]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/display/drm_dp_helper.c
Merge tag 'drm-intel-next-2024-02-27-1' of git://anongit.freedesktop.org/drm/drm...
[thirdparty/linux.git] / drivers / gpu / drm / display / drm_dp_helper.c
1 /*
2 * Copyright © 2009 Keith Packard
3 *
4 * Permission to use, copy, modify, distribute, and sell this software and its
5 * documentation for any purpose is hereby granted without fee, provided that
6 * the above copyright notice appear in all copies and that both that copyright
7 * notice and this permission notice appear in supporting documentation, and
8 * that the name of the copyright holders not be used in advertising or
9 * publicity pertaining to distribution of the software without specific,
10 * written prior permission. The copyright holders make no representations
11 * about the suitability of this software for any purpose. It is provided "as
12 * is" without express or implied warranty.
13 *
14 * THE COPYRIGHT HOLDERS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
15 * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
16 * EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
17 * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
18 * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
19 * TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
20 * OF THIS SOFTWARE.
21 */
22
23 #include <linux/backlight.h>
24 #include <linux/delay.h>
25 #include <linux/errno.h>
26 #include <linux/i2c.h>
27 #include <linux/init.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/sched.h>
31 #include <linux/seq_file.h>
32 #include <linux/string_helpers.h>
33 #include <linux/dynamic_debug.h>
34
35 #include <drm/display/drm_dp_helper.h>
36 #include <drm/display/drm_dp_mst_helper.h>
37 #include <drm/drm_edid.h>
38 #include <drm/drm_print.h>
39 #include <drm/drm_vblank.h>
40 #include <drm/drm_panel.h>
41
42 #include "drm_dp_helper_internal.h"
43
44 DECLARE_DYNDBG_CLASSMAP(drm_debug_classes, DD_CLASS_TYPE_DISJOINT_BITS, 0,
45 "DRM_UT_CORE",
46 "DRM_UT_DRIVER",
47 "DRM_UT_KMS",
48 "DRM_UT_PRIME",
49 "DRM_UT_ATOMIC",
50 "DRM_UT_VBL",
51 "DRM_UT_STATE",
52 "DRM_UT_LEASE",
53 "DRM_UT_DP",
54 "DRM_UT_DRMRES");
55
56 struct dp_aux_backlight {
57 struct backlight_device *base;
58 struct drm_dp_aux *aux;
59 struct drm_edp_backlight_info info;
60 bool enabled;
61 };
62
63 /**
64 * DOC: dp helpers
65 *
66 * These functions contain some common logic and helpers at various abstraction
67 * levels to deal with Display Port sink devices and related things like DP aux
68 * channel transfers, EDID reading over DP aux channels, decoding certain DPCD
69 * blocks, ...
70 */
71
72 /* Helpers for DP link training */
73 static u8 dp_link_status(const u8 link_status[DP_LINK_STATUS_SIZE], int r)
74 {
75 return link_status[r - DP_LANE0_1_STATUS];
76 }
77
78 static u8 dp_get_lane_status(const u8 link_status[DP_LINK_STATUS_SIZE],
79 int lane)
80 {
81 int i = DP_LANE0_1_STATUS + (lane >> 1);
82 int s = (lane & 1) * 4;
83 u8 l = dp_link_status(link_status, i);
84
85 return (l >> s) & 0xf;
86 }
87
88 bool drm_dp_channel_eq_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
89 int lane_count)
90 {
91 u8 lane_align;
92 u8 lane_status;
93 int lane;
94
95 lane_align = dp_link_status(link_status,
96 DP_LANE_ALIGN_STATUS_UPDATED);
97 if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
98 return false;
99 for (lane = 0; lane < lane_count; lane++) {
100 lane_status = dp_get_lane_status(link_status, lane);
101 if ((lane_status & DP_CHANNEL_EQ_BITS) != DP_CHANNEL_EQ_BITS)
102 return false;
103 }
104 return true;
105 }
106 EXPORT_SYMBOL(drm_dp_channel_eq_ok);
107
108 bool drm_dp_clock_recovery_ok(const u8 link_status[DP_LINK_STATUS_SIZE],
109 int lane_count)
110 {
111 int lane;
112 u8 lane_status;
113
114 for (lane = 0; lane < lane_count; lane++) {
115 lane_status = dp_get_lane_status(link_status, lane);
116 if ((lane_status & DP_LANE_CR_DONE) == 0)
117 return false;
118 }
119 return true;
120 }
121 EXPORT_SYMBOL(drm_dp_clock_recovery_ok);
122
123 u8 drm_dp_get_adjust_request_voltage(const u8 link_status[DP_LINK_STATUS_SIZE],
124 int lane)
125 {
126 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
127 int s = ((lane & 1) ?
128 DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
129 DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
130 u8 l = dp_link_status(link_status, i);
131
132 return ((l >> s) & 0x3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
133 }
134 EXPORT_SYMBOL(drm_dp_get_adjust_request_voltage);
135
136 u8 drm_dp_get_adjust_request_pre_emphasis(const u8 link_status[DP_LINK_STATUS_SIZE],
137 int lane)
138 {
139 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
140 int s = ((lane & 1) ?
141 DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
142 DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
143 u8 l = dp_link_status(link_status, i);
144
145 return ((l >> s) & 0x3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
146 }
147 EXPORT_SYMBOL(drm_dp_get_adjust_request_pre_emphasis);
148
149 /* DP 2.0 128b/132b */
150 u8 drm_dp_get_adjust_tx_ffe_preset(const u8 link_status[DP_LINK_STATUS_SIZE],
151 int lane)
152 {
153 int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
154 int s = ((lane & 1) ?
155 DP_ADJUST_TX_FFE_PRESET_LANE1_SHIFT :
156 DP_ADJUST_TX_FFE_PRESET_LANE0_SHIFT);
157 u8 l = dp_link_status(link_status, i);
158
159 return (l >> s) & 0xf;
160 }
161 EXPORT_SYMBOL(drm_dp_get_adjust_tx_ffe_preset);
162
163 /* DP 2.0 errata for 128b/132b */
164 bool drm_dp_128b132b_lane_channel_eq_done(const u8 link_status[DP_LINK_STATUS_SIZE],
165 int lane_count)
166 {
167 u8 lane_align, lane_status;
168 int lane;
169
170 lane_align = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
171 if (!(lane_align & DP_INTERLANE_ALIGN_DONE))
172 return false;
173
174 for (lane = 0; lane < lane_count; lane++) {
175 lane_status = dp_get_lane_status(link_status, lane);
176 if (!(lane_status & DP_LANE_CHANNEL_EQ_DONE))
177 return false;
178 }
179 return true;
180 }
181 EXPORT_SYMBOL(drm_dp_128b132b_lane_channel_eq_done);
182
183 /* DP 2.0 errata for 128b/132b */
184 bool drm_dp_128b132b_lane_symbol_locked(const u8 link_status[DP_LINK_STATUS_SIZE],
185 int lane_count)
186 {
187 u8 lane_status;
188 int lane;
189
190 for (lane = 0; lane < lane_count; lane++) {
191 lane_status = dp_get_lane_status(link_status, lane);
192 if (!(lane_status & DP_LANE_SYMBOL_LOCKED))
193 return false;
194 }
195 return true;
196 }
197 EXPORT_SYMBOL(drm_dp_128b132b_lane_symbol_locked);
198
199 /* DP 2.0 errata for 128b/132b */
200 bool drm_dp_128b132b_eq_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
201 {
202 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
203
204 return status & DP_128B132B_DPRX_EQ_INTERLANE_ALIGN_DONE;
205 }
206 EXPORT_SYMBOL(drm_dp_128b132b_eq_interlane_align_done);
207
208 /* DP 2.0 errata for 128b/132b */
209 bool drm_dp_128b132b_cds_interlane_align_done(const u8 link_status[DP_LINK_STATUS_SIZE])
210 {
211 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
212
213 return status & DP_128B132B_DPRX_CDS_INTERLANE_ALIGN_DONE;
214 }
215 EXPORT_SYMBOL(drm_dp_128b132b_cds_interlane_align_done);
216
217 /* DP 2.0 errata for 128b/132b */
218 bool drm_dp_128b132b_link_training_failed(const u8 link_status[DP_LINK_STATUS_SIZE])
219 {
220 u8 status = dp_link_status(link_status, DP_LANE_ALIGN_STATUS_UPDATED);
221
222 return status & DP_128B132B_LT_FAILED;
223 }
224 EXPORT_SYMBOL(drm_dp_128b132b_link_training_failed);
225
226 static int __8b10b_clock_recovery_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
227 {
228 if (rd_interval > 4)
229 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
230 aux->name, rd_interval);
231
232 if (rd_interval == 0)
233 return 100;
234
235 return rd_interval * 4 * USEC_PER_MSEC;
236 }
237
238 static int __8b10b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
239 {
240 if (rd_interval > 4)
241 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x (max 4)\n",
242 aux->name, rd_interval);
243
244 if (rd_interval == 0)
245 return 400;
246
247 return rd_interval * 4 * USEC_PER_MSEC;
248 }
249
250 static int __128b132b_channel_eq_delay_us(const struct drm_dp_aux *aux, u8 rd_interval)
251 {
252 switch (rd_interval) {
253 default:
254 drm_dbg_kms(aux->drm_dev, "%s: invalid AUX interval 0x%02x\n",
255 aux->name, rd_interval);
256 fallthrough;
257 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_400_US:
258 return 400;
259 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_4_MS:
260 return 4000;
261 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_8_MS:
262 return 8000;
263 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_12_MS:
264 return 12000;
265 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_16_MS:
266 return 16000;
267 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_32_MS:
268 return 32000;
269 case DP_128B132B_TRAINING_AUX_RD_INTERVAL_64_MS:
270 return 64000;
271 }
272 }
273
274 /*
275 * The link training delays are different for:
276 *
277 * - Clock recovery vs. channel equalization
278 * - DPRX vs. LTTPR
279 * - 128b/132b vs. 8b/10b
280 * - DPCD rev 1.3 vs. later
281 *
282 * Get the correct delay in us, reading DPCD if necessary.
283 */
284 static int __read_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
285 enum drm_dp_phy dp_phy, bool uhbr, bool cr)
286 {
287 int (*parse)(const struct drm_dp_aux *aux, u8 rd_interval);
288 unsigned int offset;
289 u8 rd_interval, mask;
290
291 if (dp_phy == DP_PHY_DPRX) {
292 if (uhbr) {
293 if (cr)
294 return 100;
295
296 offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL;
297 mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
298 parse = __128b132b_channel_eq_delay_us;
299 } else {
300 if (cr && dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
301 return 100;
302
303 offset = DP_TRAINING_AUX_RD_INTERVAL;
304 mask = DP_TRAINING_AUX_RD_MASK;
305 if (cr)
306 parse = __8b10b_clock_recovery_delay_us;
307 else
308 parse = __8b10b_channel_eq_delay_us;
309 }
310 } else {
311 if (uhbr) {
312 offset = DP_128B132B_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
313 mask = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
314 parse = __128b132b_channel_eq_delay_us;
315 } else {
316 if (cr)
317 return 100;
318
319 offset = DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy);
320 mask = DP_TRAINING_AUX_RD_MASK;
321 parse = __8b10b_channel_eq_delay_us;
322 }
323 }
324
325 if (offset < DP_RECEIVER_CAP_SIZE) {
326 rd_interval = dpcd[offset];
327 } else {
328 if (drm_dp_dpcd_readb(aux, offset, &rd_interval) != 1) {
329 drm_dbg_kms(aux->drm_dev, "%s: failed rd interval read\n",
330 aux->name);
331 /* arbitrary default delay */
332 return 400;
333 }
334 }
335
336 return parse(aux, rd_interval & mask);
337 }
338
339 int drm_dp_read_clock_recovery_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
340 enum drm_dp_phy dp_phy, bool uhbr)
341 {
342 return __read_delay(aux, dpcd, dp_phy, uhbr, true);
343 }
344 EXPORT_SYMBOL(drm_dp_read_clock_recovery_delay);
345
346 int drm_dp_read_channel_eq_delay(struct drm_dp_aux *aux, const u8 dpcd[DP_RECEIVER_CAP_SIZE],
347 enum drm_dp_phy dp_phy, bool uhbr)
348 {
349 return __read_delay(aux, dpcd, dp_phy, uhbr, false);
350 }
351 EXPORT_SYMBOL(drm_dp_read_channel_eq_delay);
352
353 /* Per DP 2.0 Errata */
354 int drm_dp_128b132b_read_aux_rd_interval(struct drm_dp_aux *aux)
355 {
356 int unit;
357 u8 val;
358
359 if (drm_dp_dpcd_readb(aux, DP_128B132B_TRAINING_AUX_RD_INTERVAL, &val) != 1) {
360 drm_err(aux->drm_dev, "%s: failed rd interval read\n",
361 aux->name);
362 /* default to max */
363 val = DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
364 }
365
366 unit = (val & DP_128B132B_TRAINING_AUX_RD_INTERVAL_1MS_UNIT) ? 1 : 2;
367 val &= DP_128B132B_TRAINING_AUX_RD_INTERVAL_MASK;
368
369 return (val + 1) * unit * 1000;
370 }
371 EXPORT_SYMBOL(drm_dp_128b132b_read_aux_rd_interval);
372
373 void drm_dp_link_train_clock_recovery_delay(const struct drm_dp_aux *aux,
374 const u8 dpcd[DP_RECEIVER_CAP_SIZE])
375 {
376 u8 rd_interval = dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
377 DP_TRAINING_AUX_RD_MASK;
378 int delay_us;
379
380 if (dpcd[DP_DPCD_REV] >= DP_DPCD_REV_14)
381 delay_us = 100;
382 else
383 delay_us = __8b10b_clock_recovery_delay_us(aux, rd_interval);
384
385 usleep_range(delay_us, delay_us * 2);
386 }
387 EXPORT_SYMBOL(drm_dp_link_train_clock_recovery_delay);
388
389 static void __drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
390 u8 rd_interval)
391 {
392 int delay_us = __8b10b_channel_eq_delay_us(aux, rd_interval);
393
394 usleep_range(delay_us, delay_us * 2);
395 }
396
397 void drm_dp_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
398 const u8 dpcd[DP_RECEIVER_CAP_SIZE])
399 {
400 __drm_dp_link_train_channel_eq_delay(aux,
401 dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
402 DP_TRAINING_AUX_RD_MASK);
403 }
404 EXPORT_SYMBOL(drm_dp_link_train_channel_eq_delay);
405
406 /**
407 * drm_dp_phy_name() - Get the name of the given DP PHY
408 * @dp_phy: The DP PHY identifier
409 *
410 * Given the @dp_phy, get a user friendly name of the DP PHY, either "DPRX" or
411 * "LTTPR <N>", or "<INVALID DP PHY>" on errors. The returned string is always
412 * non-NULL and valid.
413 *
414 * Returns: Name of the DP PHY.
415 */
416 const char *drm_dp_phy_name(enum drm_dp_phy dp_phy)
417 {
418 static const char * const phy_names[] = {
419 [DP_PHY_DPRX] = "DPRX",
420 [DP_PHY_LTTPR1] = "LTTPR 1",
421 [DP_PHY_LTTPR2] = "LTTPR 2",
422 [DP_PHY_LTTPR3] = "LTTPR 3",
423 [DP_PHY_LTTPR4] = "LTTPR 4",
424 [DP_PHY_LTTPR5] = "LTTPR 5",
425 [DP_PHY_LTTPR6] = "LTTPR 6",
426 [DP_PHY_LTTPR7] = "LTTPR 7",
427 [DP_PHY_LTTPR8] = "LTTPR 8",
428 };
429
430 if (dp_phy < 0 || dp_phy >= ARRAY_SIZE(phy_names) ||
431 WARN_ON(!phy_names[dp_phy]))
432 return "<INVALID DP PHY>";
433
434 return phy_names[dp_phy];
435 }
436 EXPORT_SYMBOL(drm_dp_phy_name);
437
438 void drm_dp_lttpr_link_train_clock_recovery_delay(void)
439 {
440 usleep_range(100, 200);
441 }
442 EXPORT_SYMBOL(drm_dp_lttpr_link_train_clock_recovery_delay);
443
444 static u8 dp_lttpr_phy_cap(const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE], int r)
445 {
446 return phy_cap[r - DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1];
447 }
448
449 void drm_dp_lttpr_link_train_channel_eq_delay(const struct drm_dp_aux *aux,
450 const u8 phy_cap[DP_LTTPR_PHY_CAP_SIZE])
451 {
452 u8 interval = dp_lttpr_phy_cap(phy_cap,
453 DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER1) &
454 DP_TRAINING_AUX_RD_MASK;
455
456 __drm_dp_link_train_channel_eq_delay(aux, interval);
457 }
458 EXPORT_SYMBOL(drm_dp_lttpr_link_train_channel_eq_delay);
459
460 u8 drm_dp_link_rate_to_bw_code(int link_rate)
461 {
462 switch (link_rate) {
463 case 1000000:
464 return DP_LINK_BW_10;
465 case 1350000:
466 return DP_LINK_BW_13_5;
467 case 2000000:
468 return DP_LINK_BW_20;
469 default:
470 /* Spec says link_bw = link_rate / 0.27Gbps */
471 return link_rate / 27000;
472 }
473 }
474 EXPORT_SYMBOL(drm_dp_link_rate_to_bw_code);
475
476 int drm_dp_bw_code_to_link_rate(u8 link_bw)
477 {
478 switch (link_bw) {
479 case DP_LINK_BW_10:
480 return 1000000;
481 case DP_LINK_BW_13_5:
482 return 1350000;
483 case DP_LINK_BW_20:
484 return 2000000;
485 default:
486 /* Spec says link_rate = link_bw * 0.27Gbps */
487 return link_bw * 27000;
488 }
489 }
490 EXPORT_SYMBOL(drm_dp_bw_code_to_link_rate);
491
492 #define AUX_RETRY_INTERVAL 500 /* us */
493
494 static inline void
495 drm_dp_dump_access(const struct drm_dp_aux *aux,
496 u8 request, uint offset, void *buffer, int ret)
497 {
498 const char *arrow = request == DP_AUX_NATIVE_READ ? "->" : "<-";
499
500 if (ret > 0)
501 drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d) %*ph\n",
502 aux->name, offset, arrow, ret, min(ret, 20), buffer);
503 else
504 drm_dbg_dp(aux->drm_dev, "%s: 0x%05x AUX %s (ret=%3d)\n",
505 aux->name, offset, arrow, ret);
506 }
507
508 /**
509 * DOC: dp helpers
510 *
511 * The DisplayPort AUX channel is an abstraction to allow generic, driver-
512 * independent access to AUX functionality. Drivers can take advantage of
513 * this by filling in the fields of the drm_dp_aux structure.
514 *
515 * Transactions are described using a hardware-independent drm_dp_aux_msg
516 * structure, which is passed into a driver's .transfer() implementation.
517 * Both native and I2C-over-AUX transactions are supported.
518 */
519
520 static int drm_dp_dpcd_access(struct drm_dp_aux *aux, u8 request,
521 unsigned int offset, void *buffer, size_t size)
522 {
523 struct drm_dp_aux_msg msg;
524 unsigned int retry, native_reply;
525 int err = 0, ret = 0;
526
527 memset(&msg, 0, sizeof(msg));
528 msg.address = offset;
529 msg.request = request;
530 msg.buffer = buffer;
531 msg.size = size;
532
533 mutex_lock(&aux->hw_mutex);
534
535 /*
536 * The specification doesn't give any recommendation on how often to
537 * retry native transactions. We used to retry 7 times like for
538 * aux i2c transactions but real world devices this wasn't
539 * sufficient, bump to 32 which makes Dell 4k monitors happier.
540 */
541 for (retry = 0; retry < 32; retry++) {
542 if (ret != 0 && ret != -ETIMEDOUT) {
543 usleep_range(AUX_RETRY_INTERVAL,
544 AUX_RETRY_INTERVAL + 100);
545 }
546
547 ret = aux->transfer(aux, &msg);
548 if (ret >= 0) {
549 native_reply = msg.reply & DP_AUX_NATIVE_REPLY_MASK;
550 if (native_reply == DP_AUX_NATIVE_REPLY_ACK) {
551 if (ret == size)
552 goto unlock;
553
554 ret = -EPROTO;
555 } else
556 ret = -EIO;
557 }
558
559 /*
560 * We want the error we return to be the error we received on
561 * the first transaction, since we may get a different error the
562 * next time we retry
563 */
564 if (!err)
565 err = ret;
566 }
567
568 drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up. First error: %d\n",
569 aux->name, err);
570 ret = err;
571
572 unlock:
573 mutex_unlock(&aux->hw_mutex);
574 return ret;
575 }
576
577 /**
578 * drm_dp_dpcd_probe() - probe a given DPCD address with a 1-byte read access
579 * @aux: DisplayPort AUX channel (SST)
580 * @offset: address of the register to probe
581 *
582 * Probe the provided DPCD address by reading 1 byte from it. The function can
583 * be used to trigger some side-effect the read access has, like waking up the
584 * sink, without the need for the read-out value.
