]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
Merge tag 'drm-intel-gt-next-2024-02-15' of git://anongit.freedesktop.org/drm/drm...
[thirdparty/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <linux/dma-fence-array.h>
29 #include <linux/kthread.h>
30 #include <linux/dma-resv.h>
31 #include <linux/shmem_fs.h>
32 #include <linux/slab.h>
33 #include <linux/stop_machine.h>
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36 #include <linux/dma-buf.h>
37 #include <linux/mman.h>
38
39 #include <drm/drm_cache.h>
40 #include <drm/drm_vma_manager.h>
41
42 #include "display/intel_display.h"
43
44 #include "gem/i915_gem_clflush.h"
45 #include "gem/i915_gem_context.h"
46 #include "gem/i915_gem_ioctls.h"
47 #include "gem/i915_gem_mman.h"
48 #include "gem/i915_gem_object_frontbuffer.h"
49 #include "gem/i915_gem_pm.h"
50 #include "gem/i915_gem_region.h"
51 #include "gt/intel_engine_user.h"
52 #include "gt/intel_gt.h"
53 #include "gt/intel_gt_pm.h"
54 #include "gt/intel_workarounds.h"
55
56 #include "i915_drv.h"
57 #include "i915_file_private.h"
58 #include "i915_trace.h"
59 #include "i915_vgpu.h"
60 #include "intel_clock_gating.h"
61
62 static int
63 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
64 {
65 int err;
66
67 err = mutex_lock_interruptible(&ggtt->vm.mutex);
68 if (err)
69 return err;
70
71 memset(node, 0, sizeof(*node));
72 err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
73 size, 0, I915_COLOR_UNEVICTABLE,
74 0, ggtt->mappable_end,
75 DRM_MM_INSERT_LOW);
76
77 mutex_unlock(&ggtt->vm.mutex);
78
79 return err;
80 }
81
82 static void
83 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
84 {
85 mutex_lock(&ggtt->vm.mutex);
86 drm_mm_remove_node(node);
87 mutex_unlock(&ggtt->vm.mutex);
88 }
89
90 int
91 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
92 struct drm_file *file)
93 {
94 struct drm_i915_private *i915 = to_i915(dev);
95 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
96 struct drm_i915_gem_get_aperture *args = data;
97 struct i915_vma *vma;
98 u64 pinned;
99
100 if (mutex_lock_interruptible(&ggtt->vm.mutex))
101 return -EINTR;
102
103 pinned = ggtt->vm.reserved;
104 list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
105 if (i915_vma_is_pinned(vma))
106 pinned += vma->node.size;
107
108 mutex_unlock(&ggtt->vm.mutex);
109
110 args->aper_size = ggtt->vm.total;
111 args->aper_available_size = args->aper_size - pinned;
112
113 return 0;
114 }
115
116 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
117 unsigned long flags)
118 {
119 struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
120 bool vm_trylock = !!(flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK);
121 LIST_HEAD(still_in_list);
122 intel_wakeref_t wakeref;
123 struct i915_vma *vma;
124 int ret;
125
126 assert_object_held(obj);
127
128 if (list_empty(&obj->vma.list))
129 return 0;
130
131 /*
132 * As some machines use ACPI to handle runtime-resume callbacks, and
133 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
134 * as they are required by the shrinker. Ergo, we wake the device up
135 * first just in case.
136 */
137 wakeref = intel_runtime_pm_get(rpm);
138
139 try_again:
140 ret = 0;
141 spin_lock(&obj->vma.lock);
142 while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
143 struct i915_vma,
144 obj_link))) {
145 list_move_tail(&vma->obj_link, &still_in_list);
146 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
147 continue;
148
149 if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
150 ret = -EBUSY;
151 break;
152 }
153
154 /*
155 * Requiring the vm destructor to take the object lock
156 * before destroying a vma would help us eliminate the
157 * i915_vm_tryget() here, AND thus also the barrier stuff
158 * at the end. That's an easy fix, but sleeping locks in
159 * a kthread should generally be avoided.
160 */
161 ret = -EAGAIN;
162 if (!i915_vm_tryget(vma->vm))
163 break;
164
165 spin_unlock(&obj->vma.lock);
166
167 /*
168 * Since i915_vma_parked() takes the object lock
169 * before vma destruction, it won't race us here,
170 * and destroy the vma from under us.
