]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/i915/gvt/scheduler.c
Merge tag 'pm-5.7-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[thirdparty/linux.git] / drivers / gpu / drm / i915 / gvt / scheduler.c
1 /*
2 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 *
23 * Authors:
24 * Zhi Wang <zhi.a.wang@intel.com>
25 *
26 * Contributors:
27 * Ping Gao <ping.a.gao@intel.com>
28 * Tina Zhang <tina.zhang@intel.com>
29 * Chanbin Du <changbin.du@intel.com>
30 * Min He <min.he@intel.com>
31 * Bing Niu <bing.niu@intel.com>
32 * Zhenyu Wang <zhenyuw@linux.intel.com>
33 *
34 */
35
36 #include <linux/kthread.h>
37
38 #include "gem/i915_gem_pm.h"
39 #include "gt/intel_context.h"
40 #include "gt/intel_ring.h"
41
42 #include "i915_drv.h"
43 #include "i915_gem_gtt.h"
44 #include "gvt.h"
45
46 #define RING_CTX_OFF(x) \
47 offsetof(struct execlist_ring_context, x)
48
49 static void set_context_pdp_root_pointer(
50 struct execlist_ring_context *ring_context,
51 u32 pdp[8])
52 {
53 int i;
54
55 for (i = 0; i < 8; i++)
56 ring_context->pdps[i].val = pdp[7 - i];
57 }
58
59 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
60 {
61 struct drm_i915_gem_object *ctx_obj =
62 workload->req->context->state->obj;
63 struct execlist_ring_context *shadow_ring_context;
64 struct page *page;
65
66 if (WARN_ON(!workload->shadow_mm))
67 return;
68
69 if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
70 return;
71
72 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
73 shadow_ring_context = kmap(page);
74 set_context_pdp_root_pointer(shadow_ring_context,
75 (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
76 kunmap(page);
77 }
78
79 /*
80 * when populating shadow ctx from guest, we should not overrride oa related
81 * registers, so that they will not be overlapped by guest oa configs. Thus
82 * made it possible to capture oa data from host for both host and guests.
83 */
84 static void sr_oa_regs(struct intel_vgpu_workload *workload,
85 u32 *reg_state, bool save)
86 {
87 struct drm_i915_private *dev_priv = workload->vgpu->gvt->gt->i915;
88 u32 ctx_oactxctrl = dev_priv->perf.ctx_oactxctrl_offset;
89 u32 ctx_flexeu0 = dev_priv->perf.ctx_flexeu0_offset;
90 int i = 0;
91 u32 flex_mmio[] = {
92 i915_mmio_reg_offset(EU_PERF_CNTL0),
93 i915_mmio_reg_offset(EU_PERF_CNTL1),
94 i915_mmio_reg_offset(EU_PERF_CNTL2),
95 i915_mmio_reg_offset(EU_PERF_CNTL3),
96 i915_mmio_reg_offset(EU_PERF_CNTL4),
97 i915_mmio_reg_offset(EU_PERF_CNTL5),
98 i915_mmio_reg_offset(EU_PERF_CNTL6),
99 };
100
101 if (workload->engine->id != RCS0)
102 return;
103
104 if (save) {
105 workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
106
107 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
108 u32 state_offset = ctx_flexeu0 + i * 2;
109
110 workload->flex_mmio[i] = reg_state[state_offset + 1];
111 }
112 } else {
113 reg_state[ctx_oactxctrl] =
114 i915_mmio_reg_offset(GEN8_OACTXCONTROL);
115 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
116
117 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
118 u32 state_offset = ctx_flexeu0 + i * 2;
119 u32 mmio = flex_mmio[i];
120
121 reg_state[state_offset] = mmio;
122 reg_state[state_offset + 1] = workload->flex_mmio[i];
123 }
124 }
125 }
126
127 static int populate_shadow_context(struct intel_vgpu_workload *workload)
128 {
129 struct intel_vgpu *vgpu = workload->vgpu;
130 struct intel_gvt *gvt = vgpu->gvt;
131 struct drm_i915_gem_object *ctx_obj =
132 workload->req->context->state->obj;
133 struct execlist_ring_context *shadow_ring_context;
134 struct page *page;
135 void *dst;
136 unsigned long context_gpa, context_page_num;
137 int i;
138
139 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
140 shadow_ring_context = kmap(page);
141
142 sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
143 #define COPY_REG(name) \
144 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
145 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
146 #define COPY_REG_MASKED(name) {\
147 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
148 + RING_CTX_OFF(name.val),\
149 &shadow_ring_context->name.val, 4);\
150 shadow_ring_context->name.val |= 0xffff << 16;\
151 }
152
153 COPY_REG_MASKED(ctx_ctrl);
154 COPY_REG(ctx_timestamp);
155
156 if (workload->engine->id == RCS0) {
157 COPY_REG(bb_per_ctx_ptr);
158 COPY_REG(rcs_indirect_ctx);
159 COPY_REG(rcs_indirect_ctx_offset);
160 }
161 #undef COPY_REG
162 #undef COPY_REG_MASKED
163
164 intel_gvt_hypervisor_read_gpa(vgpu,
165 workload->ring_context_gpa +
166 sizeof(*shadow_ring_context),
167 (void *)shadow_ring_context +
168 sizeof(*shadow_ring_context),
169 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
170
171 sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
172 kunmap(page);
173
174 if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
175 return 0;
176
177 gvt_dbg_sched("ring %s workload lrca %x",
178 workload->engine->name,
179 workload->ctx_desc.lrca);
180
181 context_page_num = workload->engine->context_size;
182 context_page_num = context_page_num >> PAGE_SHIFT;
183
184 if (IS_BROADWELL(gvt->gt->i915) && workload->engine->id == RCS0)
185 context_page_num = 19;
186
187 i = 2;
188 while (i < context_page_num) {
189 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
190 (u32)((workload->ctx_desc.lrca + i) <<
191 I915_GTT_PAGE_SHIFT));
192 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
193 gvt_vgpu_err("Invalid guest context descriptor\n");
194 return -EFAULT;
195 }
196
197 page = i915_gem_object_get_page(ctx_obj, i);
198 dst = kmap(page);
199 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
200 I915_GTT_PAGE_SIZE);
201 kunmap(page);
202 i++;
203 }
204 return 0;
205 }
206
207 static inline bool is_gvt_request(struct i915_request *rq)
208 {
209 return intel_context_force_single_submission(rq->context);
210 }
211
212 static void save_ring_hw_state(struct intel_vgpu *vgpu,
213 const struct intel_engine_cs *engine)
214 {
215 struct intel_uncore *uncore = engine->uncore;
216 i915_reg_t reg;
217
218 reg = RING_INSTDONE(engine->mmio_base);
219 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
220 intel_uncore_read(uncore, reg);
