]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/i915/gvt/scheduler.c
Merge tag 'drm-next-2020-06-02' of git://anongit.freedesktop.org/drm/drm
[thirdparty/linux.git] / drivers / gpu / drm / i915 / gvt / scheduler.c
1 /*
2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Zhi Wang <zhi.a.wang@intel.com>
25 *
26 * Contributors:
27 * Ping Gao <ping.a.gao@intel.com>
28 * Tina Zhang <tina.zhang@intel.com>
29 * Chanbin Du <changbin.du@intel.com>
30 * Min He <min.he@intel.com>
31 * Bing Niu <bing.niu@intel.com>
32 * Zhenyu Wang <zhenyuw@linux.intel.com>
33 *
34 */
35
36 #include <linux/kthread.h>
37
38 #include "gem/i915_gem_pm.h"
39 #include "gt/intel_context.h"
40 #include "gt/intel_ring.h"
41
42 #include "i915_drv.h"
43 #include "i915_gem_gtt.h"
44 #include "gvt.h"
45
46 #define RING_CTX_OFF(x) \
47 offsetof(struct execlist_ring_context, x)
48
49 static void set_context_pdp_root_pointer(
50 struct execlist_ring_context *ring_context,
51 u32 pdp[8])
52 {
53 int i;
54
55 for (i = 0; i < 8; i++)
56 ring_context->pdps[i].val = pdp[7 - i];
57 }
58
59 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
60 {
61 struct execlist_ring_context *shadow_ring_context;
62 struct intel_context *ctx = workload->req->context;
63
64 if (WARN_ON(!workload->shadow_mm))
65 return;
66
67 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
68 return;
69
70 shadow_ring_context = (struct execlist_ring_context *)ctx->lrc_reg_state;
71 set_context_pdp_root_pointer(shadow_ring_context,
72 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
73 }
74
75 /*
76 * when populating shadow ctx from guest, we should not overrride oa related
77 * registers, so that they will not be overlapped by guest oa configs. Thus
78 * made it possible to capture oa data from host for both host and guests.
79 */
80 static void sr_oa_regs(struct intel_vgpu_workload *workload,
81 u32 *reg_state, bool save)
82 {
83 struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915;
84 u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
85 u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
86 int i = 0;
87 u32 flex_mmio[] = {
88 i915_mmio_reg_offset(EU_PERF_CNTL0),
89 i915_mmio_reg_offset(EU_PERF_CNTL1),
90 i915_mmio_reg_offset(EU_PERF_CNTL2),
91 i915_mmio_reg_offset(EU_PERF_CNTL3),
92 i915_mmio_reg_offset(EU_PERF_CNTL4),
93 i915_mmio_reg_offset(EU_PERF_CNTL5),
94 i915_mmio_reg_offset(EU_PERF_CNTL6),
95 };
96
97 if (workload->engine->id != RCS0)
98 return;
99
100 if (save) {
101 workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
102
103 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
104 u32 state_offset = ctx_flexeu0 + i * 2;
105
106 workload->flex_mmio[i] = reg_state[state_offset + 1];
107 }
108 } else {
109 reg_state[ctx_oactxctrl] =
110 i915_mmio_reg_offset(GEN8_OACTXCONTROL);
111 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
112
113 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
114 u32 state_offset = ctx_flexeu0 + i * 2;
115 u32 mmio = flex_mmio[i];
116
117 reg_state[state_offset] = mmio;
118 reg_state[state_offset + 1] = workload->flex_mmio[i];
119 }
120 }
121 }
122
123 static int populate_shadow_context(struct intel_vgpu_workload *workload)
124 {
125 struct intel_vgpu *vgpu = workload->vgpu;
126 struct intel_gvt *gvt = vgpu->gvt;
127 struct intel_context *ctx = workload->req->context;
128 struct execlist_ring_context *shadow_ring_context;
129 void *dst;
130 void *context_base;
131 unsigned long context_gpa, context_page_num;
132 unsigned long gpa_base; /* first gpa of consecutive GPAs */
133 unsigned long gpa_size; /* size of consecutive GPAs */
134 struct intel_vgpu_submission *s = &vgpu->submission;
135 int i;
136 bool skip = false;
137 int ring_id = workload->engine->id;
138
139 GEM_BUG_ON(!intel_context_is_pinned(ctx));
140
141 context_base = (void *) ctx->lrc_reg_state -
142 (LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
143
144 shadow_ring_context = (void *) ctx->lrc_reg_state;
145
146 sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
147 #define COPY_REG(name) \
148 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
149 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
150 #define COPY_REG_MASKED(name) {\
151 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
152 + RING_CTX_OFF(name.val),\
153 &shadow_ring_context->name.val, 4);\
154 shadow_ring_context->name.val |= 0xffff << 16;\
155 }
156
157 COPY_REG_MASKED(ctx_ctrl);
158 COPY_REG(ctx_timestamp);
159
160 if (workload->engine->id == RCS0) {
161 COPY_REG(bb_per_ctx_ptr);
162 COPY_REG(rcs_indirect_ctx);
163 COPY_REG(rcs_indirect_ctx_offset);
164 }
165 #undef COPY_REG
166 #undef COPY_REG_MASKED
167
168 intel_gvt_hypervisor_read_gpa(vgpu,
169 workload->ring_context_gpa +
170 sizeof(*shadow_ring_context),
171 (void *)shadow_ring_context +
172 sizeof(*shadow_ring_context),
173 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
174
175 sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
176
177 gvt_dbg_sched("ring %s workload lrca %x, ctx_id %x, ctx gpa %llx",
178 workload->engine->name, workload->ctx_desc.lrca,
179 workload->ctx_desc.context_id,
180 workload->ring_context_gpa);
181
182 /* only need to ensure this context is not pinned/unpinned during the
183 * period from last submission to this this submission.
184 * Upon reaching this function, the currently submitted context is not
185 * supposed to get unpinned. If a misbehaving guest driver ever does
186 * this, it would corrupt itself.
187 */
188 if (s->last_ctx[ring_id].valid &&
189 (s->last_ctx[ring_id].lrca ==
190 workload->ctx_desc.lrca) &&
191 (s->last_ctx[ring_id].ring_context_gpa ==
192 workload->ring_context_gpa))
193 skip = true;
194
195 s->last_ctx[ring_id].lrca = workload->ctx_desc.lrca;
196 s->last_ctx[ring_id].ring_context_gpa = workload->ring_context_gpa;
197
198 if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val) || skip)
199 return 0;
200
201 s->last_ctx[ring_id].valid = false;
202 context_page_num = workload->engine->context_size;
203 context_page_num = context_page_num >> PAGE_SHIFT;
204
205 if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0)
206 context_page_num = 19;
207
208 /* find consecutive GPAs from gma until the first inconsecutive GPA.