171 */
172
173 ret = -EBUSY;
174 if (flags & I915_GEM_OBJECT_UNBIND_ASYNC) {
175 assert_object_held(vma->obj);
176 ret = i915_vma_unbind_async(vma, vm_trylock);
177 }
178
179 if (ret == -EBUSY && (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
180 !i915_vma_is_active(vma))) {
181 if (vm_trylock) {
182 if (mutex_trylock(&vma->vm->mutex)) {
183 ret = __i915_vma_unbind(vma);
184 mutex_unlock(&vma->vm->mutex);
185 }
186 } else {
187 ret = i915_vma_unbind(vma);
188 }
189 }
190
191 i915_vm_put(vma->vm);
192 spin_lock(&obj->vma.lock);
193 }
194 list_splice_init(&still_in_list, &obj->vma.list);
195 spin_unlock(&obj->vma.lock);
196
197 if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
198 rcu_barrier(); /* flush the i915_vm_release() */
199 goto try_again;
200 }
201
202 intel_runtime_pm_put(rpm, wakeref);
203
204 return ret;
205 }
206
207 static int
208 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
209 bool needs_clflush)
210 {
211 char *vaddr;
212 int ret;
213
214 vaddr = kmap(page);
215
216 if (needs_clflush)
217 drm_clflush_virt_range(vaddr + offset, len);
218
219 ret = __copy_to_user(user_data, vaddr + offset, len);
220
221 kunmap(page);
222
223 return ret ? -EFAULT : 0;
224 }
225
226 static int
227 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
228 struct drm_i915_gem_pread *args)
229 {
230 unsigned int needs_clflush;
231 char __user *user_data;
232 unsigned long offset;
233 pgoff_t idx;
234 u64 remain;
235 int ret;
236
237 ret = i915_gem_object_lock_interruptible(obj, NULL);
238 if (ret)
239 return ret;
240
241 ret = i915_gem_object_pin_pages(obj);
242 if (ret)
243 goto err_unlock;
244
245 ret = i915_gem_object_prepare_read(obj, &needs_clflush);
246 if (ret)
247 goto err_unpin;
248
249 i915_gem_object_finish_access(obj);
250 i915_gem_object_unlock(obj);
251
252 remain = args->size;
253 user_data = u64_to_user_ptr(args->data_ptr);
254 offset = offset_in_page(args->offset);
255 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
256 struct page *page = i915_gem_object_get_page(obj, idx);
257 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
258
259 ret = shmem_pread(page, offset, length, user_data,
260 needs_clflush);
261 if (ret)
262 break;
263
264 remain -= length;
265 user_data += length;
266 offset = 0;
267 }
268
269 i915_gem_object_unpin_pages(obj);
270 return ret;
271
272 err_unpin:
273 i915_gem_object_unpin_pages(obj);
274 err_unlock:
275 i915_gem_object_unlock(obj);
276 return ret;
277 }
278
279 static inline bool
280 gtt_user_read(struct io_mapping *mapping,
281 loff_t base, int offset,
282 char __user *user_data, int length)
283 {
284 void __iomem *vaddr;
285 unsigned long unwritten;
286
287 /* We can use the cpu mem copy function because this is X86. */
288 vaddr = io_mapping_map_atomic_wc(mapping, base);
289 unwritten = __copy_to_user_inatomic(user_data,
290 (void __force *)vaddr + offset,
291 length);
292 io_mapping_unmap_atomic(vaddr);
293 if (unwritten) {
294 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
295 unwritten = copy_to_user(user_data,
296 (void __force *)vaddr + offset,
297 length);
298 io_mapping_unmap(vaddr);
299 }
300 return unwritten;
301 }
302
303 static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj,
304 struct drm_mm_node *node,
305 bool write)
306 {
307 struct drm_i915_private *i915 = to_i915(obj->base.dev);
308 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
309 struct i915_vma *vma;
310 struct i915_gem_ww_ctx ww;
311 int ret;
312
313 i915_gem_ww_ctx_init(&ww, true);
314 retry:
315 vma = ERR_PTR(-ENODEV);
316 ret = i915_gem_object_lock(obj, &ww);
317 if (ret)
318 goto err_ww;
319
320 ret = i915_gem_object_set_to_gtt_domain(obj, write);
321 if (ret)
322 goto err_ww;
323
324 if (!i915_gem_object_is_tiled(obj))
325 vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
326 PIN_MAPPABLE |
327 PIN_NONBLOCK /* NOWARN */ |
328 PIN_NOEVICT);
329 if (vma == ERR_PTR(-EDEADLK)) {
330 ret = -EDEADLK;
331 goto err_ww;
332 } else if (!IS_ERR(vma)) {
333 node->start = i915_ggtt_offset(vma);
334 node->flags = 0;
335 } else {
336 ret = insert_mappable_node(ggtt, node, PAGE_SIZE);
337 if (ret)
338 goto err_ww;
339 GEM_BUG_ON(!drm_mm_node_allocated(node));
340 vma = NULL;
341 }
342
343 ret = i915_gem_object_pin_pages(obj);
344 if (ret) {
345 if (drm_mm_node_allocated(node)) {
346 ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
347 remove_mappable_node(ggtt, node);
348 } else {
349 i915_vma_unpin(vma);
350 }
351 }
352
353 err_ww:
354 if (ret == -EDEADLK) {
355 ret = i915_gem_ww_ctx_backoff(&ww);
356 if (!ret)
357 goto retry;
358 }
359 i915_gem_ww_ctx_fini(&ww);
360
361 return ret ? ERR_PTR(ret) : vma;
362 }
363
364 static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj,
365 struct drm_mm_node *node,
366 struct i915_vma *vma)
367 {
368 struct drm_i915_private *i915 = to_i915(obj->base.dev);
369 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
370
371 i915_gem_object_unpin_pages(obj);
372 if (drm_mm_node_allocated(node)) {
373 ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
374 remove_mappable_node(ggtt, node);
375 } else {
376 i915_vma_unpin(vma);
377 }
378 }
379
380 static int