585 *
586 * Returns 0 if the read access suceeded, or a negative error code on failure.
587 */
588 int drm_dp_dpcd_probe(struct drm_dp_aux *aux, unsigned int offset)
589 {
590 u8 buffer;
591 int ret;
592
593 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, 1);
594 WARN_ON(ret == 0);
595
596 drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, &buffer, ret);
597
598 return ret < 0 ? ret : 0;
599 }
600 EXPORT_SYMBOL(drm_dp_dpcd_probe);
601
602 /**
603 * drm_dp_dpcd_read() - read a series of bytes from the DPCD
604 * @aux: DisplayPort AUX channel (SST or MST)
605 * @offset: address of the (first) register to read
606 * @buffer: buffer to store the register values
607 * @size: number of bytes in @buffer
608 *
609 * Returns the number of bytes transferred on success, or a negative error
610 * code on failure. -EIO is returned if the request was NAKed by the sink or
611 * if the retry count was exceeded. If not all bytes were transferred, this
612 * function returns -EPROTO. Errors from the underlying AUX channel transfer
613 * function, with the exception of -EBUSY (which causes the transaction to
614 * be retried), are propagated to the caller.
615 */
616 ssize_t drm_dp_dpcd_read(struct drm_dp_aux *aux, unsigned int offset,
617 void *buffer, size_t size)
618 {
619 int ret;
620
621 /*
622 * HP ZR24w corrupts the first DPCD access after entering power save
623 * mode. Eg. on a read, the entire buffer will be filled with the same
624 * byte. Do a throw away read to avoid corrupting anything we care
625 * about. Afterwards things will work correctly until the monitor
626 * gets woken up and subsequently re-enters power save mode.
627 *
628 * The user pressing any button on the monitor is enough to wake it
629 * up, so there is no particularly good place to do the workaround.
630 * We just have to do it before any DPCD access and hope that the
631 * monitor doesn't power down exactly after the throw away read.
632 */
633 if (!aux->is_remote) {
634 ret = drm_dp_dpcd_probe(aux, DP_DPCD_REV);
635 if (ret < 0)
636 return ret;
637 }
638
639 if (aux->is_remote)
640 ret = drm_dp_mst_dpcd_read(aux, offset, buffer, size);
641 else
642 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_READ, offset,
643 buffer, size);
644
645 drm_dp_dump_access(aux, DP_AUX_NATIVE_READ, offset, buffer, ret);
646 return ret;
647 }
648 EXPORT_SYMBOL(drm_dp_dpcd_read);
649
650 /**
651 * drm_dp_dpcd_write() - write a series of bytes to the DPCD
652 * @aux: DisplayPort AUX channel (SST or MST)
653 * @offset: address of the (first) register to write
654 * @buffer: buffer containing the values to write
655 * @size: number of bytes in @buffer
656 *
657 * Returns the number of bytes transferred on success, or a negative error
658 * code on failure. -EIO is returned if the request was NAKed by the sink or
659 * if the retry count was exceeded. If not all bytes were transferred, this
660 * function returns -EPROTO. Errors from the underlying AUX channel transfer
661 * function, with the exception of -EBUSY (which causes the transaction to
662 * be retried), are propagated to the caller.
663 */
664 ssize_t drm_dp_dpcd_write(struct drm_dp_aux *aux, unsigned int offset,
665 void *buffer, size_t size)
666 {
667 int ret;
668
669 if (aux->is_remote)
670 ret = drm_dp_mst_dpcd_write(aux, offset, buffer, size);
671 else
672 ret = drm_dp_dpcd_access(aux, DP_AUX_NATIVE_WRITE, offset,
673 buffer, size);
674
675 drm_dp_dump_access(aux, DP_AUX_NATIVE_WRITE, offset, buffer, ret);
676 return ret;
677 }
678 EXPORT_SYMBOL(drm_dp_dpcd_write);
679
680 /**
681 * drm_dp_dpcd_read_link_status() - read DPCD link status (bytes 0x202-0x207)
682 * @aux: DisplayPort AUX channel
683 * @status: buffer to store the link status in (must be at least 6 bytes)
684 *
685 * Returns the number of bytes transferred on success or a negative error
686 * code on failure.
687 */
688 int drm_dp_dpcd_read_link_status(struct drm_dp_aux *aux,
689 u8 status[DP_LINK_STATUS_SIZE])
690 {
691 return drm_dp_dpcd_read(aux, DP_LANE0_1_STATUS, status,
692 DP_LINK_STATUS_SIZE);
693 }
694 EXPORT_SYMBOL(drm_dp_dpcd_read_link_status);
695
696 /**
697 * drm_dp_dpcd_read_phy_link_status - get the link status information for a DP PHY
698 * @aux: DisplayPort AUX channel
699 * @dp_phy: the DP PHY to get the link status for
700 * @link_status: buffer to return the status in
701 *
702 * Fetch the AUX DPCD registers for the DPRX or an LTTPR PHY link status. The
703 * layout of the returned @link_status matches the DPCD register layout of the
704 * DPRX PHY link status.
705 *
706 * Returns 0 if the information was read successfully or a negative error code
707 * on failure.
708 */
709 int drm_dp_dpcd_read_phy_link_status(struct drm_dp_aux *aux,
710 enum drm_dp_phy dp_phy,
711 u8 link_status[DP_LINK_STATUS_SIZE])
712 {
713 int ret;
714
715 if (dp_phy == DP_PHY_DPRX) {
716 ret = drm_dp_dpcd_read(aux,
717 DP_LANE0_1_STATUS,
718 link_status,
719 DP_LINK_STATUS_SIZE);
720
721 if (ret < 0)
722 return ret;
723
724 WARN_ON(ret != DP_LINK_STATUS_SIZE);
725
726 return 0;
727 }
728
729 ret = drm_dp_dpcd_read(aux,
730 DP_LANE0_1_STATUS_PHY_REPEATER(dp_phy),
731 link_status,
732 DP_LINK_STATUS_SIZE - 1);
733
734 if (ret < 0)
735 return ret;
736
737 WARN_ON(ret != DP_LINK_STATUS_SIZE - 1);
738
739 /* Convert the LTTPR to the sink PHY link status layout */
740 memmove(&link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS + 1],
741 &link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS],
742 DP_LINK_STATUS_SIZE - (DP_SINK_STATUS - DP_LANE0_1_STATUS) - 1);
743 link_status[DP_SINK_STATUS - DP_LANE0_1_STATUS] = 0;
744
745 return 0;
746 }
747 EXPORT_SYMBOL(drm_dp_dpcd_read_phy_link_status);
748
749 static bool is_edid_digital_input_dp(const struct drm_edid *drm_edid)
750 {
751 /* FIXME: get rid of drm_edid_raw() */
752 const struct edid *edid = drm_edid_raw(drm_edid);
753
754 return edid && edid->revision >= 4 &&
755 edid->input & DRM_EDID_INPUT_DIGITAL &&
756 (edid->input & DRM_EDID_DIGITAL_TYPE_MASK) == DRM_EDID_DIGITAL_TYPE_DP;
757 }
758
759 /**
760 * drm_dp_downstream_is_type() - is the downstream facing port of certain type?
761 * @dpcd: DisplayPort configuration data
762 * @port_cap: port capabilities
763 * @type: port type to be checked. Can be:
764 * %DP_DS_PORT_TYPE_DP, %DP_DS_PORT_TYPE_VGA, %DP_DS_PORT_TYPE_DVI,
765 * %DP_DS_PORT_TYPE_HDMI, %DP_DS_PORT_TYPE_NON_EDID,
766 * %DP_DS_PORT_TYPE_DP_DUALMODE or %DP_DS_PORT_TYPE_WIRELESS.
767 *
768 * Caveat: Only works with DPCD 1.1+ port caps.
769 *
770 * Returns: whether the downstream facing port matches the type.
771 */
772 bool drm_dp_downstream_is_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
773 const u8 port_cap[4], u8 type)
774 {
775 return drm_dp_is_branch(dpcd) &&
776 dpcd[DP_DPCD_REV] >= 0x11 &&
777 (port_cap[0] & DP_DS_PORT_TYPE_MASK) == type;
778 }
779 EXPORT_SYMBOL(drm_dp_downstream_is_type);
780
781 /**
782 * drm_dp_downstream_is_tmds() - is the downstream facing port TMDS?
783 * @dpcd: DisplayPort configuration data
784 * @port_cap: port capabilities
785 * @drm_edid: EDID
786 *
787 * Returns: whether the downstream facing port is TMDS (HDMI/DVI).
788 */
789 bool drm_dp_downstream_is_tmds(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
790 const u8 port_cap[4],
791 const struct drm_edid *drm_edid)
792 {
793 if (dpcd[DP_DPCD_REV] < 0x11) {
794 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
795 case DP_DWN_STRM_PORT_TYPE_TMDS:
796 return true;
797 default:
798 return false;
799 }
800 }
801
802 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
803 case DP_DS_PORT_TYPE_DP_DUALMODE:
804 if (is_edid_digital_input_dp(drm_edid))
805 return false;
806 fallthrough;
807 case DP_DS_PORT_TYPE_DVI:
808 case DP_DS_PORT_TYPE_HDMI:
809 return true;
810 default:
811 return false;
812 }
813 }
814 EXPORT_SYMBOL(drm_dp_downstream_is_tmds);
815
816 /**
817 * drm_dp_send_real_edid_checksum() - send back real edid checksum value
818 * @aux: DisplayPort AUX channel
819 * @real_edid_checksum: real edid checksum for the last block
820 *
821 * Returns:
822 * True on success
823 */
824 bool drm_dp_send_real_edid_checksum(struct drm_dp_aux *aux,
825 u8 real_edid_checksum)
826 {
827 u8 link_edid_read = 0, auto_test_req = 0, test_resp = 0;
828
829 if (drm_dp_dpcd_read(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
830 &auto_test_req, 1) < 1) {
831 drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
832 aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
833 return false;
834 }
835 auto_test_req &= DP_AUTOMATED_TEST_REQUEST;
836
837 if (drm_dp_dpcd_read(aux, DP_TEST_REQUEST, &link_edid_read, 1) < 1) {
838 drm_err(aux->drm_dev, "%s: DPCD failed read at register 0x%x\n",
839 aux->name, DP_TEST_REQUEST);
840 return false;
841 }
842 link_edid_read &= DP_TEST_LINK_EDID_READ;
843
844 if (!auto_test_req || !link_edid_read) {
845 drm_dbg_kms(aux->drm_dev, "%s: Source DUT does not support TEST_EDID_READ\n",
846 aux->name);
847 return false;
848 }
849
850 if (drm_dp_dpcd_write(aux, DP_DEVICE_SERVICE_IRQ_VECTOR,
851 &auto_test_req, 1) < 1) {
852 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
853 aux->name, DP_DEVICE_SERVICE_IRQ_VECTOR);
854 return false;
855 }
856
857 /* send back checksum for the last edid extension block data */
858 if (drm_dp_dpcd_write(aux, DP_TEST_EDID_CHECKSUM,
859 &real_edid_checksum, 1) < 1) {
860 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
861 aux->name, DP_TEST_EDID_CHECKSUM);
862 return false;
863 }
864
865 test_resp |= DP_TEST_EDID_CHECKSUM_WRITE;
866 if (drm_dp_dpcd_write(aux, DP_TEST_RESPONSE, &test_resp, 1) < 1) {
867 drm_err(aux->drm_dev, "%s: DPCD failed write at register 0x%x\n",
868 aux->name, DP_TEST_RESPONSE);
869 return false;
870 }
871
872 return true;
873 }
874 EXPORT_SYMBOL(drm_dp_send_real_edid_checksum);
875
876 static u8 drm_dp_downstream_port_count(const u8 dpcd[DP_RECEIVER_CAP_SIZE])
877 {
878 u8 port_count = dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_PORT_COUNT_MASK;
879
880 if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE && port_count > 4)
881 port_count = 4;
882
883 return port_count;
884 }
885
886 static int drm_dp_read_extended_dpcd_caps(struct drm_dp_aux *aux,
887 u8 dpcd[DP_RECEIVER_CAP_SIZE])
888 {
889 u8 dpcd_ext[DP_RECEIVER_CAP_SIZE];
890 int ret;
891
892 /*
893 * Prior to DP1.3 the bit represented by
894 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
895 * If it is set DP_DPCD_REV at 0000h could be at a value less than
896 * the true capability of the panel. The only way to check is to
897 * then compare 0000h and 2200h.
898 */
899 if (!(dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
900 DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
901 return 0;
902
903 ret = drm_dp_dpcd_read(aux, DP_DP13_DPCD_REV, &dpcd_ext,
904 sizeof(dpcd_ext));
905 if (ret < 0)
906 return ret;
907 if (ret != sizeof(dpcd_ext))
908 return -EIO;
909
910 if (dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
911 drm_dbg_kms(aux->drm_dev,
912 "%s: Extended DPCD rev less than base DPCD rev (%d > %d)\n",
913 aux->name, dpcd[DP_DPCD_REV], dpcd_ext[DP_DPCD_REV]);
914 return 0;
915 }
916
917 if (!memcmp(dpcd, dpcd_ext, sizeof(dpcd_ext)))
918 return 0;
919
920 drm_dbg_kms(aux->drm_dev, "%s: Base DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
921
922 memcpy(dpcd, dpcd_ext, sizeof(dpcd_ext));
923
924 return 0;
925 }
926
927 /**
928 * drm_dp_read_dpcd_caps() - read DPCD caps and extended DPCD caps if
929 * available
930 * @aux: DisplayPort AUX channel
931 * @dpcd: Buffer to store the resulting DPCD in
932 *
933 * Attempts to read the base DPCD caps for @aux. Additionally, this function
934 * checks for and reads the extended DPRX caps (%DP_DP13_DPCD_REV) if
935 * present.
936 *
937 * Returns: %0 if the DPCD was read successfully, negative error code
938 * otherwise.
939 */
940 int drm_dp_read_dpcd_caps(struct drm_dp_aux *aux,
941 u8 dpcd[DP_RECEIVER_CAP_SIZE])
942 {
943 int ret;
944
945 ret = drm_dp_dpcd_read(aux, DP_DPCD_REV, dpcd, DP_RECEIVER_CAP_SIZE);
946 if (ret < 0)
947 return ret;
948 if (ret != DP_RECEIVER_CAP_SIZE || dpcd[DP_DPCD_REV] == 0)
949 return -EIO;
950
951 ret = drm_dp_read_extended_dpcd_caps(aux, dpcd);
952 if (ret < 0)
953 return ret;
954
955 drm_dbg_kms(aux->drm_dev, "%s: DPCD: %*ph\n", aux->name, DP_RECEIVER_CAP_SIZE, dpcd);
956
957 return ret;
958 }
959 EXPORT_SYMBOL(drm_dp_read_dpcd_caps);
960
961 /**
962 * drm_dp_read_downstream_info() - read DPCD downstream port info if available
963 * @aux: DisplayPort AUX channel
964 * @dpcd: A cached copy of the port's DPCD
965 * @downstream_ports: buffer to store the downstream port info in
966 *
967 * See also:
968 * drm_dp_downstream_max_clock()
969 * drm_dp_downstream_max_bpc()
970 *
971 * Returns: 0 if either the downstream port info was read successfully or
972 * there was no downstream info to read, or a negative error code otherwise.
973 */
974 int drm_dp_read_downstream_info(struct drm_dp_aux *aux,
975 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
976 u8 downstream_ports[DP_MAX_DOWNSTREAM_PORTS])
977 {
978 int ret;
979 u8 len;
980
981 memset(downstream_ports, 0, DP_MAX_DOWNSTREAM_PORTS);
982
983 /* No downstream info to read */
984 if (!drm_dp_is_branch(dpcd) || dpcd[DP_DPCD_REV] == DP_DPCD_REV_10)
985 return 0;
986
987 /* Some branches advertise having 0 downstream ports, despite also advertising they have a
988 * downstream port present. The DP spec isn't clear on if this is allowed or not, but since
989 * some branches do it we need to handle it regardless.
990 */
991 len = drm_dp_downstream_port_count(dpcd);
992 if (!len)
993 return 0;
994
995 if (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE)
996 len *= 4;
997
998 ret = drm_dp_dpcd_read(aux, DP_DOWNSTREAM_PORT_0, downstream_ports, len);
999 if (ret < 0)
1000 return ret;
1001 if (ret != len)
1002 return -EIO;
1003
1004 drm_dbg_kms(aux->drm_dev, "%s: DPCD DFP: %*ph\n", aux->name, len, downstream_ports);
1005
1006 return 0;
1007 }
1008 EXPORT_SYMBOL(drm_dp_read_downstream_info);
1009
1010 /**
1011 * drm_dp_downstream_max_dotclock() - extract downstream facing port max dot clock
1012 * @dpcd: DisplayPort configuration data
1013 * @port_cap: port capabilities
1014 *
1015 * Returns: Downstream facing port max dot clock in kHz on success,
1016 * or 0 if max clock not defined
1017 */
1018 int drm_dp_downstream_max_dotclock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1019 const u8 port_cap[4])
1020 {
1021 if (!drm_dp_is_branch(dpcd))
1022 return 0;
1023
1024 if (dpcd[DP_DPCD_REV] < 0x11)
1025 return 0;
1026
1027 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1028 case DP_DS_PORT_TYPE_VGA:
1029 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1030 return 0;
1031 return port_cap[1] * 8000;
1032 default:
1033 return 0;
1034 }
1035 }
1036 EXPORT_SYMBOL(drm_dp_downstream_max_dotclock);
1037
1038 /**
1039 * drm_dp_downstream_max_tmds_clock() - extract downstream facing port max TMDS clock
1040 * @dpcd: DisplayPort configuration data
1041 * @port_cap: port capabilities
1042 * @drm_edid: EDID
1043 *
1044 * Returns: HDMI/DVI downstream facing port max TMDS clock in kHz on success,
1045 * or 0 if max TMDS clock not defined
1046 */
1047 int drm_dp_downstream_max_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1048 const u8 port_cap[4],
1049 const struct drm_edid *drm_edid)
1050 {
1051 if (!drm_dp_is_branch(dpcd))
1052 return 0;
1053
1054 if (dpcd[DP_DPCD_REV] < 0x11) {
1055 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1056 case DP_DWN_STRM_PORT_TYPE_TMDS:
1057 return 165000;
1058 default:
1059 return 0;
1060 }
1061 }
1062
1063 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1064 case DP_DS_PORT_TYPE_DP_DUALMODE:
1065 if (is_edid_digital_input_dp(drm_edid))
1066 return 0;
1067 /*
1068 * It's left up to the driver to check the
1069 * DP dual mode adapter's max TMDS clock.
1070 *
1071 * Unfortunately it looks like branch devices
1072 * may not fordward that the DP dual mode i2c
1073 * access so we just usually get i2c nak :(
1074 */
1075 fallthrough;
1076 case DP_DS_PORT_TYPE_HDMI:
1077 /*
1078 * We should perhaps assume 165 MHz when detailed cap
1079 * info is not available. But looks like many typical
1080 * branch devices fall into that category and so we'd
1081 * probably end up with users complaining that they can't
1082 * get high resolution modes with their favorite dongle.
1083 *
1084 * So let's limit to 300 MHz instead since DPCD 1.4
1085 * HDMI 2.0 DFPs are required to have the detailed cap
1086 * info. So it's more likely we're dealing with a HDMI 1.4
1087 * compatible* device here.