209 * read from the continuous GPAs into dst virtual address
210 */
211 gpa_size = 0;
212 for (i = 2; i < context_page_num; i++) {
213 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
214 (u32)((workload->ctx_desc.lrca + i) <<
215 I915_GTT_PAGE_SHIFT));
216 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
217 gvt_vgpu_err("Invalid guest context descriptor\n");
218 return -EFAULT;
219 }
220
221 if (gpa_size == 0) {
222 gpa_base = context_gpa;
223 dst = context_base + (i << I915_GTT_PAGE_SHIFT);
224 } else if (context_gpa != gpa_base + gpa_size)
225 goto read;
226
227 gpa_size += I915_GTT_PAGE_SIZE;
228
229 if (i == context_page_num - 1)
230 goto read;
231
232 continue;
233
234 read:
235 intel_gvt_hypervisor_read_gpa(vgpu, gpa_base, dst, gpa_size);
236 gpa_base = context_gpa;
237 gpa_size = I915_GTT_PAGE_SIZE;
238 dst = context_base + (i << I915_GTT_PAGE_SHIFT);
239 }
240 s->last_ctx[ring_id].valid = true;
241 return 0;
242 }
243
244 static inline bool is_gvt_request(struct i915_request *rq)
245 {
246 return intel_context_force_single_submission(rq->context);
247 }
248
249 static void save_ring_hw_state(struct intel_vgpu *vgpu,
250 const struct intel_engine_cs *engine)
251 {
252 struct intel_uncore *uncore = engine->uncore;
253 i915_reg_t reg;
254
255 reg = RING_INSTDONE(engine->mmio_base);
256 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
257 intel_uncore_read(uncore, reg);
258
259 reg = RING_ACTHD(engine->mmio_base);
260 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
261 intel_uncore_read(uncore, reg);
262
263 reg = RING_ACTHD_UDW(engine->mmio_base);
264 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
265 intel_uncore_read(uncore, reg);
266 }
267
268 static int shadow_context_status_change(struct notifier_block *nb,
269 unsigned long action, void *data)
270 {
271 struct i915_request *rq = data;
272 struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
273 shadow_ctx_notifier_block[rq->engine->id]);
274 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
275 enum intel_engine_id ring_id = rq->engine->id;
276 struct intel_vgpu_workload *workload;
277 unsigned long flags;
278
279 if (!is_gvt_request(rq)) {
280 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
281 if (action == INTEL_CONTEXT_SCHEDULE_IN &&
282 scheduler->engine_owner[ring_id]) {
283 /* Switch ring from vGPU to host. */
284 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
285 NULL, rq->engine);
286 scheduler->engine_owner[ring_id] = NULL;
287 }
288 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
289
290 return NOTIFY_OK;
291 }
292
293 workload = scheduler->current_workload[ring_id];
294 if (unlikely(!workload))
295 return NOTIFY_OK;
296
297 switch (action) {
298 case INTEL_CONTEXT_SCHEDULE_IN:
299 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
300 if (workload->vgpu != scheduler->engine_owner[ring_id]) {
301 /* Switch ring from host to vGPU or vGPU to vGPU. */
302 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
303 workload->vgpu, rq->engine);
304 scheduler->engine_owner[ring_id] = workload->vgpu;
305 } else
306 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
307 ring_id, workload->vgpu->id);
308 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
309 atomic_set(&workload->shadow_ctx_active, 1);
310 break;
311 case INTEL_CONTEXT_SCHEDULE_OUT:
312 save_ring_hw_state(workload->vgpu, rq->engine);
313 atomic_set(&workload->shadow_ctx_active, 0);
314 break;
315 case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
316 save_ring_hw_state(workload->vgpu, rq->engine);
317 break;
318 default:
319 WARN_ON(1);
320 return NOTIFY_OK;
321 }
322 wake_up(&workload->shadow_ctx_status_wq);
323 return NOTIFY_OK;
324 }
325
326 static void
327 shadow_context_descriptor_update(struct intel_context *ce,
328 struct intel_vgpu_workload *workload)
329 {
330 u64 desc = ce->lrc.desc;
331
332 /*
333 * Update bits 0-11 of the context descriptor which includes flags
334 * like GEN8_CTX_* cached in desc_template
335 */
336 desc &= ~(0x3ull << GEN8_CTX_ADDRESSING_MODE_SHIFT);
337 desc |= (u64)workload->ctx_desc.addressing_mode <<
338 GEN8_CTX_ADDRESSING_MODE_SHIFT;
339
340 ce->lrc.desc = desc;
341 }
342
343 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
344 {
345 struct intel_vgpu *vgpu = workload->vgpu;
346 struct i915_request *req = workload->req;
347 void *shadow_ring_buffer_va;
348 u32 *cs;
349 int err;
350
351 if (IS_GEN(req->i915, 9) && is_inhibit_context(req->context))
352 intel_vgpu_restore_inhibit_context(vgpu, req);
353
354 /*
355 * To track whether a request has started on HW, we can emit a
356 * breadcrumb at the beginning of the request and check its
357 * timeline's HWSP to see if the breadcrumb has advanced past the
358 * start of this request. Actually, the request must have the
359 * init_breadcrumb if its timeline set has_init_bread_crumb, or the
360 * scheduler might get a wrong state of it during reset. Since the
361 * requests from gvt always set the has_init_breadcrumb flag, here
362 * need to do the emit_init_breadcrumb for all the requests.
363 */
364 if (req->engine->emit_init_breadcrumb) {
365 err = req->engine->emit_init_breadcrumb(req);
366 if (err) {
367 gvt_vgpu_err("fail to emit init breadcrumb\n");
368 return err;
369 }
370 }
371
372 /* allocate shadow ring buffer */
373 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
374 if (IS_ERR(cs)) {
375 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n",
376 workload->rb_len);
377 return PTR_ERR(cs);
378 }
379
380 shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
381
382 /* get shadow ring buffer va */
383 workload->shadow_ring_buffer_va = cs;
384
385 memcpy(cs, shadow_ring_buffer_va,
386 workload->rb_len);
387
388 cs += workload->rb_len / sizeof(u32);
389 intel_ring_advance(workload->req, cs);
390
391 return 0;
392 }
393
394 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
395 {
396 if (!wa_ctx->indirect_ctx.obj)
397 return;
398
399 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
400 i915_gem_object_put(wa_ctx->indirect_ctx.obj);
401
402 wa_ctx->indirect_ctx.obj = NULL;
403 wa_ctx->indirect_ctx.shadow_va = NULL;
404 }
405
406 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
407 struct intel_context *ce)
408 {
409 struct intel_vgpu_mm *mm = workload->shadow_mm;
410 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
411 int i = 0;
412
413 if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
414 px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0];
415 } else {
416 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
417 struct i915_page_directory * const pd =
418 i915_pd_entry(ppgtt->pd, i);
419 /* skip now as current i915 ppgtt alloc won't allocate
420 top level pdp for non 4-level table, won't impact
421 shadow ppgtt. */
422 if (!pd)
423 break;
424 px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i];
425 }
426 }
427 }
428
429 static int
430 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
431 {
432 struct intel_vgpu *vgpu = workload->vgpu;
433 struct intel_vgpu_submission *s = &vgpu->submission;
434 struct i915_request *rq;
435
436 if (workload->req)
437 return 0;
438
439 rq = i915_request_create(s->shadow[workload->engine->id]);
440 if (IS_ERR(rq)) {
441 gvt_vgpu_err("fail to allocate gem request\n");
442 return PTR_ERR(rq);
443 }
444
445 workload->req = i915_request_get(rq);
446 return 0;
447 }
448
449 /**
450 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
451 * shadow it as well, include ringbuffer,wa_ctx and ctx.