381 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
382 const struct drm_i915_gem_pread *args)
383 {
384 struct drm_i915_private *i915 = to_i915(obj->base.dev);
385 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
386 unsigned long remain, offset;
387 intel_wakeref_t wakeref;
388 struct drm_mm_node node;
389 void __user *user_data;
390 struct i915_vma *vma;
391 int ret = 0;
392
393 if (overflows_type(args->size, remain) ||
394 overflows_type(args->offset, offset))
395 return -EINVAL;
396
397 wakeref = intel_runtime_pm_get(&i915->runtime_pm);
398
399 vma = i915_gem_gtt_prepare(obj, &node, false);
400 if (IS_ERR(vma)) {
401 ret = PTR_ERR(vma);
402 goto out_rpm;
403 }
404
405 user_data = u64_to_user_ptr(args->data_ptr);
406 remain = args->size;
407 offset = args->offset;
408
409 while (remain > 0) {
410 /* Operation in this page
411 *
412 * page_base = page offset within aperture
413 * page_offset = offset within page
414 * page_length = bytes to copy for this page
415 */
416 u32 page_base = node.start;
417 unsigned page_offset = offset_in_page(offset);
418 unsigned page_length = PAGE_SIZE - page_offset;
419 page_length = remain < page_length ? remain : page_length;
420 if (drm_mm_node_allocated(&node)) {
421 ggtt->vm.insert_page(&ggtt->vm,
422 i915_gem_object_get_dma_address(obj,
423 offset >> PAGE_SHIFT),
424 node.start,
425 i915_gem_get_pat_index(i915,
426 I915_CACHE_NONE), 0);
427 } else {
428 page_base += offset & PAGE_MASK;
429 }
430
431 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
432 user_data, page_length)) {
433 ret = -EFAULT;
434 break;
435 }
436
437 remain -= page_length;
438 user_data += page_length;
439 offset += page_length;
440 }
441
442 i915_gem_gtt_cleanup(obj, &node, vma);
443 out_rpm:
444 intel_runtime_pm_put(&i915->runtime_pm, wakeref);
445 return ret;
446 }
447
448 /**
449 * i915_gem_pread_ioctl - Reads data from the object referenced by handle.
450 * @dev: drm device pointer
451 * @data: ioctl data blob
452 * @file: drm file pointer
453 *
454 * On error, the contents of *data are undefined.
455 */
456 int
457 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
458 struct drm_file *file)
459 {
460 struct drm_i915_private *i915 = to_i915(dev);
461 struct drm_i915_gem_pread *args = data;
462 struct drm_i915_gem_object *obj;
463 int ret;
464
465 /* PREAD is disallowed for all platforms after TGL-LP. This also
466 * covers all platforms with local memory.
467 */
468 if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
469 return -EOPNOTSUPP;
470
471 if (args->size == 0)
472 return 0;
473
474 if (!access_ok(u64_to_user_ptr(args->data_ptr),
475 args->size))
476 return -EFAULT;
477
478 obj = i915_gem_object_lookup(file, args->handle);
479 if (!obj)
480 return -ENOENT;
481
482 /* Bounds check source. */
483 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
484 ret = -EINVAL;
485 goto out;
486 }
487
488 trace_i915_gem_object_pread(obj, args->offset, args->size);
489 ret = -ENODEV;
490 if (obj->ops->pread)
491 ret = obj->ops->pread(obj, args);
492 if (ret != -ENODEV)
493 goto out;
494
495 ret = i915_gem_object_wait(obj,
496 I915_WAIT_INTERRUPTIBLE,
497 MAX_SCHEDULE_TIMEOUT);
498 if (ret)
499 goto out;
500
501 ret = i915_gem_shmem_pread(obj, args);
502 if (ret == -EFAULT || ret == -ENODEV)
503 ret = i915_gem_gtt_pread(obj, args);
504
505 out:
506 i915_gem_object_put(obj);
507 return ret;
508 }
509
510 /* This is the fast write path which cannot handle
511 * page faults in the source data
512 */
513
514 static inline bool
515 ggtt_write(struct io_mapping *mapping,
516 loff_t base, int offset,
517 char __user *user_data, int length)
518 {
519 void __iomem *vaddr;
520 unsigned long unwritten;
521
522 /* We can use the cpu mem copy function because this is X86. */
523 vaddr = io_mapping_map_atomic_wc(mapping, base);
524 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
525 user_data, length);
526 io_mapping_unmap_atomic(vaddr);
527 if (unwritten) {
528 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
529 unwritten = copy_from_user((void __force *)vaddr + offset,
530 user_data, length);
531 io_mapping_unmap(vaddr);
532 }
533
534 return unwritten;
535 }
536
537 /**
538 * i915_gem_gtt_pwrite_fast - This is the fast pwrite path, where we copy the data directly from the
539 * user into the GTT, uncached.
540 * @obj: i915 GEM object
541 * @args: pwrite arguments structure
542 */
543 static int
544 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
545 const struct drm_i915_gem_pwrite *args)
546 {
547 struct drm_i915_private *i915 = to_i915(obj->base.dev);
548 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
549 struct intel_runtime_pm *rpm = &i915->runtime_pm;
550 unsigned long remain, offset;
551 intel_wakeref_t wakeref;
552 struct drm_mm_node node;
553 struct i915_vma *vma;
554 void __user *user_data;
555 int ret = 0;
556
557 if (overflows_type(args->size, remain) ||
558 overflows_type(args->offset, offset))
559 return -EINVAL;
560
561 if (i915_gem_object_has_struct_page(obj)) {
562 /*
563 * Avoid waking the device up if we can fallback, as
564 * waking/resuming is very slow (worst-case 10-100 ms
565 * depending on PCI sleeps and our own resume time).