221
222 reg = RING_ACTHD(engine->mmio_base);
223 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
224 intel_uncore_read(uncore, reg);
225
226 reg = RING_ACTHD_UDW(engine->mmio_base);
227 vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) =
228 intel_uncore_read(uncore, reg);
229 }
230
231 static int shadow_context_status_change(struct notifier_block *nb,
232 unsigned long action, void *data)
233 {
234 struct i915_request *rq = data;
235 struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
236 shadow_ctx_notifier_block[rq->engine->id]);
237 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
238 enum intel_engine_id ring_id = rq->engine->id;
239 struct intel_vgpu_workload *workload;
240 unsigned long flags;
241
242 if (!is_gvt_request(rq)) {
243 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
244 if (action == INTEL_CONTEXT_SCHEDULE_IN &&
245 scheduler->engine_owner[ring_id]) {
246 /* Switch ring from vGPU to host. */
247 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
248 NULL, rq->engine);
249 scheduler->engine_owner[ring_id] = NULL;
250 }
251 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
252
253 return NOTIFY_OK;
254 }
255
256 workload = scheduler->current_workload[ring_id];
257 if (unlikely(!workload))
258 return NOTIFY_OK;
259
260 switch (action) {
261 case INTEL_CONTEXT_SCHEDULE_IN:
262 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
263 if (workload->vgpu != scheduler->engine_owner[ring_id]) {
264 /* Switch ring from host to vGPU or vGPU to vGPU. */
265 intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
266 workload->vgpu, rq->engine);
267 scheduler->engine_owner[ring_id] = workload->vgpu;
268 } else
269 gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
270 ring_id, workload->vgpu->id);
271 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
272 atomic_set(&workload->shadow_ctx_active, 1);
273 break;
274 case INTEL_CONTEXT_SCHEDULE_OUT:
275 save_ring_hw_state(workload->vgpu, rq->engine);
276 atomic_set(&workload->shadow_ctx_active, 0);
277 break;
278 case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
279 save_ring_hw_state(workload->vgpu, rq->engine);
280 break;
281 default:
282 WARN_ON(1);
283 return NOTIFY_OK;
284 }
285 wake_up(&workload->shadow_ctx_status_wq);
286 return NOTIFY_OK;
287 }
288
289 static void
290 shadow_context_descriptor_update(struct intel_context *ce,
291 struct intel_vgpu_workload *workload)
292 {
293 u64 desc = ce->lrc.desc;
294
295 /*
296 * Update bits 0-11 of the context descriptor which includes flags
297 * like GEN8_CTX_* cached in desc_template
298 */
299 desc &= ~(0x3ull << GEN8_CTX_ADDRESSING_MODE_SHIFT);
300 desc |= (u64)workload->ctx_desc.addressing_mode <<
301 GEN8_CTX_ADDRESSING_MODE_SHIFT;
302
303 ce->lrc.desc = desc;
304 }
305
306 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
307 {
308 struct intel_vgpu *vgpu = workload->vgpu;
309 struct i915_request *req = workload->req;
310 void *shadow_ring_buffer_va;
311 u32 *cs;
312 int err;
313
314 if (IS_GEN(req->i915, 9) && is_inhibit_context(req->context))
315 intel_vgpu_restore_inhibit_context(vgpu, req);
316
317 /*
318 * To track whether a request has started on HW, we can emit a
319 * breadcrumb at the beginning of the request and check its
320 * timeline's HWSP to see if the breadcrumb has advanced past the
321 * start of this request. Actually, the request must have the
322 * init_breadcrumb if its timeline set has_init_bread_crumb, or the
323 * scheduler might get a wrong state of it during reset. Since the
324 * requests from gvt always set the has_init_breadcrumb flag, here
325 * need to do the emit_init_breadcrumb for all the requests.
326 */
327 if (req->engine->emit_init_breadcrumb) {
328 err = req->engine->emit_init_breadcrumb(req);
329 if (err) {
330 gvt_vgpu_err("fail to emit init breadcrumb\n");
331 return err;
332 }
333 }
334
335 /* allocate shadow ring buffer */
336 cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
337 if (IS_ERR(cs)) {
338 gvt_vgpu_err("fail to alloc size =%ld shadow ring buffer\n",
339 workload->rb_len);
340 return PTR_ERR(cs);
341 }
342
343 shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
344
345 /* get shadow ring buffer va */
346 workload->shadow_ring_buffer_va = cs;
347
348 memcpy(cs, shadow_ring_buffer_va,
349 workload->rb_len);
350
351 cs += workload->rb_len / sizeof(u32);
352 intel_ring_advance(workload->req, cs);
353
354 return 0;
355 }
356
357 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
358 {
359 if (!wa_ctx->indirect_ctx.obj)
360 return;
361
362 i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
363 i915_gem_object_put(wa_ctx->indirect_ctx.obj);
364
365 wa_ctx->indirect_ctx.obj = NULL;
366 wa_ctx->indirect_ctx.shadow_va = NULL;
367 }
368
369 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
370 struct intel_context *ce)
371 {
372 struct intel_vgpu_mm *mm = workload->shadow_mm;
373 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->vm);
374 int i = 0;
375
376 if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
377 px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0];
378 } else {
379 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
380 struct i915_page_directory * const pd =
381 i915_pd_entry(ppgtt->pd, i);
382 /* skip now as current i915 ppgtt alloc won't allocate
383 top level pdp for non 4-level table, won't impact
384 shadow ppgtt. */
385 if (!pd)
386 break;
387 px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i];
388 }
389 }
390 }
391
392 static int
393 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
394 {
395 struct intel_vgpu *vgpu = workload->vgpu;
396 struct intel_vgpu_submission *s = &vgpu->submission;
397 struct i915_request *rq;
398
399 if (workload->req)
400 return 0;
401
402 rq = i915_request_create(s->shadow[workload->engine->id]);
403 if (IS_ERR(rq)) {
404 gvt_vgpu_err("fail to allocate gem request\n");
405 return PTR_ERR(rq);
406 }
407
408 workload->req = i915_request_get(rq);
409 return 0;
410 }
411
412 /**
413 * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
414 * shadow it as well, include ringbuffer,wa_ctx and ctx.