452 * @workload: an abstract entity for each execlist submission.
453 *
454 * This function is called before the workload submitting to i915, to make
455 * sure the content of the workload is valid.
456 */
457 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
458 {
459 struct intel_vgpu *vgpu = workload->vgpu;
460 struct intel_vgpu_submission *s = &vgpu->submission;
461 int ret;
462
463 lockdep_assert_held(&vgpu->vgpu_lock);
464
465 if (workload->shadow)
466 return 0;
467
468 if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated))
469 shadow_context_descriptor_update(s->shadow[workload->engine->id],
470 workload);
471
472 ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
473 if (ret)
474 return ret;
475
476 if (workload->engine->id == RCS0 &&
477 workload->wa_ctx.indirect_ctx.size) {
478 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
479 if (ret)
480 goto err_shadow;
481 }
482
483 workload->shadow = true;
484 return 0;
485
486 err_shadow:
487 release_shadow_wa_ctx(&workload->wa_ctx);
488 return ret;
489 }
490
491 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
492
493 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
494 {
495 struct intel_gvt *gvt = workload->vgpu->gvt;
496 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
497 struct intel_vgpu_shadow_bb *bb;
498 int ret;
499
500 list_for_each_entry(bb, &workload->shadow_bb, list) {
501 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
502 * is only updated into ring_scan_buffer, not real ring address
503 * allocated in later copy_workload_to_ring_buffer. pls be noted
504 * shadow_ring_buffer_va is now pointed to real ring buffer va
505 * in copy_workload_to_ring_buffer.
506 */
507
508 if (bb->bb_offset)
509 bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
510 + bb->bb_offset;
511
512 if (bb->ppgtt) {
513 /* for non-priv bb, scan&shadow is only for
514 * debugging purpose, so the content of shadow bb
515 * is the same as original bb. Therefore,
516 * here, rather than switch to shadow bb's gma
517 * address, we directly use original batch buffer's
518 * gma address, and send original bb to hardware
519 * directly
520 */
521 if (bb->clflush & CLFLUSH_AFTER) {
522 drm_clflush_virt_range(bb->va,
523 bb->obj->base.size);
524 bb->clflush &= ~CLFLUSH_AFTER;
525 }
526 i915_gem_object_finish_access(bb->obj);
527 bb->accessing = false;
528
529 } else {
530 bb->vma = i915_gem_object_ggtt_pin(bb->obj,
531 NULL, 0, 0, 0);
532 if (IS_ERR(bb->vma)) {
533 ret = PTR_ERR(bb->vma);
534 goto err;
535 }
536
537 /* relocate shadow batch buffer */
538 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
539 if (gmadr_bytes == 8)
540 bb->bb_start_cmd_va[2] = 0;
541
542 /* No one is going to touch shadow bb from now on. */
543 if (bb->clflush & CLFLUSH_AFTER) {
544 drm_clflush_virt_range(bb->va,
545 bb->obj->base.size);
546 bb->clflush &= ~CLFLUSH_AFTER;
547 }
548
549 ret = i915_gem_object_set_to_gtt_domain(bb->obj,
550 false);
551 if (ret)
552 goto err;
553
554 ret = i915_vma_move_to_active(bb->vma,
555 workload->req,
556 0);
557 if (ret)
558 goto err;
559
560 i915_gem_object_finish_access(bb->obj);
561 bb->accessing = false;
562 }
563 }
564 return 0;
565 err:
566 release_shadow_batch_buffer(workload);
567 return ret;
568 }
569
570 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
571 {
572 struct intel_vgpu_workload *workload =
573 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
574 struct i915_request *rq = workload->req;
575 struct execlist_ring_context *shadow_ring_context =
576 (struct execlist_ring_context *)rq->context->lrc_reg_state;
577
578 shadow_ring_context->bb_per_ctx_ptr.val =
579 (shadow_ring_context->bb_per_ctx_ptr.val &
580 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
581 shadow_ring_context->rcs_indirect_ctx.val =
582 (shadow_ring_context->rcs_indirect_ctx.val &
583 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
584 }
585
586 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
587 {
588 struct i915_vma *vma;
589 unsigned char *per_ctx_va =
590 (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
591 wa_ctx->indirect_ctx.size;
592
593 if (wa_ctx->indirect_ctx.size == 0)
594 return 0;
595
596 vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
597 0, CACHELINE_BYTES, 0);
598 if (IS_ERR(vma))
599 return PTR_ERR(vma);
600
601 /* FIXME: we are not tracking our pinned VMA leaving it
602 * up to the core to fix up the stray pin_count upon
603 * free.