566 * This easily dwarfs any performance advantage from
567 * using the cache bypass of indirect GGTT access.
568 */
569 wakeref = intel_runtime_pm_get_if_in_use(rpm);
570 if (!wakeref)
571 return -EFAULT;
572 } else {
573 /* No backing pages, no fallback, we must force GGTT access */
574 wakeref = intel_runtime_pm_get(rpm);
575 }
576
577 vma = i915_gem_gtt_prepare(obj, &node, true);
578 if (IS_ERR(vma)) {
579 ret = PTR_ERR(vma);
580 goto out_rpm;
581 }
582
583 i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
584
585 user_data = u64_to_user_ptr(args->data_ptr);
586 offset = args->offset;
587 remain = args->size;
588 while (remain) {
589 /* Operation in this page
590 *
591 * page_base = page offset within aperture
592 * page_offset = offset within page
593 * page_length = bytes to copy for this page
594 */
595 u32 page_base = node.start;
596 unsigned int page_offset = offset_in_page(offset);
597 unsigned int page_length = PAGE_SIZE - page_offset;
598 page_length = remain < page_length ? remain : page_length;
599 if (drm_mm_node_allocated(&node)) {
600 /* flush the write before we modify the GGTT */
601 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
602 ggtt->vm.insert_page(&ggtt->vm,
603 i915_gem_object_get_dma_address(obj,
604 offset >> PAGE_SHIFT),
605 node.start,
606 i915_gem_get_pat_index(i915,
607 I915_CACHE_NONE), 0);
608 wmb(); /* flush modifications to the GGTT (insert_page) */
609 } else {
610 page_base += offset & PAGE_MASK;
611 }
612 /* If we get a fault while copying data, then (presumably) our
613 * source page isn't available. Return the error and we'll
614 * retry in the slow path.
615 * If the object is non-shmem backed, we retry again with the
616 * path that handles page fault.
617 */
618 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
619 user_data, page_length)) {
620 ret = -EFAULT;
621 break;
622 }
623
624 remain -= page_length;
625 user_data += page_length;
626 offset += page_length;
627 }
628
629 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
630 i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
631
632 i915_gem_gtt_cleanup(obj, &node, vma);
633 out_rpm:
634 intel_runtime_pm_put(rpm, wakeref);
635 return ret;
636 }
637
638 /* Per-page copy function for the shmem pwrite fastpath.
639 * Flushes invalid cachelines before writing to the target if
640 * needs_clflush_before is set and flushes out any written cachelines after
641 * writing if needs_clflush is set.
642 */
643 static int
644 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
645 bool needs_clflush_before,
646 bool needs_clflush_after)
647 {
648 char *vaddr;
649 int ret;
650
651 vaddr = kmap(page);
652
653 if (needs_clflush_before)
654 drm_clflush_virt_range(vaddr + offset, len);
655
656 ret = __copy_from_user(vaddr + offset, user_data, len);
657 if (!ret && needs_clflush_after)
658 drm_clflush_virt_range(vaddr + offset, len);
659
660 kunmap(page);
661
662 return ret ? -EFAULT : 0;
663 }
664
665 static int
666 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
667 const struct drm_i915_gem_pwrite *args)
668 {
669 unsigned int partial_cacheline_write;
670 unsigned int needs_clflush;
671 void __user *user_data;
672 unsigned long offset;
673 pgoff_t idx;
674 u64 remain;
675 int ret;
676
677 ret = i915_gem_object_lock_interruptible(obj, NULL);
678 if (ret)
679 return ret;
680
681 ret = i915_gem_object_pin_pages(obj);
682 if (ret)
683 goto err_unlock;
684
685 ret = i915_gem_object_prepare_write(obj, &needs_clflush);
686 if (ret)
687 goto err_unpin;
688
689 i915_gem_object_finish_access(obj);
690 i915_gem_object_unlock(obj);
691
692 /* If we don't overwrite a cacheline completely we need to be
693 * careful to have up-to-date data by first clflushing. Don't
694 * overcomplicate things and flush the entire patch.
695 */
696 partial_cacheline_write = 0;
697 if (needs_clflush & CLFLUSH_BEFORE)
698 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
699
700 user_data = u64_to_user_ptr(args->data_ptr);
701 remain = args->size;
702 offset = offset_in_page(args->offset);
703 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
704 struct page *page = i915_gem_object_get_page(obj, idx);
705 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
706
707 ret = shmem_pwrite(page, offset, length, user_data,
708 (offset | length) & partial_cacheline_write,
709 needs_clflush & CLFLUSH_AFTER);
710 if (ret)
711 break;
712
713 remain -= length;
714 user_data += length;
715 offset = 0;
716 }
717
718 i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
719
720 i915_gem_object_unpin_pages(obj);
721 return ret;
722
723 err_unpin:
724 i915_gem_object_unpin_pages(obj);
725 err_unlock:
726 i915_gem_object_unlock(obj);
727 return ret;
728 }
729
730 /**
731 * i915_gem_pwrite_ioctl - Writes data to the object referenced by handle.