415 * @workload: an abstract entity for each execlist submission.
416 *
417 * This function is called before the workload submitting to i915, to make
418 * sure the content of the workload is valid.
419 */
420 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
421 {
422 struct intel_vgpu *vgpu = workload->vgpu;
423 struct intel_vgpu_submission *s = &vgpu->submission;
424 int ret;
425
426 lockdep_assert_held(&vgpu->vgpu_lock);
427
428 if (workload->shadow)
429 return 0;
430
431 if (!test_and_set_bit(workload->engine->id, s->shadow_ctx_desc_updated))
432 shadow_context_descriptor_update(s->shadow[workload->engine->id],
433 workload);
434
435 ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
436 if (ret)
437 return ret;
438
439 if (workload->engine->id == RCS0 &&
440 workload->wa_ctx.indirect_ctx.size) {
441 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
442 if (ret)
443 goto err_shadow;
444 }
445
446 workload->shadow = true;
447 return 0;
448
449 err_shadow:
450 release_shadow_wa_ctx(&workload->wa_ctx);
451 return ret;
452 }
453
454 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
455
456 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
457 {
458 struct intel_gvt *gvt = workload->vgpu->gvt;
459 const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
460 struct intel_vgpu_shadow_bb *bb;
461 int ret;
462
463 list_for_each_entry(bb, &workload->shadow_bb, list) {
464 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
465 * is only updated into ring_scan_buffer, not real ring address
466 * allocated in later copy_workload_to_ring_buffer. pls be noted
467 * shadow_ring_buffer_va is now pointed to real ring buffer va
468 * in copy_workload_to_ring_buffer.
469 */
470
471 if (bb->bb_offset)
472 bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
473 + bb->bb_offset;
474
475 if (bb->ppgtt) {
476 /* for non-priv bb, scan&shadow is only for
477 * debugging purpose, so the content of shadow bb
478 * is the same as original bb. Therefore,
479 * here, rather than switch to shadow bb's gma
480 * address, we directly use original batch buffer's
481 * gma address, and send original bb to hardware
482 * directly
483 */
484 if (bb->clflush & CLFLUSH_AFTER) {
485 drm_clflush_virt_range(bb->va,
486 bb->obj->base.size);
487 bb->clflush &= ~CLFLUSH_AFTER;
488 }
489 i915_gem_object_finish_access(bb->obj);
490 bb->accessing = false;
491
492 } else {
493 bb->vma = i915_gem_object_ggtt_pin(bb->obj,
494 NULL, 0, 0, 0);
495 if (IS_ERR(bb->vma)) {
496 ret = PTR_ERR(bb->vma);
497 goto err;
498 }
499
500 /* relocate shadow batch buffer */
501 bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
502 if (gmadr_bytes == 8)
503 bb->bb_start_cmd_va[2] = 0;
504
505 /* No one is going to touch shadow bb from now on. */
506 if (bb->clflush & CLFLUSH_AFTER) {
507 drm_clflush_virt_range(bb->va,
508 bb->obj->base.size);
509 bb->clflush &= ~CLFLUSH_AFTER;
510 }
511
512 ret = i915_gem_object_set_to_gtt_domain(bb->obj,
513 false);
514 if (ret)
515 goto err;
516
517 ret = i915_vma_move_to_active(bb->vma,
518 workload->req,
519 0);
520 if (ret)
521 goto err;
522
523 i915_gem_object_finish_access(bb->obj);
524 bb->accessing = false;
525 }
526 }
527 return 0;
528 err:
529 release_shadow_batch_buffer(workload);
530 return ret;
531 }
532
533 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
534 {
535 struct intel_vgpu_workload *workload =
536 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
537 struct i915_request *rq = workload->req;
538 struct execlist_ring_context *shadow_ring_context =
539 (struct execlist_ring_context *)rq->context->lrc_reg_state;
540
541 shadow_ring_context->bb_per_ctx_ptr.val =
542 (shadow_ring_context->bb_per_ctx_ptr.val &
543 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
544 shadow_ring_context->rcs_indirect_ctx.val =
545 (shadow_ring_context->rcs_indirect_ctx.val &
546 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
547 }
548
549 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
550 {
551 struct i915_vma *vma;
552 unsigned char *per_ctx_va =
553 (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
554 wa_ctx->indirect_ctx.size;
555
556 if (wa_ctx->indirect_ctx.size == 0)
557 return 0;
558
559 vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
560 0, CACHELINE_BYTES, 0);
561 if (IS_ERR(vma))
562 return PTR_ERR(vma);
563
564 /* FIXME: we are not tracking our pinned VMA leaving it
565 * up to the core to fix up the stray pin_count upon
566 * free.