604 */
605
606 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
607
608 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
609 memset(per_ctx_va, 0, CACHELINE_BYTES);
610
611 update_wa_ctx_2_shadow_ctx(wa_ctx);
612 return 0;
613 }
614
615 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload)
616 {
617 vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) =
618 workload->rb_start;
619 }
620
621 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
622 {
623 struct intel_vgpu_shadow_bb *bb, *pos;
624
625 if (list_empty(&workload->shadow_bb))
626 return;
627
628 bb = list_first_entry(&workload->shadow_bb,
629 struct intel_vgpu_shadow_bb, list);
630
631 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
632 if (bb->obj) {
633 if (bb->accessing)
634 i915_gem_object_finish_access(bb->obj);
635
636 if (bb->va && !IS_ERR(bb->va))
637 i915_gem_object_unpin_map(bb->obj);
638
639 if (bb->vma && !IS_ERR(bb->vma))
640 i915_vma_unpin(bb->vma);
641
642 i915_gem_object_put(bb->obj);
643 }
644 list_del(&bb->list);
645 kfree(bb);
646 }
647 }
648
649 static int
650 intel_vgpu_shadow_mm_pin(struct intel_vgpu_workload *workload)
651 {
652 struct intel_vgpu *vgpu = workload->vgpu;
653 struct intel_vgpu_mm *m;
654 int ret = 0;
655
656 ret = intel_vgpu_pin_mm(workload->shadow_mm);
657 if (ret) {
658 gvt_vgpu_err("fail to vgpu pin mm\n");
659 return ret;
660 }
661
662 if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
663 !workload->shadow_mm->ppgtt_mm.shadowed) {
664 gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
665 return -EINVAL;
666 }
667
668 if (!list_empty(&workload->lri_shadow_mm)) {
669 list_for_each_entry(m, &workload->lri_shadow_mm,
670 ppgtt_mm.link) {
671 ret = intel_vgpu_pin_mm(m);
672 if (ret) {
673 list_for_each_entry_from_reverse(m,
674 &workload->lri_shadow_mm,
675 ppgtt_mm.link)
676 intel_vgpu_unpin_mm(m);
677 gvt_vgpu_err("LRI shadow ppgtt fail to pin\n");
678 break;
679 }
680 }
681 }
682
683 if (ret)
684 intel_vgpu_unpin_mm(workload->shadow_mm);
685
686 return ret;
687 }
688
689 static void
690 intel_vgpu_shadow_mm_unpin(struct intel_vgpu_workload *workload)
691 {
692 struct intel_vgpu_mm *m;
693
694 if (!list_empty(&workload->lri_shadow_mm)) {
695 list_for_each_entry(m, &workload->lri_shadow_mm,
696 ppgtt_mm.link)
697 intel_vgpu_unpin_mm(m);
698 }
699 intel_vgpu_unpin_mm(workload->shadow_mm);
700 }
701
702 static int prepare_workload(struct intel_vgpu_workload *workload)
703 {
704 struct intel_vgpu *vgpu = workload->vgpu;
705 struct intel_vgpu_submission *s = &vgpu->submission;
706 int ret = 0;
707
708 ret = intel_vgpu_shadow_mm_pin(workload);
709 if (ret) {
710 gvt_vgpu_err("fail to pin shadow mm\n");
711 return ret;
712 }
713
714 update_shadow_pdps(workload);
715
716 set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]);
717
718 ret = intel_vgpu_sync_oos_pages(workload->vgpu);
719 if (ret) {
720 gvt_vgpu_err("fail to vgpu sync oos pages\n");
721 goto err_unpin_mm;
722 }
723
724 ret = intel_vgpu_flush_post_shadow(workload->vgpu);
725 if (ret) {
726 gvt_vgpu_err("fail to flush post shadow\n");
727 goto err_unpin_mm;
728 }
729
730 ret = copy_workload_to_ring_buffer(workload);
731 if (ret) {
732 gvt_vgpu_err("fail to generate request\n");
733 goto err_unpin_mm;
734 }
735
736 ret = prepare_shadow_batch_buffer(workload);
737 if (ret) {
738 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
739 goto err_unpin_mm;
740 }
741
742 ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
743 if (ret) {
744 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
745 goto err_shadow_batch;
746 }
747
748 if (workload->prepare) {
749 ret = workload->prepare(workload);
750 if (ret)
751 goto err_shadow_wa_ctx;
752 }
753
754 return 0;
755 err_shadow_wa_ctx:
756 release_shadow_wa_ctx(&workload->wa_ctx);
757 err_shadow_batch:
758 release_shadow_batch_buffer(workload);
759 err_unpin_mm:
760 intel_vgpu_shadow_mm_unpin(workload);
761 return ret;
762 }
763
764 static int dispatch_workload(struct intel_vgpu_workload *workload)
765 {
766 struct intel_vgpu *vgpu = workload->vgpu;
767 struct i915_request *rq;
768 int ret;
769
770 gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n",
771 workload->engine->name, workload);
772
773 mutex_lock(&vgpu->vgpu_lock);
774
775 ret = intel_gvt_workload_req_alloc(workload);
776 if (ret)
777 goto err_req;
778
779 ret = intel_gvt_scan_and_shadow_workload(workload);
780 if (ret)
781 goto out;
782
783 ret = populate_shadow_context(workload);
784 if (ret) {
785 release_shadow_wa_ctx(&workload->wa_ctx);
786 goto out;
787 }
788
789 ret = prepare_workload(workload);
790 out:
791 if (ret) {
792 /* We might still need to add request with
793 * clean ctx to retire it properly..
794 */
795 rq = fetch_and_zero(&workload->req);
796 i915_request_put(rq);
797 }
798
799 if (!IS_ERR_OR_NULL(workload->req)) {
800 gvt_dbg_sched("ring id %s submit workload to i915 %p\n",
801 workload->engine->name, workload->req);
802 i915_request_add(workload->req);
803 workload->dispatched = true;
804 }
805 err_req:
806 if (ret)
807 workload->status = ret;
808 mutex_unlock(&vgpu->vgpu_lock);
809 return ret;
810 }
811
812 static struct intel_vgpu_workload *
813 pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine)
814 {
815 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
816 struct intel_vgpu_workload *workload = NULL;
817
818 mutex_lock(&gvt->sched_lock);
819
820 /*
821 * no current vgpu / will be scheduled out / no workload
822 * bail out
823 */
824 if (!scheduler->current_vgpu) {
825 gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name);
826 goto out;
827 }
828
829 if (scheduler->need_reschedule) {
830 gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name);
831 goto out;
832 }
833
834 if (!scheduler->current_vgpu->active ||
835 list_empty(workload_q_head(scheduler->current_vgpu, engine)))
836 goto out;
837
838 /*
839 * still have current workload, maybe the workload disptacher
840 * fail to submit it for some reason, resubmit it.
841 */
842 if (scheduler->current_workload[engine->id]) {
843 workload = scheduler->current_workload[engine->id];
844 gvt_dbg_sched("ring %s still have current workload %p\n",
845 engine->name, workload);
846 goto out;
847 }
848
849 /*
850 * pick a workload as current workload
851 * once current workload is set, schedule policy routines
852 * will wait the current workload is finished when trying to
853 * schedule out a vgpu.
854 */
855 scheduler->current_workload[engine->id] =
856 list_first_entry(workload_q_head(scheduler->current_vgpu,
857 engine),
858 struct intel_vgpu_workload, list);
859
860 workload = scheduler->current_workload[engine->id];
861
862 gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload);
863
864 atomic_inc(&workload->vgpu->submission.running_workload_num);
865 out:
866 mutex_unlock(&gvt->sched_lock);
867 return workload;
868 }
869
870 static void update_guest_pdps(struct intel_vgpu *vgpu,
871 u64 ring_context_gpa, u32 pdp[8])
872 {
873 u64 gpa;
874 int i;
875
876 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
877
878 for (i = 0; i < 8; i++)
879 intel_gvt_hypervisor_write_gpa(vgpu,
880 gpa + i * 8, &pdp[7 - i], 4);
881 }
882
883 static __maybe_unused bool
884 check_shadow_context_ppgtt(struct execlist_ring_context *c, struct intel_vgpu_mm *m)
885 {
886 if (m->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
887 u64 shadow_pdp = c->pdps[7].val | (u64) c->pdps[6].val << 32;
888
889 if (shadow_pdp != m->ppgtt_mm.shadow_pdps[0]) {
890 gvt_dbg_mm("4-level context ppgtt not match LRI command\n");
891 return false;
892 }
893 return true;
894 } else {
895 /* see comment in LRI handler in cmd_parser.c */
896 gvt_dbg_mm("invalid shadow mm type\n");
897 return false;
898 }
899 }
900
901 static void update_guest_context(struct intel_vgpu_workload *workload)
902 {
903 struct i915_request *rq = workload->req;
904 struct intel_vgpu *vgpu = workload->vgpu;
905 struct execlist_ring_context *shadow_ring_context;
906 struct intel_context *ctx = workload->req->context;
907 void *context_base;
908 void *src;
909 unsigned long context_gpa, context_page_num;
910 unsigned long gpa_base; /* first gpa of consecutive GPAs */
911 unsigned long gpa_size; /* size of consecutive GPAs*/
912 int i;
913 u32 ring_base;
914 u32 head, tail;
915 u16 wrap_count;
916
917 gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
918 workload->ctx_desc.lrca);
919
920 GEM_BUG_ON(!intel_context_is_pinned(ctx));
921
922 head = workload->rb_head;
923 tail = workload->rb_tail;
924 wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
925
926 if (tail < head) {
927 if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
928 wrap_count = 0;
929 else
930 wrap_count += 1;
931 }
932
933 head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
934
935 ring_base = rq->engine->mmio_base;
936 vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
937 vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
938
939 context_page_num = rq->engine->context_size;
940 context_page_num = context_page_num >> PAGE_SHIFT;
941
942 if (IS_BROADWELL(rq->i915) && rq->engine->id == RCS0)
943 context_page_num = 19;
944
945 context_base = (void *) ctx->lrc_reg_state -
946 (LRC_STATE_PN << I915_GTT_PAGE_SHIFT);
947
948 /* find consecutive GPAs from gma until the first inconsecutive GPA.