732 * @dev: drm device
733 * @data: ioctl data blob
734 * @file: drm file
735 *
736 * On error, the contents of the buffer that were to be modified are undefined.
737 */
738 int
739 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
740 struct drm_file *file)
741 {
742 struct drm_i915_private *i915 = to_i915(dev);
743 struct drm_i915_gem_pwrite *args = data;
744 struct drm_i915_gem_object *obj;
745 int ret;
746
747 /* PWRITE is disallowed for all platforms after TGL-LP. This also
748 * covers all platforms with local memory.
749 */
750 if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
751 return -EOPNOTSUPP;
752
753 if (args->size == 0)
754 return 0;
755
756 if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
757 return -EFAULT;
758
759 obj = i915_gem_object_lookup(file, args->handle);
760 if (!obj)
761 return -ENOENT;
762
763 /* Bounds check destination. */
764 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
765 ret = -EINVAL;
766 goto err;
767 }
768
769 /* Writes not allowed into this read-only object */
770 if (i915_gem_object_is_readonly(obj)) {
771 ret = -EINVAL;
772 goto err;
773 }
774
775 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
776
777 ret = -ENODEV;
778 if (obj->ops->pwrite)
779 ret = obj->ops->pwrite(obj, args);
780 if (ret != -ENODEV)
781 goto err;
782
783 ret = i915_gem_object_wait(obj,
784 I915_WAIT_INTERRUPTIBLE |
785 I915_WAIT_ALL,
786 MAX_SCHEDULE_TIMEOUT);
787 if (ret)
788 goto err;
789
790 ret = -EFAULT;
791 /* We can only do the GTT pwrite on untiled buffers, as otherwise
792 * it would end up going through the fenced access, and we'll get
793 * different detiling behavior between reading and writing.
794 * pread/pwrite currently are reading and writing from the CPU
795 * perspective, requiring manual detiling by the client.
796 */
797 if (!i915_gem_object_has_struct_page(obj) ||
798 i915_gem_cpu_write_needs_clflush(obj))
799 /* Note that the gtt paths might fail with non-page-backed user
800 * pointers (e.g. gtt mappings when moving data between
801 * textures). Fallback to the shmem path in that case.
802 */
803 ret = i915_gem_gtt_pwrite_fast(obj, args);
804
805 if (ret == -EFAULT || ret == -ENOSPC) {
806 if (i915_gem_object_has_struct_page(obj))
807 ret = i915_gem_shmem_pwrite(obj, args);
808 }
809
810 err:
811 i915_gem_object_put(obj);
812 return ret;
813 }
814
815 /**
816 * i915_gem_sw_finish_ioctl - Called when user space has done writes to this buffer
817 * @dev: drm device
818 * @data: ioctl data blob
819 * @file: drm file
820 */
821 int
822 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
823 struct drm_file *file)
824 {
825 struct drm_i915_gem_sw_finish *args = data;
826 struct drm_i915_gem_object *obj;
827
828 obj = i915_gem_object_lookup(file, args->handle);
829 if (!obj)
830 return -ENOENT;
831
832 /*
833 * Proxy objects are barred from CPU access, so there is no
834 * need to ban sw_finish as it is a nop.
835 */
836
837 /* Pinned buffers may be scanout, so flush the cache */
838 i915_gem_object_flush_if_display(obj);
839 i915_gem_object_put(obj);
840
841 return 0;
842 }
843
844 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
845 {
846 struct drm_i915_gem_object *obj, *on;
847 int i;
848
849 /*
850 * Only called during RPM suspend. All users of the userfault_list
851 * must be holding an RPM wakeref to ensure that this can not
852 * run concurrently with themselves (and use the struct_mutex for
853 * protection between themselves).
854 */
855
856 list_for_each_entry_safe(obj, on,
857 &to_gt(i915)->ggtt->userfault_list, userfault_link)
858 __i915_gem_object_release_mmap_gtt(obj);
859
860 list_for_each_entry_safe(obj, on,
861 &i915->runtime_pm.lmem_userfault_list, userfault_link)
862 i915_gem_object_runtime_pm_release_mmap_offset(obj);
863
864 /*
865 * The fence will be lost when the device powers down. If any were
866 * in use by hardware (i.e. they are pinned), we should not be powering
867 * down! All other fences will be reacquired by the user upon waking.
868 */
869 for (i = 0; i < to_gt(i915)->ggtt->num_fences; i++) {
870 struct i915_fence_reg *reg = &to_gt(i915)->ggtt->fence_regs[i];
871
872 /*
873 * Ideally we want to assert that the fence register is not
874 * live at this point (i.e. that no piece of code will be
875 * trying to write through fence + GTT, as that both violates
876 * our tracking of activity and associated locking/barriers,
877 * but also is illegal given that the hw is powered down).
878 *
879 * Previously we used reg->pin_count as a "liveness" indicator.
880 * That is not sufficient, and we need a more fine-grained
881 * tool if we want to have a sanity check here.
