]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/i915/i915_gem.c
drm/i915: Allocate a common scratch page
[thirdparty/linux.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "intel_workarounds.h"
39 #include "i915_gemfs.h"
40 #include <linux/dma-fence-array.h>
41 #include <linux/kthread.h>
42 #include <linux/reservation.h>
43 #include <linux/shmem_fs.h>
44 #include <linux/slab.h>
45 #include <linux/stop_machine.h>
46 #include <linux/swap.h>
47 #include <linux/pci.h>
48 #include <linux/dma-buf.h>
49
50 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51
52 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53 {
54 if (obj->cache_dirty)
55 return false;
56
57 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
58 return true;
59
60 return obj->pin_global; /* currently in use by HW, keep flushed */
61 }
62
63 static int
64 insert_mappable_node(struct i915_ggtt *ggtt,
65 struct drm_mm_node *node, u32 size)
66 {
67 memset(node, 0, sizeof(*node));
68 return drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
69 size, 0, I915_COLOR_UNEVICTABLE,
70 0, ggtt->mappable_end,
71 DRM_MM_INSERT_LOW);
72 }
73
74 static void
75 remove_mappable_node(struct drm_mm_node *node)
76 {
77 drm_mm_remove_node(node);
78 }
79
80 /* some bookkeeping */
81 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82 u64 size)
83 {
84 spin_lock(&dev_priv->mm.object_stat_lock);
85 dev_priv->mm.object_count++;
86 dev_priv->mm.object_memory += size;
87 spin_unlock(&dev_priv->mm.object_stat_lock);
88 }
89
90 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91 u64 size)
92 {
93 spin_lock(&dev_priv->mm.object_stat_lock);
94 dev_priv->mm.object_count--;
95 dev_priv->mm.object_memory -= size;
96 spin_unlock(&dev_priv->mm.object_stat_lock);
97 }
98
99 static int
100 i915_gem_wait_for_error(struct i915_gpu_error *error)
101 {
102 int ret;
103
104 might_sleep();
105
106 /*
107 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108 * userspace. If it takes that long something really bad is going on and
109 * we should simply try to bail out and fail as gracefully as possible.
110 */
111 ret = wait_event_interruptible_timeout(error->reset_queue,
112 !i915_reset_backoff(error),
113 I915_RESET_TIMEOUT);
114 if (ret == 0) {
115 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116 return -EIO;
117 } else if (ret < 0) {
118 return ret;
119 } else {
120 return 0;
121 }
122 }
123
124 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 {
126 struct drm_i915_private *dev_priv = to_i915(dev);
127 int ret;
128
129 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 if (ret)
131 return ret;
132
133 ret = mutex_lock_interruptible(&dev->struct_mutex);
134 if (ret)
135 return ret;
136
137 return 0;
138 }
139
140 static u32 __i915_gem_park(struct drm_i915_private *i915)
141 {
142 GEM_TRACE("\n");
143
144 lockdep_assert_held(&i915->drm.struct_mutex);
145 GEM_BUG_ON(i915->gt.active_requests);
146 GEM_BUG_ON(!list_empty(&i915->gt.active_rings));
147
148 if (!i915->gt.awake)
149 return I915_EPOCH_INVALID;
150
151 GEM_BUG_ON(i915->gt.epoch == I915_EPOCH_INVALID);
152
153 /*
154 * Be paranoid and flush a concurrent interrupt to make sure
155 * we don't reactivate any irq tasklets after parking.
156 *
157 * FIXME: Note that even though we have waited for execlists to be idle,
158 * there may still be an in-flight interrupt even though the CSB
159 * is now empty. synchronize_irq() makes sure that a residual interrupt
160 * is completed before we continue, but it doesn't prevent the HW from
161 * raising a spurious interrupt later. To complete the shield we should
162 * coordinate disabling the CS irq with flushing the interrupts.
163 */
164 synchronize_irq(i915->drm.irq);
165
166 intel_engines_park(i915);
167 i915_timelines_park(i915);
168
169 i915_pmu_gt_parked(i915);
170 i915_vma_parked(i915);
171
172 i915->gt.awake = false;
173
174 if (INTEL_GEN(i915) >= 6)
175 gen6_rps_idle(i915);
176
177 intel_display_power_put(i915, POWER_DOMAIN_GT_IRQ);
178
179 intel_runtime_pm_put(i915);
180
181 return i915->gt.epoch;
182 }
183
184 void i915_gem_park(struct drm_i915_private *i915)
185 {
186 GEM_TRACE("\n");
187
188 lockdep_assert_held(&i915->drm.struct_mutex);
189 GEM_BUG_ON(i915->gt.active_requests);
190
191 if (!i915->gt.awake)
192 return;
193
194 /* Defer the actual call to __i915_gem_park() to prevent ping-pongs */
195 mod_delayed_work(i915->wq, &i915->gt.idle_work, msecs_to_jiffies(100));
196 }
197
198 void i915_gem_unpark(struct drm_i915_private *i915)
199 {
200 GEM_TRACE("\n");
201
202 lockdep_assert_held(&i915->drm.struct_mutex);
203 GEM_BUG_ON(!i915->gt.active_requests);
204
205 if (i915->gt.awake)
206 return;
207
208 intel_runtime_pm_get_noresume(i915);
209
210 /*
211 * It seems that the DMC likes to transition between the DC states a lot
212 * when there are no connected displays (no active power domains) during
213 * command submission.
214 *
215 * This activity has negative impact on the performance of the chip with
216 * huge latencies observed in the interrupt handler and elsewhere.