1088 */
1089 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1090 return 300000;
1091 return port_cap[1] * 2500;
1092 case DP_DS_PORT_TYPE_DVI:
1093 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1094 return 165000;
1095 /* FIXME what to do about DVI dual link? */
1096 return port_cap[1] * 2500;
1097 default:
1098 return 0;
1099 }
1100 }
1101 EXPORT_SYMBOL(drm_dp_downstream_max_tmds_clock);
1102
1103 /**
1104 * drm_dp_downstream_min_tmds_clock() - extract downstream facing port min TMDS clock
1105 * @dpcd: DisplayPort configuration data
1106 * @port_cap: port capabilities
1107 * @drm_edid: EDID
1108 *
1109 * Returns: HDMI/DVI downstream facing port min TMDS clock in kHz on success,
1110 * or 0 if max TMDS clock not defined
1111 */
1112 int drm_dp_downstream_min_tmds_clock(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1113 const u8 port_cap[4],
1114 const struct drm_edid *drm_edid)
1115 {
1116 if (!drm_dp_is_branch(dpcd))
1117 return 0;
1118
1119 if (dpcd[DP_DPCD_REV] < 0x11) {
1120 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1121 case DP_DWN_STRM_PORT_TYPE_TMDS:
1122 return 25000;
1123 default:
1124 return 0;
1125 }
1126 }
1127
1128 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1129 case DP_DS_PORT_TYPE_DP_DUALMODE:
1130 if (is_edid_digital_input_dp(drm_edid))
1131 return 0;
1132 fallthrough;
1133 case DP_DS_PORT_TYPE_DVI:
1134 case DP_DS_PORT_TYPE_HDMI:
1135 /*
1136 * Unclear whether the protocol converter could
1137 * utilize pixel replication. Assume it won't.
1138 */
1139 return 25000;
1140 default:
1141 return 0;
1142 }
1143 }
1144 EXPORT_SYMBOL(drm_dp_downstream_min_tmds_clock);
1145
1146 /**
1147 * drm_dp_downstream_max_bpc() - extract downstream facing port max
1148 * bits per component
1149 * @dpcd: DisplayPort configuration data
1150 * @port_cap: downstream facing port capabilities
1151 * @drm_edid: EDID
1152 *
1153 * Returns: Max bpc on success or 0 if max bpc not defined
1154 */
1155 int drm_dp_downstream_max_bpc(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1156 const u8 port_cap[4],
1157 const struct drm_edid *drm_edid)
1158 {
1159 if (!drm_dp_is_branch(dpcd))
1160 return 0;
1161
1162 if (dpcd[DP_DPCD_REV] < 0x11) {
1163 switch (dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_TYPE_MASK) {
1164 case DP_DWN_STRM_PORT_TYPE_DP:
1165 return 0;
1166 default:
1167 return 8;
1168 }
1169 }
1170
1171 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1172 case DP_DS_PORT_TYPE_DP:
1173 return 0;
1174 case DP_DS_PORT_TYPE_DP_DUALMODE:
1175 if (is_edid_digital_input_dp(drm_edid))
1176 return 0;
1177 fallthrough;
1178 case DP_DS_PORT_TYPE_HDMI:
1179 case DP_DS_PORT_TYPE_DVI:
1180 case DP_DS_PORT_TYPE_VGA:
1181 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1182 return 8;
1183
1184 switch (port_cap[2] & DP_DS_MAX_BPC_MASK) {
1185 case DP_DS_8BPC:
1186 return 8;
1187 case DP_DS_10BPC:
1188 return 10;
1189 case DP_DS_12BPC:
1190 return 12;
1191 case DP_DS_16BPC:
1192 return 16;
1193 default:
1194 return 8;
1195 }
1196 break;
1197 default:
1198 return 8;
1199 }
1200 }
1201 EXPORT_SYMBOL(drm_dp_downstream_max_bpc);
1202
1203 /**
1204 * drm_dp_downstream_420_passthrough() - determine downstream facing port
1205 * YCbCr 4:2:0 pass-through capability
1206 * @dpcd: DisplayPort configuration data
1207 * @port_cap: downstream facing port capabilities
1208 *
1209 * Returns: whether the downstream facing port can pass through YCbCr 4:2:0
1210 */
1211 bool drm_dp_downstream_420_passthrough(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1212 const u8 port_cap[4])
1213 {
1214 if (!drm_dp_is_branch(dpcd))
1215 return false;
1216
1217 if (dpcd[DP_DPCD_REV] < 0x13)
1218 return false;
1219
1220 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1221 case DP_DS_PORT_TYPE_DP:
1222 return true;
1223 case DP_DS_PORT_TYPE_HDMI:
1224 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1225 return false;
1226
1227 return port_cap[3] & DP_DS_HDMI_YCBCR420_PASS_THROUGH;
1228 default:
1229 return false;
1230 }
1231 }
1232 EXPORT_SYMBOL(drm_dp_downstream_420_passthrough);
1233
1234 /**
1235 * drm_dp_downstream_444_to_420_conversion() - determine downstream facing port
1236 * YCbCr 4:4:4->4:2:0 conversion capability
1237 * @dpcd: DisplayPort configuration data
1238 * @port_cap: downstream facing port capabilities
1239 *
1240 * Returns: whether the downstream facing port can convert YCbCr 4:4:4 to 4:2:0
1241 */
1242 bool drm_dp_downstream_444_to_420_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1243 const u8 port_cap[4])
1244 {
1245 if (!drm_dp_is_branch(dpcd))
1246 return false;
1247
1248 if (dpcd[DP_DPCD_REV] < 0x13)
1249 return false;
1250
1251 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1252 case DP_DS_PORT_TYPE_HDMI:
1253 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1254 return false;
1255
1256 return port_cap[3] & DP_DS_HDMI_YCBCR444_TO_420_CONV;
1257 default:
1258 return false;
1259 }
1260 }
1261 EXPORT_SYMBOL(drm_dp_downstream_444_to_420_conversion);
1262
1263 /**
1264 * drm_dp_downstream_rgb_to_ycbcr_conversion() - determine downstream facing port
1265 * RGB->YCbCr conversion capability
1266 * @dpcd: DisplayPort configuration data
1267 * @port_cap: downstream facing port capabilities
1268 * @color_spc: Colorspace for which conversion cap is sought
1269 *
1270 * Returns: whether the downstream facing port can convert RGB->YCbCr for a given
1271 * colorspace.
1272 */
1273 bool drm_dp_downstream_rgb_to_ycbcr_conversion(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1274 const u8 port_cap[4],
1275 u8 color_spc)
1276 {
1277 if (!drm_dp_is_branch(dpcd))
1278 return false;
1279
1280 if (dpcd[DP_DPCD_REV] < 0x13)
1281 return false;
1282
1283 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1284 case DP_DS_PORT_TYPE_HDMI:
1285 if ((dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DETAILED_CAP_INFO_AVAILABLE) == 0)
1286 return false;
1287
1288 return port_cap[3] & color_spc;
1289 default:
1290 return false;
1291 }
1292 }
1293 EXPORT_SYMBOL(drm_dp_downstream_rgb_to_ycbcr_conversion);
1294
1295 /**
1296 * drm_dp_downstream_mode() - return a mode for downstream facing port
1297 * @dev: DRM device
1298 * @dpcd: DisplayPort configuration data
1299 * @port_cap: port capabilities
1300 *
1301 * Provides a suitable mode for downstream facing ports without EDID.
1302 *
1303 * Returns: A new drm_display_mode on success or NULL on failure
1304 */
1305 struct drm_display_mode *
1306 drm_dp_downstream_mode(struct drm_device *dev,
1307 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1308 const u8 port_cap[4])
1309
1310 {
1311 u8 vic;
1312
1313 if (!drm_dp_is_branch(dpcd))
1314 return NULL;
1315
1316 if (dpcd[DP_DPCD_REV] < 0x11)
1317 return NULL;
1318
1319 switch (port_cap[0] & DP_DS_PORT_TYPE_MASK) {
1320 case DP_DS_PORT_TYPE_NON_EDID:
1321 switch (port_cap[0] & DP_DS_NON_EDID_MASK) {
1322 case DP_DS_NON_EDID_720x480i_60:
1323 vic = 6;
1324 break;
1325 case DP_DS_NON_EDID_720x480i_50:
1326 vic = 21;
1327 break;
1328 case DP_DS_NON_EDID_1920x1080i_60:
1329 vic = 5;
1330 break;
1331 case DP_DS_NON_EDID_1920x1080i_50:
1332 vic = 20;
1333 break;
1334 case DP_DS_NON_EDID_1280x720_60:
1335 vic = 4;
1336 break;
1337 case DP_DS_NON_EDID_1280x720_50:
1338 vic = 19;
1339 break;
1340 default:
1341 return NULL;
1342 }
1343 return drm_display_mode_from_cea_vic(dev, vic);
1344 default:
1345 return NULL;
1346 }
1347 }
1348 EXPORT_SYMBOL(drm_dp_downstream_mode);
1349
1350 /**
1351 * drm_dp_downstream_id() - identify branch device
1352 * @aux: DisplayPort AUX channel
1353 * @id: DisplayPort branch device id
1354 *
1355 * Returns branch device id on success or NULL on failure
1356 */
1357 int drm_dp_downstream_id(struct drm_dp_aux *aux, char id[6])
1358 {
1359 return drm_dp_dpcd_read(aux, DP_BRANCH_ID, id, 6);
1360 }
1361 EXPORT_SYMBOL(drm_dp_downstream_id);
1362
1363 /**
1364 * drm_dp_downstream_debug() - debug DP branch devices
1365 * @m: pointer for debugfs file
1366 * @dpcd: DisplayPort configuration data
1367 * @port_cap: port capabilities
1368 * @drm_edid: EDID
1369 * @aux: DisplayPort AUX channel
1370 *
1371 */
1372 void drm_dp_downstream_debug(struct seq_file *m,
1373 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1374 const u8 port_cap[4],
1375 const struct drm_edid *drm_edid,
1376 struct drm_dp_aux *aux)
1377 {
1378 bool detailed_cap_info = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1379 DP_DETAILED_CAP_INFO_AVAILABLE;
1380 int clk;
1381 int bpc;
1382 char id[7];
1383 int len;
1384 uint8_t rev[2];
1385 int type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1386 bool branch_device = drm_dp_is_branch(dpcd);
1387
1388 seq_printf(m, "\tDP branch device present: %s\n",
1389 str_yes_no(branch_device));
1390
1391 if (!branch_device)
1392 return;
1393
1394 switch (type) {
1395 case DP_DS_PORT_TYPE_DP:
1396 seq_puts(m, "\t\tType: DisplayPort\n");
1397 break;
1398 case DP_DS_PORT_TYPE_VGA:
1399 seq_puts(m, "\t\tType: VGA\n");
1400 break;
1401 case DP_DS_PORT_TYPE_DVI:
1402 seq_puts(m, "\t\tType: DVI\n");
1403 break;
1404 case DP_DS_PORT_TYPE_HDMI:
1405 seq_puts(m, "\t\tType: HDMI\n");
1406 break;
1407 case DP_DS_PORT_TYPE_NON_EDID:
1408 seq_puts(m, "\t\tType: others without EDID support\n");
1409 break;
1410 case DP_DS_PORT_TYPE_DP_DUALMODE:
1411 seq_puts(m, "\t\tType: DP++\n");
1412 break;
1413 case DP_DS_PORT_TYPE_WIRELESS:
1414 seq_puts(m, "\t\tType: Wireless\n");
1415 break;
1416 default:
1417 seq_puts(m, "\t\tType: N/A\n");
1418 }
1419
1420 memset(id, 0, sizeof(id));
1421 drm_dp_downstream_id(aux, id);
1422 seq_printf(m, "\t\tID: %s\n", id);
1423
1424 len = drm_dp_dpcd_read(aux, DP_BRANCH_HW_REV, &rev[0], 1);
1425 if (len > 0)
1426 seq_printf(m, "\t\tHW: %d.%d\n",
1427 (rev[0] & 0xf0) >> 4, rev[0] & 0xf);
1428
1429 len = drm_dp_dpcd_read(aux, DP_BRANCH_SW_REV, rev, 2);
1430 if (len > 0)
1431 seq_printf(m, "\t\tSW: %d.%d\n", rev[0], rev[1]);
1432
1433 if (detailed_cap_info) {
1434 clk = drm_dp_downstream_max_dotclock(dpcd, port_cap);
1435 if (clk > 0)
1436 seq_printf(m, "\t\tMax dot clock: %d kHz\n", clk);
1437
1438 clk = drm_dp_downstream_max_tmds_clock(dpcd, port_cap, drm_edid);
1439 if (clk > 0)
1440 seq_printf(m, "\t\tMax TMDS clock: %d kHz\n", clk);
1441
1442 clk = drm_dp_downstream_min_tmds_clock(dpcd, port_cap, drm_edid);
1443 if (clk > 0)
1444 seq_printf(m, "\t\tMin TMDS clock: %d kHz\n", clk);
1445
1446 bpc = drm_dp_downstream_max_bpc(dpcd, port_cap, drm_edid);
1447
1448 if (bpc > 0)
1449 seq_printf(m, "\t\tMax bpc: %d\n", bpc);
1450 }
1451 }
1452 EXPORT_SYMBOL(drm_dp_downstream_debug);
1453
1454 /**
1455 * drm_dp_subconnector_type() - get DP branch device type
1456 * @dpcd: DisplayPort configuration data
1457 * @port_cap: port capabilities
1458 */
1459 enum drm_mode_subconnector
1460 drm_dp_subconnector_type(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1461 const u8 port_cap[4])
1462 {
1463 int type;
1464 if (!drm_dp_is_branch(dpcd))
1465 return DRM_MODE_SUBCONNECTOR_Native;
1466 /* DP 1.0 approach */
1467 if (dpcd[DP_DPCD_REV] == DP_DPCD_REV_10) {
1468 type = dpcd[DP_DOWNSTREAMPORT_PRESENT] &
1469 DP_DWN_STRM_PORT_TYPE_MASK;
1470
1471 switch (type) {
1472 case DP_DWN_STRM_PORT_TYPE_TMDS:
1473 /* Can be HDMI or DVI-D, DVI-D is a safer option */
1474 return DRM_MODE_SUBCONNECTOR_DVID;
1475 case DP_DWN_STRM_PORT_TYPE_ANALOG:
1476 /* Can be VGA or DVI-A, VGA is more popular */
1477 return DRM_MODE_SUBCONNECTOR_VGA;
1478 case DP_DWN_STRM_PORT_TYPE_DP:
1479 return DRM_MODE_SUBCONNECTOR_DisplayPort;
1480 case DP_DWN_STRM_PORT_TYPE_OTHER:
1481 default:
1482 return DRM_MODE_SUBCONNECTOR_Unknown;
1483 }
1484 }
1485 type = port_cap[0] & DP_DS_PORT_TYPE_MASK;
1486
1487 switch (type) {
1488 case DP_DS_PORT_TYPE_DP:
1489 case DP_DS_PORT_TYPE_DP_DUALMODE:
1490 return DRM_MODE_SUBCONNECTOR_DisplayPort;
1491 case DP_DS_PORT_TYPE_VGA:
1492 return DRM_MODE_SUBCONNECTOR_VGA;
1493 case DP_DS_PORT_TYPE_DVI:
1494 return DRM_MODE_SUBCONNECTOR_DVID;
1495 case DP_DS_PORT_TYPE_HDMI:
1496 return DRM_MODE_SUBCONNECTOR_HDMIA;
1497 case DP_DS_PORT_TYPE_WIRELESS:
1498 return DRM_MODE_SUBCONNECTOR_Wireless;
1499 case DP_DS_PORT_TYPE_NON_EDID:
1500 default:
1501 return DRM_MODE_SUBCONNECTOR_Unknown;
1502 }
1503 }
1504 EXPORT_SYMBOL(drm_dp_subconnector_type);
1505
1506 /**
1507 * drm_dp_set_subconnector_property - set subconnector for DP connector
1508 * @connector: connector to set property on
1509 * @status: connector status
1510 * @dpcd: DisplayPort configuration data
1511 * @port_cap: port capabilities
1512 *
1513 * Called by a driver on every detect event.
1514 */
1515 void drm_dp_set_subconnector_property(struct drm_connector *connector,
1516 enum drm_connector_status status,
1517 const u8 *dpcd,
1518 const u8 port_cap[4])
1519 {
1520 enum drm_mode_subconnector subconnector = DRM_MODE_SUBCONNECTOR_Unknown;
1521
1522 if (status == connector_status_connected)
1523 subconnector = drm_dp_subconnector_type(dpcd, port_cap);
1524 drm_object_property_set_value(&connector->base,
1525 connector->dev->mode_config.dp_subconnector_property,
1526 subconnector);
1527 }
1528 EXPORT_SYMBOL(drm_dp_set_subconnector_property);
1529
1530 /**
1531 * drm_dp_read_sink_count_cap() - Check whether a given connector has a valid sink
1532 * count
1533 * @connector: The DRM connector to check
1534 * @dpcd: A cached copy of the connector's DPCD RX capabilities
1535 * @desc: A cached copy of the connector's DP descriptor
1536 *
1537 * See also: drm_dp_read_sink_count()
1538 *
1539 * Returns: %True if the (e)DP connector has a valid sink count that should
1540 * be probed, %false otherwise.
1541 */
1542 bool drm_dp_read_sink_count_cap(struct drm_connector *connector,
1543 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
1544 const struct drm_dp_desc *desc)
1545 {
1546 /* Some eDP panels don't set a valid value for the sink count */
1547 return connector->connector_type != DRM_MODE_CONNECTOR_eDP &&
1548 dpcd[DP_DPCD_REV] >= DP_DPCD_REV_11 &&
1549 dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
1550 !drm_dp_has_quirk(desc, DP_DPCD_QUIRK_NO_SINK_COUNT);
1551 }
1552 EXPORT_SYMBOL(drm_dp_read_sink_count_cap);
1553
1554 /**
1555 * drm_dp_read_sink_count() - Retrieve the sink count for a given sink
1556 * @aux: The DP AUX channel to use
1557 *
1558 * See also: drm_dp_read_sink_count_cap()
1559 *
1560 * Returns: The current sink count reported by @aux, or a negative error code
1561 * otherwise.
1562 */
1563 int drm_dp_read_sink_count(struct drm_dp_aux *aux)
1564 {
1565 u8 count;
1566 int ret;
1567
1568 ret = drm_dp_dpcd_readb(aux, DP_SINK_COUNT, &count);
1569 if (ret < 0)
1570 return ret;
1571 if (ret != 1)
1572 return -EIO;
1573
1574 return DP_GET_SINK_COUNT(count);
1575 }
1576 EXPORT_SYMBOL(drm_dp_read_sink_count);
1577
1578 /*
1579 * I2C-over-AUX implementation
1580 */
1581
1582 static u32 drm_dp_i2c_functionality(struct i2c_adapter *adapter)
1583 {
1584 return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
1585 I2C_FUNC_SMBUS_READ_BLOCK_DATA |
1586 I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
1587 I2C_FUNC_10BIT_ADDR;
1588 }
1589
1590 static void drm_dp_i2c_msg_write_status_update(struct drm_dp_aux_msg *msg)
1591 {
1592 /*
1593 * In case of i2c defer or short i2c ack reply to a write,
1594 * we need to switch to WRITE_STATUS_UPDATE to drain the
1595 * rest of the message
1596 */
1597 if ((msg->request & ~DP_AUX_I2C_MOT) == DP_AUX_I2C_WRITE) {
1598 msg->request &= DP_AUX_I2C_MOT;
1599 msg->request |= DP_AUX_I2C_WRITE_STATUS_UPDATE;
1600 }
1601 }
1602
1603 #define AUX_PRECHARGE_LEN 10 /* 10 to 16 */
1604 #define AUX_SYNC_LEN (16 + 4) /* preamble + AUX_SYNC_END */
1605 #define AUX_STOP_LEN 4
1606 #define AUX_CMD_LEN 4
1607 #define AUX_ADDRESS_LEN 20
1608 #define AUX_REPLY_PAD_LEN 4
1609 #define AUX_LENGTH_LEN 8
1610
1611 /*
1612 * Calculate the duration of the AUX request/reply in usec. Gives the
1613 * "best" case estimate, ie. successful while as short as possible.
1614 */
1615 static int drm_dp_aux_req_duration(const struct drm_dp_aux_msg *msg)
1616 {
1617 int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1618 AUX_CMD_LEN + AUX_ADDRESS_LEN + AUX_LENGTH_LEN;
1619
1620 if ((msg->request & DP_AUX_I2C_READ) == 0)
1621 len += msg->size * 8;
1622
1623 return len;
1624 }
1625
1626 static int drm_dp_aux_reply_duration(const struct drm_dp_aux_msg *msg)
1627 {
1628 int len = AUX_PRECHARGE_LEN + AUX_SYNC_LEN + AUX_STOP_LEN +
1629 AUX_CMD_LEN + AUX_REPLY_PAD_LEN;
1630
1631 /*
1632 * For read we expect what was asked. For writes there will
1633 * be 0 or 1 data bytes. Assume 0 for the "best" case.
