1433 odm_pipe->stream_res.opp,
1434 COLOR_SPACE_YCBCR601,
1435 stream->timing.display_color_depth,
1436 stream->signal);
1437
1438 odm_pipe->stream_res.opp->funcs->opp_program_fmt(
1439 odm_pipe->stream_res.opp,
1440 &stream->bit_depth_params,
1441 &stream->clamping);
1442 }
1443 #endif
1444
1445 if (!stream->dpms_off)
1446 core_link_enable_stream(context, pipe_ctx);
1447
1448 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != 0;
1449
1450 pipe_ctx->stream->link->psr_enabled = false;
1451
1452 return DC_OK;
1453 }
1454
1455 /******************************************************************************/
1456
1457 static void power_down_encoders(struct dc *dc)
1458 {
1459 int i;
1460 enum connector_id connector_id;
1461 enum signal_type signal = SIGNAL_TYPE_NONE;
1462
1463 /* do not know BIOS back-front mapping, simply blank all. It will not
1464 * hurt for non-DP
1465 */
1466 for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1467 dc->res_pool->stream_enc[i]->funcs->dp_blank(
1468 dc->res_pool->stream_enc[i]);
1469 }
1470
1471 for (i = 0; i < dc->link_count; i++) {
1472 connector_id = dal_graphics_object_id_get_connector_id(dc->links[i]->link_id);
1473 if ((connector_id == CONNECTOR_ID_DISPLAY_PORT) ||
1474 (connector_id == CONNECTOR_ID_EDP)) {
1475
1476 if (!dc->links[i]->wa_flags.dp_keep_receiver_powered)
1477 dp_receiver_power_ctrl(dc->links[i], false);
1478 if (connector_id == CONNECTOR_ID_EDP)
1479 signal = SIGNAL_TYPE_EDP;
1480 }
1481
1482 dc->links[i]->link_enc->funcs->disable_output(
1483 dc->links[i]->link_enc, signal);
1484 }
1485 }
1486
1487 static void power_down_controllers(struct dc *dc)
1488 {
1489 int i;
1490
1491 for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1492 dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1493 dc->res_pool->timing_generators[i]);
1494 }
1495 }
1496
1497 static void power_down_clock_sources(struct dc *dc)
1498 {
1499 int i;
1500
1501 if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1502 dc->res_pool->dp_clock_source) == false)
1503 dm_error("Failed to power down pll! (dp clk src)\n");
1504
1505 for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1506 if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1507 dc->res_pool->clock_sources[i]) == false)
1508 dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1509 }
1510 }
1511
1512 static void power_down_all_hw_blocks(struct dc *dc)
1513 {
1514 power_down_encoders(dc);
1515
1516 power_down_controllers(dc);
1517
1518 power_down_clock_sources(dc);
1519
1520 if (dc->fbc_compressor)
1521 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
1522 }
1523
1524 static void disable_vga_and_power_gate_all_controllers(
1525 struct dc *dc)
1526 {
1527 int i;
1528 struct timing_generator *tg;
1529 struct dc_context *ctx = dc->ctx;
1530
1531 for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1532 tg = dc->res_pool->timing_generators[i];
1533
1534 if (tg->funcs->disable_vga)
1535 tg->funcs->disable_vga(tg);
1536 }
1537 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1538 /* Enable CLOCK gating for each pipe BEFORE controller
1539 * powergating. */
1540 enable_display_pipe_clock_gating(ctx,
1541 true);
1542
1543 dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
1544 dc->hwss.disable_plane(dc,
1545 &dc->current_state->res_ctx.pipe_ctx[i]);
1546 }
1547 }
1548
1549
1550 static struct dc_stream_state *get_edp_stream(struct dc_state *context)
1551 {
1552 int i;
1553
1554 for (i = 0; i < context->stream_count; i++) {
1555 if (context->streams[i]->signal == SIGNAL_TYPE_EDP)
1556 return context->streams[i];
1557 }
1558 return NULL;
1559 }
1560
1561 static struct dc_link *get_edp_link(struct dc *dc)
1562 {
1563 int i;
1564
1565 // report any eDP links, even unconnected DDI's
1566 for (i = 0; i < dc->link_count; i++) {
1567 if (dc->links[i]->connector_signal == SIGNAL_TYPE_EDP)
1568 return dc->links[i];
1569 }
1570 return NULL;
1571 }
1572
1573 static struct dc_link *get_edp_link_with_sink(
1574 struct dc *dc,
1575 struct dc_state *context)
1576 {
1577 int i;
1578 struct dc_link *link = NULL;
1579
1580 /* check if there is an eDP panel not in use */
1581 for (i = 0; i < dc->link_count; i++) {
1582 if (dc->links[i]->local_sink &&
1583 dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1584 link = dc->links[i];
1585 break;
1586 }
1587 }
1588
1589 return link;
1590 }
1591
1592 /**
1593 * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1594 * 1. Power down all DC HW blocks
1595 * 2. Disable VGA engine on all controllers
1596 * 3. Enable power gating for controller
1597 * 4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1598 */
1599 void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
1600 {
1601 int i;
1602 struct dc_link *edp_link_with_sink = get_edp_link_with_sink(dc, context);
1603 struct dc_link *edp_link = get_edp_link(dc);
1604 struct dc_stream_state *edp_stream = NULL;
1605 bool can_apply_edp_fast_boot = false;
1606 bool can_apply_seamless_boot = false;
1607 bool keep_edp_vdd_on = false;
1608
1609 if (dc->hwss.init_pipes)
1610 dc->hwss.init_pipes(dc, context);
1611
1612 edp_stream = get_edp_stream(context);