882 */
883
884 if (!reg->vma)
885 continue;
886
887 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
888 reg->dirty = true;
889 }
890 }
891
892 static void discard_ggtt_vma(struct i915_vma *vma)
893 {
894 struct drm_i915_gem_object *obj = vma->obj;
895
896 spin_lock(&obj->vma.lock);
897 if (!RB_EMPTY_NODE(&vma->obj_node)) {
898 rb_erase(&vma->obj_node, &obj->vma.tree);
899 RB_CLEAR_NODE(&vma->obj_node);
900 }
901 spin_unlock(&obj->vma.lock);
902 }
903
904 struct i915_vma *
905 i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
906 struct i915_gem_ww_ctx *ww,
907 const struct i915_gtt_view *view,
908 u64 size, u64 alignment, u64 flags)
909 {
910 struct drm_i915_private *i915 = to_i915(obj->base.dev);
911 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
912 struct i915_vma *vma;
913 int ret;
914
915 GEM_WARN_ON(!ww);
916
917 if (flags & PIN_MAPPABLE &&
918 (!view || view->type == I915_GTT_VIEW_NORMAL)) {
919 /*
920 * If the required space is larger than the available
921 * aperture, we will not able to find a slot for the
922 * object and unbinding the object now will be in
923 * vain. Worse, doing so may cause us to ping-pong
924 * the object in and out of the Global GTT and
925 * waste a lot of cycles under the mutex.
926 */
927 if (obj->base.size > ggtt->mappable_end)
928 return ERR_PTR(-E2BIG);
929
930 /*
931 * If NONBLOCK is set the caller is optimistically
932 * trying to cache the full object within the mappable
933 * aperture, and *must* have a fallback in place for
934 * situations where we cannot bind the object. We
935 * can be a little more lax here and use the fallback
936 * more often to avoid costly migrations of ourselves
937 * and other objects within the aperture.
938 *
939 * Half-the-aperture is used as a simple heuristic.
940 * More interesting would to do search for a free
941 * block prior to making the commitment to unbind.
942 * That caters for the self-harm case, and with a
943 * little more heuristics (e.g. NOFAULT, NOEVICT)
944 * we could try to minimise harm to others.
945 */
946 if (flags & PIN_NONBLOCK &&
947 obj->base.size > ggtt->mappable_end / 2)
948 return ERR_PTR(-ENOSPC);
949 }
950
951 new_vma:
952 vma = i915_vma_instance(obj, &ggtt->vm, view);
953 if (IS_ERR(vma))
954 return vma;
955
956 if (i915_vma_misplaced(vma, size, alignment, flags)) {
957 if (flags & PIN_NONBLOCK) {
958 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
959 return ERR_PTR(-ENOSPC);
960
961 /*
962 * If this misplaced vma is too big (i.e, at-least
963 * half the size of aperture) or hasn't been pinned
964 * mappable before, we ignore the misplacement when
965 * PIN_NONBLOCK is set in order to avoid the ping-pong
966 * issue described above. In other words, we try to
967 * avoid the costly operation of unbinding this vma
968 * from the GGTT and rebinding it back because there
969 * may not be enough space for this vma in the aperture.
970 */
971 if (flags & PIN_MAPPABLE &&
972 (vma->fence_size > ggtt->mappable_end / 2 ||
973 !i915_vma_is_map_and_fenceable(vma)))
974 return ERR_PTR(-ENOSPC);
975 }
976
977 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
978 discard_ggtt_vma(vma);
979 goto new_vma;
980 }
981
982 ret = i915_vma_unbind(vma);
983 if (ret)
984 return ERR_PTR(ret);
985 }
986
987 ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
988
989 if (ret)
990 return ERR_PTR(ret);
991
992 if (vma->fence && !i915_gem_object_is_tiled(obj)) {
993 mutex_lock(&ggtt->vm.mutex);
994 i915_vma_revoke_fence(vma);
995 mutex_unlock(&ggtt->vm.mutex);
996 }
997
998 ret = i915_vma_wait_for_bind(vma);
999 if (ret) {
1000 i915_vma_unpin(vma);
1001 return ERR_PTR(ret);
1002 }
1003
1004 return vma;
1005 }
1006
1007 struct i915_vma * __must_check
1008 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
1009 const struct i915_gtt_view *view,
1010 u64 size, u64 alignment, u64 flags)
1011 {
1012 struct i915_gem_ww_ctx ww;
1013 struct i915_vma *ret;
1014 int err;
1015
1016 for_i915_gem_ww(&ww, err, true) {
1017 err = i915_gem_object_lock(obj, &ww);
1018 if (err)
1019 continue;
1020
1021 ret = i915_gem_object_ggtt_pin_ww(obj, &ww, view, size,
1022 alignment, flags);
1023 if (IS_ERR(ret))
1024 err = PTR_ERR(ret);
1025 }
1026
1027 return err ? ERR_PTR(err) : ret;
1028 }
1029
1030 int
1031 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1032 struct drm_file *file_priv)
1033 {
1034 struct drm_i915_private *i915 = to_i915(dev);
1035 struct drm_i915_gem_madvise *args = data;
1036 struct drm_i915_gem_object *obj;
1037 int err;
1038
1039 switch (args->madv) {
1040 case I915_MADV_DONTNEED:
1041 case I915_MADV_WILLNEED:
1042 break;
1043 default:
1044 return -EINVAL;
1045 }
1046