1634 */
1635 if (msg->request & DP_AUX_I2C_READ)
1636 len += msg->size * 8;
1637
1638 return len;
1639 }
1640
1641 #define I2C_START_LEN 1
1642 #define I2C_STOP_LEN 1
1643 #define I2C_ADDR_LEN 9 /* ADDRESS + R/W + ACK/NACK */
1644 #define I2C_DATA_LEN 9 /* DATA + ACK/NACK */
1645
1646 /*
1647 * Calculate the length of the i2c transfer in usec, assuming
1648 * the i2c bus speed is as specified. Gives the "worst"
1649 * case estimate, ie. successful while as long as possible.
1650 * Doesn't account the "MOT" bit, and instead assumes each
1651 * message includes a START, ADDRESS and STOP. Neither does it
1652 * account for additional random variables such as clock stretching.
1653 */
1654 static int drm_dp_i2c_msg_duration(const struct drm_dp_aux_msg *msg,
1655 int i2c_speed_khz)
1656 {
1657 /* AUX bitrate is 1MHz, i2c bitrate as specified */
1658 return DIV_ROUND_UP((I2C_START_LEN + I2C_ADDR_LEN +
1659 msg->size * I2C_DATA_LEN +
1660 I2C_STOP_LEN) * 1000, i2c_speed_khz);
1661 }
1662
1663 /*
1664 * Determine how many retries should be attempted to successfully transfer
1665 * the specified message, based on the estimated durations of the
1666 * i2c and AUX transfers.
1667 */
1668 static int drm_dp_i2c_retry_count(const struct drm_dp_aux_msg *msg,
1669 int i2c_speed_khz)
1670 {
1671 int aux_time_us = drm_dp_aux_req_duration(msg) +
1672 drm_dp_aux_reply_duration(msg);
1673 int i2c_time_us = drm_dp_i2c_msg_duration(msg, i2c_speed_khz);
1674
1675 return DIV_ROUND_UP(i2c_time_us, aux_time_us + AUX_RETRY_INTERVAL);
1676 }
1677
1678 /*
1679 * FIXME currently assumes 10 kHz as some real world devices seem
1680 * to require it. We should query/set the speed via DPCD if supported.
1681 */
1682 static int dp_aux_i2c_speed_khz __read_mostly = 10;
1683 module_param_unsafe(dp_aux_i2c_speed_khz, int, 0644);
1684 MODULE_PARM_DESC(dp_aux_i2c_speed_khz,
1685 "Assumed speed of the i2c bus in kHz, (1-400, default 10)");
1686
1687 /*
1688 * Transfer a single I2C-over-AUX message and handle various error conditions,
1689 * retrying the transaction as appropriate. It is assumed that the
1690 * &drm_dp_aux.transfer function does not modify anything in the msg other than the
1691 * reply field.
1692 *
1693 * Returns bytes transferred on success, or a negative error code on failure.
1694 */
1695 static int drm_dp_i2c_do_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1696 {
1697 unsigned int retry, defer_i2c;
1698 int ret;
1699 /*
1700 * DP1.2 sections 2.7.7.1.5.6.1 and 2.7.7.1.6.6.1: A DP Source device
1701 * is required to retry at least seven times upon receiving AUX_DEFER
1702 * before giving up the AUX transaction.
1703 *
1704 * We also try to account for the i2c bus speed.
1705 */
1706 int max_retries = max(7, drm_dp_i2c_retry_count(msg, dp_aux_i2c_speed_khz));
1707
1708 for (retry = 0, defer_i2c = 0; retry < (max_retries + defer_i2c); retry++) {
1709 ret = aux->transfer(aux, msg);
1710 if (ret < 0) {
1711 if (ret == -EBUSY)
1712 continue;
1713
1714 /*
1715 * While timeouts can be errors, they're usually normal
1716 * behavior (for instance, when a driver tries to
1717 * communicate with a non-existent DisplayPort device).
1718 * Avoid spamming the kernel log with timeout errors.
1719 */
1720 if (ret == -ETIMEDOUT)
1721 drm_dbg_kms_ratelimited(aux->drm_dev, "%s: transaction timed out\n",
1722 aux->name);
1723 else
1724 drm_dbg_kms(aux->drm_dev, "%s: transaction failed: %d\n",
1725 aux->name, ret);
1726 return ret;
1727 }
1728
1729
1730 switch (msg->reply & DP_AUX_NATIVE_REPLY_MASK) {
1731 case DP_AUX_NATIVE_REPLY_ACK:
1732 /*
1733 * For I2C-over-AUX transactions this isn't enough, we
1734 * need to check for the I2C ACK reply.
1735 */
1736 break;
1737
1738 case DP_AUX_NATIVE_REPLY_NACK:
1739 drm_dbg_kms(aux->drm_dev, "%s: native nack (result=%d, size=%zu)\n",
1740 aux->name, ret, msg->size);
1741 return -EREMOTEIO;
1742
1743 case DP_AUX_NATIVE_REPLY_DEFER:
1744 drm_dbg_kms(aux->drm_dev, "%s: native defer\n", aux->name);
1745 /*
1746 * We could check for I2C bit rate capabilities and if
1747 * available adjust this interval. We could also be
1748 * more careful with DP-to-legacy adapters where a
1749 * long legacy cable may force very low I2C bit rates.
1750 *
1751 * For now just defer for long enough to hopefully be
1752 * safe for all use-cases.
1753 */
1754 usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1755 continue;
1756
1757 default:
1758 drm_err(aux->drm_dev, "%s: invalid native reply %#04x\n",
1759 aux->name, msg->reply);
1760 return -EREMOTEIO;
1761 }
1762
1763 switch (msg->reply & DP_AUX_I2C_REPLY_MASK) {
1764 case DP_AUX_I2C_REPLY_ACK:
1765 /*
1766 * Both native ACK and I2C ACK replies received. We
1767 * can assume the transfer was successful.
1768 */
1769 if (ret != msg->size)
1770 drm_dp_i2c_msg_write_status_update(msg);
1771 return ret;
1772
1773 case DP_AUX_I2C_REPLY_NACK:
1774 drm_dbg_kms(aux->drm_dev, "%s: I2C nack (result=%d, size=%zu)\n",
1775 aux->name, ret, msg->size);
1776 aux->i2c_nack_count++;
1777 return -EREMOTEIO;
1778
1779 case DP_AUX_I2C_REPLY_DEFER:
1780 drm_dbg_kms(aux->drm_dev, "%s: I2C defer\n", aux->name);
1781 /* DP Compliance Test 4.2.2.5 Requirement:
1782 * Must have at least 7 retries for I2C defers on the
1783 * transaction to pass this test
1784 */
1785 aux->i2c_defer_count++;
1786 if (defer_i2c < 7)
1787 defer_i2c++;
1788 usleep_range(AUX_RETRY_INTERVAL, AUX_RETRY_INTERVAL + 100);
1789 drm_dp_i2c_msg_write_status_update(msg);
1790
1791 continue;
1792
1793 default:
1794 drm_err(aux->drm_dev, "%s: invalid I2C reply %#04x\n",
1795 aux->name, msg->reply);
1796 return -EREMOTEIO;
1797 }
1798 }
1799
1800 drm_dbg_kms(aux->drm_dev, "%s: Too many retries, giving up\n", aux->name);
1801 return -EREMOTEIO;
1802 }
1803
1804 static void drm_dp_i2c_msg_set_request(struct drm_dp_aux_msg *msg,
1805 const struct i2c_msg *i2c_msg)
1806 {
1807 msg->request = (i2c_msg->flags & I2C_M_RD) ?
1808 DP_AUX_I2C_READ : DP_AUX_I2C_WRITE;
1809 if (!(i2c_msg->flags & I2C_M_STOP))
1810 msg->request |= DP_AUX_I2C_MOT;
1811 }
1812
1813 /*
1814 * Keep retrying drm_dp_i2c_do_msg until all data has been transferred.
1815 *
1816 * Returns an error code on failure, or a recommended transfer size on success.
1817 */
1818 static int drm_dp_i2c_drain_msg(struct drm_dp_aux *aux, struct drm_dp_aux_msg *orig_msg)
1819 {
1820 int err, ret = orig_msg->size;
1821 struct drm_dp_aux_msg msg = *orig_msg;
1822
1823 while (msg.size > 0) {
1824 err = drm_dp_i2c_do_msg(aux, &msg);
1825 if (err <= 0)
1826 return err == 0 ? -EPROTO : err;
1827
1828 if (err < msg.size && err < ret) {
1829 drm_dbg_kms(aux->drm_dev,
1830 "%s: Partial I2C reply: requested %zu bytes got %d bytes\n",
1831 aux->name, msg.size, err);
1832 ret = err;
1833 }
1834
1835 msg.size -= err;
1836 msg.buffer += err;
1837 }
1838
1839 return ret;
1840 }
1841
1842 /*
1843 * Bizlink designed DP->DVI-D Dual Link adapters require the I2C over AUX
1844 * packets to be as large as possible. If not, the I2C transactions never
1845 * succeed. Hence the default is maximum.
1846 */
1847 static int dp_aux_i2c_transfer_size __read_mostly = DP_AUX_MAX_PAYLOAD_BYTES;
1848 module_param_unsafe(dp_aux_i2c_transfer_size, int, 0644);
1849 MODULE_PARM_DESC(dp_aux_i2c_transfer_size,
1850 "Number of bytes to transfer in a single I2C over DP AUX CH message, (1-16, default 16)");
1851
1852 static int drm_dp_i2c_xfer(struct i2c_adapter *adapter, struct i2c_msg *msgs,
1853 int num)
1854 {
1855 struct drm_dp_aux *aux = adapter->algo_data;
1856 unsigned int i, j;
1857 unsigned transfer_size;
1858 struct drm_dp_aux_msg msg;
1859 int err = 0;
1860
1861 dp_aux_i2c_transfer_size = clamp(dp_aux_i2c_transfer_size, 1, DP_AUX_MAX_PAYLOAD_BYTES);
1862
1863 memset(&msg, 0, sizeof(msg));
1864
1865 for (i = 0; i < num; i++) {
1866 msg.address = msgs[i].addr;
1867 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1868 /* Send a bare address packet to start the transaction.
1869 * Zero sized messages specify an address only (bare
1870 * address) transaction.
1871 */
1872 msg.buffer = NULL;
1873 msg.size = 0;
1874 err = drm_dp_i2c_do_msg(aux, &msg);
1875
1876 /*
1877 * Reset msg.request in case in case it got
1878 * changed into a WRITE_STATUS_UPDATE.
1879 */
1880 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1881
1882 if (err < 0)
1883 break;
1884 /* We want each transaction to be as large as possible, but
1885 * we'll go to smaller sizes if the hardware gives us a
1886 * short reply.
1887 */
1888 transfer_size = dp_aux_i2c_transfer_size;
1889 for (j = 0; j < msgs[i].len; j += msg.size) {
1890 msg.buffer = msgs[i].buf + j;
1891 msg.size = min(transfer_size, msgs[i].len - j);
1892
1893 err = drm_dp_i2c_drain_msg(aux, &msg);
1894
1895 /*
1896 * Reset msg.request in case in case it got
1897 * changed into a WRITE_STATUS_UPDATE.
1898 */
1899 drm_dp_i2c_msg_set_request(&msg, &msgs[i]);
1900
1901 if (err < 0)
1902 break;
1903 transfer_size = err;
1904 }
1905 if (err < 0)
1906 break;
1907 }
1908 if (err >= 0)
1909 err = num;
1910 /* Send a bare address packet to close out the transaction.
1911 * Zero sized messages specify an address only (bare
1912 * address) transaction.
1913 */
1914 msg.request &= ~DP_AUX_I2C_MOT;
1915 msg.buffer = NULL;
1916 msg.size = 0;
1917 (void)drm_dp_i2c_do_msg(aux, &msg);
1918
1919 return err;
1920 }
1921
1922 static const struct i2c_algorithm drm_dp_i2c_algo = {
1923 .functionality = drm_dp_i2c_functionality,
1924 .master_xfer = drm_dp_i2c_xfer,
1925 };
1926
1927 static struct drm_dp_aux *i2c_to_aux(struct i2c_adapter *i2c)
1928 {
1929 return container_of(i2c, struct drm_dp_aux, ddc);
1930 }
1931
1932 static void lock_bus(struct i2c_adapter *i2c, unsigned int flags)
1933 {
1934 mutex_lock(&i2c_to_aux(i2c)->hw_mutex);
1935 }
1936
1937 static int trylock_bus(struct i2c_adapter *i2c, unsigned int flags)
1938 {
1939 return mutex_trylock(&i2c_to_aux(i2c)->hw_mutex);
1940 }
1941
1942 static void unlock_bus(struct i2c_adapter *i2c, unsigned int flags)
1943 {
1944 mutex_unlock(&i2c_to_aux(i2c)->hw_mutex);
1945 }
1946
1947 static const struct i2c_lock_operations drm_dp_i2c_lock_ops = {
1948 .lock_bus = lock_bus,
1949 .trylock_bus = trylock_bus,
1950 .unlock_bus = unlock_bus,
1951 };
1952
1953 static int drm_dp_aux_get_crc(struct drm_dp_aux *aux, u8 *crc)
1954 {
1955 u8 buf, count;
1956 int ret;
1957
1958 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
1959 if (ret < 0)
1960 return ret;
1961
1962 WARN_ON(!(buf & DP_TEST_SINK_START));
1963
1964 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK_MISC, &buf);
1965 if (ret < 0)
1966 return ret;
1967
1968 count = buf & DP_TEST_COUNT_MASK;
1969 if (count == aux->crc_count)
1970 return -EAGAIN; /* No CRC yet */
1971
1972 aux->crc_count = count;
1973
1974 /*
1975 * At DP_TEST_CRC_R_CR, there's 6 bytes containing CRC data, 2 bytes
1976 * per component (RGB or CrYCb).
1977 */
1978 ret = drm_dp_dpcd_read(aux, DP_TEST_CRC_R_CR, crc, 6);
1979 if (ret < 0)
1980 return ret;
1981
1982 return 0;
1983 }
1984
1985 static void drm_dp_aux_crc_work(struct work_struct *work)
1986 {
1987 struct drm_dp_aux *aux = container_of(work, struct drm_dp_aux,
1988 crc_work);
1989 struct drm_crtc *crtc;
1990 u8 crc_bytes[6];
1991 uint32_t crcs[3];
1992 int ret;
1993
1994 if (WARN_ON(!aux->crtc))
1995 return;
1996
1997 crtc = aux->crtc;
1998 while (crtc->crc.opened) {
1999 drm_crtc_wait_one_vblank(crtc);
2000 if (!crtc->crc.opened)
2001 break;
2002
2003 ret = drm_dp_aux_get_crc(aux, crc_bytes);
2004 if (ret == -EAGAIN) {
2005 usleep_range(1000, 2000);
2006 ret = drm_dp_aux_get_crc(aux, crc_bytes);
2007 }
2008
2009 if (ret == -EAGAIN) {
2010 drm_dbg_kms(aux->drm_dev, "%s: Get CRC failed after retrying: %d\n",
2011 aux->name, ret);
2012 continue;
2013 } else if (ret) {
2014 drm_dbg_kms(aux->drm_dev, "%s: Failed to get a CRC: %d\n", aux->name, ret);
2015 continue;
2016 }
2017
2018 crcs[0] = crc_bytes[0] | crc_bytes[1] << 8;
2019 crcs[1] = crc_bytes[2] | crc_bytes[3] << 8;
2020 crcs[2] = crc_bytes[4] | crc_bytes[5] << 8;
2021 drm_crtc_add_crc_entry(crtc, false, 0, crcs);
2022 }
2023 }
2024
2025 /**
2026 * drm_dp_remote_aux_init() - minimally initialise a remote aux channel
2027 * @aux: DisplayPort AUX channel
2028 *
2029 * Used for remote aux channel in general. Merely initialize the crc work
2030 * struct.
2031 */
2032 void drm_dp_remote_aux_init(struct drm_dp_aux *aux)
2033 {
2034 INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2035 }
2036 EXPORT_SYMBOL(drm_dp_remote_aux_init);
2037
2038 /**
2039 * drm_dp_aux_init() - minimally initialise an aux channel
2040 * @aux: DisplayPort AUX channel
2041 *
2042 * If you need to use the drm_dp_aux's i2c adapter prior to registering it with
2043 * the outside world, call drm_dp_aux_init() first. For drivers which are
2044 * grandparents to their AUX adapters (e.g. the AUX adapter is parented by a
2045 * &drm_connector), you must still call drm_dp_aux_register() once the connector
2046 * has been registered to allow userspace access to the auxiliary DP channel.
2047 * Likewise, for such drivers you should also assign &drm_dp_aux.drm_dev as
2048 * early as possible so that the &drm_device that corresponds to the AUX adapter
2049 * may be mentioned in debugging output from the DRM DP helpers.
2050 *
2051 * For devices which use a separate platform device for their AUX adapters, this
2052 * may be called as early as required by the driver.
2053 *
2054 */
2055 void drm_dp_aux_init(struct drm_dp_aux *aux)
2056 {
2057 mutex_init(&aux->hw_mutex);
2058 mutex_init(&aux->cec.lock);
2059 INIT_WORK(&aux->crc_work, drm_dp_aux_crc_work);
2060
2061 aux->ddc.algo = &drm_dp_i2c_algo;
2062 aux->ddc.algo_data = aux;
2063 aux->ddc.retries = 3;
2064
2065 aux->ddc.lock_ops = &drm_dp_i2c_lock_ops;
2066 }
2067 EXPORT_SYMBOL(drm_dp_aux_init);
2068
2069 /**
2070 * drm_dp_aux_register() - initialise and register aux channel
2071 * @aux: DisplayPort AUX channel
2072 *
2073 * Automatically calls drm_dp_aux_init() if this hasn't been done yet. This
2074 * should only be called once the parent of @aux, &drm_dp_aux.dev, is
2075 * initialized. For devices which are grandparents of their AUX channels,
2076 * &drm_dp_aux.dev will typically be the &drm_connector &device which
2077 * corresponds to @aux. For these devices, it's advised to call
2078 * drm_dp_aux_register() in &drm_connector_funcs.late_register, and likewise to
2079 * call drm_dp_aux_unregister() in &drm_connector_funcs.early_unregister.
2080 * Functions which don't follow this will likely Oops when
2081 * %CONFIG_DRM_DP_AUX_CHARDEV is enabled.
2082 *
2083 * For devices where the AUX channel is a device that exists independently of
2084 * the &drm_device that uses it, such as SoCs and bridge devices, it is
2085 * recommended to call drm_dp_aux_register() after a &drm_device has been
2086 * assigned to &drm_dp_aux.drm_dev, and likewise to call
2087 * drm_dp_aux_unregister() once the &drm_device should no longer be associated
2088 * with the AUX channel (e.g. on bridge detach).
2089 *
2090 * Drivers which need to use the aux channel before either of the two points
2091 * mentioned above need to call drm_dp_aux_init() in order to use the AUX
2092 * channel before registration.
2093 *
2094 * Returns 0 on success or a negative error code on failure.
2095 */
2096 int drm_dp_aux_register(struct drm_dp_aux *aux)
2097 {
2098 int ret;
2099
2100 WARN_ON_ONCE(!aux->drm_dev);
2101
2102 if (!aux->ddc.algo)
2103 drm_dp_aux_init(aux);
2104
2105 aux->ddc.owner = THIS_MODULE;
2106 aux->ddc.dev.parent = aux->dev;
2107
2108 strscpy(aux->ddc.name, aux->name ? aux->name : dev_name(aux->dev),
2109 sizeof(aux->ddc.name));
2110
2111 ret = drm_dp_aux_register_devnode(aux);
2112 if (ret)
2113 return ret;
2114
2115 ret = i2c_add_adapter(&aux->ddc);
2116 if (ret) {
2117 drm_dp_aux_unregister_devnode(aux);
2118 return ret;
2119 }
2120
2121 return 0;
2122 }
2123 EXPORT_SYMBOL(drm_dp_aux_register);
2124
2125 /**
2126 * drm_dp_aux_unregister() - unregister an AUX adapter
2127 * @aux: DisplayPort AUX channel
2128 */
2129 void drm_dp_aux_unregister(struct drm_dp_aux *aux)
2130 {
2131 drm_dp_aux_unregister_devnode(aux);
2132 i2c_del_adapter(&aux->ddc);
2133 }
2134 EXPORT_SYMBOL(drm_dp_aux_unregister);
2135
2136 #define PSR_SETUP_TIME(x) [DP_PSR_SETUP_TIME_ ## x >> DP_PSR_SETUP_TIME_SHIFT] = (x)
2137
2138 /**
2139 * drm_dp_psr_setup_time() - PSR setup in time usec
2140 * @psr_cap: PSR capabilities from DPCD
2141 *
2142 * Returns:
2143 * PSR setup time for the panel in microseconds, negative
2144 * error code on failure.