1613
1614 // Check fastboot support, disable on DCE8 because of blank screens
1615 if (edp_link && dc->ctx->dce_version != DCE_VERSION_8_0 &&
1616 dc->ctx->dce_version != DCE_VERSION_8_1 &&
1617 dc->ctx->dce_version != DCE_VERSION_8_3) {
1618
1619 // enable fastboot if backend is enabled on eDP
1620 if (edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc)) {
1621 /* Set optimization flag on eDP stream*/
1622 if (edp_stream) {
1623 edp_stream->apply_edp_fast_boot_optimization = true;
1624 can_apply_edp_fast_boot = true;
1625 }
1626 }
1627
1628 // We are trying to enable eDP, don't power down VDD
1629 if (edp_stream)
1630 keep_edp_vdd_on = true;
1631 }
1632
1633 // Check seamless boot support
1634 for (i = 0; i < context->stream_count; i++) {
1635 if (context->streams[i]->apply_seamless_boot_optimization) {
1636 can_apply_seamless_boot = true;
1637 break;
1638 }
1639 }
1640
1641 /* eDP should not have stream in resume from S4 and so even with VBios post
1642 * it should get turned off
1643 */
1644 if (!can_apply_edp_fast_boot && !can_apply_seamless_boot) {
1645 if (edp_link_with_sink && !keep_edp_vdd_on) {
1646 /*turn off backlight before DP_blank and encoder powered down*/
1647 dc->hwss.edp_backlight_control(edp_link_with_sink, false);
1648 }
1649 /*resume from S3, no vbios posting, no need to power down again*/
1650 power_down_all_hw_blocks(dc);
1651 disable_vga_and_power_gate_all_controllers(dc);
1652 if (edp_link_with_sink && !keep_edp_vdd_on)
1653 dc->hwss.edp_power_control(edp_link_with_sink, false);
1654 }
1655 bios_set_scratch_acc_mode_change(dc->ctx->dc_bios);
1656 }
1657
1658 static uint32_t compute_pstate_blackout_duration(
1659 struct bw_fixed blackout_duration,
1660 const struct dc_stream_state *stream)
1661 {
1662 uint32_t total_dest_line_time_ns;
1663 uint32_t pstate_blackout_duration_ns;
1664
1665 pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
1666
1667 total_dest_line_time_ns = 1000000UL *
1668 (stream->timing.h_total * 10) /
1669 stream->timing.pix_clk_100hz +
1670 pstate_blackout_duration_ns;
1671
1672 return total_dest_line_time_ns;
1673 }
1674
1675 static void dce110_set_displaymarks(
1676 const struct dc *dc,
1677 struct dc_state *context)
1678 {
1679 uint8_t i, num_pipes;
1680 unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1681
1682 for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
1683 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1684 uint32_t total_dest_line_time_ns;
1685
1686 if (pipe_ctx->stream == NULL)
1687 continue;
1688
1689 total_dest_line_time_ns = compute_pstate_blackout_duration(
1690 dc->bw_vbios->blackout_duration, pipe_ctx->stream);
1691 pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
1692 pipe_ctx->plane_res.mi,
1693 context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1694 context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1695 context->bw_ctx.bw.dce.stutter_entry_wm_ns[num_pipes],
1696 context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1697 total_dest_line_time_ns);
1698 if (i == underlay_idx) {
1699 num_pipes++;
1700 pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1701 pipe_ctx->plane_res.mi,
1702 context->bw_ctx.bw.dce.nbp_state_change_wm_ns[num_pipes],
1703 context->bw_ctx.bw.dce.stutter_exit_wm_ns[num_pipes],
1704 context->bw_ctx.bw.dce.urgent_wm_ns[num_pipes],
1705 total_dest_line_time_ns);
1706 }
1707 num_pipes++;
1708 }
1709 }
1710
1711 void dce110_set_safe_displaymarks(
1712 struct resource_context *res_ctx,
1713 const struct resource_pool *pool)
1714 {
1715 int i;
1716 int underlay_idx = pool->underlay_pipe_index;
1717 struct dce_watermarks max_marks = {
1718 MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
1719 struct dce_watermarks nbp_marks = {
1720 SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
1721 struct dce_watermarks min_marks = { 0, 0, 0, 0};
1722
1723 for (i = 0; i < MAX_PIPES; i++) {
1724 if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
1725 continue;
1726
1727 res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
1728 res_ctx->pipe_ctx[i].plane_res.mi,
1729 nbp_marks,
1730 max_marks,
1731 min_marks,
1732 max_marks,
1733 MAX_WATERMARK);
1734
1735 if (i == underlay_idx)
1736 res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1737 res_ctx->pipe_ctx[i].plane_res.mi,
1738 nbp_marks,
1739 max_marks,
1740 max_marks,
1741 MAX_WATERMARK);
1742
1743 }
1744 }
1745
1746 /*******************************************************************************
1747 * Public functions
1748 ******************************************************************************/
1749
1750 static void set_drr(struct pipe_ctx **pipe_ctx,
1751 int num_pipes, int vmin, int vmax)
1752 {
1753 int i = 0;
1754 struct drr_params params = {0};
1755 // DRR should set trigger event to monitor surface update event
1756 unsigned int event_triggers = 0x80;
1757
1758 params.vertical_total_max = vmax;
1759 params.vertical_total_min = vmin;
1760
1761 /* TODO: If multiple pipes are to be supported, you need
1762 * some GSL stuff. Static screen triggers may be programmed differently
1763 * as well.