217 *
218 * Work around it by grabbing a GT IRQ power domain whilst there is any
219 * GT activity, preventing any DC state transitions.
220 */
221 intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
222
223 i915->gt.awake = true;
224 if (unlikely(++i915->gt.epoch == 0)) /* keep 0 as invalid */
225 i915->gt.epoch = 1;
226
227 intel_enable_gt_powersave(i915);
228 i915_update_gfx_val(i915);
229 if (INTEL_GEN(i915) >= 6)
230 gen6_rps_busy(i915);
231 i915_pmu_gt_unparked(i915);
232
233 intel_engines_unpark(i915);
234
235 i915_queue_hangcheck(i915);
236
237 queue_delayed_work(i915->wq,
238 &i915->gt.retire_work,
239 round_jiffies_up_relative(HZ));
240 }
241
242 int
243 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
244 struct drm_file *file)
245 {
246 struct drm_i915_private *dev_priv = to_i915(dev);
247 struct i915_ggtt *ggtt = &dev_priv->ggtt;
248 struct drm_i915_gem_get_aperture *args = data;
249 struct i915_vma *vma;
250 u64 pinned;
251
252 pinned = ggtt->vm.reserved;
253 mutex_lock(&dev->struct_mutex);
254 list_for_each_entry(vma, &ggtt->vm.active_list, vm_link)
255 if (i915_vma_is_pinned(vma))
256 pinned += vma->node.size;
257 list_for_each_entry(vma, &ggtt->vm.inactive_list, vm_link)
258 if (i915_vma_is_pinned(vma))
259 pinned += vma->node.size;
260 mutex_unlock(&dev->struct_mutex);
261
262 args->aper_size = ggtt->vm.total;
263 args->aper_available_size = args->aper_size - pinned;
264
265 return 0;
266 }
267
268 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
269 {
270 struct address_space *mapping = obj->base.filp->f_mapping;
271 drm_dma_handle_t *phys;
272 struct sg_table *st;
273 struct scatterlist *sg;
274 char *vaddr;
275 int i;
276 int err;
277
278 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
279 return -EINVAL;
280
281 /* Always aligning to the object size, allows a single allocation
282 * to handle all possible callers, and given typical object sizes,
283 * the alignment of the buddy allocation will naturally match.
284 */
285 phys = drm_pci_alloc(obj->base.dev,
286 roundup_pow_of_two(obj->base.size),
287 roundup_pow_of_two(obj->base.size));
288 if (!phys)
289 return -ENOMEM;
290
291 vaddr = phys->vaddr;
292 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
293 struct page *page;
294 char *src;
295
296 page = shmem_read_mapping_page(mapping, i);
297 if (IS_ERR(page)) {
298 err = PTR_ERR(page);
299 goto err_phys;
300 }
301
302 src = kmap_atomic(page);
303 memcpy(vaddr, src, PAGE_SIZE);
304 drm_clflush_virt_range(vaddr, PAGE_SIZE);
305 kunmap_atomic(src);
306
307 put_page(page);
308 vaddr += PAGE_SIZE;
309 }
310
311 i915_gem_chipset_flush(to_i915(obj->base.dev));
312
313 st = kmalloc(sizeof(*st), GFP_KERNEL);
314 if (!st) {
315 err = -ENOMEM;
316 goto err_phys;
317 }
318
319 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
320 kfree(st);
321 err = -ENOMEM;
322 goto err_phys;
323 }
324
325 sg = st->sgl;
326 sg->offset = 0;
327 sg->length = obj->base.size;
328
329 sg_dma_address(sg) = phys->busaddr;
330 sg_dma_len(sg) = obj->base.size;
331
332 obj->phys_handle = phys;
333
334 __i915_gem_object_set_pages(obj, st, sg->length);
335
336 return 0;
337
338 err_phys:
339 drm_pci_free(obj->base.dev, phys);
340
341 return err;
342 }
343
344 static void __start_cpu_write(struct drm_i915_gem_object *obj)
345 {
346 obj->read_domains = I915_GEM_DOMAIN_CPU;
347 obj->write_domain = I915_GEM_DOMAIN_CPU;
348 if (cpu_write_needs_clflush(obj))
349 obj->cache_dirty = true;
350 }
351
352 static void
353 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
354 struct sg_table *pages,
355 bool needs_clflush)
356 {
357 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
358
359 if (obj->mm.madv == I915_MADV_DONTNEED)
360 obj->mm.dirty = false;
361
362 if (needs_clflush &&
363 (obj->read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
364 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
365 drm_clflush_sg(pages);
366
367 __start_cpu_write(obj);
368 }
369
370 static void
371 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
372 struct sg_table *pages)
373 {
374 __i915_gem_object_release_shmem(obj, pages, false);
375
376 if (obj->mm.dirty) {
377 struct address_space *mapping = obj->base.filp->f_mapping;
378 char *vaddr = obj->phys_handle->vaddr;
379 int i;
380
381 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
382 struct page *page;
383 char *dst;
384
385 page = shmem_read_mapping_page(mapping, i);
386 if (IS_ERR(page))
387 continue;
388
389 dst = kmap_atomic(page);
390 drm_clflush_virt_range(vaddr, PAGE_SIZE);
391 memcpy(dst, vaddr, PAGE_SIZE);
392 kunmap_atomic(dst);
393
394 set_page_dirty(page);
395 if (obj->mm.madv == I915_MADV_WILLNEED)
396 mark_page_accessed(page);
397 put_page(page);
398 vaddr += PAGE_SIZE;
399 }
400 obj->mm.dirty = false;
401 }
402
403 sg_free_table(pages);
404 kfree(pages);
405
406 drm_pci_free(obj->base.dev, obj->phys_handle);
407 }
408
409 static void
410 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
411 {
412 i915_gem_object_unpin_pages(obj);
413 }
414
415 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
416 .get_pages = i915_gem_object_get_pages_phys,
417 .put_pages = i915_gem_object_put_pages_phys,
418 .release = i915_gem_object_release_phys,
419 };
420
421 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
422
423 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
424 {
425 struct i915_vma *vma;
426 LIST_HEAD(still_in_list);
427 int ret;
428
429 lockdep_assert_held(&obj->base.dev->struct_mutex);
430
431 /* Closed vma are removed from the obj->vma_list - but they may
432 * still have an active binding on the object. To remove those we
433 * must wait for all rendering to complete to the object (as unbinding
434 * must anyway), and retire the requests.