1047 obj = i915_gem_object_lookup(file_priv, args->handle);
1048 if (!obj)
1049 return -ENOENT;
1050
1051 err = i915_gem_object_lock_interruptible(obj, NULL);
1052 if (err)
1053 goto out;
1054
1055 if (i915_gem_object_has_pages(obj) &&
1056 i915_gem_object_is_tiled(obj) &&
1057 i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) {
1058 if (obj->mm.madv == I915_MADV_WILLNEED) {
1059 GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
1060 i915_gem_object_clear_tiling_quirk(obj);
1061 i915_gem_object_make_shrinkable(obj);
1062 }
1063 if (args->madv == I915_MADV_WILLNEED) {
1064 GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
1065 i915_gem_object_make_unshrinkable(obj);
1066 i915_gem_object_set_tiling_quirk(obj);
1067 }
1068 }
1069
1070 if (obj->mm.madv != __I915_MADV_PURGED) {
1071 obj->mm.madv = args->madv;
1072 if (obj->ops->adjust_lru)
1073 obj->ops->adjust_lru(obj);
1074 }
1075
1076 if (i915_gem_object_has_pages(obj) ||
1077 i915_gem_object_has_self_managed_shrink_list(obj)) {
1078 unsigned long flags;
1079
1080 spin_lock_irqsave(&i915->mm.obj_lock, flags);
1081 if (!list_empty(&obj->mm.link)) {
1082 struct list_head *list;
1083
1084 if (obj->mm.madv != I915_MADV_WILLNEED)
1085 list = &i915->mm.purge_list;
1086 else
1087 list = &i915->mm.shrink_list;
1088 list_move_tail(&obj->mm.link, list);
1089
1090 }
1091 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1092 }
1093
1094 /* if the object is no longer attached, discard its backing storage */
1095 if (obj->mm.madv == I915_MADV_DONTNEED &&
1096 !i915_gem_object_has_pages(obj))
1097 i915_gem_object_truncate(obj);
1098
1099 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1100
1101 i915_gem_object_unlock(obj);
1102 out:
1103 i915_gem_object_put(obj);
1104 return err;
1105 }
1106
1107 /*
1108 * A single pass should suffice to release all the freed objects (along most
1109 * call paths), but be a little more paranoid in that freeing the objects does
1110 * take a little amount of time, during which the rcu callbacks could have added
1111 * new objects into the freed list, and armed the work again.
1112 */
1113 void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
1114 {
1115 while (atomic_read(&i915->mm.free_count)) {
1116 flush_work(&i915->mm.free_work);
1117 drain_workqueue(i915->bdev.wq);
1118 rcu_barrier();
1119 }
1120 }
1121
1122 /*
1123 * Similar to objects above (see i915_gem_drain_freed-objects), in general we
1124 * have workers that are armed by RCU and then rearm themselves in their
1125 * callbacks. To be paranoid, we need to drain the workqueue a second time after
1126 * waiting for the RCU grace period so that we catch work queued via RCU from
1127 * the first pass. As neither drain_workqueue() nor flush_workqueue() report a
1128 * result, we make an assumption that we only don't require more than 3 passes
1129 * to catch all _recursive_ RCU delayed work.
1130 */
1131 void i915_gem_drain_workqueue(struct drm_i915_private *i915)
1132 {
1133 int i;
1134
1135 for (i = 0; i < 3; i++) {
1136 flush_workqueue(i915->wq);
1137 rcu_barrier();
1138 i915_gem_drain_freed_objects(i915);
1139 }
1140
1141 drain_workqueue(i915->wq);
1142 }
1143
1144 int i915_gem_init(struct drm_i915_private *dev_priv)
1145 {
1146 struct intel_gt *gt;
1147 unsigned int i;
1148 int ret;
1149
1150 /*
1151 * In the proccess of replacing cache_level with pat_index a tricky
1152 * dependency is created on the definition of the enum i915_cache_level.
1153 * in case this enum is changed, PTE encode would be broken.
1154 * Add a WARNING here. And remove when we completely quit using this
1155 * enum
1156 */
1157 BUILD_BUG_ON(I915_CACHE_NONE != 0 ||
1158 I915_CACHE_LLC != 1 ||
1159 I915_CACHE_L3_LLC != 2 ||
1160 I915_CACHE_WT != 3 ||
1161 I915_MAX_CACHE_LEVEL != 4);
1162
1163 /* We need to fallback to 4K pages if host doesn't support huge gtt. */
1164 if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1165 RUNTIME_INFO(dev_priv)->page_sizes = I915_GTT_PAGE_SIZE_4K;
1166
1167 for_each_gt(gt, dev_priv, i) {
1168 intel_uc_fetch_firmwares(&gt->uc);
1169 intel_wopcm_init(&gt->wopcm);
1170 if (GRAPHICS_VER(dev_priv) >= 8)
1171 setup_private_pat(gt);
1172 }
1173
1174 ret = i915_init_ggtt(dev_priv);
1175 if (ret) {
1176 GEM_BUG_ON(ret == -EIO);
1177 goto err_unlock;
1178 }
1179
1180 /*
1181 * Despite its name intel_clock_gating_init applies both display
1182 * clock gating workarounds; GT mmio workarounds and the occasional
1183 * GT power context workaround. Worse, sometimes it includes a context
1184 * register workaround which we need to apply before we record the
1185 * default HW state for all contexts.
1186 *
1187 * FIXME: break up the workarounds and apply them at the right time!