1764 */
1765 for (i = 0; i < num_pipes; i++) {
1766 pipe_ctx[i]->stream_res.tg->funcs->set_drr(
1767 pipe_ctx[i]->stream_res.tg, &params);
1768
1769 if (vmax != 0 && vmin != 0)
1770 pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control(
1771 pipe_ctx[i]->stream_res.tg,
1772 event_triggers);
1773 }
1774 }
1775
1776 static void get_position(struct pipe_ctx **pipe_ctx,
1777 int num_pipes,
1778 struct crtc_position *position)
1779 {
1780 int i = 0;
1781
1782 /* TODO: handle pipes > 1
1783 */
1784 for (i = 0; i < num_pipes; i++)
1785 pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
1786 }
1787
1788 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
1789 int num_pipes, const struct dc_static_screen_events *events)
1790 {
1791 unsigned int i;
1792 unsigned int value = 0;
1793
1794 if (events->overlay_update)
1795 value |= 0x100;
1796 if (events->surface_update)
1797 value |= 0x80;
1798 if (events->cursor_update)
1799 value |= 0x2;
1800 if (events->force_trigger)
1801 value |= 0x1;
1802
1803 if (num_pipes) {
1804 struct dc *dc = pipe_ctx[0]->stream->ctx->dc;
1805
1806 if (dc->fbc_compressor)
1807 value |= 0x84;
1808 }
1809
1810 for (i = 0; i < num_pipes; i++)
1811 pipe_ctx[i]->stream_res.tg->funcs->
1812 set_static_screen_control(pipe_ctx[i]->stream_res.tg, value);
1813 }
1814
1815 /*
1816 * Check if FBC can be enabled
1817 */
1818 static bool should_enable_fbc(struct dc *dc,
1819 struct dc_state *context,
1820 uint32_t *pipe_idx)
1821 {
1822 uint32_t i;
1823 struct pipe_ctx *pipe_ctx = NULL;
1824 struct resource_context *res_ctx = &context->res_ctx;
1825 unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1826
1827
1828 ASSERT(dc->fbc_compressor);
1829
1830 /* FBC memory should be allocated */
1831 if (!dc->ctx->fbc_gpu_addr)
1832 return false;
1833
1834 /* Only supports single display */
1835 if (context->stream_count != 1)
1836 return false;
1837
1838 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1839 if (res_ctx->pipe_ctx[i].stream) {
1840
1841 pipe_ctx = &res_ctx->pipe_ctx[i];
1842
1843 if (!pipe_ctx)
1844 continue;
1845
1846 /* fbc not applicable on underlay pipe */
1847 if (pipe_ctx->pipe_idx != underlay_idx) {
1848 *pipe_idx = i;
1849 break;
1850 }
1851 }
1852 }
1853
1854 if (i == dc->res_pool->pipe_count)
1855 return false;
1856
1857 if (!pipe_ctx->stream->link)
1858 return false;
1859
1860 /* Only supports eDP */
1861 if (pipe_ctx->stream->link->connector_signal != SIGNAL_TYPE_EDP)
1862 return false;
1863
1864 /* PSR should not be enabled */
1865 if (pipe_ctx->stream->link->psr_enabled)
1866 return false;
1867
1868 /* Nothing to compress */
1869 if (!pipe_ctx->plane_state)
1870 return false;
1871
1872 /* Only for non-linear tiling */
1873 if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
1874 return false;
1875
1876 return true;
1877 }
1878
1879 /*
1880 * Enable FBC
1881 */
1882 static void enable_fbc(
1883 struct dc *dc,
1884 struct dc_state *context)
1885 {
1886 uint32_t pipe_idx = 0;
1887
1888 if (should_enable_fbc(dc, context, &pipe_idx)) {
1889 /* Program GRPH COMPRESSED ADDRESS and PITCH */
1890 struct compr_addr_and_pitch_params params = {0, 0, 0};
1891 struct compressor *compr = dc->fbc_compressor;
1892 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
1893
1894 params.source_view_width = pipe_ctx->stream->timing.h_addressable;
1895 params.source_view_height = pipe_ctx->stream->timing.v_addressable;
1896 params.inst = pipe_ctx->stream_res.tg->inst;
1897 compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
1898
1899 compr->funcs->surface_address_and_pitch(compr, &params);
1900 compr->funcs->set_fbc_invalidation_triggers(compr, 1);
1901
1902 compr->funcs->enable_fbc(compr, &params);
1903 }
1904 }
1905
1906 static void dce110_reset_hw_ctx_wrap(
1907 struct dc *dc,
1908 struct dc_state *context)
1909 {
1910 int i;
1911
1912 /* Reset old context */
1913 /* look up the targets that have been removed since last commit */
1914 for (i = 0; i < MAX_PIPES; i++) {
1915 struct pipe_ctx *pipe_ctx_old =
1916 &dc->current_state->res_ctx.pipe_ctx[i];
1917 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1918
1919 /* Note: We need to disable output if clock sources change,
1920 * since bios does optimization and doesn't apply if changing
1921 * PHY when not already disabled.
1922 */
1923
1924 /* Skip underlay pipe since it will be handled in commit surface*/
1925 if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
1926 continue;
1927
1928 if (!pipe_ctx->stream ||
1929 pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
1930 struct clock_source *old_clk = pipe_ctx_old->clock_source;
1931
1932 /* Disable if new stream is null. O/w, if stream is
1933 * disabled already, no need to disable again.