435 */
436 ret = i915_gem_object_set_to_cpu_domain(obj, false);
437 if (ret)
438 return ret;
439
440 while ((vma = list_first_entry_or_null(&obj->vma_list,
441 struct i915_vma,
442 obj_link))) {
443 list_move_tail(&vma->obj_link, &still_in_list);
444 ret = i915_vma_unbind(vma);
445 if (ret)
446 break;
447 }
448 list_splice(&still_in_list, &obj->vma_list);
449
450 return ret;
451 }
452
453 static long
454 i915_gem_object_wait_fence(struct dma_fence *fence,
455 unsigned int flags,
456 long timeout,
457 struct intel_rps_client *rps_client)
458 {
459 struct i915_request *rq;
460
461 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
462
463 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
464 return timeout;
465
466 if (!dma_fence_is_i915(fence))
467 return dma_fence_wait_timeout(fence,
468 flags & I915_WAIT_INTERRUPTIBLE,
469 timeout);
470
471 rq = to_request(fence);
472 if (i915_request_completed(rq))
473 goto out;
474
475 /*
476 * This client is about to stall waiting for the GPU. In many cases
477 * this is undesirable and limits the throughput of the system, as
478 * many clients cannot continue processing user input/output whilst
479 * blocked. RPS autotuning may take tens of milliseconds to respond
480 * to the GPU load and thus incurs additional latency for the client.
481 * We can circumvent that by promoting the GPU frequency to maximum
482 * before we wait. This makes the GPU throttle up much more quickly
483 * (good for benchmarks and user experience, e.g. window animations),
484 * but at a cost of spending more power processing the workload
485 * (bad for battery). Not all clients even want their results
486 * immediately and for them we should just let the GPU select its own
487 * frequency to maximise efficiency. To prevent a single client from
488 * forcing the clocks too high for the whole system, we only allow
489 * each client to waitboost once in a busy period.
490 */
491 if (rps_client && !i915_request_started(rq)) {
492 if (INTEL_GEN(rq->i915) >= 6)
493 gen6_rps_boost(rq, rps_client);
494 }
495
496 timeout = i915_request_wait(rq, flags, timeout);
497
498 out:
499 if (flags & I915_WAIT_LOCKED && i915_request_completed(rq))
500 i915_request_retire_upto(rq);
501
502 return timeout;
503 }
504
505 static long
506 i915_gem_object_wait_reservation(struct reservation_object *resv,
507 unsigned int flags,
508 long timeout,
509 struct intel_rps_client *rps_client)
510 {
511 unsigned int seq = __read_seqcount_begin(&resv->seq);
512 struct dma_fence *excl;
513 bool prune_fences = false;
514
515 if (flags & I915_WAIT_ALL) {
516 struct dma_fence **shared;
517 unsigned int count, i;
518 int ret;
519
520 ret = reservation_object_get_fences_rcu(resv,
521 &excl, &count, &shared);
522 if (ret)
523 return ret;
524
525 for (i = 0; i < count; i++) {
526 timeout = i915_gem_object_wait_fence(shared[i],
527 flags, timeout,
528 rps_client);
529 if (timeout < 0)
530 break;
531
532 dma_fence_put(shared[i]);
533 }
534
535 for (; i < count; i++)
536 dma_fence_put(shared[i]);
537 kfree(shared);
538
539 /*
540 * If both shared fences and an exclusive fence exist,
541 * then by construction the shared fences must be later
542 * than the exclusive fence. If we successfully wait for
543 * all the shared fences, we know that the exclusive fence
544 * must all be signaled. If all the shared fences are
545 * signaled, we can prune the array and recover the
546 * floating references on the fences/requests.
547 */
548 prune_fences = count && timeout >= 0;
549 } else {
550 excl = reservation_object_get_excl_rcu(resv);
551 }
552
553 if (excl && timeout >= 0)
554 timeout = i915_gem_object_wait_fence(excl, flags, timeout,
555 rps_client);
556
557 dma_fence_put(excl);
558
559 /*
560 * Opportunistically prune the fences iff we know they have *all* been
561 * signaled and that the reservation object has not been changed (i.e.
562 * no new fences have been added).