949 * write to the consecutive GPAs from src virtual address
950 */
951 gpa_size = 0;
952 for (i = 2; i < context_page_num; i++) {
953 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
954 (u32)((workload->ctx_desc.lrca + i) <<
955 I915_GTT_PAGE_SHIFT));
956 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
957 gvt_vgpu_err("invalid guest context descriptor\n");
958 return;
959 }
960
961 if (gpa_size == 0) {
962 gpa_base = context_gpa;
963 src = context_base + (i << I915_GTT_PAGE_SHIFT);
964 } else if (context_gpa != gpa_base + gpa_size)
965 goto write;
966
967 gpa_size += I915_GTT_PAGE_SIZE;
968
969 if (i == context_page_num - 1)
970 goto write;
971
972 continue;
973
974 write:
975 intel_gvt_hypervisor_write_gpa(vgpu, gpa_base, src, gpa_size);
976 gpa_base = context_gpa;
977 gpa_size = I915_GTT_PAGE_SIZE;
978 src = context_base + (i << I915_GTT_PAGE_SHIFT);
979 }
980
981 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
982 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
983
984 shadow_ring_context = (void *) ctx->lrc_reg_state;
985
986 if (!list_empty(&workload->lri_shadow_mm)) {
987 struct intel_vgpu_mm *m = list_last_entry(&workload->lri_shadow_mm,
988 struct intel_vgpu_mm,
989 ppgtt_mm.link);
990 GEM_BUG_ON(!check_shadow_context_ppgtt(shadow_ring_context, m));
991 update_guest_pdps(vgpu, workload->ring_context_gpa,
992 (void *)m->ppgtt_mm.guest_pdps);
993 }
994
995 #define COPY_REG(name) \
996 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
997 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
998
999 COPY_REG(ctx_ctrl);
1000 COPY_REG(ctx_timestamp);
1001
1002 #undef COPY_REG
1003
1004 intel_gvt_hypervisor_write_gpa(vgpu,
1005 workload->ring_context_gpa +
1006 sizeof(*shadow_ring_context),
1007 (void *)shadow_ring_context +
1008 sizeof(*shadow_ring_context),
1009 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
1010 }
1011
1012 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
1013 intel_engine_mask_t engine_mask)
1014 {
1015 struct intel_vgpu_submission *s = &vgpu->submission;
1016 struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
1017 struct intel_engine_cs *engine;
1018 struct intel_vgpu_workload *pos, *n;
1019 intel_engine_mask_t tmp;
1020
1021 /* free the unsubmited workloads in the queues. */
1022 for_each_engine_masked(engine, &dev_priv->gt, engine_mask, tmp) {
1023 list_for_each_entry_safe(pos, n,
1024 &s->workload_q_head[engine->id], list) {
1025 list_del_init(&pos->list);
1026 intel_vgpu_destroy_workload(pos);
1027 }
1028 clear_bit(engine->id, s->shadow_ctx_desc_updated);
1029 }
1030 }
1031
1032 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
1033 {
1034 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1035 struct intel_vgpu_workload *workload =
1036 scheduler->current_workload[ring_id];
1037 struct intel_vgpu *vgpu = workload->vgpu;
1038 struct intel_vgpu_submission *s = &vgpu->submission;
1039 struct i915_request *rq = workload->req;
1040 int event;
1041
1042 mutex_lock(&vgpu->vgpu_lock);
1043 mutex_lock(&gvt->sched_lock);
1044
1045 /* For the workload w/ request, needs to wait for the context
1046 * switch to make sure request is completed.
1047 * For the workload w/o request, directly complete the workload.
1048 */
1049 if (rq) {
1050 wait_event(workload->shadow_ctx_status_wq,
1051 !atomic_read(&workload->shadow_ctx_active));
1052
1053 /* If this request caused GPU hang, req->fence.error will
1054 * be set to -EIO. Use -EIO to set workload status so
1055 * that when this request caused GPU hang, didn't trigger
1056 * context switch interrupt to guest.
1057 */
1058 if (likely(workload->status == -EINPROGRESS)) {
1059 if (workload->req->fence.error == -EIO)
1060 workload->status = -EIO;
1061 else
1062 workload->status = 0;
1063 }
1064
1065 if (!workload->status &&
1066 !(vgpu->resetting_eng & BIT(ring_id))) {
1067 update_guest_context(workload);
1068
1069 for_each_set_bit(event, workload->pending_events,
1070 INTEL_GVT_EVENT_MAX)
1071 intel_vgpu_trigger_virtual_event(vgpu, event);
1072 }
1073
1074 i915_request_put(fetch_and_zero(&workload->req));
1075 }
1076
1077 gvt_dbg_sched("ring id %d complete workload %p status %d\n",
1078 ring_id, workload, workload->status);
1079
1080 scheduler->current_workload[ring_id] = NULL;
1081
1082 list_del_init(&workload->list);
1083
1084 if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
1085 /* if workload->status is not successful means HW GPU
1086 * has occurred GPU hang or something wrong with i915/GVT,
1087 * and GVT won't inject context switch interrupt to guest.
1088 * So this error is a vGPU hang actually to the guest.
1089 * According to this we should emunlate a vGPU hang. If
1090 * there are pending workloads which are already submitted
1091 * from guest, we should clean them up like HW GPU does.
1092 *
1093 * if it is in middle of engine resetting, the pending
1094 * workloads won't be submitted to HW GPU and will be
1095 * cleaned up during the resetting process later, so doing
1096 * the workload clean up here doesn't have any impact.