1934 */
1935 if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off)
1936 core_link_disable_stream(pipe_ctx_old, FREE_ACQUIRED_RESOURCE);
1937
1938 pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
1939 if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
1940 dm_error("DC: failed to blank crtc!\n");
1941 BREAK_TO_DEBUGGER();
1942 }
1943 pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
1944 pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
1945 pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
1946
1947 if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
1948 dc->res_pool,
1949 old_clk))
1950 old_clk->funcs->cs_power_down(old_clk);
1951
1952 dc->hwss.disable_plane(dc, pipe_ctx_old);
1953
1954 pipe_ctx_old->stream = NULL;
1955 }
1956 }
1957 }
1958
1959 static void dce110_setup_audio_dto(
1960 struct dc *dc,
1961 struct dc_state *context)
1962 {
1963 int i;
1964
1965 /* program audio wall clock. use HDMI as clock source if HDMI
1966 * audio active. Otherwise, use DP as clock source
1967 * first, loop to find any HDMI audio, if not, loop find DP audio
1968 */
1969 /* Setup audio rate clock source */
1970 /* Issue:
1971 * Audio lag happened on DP monitor when unplug a HDMI monitor
1972 *
1973 * Cause:
1974 * In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
1975 * is set to either dto0 or dto1, audio should work fine.
1976 * In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
1977 * set to dto0 will cause audio lag.
1978 *
1979 * Solution:
1980 * Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
1981 * find first available pipe with audio, setup audio wall DTO per topology
1982 * instead of per pipe.
1983 */
1984 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1985 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1986
1987 if (pipe_ctx->stream == NULL)
1988 continue;
1989
1990 if (pipe_ctx->top_pipe)
1991 continue;
1992
1993 if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
1994 continue;
1995
1996 if (pipe_ctx->stream_res.audio != NULL) {
1997 struct audio_output audio_output;
1998
1999 build_audio_output(context, pipe_ctx, &audio_output);
2000
2001 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2002 pipe_ctx->stream_res.audio,
2003 pipe_ctx->stream->signal,
2004 &audio_output.crtc_info,
2005 &audio_output.pll_info);
2006 break;
2007 }
2008 }
2009
2010 /* no HDMI audio is found, try DP audio */
2011 if (i == dc->res_pool->pipe_count) {
2012 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2013 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2014
2015 if (pipe_ctx->stream == NULL)
2016 continue;
2017
2018 if (pipe_ctx->top_pipe)
2019 continue;
2020
2021 if (!dc_is_dp_signal(pipe_ctx->stream->signal))
2022 continue;
2023
2024 if (pipe_ctx->stream_res.audio != NULL) {
2025 struct audio_output audio_output;
2026
2027 build_audio_output(context, pipe_ctx, &audio_output);
2028
2029 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
2030 pipe_ctx->stream_res.audio,
2031 pipe_ctx->stream->signal,
2032 &audio_output.crtc_info,
2033 &audio_output.pll_info);
2034 break;
2035 }
2036 }
2037 }
2038 }
2039
2040 enum dc_status dce110_apply_ctx_to_hw(
2041 struct dc *dc,
2042 struct dc_state *context)
2043 {
2044 struct dc_bios *dcb = dc->ctx->dc_bios;
2045 enum dc_status status;
2046 int i;
2047
2048 /* Reset old context */
2049 /* look up the targets that have been removed since last commit */
2050 dc->hwss.reset_hw_ctx_wrap(dc, context);
2051
2052 /* Skip applying if no targets */
2053 if (context->stream_count <= 0)
2054 return DC_OK;
2055
2056 /* Apply new context */
2057 dcb->funcs->set_scratch_critical_state(dcb, true);
2058
2059 /* below is for real asic only */
2060 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2061 struct pipe_ctx *pipe_ctx_old =
2062 &dc->current_state->res_ctx.pipe_ctx[i];
2063 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2064
2065 if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
2066 continue;
2067
2068 if (pipe_ctx->stream == pipe_ctx_old->stream) {
2069 if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
2070 dce_crtc_switch_to_clk_src(dc->hwseq,
2071 pipe_ctx->clock_source, i);
2072 continue;
2073 }
2074
2075 dc->hwss.enable_display_power_gating(
2076 dc, i, dc->ctx->dc_bios,
2077 PIPE_GATING_CONTROL_DISABLE);
2078 }
2079
2080 if (dc->fbc_compressor)
2081 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2082
2083 dce110_setup_audio_dto(dc, context);
2084
2085 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2086 struct pipe_ctx *pipe_ctx_old =
2087 &dc->current_state->res_ctx.pipe_ctx[i];
2088 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2089
2090 if (pipe_ctx->stream == NULL)
2091 continue;
2092
2093 if (pipe_ctx->stream == pipe_ctx_old->stream &&
2094 pipe_ctx->stream->link->link_state_valid) {
2095 continue;
2096 }
2097
2098 if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
2099 continue;
2100
2101 if (pipe_ctx->top_pipe)
2102 continue;
2103
2104 status = apply_single_controller_ctx_to_hw(
2105 pipe_ctx,
2106 context,
2107 dc);
2108
2109 if (DC_OK != status)
2110 return status;
2111 }
2112
2113 if (dc->fbc_compressor)
2114 enable_fbc(dc, dc->current_state);
2115
2116 dcb->funcs->set_scratch_critical_state(dcb, false);
2117
2118 return DC_OK;
2119 }
2120
2121 /*******************************************************************************
2122 * Front End programming
2123 ******************************************************************************/
2124 static void set_default_colors(struct pipe_ctx *pipe_ctx)
2125 {
2126 struct default_adjustment default_adjust = { 0 };
2127
2128 default_adjust.force_hw_default = false;
2129 default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