567 */
568
569 wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
570
571 wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
572 memset(per_ctx_va, 0, CACHELINE_BYTES);
573
574 update_wa_ctx_2_shadow_ctx(wa_ctx);
575 return 0;
576 }
577
578 static void update_vreg_in_ctx(struct intel_vgpu_workload *workload)
579 {
580 vgpu_vreg_t(workload->vgpu, RING_START(workload->engine->mmio_base)) =
581 workload->rb_start;
582 }
583
584 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
585 {
586 struct intel_vgpu_shadow_bb *bb, *pos;
587
588 if (list_empty(&workload->shadow_bb))
589 return;
590
591 bb = list_first_entry(&workload->shadow_bb,
592 struct intel_vgpu_shadow_bb, list);
593
594 list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
595 if (bb->obj) {
596 if (bb->accessing)
597 i915_gem_object_finish_access(bb->obj);
598
599 if (bb->va && !IS_ERR(bb->va))
600 i915_gem_object_unpin_map(bb->obj);
601
602 if (bb->vma && !IS_ERR(bb->vma)) {
603 i915_vma_unpin(bb->vma);
604 i915_vma_close(bb->vma);
605 }
606 i915_gem_object_put(bb->obj);
607 }
608 list_del(&bb->list);
609 kfree(bb);
610 }
611 }
612
613 static int prepare_workload(struct intel_vgpu_workload *workload)
614 {
615 struct intel_vgpu *vgpu = workload->vgpu;
616 struct intel_vgpu_submission *s = &vgpu->submission;
617 int ret = 0;
618
619 ret = intel_vgpu_pin_mm(workload->shadow_mm);
620 if (ret) {
621 gvt_vgpu_err("fail to vgpu pin mm\n");
622 return ret;
623 }
624
625 if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
626 !workload->shadow_mm->ppgtt_mm.shadowed) {
627 gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
628 return -EINVAL;
629 }
630
631 update_shadow_pdps(workload);
632
633 set_context_ppgtt_from_shadow(workload, s->shadow[workload->engine->id]);
634
635 ret = intel_vgpu_sync_oos_pages(workload->vgpu);
636 if (ret) {
637 gvt_vgpu_err("fail to vgpu sync oos pages\n");
638 goto err_unpin_mm;
639 }
640
641 ret = intel_vgpu_flush_post_shadow(workload->vgpu);
642 if (ret) {
643 gvt_vgpu_err("fail to flush post shadow\n");
644 goto err_unpin_mm;
645 }
646
647 ret = copy_workload_to_ring_buffer(workload);
648 if (ret) {
649 gvt_vgpu_err("fail to generate request\n");
650 goto err_unpin_mm;
651 }
652
653 ret = prepare_shadow_batch_buffer(workload);
654 if (ret) {
655 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
656 goto err_unpin_mm;
657 }
658
659 ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
660 if (ret) {
661 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
662 goto err_shadow_batch;
663 }
664
665 if (workload->prepare) {
666 ret = workload->prepare(workload);
667 if (ret)
668 goto err_shadow_wa_ctx;
669 }
670
671 return 0;
672 err_shadow_wa_ctx:
673 release_shadow_wa_ctx(&workload->wa_ctx);
674 err_shadow_batch:
675 release_shadow_batch_buffer(workload);
676 err_unpin_mm:
677 intel_vgpu_unpin_mm(workload->shadow_mm);
678 return ret;
679 }
680
681 static int dispatch_workload(struct intel_vgpu_workload *workload)
682 {
683 struct intel_vgpu *vgpu = workload->vgpu;
684 struct i915_request *rq;
685 int ret;
686
687 gvt_dbg_sched("ring id %s prepare to dispatch workload %p\n",
688 workload->engine->name, workload);
689
690 mutex_lock(&vgpu->vgpu_lock);
691
692 ret = intel_gvt_workload_req_alloc(workload);
693 if (ret)
694 goto err_req;
695
696 ret = intel_gvt_scan_and_shadow_workload(workload);
697 if (ret)
698 goto out;
699
700 ret = populate_shadow_context(workload);
701 if (ret) {
702 release_shadow_wa_ctx(&workload->wa_ctx);
703 goto out;
704 }
705
706 ret = prepare_workload(workload);
707 out:
708 if (ret) {
709 /* We might still need to add request with
710 * clean ctx to retire it properly..
711 */
712 rq = fetch_and_zero(&workload->req);
713 i915_request_put(rq);
714 }
715
716 if (!IS_ERR_OR_NULL(workload->req)) {
717 gvt_dbg_sched("ring id %s submit workload to i915 %p\n",
718 workload->engine->name, workload->req);
719 i915_request_add(workload->req);
720 workload->dispatched = true;
721 }
722 err_req:
723 if (ret)
724 workload->status = ret;
725 mutex_unlock(&vgpu->vgpu_lock);
726 return ret;
727 }
728
729 static struct intel_vgpu_workload *
730 pick_next_workload(struct intel_gvt *gvt, struct intel_engine_cs *engine)
731 {
732 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
733 struct intel_vgpu_workload *workload = NULL;
734
735 mutex_lock(&gvt->sched_lock);
736
737 /*
738 * no current vgpu / will be scheduled out / no workload
739 * bail out
740 */
741 if (!scheduler->current_vgpu) {
742 gvt_dbg_sched("ring %s stop - no current vgpu\n", engine->name);
743 goto out;
744 }
745
746 if (scheduler->need_reschedule) {
747 gvt_dbg_sched("ring %s stop - will reschedule\n", engine->name);
748 goto out;
749 }
750
751 if (!scheduler->current_vgpu->active ||
752 list_empty(workload_q_head(scheduler->current_vgpu, engine)))
753 goto out;
754
755 /*
756 * still have current workload, maybe the workload disptacher
757 * fail to submit it for some reason, resubmit it.
758 */
759 if (scheduler->current_workload[engine->id]) {
760 workload = scheduler->current_workload[engine->id];
761 gvt_dbg_sched("ring %s still have current workload %p\n",
762 engine->name, workload);
763 goto out;
764 }
765
766 /*
767 * pick a workload as current workload
768 * once current workload is set, schedule policy routines
769 * will wait the current workload is finished when trying to
770 * schedule out a vgpu.