1097 **/
1098 intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
1099 }
1100
1101 workload->complete(workload);
1102
1103 intel_vgpu_shadow_mm_unpin(workload);
1104 intel_vgpu_destroy_workload(workload);
1105
1106 atomic_dec(&s->running_workload_num);
1107 wake_up(&scheduler->workload_complete_wq);
1108
1109 if (gvt->scheduler.need_reschedule)
1110 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
1111
1112 mutex_unlock(&gvt->sched_lock);
1113 mutex_unlock(&vgpu->vgpu_lock);
1114 }
1115
1116 static int workload_thread(void *arg)
1117 {
1118 struct intel_engine_cs *engine = arg;
1119 const bool need_force_wake = INTEL_GEN(engine->i915) >= 9;
1120 struct intel_gvt *gvt = engine->i915->gvt;
1121 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1122 struct intel_vgpu_workload *workload = NULL;
1123 struct intel_vgpu *vgpu = NULL;
1124 int ret;
1125 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1126
1127 gvt_dbg_core("workload thread for ring %s started\n", engine->name);
1128
1129 while (!kthread_should_stop()) {
1130 intel_wakeref_t wakeref;
1131
1132 add_wait_queue(&scheduler->waitq[engine->id], &wait);
1133 do {
1134 workload = pick_next_workload(gvt, engine);
1135 if (workload)
1136 break;
1137 wait_woken(&wait, TASK_INTERRUPTIBLE,
1138 MAX_SCHEDULE_TIMEOUT);
1139 } while (!kthread_should_stop());
1140 remove_wait_queue(&scheduler->waitq[engine->id], &wait);
1141
1142 if (!workload)
1143 break;
1144
1145 gvt_dbg_sched("ring %s next workload %p vgpu %d\n",
1146 engine->name, workload,
1147 workload->vgpu->id);
1148
1149 wakeref = intel_runtime_pm_get(engine->uncore->rpm);
1150
1151 gvt_dbg_sched("ring %s will dispatch workload %p\n",
1152 engine->name, workload);
1153
1154 if (need_force_wake)
1155 intel_uncore_forcewake_get(engine->uncore,
1156 FORCEWAKE_ALL);
1157 /*
1158 * Update the vReg of the vGPU which submitted this
1159 * workload. The vGPU may use these registers for checking
1160 * the context state. The value comes from GPU commands
1161 * in this workload.
1162 */
1163 update_vreg_in_ctx(workload);
1164
1165 ret = dispatch_workload(workload);
1166
1167 if (ret) {
1168 vgpu = workload->vgpu;
1169 gvt_vgpu_err("fail to dispatch workload, skip\n");
1170 goto complete;
1171 }
1172
1173 gvt_dbg_sched("ring %s wait workload %p\n",
1174 engine->name, workload);
1175 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1176
1177 complete:
1178 gvt_dbg_sched("will complete workload %p, status: %d\n",
1179 workload, workload->status);
1180
1181 complete_current_workload(gvt, engine->id);
1182
1183 if (need_force_wake)
1184 intel_uncore_forcewake_put(engine->uncore,
1185 FORCEWAKE_ALL);
1186
1187 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1188 if (ret && (vgpu_is_vm_unhealthy(ret)))
1189 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1190 }
1191 return 0;
1192 }
1193
1194 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1195 {
1196 struct intel_vgpu_submission *s = &vgpu->submission;
1197 struct intel_gvt *gvt = vgpu->gvt;
1198 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1199
1200 if (atomic_read(&s->running_workload_num)) {
1201 gvt_dbg_sched("wait vgpu idle\n");
1202
1203 wait_event(scheduler->workload_complete_wq,
1204 !atomic_read(&s->running_workload_num));
1205 }
1206 }
1207
1208 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1209 {
1210 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1211 struct intel_engine_cs *engine;
1212 enum intel_engine_id i;
1213
1214 gvt_dbg_core("clean workload scheduler\n");
1215
1216 for_each_engine(engine, gvt->gt, i) {
1217 atomic_notifier_chain_unregister(
1218 &engine->context_status_notifier,
1219 &gvt->shadow_ctx_notifier_block[i]);
1220 kthread_stop(scheduler->thread[i]);
1221 }
1222 }
1223
1224 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1225 {
1226 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1227 struct intel_engine_cs *engine;
1228 enum intel_engine_id i;
1229 int ret;
1230
1231 gvt_dbg_core("init workload scheduler\n");
1232
1233 init_waitqueue_head(&scheduler->workload_complete_wq);
1234
1235 for_each_engine(engine, gvt->gt, i) {
1236 init_waitqueue_head(&scheduler->waitq[i]);
1237
1238 scheduler->thread[i] = kthread_run(workload_thread, engine,
1239 "gvt:%s", engine->name);
1240 if (IS_ERR(scheduler->thread[i])) {
1241 gvt_err("fail to create workload thread\n");
1242 ret = PTR_ERR(scheduler->thread[i]);
1243 goto err;
1244 }
1245
1246 gvt->shadow_ctx_notifier_block[i].notifier_call =
1247 shadow_context_status_change;
1248 atomic_notifier_chain_register(&engine->context_status_notifier,
1249 &gvt->shadow_ctx_notifier_block[i]);
1250 }
1251
1252 return 0;
1253
1254 err:
1255 intel_gvt_clean_workload_scheduler(gvt);
1256 return ret;
1257 }
1258
1259 static void
1260 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1261 struct i915_ppgtt *ppgtt)
1262 {
1263 int i;
1264
1265 if (i915_vm_is_4lvl(&ppgtt->vm)) {
1266 px_dma(ppgtt->pd) = s->i915_context_pml4;
1267 } else {
1268 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1269 struct i915_page_directory * const pd =
1270 i915_pd_entry(ppgtt->pd, i);
1271
1272 px_dma(pd) = s->i915_context_pdps[i];
1273 }
1274 }
1275 }
1276
1277 /**
1278 * intel_vgpu_clean_submission - free submission-related resource for vGPU
1279 * @vgpu: a vGPU
1280 *
1281 * This function is called when a vGPU is being destroyed.
1282 *
1283 */
1284 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1285 {
1286 struct intel_vgpu_submission *s = &vgpu->submission;
1287 struct intel_engine_cs *engine;
1288 enum intel_engine_id id;
1289
1290 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1291
1292 i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
1293 for_each_engine(engine, vgpu->gvt->gt, id)
1294 intel_context_unpin(s->shadow[id]);
1295
1296 kmem_cache_destroy(s->workloads);
1297 }
1298
1299
1300 /**
1301 * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1302 * @vgpu: a vGPU
1303 * @engine_mask: engines expected to be reset
1304 *
1305 * This function is called when a vGPU is being destroyed.
1306 *
1307 */
1308 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1309 intel_engine_mask_t engine_mask)
1310 {
1311 struct intel_vgpu_submission *s = &vgpu->submission;
1312
1313 if (!s->active)
1314 return;
1315
1316 intel_vgpu_clean_workloads(vgpu, engine_mask);
1317 s->ops->reset(vgpu, engine_mask);
1318 }
1319
1320 static void
1321 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1322 struct i915_ppgtt *ppgtt)
1323 {
1324 int i;
1325
1326 if (i915_vm_is_4lvl(&ppgtt->vm)) {
1327 s->i915_context_pml4 = px_dma(ppgtt->pd);
1328 } else {
1329 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1330 struct i915_page_directory * const pd =
1331 i915_pd_entry(ppgtt->pd, i);
1332
1333 s->i915_context_pdps[i] = px_dma(pd);
1334 }
1335 }
1336 }
1337
1338 /**
1339 * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1340 * @vgpu: a vGPU
1341 *
1342 * This function is called when a vGPU is being created.