2130 default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
2131 default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
2132 default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
2133
2134 /* display color depth */
2135 default_adjust.color_depth =
2136 pipe_ctx->stream->timing.display_color_depth;
2137
2138 /* Lb color depth */
2139 default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
2140
2141 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
2142 pipe_ctx->plane_res.xfm, &default_adjust);
2143 }
2144
2145
2146 /*******************************************************************************
2147 * In order to turn on/off specific surface we will program
2148 * Blender + CRTC
2149 *
2150 * In case that we have two surfaces and they have a different visibility
2151 * we can't turn off the CRTC since it will turn off the entire display
2152 *
2153 * |----------------------------------------------- |
2154 * |bottom pipe|curr pipe | | |
2155 * |Surface |Surface | Blender | CRCT |
2156 * |visibility |visibility | Configuration| |
2157 * |------------------------------------------------|
2158 * | off | off | CURRENT_PIPE | blank |
2159 * | off | on | CURRENT_PIPE | unblank |
2160 * | on | off | OTHER_PIPE | unblank |
2161 * | on | on | BLENDING | unblank |
2162 * -------------------------------------------------|
2163 *
2164 ******************************************************************************/
2165 static void program_surface_visibility(const struct dc *dc,
2166 struct pipe_ctx *pipe_ctx)
2167 {
2168 enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
2169 bool blank_target = false;
2170
2171 if (pipe_ctx->bottom_pipe) {
2172
2173 /* For now we are supporting only two pipes */
2174 ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
2175
2176 if (pipe_ctx->bottom_pipe->plane_state->visible) {
2177 if (pipe_ctx->plane_state->visible)
2178 blender_mode = BLND_MODE_BLENDING;
2179 else
2180 blender_mode = BLND_MODE_OTHER_PIPE;
2181
2182 } else if (!pipe_ctx->plane_state->visible)
2183 blank_target = true;
2184
2185 } else if (!pipe_ctx->plane_state->visible)
2186 blank_target = true;
2187
2188 dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
2189 pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
2190
2191 }
2192
2193 static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
2194 {
2195 int i = 0;
2196 struct xfm_grph_csc_adjustment adjust;
2197 memset(&adjust, 0, sizeof(adjust));
2198 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2199
2200
2201 if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2202 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2203
2204 for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2205 adjust.temperature_matrix[i] =
2206 pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2207 }
2208
2209 pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2210 }
2211 static void update_plane_addr(const struct dc *dc,
2212 struct pipe_ctx *pipe_ctx)
2213 {
2214 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2215
2216 if (plane_state == NULL)
2217 return;
2218
2219 pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
2220 pipe_ctx->plane_res.mi,
2221 &plane_state->address,
2222 plane_state->flip_immediate);
2223
2224 plane_state->status.requested_address = plane_state->address;
2225 }
2226
2227 static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
2228 {
2229 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2230
2231 if (plane_state == NULL)
2232 return;
2233
2234 plane_state->status.is_flip_pending =
2235 pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
2236 pipe_ctx->plane_res.mi);
2237
2238 if (plane_state->status.is_flip_pending && !plane_state->visible)
2239 pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
2240
2241 plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
2242 if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2243 pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
2244 plane_state->status.is_right_eye =\
2245 !pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
2246 }
2247 }
2248
2249 void dce110_power_down(struct dc *dc)
2250 {
2251 power_down_all_hw_blocks(dc);
2252 disable_vga_and_power_gate_all_controllers(dc);
2253 }
2254
2255 static bool wait_for_reset_trigger_to_occur(
2256 struct dc_context *dc_ctx,
2257 struct timing_generator *tg)
2258 {
2259 bool rc = false;
2260
2261 /* To avoid endless loop we wait at most
2262 * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2263 const uint32_t frames_to_wait_on_triggered_reset = 10;
2264 uint32_t i;
2265
2266 for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2267
2268 if (!tg->funcs->is_counter_moving(tg)) {
2269 DC_ERROR("TG counter is not moving!\n");
2270 break;
2271 }
2272
2273 if (tg->funcs->did_triggered_reset_occur(tg)) {
2274 rc = true;
2275 /* usually occurs at i=1 */
2276 DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2277 i);
2278 break;
2279 }
2280
2281 /* Wait for one frame. */
2282 tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2283 tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2284 }
2285
2286 if (false == rc)
2287 DC_ERROR("GSL: Timeout on reset trigger!\n");
2288
2289 return rc;
2290 }
2291
2292 /* Enable timing synchronization for a group of Timing Generators. */
2293 static void dce110_enable_timing_synchronization(
2294 struct dc *dc,
2295 int group_index,
2296 int group_size,
2297 struct pipe_ctx *grouped_pipes[])
2298 {
2299 struct dc_context *dc_ctx = dc->ctx;
2300 struct dcp_gsl_params gsl_params = { 0 };
2301 int i;
2302
2303 DC_SYNC_INFO("GSL: Setting-up...\n");
2304
2305 /* Designate a single TG in the group as a master.