563 */
564 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
565 if (reservation_object_trylock(resv)) {
566 if (!__read_seqcount_retry(&resv->seq, seq))
567 reservation_object_add_excl_fence(resv, NULL);
568 reservation_object_unlock(resv);
569 }
570 }
571
572 return timeout;
573 }
574
575 static void __fence_set_priority(struct dma_fence *fence,
576 const struct i915_sched_attr *attr)
577 {
578 struct i915_request *rq;
579 struct intel_engine_cs *engine;
580
581 if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
582 return;
583
584 rq = to_request(fence);
585 engine = rq->engine;
586
587 local_bh_disable();
588 rcu_read_lock(); /* RCU serialisation for set-wedged protection */
589 if (engine->schedule)
590 engine->schedule(rq, attr);
591 rcu_read_unlock();
592 local_bh_enable(); /* kick the tasklets if queues were reprioritised */
593 }
594
595 static void fence_set_priority(struct dma_fence *fence,
596 const struct i915_sched_attr *attr)
597 {
598 /* Recurse once into a fence-array */
599 if (dma_fence_is_array(fence)) {
600 struct dma_fence_array *array = to_dma_fence_array(fence);
601 int i;
602
603 for (i = 0; i < array->num_fences; i++)
604 __fence_set_priority(array->fences[i], attr);
605 } else {
606 __fence_set_priority(fence, attr);
607 }
608 }
609
610 int
611 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
612 unsigned int flags,
613 const struct i915_sched_attr *attr)
614 {
615 struct dma_fence *excl;
616
617 if (flags & I915_WAIT_ALL) {
618 struct dma_fence **shared;
619 unsigned int count, i;
620 int ret;
621
622 ret = reservation_object_get_fences_rcu(obj->resv,
623 &excl, &count, &shared);
624 if (ret)
625 return ret;
626
627 for (i = 0; i < count; i++) {
628 fence_set_priority(shared[i], attr);
629 dma_fence_put(shared[i]);
630 }
631
632 kfree(shared);
633 } else {
634 excl = reservation_object_get_excl_rcu(obj->resv);
635 }
636
637 if (excl) {
638 fence_set_priority(excl, attr);
639 dma_fence_put(excl);
640 }
641 return 0;
642 }
643
644 /**
645 * Waits for rendering to the object to be completed
646 * @obj: i915 gem object
647 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
648 * @timeout: how long to wait
649 * @rps_client: client (user process) to charge for any waitboosting
650 */
651 int
652 i915_gem_object_wait(struct drm_i915_gem_object *obj,
653 unsigned int flags,
654 long timeout,
655 struct intel_rps_client *rps_client)
656 {
657 might_sleep();
658 #if IS_ENABLED(CONFIG_LOCKDEP)
659 GEM_BUG_ON(debug_locks &&
660 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
661 !!(flags & I915_WAIT_LOCKED));
662 #endif
663 GEM_BUG_ON(timeout < 0);
664
665 timeout = i915_gem_object_wait_reservation(obj->resv,
666 flags, timeout,
667 rps_client);
668 return timeout < 0 ? timeout : 0;
669 }
670
671 static struct intel_rps_client *to_rps_client(struct drm_file *file)
672 {
673 struct drm_i915_file_private *fpriv = file->driver_priv;
674
675 return &fpriv->rps_client;
676 }
677
678 static int
679 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
680 struct drm_i915_gem_pwrite *args,
681 struct drm_file *file)
682 {
683 void *vaddr = obj->phys_handle->vaddr + args->offset;
684 char __user *user_data = u64_to_user_ptr(args->data_ptr);
685
686 /* We manually control the domain here and pretend that it
687 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
688 */
689 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
690 if (copy_from_user(vaddr, user_data, args->size))
691 return -EFAULT;
692
693 drm_clflush_virt_range(vaddr, args->size);
694 i915_gem_chipset_flush(to_i915(obj->base.dev));
695
696 intel_fb_obj_flush(obj, ORIGIN_CPU);
697 return 0;
698 }
699
700 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
701 {
702 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
703 }
704
705 void i915_gem_object_free(struct drm_i915_gem_object *obj)
706 {
707 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
708 kmem_cache_free(dev_priv->objects, obj);
709 }
710
711 static int
712 i915_gem_create(struct drm_file *file,
713 struct drm_i915_private *dev_priv,
714 uint64_t size,
715 uint32_t *handle_p)
716 {
717 struct drm_i915_gem_object *obj;
718 int ret;
719 u32 handle;
720
721 size = roundup(size, PAGE_SIZE);
722 if (size == 0)
723 return -EINVAL;
724
725 /* Allocate the new object */
726 obj = i915_gem_object_create(dev_priv, size);
727 if (IS_ERR(obj))
728 return PTR_ERR(obj);
729
730 ret = drm_gem_handle_create(file, &obj->base, &handle);
731 /* drop reference from allocate - handle holds it now */
732 i915_gem_object_put(obj);
733 if (ret)
734 return ret;
735
736 *handle_p = handle;
737 return 0;
738 }
739
740 int
741 i915_gem_dumb_create(struct drm_file *file,
742 struct drm_device *dev,
743 struct drm_mode_create_dumb *args)
744 {
745 /* have to work out size/pitch and return them */
746 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
747 args->size = args->pitch * args->height;
748 return i915_gem_create(file, to_i915(dev),
749 args->size, &args->handle);
750 }
751
752 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
753 {
754 return !(obj->cache_level == I915_CACHE_NONE ||
755 obj->cache_level == I915_CACHE_WT);
756 }
757
758 /**
759 * Creates a new mm object and returns a handle to it.
760 * @dev: drm device pointer
761 * @data: ioctl data blob
762 * @file: drm file pointer
763 */
764 int
765 i915_gem_create_ioctl(struct drm_device *dev, void *data,
766 struct drm_file *file)
767 {
768 struct drm_i915_private *dev_priv = to_i915(dev);
769 struct drm_i915_gem_create *args = data;
770
771 i915_gem_flush_free_objects(dev_priv);
772
773 return i915_gem_create(file, dev_priv,
774 args->size, &args->handle);
775 }
776
777 static inline enum fb_op_origin
778 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
779 {
780 return (domain == I915_GEM_DOMAIN_GTT ?