771 */
772 scheduler->current_workload[engine->id] =
773 list_first_entry(workload_q_head(scheduler->current_vgpu,
774 engine),
775 struct intel_vgpu_workload, list);
776
777 workload = scheduler->current_workload[engine->id];
778
779 gvt_dbg_sched("ring %s pick new workload %p\n", engine->name, workload);
780
781 atomic_inc(&workload->vgpu->submission.running_workload_num);
782 out:
783 mutex_unlock(&gvt->sched_lock);
784 return workload;
785 }
786
787 static void update_guest_context(struct intel_vgpu_workload *workload)
788 {
789 struct i915_request *rq = workload->req;
790 struct intel_vgpu *vgpu = workload->vgpu;
791 struct drm_i915_gem_object *ctx_obj = rq->context->state->obj;
792 struct execlist_ring_context *shadow_ring_context;
793 struct page *page;
794 void *src;
795 unsigned long context_gpa, context_page_num;
796 int i;
797 u32 ring_base;
798 u32 head, tail;
799 u16 wrap_count;
800
801 gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
802 workload->ctx_desc.lrca);
803
804 head = workload->rb_head;
805 tail = workload->rb_tail;
806 wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
807
808 if (tail < head) {
809 if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
810 wrap_count = 0;
811 else
812 wrap_count += 1;
813 }
814
815 head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
816
817 ring_base = rq->engine->mmio_base;
818 vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
819 vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
820
821 context_page_num = rq->engine->context_size;
822 context_page_num = context_page_num >> PAGE_SHIFT;
823
824 if (IS_BROADWELL(rq->i915) && rq->engine->id == RCS0)
825 context_page_num = 19;
826
827 i = 2;
828
829 while (i < context_page_num) {
830 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
831 (u32)((workload->ctx_desc.lrca + i) <<
832 I915_GTT_PAGE_SHIFT));
833 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
834 gvt_vgpu_err("invalid guest context descriptor\n");
835 return;
836 }
837
838 page = i915_gem_object_get_page(ctx_obj, i);
839 src = kmap(page);
840 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
841 I915_GTT_PAGE_SIZE);
842 kunmap(page);
843 i++;
844 }
845
846 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
847 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
848
849 page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
850 shadow_ring_context = kmap(page);
851
852 #define COPY_REG(name) \
853 intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
854 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
855
856 COPY_REG(ctx_ctrl);
857 COPY_REG(ctx_timestamp);
858
859 #undef COPY_REG
860
861 intel_gvt_hypervisor_write_gpa(vgpu,
862 workload->ring_context_gpa +
863 sizeof(*shadow_ring_context),
864 (void *)shadow_ring_context +
865 sizeof(*shadow_ring_context),
866 I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
867
868 kunmap(page);
869 }
870
871 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
872 intel_engine_mask_t engine_mask)
873 {
874 struct intel_vgpu_submission *s = &vgpu->submission;
875 struct drm_i915_private *dev_priv = vgpu->gvt->gt->i915;
876 struct intel_engine_cs *engine;
877 struct intel_vgpu_workload *pos, *n;
878 intel_engine_mask_t tmp;
879
880 /* free the unsubmited workloads in the queues. */
881 for_each_engine_masked(engine, &dev_priv->gt, engine_mask, tmp) {
882 list_for_each_entry_safe(pos, n,
883 &s->workload_q_head[engine->id], list) {
884 list_del_init(&pos->list);
885 intel_vgpu_destroy_workload(pos);
886 }
887 clear_bit(engine->id, s->shadow_ctx_desc_updated);
888 }
889 }
890
891 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
892 {
893 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
894 struct intel_vgpu_workload *workload =
895 scheduler->current_workload[ring_id];
896 struct intel_vgpu *vgpu = workload->vgpu;
897 struct intel_vgpu_submission *s = &vgpu->submission;
898 struct i915_request *rq = workload->req;
899 int event;
900
901 mutex_lock(&vgpu->vgpu_lock);
902 mutex_lock(&gvt->sched_lock);
903
904 /* For the workload w/ request, needs to wait for the context
905 * switch to make sure request is completed.
906 * For the workload w/o request, directly complete the workload.
907 */
908 if (rq) {
909 wait_event(workload->shadow_ctx_status_wq,
910 !atomic_read(&workload->shadow_ctx_active));
911
912 /* If this request caused GPU hang, req->fence.error will
913 * be set to -EIO. Use -EIO to set workload status so
914 * that when this request caused GPU hang, didn't trigger
915 * context switch interrupt to guest.
916 */
917 if (likely(workload->status == -EINPROGRESS)) {
918 if (workload->req->fence.error == -EIO)
919 workload->status = -EIO;
920 else
921 workload->status = 0;
922 }
923
924 if (!workload->status &&
925 !(vgpu->resetting_eng & BIT(ring_id))) {
926 update_guest_context(workload);
927
928 for_each_set_bit(event, workload->pending_events,
929 INTEL_GVT_EVENT_MAX)
930 intel_vgpu_trigger_virtual_event(vgpu, event);
931 }
932
933 i915_request_put(fetch_and_zero(&workload->req));
934 }
935
936 gvt_dbg_sched("ring id %d complete workload %p status %d\n",
937 ring_id, workload, workload->status);
938
939 scheduler->current_workload[ring_id] = NULL;
940
941 list_del_init(&workload->list);
942
943 if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
944 /* if workload->status is not successful means HW GPU
945 * has occurred GPU hang or something wrong with i915/GVT,
946 * and GVT won't inject context switch interrupt to guest.
947 * So this error is a vGPU hang actually to the guest.
948 * According to this we should emunlate a vGPU hang. If
949 * there are pending workloads which are already submitted
950 * from guest, we should clean them up like HW GPU does.
951 *
952 * if it is in middle of engine resetting, the pending
953 * workloads won't be submitted to HW GPU and will be
954 * cleaned up during the resetting process later, so doing
955 * the workload clean up here doesn't have any impact.
956 **/
957 intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
958 }
959
960 workload->complete(workload);
961
962 atomic_dec(&s->running_workload_num);
963 wake_up(&scheduler->workload_complete_wq);
964
965 if (gvt->scheduler.need_reschedule)
966 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
967
968 mutex_unlock(&gvt->sched_lock);
969 mutex_unlock(&vgpu->vgpu_lock);
970 }
971
972 static int workload_thread(void *arg)
973 {
974 struct intel_engine_cs *engine = arg;
975 const bool need_force_wake = INTEL_GEN(engine->i915) >= 9;
976 struct intel_gvt *gvt = engine->i915->gvt;
977 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
978 struct intel_vgpu_workload *workload = NULL;
979 struct intel_vgpu *vgpu = NULL;
980 int ret;
981 DEFINE_WAIT_FUNC(wait, woken_wake_function);
982
983 gvt_dbg_core("workload thread for ring %s started\n", engine->name);
984
985 while (!kthread_should_stop()) {
986 intel_wakeref_t wakeref;
987
988 add_wait_queue(&scheduler->waitq[engine->id], &wait);
989 do {
990 workload = pick_next_workload(gvt, engine);
991 if (workload)
992 break;
993 wait_woken(&wait, TASK_INTERRUPTIBLE,
994 MAX_SCHEDULE_TIMEOUT);
995 } while (!kthread_should_stop());
996 remove_wait_queue(&scheduler->waitq[engine->id], &wait);
997
998 if (!workload)
999 break;
1000
1001 gvt_dbg_sched("ring %s next workload %p vgpu %d\n",
1002 engine->name, workload,
1003 workload->vgpu->id);
1004
1005 wakeref = intel_runtime_pm_get(engine->uncore->rpm);
1006
1007 gvt_dbg_sched("ring %s will dispatch workload %p\n",
1008 engine->name, workload);
1009
1010 if (need_force_wake)
1011 intel_uncore_forcewake_get(engine->uncore,
1012 FORCEWAKE_ALL);
1013 /*
1014 * Update the vReg of the vGPU which submitted this
1015 * workload. The vGPU may use these registers for checking
1016 * the context state. The value comes from GPU commands
1017 * in this workload.