2306 * Since HW doesn't care which one, we always assign
2307 * the 1st one in the group. */
2308 gsl_params.gsl_group = 0;
2309 gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
2310
2311 for (i = 0; i < group_size; i++)
2312 grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2313 grouped_pipes[i]->stream_res.tg, &gsl_params);
2314
2315 /* Reset slave controllers on master VSync */
2316 DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2317
2318 for (i = 1 /* skip the master */; i < group_size; i++)
2319 grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2320 grouped_pipes[i]->stream_res.tg,
2321 gsl_params.gsl_group);
2322
2323 for (i = 1 /* skip the master */; i < group_size; i++) {
2324 DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2325 wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2326 grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2327 grouped_pipes[i]->stream_res.tg);
2328 }
2329
2330 /* GSL Vblank synchronization is a one time sync mechanism, assumption
2331 * is that the sync'ed displays will not drift out of sync over time*/
2332 DC_SYNC_INFO("GSL: Restoring register states.\n");
2333 for (i = 0; i < group_size; i++)
2334 grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2335
2336 DC_SYNC_INFO("GSL: Set-up complete.\n");
2337 }
2338
2339 static void dce110_enable_per_frame_crtc_position_reset(
2340 struct dc *dc,
2341 int group_size,
2342 struct pipe_ctx *grouped_pipes[])
2343 {
2344 struct dc_context *dc_ctx = dc->ctx;
2345 struct dcp_gsl_params gsl_params = { 0 };
2346 int i;
2347
2348 gsl_params.gsl_group = 0;
2349 gsl_params.gsl_master = 0;
2350
2351 for (i = 0; i < group_size; i++)
2352 grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2353 grouped_pipes[i]->stream_res.tg, &gsl_params);
2354
2355 DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2356
2357 for (i = 1; i < group_size; i++)
2358 grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2359 grouped_pipes[i]->stream_res.tg,
2360 gsl_params.gsl_master,
2361 &grouped_pipes[i]->stream->triggered_crtc_reset);
2362
2363 DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2364 for (i = 1; i < group_size; i++)
2365 wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2366
2367 for (i = 0; i < group_size; i++)
2368 grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2369
2370 }
2371
2372 static void init_pipes(struct dc *dc, struct dc_state *context)
2373 {
2374 // Do nothing
2375 }
2376
2377 static void init_hw(struct dc *dc)
2378 {
2379 int i;
2380 struct dc_bios *bp;
2381 struct transform *xfm;
2382 struct abm *abm;
2383 struct dmcu *dmcu;
2384
2385 bp = dc->ctx->dc_bios;
2386 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2387 xfm = dc->res_pool->transforms[i];
2388 xfm->funcs->transform_reset(xfm);
2389
2390 dc->hwss.enable_display_power_gating(
2391 dc, i, bp,
2392 PIPE_GATING_CONTROL_INIT);
2393 dc->hwss.enable_display_power_gating(
2394 dc, i, bp,
2395 PIPE_GATING_CONTROL_DISABLE);
2396 dc->hwss.enable_display_pipe_clock_gating(
2397 dc->ctx,
2398 true);
2399 }
2400
2401 dce_clock_gating_power_up(dc->hwseq, false);
2402 /***************************************/
2403
2404 for (i = 0; i < dc->link_count; i++) {
2405 /****************************************/
2406 /* Power up AND update implementation according to the
2407 * required signal (which may be different from the
2408 * default signal on connector). */
2409 struct dc_link *link = dc->links[i];
2410
2411 link->link_enc->funcs->hw_init(link->link_enc);
2412 }
2413
2414 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2415 struct timing_generator *tg = dc->res_pool->timing_generators[i];
2416
2417 tg->funcs->disable_vga(tg);
2418
2419 /* Blank controller using driver code instead of
2420 * command table. */
2421 tg->funcs->set_blank(tg, true);
2422 hwss_wait_for_blank_complete(tg);
2423 }
2424
2425 for (i = 0; i < dc->res_pool->audio_count; i++) {
2426 struct audio *audio = dc->res_pool->audios[i];
2427 audio->funcs->hw_init(audio);
2428 }
2429
2430 abm = dc->res_pool->abm;
2431 if (abm != NULL) {
2432 abm->funcs->init_backlight(abm);
2433 abm->funcs->abm_init(abm);
2434 }
2435
2436 dmcu = dc->res_pool->dmcu;
2437 if (dmcu != NULL && abm != NULL)
2438 abm->dmcu_is_running = dmcu->funcs->is_dmcu_initialized(dmcu);
2439
2440 if (dc->fbc_compressor)
2441 dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
2442
2443 }
2444
2445
2446 void dce110_prepare_bandwidth(
2447 struct dc *dc,
2448 struct dc_state *context)
2449 {
2450 struct clk_mgr *dccg = dc->clk_mgr;
2451
2452 dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
2453
2454 dccg->funcs->update_clocks(
2455 dccg,
2456 context,
2457 false);
2458 }
2459
2460 void dce110_optimize_bandwidth(
2461 struct dc *dc,
2462 struct dc_state *context)
2463 {
2464 struct clk_mgr *dccg = dc->clk_mgr;
2465
2466 dce110_set_displaymarks(dc, context);
2467
2468 dccg->funcs->update_clocks(
2469 dccg,
2470 context,
2471 true);
2472 }
2473
2474 static void dce110_program_front_end_for_pipe(
2475 struct dc *dc, struct pipe_ctx *pipe_ctx)
2476 {
2477 struct mem_input *mi = pipe_ctx->plane_res.mi;
2478 struct pipe_ctx *old_pipe = NULL;
2479 struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2480 struct xfm_grph_csc_adjustment adjust;
2481 struct out_csc_color_matrix tbl_entry;
2482 unsigned int i;
2483 DC_LOGGER_INIT();
2484 memset(&tbl_entry, 0, sizeof(tbl_entry));
2485
2486 if (dc->current_state)