1343 *
1344 * Returns:
1345 * Zero on success, negative error code if failed.
1346 *
1347 */
1348 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1349 {
1350 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1351 struct intel_vgpu_submission *s = &vgpu->submission;
1352 struct intel_engine_cs *engine;
1353 struct i915_ppgtt *ppgtt;
1354 enum intel_engine_id i;
1355 int ret;
1356
1357 ppgtt = i915_ppgtt_create(&i915->gt);
1358 if (IS_ERR(ppgtt))
1359 return PTR_ERR(ppgtt);
1360
1361 i915_context_ppgtt_root_save(s, ppgtt);
1362
1363 for_each_engine(engine, vgpu->gvt->gt, i) {
1364 struct intel_context *ce;
1365
1366 INIT_LIST_HEAD(&s->workload_q_head[i]);
1367 s->shadow[i] = ERR_PTR(-EINVAL);
1368
1369 ce = intel_context_create(engine);
1370 if (IS_ERR(ce)) {
1371 ret = PTR_ERR(ce);
1372 goto out_shadow_ctx;
1373 }
1374
1375 i915_vm_put(ce->vm);
1376 ce->vm = i915_vm_get(&ppgtt->vm);
1377 intel_context_set_single_submission(ce);
1378
1379 /* Max ring buffer size */
1380 if (!intel_uc_wants_guc_submission(&engine->gt->uc)) {
1381 const unsigned int ring_size = 512 * SZ_4K;
1382
1383 ce->ring = __intel_context_ring_size(ring_size);
1384 }
1385
1386 ret = intel_context_pin(ce);
1387 intel_context_put(ce);
1388 if (ret)
1389 goto out_shadow_ctx;
1390
1391 s->shadow[i] = ce;
1392 }
1393
1394 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1395
1396 s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1397 sizeof(struct intel_vgpu_workload), 0,
1398 SLAB_HWCACHE_ALIGN,
1399 offsetof(struct intel_vgpu_workload, rb_tail),
1400 sizeof_field(struct intel_vgpu_workload, rb_tail),
1401 NULL);
1402
1403 if (!s->workloads) {
1404 ret = -ENOMEM;
1405 goto out_shadow_ctx;
1406 }
1407
1408 atomic_set(&s->running_workload_num, 0);
1409 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1410
1411 memset(s->last_ctx, 0, sizeof(s->last_ctx));
1412
1413 i915_vm_put(&ppgtt->vm);
1414 return 0;
1415
1416 out_shadow_ctx:
1417 i915_context_ppgtt_root_restore(s, ppgtt);
1418 for_each_engine(engine, vgpu->gvt->gt, i) {
1419 if (IS_ERR(s->shadow[i]))
1420 break;
1421
1422 intel_context_unpin(s->shadow[i]);
1423 intel_context_put(s->shadow[i]);
1424 }
1425 i915_vm_put(&ppgtt->vm);
1426 return ret;
1427 }
1428
1429 /**
1430 * intel_vgpu_select_submission_ops - select virtual submission interface
1431 * @vgpu: a vGPU
1432 * @engine_mask: either ALL_ENGINES or target engine mask
1433 * @interface: expected vGPU virtual submission interface
1434 *
1435 * This function is called when guest configures submission interface.
1436 *
1437 * Returns:
1438 * Zero on success, negative error code if failed.
1439 *
1440 */
1441 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1442 intel_engine_mask_t engine_mask,
1443 unsigned int interface)
1444 {
1445 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1446 struct intel_vgpu_submission *s = &vgpu->submission;
1447 const struct intel_vgpu_submission_ops *ops[] = {
1448 [INTEL_VGPU_EXECLIST_SUBMISSION] =
1449 &intel_vgpu_execlist_submission_ops,
1450 };
1451 int ret;
1452
1453 if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops)))
1454 return -EINVAL;
1455
1456 if (drm_WARN_ON(&i915->drm,
1457 interface == 0 && engine_mask != ALL_ENGINES))
1458 return -EINVAL;
1459
1460 if (s->active)
1461 s->ops->clean(vgpu, engine_mask);
1462
1463 if (interface == 0) {
1464 s->ops = NULL;
1465 s->virtual_submission_interface = 0;
1466 s->active = false;
1467 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1468 return 0;
1469 }
1470
1471 ret = ops[interface]->init(vgpu, engine_mask);
1472 if (ret)
1473 return ret;
1474
1475 s->ops = ops[interface];
1476 s->virtual_submission_interface = interface;
1477 s->active = true;
1478
1479 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1480 vgpu->id, s->ops->name);
1481
1482 return 0;
1483 }
1484
1485 /**
1486 * intel_vgpu_destroy_workload - destroy a vGPU workload
1487 * @workload: workload to destroy
1488 *
1489 * This function is called when destroy a vGPU workload.
1490 *
1491 */
1492 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1493 {
1494 struct intel_vgpu_submission *s = &workload->vgpu->submission;
1495
1496 release_shadow_batch_buffer(workload);
1497 release_shadow_wa_ctx(&workload->wa_ctx);
1498
1499 if (!list_empty(&workload->lri_shadow_mm)) {
1500 struct intel_vgpu_mm *m, *mm;
1501 list_for_each_entry_safe(m, mm, &workload->lri_shadow_mm,
1502 ppgtt_mm.link) {
1503 list_del(&m->ppgtt_mm.link);
1504 intel_vgpu_mm_put(m);
1505 }
1506 }
1507
1508 GEM_BUG_ON(!list_empty(&workload->lri_shadow_mm));
1509 if (workload->shadow_mm)
1510 intel_vgpu_mm_put(workload->shadow_mm);
1511
1512 kmem_cache_free(s->workloads, workload);
1513 }
1514
1515 static struct intel_vgpu_workload *
1516 alloc_workload(struct intel_vgpu *vgpu)
1517 {
1518 struct intel_vgpu_submission *s = &vgpu->submission;
1519 struct intel_vgpu_workload *workload;
1520
1521 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1522 if (!workload)
1523 return ERR_PTR(-ENOMEM);
1524
1525 INIT_LIST_HEAD(&workload->list);
1526 INIT_LIST_HEAD(&workload->shadow_bb);
1527 INIT_LIST_HEAD(&workload->lri_shadow_mm);
1528
1529 init_waitqueue_head(&workload->shadow_ctx_status_wq);
1530 atomic_set(&workload->shadow_ctx_active, 0);
1531
1532 workload->status = -EINPROGRESS;
1533 workload->vgpu = vgpu;
1534
1535 return workload;
1536 }
1537
1538 #define RING_CTX_OFF(x) \
1539 offsetof(struct execlist_ring_context, x)
1540
1541 static void read_guest_pdps(struct intel_vgpu *vgpu,
1542 u64 ring_context_gpa, u32 pdp[8])
1543 {
1544 u64 gpa;
1545 int i;
1546
1547 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1548
1549 for (i = 0; i < 8; i++)
1550 intel_gvt_hypervisor_read_gpa(vgpu,
1551 gpa + i * 8, &pdp[7 - i], 4);
1552 }
1553
1554 static int prepare_mm(struct intel_vgpu_workload *workload)
1555 {
1556 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1557 struct intel_vgpu_mm *mm;
1558 struct intel_vgpu *vgpu = workload->vgpu;
1559 enum intel_gvt_gtt_type root_entry_type;
1560 u64 pdps[GVT_RING_CTX_NR_PDPS];
1561
1562 switch (desc->addressing_mode) {
1563 case 1: /* legacy 32-bit */
1564 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1565 break;
1566 case 3: /* legacy 64-bit */
1567 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1568 break;
1569 default:
1570 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1571 return -EINVAL;
1572 }
1573
1574 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1575
1576 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1577 if (IS_ERR(mm))
1578 return PTR_ERR(mm);
1579
1580 workload->shadow_mm = mm;
1581 return 0;
1582 }
1583
1584 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1585 ((a)->lrca == (b)->lrca))
1586
1587 /**
1588 * intel_vgpu_create_workload - create a vGPU workload
1589 * @vgpu: a vGPU
1590 * @engine: the engine
1591 * @desc: a guest context descriptor
1592 *
1593 * This function is called when creating a vGPU workload.