2145 */
2146 int drm_dp_psr_setup_time(const u8 psr_cap[EDP_PSR_RECEIVER_CAP_SIZE])
2147 {
2148 static const u16 psr_setup_time_us[] = {
2149 PSR_SETUP_TIME(330),
2150 PSR_SETUP_TIME(275),
2151 PSR_SETUP_TIME(220),
2152 PSR_SETUP_TIME(165),
2153 PSR_SETUP_TIME(110),
2154 PSR_SETUP_TIME(55),
2155 PSR_SETUP_TIME(0),
2156 };
2157 int i;
2158
2159 i = (psr_cap[1] & DP_PSR_SETUP_TIME_MASK) >> DP_PSR_SETUP_TIME_SHIFT;
2160 if (i >= ARRAY_SIZE(psr_setup_time_us))
2161 return -EINVAL;
2162
2163 return psr_setup_time_us[i];
2164 }
2165 EXPORT_SYMBOL(drm_dp_psr_setup_time);
2166
2167 #undef PSR_SETUP_TIME
2168
2169 /**
2170 * drm_dp_start_crc() - start capture of frame CRCs
2171 * @aux: DisplayPort AUX channel
2172 * @crtc: CRTC displaying the frames whose CRCs are to be captured
2173 *
2174 * Returns 0 on success or a negative error code on failure.
2175 */
2176 int drm_dp_start_crc(struct drm_dp_aux *aux, struct drm_crtc *crtc)
2177 {
2178 u8 buf;
2179 int ret;
2180
2181 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2182 if (ret < 0)
2183 return ret;
2184
2185 ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf | DP_TEST_SINK_START);
2186 if (ret < 0)
2187 return ret;
2188
2189 aux->crc_count = 0;
2190 aux->crtc = crtc;
2191 schedule_work(&aux->crc_work);
2192
2193 return 0;
2194 }
2195 EXPORT_SYMBOL(drm_dp_start_crc);
2196
2197 /**
2198 * drm_dp_stop_crc() - stop capture of frame CRCs
2199 * @aux: DisplayPort AUX channel
2200 *
2201 * Returns 0 on success or a negative error code on failure.
2202 */
2203 int drm_dp_stop_crc(struct drm_dp_aux *aux)
2204 {
2205 u8 buf;
2206 int ret;
2207
2208 ret = drm_dp_dpcd_readb(aux, DP_TEST_SINK, &buf);
2209 if (ret < 0)
2210 return ret;
2211
2212 ret = drm_dp_dpcd_writeb(aux, DP_TEST_SINK, buf & ~DP_TEST_SINK_START);
2213 if (ret < 0)
2214 return ret;
2215
2216 flush_work(&aux->crc_work);
2217 aux->crtc = NULL;
2218
2219 return 0;
2220 }
2221 EXPORT_SYMBOL(drm_dp_stop_crc);
2222
2223 struct dpcd_quirk {
2224 u8 oui[3];
2225 u8 device_id[6];
2226 bool is_branch;
2227 u32 quirks;
2228 };
2229
2230 #define OUI(first, second, third) { (first), (second), (third) }
2231 #define DEVICE_ID(first, second, third, fourth, fifth, sixth) \
2232 { (first), (second), (third), (fourth), (fifth), (sixth) }
2233
2234 #define DEVICE_ID_ANY DEVICE_ID(0, 0, 0, 0, 0, 0)
2235
2236 static const struct dpcd_quirk dpcd_quirk_list[] = {
2237 /* Analogix 7737 needs reduced M and N at HBR2 link rates */
2238 { OUI(0x00, 0x22, 0xb9), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2239 /* LG LP140WF6-SPM1 eDP panel */
2240 { OUI(0x00, 0x22, 0xb9), DEVICE_ID('s', 'i', 'v', 'a', 'r', 'T'), false, BIT(DP_DPCD_QUIRK_CONSTANT_N) },
2241 /* Apple panels need some additional handling to support PSR */
2242 { OUI(0x00, 0x10, 0xfa), DEVICE_ID_ANY, false, BIT(DP_DPCD_QUIRK_NO_PSR) },
2243 /* CH7511 seems to leave SINK_COUNT zeroed */
2244 { OUI(0x00, 0x00, 0x00), DEVICE_ID('C', 'H', '7', '5', '1', '1'), false, BIT(DP_DPCD_QUIRK_NO_SINK_COUNT) },
2245 /* Synaptics DP1.4 MST hubs can support DSC without virtual DPCD */
2246 { OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_DSC_WITHOUT_VIRTUAL_DPCD) },
2247 /* Synaptics DP1.4 MST hubs require DSC for some modes on which it applies HBLANK expansion. */
2248 { OUI(0x90, 0xCC, 0x24), DEVICE_ID_ANY, true, BIT(DP_DPCD_QUIRK_HBLANK_EXPANSION_REQUIRES_DSC) },
2249 /* Apple MacBookPro 2017 15 inch eDP Retina panel reports too low DP_MAX_LINK_RATE */
2250 { OUI(0x00, 0x10, 0xfa), DEVICE_ID(101, 68, 21, 101, 98, 97), false, BIT(DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS) },
2251 };
2252
2253 #undef OUI
2254
2255 /*
2256 * Get a bit mask of DPCD quirks for the sink/branch device identified by
2257 * ident. The quirk data is shared but it's up to the drivers to act on the
2258 * data.
2259 *
2260 * For now, only the OUI (first three bytes) is used, but this may be extended
2261 * to device identification string and hardware/firmware revisions later.
2262 */
2263 static u32
2264 drm_dp_get_quirks(const struct drm_dp_dpcd_ident *ident, bool is_branch)
2265 {
2266 const struct dpcd_quirk *quirk;
2267 u32 quirks = 0;
2268 int i;
2269 u8 any_device[] = DEVICE_ID_ANY;
2270
2271 for (i = 0; i < ARRAY_SIZE(dpcd_quirk_list); i++) {
2272 quirk = &dpcd_quirk_list[i];
2273
2274 if (quirk->is_branch != is_branch)
2275 continue;
2276
2277 if (memcmp(quirk->oui, ident->oui, sizeof(ident->oui)) != 0)
2278 continue;
2279
2280 if (memcmp(quirk->device_id, any_device, sizeof(any_device)) != 0 &&
2281 memcmp(quirk->device_id, ident->device_id, sizeof(ident->device_id)) != 0)
2282 continue;
2283
2284 quirks |= quirk->quirks;
2285 }
2286
2287 return quirks;
2288 }
2289
2290 #undef DEVICE_ID_ANY
2291 #undef DEVICE_ID
2292
2293 /**
2294 * drm_dp_read_desc - read sink/branch descriptor from DPCD
2295 * @aux: DisplayPort AUX channel
2296 * @desc: Device descriptor to fill from DPCD
2297 * @is_branch: true for branch devices, false for sink devices
2298 *
2299 * Read DPCD 0x400 (sink) or 0x500 (branch) into @desc. Also debug log the
2300 * identification.
2301 *
2302 * Returns 0 on success or a negative error code on failure.
2303 */
2304 int drm_dp_read_desc(struct drm_dp_aux *aux, struct drm_dp_desc *desc,
2305 bool is_branch)
2306 {
2307 struct drm_dp_dpcd_ident *ident = &desc->ident;
2308 unsigned int offset = is_branch ? DP_BRANCH_OUI : DP_SINK_OUI;
2309 int ret, dev_id_len;
2310
2311 ret = drm_dp_dpcd_read(aux, offset, ident, sizeof(*ident));
2312 if (ret < 0)
2313 return ret;
2314
2315 desc->quirks = drm_dp_get_quirks(ident, is_branch);
2316
2317 dev_id_len = strnlen(ident->device_id, sizeof(ident->device_id));
2318
2319 drm_dbg_kms(aux->drm_dev,
2320 "%s: DP %s: OUI %*phD dev-ID %*pE HW-rev %d.%d SW-rev %d.%d quirks 0x%04x\n",
2321 aux->name, is_branch ? "branch" : "sink",
2322 (int)sizeof(ident->oui), ident->oui, dev_id_len,
2323 ident->device_id, ident->hw_rev >> 4, ident->hw_rev & 0xf,
2324 ident->sw_major_rev, ident->sw_minor_rev, desc->quirks);
2325
2326 return 0;
2327 }
2328 EXPORT_SYMBOL(drm_dp_read_desc);
2329
2330 /**
2331 * drm_dp_dsc_sink_bpp_incr() - Get bits per pixel increment
2332 * @dsc_dpcd: DSC capabilities from DPCD
2333 *
2334 * Returns the bpp precision supported by the DP sink.
2335 */
2336 u8 drm_dp_dsc_sink_bpp_incr(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2337 {
2338 u8 bpp_increment_dpcd = dsc_dpcd[DP_DSC_BITS_PER_PIXEL_INC - DP_DSC_SUPPORT];
2339
2340 switch (bpp_increment_dpcd) {
2341 case DP_DSC_BITS_PER_PIXEL_1_16:
2342 return 16;
2343 case DP_DSC_BITS_PER_PIXEL_1_8:
2344 return 8;
2345 case DP_DSC_BITS_PER_PIXEL_1_4:
2346 return 4;
2347 case DP_DSC_BITS_PER_PIXEL_1_2:
2348 return 2;
2349 case DP_DSC_BITS_PER_PIXEL_1_1:
2350 return 1;
2351 }
2352
2353 return 0;
2354 }
2355 EXPORT_SYMBOL(drm_dp_dsc_sink_bpp_incr);
2356
2357 /**
2358 * drm_dp_dsc_sink_max_slice_count() - Get the max slice count
2359 * supported by the DSC sink.
2360 * @dsc_dpcd: DSC capabilities from DPCD
2361 * @is_edp: true if its eDP, false for DP
2362 *
2363 * Read the slice capabilities DPCD register from DSC sink to get
2364 * the maximum slice count supported. This is used to populate
2365 * the DSC parameters in the &struct drm_dsc_config by the driver.
2366 * Driver creates an infoframe using these parameters to populate
2367 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2368 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2369 *
2370 * Returns:
2371 * Maximum slice count supported by DSC sink or 0 its invalid
2372 */
2373 u8 drm_dp_dsc_sink_max_slice_count(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2374 bool is_edp)
2375 {
2376 u8 slice_cap1 = dsc_dpcd[DP_DSC_SLICE_CAP_1 - DP_DSC_SUPPORT];
2377
2378 if (is_edp) {
2379 /* For eDP, register DSC_SLICE_CAPABILITIES_1 gives slice count */
2380 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2381 return 4;
2382 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2383 return 2;
2384 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2385 return 1;
2386 } else {
2387 /* For DP, use values from DSC_SLICE_CAP_1 and DSC_SLICE_CAP2 */
2388 u8 slice_cap2 = dsc_dpcd[DP_DSC_SLICE_CAP_2 - DP_DSC_SUPPORT];
2389
2390 if (slice_cap2 & DP_DSC_24_PER_DP_DSC_SINK)
2391 return 24;
2392 if (slice_cap2 & DP_DSC_20_PER_DP_DSC_SINK)
2393 return 20;
2394 if (slice_cap2 & DP_DSC_16_PER_DP_DSC_SINK)
2395 return 16;
2396 if (slice_cap1 & DP_DSC_12_PER_DP_DSC_SINK)
2397 return 12;
2398 if (slice_cap1 & DP_DSC_10_PER_DP_DSC_SINK)
2399 return 10;
2400 if (slice_cap1 & DP_DSC_8_PER_DP_DSC_SINK)
2401 return 8;
2402 if (slice_cap1 & DP_DSC_6_PER_DP_DSC_SINK)
2403 return 6;
2404 if (slice_cap1 & DP_DSC_4_PER_DP_DSC_SINK)
2405 return 4;
2406 if (slice_cap1 & DP_DSC_2_PER_DP_DSC_SINK)
2407 return 2;
2408 if (slice_cap1 & DP_DSC_1_PER_DP_DSC_SINK)
2409 return 1;
2410 }
2411
2412 return 0;
2413 }
2414 EXPORT_SYMBOL(drm_dp_dsc_sink_max_slice_count);
2415
2416 /**
2417 * drm_dp_dsc_sink_line_buf_depth() - Get the line buffer depth in bits
2418 * @dsc_dpcd: DSC capabilities from DPCD
2419 *
2420 * Read the DSC DPCD register to parse the line buffer depth in bits which is
2421 * number of bits of precision within the decoder line buffer supported by
2422 * the DSC sink. This is used to populate the DSC parameters in the
2423 * &struct drm_dsc_config by the driver.
2424 * Driver creates an infoframe using these parameters to populate
2425 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2426 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2427 *
2428 * Returns:
2429 * Line buffer depth supported by DSC panel or 0 its invalid
2430 */
2431 u8 drm_dp_dsc_sink_line_buf_depth(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE])
2432 {
2433 u8 line_buf_depth = dsc_dpcd[DP_DSC_LINE_BUF_BIT_DEPTH - DP_DSC_SUPPORT];
2434
2435 switch (line_buf_depth & DP_DSC_LINE_BUF_BIT_DEPTH_MASK) {
2436 case DP_DSC_LINE_BUF_BIT_DEPTH_9:
2437 return 9;
2438 case DP_DSC_LINE_BUF_BIT_DEPTH_10:
2439 return 10;
2440 case DP_DSC_LINE_BUF_BIT_DEPTH_11:
2441 return 11;
2442 case DP_DSC_LINE_BUF_BIT_DEPTH_12:
2443 return 12;
2444 case DP_DSC_LINE_BUF_BIT_DEPTH_13:
2445 return 13;
2446 case DP_DSC_LINE_BUF_BIT_DEPTH_14:
2447 return 14;
2448 case DP_DSC_LINE_BUF_BIT_DEPTH_15:
2449 return 15;
2450 case DP_DSC_LINE_BUF_BIT_DEPTH_16:
2451 return 16;
2452 case DP_DSC_LINE_BUF_BIT_DEPTH_8:
2453 return 8;
2454 }
2455
2456 return 0;
2457 }
2458 EXPORT_SYMBOL(drm_dp_dsc_sink_line_buf_depth);
2459
2460 /**
2461 * drm_dp_dsc_sink_supported_input_bpcs() - Get all the input bits per component
2462 * values supported by the DSC sink.
2463 * @dsc_dpcd: DSC capabilities from DPCD
2464 * @dsc_bpc: An array to be filled by this helper with supported
2465 * input bpcs.
2466 *
2467 * Read the DSC DPCD from the sink device to parse the supported bits per
2468 * component values. This is used to populate the DSC parameters
2469 * in the &struct drm_dsc_config by the driver.
2470 * Driver creates an infoframe using these parameters to populate
2471 * &struct drm_dsc_pps_infoframe. These are sent to the sink using DSC
2472 * infoframe using the helper function drm_dsc_pps_infoframe_pack()
2473 *
2474 * Returns:
2475 * Number of input BPC values parsed from the DPCD
2476 */
2477 int drm_dp_dsc_sink_supported_input_bpcs(const u8 dsc_dpcd[DP_DSC_RECEIVER_CAP_SIZE],
2478 u8 dsc_bpc[3])
2479 {
2480 int num_bpc = 0;
2481 u8 color_depth = dsc_dpcd[DP_DSC_DEC_COLOR_DEPTH_CAP - DP_DSC_SUPPORT];
2482
2483 if (!drm_dp_sink_supports_dsc(dsc_dpcd))
2484 return 0;
2485
2486 if (color_depth & DP_DSC_12_BPC)
2487 dsc_bpc[num_bpc++] = 12;
2488 if (color_depth & DP_DSC_10_BPC)
2489 dsc_bpc[num_bpc++] = 10;
2490
2491 /* A DP DSC Sink device shall support 8 bpc. */
2492 dsc_bpc[num_bpc++] = 8;
2493
2494 return num_bpc;
2495 }
2496 EXPORT_SYMBOL(drm_dp_dsc_sink_supported_input_bpcs);
2497
2498 static int drm_dp_read_lttpr_regs(struct drm_dp_aux *aux,
2499 const u8 dpcd[DP_RECEIVER_CAP_SIZE], int address,
2500 u8 *buf, int buf_size)
2501 {
2502 /*
2503 * At least the DELL P2715Q monitor with a DPCD_REV < 0x14 returns
2504 * corrupted values when reading from the 0xF0000- range with a block
2505 * size bigger than 1.
2506 */
2507 int block_size = dpcd[DP_DPCD_REV] < 0x14 ? 1 : buf_size;
2508 int offset;
2509 int ret;
2510
2511 for (offset = 0; offset < buf_size; offset += block_size) {
2512 ret = drm_dp_dpcd_read(aux,
2513 address + offset,
2514 &buf[offset], block_size);
2515 if (ret < 0)
2516 return ret;
2517
2518 WARN_ON(ret != block_size);
2519 }
2520
2521 return 0;
2522 }
2523
2524 /**
2525 * drm_dp_read_lttpr_common_caps - read the LTTPR common capabilities
2526 * @aux: DisplayPort AUX channel
2527 * @dpcd: DisplayPort configuration data
2528 * @caps: buffer to return the capability info in
2529 *
2530 * Read capabilities common to all LTTPRs.
2531 *
2532 * Returns 0 on success or a negative error code on failure.
2533 */
2534 int drm_dp_read_lttpr_common_caps(struct drm_dp_aux *aux,
2535 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2536 u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2537 {
2538 return drm_dp_read_lttpr_regs(aux, dpcd,
2539 DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV,
2540 caps, DP_LTTPR_COMMON_CAP_SIZE);
2541 }
2542 EXPORT_SYMBOL(drm_dp_read_lttpr_common_caps);
2543
2544 /**
2545 * drm_dp_read_lttpr_phy_caps - read the capabilities for a given LTTPR PHY
2546 * @aux: DisplayPort AUX channel
2547 * @dpcd: DisplayPort configuration data
2548 * @dp_phy: LTTPR PHY to read the capabilities for
2549 * @caps: buffer to return the capability info in
2550 *
2551 * Read the capabilities for the given LTTPR PHY.
2552 *
2553 * Returns 0 on success or a negative error code on failure.
2554 */
2555 int drm_dp_read_lttpr_phy_caps(struct drm_dp_aux *aux,
2556 const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2557 enum drm_dp_phy dp_phy,
2558 u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2559 {
2560 return drm_dp_read_lttpr_regs(aux, dpcd,
2561 DP_TRAINING_AUX_RD_INTERVAL_PHY_REPEATER(dp_phy),
2562 caps, DP_LTTPR_PHY_CAP_SIZE);
2563 }
2564 EXPORT_SYMBOL(drm_dp_read_lttpr_phy_caps);
2565
2566 static u8 dp_lttpr_common_cap(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE], int r)
2567 {
2568 return caps[r - DP_LT_TUNABLE_PHY_REPEATER_FIELD_DATA_STRUCTURE_REV];
2569 }
2570
2571 /**
2572 * drm_dp_lttpr_count - get the number of detected LTTPRs
2573 * @caps: LTTPR common capabilities
2574 *
2575 * Get the number of detected LTTPRs from the LTTPR common capabilities info.
2576 *
2577 * Returns:
2578 * -ERANGE if more than supported number (8) of LTTPRs are detected
2579 * -EINVAL if the DP_PHY_REPEATER_CNT register contains an invalid value
2580 * otherwise the number of detected LTTPRs
2581 */
2582 int drm_dp_lttpr_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2583 {
2584 u8 count = dp_lttpr_common_cap(caps, DP_PHY_REPEATER_CNT);
2585
2586 switch (hweight8(count)) {
2587 case 0:
2588 return 0;
2589 case 1:
2590 return 8 - ilog2(count);
2591 case 8:
2592 return -ERANGE;
2593 default:
2594 return -EINVAL;
2595 }
2596 }
2597 EXPORT_SYMBOL(drm_dp_lttpr_count);
2598
2599 /**
2600 * drm_dp_lttpr_max_link_rate - get the maximum link rate supported by all LTTPRs
2601 * @caps: LTTPR common capabilities
2602 *
2603 * Returns the maximum link rate supported by all detected LTTPRs.