2487 old_pipe = &dc->current_state->res_ctx.pipe_ctx[pipe_ctx->pipe_idx];
2488
2489 memset(&adjust, 0, sizeof(adjust));
2490 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2491
2492 dce_enable_fe_clock(dc->hwseq, mi->inst, true);
2493
2494 set_default_colors(pipe_ctx);
2495 if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2496 == true) {
2497 tbl_entry.color_space =
2498 pipe_ctx->stream->output_color_space;
2499
2500 for (i = 0; i < 12; i++)
2501 tbl_entry.regval[i] =
2502 pipe_ctx->stream->csc_color_matrix.matrix[i];
2503
2504 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
2505 (pipe_ctx->plane_res.xfm, &tbl_entry);
2506 }
2507
2508 if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2509 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2510
2511 for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2512 adjust.temperature_matrix[i] =
2513 pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2514 }
2515
2516 pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2517
2518 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != 0;
2519
2520 program_scaler(dc, pipe_ctx);
2521
2522 mi->funcs->mem_input_program_surface_config(
2523 mi,
2524 plane_state->format,
2525 &plane_state->tiling_info,
2526 &plane_state->plane_size,
2527 plane_state->rotation,
2528 NULL,
2529 false);
2530 if (mi->funcs->set_blank)
2531 mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
2532
2533 if (dc->config.gpu_vm_support)
2534 mi->funcs->mem_input_program_pte_vm(
2535 pipe_ctx->plane_res.mi,
2536 plane_state->format,
2537 &plane_state->tiling_info,
2538 plane_state->rotation);
2539
2540 /* Moved programming gamma from dc to hwss */
2541 if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2542 pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2543 pipe_ctx->plane_state->update_flags.bits.gamma_change)
2544 dc->hwss.set_input_transfer_func(pipe_ctx, pipe_ctx->plane_state);
2545
2546 if (pipe_ctx->plane_state->update_flags.bits.full_update)
2547 dc->hwss.set_output_transfer_func(pipe_ctx, pipe_ctx->stream);
2548
2549 DC_LOG_SURFACE(
2550 "Pipe:%d %p: addr hi:0x%x, "
2551 "addr low:0x%x, "
2552 "src: %d, %d, %d,"
2553 " %d; dst: %d, %d, %d, %d;"
2554 "clip: %d, %d, %d, %d\n",
2555 pipe_ctx->pipe_idx,
2556 (void *) pipe_ctx->plane_state,
2557 pipe_ctx->plane_state->address.grph.addr.high_part,
2558 pipe_ctx->plane_state->address.grph.addr.low_part,
2559 pipe_ctx->plane_state->src_rect.x,
2560 pipe_ctx->plane_state->src_rect.y,
2561 pipe_ctx->plane_state->src_rect.width,
2562 pipe_ctx->plane_state->src_rect.height,
2563 pipe_ctx->plane_state->dst_rect.x,
2564 pipe_ctx->plane_state->dst_rect.y,
2565 pipe_ctx->plane_state->dst_rect.width,
2566 pipe_ctx->plane_state->dst_rect.height,
2567 pipe_ctx->plane_state->clip_rect.x,
2568 pipe_ctx->plane_state->clip_rect.y,
2569 pipe_ctx->plane_state->clip_rect.width,
2570 pipe_ctx->plane_state->clip_rect.height);
2571
2572 DC_LOG_SURFACE(
2573 "Pipe %d: width, height, x, y\n"
2574 "viewport:%d, %d, %d, %d\n"
2575 "recout: %d, %d, %d, %d\n",
2576 pipe_ctx->pipe_idx,
2577 pipe_ctx->plane_res.scl_data.viewport.width,
2578 pipe_ctx->plane_res.scl_data.viewport.height,
2579 pipe_ctx->plane_res.scl_data.viewport.x,
2580 pipe_ctx->plane_res.scl_data.viewport.y,
2581 pipe_ctx->plane_res.scl_data.recout.width,
2582 pipe_ctx->plane_res.scl_data.recout.height,
2583 pipe_ctx->plane_res.scl_data.recout.x,
2584 pipe_ctx->plane_res.scl_data.recout.y);
2585 }
2586
2587 static void dce110_apply_ctx_for_surface(
2588 struct dc *dc,
2589 const struct dc_stream_state *stream,
2590 int num_planes,
2591 struct dc_state *context)
2592 {
2593 int i;
2594
2595 if (num_planes == 0)
2596 return;
2597
2598 if (dc->fbc_compressor)
2599 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2600
2601 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2602 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2603 struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
2604
2605 if (stream == pipe_ctx->stream) {
2606 if (!pipe_ctx->top_pipe &&
2607 (pipe_ctx->plane_state || old_pipe_ctx->plane_state))
2608 dc->hwss.pipe_control_lock(dc, pipe_ctx, true);
2609 }
2610 }
2611
2612 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2613 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2614
2615 if (pipe_ctx->stream != stream)
2616 continue;
2617
2618 /* Need to allocate mem before program front end for Fiji */
2619 pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
2620 pipe_ctx->plane_res.mi,
2621 pipe_ctx->stream->timing.h_total,
2622 pipe_ctx->stream->timing.v_total,
2623 pipe_ctx->stream->timing.pix_clk_100hz / 10,
2624 context->stream_count);
2625
2626 dce110_program_front_end_for_pipe(dc, pipe_ctx);
2627
2628 dc->hwss.update_plane_addr(dc, pipe_ctx);
2629
2630 program_surface_visibility(dc, pipe_ctx);
2631
2632 }
2633
2634 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2635 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2636 struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
2637
2638 if ((stream == pipe_ctx->stream) &&
2639 (!pipe_ctx->top_pipe) &&
2640 (pipe_ctx->plane_state || old_pipe_ctx->plane_state))
2641 dc->hwss.pipe_control_lock(dc, pipe_ctx, false);
2642 }
2643
2644 if (dc->fbc_compressor)
2645 enable_fbc(dc, context);
2646 }
2647
2648 static void dce110_power_down_fe(struct dc *dc, struct pipe_ctx *pipe_ctx)
2649 {
2650 int fe_idx = pipe_ctx->plane_res.mi ?