1594 *
1595 * Returns:
1596 * struct intel_vgpu_workload * on success, negative error code in
1597 * pointer if failed.
1598 *
1599 */
1600 struct intel_vgpu_workload *
1601 intel_vgpu_create_workload(struct intel_vgpu *vgpu,
1602 const struct intel_engine_cs *engine,
1603 struct execlist_ctx_descriptor_format *desc)
1604 {
1605 struct intel_vgpu_submission *s = &vgpu->submission;
1606 struct list_head *q = workload_q_head(vgpu, engine);
1607 struct intel_vgpu_workload *last_workload = NULL;
1608 struct intel_vgpu_workload *workload = NULL;
1609 u64 ring_context_gpa;
1610 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1611 u32 guest_head;
1612 int ret;
1613
1614 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1615 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1616 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1617 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1618 return ERR_PTR(-EINVAL);
1619 }
1620
1621 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1622 RING_CTX_OFF(ring_header.val), &head, 4);
1623
1624 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1625 RING_CTX_OFF(ring_tail.val), &tail, 4);
1626
1627 guest_head = head;
1628
1629 head &= RB_HEAD_OFF_MASK;
1630 tail &= RB_TAIL_OFF_MASK;
1631
1632 list_for_each_entry_reverse(last_workload, q, list) {
1633
1634 if (same_context(&last_workload->ctx_desc, desc)) {
1635 gvt_dbg_el("ring %s cur workload == last\n",
1636 engine->name);
1637 gvt_dbg_el("ctx head %x real head %lx\n", head,
1638 last_workload->rb_tail);
1639 /*
1640 * cannot use guest context head pointer here,
1641 * as it might not be updated at this time
1642 */
1643 head = last_workload->rb_tail;
1644 break;
1645 }
1646 }
1647
1648 gvt_dbg_el("ring %s begin a new workload\n", engine->name);
1649
1650 /* record some ring buffer register values for scan and shadow */
1651 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1652 RING_CTX_OFF(rb_start.val), &start, 4);
1653 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1654 RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1655 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1656 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1657
1658 if (!intel_gvt_ggtt_validate_range(vgpu, start,
1659 _RING_CTL_BUF_SIZE(ctl))) {
1660 gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1661 return ERR_PTR(-EINVAL);
1662 }
1663
1664 workload = alloc_workload(vgpu);
1665 if (IS_ERR(workload))
1666 return workload;
1667
1668 workload->engine = engine;
1669 workload->ctx_desc = *desc;
1670 workload->ring_context_gpa = ring_context_gpa;
1671 workload->rb_head = head;
1672 workload->guest_rb_head = guest_head;
1673 workload->rb_tail = tail;
1674 workload->rb_start = start;
1675 workload->rb_ctl = ctl;
1676
1677 if (engine->id == RCS0) {
1678 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1679 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1680 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1681 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1682
1683 workload->wa_ctx.indirect_ctx.guest_gma =
1684 indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1685 workload->wa_ctx.indirect_ctx.size =
1686 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1687 CACHELINE_BYTES;
1688
1689 if (workload->wa_ctx.indirect_ctx.size != 0) {
1690 if (!intel_gvt_ggtt_validate_range(vgpu,
1691 workload->wa_ctx.indirect_ctx.guest_gma,
1692 workload->wa_ctx.indirect_ctx.size)) {
1693 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1694 workload->wa_ctx.indirect_ctx.guest_gma);
1695 kmem_cache_free(s->workloads, workload);
1696 return ERR_PTR(-EINVAL);
1697 }
1698 }
1699
1700 workload->wa_ctx.per_ctx.guest_gma =
1701 per_ctx & PER_CTX_ADDR_MASK;
1702 workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1703 if (workload->wa_ctx.per_ctx.valid) {
1704 if (!intel_gvt_ggtt_validate_range(vgpu,
1705 workload->wa_ctx.per_ctx.guest_gma,
1706 CACHELINE_BYTES)) {
1707 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1708 workload->wa_ctx.per_ctx.guest_gma);
1709 kmem_cache_free(s->workloads, workload);
1710 return ERR_PTR(-EINVAL);
1711 }
1712 }
1713 }
1714
1715 gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n",
1716 workload, engine->name, head, tail, start, ctl);
1717
1718 ret = prepare_mm(workload);
1719 if (ret) {
1720 kmem_cache_free(s->workloads, workload);
1721 return ERR_PTR(ret);
1722 }
1723
1724 /* Only scan and shadow the first workload in the queue
1725 * as there is only one pre-allocated buf-obj for shadow.
1726 */
1727 if (list_empty(q)) {
1728 intel_wakeref_t wakeref;
1729
1730 with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref)
1731 ret = intel_gvt_scan_and_shadow_workload(workload);
1732 }
1733
1734 if (ret) {
1735 if (vgpu_is_vm_unhealthy(ret))
1736 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1737 intel_vgpu_destroy_workload(workload);
1738 return ERR_PTR(ret);
1739 }
1740
1741 return workload;
1742 }
1743
1744 /**
1745 * intel_vgpu_queue_workload - Qeue a vGPU workload
1746 * @workload: the workload to queue in
1747 */
1748 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1749 {
1750 list_add_tail(&workload->list,
1751 workload_q_head(workload->vgpu, workload->engine));
1752 intel_gvt_kick_schedule(workload->vgpu->gvt);
1753 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]);
1754 }