2604 */
2605 int drm_dp_lttpr_max_link_rate(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2606 {
2607 u8 rate = dp_lttpr_common_cap(caps, DP_MAX_LINK_RATE_PHY_REPEATER);
2608
2609 return drm_dp_bw_code_to_link_rate(rate);
2610 }
2611 EXPORT_SYMBOL(drm_dp_lttpr_max_link_rate);
2612
2613 /**
2614 * drm_dp_lttpr_max_lane_count - get the maximum lane count supported by all LTTPRs
2615 * @caps: LTTPR common capabilities
2616 *
2617 * Returns the maximum lane count supported by all detected LTTPRs.
2618 */
2619 int drm_dp_lttpr_max_lane_count(const u8 caps[DP_LTTPR_COMMON_CAP_SIZE])
2620 {
2621 u8 max_lanes = dp_lttpr_common_cap(caps, DP_MAX_LANE_COUNT_PHY_REPEATER);
2622
2623 return max_lanes & DP_MAX_LANE_COUNT_MASK;
2624 }
2625 EXPORT_SYMBOL(drm_dp_lttpr_max_lane_count);
2626
2627 /**
2628 * drm_dp_lttpr_voltage_swing_level_3_supported - check for LTTPR vswing3 support
2629 * @caps: LTTPR PHY capabilities
2630 *
2631 * Returns true if the @caps for an LTTPR TX PHY indicate support for
2632 * voltage swing level 3.
2633 */
2634 bool
2635 drm_dp_lttpr_voltage_swing_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2636 {
2637 u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2638
2639 return txcap & DP_VOLTAGE_SWING_LEVEL_3_SUPPORTED;
2640 }
2641 EXPORT_SYMBOL(drm_dp_lttpr_voltage_swing_level_3_supported);
2642
2643 /**
2644 * drm_dp_lttpr_pre_emphasis_level_3_supported - check for LTTPR preemph3 support
2645 * @caps: LTTPR PHY capabilities
2646 *
2647 * Returns true if the @caps for an LTTPR TX PHY indicate support for
2648 * pre-emphasis level 3.
2649 */
2650 bool
2651 drm_dp_lttpr_pre_emphasis_level_3_supported(const u8 caps[DP_LTTPR_PHY_CAP_SIZE])
2652 {
2653 u8 txcap = dp_lttpr_phy_cap(caps, DP_TRANSMITTER_CAPABILITY_PHY_REPEATER1);
2654
2655 return txcap & DP_PRE_EMPHASIS_LEVEL_3_SUPPORTED;
2656 }
2657 EXPORT_SYMBOL(drm_dp_lttpr_pre_emphasis_level_3_supported);
2658
2659 /**
2660 * drm_dp_get_phy_test_pattern() - get the requested pattern from the sink.
2661 * @aux: DisplayPort AUX channel
2662 * @data: DP phy compliance test parameters.
2663 *
2664 * Returns 0 on success or a negative error code on failure.
2665 */
2666 int drm_dp_get_phy_test_pattern(struct drm_dp_aux *aux,
2667 struct drm_dp_phy_test_params *data)
2668 {
2669 int err;
2670 u8 rate, lanes;
2671
2672 err = drm_dp_dpcd_readb(aux, DP_TEST_LINK_RATE, &rate);
2673 if (err < 0)
2674 return err;
2675 data->link_rate = drm_dp_bw_code_to_link_rate(rate);
2676
2677 err = drm_dp_dpcd_readb(aux, DP_TEST_LANE_COUNT, &lanes);
2678 if (err < 0)
2679 return err;
2680 data->num_lanes = lanes & DP_MAX_LANE_COUNT_MASK;
2681
2682 if (lanes & DP_ENHANCED_FRAME_CAP)
2683 data->enhanced_frame_cap = true;
2684
2685 err = drm_dp_dpcd_readb(aux, DP_PHY_TEST_PATTERN, &data->phy_pattern);
2686 if (err < 0)
2687 return err;
2688
2689 switch (data->phy_pattern) {
2690 case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
2691 err = drm_dp_dpcd_read(aux, DP_TEST_80BIT_CUSTOM_PATTERN_7_0,
2692 &data->custom80, sizeof(data->custom80));
2693 if (err < 0)
2694 return err;
2695
2696 break;
2697 case DP_PHY_TEST_PATTERN_CP2520:
2698 err = drm_dp_dpcd_read(aux, DP_TEST_HBR2_SCRAMBLER_RESET,
2699 &data->hbr2_reset,
2700 sizeof(data->hbr2_reset));
2701 if (err < 0)
2702 return err;
2703 }
2704
2705 return 0;
2706 }
2707 EXPORT_SYMBOL(drm_dp_get_phy_test_pattern);
2708
2709 /**
2710 * drm_dp_set_phy_test_pattern() - set the pattern to the sink.
2711 * @aux: DisplayPort AUX channel
2712 * @data: DP phy compliance test parameters.
2713 * @dp_rev: DP revision to use for compliance testing
2714 *
2715 * Returns 0 on success or a negative error code on failure.
2716 */
2717 int drm_dp_set_phy_test_pattern(struct drm_dp_aux *aux,
2718 struct drm_dp_phy_test_params *data, u8 dp_rev)
2719 {
2720 int err, i;
2721 u8 test_pattern;
2722
2723 test_pattern = data->phy_pattern;
2724 if (dp_rev < 0x12) {
2725 test_pattern = (test_pattern << 2) &
2726 DP_LINK_QUAL_PATTERN_11_MASK;
2727 err = drm_dp_dpcd_writeb(aux, DP_TRAINING_PATTERN_SET,
2728 test_pattern);
2729 if (err < 0)
2730 return err;
2731 } else {
2732 for (i = 0; i < data->num_lanes; i++) {
2733 err = drm_dp_dpcd_writeb(aux,
2734 DP_LINK_QUAL_LANE0_SET + i,
2735 test_pattern);
2736 if (err < 0)
2737 return err;
2738 }
2739 }
2740
2741 return 0;
2742 }
2743 EXPORT_SYMBOL(drm_dp_set_phy_test_pattern);
2744
2745 static const char *dp_pixelformat_get_name(enum dp_pixelformat pixelformat)
2746 {
2747 if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2748 return "Invalid";
2749
2750 switch (pixelformat) {
2751 case DP_PIXELFORMAT_RGB:
2752 return "RGB";
2753 case DP_PIXELFORMAT_YUV444:
2754 return "YUV444";
2755 case DP_PIXELFORMAT_YUV422:
2756 return "YUV422";
2757 case DP_PIXELFORMAT_YUV420:
2758 return "YUV420";
2759 case DP_PIXELFORMAT_Y_ONLY:
2760 return "Y_ONLY";
2761 case DP_PIXELFORMAT_RAW:
2762 return "RAW";
2763 default:
2764 return "Reserved";
2765 }
2766 }
2767
2768 static const char *dp_colorimetry_get_name(enum dp_pixelformat pixelformat,
2769 enum dp_colorimetry colorimetry)
2770 {
2771 if (pixelformat < 0 || pixelformat > DP_PIXELFORMAT_RESERVED)
2772 return "Invalid";
2773
2774 switch (colorimetry) {
2775 case DP_COLORIMETRY_DEFAULT:
2776 switch (pixelformat) {
2777 case DP_PIXELFORMAT_RGB:
2778 return "sRGB";
2779 case DP_PIXELFORMAT_YUV444:
2780 case DP_PIXELFORMAT_YUV422:
2781 case DP_PIXELFORMAT_YUV420:
2782 return "BT.601";
2783 case DP_PIXELFORMAT_Y_ONLY:
2784 return "DICOM PS3.14";
2785 case DP_PIXELFORMAT_RAW:
2786 return "Custom Color Profile";
2787 default:
2788 return "Reserved";
2789 }
2790 case DP_COLORIMETRY_RGB_WIDE_FIXED: /* and DP_COLORIMETRY_BT709_YCC */
2791 switch (pixelformat) {
2792 case DP_PIXELFORMAT_RGB:
2793 return "Wide Fixed";
2794 case DP_PIXELFORMAT_YUV444:
2795 case DP_PIXELFORMAT_YUV422:
2796 case DP_PIXELFORMAT_YUV420:
2797 return "BT.709";
2798 default:
2799 return "Reserved";
2800 }
2801 case DP_COLORIMETRY_RGB_WIDE_FLOAT: /* and DP_COLORIMETRY_XVYCC_601 */
2802 switch (pixelformat) {
2803 case DP_PIXELFORMAT_RGB:
2804 return "Wide Float";
2805 case DP_PIXELFORMAT_YUV444:
2806 case DP_PIXELFORMAT_YUV422:
2807 case DP_PIXELFORMAT_YUV420:
2808 return "xvYCC 601";
2809 default:
2810 return "Reserved";
2811 }
2812 case DP_COLORIMETRY_OPRGB: /* and DP_COLORIMETRY_XVYCC_709 */
2813 switch (pixelformat) {
2814 case DP_PIXELFORMAT_RGB:
2815 return "OpRGB";
2816 case DP_PIXELFORMAT_YUV444:
2817 case DP_PIXELFORMAT_YUV422:
2818 case DP_PIXELFORMAT_YUV420:
2819 return "xvYCC 709";
2820 default:
2821 return "Reserved";
2822 }
2823 case DP_COLORIMETRY_DCI_P3_RGB: /* and DP_COLORIMETRY_SYCC_601 */
2824 switch (pixelformat) {
2825 case DP_PIXELFORMAT_RGB:
2826 return "DCI-P3";
2827 case DP_PIXELFORMAT_YUV444:
2828 case DP_PIXELFORMAT_YUV422:
2829 case DP_PIXELFORMAT_YUV420:
2830 return "sYCC 601";
2831 default:
2832 return "Reserved";
2833 }
2834 case DP_COLORIMETRY_RGB_CUSTOM: /* and DP_COLORIMETRY_OPYCC_601 */
2835 switch (pixelformat) {
2836 case DP_PIXELFORMAT_RGB:
2837 return "Custom Profile";
2838 case DP_PIXELFORMAT_YUV444:
2839 case DP_PIXELFORMAT_YUV422:
2840 case DP_PIXELFORMAT_YUV420:
2841 return "OpYCC 601";
2842 default:
2843 return "Reserved";
2844 }
2845 case DP_COLORIMETRY_BT2020_RGB: /* and DP_COLORIMETRY_BT2020_CYCC */
2846 switch (pixelformat) {
2847 case DP_PIXELFORMAT_RGB:
2848 return "BT.2020 RGB";
2849 case DP_PIXELFORMAT_YUV444:
2850 case DP_PIXELFORMAT_YUV422:
2851 case DP_PIXELFORMAT_YUV420:
2852 return "BT.2020 CYCC";
2853 default:
2854 return "Reserved";
2855 }
2856 case DP_COLORIMETRY_BT2020_YCC:
2857 switch (pixelformat) {
2858 case DP_PIXELFORMAT_YUV444:
2859 case DP_PIXELFORMAT_YUV422:
2860 case DP_PIXELFORMAT_YUV420:
2861 return "BT.2020 YCC";
2862 default:
2863 return "Reserved";
2864 }
2865 default:
2866 return "Invalid";
2867 }
2868 }
2869
2870 static const char *dp_dynamic_range_get_name(enum dp_dynamic_range dynamic_range)
2871 {
2872 switch (dynamic_range) {
2873 case DP_DYNAMIC_RANGE_VESA:
2874 return "VESA range";
2875 case DP_DYNAMIC_RANGE_CTA:
2876 return "CTA range";
2877 default:
2878 return "Invalid";
2879 }
2880 }
2881
2882 static const char *dp_content_type_get_name(enum dp_content_type content_type)
2883 {
2884 switch (content_type) {
2885 case DP_CONTENT_TYPE_NOT_DEFINED:
2886 return "Not defined";
2887 case DP_CONTENT_TYPE_GRAPHICS:
2888 return "Graphics";
2889 case DP_CONTENT_TYPE_PHOTO:
2890 return "Photo";
2891 case DP_CONTENT_TYPE_VIDEO:
2892 return "Video";
2893 case DP_CONTENT_TYPE_GAME:
2894 return "Game";
2895 default:
2896 return "Reserved";
2897 }
2898 }
2899
2900 void drm_dp_vsc_sdp_log(struct drm_printer *p, const struct drm_dp_vsc_sdp *vsc)
2901 {
2902 drm_printf(p, "DP SDP: VSC, revision %u, length %u\n",
2903 vsc->revision, vsc->length);
2904 drm_printf(p, " pixelformat: %s\n",
2905 dp_pixelformat_get_name(vsc->pixelformat));
2906 drm_printf(p, " colorimetry: %s\n",
2907 dp_colorimetry_get_name(vsc->pixelformat, vsc->colorimetry));
2908 drm_printf(p, " bpc: %u\n", vsc->bpc);
2909 drm_printf(p, " dynamic range: %s\n",
2910 dp_dynamic_range_get_name(vsc->dynamic_range));
2911 drm_printf(p, " content type: %s\n",
2912 dp_content_type_get_name(vsc->content_type));
2913 }
2914 EXPORT_SYMBOL(drm_dp_vsc_sdp_log);
2915
2916 /**
2917 * drm_dp_get_pcon_max_frl_bw() - maximum frl supported by PCON
2918 * @dpcd: DisplayPort configuration data
2919 * @port_cap: port capabilities
2920 *
2921 * Returns maximum frl bandwidth supported by PCON in GBPS,
2922 * returns 0 if not supported.
2923 */
2924 int drm_dp_get_pcon_max_frl_bw(const u8 dpcd[DP_RECEIVER_CAP_SIZE],
2925 const u8 port_cap[4])
2926 {
2927 int bw;
2928 u8 buf;
2929
2930 buf = port_cap[2];
2931 bw = buf & DP_PCON_MAX_FRL_BW;
2932
2933 switch (bw) {
2934 case DP_PCON_MAX_9GBPS:
2935 return 9;
2936 case DP_PCON_MAX_18GBPS:
2937 return 18;
2938 case DP_PCON_MAX_24GBPS:
2939 return 24;
2940 case DP_PCON_MAX_32GBPS:
2941 return 32;
2942 case DP_PCON_MAX_40GBPS:
2943 return 40;
2944 case DP_PCON_MAX_48GBPS:
2945 return 48;
2946 case DP_PCON_MAX_0GBPS:
2947 default:
2948 return 0;
2949 }
2950
2951 return 0;
2952 }
2953 EXPORT_SYMBOL(drm_dp_get_pcon_max_frl_bw);
2954
2955 /**
2956 * drm_dp_pcon_frl_prepare() - Prepare PCON for FRL.
2957 * @aux: DisplayPort AUX channel
2958 * @enable_frl_ready_hpd: Configure DP_PCON_ENABLE_HPD_READY.
2959 *
2960 * Returns 0 if success, else returns negative error code.
2961 */
2962 int drm_dp_pcon_frl_prepare(struct drm_dp_aux *aux, bool enable_frl_ready_hpd)
2963 {
2964 int ret;
2965 u8 buf = DP_PCON_ENABLE_SOURCE_CTL_MODE |
2966 DP_PCON_ENABLE_LINK_FRL_MODE;
2967
2968 if (enable_frl_ready_hpd)
2969 buf |= DP_PCON_ENABLE_HPD_READY;
2970
2971 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
2972
2973 return ret;
2974 }
2975 EXPORT_SYMBOL(drm_dp_pcon_frl_prepare);
2976
2977 /**
2978 * drm_dp_pcon_is_frl_ready() - Is PCON ready for FRL
2979 * @aux: DisplayPort AUX channel
2980 *
2981 * Returns true if success, else returns false.
2982 */
2983 bool drm_dp_pcon_is_frl_ready(struct drm_dp_aux *aux)
2984 {
2985 int ret;
2986 u8 buf;
2987
2988 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
2989 if (ret < 0)
2990 return false;
2991
2992 if (buf & DP_PCON_FRL_READY)
2993 return true;
2994
2995 return false;
2996 }
2997 EXPORT_SYMBOL(drm_dp_pcon_is_frl_ready);
2998
2999 /**
3000 * drm_dp_pcon_frl_configure_1() - Set HDMI LINK Configuration-Step1
3001 * @aux: DisplayPort AUX channel
3002 * @max_frl_gbps: maximum frl bw to be configured between PCON and HDMI sink
3003 * @frl_mode: FRL Training mode, it can be either Concurrent or Sequential.
3004 * In Concurrent Mode, the FRL link bring up can be done along with
3005 * DP Link training. In Sequential mode, the FRL link bring up is done prior to
3006 * the DP Link training.
3007 *
3008 * Returns 0 if success, else returns negative error code.
3009 */
3010
3011 int drm_dp_pcon_frl_configure_1(struct drm_dp_aux *aux, int max_frl_gbps,
3012 u8 frl_mode)
3013 {
3014 int ret;
3015 u8 buf;
3016
3017 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3018 if (ret < 0)
3019 return ret;
3020
3021 if (frl_mode == DP_PCON_ENABLE_CONCURRENT_LINK)
3022 buf |= DP_PCON_ENABLE_CONCURRENT_LINK;
3023 else
3024 buf &= ~DP_PCON_ENABLE_CONCURRENT_LINK;
3025
3026 switch (max_frl_gbps) {
3027 case 9:
3028 buf |= DP_PCON_ENABLE_MAX_BW_9GBPS;
3029 break;
3030 case 18:
3031 buf |= DP_PCON_ENABLE_MAX_BW_18GBPS;
3032 break;
3033 case 24:
3034 buf |= DP_PCON_ENABLE_MAX_BW_24GBPS;
3035 break;
3036 case 32:
3037 buf |= DP_PCON_ENABLE_MAX_BW_32GBPS;
3038 break;
3039 case 40:
3040 buf |= DP_PCON_ENABLE_MAX_BW_40GBPS;
3041 break;
3042 case 48:
3043 buf |= DP_PCON_ENABLE_MAX_BW_48GBPS;
3044 break;
3045 case 0:
3046 buf |= DP_PCON_ENABLE_MAX_BW_0GBPS;
3047 break;
3048 default:
3049 return -EINVAL;
3050 }
3051
3052 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3053 if (ret < 0)
3054 return ret;
3055
3056 return 0;
3057 }
3058 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_1);
3059
3060 /**
3061 * drm_dp_pcon_frl_configure_2() - Set HDMI Link configuration Step-2
3062 * @aux: DisplayPort AUX channel
3063 * @max_frl_mask : Max FRL BW to be tried by the PCON with HDMI Sink
3064 * @frl_type : FRL training type, can be Extended, or Normal.
3065 * In Normal FRL training, the PCON tries each frl bw from the max_frl_mask
3066 * starting from min, and stops when link training is successful. In Extended
3067 * FRL training, all frl bw selected in the mask are trained by the PCON.
3068 *
3069 * Returns 0 if success, else returns negative error code.
3070 */
3071 int drm_dp_pcon_frl_configure_2(struct drm_dp_aux *aux, int max_frl_mask,
3072 u8 frl_type)
3073 {
3074 int ret;
3075 u8 buf = max_frl_mask;
3076
3077 if (frl_type == DP_PCON_FRL_LINK_TRAIN_EXTENDED)
3078 buf |= DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3079 else
3080 buf &= ~DP_PCON_FRL_LINK_TRAIN_EXTENDED;
3081
3082 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_2, buf);
3083 if (ret < 0)
3084 return ret;
3085
3086 return 0;
3087 }
3088 EXPORT_SYMBOL(drm_dp_pcon_frl_configure_2);
3089
3090 /**
3091 * drm_dp_pcon_reset_frl_config() - Re-Set HDMI Link configuration.
3092 * @aux: DisplayPort AUX channel
3093 *
3094 * Returns 0 if success, else returns negative error code.
3095 */
3096 int drm_dp_pcon_reset_frl_config(struct drm_dp_aux *aux)
3097 {
3098 int ret;
3099
3100 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, 0x0);
3101 if (ret < 0)
3102 return ret;
3103
3104 return 0;
3105 }
3106 EXPORT_SYMBOL(drm_dp_pcon_reset_frl_config);
3107
3108 /**
3109 * drm_dp_pcon_frl_enable() - Enable HDMI link through FRL
3110 * @aux: DisplayPort AUX channel
3111 *
3112 * Returns 0 if success, else returns negative error code.