781 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
782 }
783
784 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
785 {
786 /*
787 * No actual flushing is required for the GTT write domain for reads
788 * from the GTT domain. Writes to it "immediately" go to main memory
789 * as far as we know, so there's no chipset flush. It also doesn't
790 * land in the GPU render cache.
791 *
792 * However, we do have to enforce the order so that all writes through
793 * the GTT land before any writes to the device, such as updates to
794 * the GATT itself.
795 *
796 * We also have to wait a bit for the writes to land from the GTT.
797 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
798 * timing. This issue has only been observed when switching quickly
799 * between GTT writes and CPU reads from inside the kernel on recent hw,
800 * and it appears to only affect discrete GTT blocks (i.e. on LLC
801 * system agents we cannot reproduce this behaviour, until Cannonlake
802 * that was!).
803 */
804
805 wmb();
806
807 if (INTEL_INFO(dev_priv)->has_coherent_ggtt)
808 return;
809
810 i915_gem_chipset_flush(dev_priv);
811
812 intel_runtime_pm_get(dev_priv);
813 spin_lock_irq(&dev_priv->uncore.lock);
814
815 POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
816
817 spin_unlock_irq(&dev_priv->uncore.lock);
818 intel_runtime_pm_put(dev_priv);
819 }
820
821 static void
822 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
823 {
824 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
825 struct i915_vma *vma;
826
827 if (!(obj->write_domain & flush_domains))
828 return;
829
830 switch (obj->write_domain) {
831 case I915_GEM_DOMAIN_GTT:
832 i915_gem_flush_ggtt_writes(dev_priv);
833
834 intel_fb_obj_flush(obj,
835 fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
836
837 for_each_ggtt_vma(vma, obj) {
838 if (vma->iomap)
839 continue;
840
841 i915_vma_unset_ggtt_write(vma);
842 }
843 break;
844
845 case I915_GEM_DOMAIN_WC:
846 wmb();
847 break;
848
849 case I915_GEM_DOMAIN_CPU:
850 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
851 break;
852
853 case I915_GEM_DOMAIN_RENDER:
854 if (gpu_write_needs_clflush(obj))
855 obj->cache_dirty = true;
856 break;
857 }
858
859 obj->write_domain = 0;
860 }
861
862 static inline int
863 __copy_to_user_swizzled(char __user *cpu_vaddr,
864 const char *gpu_vaddr, int gpu_offset,
865 int length)
866 {
867 int ret, cpu_offset = 0;
868
869 while (length > 0) {
870 int cacheline_end = ALIGN(gpu_offset + 1, 64);
871 int this_length = min(cacheline_end - gpu_offset, length);
872 int swizzled_gpu_offset = gpu_offset ^ 64;
873
874 ret = __copy_to_user(cpu_vaddr + cpu_offset,
875 gpu_vaddr + swizzled_gpu_offset,
876 this_length);
877 if (ret)
878 return ret + length;
879
880 cpu_offset += this_length;
881 gpu_offset += this_length;
882 length -= this_length;
883 }
884
885 return 0;
886 }
887
888 static inline int
889 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
890 const char __user *cpu_vaddr,
891 int length)
892 {
893 int ret, cpu_offset = 0;
894
895 while (length > 0) {
896 int cacheline_end = ALIGN(gpu_offset + 1, 64);
897 int this_length = min(cacheline_end - gpu_offset, length);
898 int swizzled_gpu_offset = gpu_offset ^ 64;
899
900 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
901 cpu_vaddr + cpu_offset,
902 this_length);
903 if (ret)
904 return ret + length;
905
906 cpu_offset += this_length;
907 gpu_offset += this_length;
908 length -= this_length;
909 }
910
911 return 0;
912 }
913
914 /*
915 * Pins the specified object's pages and synchronizes the object with
916 * GPU accesses. Sets needs_clflush to non-zero if the caller should
917 * flush the object from the CPU cache.
918 */
919 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
920 unsigned int *needs_clflush)
921 {
922 int ret;
923
924 lockdep_assert_held(&obj->base.dev->struct_mutex);
925
926 *needs_clflush = 0;
927 if (!i915_gem_object_has_struct_page(obj))
928 return -ENODEV;
929
930 ret = i915_gem_object_wait(obj,
931 I915_WAIT_INTERRUPTIBLE |
932 I915_WAIT_LOCKED,
933 MAX_SCHEDULE_TIMEOUT,
934 NULL);
935 if (ret)
936 return ret;
937
938 ret = i915_gem_object_pin_pages(obj);
939 if (ret)
940 return ret;
941
942 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
943 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
944 ret = i915_gem_object_set_to_cpu_domain(obj, false);
945 if (ret)
946 goto err_unpin;
947 else
948 goto out;
949 }
950
951 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
952
953 /* If we're not in the cpu read domain, set ourself into the gtt
954 * read domain and manually flush cachelines (if required). This
955 * optimizes for the case when the gpu will dirty the data
956 * anyway again before the next pread happens.