1018 */
1019 update_vreg_in_ctx(workload);
1020
1021 ret = dispatch_workload(workload);
1022
1023 if (ret) {
1024 vgpu = workload->vgpu;
1025 gvt_vgpu_err("fail to dispatch workload, skip\n");
1026 goto complete;
1027 }
1028
1029 gvt_dbg_sched("ring %s wait workload %p\n",
1030 engine->name, workload);
1031 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1032
1033 complete:
1034 gvt_dbg_sched("will complete workload %p, status: %d\n",
1035 workload, workload->status);
1036
1037 complete_current_workload(gvt, engine->id);
1038
1039 if (need_force_wake)
1040 intel_uncore_forcewake_put(engine->uncore,
1041 FORCEWAKE_ALL);
1042
1043 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1044 if (ret && (vgpu_is_vm_unhealthy(ret)))
1045 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1046 }
1047 return 0;
1048 }
1049
1050 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1051 {
1052 struct intel_vgpu_submission *s = &vgpu->submission;
1053 struct intel_gvt *gvt = vgpu->gvt;
1054 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1055
1056 if (atomic_read(&s->running_workload_num)) {
1057 gvt_dbg_sched("wait vgpu idle\n");
1058
1059 wait_event(scheduler->workload_complete_wq,
1060 !atomic_read(&s->running_workload_num));
1061 }
1062 }
1063
1064 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1065 {
1066 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1067 struct intel_engine_cs *engine;
1068 enum intel_engine_id i;
1069
1070 gvt_dbg_core("clean workload scheduler\n");
1071
1072 for_each_engine(engine, gvt->gt, i) {
1073 atomic_notifier_chain_unregister(
1074 &engine->context_status_notifier,
1075 &gvt->shadow_ctx_notifier_block[i]);
1076 kthread_stop(scheduler->thread[i]);
1077 }
1078 }
1079
1080 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1081 {
1082 struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1083 struct intel_engine_cs *engine;
1084 enum intel_engine_id i;
1085 int ret;
1086
1087 gvt_dbg_core("init workload scheduler\n");
1088
1089 init_waitqueue_head(&scheduler->workload_complete_wq);
1090
1091 for_each_engine(engine, gvt->gt, i) {
1092 init_waitqueue_head(&scheduler->waitq[i]);
1093
1094 scheduler->thread[i] = kthread_run(workload_thread, engine,
1095 "gvt:%s", engine->name);
1096 if (IS_ERR(scheduler->thread[i])) {
1097 gvt_err("fail to create workload thread\n");
1098 ret = PTR_ERR(scheduler->thread[i]);
1099 goto err;
1100 }
1101
1102 gvt->shadow_ctx_notifier_block[i].notifier_call =
1103 shadow_context_status_change;
1104 atomic_notifier_chain_register(&engine->context_status_notifier,
1105 &gvt->shadow_ctx_notifier_block[i]);
1106 }
1107
1108 return 0;
1109
1110 err:
1111 intel_gvt_clean_workload_scheduler(gvt);
1112 return ret;
1113 }
1114
1115 static void
1116 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1117 struct i915_ppgtt *ppgtt)
1118 {
1119 int i;
1120
1121 if (i915_vm_is_4lvl(&ppgtt->vm)) {
1122 px_dma(ppgtt->pd) = s->i915_context_pml4;
1123 } else {
1124 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1125 struct i915_page_directory * const pd =
1126 i915_pd_entry(ppgtt->pd, i);
1127
1128 px_dma(pd) = s->i915_context_pdps[i];
1129 }
1130 }
1131 }
1132
1133 /**
1134 * intel_vgpu_clean_submission - free submission-related resource for vGPU
1135 * @vgpu: a vGPU
1136 *
1137 * This function is called when a vGPU is being destroyed.
1138 *
1139 */
1140 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1141 {
1142 struct intel_vgpu_submission *s = &vgpu->submission;
1143 struct intel_engine_cs *engine;
1144 enum intel_engine_id id;
1145
1146 intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1147
1148 i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->vm));
1149 for_each_engine(engine, vgpu->gvt->gt, id)
1150 intel_context_unpin(s->shadow[id]);
1151
1152 kmem_cache_destroy(s->workloads);
1153 }
1154
1155
1156 /**
1157 * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1158 * @vgpu: a vGPU
1159 * @engine_mask: engines expected to be reset
1160 *
1161 * This function is called when a vGPU is being destroyed.
1162 *
1163 */
1164 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1165 intel_engine_mask_t engine_mask)
1166 {
1167 struct intel_vgpu_submission *s = &vgpu->submission;
1168
1169 if (!s->active)
1170 return;
1171
1172 intel_vgpu_clean_workloads(vgpu, engine_mask);
1173 s->ops->reset(vgpu, engine_mask);
1174 }
1175
1176 static void
1177 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1178 struct i915_ppgtt *ppgtt)
1179 {
1180 int i;
1181
1182 if (i915_vm_is_4lvl(&ppgtt->vm)) {
1183 s->i915_context_pml4 = px_dma(ppgtt->pd);
1184 } else {
1185 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1186 struct i915_page_directory * const pd =
1187 i915_pd_entry(ppgtt->pd, i);
1188
1189 s->i915_context_pdps[i] = px_dma(pd);
1190 }
1191 }
1192 }
1193
1194 /**
1195 * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1196 * @vgpu: a vGPU
1197 *
1198 * This function is called when a vGPU is being created.
1199 *
1200 * Returns:
1201 * Zero on success, negative error code if failed.