3113 */
3114 int drm_dp_pcon_frl_enable(struct drm_dp_aux *aux)
3115 {
3116 int ret;
3117 u8 buf = 0;
3118
3119 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_LINK_CONFIG_1, &buf);
3120 if (ret < 0)
3121 return ret;
3122 if (!(buf & DP_PCON_ENABLE_SOURCE_CTL_MODE)) {
3123 drm_dbg_kms(aux->drm_dev, "%s: PCON in Autonomous mode, can't enable FRL\n",
3124 aux->name);
3125 return -EINVAL;
3126 }
3127 buf |= DP_PCON_ENABLE_HDMI_LINK;
3128 ret = drm_dp_dpcd_writeb(aux, DP_PCON_HDMI_LINK_CONFIG_1, buf);
3129 if (ret < 0)
3130 return ret;
3131
3132 return 0;
3133 }
3134 EXPORT_SYMBOL(drm_dp_pcon_frl_enable);
3135
3136 /**
3137 * drm_dp_pcon_hdmi_link_active() - check if the PCON HDMI LINK status is active.
3138 * @aux: DisplayPort AUX channel
3139 *
3140 * Returns true if link is active else returns false.
3141 */
3142 bool drm_dp_pcon_hdmi_link_active(struct drm_dp_aux *aux)
3143 {
3144 u8 buf;
3145 int ret;
3146
3147 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_TX_LINK_STATUS, &buf);
3148 if (ret < 0)
3149 return false;
3150
3151 return buf & DP_PCON_HDMI_TX_LINK_ACTIVE;
3152 }
3153 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_active);
3154
3155 /**
3156 * drm_dp_pcon_hdmi_link_mode() - get the PCON HDMI LINK MODE
3157 * @aux: DisplayPort AUX channel
3158 * @frl_trained_mask: pointer to store bitmask of the trained bw configuration.
3159 * Valid only if the MODE returned is FRL. For Normal Link training mode
3160 * only 1 of the bits will be set, but in case of Extended mode, more than
3161 * one bits can be set.
3162 *
3163 * Returns the link mode : TMDS or FRL on success, else returns negative error
3164 * code.
3165 */
3166 int drm_dp_pcon_hdmi_link_mode(struct drm_dp_aux *aux, u8 *frl_trained_mask)
3167 {
3168 u8 buf;
3169 int mode;
3170 int ret;
3171
3172 ret = drm_dp_dpcd_readb(aux, DP_PCON_HDMI_POST_FRL_STATUS, &buf);
3173 if (ret < 0)
3174 return ret;
3175
3176 mode = buf & DP_PCON_HDMI_LINK_MODE;
3177
3178 if (frl_trained_mask && DP_PCON_HDMI_MODE_FRL == mode)
3179 *frl_trained_mask = (buf & DP_PCON_HDMI_FRL_TRAINED_BW) >> 1;
3180
3181 return mode;
3182 }
3183 EXPORT_SYMBOL(drm_dp_pcon_hdmi_link_mode);
3184
3185 /**
3186 * drm_dp_pcon_hdmi_frl_link_error_count() - print the error count per lane
3187 * during link failure between PCON and HDMI sink
3188 * @aux: DisplayPort AUX channel
3189 * @connector: DRM connector
3190 * code.
3191 **/
3192
3193 void drm_dp_pcon_hdmi_frl_link_error_count(struct drm_dp_aux *aux,
3194 struct drm_connector *connector)
3195 {
3196 u8 buf, error_count;
3197 int i, num_error;
3198 struct drm_hdmi_info *hdmi = &connector->display_info.hdmi;
3199
3200 for (i = 0; i < hdmi->max_lanes; i++) {
3201 if (drm_dp_dpcd_readb(aux, DP_PCON_HDMI_ERROR_STATUS_LN0 + i, &buf) < 0)
3202 return;
3203
3204 error_count = buf & DP_PCON_HDMI_ERROR_COUNT_MASK;
3205 switch (error_count) {
3206 case DP_PCON_HDMI_ERROR_COUNT_HUNDRED_PLUS:
3207 num_error = 100;
3208 break;
3209 case DP_PCON_HDMI_ERROR_COUNT_TEN_PLUS:
3210 num_error = 10;
3211 break;
3212 case DP_PCON_HDMI_ERROR_COUNT_THREE_PLUS:
3213 num_error = 3;
3214 break;
3215 default:
3216 num_error = 0;
3217 }
3218
3219 drm_err(aux->drm_dev, "%s: More than %d errors since the last read for lane %d",
3220 aux->name, num_error, i);
3221 }
3222 }
3223 EXPORT_SYMBOL(drm_dp_pcon_hdmi_frl_link_error_count);
3224
3225 /*
3226 * drm_dp_pcon_enc_is_dsc_1_2 - Does PCON Encoder supports DSC 1.2
3227 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3228 *
3229 * Returns true is PCON encoder is DSC 1.2 else returns false.
3230 */
3231 bool drm_dp_pcon_enc_is_dsc_1_2(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3232 {
3233 u8 buf;
3234 u8 major_v, minor_v;
3235
3236 buf = pcon_dsc_dpcd[DP_PCON_DSC_VERSION - DP_PCON_DSC_ENCODER];
3237 major_v = (buf & DP_PCON_DSC_MAJOR_MASK) >> DP_PCON_DSC_MAJOR_SHIFT;
3238 minor_v = (buf & DP_PCON_DSC_MINOR_MASK) >> DP_PCON_DSC_MINOR_SHIFT;
3239
3240 if (major_v == 1 && minor_v == 2)
3241 return true;
3242
3243 return false;
3244 }
3245 EXPORT_SYMBOL(drm_dp_pcon_enc_is_dsc_1_2);
3246
3247 /*
3248 * drm_dp_pcon_dsc_max_slices - Get max slices supported by PCON DSC Encoder
3249 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3250 *
3251 * Returns maximum no. of slices supported by the PCON DSC Encoder.
3252 */
3253 int drm_dp_pcon_dsc_max_slices(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3254 {
3255 u8 slice_cap1, slice_cap2;
3256
3257 slice_cap1 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_1 - DP_PCON_DSC_ENCODER];
3258 slice_cap2 = pcon_dsc_dpcd[DP_PCON_DSC_SLICE_CAP_2 - DP_PCON_DSC_ENCODER];
3259
3260 if (slice_cap2 & DP_PCON_DSC_24_PER_DSC_ENC)
3261 return 24;
3262 if (slice_cap2 & DP_PCON_DSC_20_PER_DSC_ENC)
3263 return 20;
3264 if (slice_cap2 & DP_PCON_DSC_16_PER_DSC_ENC)
3265 return 16;
3266 if (slice_cap1 & DP_PCON_DSC_12_PER_DSC_ENC)
3267 return 12;
3268 if (slice_cap1 & DP_PCON_DSC_10_PER_DSC_ENC)
3269 return 10;
3270 if (slice_cap1 & DP_PCON_DSC_8_PER_DSC_ENC)
3271 return 8;
3272 if (slice_cap1 & DP_PCON_DSC_6_PER_DSC_ENC)
3273 return 6;
3274 if (slice_cap1 & DP_PCON_DSC_4_PER_DSC_ENC)
3275 return 4;
3276 if (slice_cap1 & DP_PCON_DSC_2_PER_DSC_ENC)
3277 return 2;
3278 if (slice_cap1 & DP_PCON_DSC_1_PER_DSC_ENC)
3279 return 1;
3280
3281 return 0;
3282 }
3283 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slices);
3284
3285 /*
3286 * drm_dp_pcon_dsc_max_slice_width() - Get max slice width for Pcon DSC encoder
3287 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3288 *
3289 * Returns maximum width of the slices in pixel width i.e. no. of pixels x 320.
3290 */
3291 int drm_dp_pcon_dsc_max_slice_width(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3292 {
3293 u8 buf;
3294
3295 buf = pcon_dsc_dpcd[DP_PCON_DSC_MAX_SLICE_WIDTH - DP_PCON_DSC_ENCODER];
3296
3297 return buf * DP_DSC_SLICE_WIDTH_MULTIPLIER;
3298 }
3299 EXPORT_SYMBOL(drm_dp_pcon_dsc_max_slice_width);
3300
3301 /*
3302 * drm_dp_pcon_dsc_bpp_incr() - Get bits per pixel increment for PCON DSC encoder
3303 * @pcon_dsc_dpcd: DSC capabilities of the PCON DSC Encoder
3304 *
3305 * Returns the bpp precision supported by the PCON encoder.
3306 */
3307 int drm_dp_pcon_dsc_bpp_incr(const u8 pcon_dsc_dpcd[DP_PCON_DSC_ENCODER_CAP_SIZE])
3308 {
3309 u8 buf;
3310
3311 buf = pcon_dsc_dpcd[DP_PCON_DSC_BPP_INCR - DP_PCON_DSC_ENCODER];
3312
3313 switch (buf & DP_PCON_DSC_BPP_INCR_MASK) {
3314 case DP_PCON_DSC_ONE_16TH_BPP:
3315 return 16;
3316 case DP_PCON_DSC_ONE_8TH_BPP:
3317 return 8;
3318 case DP_PCON_DSC_ONE_4TH_BPP:
3319 return 4;
3320 case DP_PCON_DSC_ONE_HALF_BPP:
3321 return 2;
3322 case DP_PCON_DSC_ONE_BPP:
3323 return 1;
3324 }
3325
3326 return 0;
3327 }
3328 EXPORT_SYMBOL(drm_dp_pcon_dsc_bpp_incr);
3329
3330 static
3331 int drm_dp_pcon_configure_dsc_enc(struct drm_dp_aux *aux, u8 pps_buf_config)
3332 {
3333 u8 buf;
3334 int ret;
3335
3336 ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3337 if (ret < 0)
3338 return ret;
3339
3340 buf |= DP_PCON_ENABLE_DSC_ENCODER;
3341
3342 if (pps_buf_config <= DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER) {
3343 buf &= ~DP_PCON_ENCODER_PPS_OVERRIDE_MASK;
3344 buf |= pps_buf_config << 2;
3345 }
3346
3347 ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3348 if (ret < 0)
3349 return ret;
3350
3351 return 0;
3352 }
3353
3354 /**
3355 * drm_dp_pcon_pps_default() - Let PCON fill the default pps parameters
3356 * for DSC1.2 between PCON & HDMI2.1 sink
3357 * @aux: DisplayPort AUX channel
3358 *
3359 * Returns 0 on success, else returns negative error code.
3360 */
3361 int drm_dp_pcon_pps_default(struct drm_dp_aux *aux)
3362 {
3363 int ret;
3364
3365 ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_DISABLED);
3366 if (ret < 0)
3367 return ret;
3368
3369 return 0;
3370 }
3371 EXPORT_SYMBOL(drm_dp_pcon_pps_default);
3372
3373 /**
3374 * drm_dp_pcon_pps_override_buf() - Configure PPS encoder override buffer for
3375 * HDMI sink
3376 * @aux: DisplayPort AUX channel
3377 * @pps_buf: 128 bytes to be written into PPS buffer for HDMI sink by PCON.
3378 *
3379 * Returns 0 on success, else returns negative error code.
3380 */
3381 int drm_dp_pcon_pps_override_buf(struct drm_dp_aux *aux, u8 pps_buf[128])
3382 {
3383 int ret;
3384
3385 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVERRIDE_BASE, &pps_buf, 128);
3386 if (ret < 0)
3387 return ret;
3388
3389 ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3390 if (ret < 0)
3391 return ret;
3392
3393 return 0;
3394 }
3395 EXPORT_SYMBOL(drm_dp_pcon_pps_override_buf);
3396
3397 /*
3398 * drm_dp_pcon_pps_override_param() - Write PPS parameters to DSC encoder
3399 * override registers
3400 * @aux: DisplayPort AUX channel
3401 * @pps_param: 3 Parameters (2 Bytes each) : Slice Width, Slice Height,
3402 * bits_per_pixel.
3403 *
3404 * Returns 0 on success, else returns negative error code.
3405 */
3406 int drm_dp_pcon_pps_override_param(struct drm_dp_aux *aux, u8 pps_param[6])
3407 {
3408 int ret;
3409
3410 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_HEIGHT, &pps_param[0], 2);
3411 if (ret < 0)
3412 return ret;
3413 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_SLICE_WIDTH, &pps_param[2], 2);
3414 if (ret < 0)
3415 return ret;
3416 ret = drm_dp_dpcd_write(aux, DP_PCON_HDMI_PPS_OVRD_BPP, &pps_param[4], 2);
3417 if (ret < 0)
3418 return ret;
3419
3420 ret = drm_dp_pcon_configure_dsc_enc(aux, DP_PCON_ENC_PPS_OVERRIDE_EN_BUFFER);
3421 if (ret < 0)
3422 return ret;
3423
3424 return 0;
3425 }
3426 EXPORT_SYMBOL(drm_dp_pcon_pps_override_param);
3427
3428 /*
3429 * drm_dp_pcon_convert_rgb_to_ycbcr() - Configure the PCon to convert RGB to Ycbcr
3430 * @aux: displayPort AUX channel
3431 * @color_spc: Color-space/s for which conversion is to be enabled, 0 for disable.
3432 *
3433 * Returns 0 on success, else returns negative error code.
3434 */
3435 int drm_dp_pcon_convert_rgb_to_ycbcr(struct drm_dp_aux *aux, u8 color_spc)
3436 {
3437 int ret;
3438 u8 buf;
3439
3440 ret = drm_dp_dpcd_readb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, &buf);
3441 if (ret < 0)
3442 return ret;
3443
3444 if (color_spc & DP_CONVERSION_RGB_YCBCR_MASK)
3445 buf |= (color_spc & DP_CONVERSION_RGB_YCBCR_MASK);
3446 else
3447 buf &= ~DP_CONVERSION_RGB_YCBCR_MASK;
3448
3449 ret = drm_dp_dpcd_writeb(aux, DP_PROTOCOL_CONVERTER_CONTROL_2, buf);
3450 if (ret < 0)
3451 return ret;
3452
3453 return 0;
3454 }
3455 EXPORT_SYMBOL(drm_dp_pcon_convert_rgb_to_ycbcr);
3456
3457 /**
3458 * drm_edp_backlight_set_level() - Set the backlight level of an eDP panel via AUX
3459 * @aux: The DP AUX channel to use
3460 * @bl: Backlight capability info from drm_edp_backlight_init()
3461 * @level: The brightness level to set
3462 *
3463 * Sets the brightness level of an eDP panel's backlight. Note that the panel's backlight must
3464 * already have been enabled by the driver by calling drm_edp_backlight_enable().
3465 *
3466 * Returns: %0 on success, negative error code on failure
3467 */
3468 int drm_edp_backlight_set_level(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3469 u16 level)
3470 {
3471 int ret;
3472 u8 buf[2] = { 0 };
3473
3474 /* The panel uses the PWM for controlling brightness levels */
3475 if (!bl->aux_set)
3476 return 0;
3477
3478 if (bl->lsb_reg_used) {
3479 buf[0] = (level & 0xff00) >> 8;
3480 buf[1] = (level & 0x00ff);
3481 } else {
3482 buf[0] = level;
3483 }
3484
3485 ret = drm_dp_dpcd_write(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, sizeof(buf));
3486 if (ret != sizeof(buf)) {
3487 drm_err(aux->drm_dev,
3488 "%s: Failed to write aux backlight level: %d\n",
3489 aux->name, ret);
3490 return ret < 0 ? ret : -EIO;
3491 }
3492
3493 return 0;
3494 }
3495 EXPORT_SYMBOL(drm_edp_backlight_set_level);
3496
3497 static int
3498 drm_edp_backlight_set_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3499 bool enable)
3500 {
3501 int ret;
3502 u8 buf;
3503
3504 /* This panel uses the EDP_BL_PWR GPIO for enablement */
3505 if (!bl->aux_enable)
3506 return 0;
3507
3508 ret = drm_dp_dpcd_readb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, &buf);
3509 if (ret != 1) {
3510 drm_err(aux->drm_dev, "%s: Failed to read eDP display control register: %d\n",
3511 aux->name, ret);
3512 return ret < 0 ? ret : -EIO;
3513 }
3514 if (enable)
3515 buf |= DP_EDP_BACKLIGHT_ENABLE;
3516 else
3517 buf &= ~DP_EDP_BACKLIGHT_ENABLE;
3518
3519 ret = drm_dp_dpcd_writeb(aux, DP_EDP_DISPLAY_CONTROL_REGISTER, buf);
3520 if (ret != 1) {
3521 drm_err(aux->drm_dev, "%s: Failed to write eDP display control register: %d\n",
3522 aux->name, ret);
3523 return ret < 0 ? ret : -EIO;
3524 }
3525
3526 return 0;
3527 }
3528
3529 /**
3530 * drm_edp_backlight_enable() - Enable an eDP panel's backlight using DPCD
3531 * @aux: The DP AUX channel to use
3532 * @bl: Backlight capability info from drm_edp_backlight_init()
3533 * @level: The initial backlight level to set via AUX, if there is one
3534 *
3535 * This function handles enabling DPCD backlight controls on a panel over DPCD, while additionally
3536 * restoring any important backlight state such as the given backlight level, the brightness byte
3537 * count, backlight frequency, etc.
3538 *
3539 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3540 * that the driver handle enabling/disabling the panel through implementation-specific means using
3541 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3542 * this function becomes a no-op, and the driver is expected to handle powering the panel on using
3543 * the EDP_BL_PWR GPIO.
3544 *
3545 * Returns: %0 on success, negative error code on failure.
3546 */
3547 int drm_edp_backlight_enable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl,
3548 const u16 level)
3549 {
3550 int ret;
3551 u8 dpcd_buf;
3552
3553 if (bl->aux_set)
3554 dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD;
3555 else
3556 dpcd_buf = DP_EDP_BACKLIGHT_CONTROL_MODE_PWM;
3557
3558 if (bl->pwmgen_bit_count) {
3559 ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, bl->pwmgen_bit_count);
3560 if (ret != 1)
3561 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3562 aux->name, ret);
3563 }
3564
3565 if (bl->pwm_freq_pre_divider) {
3566 ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_FREQ_SET, bl->pwm_freq_pre_divider);
3567 if (ret != 1)
3568 drm_dbg_kms(aux->drm_dev,
3569 "%s: Failed to write aux backlight frequency: %d\n",
3570 aux->name, ret);
3571 else
3572 dpcd_buf |= DP_EDP_BACKLIGHT_FREQ_AUX_SET_ENABLE;
3573 }
3574
3575 ret = drm_dp_dpcd_writeb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, dpcd_buf);
3576 if (ret != 1) {
3577 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux backlight mode: %d\n",
3578 aux->name, ret);
3579 return ret < 0 ? ret : -EIO;
3580 }
3581
3582 ret = drm_edp_backlight_set_level(aux, bl, level);
3583 if (ret < 0)
3584 return ret;
3585 ret = drm_edp_backlight_set_enable(aux, bl, true);
3586 if (ret < 0)
3587 return ret;
3588
3589 return 0;
3590 }
3591 EXPORT_SYMBOL(drm_edp_backlight_enable);
3592
3593 /**
3594 * drm_edp_backlight_disable() - Disable an eDP backlight using DPCD, if supported
3595 * @aux: The DP AUX channel to use
3596 * @bl: Backlight capability info from drm_edp_backlight_init()
3597 *
3598 * This function handles disabling DPCD backlight controls on a panel over AUX.
3599 *
3600 * Note that certain panels do not support being enabled or disabled via DPCD, but instead require
3601 * that the driver handle enabling/disabling the panel through implementation-specific means using
3602 * the EDP_BL_PWR GPIO. For such panels, &drm_edp_backlight_info.aux_enable will be set to %false,
3603 * this function becomes a no-op, and the driver is expected to handle powering the panel off using
3604 * the EDP_BL_PWR GPIO.
3605 *
3606 * Returns: %0 on success or no-op, negative error code on failure.
3607 */
3608 int drm_edp_backlight_disable(struct drm_dp_aux *aux, const struct drm_edp_backlight_info *bl)
3609 {
3610 int ret;
3611
3612 ret = drm_edp_backlight_set_enable(aux, bl, false);
3613 if (ret < 0)
3614 return ret;
3615
3616 return 0;
3617 }
3618 EXPORT_SYMBOL(drm_edp_backlight_disable);
3619
3620 static inline int
3621 drm_edp_backlight_probe_max(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3622 u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE])
3623 {
3624 int fxp, fxp_min, fxp_max, fxp_actual, f = 1;
3625 int ret;
3626 u8 pn, pn_min, pn_max;
3627
3628 if (!bl->aux_set)
3629 return 0;
3630
3631 ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT, &pn);
3632 if (ret != 1) {
3633 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap: %d\n",
3634 aux->name, ret);
3635 return -ENODEV;
3636 }
3637
3638 pn &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3639 bl->max = (1 << pn) - 1;
3640 if (!driver_pwm_freq_hz)
3641 return 0;
3642
3643 /*
3644 * Set PWM Frequency divider to match desired frequency provided by the driver.