957 */
958 if (!obj->cache_dirty &&
959 !(obj->read_domains & I915_GEM_DOMAIN_CPU))
960 *needs_clflush = CLFLUSH_BEFORE;
961
962 out:
963 /* return with the pages pinned */
964 return 0;
965
966 err_unpin:
967 i915_gem_object_unpin_pages(obj);
968 return ret;
969 }
970
971 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
972 unsigned int *needs_clflush)
973 {
974 int ret;
975
976 lockdep_assert_held(&obj->base.dev->struct_mutex);
977
978 *needs_clflush = 0;
979 if (!i915_gem_object_has_struct_page(obj))
980 return -ENODEV;
981
982 ret = i915_gem_object_wait(obj,
983 I915_WAIT_INTERRUPTIBLE |
984 I915_WAIT_LOCKED |
985 I915_WAIT_ALL,
986 MAX_SCHEDULE_TIMEOUT,
987 NULL);
988 if (ret)
989 return ret;
990
991 ret = i915_gem_object_pin_pages(obj);
992 if (ret)
993 return ret;
994
995 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
996 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
997 ret = i915_gem_object_set_to_cpu_domain(obj, true);
998 if (ret)
999 goto err_unpin;
1000 else
1001 goto out;
1002 }
1003
1004 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
1005
1006 /* If we're not in the cpu write domain, set ourself into the
1007 * gtt write domain and manually flush cachelines (as required).
1008 * This optimizes for the case when the gpu will use the data
1009 * right away and we therefore have to clflush anyway.
1010 */
1011 if (!obj->cache_dirty) {
1012 *needs_clflush |= CLFLUSH_AFTER;
1013
1014 /*
1015 * Same trick applies to invalidate partially written
1016 * cachelines read before writing.
1017 */
1018 if (!(obj->read_domains & I915_GEM_DOMAIN_CPU))
1019 *needs_clflush |= CLFLUSH_BEFORE;
1020 }
1021
1022 out:
1023 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1024 obj->mm.dirty = true;
1025 /* return with the pages pinned */
1026 return 0;
1027
1028 err_unpin:
1029 i915_gem_object_unpin_pages(obj);
1030 return ret;
1031 }
1032
1033 static void
1034 shmem_clflush_swizzled_range(char *addr, unsigned long length,
1035 bool swizzled)
1036 {
1037 if (unlikely(swizzled)) {
1038 unsigned long start = (unsigned long) addr;
1039 unsigned long end = (unsigned long) addr + length;
1040
1041 /* For swizzling simply ensure that we always flush both
1042 * channels. Lame, but simple and it works. Swizzled
1043 * pwrite/pread is far from a hotpath - current userspace
1044 * doesn't use it at all. */
1045 start = round_down(start, 128);
1046 end = round_up(end, 128);
1047
1048 drm_clflush_virt_range((void *)start, end - start);
1049 } else {
1050 drm_clflush_virt_range(addr, length);
1051 }
1052
1053 }
1054
1055 /* Only difference to the fast-path function is that this can handle bit17
1056 * and uses non-atomic copy and kmap functions. */
1057 static int
1058 shmem_pread_slow(struct page *page, int offset, int length,
1059 char __user *user_data,
1060 bool page_do_bit17_swizzling, bool needs_clflush)
1061 {
1062 char *vaddr;
1063 int ret;
1064
1065 vaddr = kmap(page);
1066 if (needs_clflush)
1067 shmem_clflush_swizzled_range(vaddr + offset, length,
1068 page_do_bit17_swizzling);
1069
1070 if (page_do_bit17_swizzling)
1071 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
1072 else
1073 ret = __copy_to_user(user_data, vaddr + offset, length);
1074 kunmap(page);
1075
1076 return ret ? - EFAULT : 0;
1077 }
1078
1079 static int
1080 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
1081 bool page_do_bit17_swizzling, bool needs_clflush)
1082 {
1083 int ret;
1084
1085 ret = -ENODEV;
1086 if (!page_do_bit17_swizzling) {
1087 char *vaddr = kmap_atomic(page);
1088
1089 if (needs_clflush)
1090 drm_clflush_virt_range(vaddr + offset, length);
1091 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1092 kunmap_atomic(vaddr);
1093 }
1094 if (ret == 0)
1095 return 0;
1096
1097 return shmem_pread_slow(page, offset, length, user_data,
1098 page_do_bit17_swizzling, needs_clflush);
1099 }
1100
1101 static int
1102 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
1103 struct drm_i915_gem_pread *args)
1104 {
1105 char __user *user_data;
1106 u64 remain;
1107 unsigned int obj_do_bit17_swizzling;
1108 unsigned int needs_clflush;
1109 unsigned int idx, offset;
1110 int ret;
1111
1112 obj_do_bit17_swizzling = 0;
1113 if (i915_gem_object_needs_bit17_swizzle(obj))
1114 obj_do_bit17_swizzling = BIT(17);
1115
1116 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1117 if (ret)
1118 return ret;
1119
1120 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1121 mutex_unlock(&obj->base.dev->struct_mutex);
1122 if (ret)
1123 return ret;
1124
1125 remain = args->size;
1126 user_data = u64_to_user_ptr(args->data_ptr);
1127 offset = offset_in_page(args->offset);
1128 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1129 struct page *page = i915_gem_object_get_page(obj, idx);
1130 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1131
1132 ret = shmem_pread(page, offset, length, user_data,
1133 page_to_phys(page) & obj_do_bit17_swizzling,
1134 needs_clflush);
1135 if (ret)
1136 break;
1137
1138 remain -= length;
1139 user_data += length;
1140 offset = 0;
1141 }
1142
1143 i915_gem_obj_finish_shmem_access(obj);
1144 return ret;
1145 }
1146
1147 static inline bool
1148 gtt_user_read(struct io_mapping *mapping,
1149 loff_t base, int offset,
1150 char __user *user_data, int length)
1151 {
1152 void __iomem *vaddr;