1202 *
1203 */
1204 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1205 {
1206 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1207 struct intel_vgpu_submission *s = &vgpu->submission;
1208 struct intel_engine_cs *engine;
1209 struct i915_ppgtt *ppgtt;
1210 enum intel_engine_id i;
1211 int ret;
1212
1213 ppgtt = i915_ppgtt_create(&i915->gt);
1214 if (IS_ERR(ppgtt))
1215 return PTR_ERR(ppgtt);
1216
1217 i915_context_ppgtt_root_save(s, ppgtt);
1218
1219 for_each_engine(engine, vgpu->gvt->gt, i) {
1220 struct intel_context *ce;
1221
1222 INIT_LIST_HEAD(&s->workload_q_head[i]);
1223 s->shadow[i] = ERR_PTR(-EINVAL);
1224
1225 ce = intel_context_create(engine);
1226 if (IS_ERR(ce)) {
1227 ret = PTR_ERR(ce);
1228 goto out_shadow_ctx;
1229 }
1230
1231 i915_vm_put(ce->vm);
1232 ce->vm = i915_vm_get(&ppgtt->vm);
1233 intel_context_set_single_submission(ce);
1234
1235 /* Max ring buffer size */
1236 if (!intel_uc_wants_guc_submission(&engine->gt->uc)) {
1237 const unsigned int ring_size = 512 * SZ_4K;
1238
1239 ce->ring = __intel_context_ring_size(ring_size);
1240 }
1241
1242 ret = intel_context_pin(ce);
1243 intel_context_put(ce);
1244 if (ret)
1245 goto out_shadow_ctx;
1246
1247 s->shadow[i] = ce;
1248 }
1249
1250 bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1251
1252 s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1253 sizeof(struct intel_vgpu_workload), 0,
1254 SLAB_HWCACHE_ALIGN,
1255 offsetof(struct intel_vgpu_workload, rb_tail),
1256 sizeof_field(struct intel_vgpu_workload, rb_tail),
1257 NULL);
1258
1259 if (!s->workloads) {
1260 ret = -ENOMEM;
1261 goto out_shadow_ctx;
1262 }
1263
1264 atomic_set(&s->running_workload_num, 0);
1265 bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1266
1267 i915_vm_put(&ppgtt->vm);
1268 return 0;
1269
1270 out_shadow_ctx:
1271 i915_context_ppgtt_root_restore(s, ppgtt);
1272 for_each_engine(engine, vgpu->gvt->gt, i) {
1273 if (IS_ERR(s->shadow[i]))
1274 break;
1275
1276 intel_context_unpin(s->shadow[i]);
1277 intel_context_put(s->shadow[i]);
1278 }
1279 i915_vm_put(&ppgtt->vm);
1280 return ret;
1281 }
1282
1283 /**
1284 * intel_vgpu_select_submission_ops - select virtual submission interface
1285 * @vgpu: a vGPU
1286 * @engine_mask: either ALL_ENGINES or target engine mask
1287 * @interface: expected vGPU virtual submission interface
1288 *
1289 * This function is called when guest configures submission interface.
1290 *
1291 * Returns:
1292 * Zero on success, negative error code if failed.
1293 *
1294 */
1295 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1296 intel_engine_mask_t engine_mask,
1297 unsigned int interface)
1298 {
1299 struct drm_i915_private *i915 = vgpu->gvt->gt->i915;
1300 struct intel_vgpu_submission *s = &vgpu->submission;
1301 const struct intel_vgpu_submission_ops *ops[] = {
1302 [INTEL_VGPU_EXECLIST_SUBMISSION] =
1303 &intel_vgpu_execlist_submission_ops,
1304 };
1305 int ret;
1306
1307 if (drm_WARN_ON(&i915->drm, interface >= ARRAY_SIZE(ops)))
1308 return -EINVAL;
1309
1310 if (drm_WARN_ON(&i915->drm,
1311 interface == 0 && engine_mask != ALL_ENGINES))
1312 return -EINVAL;
1313
1314 if (s->active)
1315 s->ops->clean(vgpu, engine_mask);
1316
1317 if (interface == 0) {
1318 s->ops = NULL;
1319 s->virtual_submission_interface = 0;
1320 s->active = false;
1321 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1322 return 0;
1323 }
1324
1325 ret = ops[interface]->init(vgpu, engine_mask);
1326 if (ret)
1327 return ret;
1328
1329 s->ops = ops[interface];
1330 s->virtual_submission_interface = interface;
1331 s->active = true;
1332
1333 gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1334 vgpu->id, s->ops->name);
1335
1336 return 0;
1337 }
1338
1339 /**
1340 * intel_vgpu_destroy_workload - destroy a vGPU workload
1341 * @workload: workload to destroy
1342 *
1343 * This function is called when destroy a vGPU workload.
1344 *
1345 */
1346 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1347 {
1348 struct intel_vgpu_submission *s = &workload->vgpu->submission;
1349
1350 release_shadow_batch_buffer(workload);
1351 release_shadow_wa_ctx(&workload->wa_ctx);
1352
1353 if (workload->shadow_mm)
1354 intel_vgpu_mm_put(workload->shadow_mm);
1355
1356 kmem_cache_free(s->workloads, workload);
1357 }
1358
1359 static struct intel_vgpu_workload *
1360 alloc_workload(struct intel_vgpu *vgpu)
1361 {
1362 struct intel_vgpu_submission *s = &vgpu->submission;
1363 struct intel_vgpu_workload *workload;
1364
1365 workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1366 if (!workload)
1367 return ERR_PTR(-ENOMEM);
1368
1369 INIT_LIST_HEAD(&workload->list);
1370 INIT_LIST_HEAD(&workload->shadow_bb);
1371
1372 init_waitqueue_head(&workload->shadow_ctx_status_wq);
1373 atomic_set(&workload->shadow_ctx_active, 0);
1374
1375 workload->status = -EINPROGRESS;
1376 workload->vgpu = vgpu;
1377
1378 return workload;
1379 }
1380
1381 #define RING_CTX_OFF(x) \
1382 offsetof(struct execlist_ring_context, x)
1383
1384 static void read_guest_pdps(struct intel_vgpu *vgpu,
1385 u64 ring_context_gpa, u32 pdp[8])
1386 {
1387 u64 gpa;
1388 int i;
1389
1390 gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1391
1392 for (i = 0; i < 8; i++)
1393 intel_gvt_hypervisor_read_gpa(vgpu,
1394 gpa + i * 8, &pdp[7 - i], 4);
1395 }
1396
1397 static int prepare_mm(struct intel_vgpu_workload *workload)
1398 {
1399 struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1400 struct intel_vgpu_mm *mm;
1401 struct intel_vgpu *vgpu = workload->vgpu;
1402 enum intel_gvt_gtt_type root_entry_type;
1403 u64 pdps[GVT_RING_CTX_NR_PDPS];
1404
1405 switch (desc->addressing_mode) {
1406 case 1: /* legacy 32-bit */
1407 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1408 break;
1409 case 3: /* legacy 64-bit */
1410 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1411 break;
1412 default:
1413 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1414 return -EINVAL;
1415 }
1416
1417 read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1418
1419 mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1420 if (IS_ERR(mm))
1421 return PTR_ERR(mm);
1422
1423 workload->shadow_mm = mm;
1424 return 0;
1425 }
1426
1427 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1428 ((a)->lrca == (b)->lrca))
1429
1430 /**
1431 * intel_vgpu_create_workload - create a vGPU workload
1432 * @vgpu: a vGPU
1433 * @engine: the engine
1434 * @desc: a guest context descriptor
1435 *
1436 * This function is called when creating a vGPU workload.