2651 pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
2652
2653 /* Do not power down fe when stream is active on dce*/
2654 if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
2655 return;
2656
2657 dc->hwss.enable_display_power_gating(
2658 dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
2659
2660 dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
2661 dc->res_pool->transforms[fe_idx]);
2662 }
2663
2664 static void dce110_wait_for_mpcc_disconnect(
2665 struct dc *dc,
2666 struct resource_pool *res_pool,
2667 struct pipe_ctx *pipe_ctx)
2668 {
2669 /* do nothing*/
2670 }
2671
2672 static void program_output_csc(struct dc *dc,
2673 struct pipe_ctx *pipe_ctx,
2674 enum dc_color_space colorspace,
2675 uint16_t *matrix,
2676 int opp_id)
2677 {
2678 int i;
2679 struct out_csc_color_matrix tbl_entry;
2680
2681 if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) {
2682 enum dc_color_space color_space = pipe_ctx->stream->output_color_space;
2683
2684 for (i = 0; i < 12; i++)
2685 tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
2686
2687 tbl_entry.color_space = color_space;
2688
2689 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(
2690 pipe_ctx->plane_res.xfm, &tbl_entry);
2691 }
2692 }
2693
2694 void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
2695 {
2696 struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
2697 struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
2698 struct mem_input *mi = pipe_ctx->plane_res.mi;
2699 struct dc_cursor_mi_param param = {
2700 .pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_100hz / 10,
2701 .ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clocks.xtalin_clock_inKhz,
2702 .viewport = pipe_ctx->plane_res.scl_data.viewport,
2703 .h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
2704 .v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
2705 .rotation = pipe_ctx->plane_state->rotation,
2706 .mirror = pipe_ctx->plane_state->horizontal_mirror
2707 };
2708
2709 if (pipe_ctx->plane_state->address.type
2710 == PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
2711 pos_cpy.enable = false;
2712
2713 if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
2714 pos_cpy.enable = false;
2715
2716 if (ipp->funcs->ipp_cursor_set_position)
2717 ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, &param);
2718 if (mi->funcs->set_cursor_position)
2719 mi->funcs->set_cursor_position(mi, &pos_cpy, &param);
2720 }
2721
2722 void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
2723 {
2724 struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
2725
2726 if (pipe_ctx->plane_res.ipp &&
2727 pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
2728 pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
2729 pipe_ctx->plane_res.ipp, attributes);
2730
2731 if (pipe_ctx->plane_res.mi &&
2732 pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
2733 pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
2734 pipe_ctx->plane_res.mi, attributes);
2735
2736 if (pipe_ctx->plane_res.xfm &&
2737 pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
2738 pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
2739 pipe_ctx->plane_res.xfm, attributes);
2740 }
2741
2742 static const struct hw_sequencer_funcs dce110_funcs = {
2743 .program_gamut_remap = program_gamut_remap,
2744 .program_output_csc = program_output_csc,
2745 .init_hw = init_hw,
2746 .init_pipes = init_pipes,
2747 .apply_ctx_to_hw = dce110_apply_ctx_to_hw,
2748 .apply_ctx_for_surface = dce110_apply_ctx_for_surface,
2749 .update_plane_addr = update_plane_addr,
2750 .update_pending_status = dce110_update_pending_status,
2751 .set_input_transfer_func = dce110_set_input_transfer_func,
2752 .set_output_transfer_func = dce110_set_output_transfer_func,
2753 .power_down = dce110_power_down,
2754 .enable_accelerated_mode = dce110_enable_accelerated_mode,
2755 .enable_timing_synchronization = dce110_enable_timing_synchronization,
2756 .enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
2757 .update_info_frame = dce110_update_info_frame,
2758 .enable_stream = dce110_enable_stream,
2759 .disable_stream = dce110_disable_stream,
2760 .unblank_stream = dce110_unblank_stream,
2761 .blank_stream = dce110_blank_stream,
2762 .enable_audio_stream = dce110_enable_audio_stream,
2763 .disable_audio_stream = dce110_disable_audio_stream,
2764 .enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
2765 .enable_display_power_gating = dce110_enable_display_power_gating,
2766 .disable_plane = dce110_power_down_fe,
2767 .pipe_control_lock = dce_pipe_control_lock,
2768 .prepare_bandwidth = dce110_prepare_bandwidth,
2769 .optimize_bandwidth = dce110_optimize_bandwidth,
2770 .set_drr = set_drr,
2771 .get_position = get_position,
2772 .set_static_screen_control = set_static_screen_control,
2773 .reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
2774 .enable_stream_timing = dce110_enable_stream_timing,
2775 .disable_stream_gating = NULL,
2776 .enable_stream_gating = NULL,
2777 .setup_stereo = NULL,
2778 .set_avmute = dce110_set_avmute,
2779 .wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
2780 .edp_backlight_control = hwss_edp_backlight_control,
2781 .edp_power_control = hwss_edp_power_control,
2782 .edp_wait_for_hpd_ready = hwss_edp_wait_for_hpd_ready,
2783 .set_cursor_position = dce110_set_cursor_position,
2784 .set_cursor_attribute = dce110_set_cursor_attribute
2785 };
2786
2787 void dce110_hw_sequencer_construct(struct dc *dc)
2788 {
2789 dc->hwss = dce110_funcs;
2790 }
2791