1153 unsigned long unwritten;
1154
1155 /* We can use the cpu mem copy function because this is X86. */
1156 vaddr = io_mapping_map_atomic_wc(mapping, base);
1157 unwritten = __copy_to_user_inatomic(user_data,
1158 (void __force *)vaddr + offset,
1159 length);
1160 io_mapping_unmap_atomic(vaddr);
1161 if (unwritten) {
1162 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1163 unwritten = copy_to_user(user_data,
1164 (void __force *)vaddr + offset,
1165 length);
1166 io_mapping_unmap(vaddr);
1167 }
1168 return unwritten;
1169 }
1170
1171 static int
1172 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1173 const struct drm_i915_gem_pread *args)
1174 {
1175 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1176 struct i915_ggtt *ggtt = &i915->ggtt;
1177 struct drm_mm_node node;
1178 struct i915_vma *vma;
1179 void __user *user_data;
1180 u64 remain, offset;
1181 int ret;
1182
1183 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1184 if (ret)
1185 return ret;
1186
1187 intel_runtime_pm_get(i915);
1188 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1189 PIN_MAPPABLE |
1190 PIN_NONFAULT |
1191 PIN_NONBLOCK);
1192 if (!IS_ERR(vma)) {
1193 node.start = i915_ggtt_offset(vma);
1194 node.allocated = false;
1195 ret = i915_vma_put_fence(vma);
1196 if (ret) {
1197 i915_vma_unpin(vma);
1198 vma = ERR_PTR(ret);
1199 }
1200 }
1201 if (IS_ERR(vma)) {
1202 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1203 if (ret)
1204 goto out_unlock;
1205 GEM_BUG_ON(!node.allocated);
1206 }
1207
1208 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1209 if (ret)
1210 goto out_unpin;
1211
1212 mutex_unlock(&i915->drm.struct_mutex);
1213
1214 user_data = u64_to_user_ptr(args->data_ptr);
1215 remain = args->size;
1216 offset = args->offset;
1217
1218 while (remain > 0) {
1219 /* Operation in this page
1220 *
1221 * page_base = page offset within aperture
1222 * page_offset = offset within page
1223 * page_length = bytes to copy for this page
1224 */
1225 u32 page_base = node.start;
1226 unsigned page_offset = offset_in_page(offset);
1227 unsigned page_length = PAGE_SIZE - page_offset;
1228 page_length = remain < page_length ? remain : page_length;
1229 if (node.allocated) {
1230 wmb();
1231 ggtt->vm.insert_page(&ggtt->vm,
1232 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1233 node.start, I915_CACHE_NONE, 0);
1234 wmb();
1235 } else {
1236 page_base += offset & PAGE_MASK;
1237 }
1238
1239 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1240 user_data, page_length)) {
1241 ret = -EFAULT;
1242 break;
1243 }
1244
1245 remain -= page_length;
1246 user_data += page_length;
1247 offset += page_length;
1248 }
1249
1250 mutex_lock(&i915->drm.struct_mutex);
1251 out_unpin:
1252 if (node.allocated) {
1253 wmb();
1254 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1255 remove_mappable_node(&node);
1256 } else {
1257 i915_vma_unpin(vma);
1258 }
1259 out_unlock:
1260 intel_runtime_pm_put(i915);
1261 mutex_unlock(&i915->drm.struct_mutex);
1262
1263 return ret;
1264 }
1265
1266 /**
1267 * Reads data from the object referenced by handle.
1268 * @dev: drm device pointer
1269 * @data: ioctl data blob
1270 * @file: drm file pointer
1271 *
1272 * On error, the contents of *data are undefined.
1273 */
1274 int
1275 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1276 struct drm_file *file)
1277 {
1278 struct drm_i915_gem_pread *args = data;
1279 struct drm_i915_gem_object *obj;
1280 int ret;
1281
1282 if (args->size == 0)
1283 return 0;
1284
1285 if (!access_ok(VERIFY_WRITE,
1286 u64_to_user_ptr(args->data_ptr),
1287 args->size))
1288 return -EFAULT;
1289
1290 obj = i915_gem_object_lookup(file, args->handle);
1291 if (!obj)
1292 return -ENOENT;
1293
1294 /* Bounds check source. */
1295 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1296 ret = -EINVAL;
1297 goto out;
1298 }
1299
1300 trace_i915_gem_object_pread(obj, args->offset, args->size);
1301
1302 ret = i915_gem_object_wait(obj,
1303 I915_WAIT_INTERRUPTIBLE,
1304 MAX_SCHEDULE_TIMEOUT,
1305 to_rps_client(file));
1306 if (ret)
1307 goto out;
1308
1309 ret = i915_gem_object_pin_pages(obj);
1310 if (ret)
1311 goto out;
1312
1313 ret = i915_gem_shmem_pread(obj, args);
1314 if (ret == -EFAULT || ret == -ENODEV)
1315 ret = i915_gem_gtt_pread(obj, args);
1316
1317 i915_gem_object_unpin_pages(obj);
1318 out:
1319 i915_gem_object_put(obj);
1320 return ret;
1321 }
1322
1323 /* This is the fast write path which cannot handle
1324 * page faults in the source data
1325 */
1326
1327 static inline bool
1328 ggtt_write(struct io_mapping *mapping,
1329 loff_t base, int offset,
1330 char __user *user_data, int length)
1331 {
1332 void __iomem *vaddr;
1333 unsigned long unwritten;
1334
1335 /* We can use the cpu mem copy function because this is X86. */
1336 vaddr = io_mapping_map_atomic_wc(mapping, base);
1337 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1338 user_data, length);
1339 io_mapping_unmap_atomic(vaddr);
1340 if (unwritten) {
1341 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1342 unwritten = copy_from_user((void __force *)vaddr + offset,
1343 user_data, length);
1344 io_mapping_unmap(vaddr);
1345 }
1346
1347 return unwritten;
1348 }
1349
1350 /**
1351 * This is the fast pwrite path, where we copy the data directly from the
1352 * user into the GTT, uncached.