1437 *
1438 * Returns:
1439 * struct intel_vgpu_workload * on success, negative error code in
1440 * pointer if failed.
1441 *
1442 */
1443 struct intel_vgpu_workload *
1444 intel_vgpu_create_workload(struct intel_vgpu *vgpu,
1445 const struct intel_engine_cs *engine,
1446 struct execlist_ctx_descriptor_format *desc)
1447 {
1448 struct intel_vgpu_submission *s = &vgpu->submission;
1449 struct list_head *q = workload_q_head(vgpu, engine);
1450 struct intel_vgpu_workload *last_workload = NULL;
1451 struct intel_vgpu_workload *workload = NULL;
1452 u64 ring_context_gpa;
1453 u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1454 u32 guest_head;
1455 int ret;
1456
1457 ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1458 (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1459 if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1460 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1461 return ERR_PTR(-EINVAL);
1462 }
1463
1464 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1465 RING_CTX_OFF(ring_header.val), &head, 4);
1466
1467 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1468 RING_CTX_OFF(ring_tail.val), &tail, 4);
1469
1470 guest_head = head;
1471
1472 head &= RB_HEAD_OFF_MASK;
1473 tail &= RB_TAIL_OFF_MASK;
1474
1475 list_for_each_entry_reverse(last_workload, q, list) {
1476
1477 if (same_context(&last_workload->ctx_desc, desc)) {
1478 gvt_dbg_el("ring %s cur workload == last\n",
1479 engine->name);
1480 gvt_dbg_el("ctx head %x real head %lx\n", head,
1481 last_workload->rb_tail);
1482 /*
1483 * cannot use guest context head pointer here,
1484 * as it might not be updated at this time
1485 */
1486 head = last_workload->rb_tail;
1487 break;
1488 }
1489 }
1490
1491 gvt_dbg_el("ring %s begin a new workload\n", engine->name);
1492
1493 /* record some ring buffer register values for scan and shadow */
1494 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1495 RING_CTX_OFF(rb_start.val), &start, 4);
1496 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1497 RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1498 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1499 RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1500
1501 if (!intel_gvt_ggtt_validate_range(vgpu, start,
1502 _RING_CTL_BUF_SIZE(ctl))) {
1503 gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1504 return ERR_PTR(-EINVAL);
1505 }
1506
1507 workload = alloc_workload(vgpu);
1508 if (IS_ERR(workload))
1509 return workload;
1510
1511 workload->engine = engine;
1512 workload->ctx_desc = *desc;
1513 workload->ring_context_gpa = ring_context_gpa;
1514 workload->rb_head = head;
1515 workload->guest_rb_head = guest_head;
1516 workload->rb_tail = tail;
1517 workload->rb_start = start;
1518 workload->rb_ctl = ctl;
1519
1520 if (engine->id == RCS0) {
1521 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1522 RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1523 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1524 RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1525
1526 workload->wa_ctx.indirect_ctx.guest_gma =
1527 indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1528 workload->wa_ctx.indirect_ctx.size =
1529 (indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1530 CACHELINE_BYTES;
1531
1532 if (workload->wa_ctx.indirect_ctx.size != 0) {
1533 if (!intel_gvt_ggtt_validate_range(vgpu,
1534 workload->wa_ctx.indirect_ctx.guest_gma,
1535 workload->wa_ctx.indirect_ctx.size)) {
1536 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1537 workload->wa_ctx.indirect_ctx.guest_gma);
1538 kmem_cache_free(s->workloads, workload);
1539 return ERR_PTR(-EINVAL);
1540 }
1541 }
1542
1543 workload->wa_ctx.per_ctx.guest_gma =
1544 per_ctx & PER_CTX_ADDR_MASK;
1545 workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1546 if (workload->wa_ctx.per_ctx.valid) {
1547 if (!intel_gvt_ggtt_validate_range(vgpu,
1548 workload->wa_ctx.per_ctx.guest_gma,
1549 CACHELINE_BYTES)) {
1550 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1551 workload->wa_ctx.per_ctx.guest_gma);
1552 kmem_cache_free(s->workloads, workload);
1553 return ERR_PTR(-EINVAL);
1554 }
1555 }
1556 }
1557
1558 gvt_dbg_el("workload %p ring %s head %x tail %x start %x ctl %x\n",
1559 workload, engine->name, head, tail, start, ctl);
1560
1561 ret = prepare_mm(workload);
1562 if (ret) {
1563 kmem_cache_free(s->workloads, workload);
1564 return ERR_PTR(ret);
1565 }
1566
1567 /* Only scan and shadow the first workload in the queue
1568 * as there is only one pre-allocated buf-obj for shadow.
1569 */
1570 if (list_empty(q)) {
1571 intel_wakeref_t wakeref;
1572
1573 with_intel_runtime_pm(engine->gt->uncore->rpm, wakeref)
1574 ret = intel_gvt_scan_and_shadow_workload(workload);
1575 }
1576
1577 if (ret) {
1578 if (vgpu_is_vm_unhealthy(ret))
1579 enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1580 intel_vgpu_destroy_workload(workload);
1581 return ERR_PTR(ret);
1582 }
1583
1584 return workload;
1585 }
1586
1587 /**
1588 * intel_vgpu_queue_workload - Qeue a vGPU workload
1589 * @workload: the workload to queue in
1590 */
1591 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1592 {
1593 list_add_tail(&workload->list,
1594 workload_q_head(workload->vgpu, workload->engine));
1595 intel_gvt_kick_schedule(workload->vgpu->gvt);
1596 wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->engine->id]);
1597 }