1188 */
1189 intel_clock_gating_init(dev_priv);
1190
1191 for_each_gt(gt, dev_priv, i) {
1192 ret = intel_gt_init(gt);
1193 if (ret)
1194 goto err_unlock;
1195 }
1196
1197 /*
1198 * Register engines early to ensure the engine list is in its final
1199 * rb-tree form, lowering the amount of code that has to deal with
1200 * the intermediate llist state.
1201 */
1202 intel_engines_driver_register(dev_priv);
1203
1204 return 0;
1205
1206 /*
1207 * Unwinding is complicated by that we want to handle -EIO to mean
1208 * disable GPU submission but keep KMS alive. We want to mark the
1209 * HW as irrevisibly wedged, but keep enough state around that the
1210 * driver doesn't explode during runtime.
1211 */
1212 err_unlock:
1213 i915_gem_drain_workqueue(dev_priv);
1214
1215 if (ret != -EIO) {
1216 for_each_gt(gt, dev_priv, i) {
1217 intel_gt_driver_remove(gt);
1218 intel_gt_driver_release(gt);
1219 intel_uc_cleanup_firmwares(&gt->uc);
1220 }
1221 }
1222
1223 if (ret == -EIO) {
1224 /*
1225 * Allow engines or uC initialisation to fail by marking the GPU
1226 * as wedged. But we only want to do this when the GPU is angry,
1227 * for all other failure, such as an allocation failure, bail.
1228 */
1229 for_each_gt(gt, dev_priv, i) {
1230 if (!intel_gt_is_wedged(gt)) {
1231 i915_probe_error(dev_priv,
1232 "Failed to initialize GPU, declaring it wedged!\n");
1233 intel_gt_set_wedged(gt);
1234 }
1235 }
1236
1237 /* Minimal basic recovery for KMS */
1238 ret = i915_ggtt_enable_hw(dev_priv);
1239 i915_ggtt_resume(to_gt(dev_priv)->ggtt);
1240 intel_clock_gating_init(dev_priv);
1241 }
1242
1243 i915_gem_drain_freed_objects(dev_priv);
1244
1245 return ret;
1246 }
1247
1248 void i915_gem_driver_register(struct drm_i915_private *i915)
1249 {
1250 i915_gem_driver_register__shrinker(i915);
1251 }
1252
1253 void i915_gem_driver_unregister(struct drm_i915_private *i915)
1254 {
1255 i915_gem_driver_unregister__shrinker(i915);
1256 }
1257
1258 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1259 {
1260 struct intel_gt *gt;
1261 unsigned int i;
1262
1263 i915_gem_suspend_late(dev_priv);
1264 for_each_gt(gt, dev_priv, i)
1265 intel_gt_driver_remove(gt);
1266 dev_priv->uabi_engines = RB_ROOT;
1267
1268 /* Flush any outstanding unpin_work. */
1269 i915_gem_drain_workqueue(dev_priv);
1270 }
1271
1272 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1273 {
1274 struct intel_gt *gt;
1275 unsigned int i;
1276
1277 for_each_gt(gt, dev_priv, i) {
1278 intel_gt_driver_release(gt);
1279 intel_uc_cleanup_firmwares(&gt->uc);
1280 }
1281
1282 /* Flush any outstanding work, including i915_gem_context.release_work. */
1283 i915_gem_drain_workqueue(dev_priv);
1284
1285 drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1286 }
1287
1288 static void i915_gem_init__mm(struct drm_i915_private *i915)
1289 {
1290 spin_lock_init(&i915->mm.obj_lock);
1291
1292 init_llist_head(&i915->mm.free_list);
1293
1294 INIT_LIST_HEAD(&i915->mm.purge_list);
1295 INIT_LIST_HEAD(&i915->mm.shrink_list);
1296
1297 i915_gem_init__objects(i915);
1298 }
1299
1300 void i915_gem_init_early(struct drm_i915_private *dev_priv)
1301 {
1302 i915_gem_init__mm(dev_priv);
1303 i915_gem_init__contexts(dev_priv);
1304 }
1305
1306 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1307 {
1308 i915_gem_drain_workqueue(dev_priv);
1309 GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1310 GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1311 drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1312 }
1313
1314 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1315 {
1316 struct drm_i915_file_private *file_priv;
1317 struct i915_drm_client *client;
1318 int ret = -ENOMEM;
1319
1320 drm_dbg(&i915->drm, "\n");
1321
1322 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1323 if (!file_priv)
1324 goto err_alloc;
1325
1326 client = i915_drm_client_alloc();
1327 if (!client)
1328 goto err_client;
1329
1330 file->driver_priv = file_priv;
1331 file_priv->i915 = i915;
1332 file_priv->file = file;
1333 file_priv->client = client;
1334
1335 file_priv->bsd_engine = -1;
1336 file_priv->hang_timestamp = jiffies;
1337
1338 ret = i915_gem_context_open(i915, file);
1339 if (ret)
1340 goto err_context;
1341
1342 return 0;
1343
1344 err_context:
1345 i915_drm_client_put(client);
1346 err_client:
1347 kfree(file_priv);
1348 err_alloc:
1349 return ret;
1350 }
1351
1352 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1353 #include "selftests/mock_gem_device.c"
1354 #include "selftests/i915_gem.c"
1355 #endif