3645 * The PWM Frequency is calculated as 27Mhz / (F x P).
3646 * - Where F = PWM Frequency Pre-Divider value programmed by field 7:0 of the
3647 * EDP_BACKLIGHT_FREQ_SET register (DPCD Address 00728h)
3648 * - Where P = 2^Pn, where Pn is the value programmed by field 4:0 of the
3649 * EDP_PWMGEN_BIT_COUNT register (DPCD Address 00724h)
3650 */
3651
3652 /* Find desired value of (F x P)
3653 * Note that, if F x P is out of supported range, the maximum value or minimum value will
3654 * applied automatically. So no need to check that.
3655 */
3656 fxp = DIV_ROUND_CLOSEST(1000 * DP_EDP_BACKLIGHT_FREQ_BASE_KHZ, driver_pwm_freq_hz);
3657
3658 /* Use highest possible value of Pn for more granularity of brightness adjustment while
3659 * satisfying the conditions below.
3660 * - Pn is in the range of Pn_min and Pn_max
3661 * - F is in the range of 1 and 255
3662 * - FxP is within 25% of desired value.
3663 * Note: 25% is arbitrary value and may need some tweak.
3664 */
3665 ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MIN, &pn_min);
3666 if (ret != 1) {
3667 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap min: %d\n",
3668 aux->name, ret);
3669 return 0;
3670 }
3671 ret = drm_dp_dpcd_readb(aux, DP_EDP_PWMGEN_BIT_COUNT_CAP_MAX, &pn_max);
3672 if (ret != 1) {
3673 drm_dbg_kms(aux->drm_dev, "%s: Failed to read pwmgen bit count cap max: %d\n",
3674 aux->name, ret);
3675 return 0;
3676 }
3677 pn_min &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3678 pn_max &= DP_EDP_PWMGEN_BIT_COUNT_MASK;
3679
3680 /* Ensure frequency is within 25% of desired value */
3681 fxp_min = DIV_ROUND_CLOSEST(fxp * 3, 4);
3682 fxp_max = DIV_ROUND_CLOSEST(fxp * 5, 4);
3683 if (fxp_min < (1 << pn_min) || (255 << pn_max) < fxp_max) {
3684 drm_dbg_kms(aux->drm_dev,
3685 "%s: Driver defined backlight frequency (%d) out of range\n",
3686 aux->name, driver_pwm_freq_hz);
3687 return 0;
3688 }
3689
3690 for (pn = pn_max; pn >= pn_min; pn--) {
3691 f = clamp(DIV_ROUND_CLOSEST(fxp, 1 << pn), 1, 255);
3692 fxp_actual = f << pn;
3693 if (fxp_min <= fxp_actual && fxp_actual <= fxp_max)
3694 break;
3695 }
3696
3697 ret = drm_dp_dpcd_writeb(aux, DP_EDP_PWMGEN_BIT_COUNT, pn);
3698 if (ret != 1) {
3699 drm_dbg_kms(aux->drm_dev, "%s: Failed to write aux pwmgen bit count: %d\n",
3700 aux->name, ret);
3701 return 0;
3702 }
3703 bl->pwmgen_bit_count = pn;
3704 bl->max = (1 << pn) - 1;
3705
3706 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_FREQ_AUX_SET_CAP) {
3707 bl->pwm_freq_pre_divider = f;
3708 drm_dbg_kms(aux->drm_dev, "%s: Using backlight frequency from driver (%dHz)\n",
3709 aux->name, driver_pwm_freq_hz);
3710 }
3711
3712 return 0;
3713 }
3714
3715 static inline int
3716 drm_edp_backlight_probe_state(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3717 u8 *current_mode)
3718 {
3719 int ret;
3720 u8 buf[2];
3721 u8 mode_reg;
3722
3723 ret = drm_dp_dpcd_readb(aux, DP_EDP_BACKLIGHT_MODE_SET_REGISTER, &mode_reg);
3724 if (ret != 1) {
3725 drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight mode: %d\n",
3726 aux->name, ret);
3727 return ret < 0 ? ret : -EIO;
3728 }
3729
3730 *current_mode = (mode_reg & DP_EDP_BACKLIGHT_CONTROL_MODE_MASK);
3731 if (!bl->aux_set)
3732 return 0;
3733
3734 if (*current_mode == DP_EDP_BACKLIGHT_CONTROL_MODE_DPCD) {
3735 int size = 1 + bl->lsb_reg_used;
3736
3737 ret = drm_dp_dpcd_read(aux, DP_EDP_BACKLIGHT_BRIGHTNESS_MSB, buf, size);
3738 if (ret != size) {
3739 drm_dbg_kms(aux->drm_dev, "%s: Failed to read backlight level: %d\n",
3740 aux->name, ret);
3741 return ret < 0 ? ret : -EIO;
3742 }
3743
3744 if (bl->lsb_reg_used)
3745 return (buf[0] << 8) | buf[1];
3746 else
3747 return buf[0];
3748 }
3749
3750 /*
3751 * If we're not in DPCD control mode yet, the programmed brightness value is meaningless and
3752 * the driver should assume max brightness
3753 */
3754 return bl->max;
3755 }
3756
3757 /**
3758 * drm_edp_backlight_init() - Probe a display panel's TCON using the standard VESA eDP backlight
3759 * interface.
3760 * @aux: The DP aux device to use for probing
3761 * @bl: The &drm_edp_backlight_info struct to fill out with information on the backlight
3762 * @driver_pwm_freq_hz: Optional PWM frequency from the driver in hz
3763 * @edp_dpcd: A cached copy of the eDP DPCD
3764 * @current_level: Where to store the probed brightness level, if any
3765 * @current_mode: Where to store the currently set backlight control mode
3766 *
3767 * Initializes a &drm_edp_backlight_info struct by probing @aux for it's backlight capabilities,
3768 * along with also probing the current and maximum supported brightness levels.
3769 *
3770 * If @driver_pwm_freq_hz is non-zero, this will be used as the backlight frequency. Otherwise, the
3771 * default frequency from the panel is used.
3772 *
3773 * Returns: %0 on success, negative error code on failure.
3774 */
3775 int
3776 drm_edp_backlight_init(struct drm_dp_aux *aux, struct drm_edp_backlight_info *bl,
3777 u16 driver_pwm_freq_hz, const u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE],
3778 u16 *current_level, u8 *current_mode)
3779 {
3780 int ret;
3781
3782 if (edp_dpcd[1] & DP_EDP_BACKLIGHT_AUX_ENABLE_CAP)
3783 bl->aux_enable = true;
3784 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_AUX_SET_CAP)
3785 bl->aux_set = true;
3786 if (edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_BYTE_COUNT)
3787 bl->lsb_reg_used = true;
3788
3789 /* Sanity check caps */
3790 if (!bl->aux_set && !(edp_dpcd[2] & DP_EDP_BACKLIGHT_BRIGHTNESS_PWM_PIN_CAP)) {
3791 drm_dbg_kms(aux->drm_dev,
3792 "%s: Panel supports neither AUX or PWM brightness control? Aborting\n",
3793 aux->name);
3794 return -EINVAL;
3795 }
3796
3797 ret = drm_edp_backlight_probe_max(aux, bl, driver_pwm_freq_hz, edp_dpcd);
3798 if (ret < 0)
3799 return ret;
3800
3801 ret = drm_edp_backlight_probe_state(aux, bl, current_mode);
3802 if (ret < 0)
3803 return ret;
3804 *current_level = ret;
3805
3806 drm_dbg_kms(aux->drm_dev,
3807 "%s: Found backlight: aux_set=%d aux_enable=%d mode=%d\n",
3808 aux->name, bl->aux_set, bl->aux_enable, *current_mode);
3809 if (bl->aux_set) {
3810 drm_dbg_kms(aux->drm_dev,
3811 "%s: Backlight caps: level=%d/%d pwm_freq_pre_divider=%d lsb_reg_used=%d\n",
3812 aux->name, *current_level, bl->max, bl->pwm_freq_pre_divider,
3813 bl->lsb_reg_used);
3814 }
3815
3816 return 0;
3817 }
3818 EXPORT_SYMBOL(drm_edp_backlight_init);
3819
3820 #if IS_BUILTIN(CONFIG_BACKLIGHT_CLASS_DEVICE) || \
3821 (IS_MODULE(CONFIG_DRM_KMS_HELPER) && IS_MODULE(CONFIG_BACKLIGHT_CLASS_DEVICE))
3822
3823 static int dp_aux_backlight_update_status(struct backlight_device *bd)
3824 {
3825 struct dp_aux_backlight *bl = bl_get_data(bd);
3826 u16 brightness = backlight_get_brightness(bd);
3827 int ret = 0;
3828
3829 if (!backlight_is_blank(bd)) {
3830 if (!bl->enabled) {
3831 drm_edp_backlight_enable(bl->aux, &bl->info, brightness);
3832 bl->enabled = true;
3833 return 0;
3834 }
3835 ret = drm_edp_backlight_set_level(bl->aux, &bl->info, brightness);
3836 } else {
3837 if (bl->enabled) {
3838 drm_edp_backlight_disable(bl->aux, &bl->info);
3839 bl->enabled = false;
3840 }
3841 }
3842
3843 return ret;
3844 }
3845
3846 static const struct backlight_ops dp_aux_bl_ops = {
3847 .update_status = dp_aux_backlight_update_status,
3848 };
3849
3850 /**
3851 * drm_panel_dp_aux_backlight - create and use DP AUX backlight
3852 * @panel: DRM panel
3853 * @aux: The DP AUX channel to use
3854 *
3855 * Use this function to create and handle backlight if your panel
3856 * supports backlight control over DP AUX channel using DPCD
3857 * registers as per VESA's standard backlight control interface.
3858 *
3859 * When the panel is enabled backlight will be enabled after a
3860 * successful call to &drm_panel_funcs.enable()
3861 *
3862 * When the panel is disabled backlight will be disabled before the
3863 * call to &drm_panel_funcs.disable().
3864 *
3865 * A typical implementation for a panel driver supporting backlight
3866 * control over DP AUX will call this function at probe time.
3867 * Backlight will then be handled transparently without requiring
3868 * any intervention from the driver.
3869 *
3870 * drm_panel_dp_aux_backlight() must be called after the call to drm_panel_init().
3871 *
3872 * Return: 0 on success or a negative error code on failure.
3873 */
3874 int drm_panel_dp_aux_backlight(struct drm_panel *panel, struct drm_dp_aux *aux)
3875 {
3876 struct dp_aux_backlight *bl;
3877 struct backlight_properties props = { 0 };
3878 u16 current_level;
3879 u8 current_mode;
3880 u8 edp_dpcd[EDP_DISPLAY_CTL_CAP_SIZE];
3881 int ret;
3882
3883 if (!panel || !panel->dev || !aux)
3884 return -EINVAL;
3885
3886 ret = drm_dp_dpcd_read(aux, DP_EDP_DPCD_REV, edp_dpcd,
3887 EDP_DISPLAY_CTL_CAP_SIZE);
3888 if (ret < 0)
3889 return ret;
3890
3891 if (!drm_edp_backlight_supported(edp_dpcd)) {
3892 DRM_DEV_INFO(panel->dev, "DP AUX backlight is not supported\n");
3893 return 0;
3894 }
3895
3896 bl = devm_kzalloc(panel->dev, sizeof(*bl), GFP_KERNEL);
3897 if (!bl)
3898 return -ENOMEM;
3899
3900 bl->aux = aux;
3901
3902 ret = drm_edp_backlight_init(aux, &bl->info, 0, edp_dpcd,
3903 &current_level, &current_mode);
3904 if (ret < 0)
3905 return ret;
3906
3907 props.type = BACKLIGHT_RAW;
3908 props.brightness = current_level;
3909 props.max_brightness = bl->info.max;
3910
3911 bl->base = devm_backlight_device_register(panel->dev, "dp_aux_backlight",
3912 panel->dev, bl,
3913 &dp_aux_bl_ops, &props);
3914 if (IS_ERR(bl->base))
3915 return PTR_ERR(bl->base);
3916
3917 backlight_disable(bl->base);
3918
3919 panel->backlight = bl->base;
3920
3921 return 0;
3922 }
3923 EXPORT_SYMBOL(drm_panel_dp_aux_backlight);
3924
3925 #endif
3926
3927 /* See DP Standard v2.1 2.6.4.4.1.1, 2.8.4.4, 2.8.7 */
3928 static int drm_dp_link_symbol_cycles(int lane_count, int pixels, int bpp_x16,
3929 int symbol_size, bool is_mst)
3930 {
3931 int cycles = DIV_ROUND_UP(pixels * bpp_x16, 16 * symbol_size * lane_count);
3932 int align = is_mst ? 4 / lane_count : 1;
3933
3934 return ALIGN(cycles, align);
3935 }
3936
3937 static int drm_dp_link_dsc_symbol_cycles(int lane_count, int pixels, int slice_count,
3938 int bpp_x16, int symbol_size, bool is_mst)
3939 {
3940 int slice_pixels = DIV_ROUND_UP(pixels, slice_count);
3941 int slice_data_cycles = drm_dp_link_symbol_cycles(lane_count, slice_pixels,
3942 bpp_x16, symbol_size, is_mst);
3943 int slice_eoc_cycles = is_mst ? 4 / lane_count : 1;
3944
3945 return slice_count * (slice_data_cycles + slice_eoc_cycles);
3946 }
3947
3948 /**
3949 * drm_dp_bw_overhead - Calculate the BW overhead of a DP link stream
3950 * @lane_count: DP link lane count
3951 * @hactive: pixel count of the active period in one scanline of the stream
3952 * @dsc_slice_count: DSC slice count if @flags/DRM_DP_LINK_BW_OVERHEAD_DSC is set
3953 * @bpp_x16: bits per pixel in .4 binary fixed point
3954 * @flags: DRM_DP_OVERHEAD_x flags
3955 *
3956 * Calculate the BW allocation overhead of a DP link stream, depending
3957 * on the link's
3958 * - @lane_count
3959 * - SST/MST mode (@flags / %DRM_DP_OVERHEAD_MST)
3960 * - symbol size (@flags / %DRM_DP_OVERHEAD_UHBR)
3961 * - FEC mode (@flags / %DRM_DP_OVERHEAD_FEC)
3962 * - SSC/REF_CLK mode (@flags / %DRM_DP_OVERHEAD_SSC_REF_CLK)
3963 * as well as the stream's
3964 * - @hactive timing
3965 * - @bpp_x16 color depth
3966 * - compression mode (@flags / %DRM_DP_OVERHEAD_DSC).
3967 * Note that this overhead doesn't account for the 8b/10b, 128b/132b
3968 * channel coding efficiency, for that see
3969 * @drm_dp_link_bw_channel_coding_efficiency().
3970 *
3971 * Returns the overhead as 100% + overhead% in 1ppm units.
3972 */
3973 int drm_dp_bw_overhead(int lane_count, int hactive,
3974 int dsc_slice_count,
3975 int bpp_x16, unsigned long flags)
3976 {
3977 int symbol_size = flags & DRM_DP_BW_OVERHEAD_UHBR ? 32 : 8;
3978 bool is_mst = flags & DRM_DP_BW_OVERHEAD_MST;
3979 u32 overhead = 1000000;
3980 int symbol_cycles;
3981
3982 /*
3983 * DP Standard v2.1 2.6.4.1
3984 * SSC downspread and ref clock variation margin:
3985 * 5300ppm + 300ppm ~ 0.6%
3986 */
3987 if (flags & DRM_DP_BW_OVERHEAD_SSC_REF_CLK)
3988 overhead += 6000;
3989
3990 /*
3991 * DP Standard v2.1 2.6.4.1.1, 3.5.1.5.4:
3992 * FEC symbol insertions for 8b/10b channel coding:
3993 * After each 250 data symbols on 2-4 lanes:
3994 * 250 LL + 5 FEC_PARITY_PH + 1 CD_ADJ (256 byte FEC block)
3995 * After each 2 x 250 data symbols on 1 lane:
3996 * 2 * 250 LL + 11 FEC_PARITY_PH + 1 CD_ADJ (512 byte FEC block)
3997 * After 256 (2-4 lanes) or 128 (1 lane) FEC blocks:
3998 * 256 * 256 bytes + 1 FEC_PM
3999 * or
4000 * 128 * 512 bytes + 1 FEC_PM
4001 * (256 * 6 + 1) / (256 * 250) = 2.4015625 %
4002 */
4003 if (flags & DRM_DP_BW_OVERHEAD_FEC)
4004 overhead += 24016;
4005
4006 /*
4007 * DP Standard v2.1 2.7.9, 5.9.7
4008 * The FEC overhead for UHBR is accounted for in its 96.71% channel
4009 * coding efficiency.
4010 */
4011 WARN_ON((flags & DRM_DP_BW_OVERHEAD_UHBR) &&
4012 (flags & DRM_DP_BW_OVERHEAD_FEC));
4013
4014 if (flags & DRM_DP_BW_OVERHEAD_DSC)
4015 symbol_cycles = drm_dp_link_dsc_symbol_cycles(lane_count, hactive,
4016 dsc_slice_count,
4017 bpp_x16, symbol_size,
4018 is_mst);
4019 else
4020 symbol_cycles = drm_dp_link_symbol_cycles(lane_count, hactive,
4021 bpp_x16, symbol_size,
4022 is_mst);
4023
4024 return DIV_ROUND_UP_ULL(mul_u32_u32(symbol_cycles * symbol_size * lane_count,
4025 overhead * 16),
4026 hactive * bpp_x16);
4027 }
4028 EXPORT_SYMBOL(drm_dp_bw_overhead);
4029
4030 /**
4031 * drm_dp_bw_channel_coding_efficiency - Get a DP link's channel coding efficiency
4032 * @is_uhbr: Whether the link has a 128b/132b channel coding
4033 *
4034 * Return the channel coding efficiency of the given DP link type, which is
4035 * either 8b/10b or 128b/132b (aka UHBR). The corresponding overhead includes
4036 * the 8b -> 10b, 128b -> 132b pixel data to link symbol conversion overhead
4037 * and for 128b/132b any link or PHY level control symbol insertion overhead
4038 * (LLCP, FEC, PHY sync, see DP Standard v2.1 3.5.2.18). For 8b/10b the
4039 * corresponding FEC overhead is BW allocation specific, included in the value
4040 * returned by drm_dp_bw_overhead().
4041 *
4042 * Returns the efficiency in the 100%/coding-overhead% ratio in
4043 * 1ppm units.
4044 */
4045 int drm_dp_bw_channel_coding_efficiency(bool is_uhbr)
4046 {
4047 if (is_uhbr)
4048 return 967100;
4049 else
4050 /*
4051 * Note that on 8b/10b MST the efficiency is only
4052 * 78.75% due to the 1 out of 64 MTPH packet overhead,
4053 * not accounted for here.
4054 */
4055 return 800000;
4056 }
4057 EXPORT_SYMBOL(drm_dp_bw_channel_coding_efficiency);
4058
4059 /**
4060 * drm_dp_max_dprx_data_rate - Get the max data bandwidth of a DPRX sink
4061 * @max_link_rate: max DPRX link rate in 10kbps units
4062 * @max_lanes: max DPRX lane count
4063 *
4064 * Given a link rate and lanes, get the data bandwidth.
4065 *
4066 * Data bandwidth is the actual payload rate, which depends on the data
4067 * bandwidth efficiency and the link rate.
4068 *
4069 * Note that protocol layers above the DPRX link level considered here can
4070 * further limit the maximum data rate. Such layers are the MST topology (with
4071 * limits on the link between the source and first branch device as well as on
4072 * the whole MST path until the DPRX link) and (Thunderbolt) DP tunnels -
4073 * which in turn can encapsulate an MST link with its own limit - with each
4074 * SST or MST encapsulated tunnel sharing the BW of a tunnel group.
4075 *
4076 * Returns the maximum data rate in kBps units.
4077 */
4078 int drm_dp_max_dprx_data_rate(int max_link_rate, int max_lanes)
4079 {
4080 int ch_coding_efficiency =
4081 drm_dp_bw_channel_coding_efficiency(drm_dp_is_uhbr_rate(max_link_rate));
4082
4083 return DIV_ROUND_DOWN_ULL(mul_u32_u32(max_link_rate * 10 * max_lanes,
4084 ch_coding_efficiency),
4085 1000000 * 8);
4086 }
4087 EXPORT_SYMBOL(drm_dp_max_dprx_data_rate);