1353 * @obj: i915 GEM object
1354 * @args: pwrite arguments structure
1355 */
1356 static int
1357 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1358 const struct drm_i915_gem_pwrite *args)
1359 {
1360 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1361 struct i915_ggtt *ggtt = &i915->ggtt;
1362 struct drm_mm_node node;
1363 struct i915_vma *vma;
1364 u64 remain, offset;
1365 void __user *user_data;
1366 int ret;
1367
1368 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1369 if (ret)
1370 return ret;
1371
1372 if (i915_gem_object_has_struct_page(obj)) {
1373 /*
1374 * Avoid waking the device up if we can fallback, as
1375 * waking/resuming is very slow (worst-case 10-100 ms
1376 * depending on PCI sleeps and our own resume time).
1377 * This easily dwarfs any performance advantage from
1378 * using the cache bypass of indirect GGTT access.
1379 */
1380 if (!intel_runtime_pm_get_if_in_use(i915)) {
1381 ret = -EFAULT;
1382 goto out_unlock;
1383 }
1384 } else {
1385 /* No backing pages, no fallback, we must force GGTT access */
1386 intel_runtime_pm_get(i915);
1387 }
1388
1389 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1390 PIN_MAPPABLE |
1391 PIN_NONFAULT |
1392 PIN_NONBLOCK);
1393 if (!IS_ERR(vma)) {
1394 node.start = i915_ggtt_offset(vma);
1395 node.allocated = false;
1396 ret = i915_vma_put_fence(vma);
1397 if (ret) {
1398 i915_vma_unpin(vma);
1399 vma = ERR_PTR(ret);
1400 }
1401 }
1402 if (IS_ERR(vma)) {
1403 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1404 if (ret)
1405 goto out_rpm;
1406 GEM_BUG_ON(!node.allocated);
1407 }
1408
1409 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1410 if (ret)
1411 goto out_unpin;
1412
1413 mutex_unlock(&i915->drm.struct_mutex);
1414
1415 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1416
1417 user_data = u64_to_user_ptr(args->data_ptr);
1418 offset = args->offset;
1419 remain = args->size;
1420 while (remain) {
1421 /* Operation in this page
1422 *
1423 * page_base = page offset within aperture
1424 * page_offset = offset within page
1425 * page_length = bytes to copy for this page
1426 */
1427 u32 page_base = node.start;
1428 unsigned int page_offset = offset_in_page(offset);
1429 unsigned int page_length = PAGE_SIZE - page_offset;
1430 page_length = remain < page_length ? remain : page_length;
1431 if (node.allocated) {
1432 wmb(); /* flush the write before we modify the GGTT */
1433 ggtt->vm.insert_page(&ggtt->vm,
1434 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1435 node.start, I915_CACHE_NONE, 0);
1436 wmb(); /* flush modifications to the GGTT (insert_page) */
1437 } else {
1438 page_base += offset & PAGE_MASK;
1439 }
1440 /* If we get a fault while copying data, then (presumably) our
1441 * source page isn't available. Return the error and we'll
1442 * retry in the slow path.
1443 * If the object is non-shmem backed, we retry again with the
1444 * path that handles page fault.
1445 */
1446 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1447 user_data, page_length)) {
1448 ret = -EFAULT;
1449 break;
1450 }
1451
1452 remain -= page_length;
1453 user_data += page_length;
1454 offset += page_length;
1455 }
1456 intel_fb_obj_flush(obj, ORIGIN_CPU);
1457
1458 mutex_lock(&i915->drm.struct_mutex);
1459 out_unpin:
1460 if (node.allocated) {
1461 wmb();
1462 ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
1463 remove_mappable_node(&node);
1464 } else {
1465 i915_vma_unpin(vma);
1466 }
1467 out_rpm:
1468 intel_runtime_pm_put(i915);
1469 out_unlock:
1470 mutex_unlock(&i915->drm.struct_mutex);
1471 return ret;
1472 }
1473
1474 static int
1475 shmem_pwrite_slow(struct page *page, int offset, int length,
1476 char __user *user_data,
1477 bool page_do_bit17_swizzling,
1478 bool needs_clflush_before,
1479 bool needs_clflush_after)
1480 {
1481 char *vaddr;
1482 int ret;
1483
1484 vaddr = kmap(page);
1485 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1486 shmem_clflush_swizzled_range(vaddr + offset, length,
1487 page_do_bit17_swizzling);
1488 if (page_do_bit17_swizzling)
1489 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1490 length);
1491 else
1492 ret = __copy_from_user(vaddr + offset, user_data, length);
1493 if (needs_clflush_after)
1494 shmem_clflush_swizzled_range(vaddr + offset, length,
1495 page_do_bit17_swizzling);
1496 kunmap(page);
1497
1498 return ret ? -EFAULT : 0;
1499 }
1500
1501 /* Per-page copy function for the shmem pwrite fastpath.
1502 * Flushes invalid cachelines before writing to the target if
1503 * needs_clflush_before is set and flushes out any written cachelines after
1504 * writing if needs_clflush is set.
1505 */
1506 static int
1507 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1508 bool page_do_bit17_swizzling,
1509 bool needs_clflush_before,
1510 bool needs_clflush_after)
1511 {
1512 int ret;
1513
1514 ret = -ENODEV;
1515 if (!page_do_bit17_swizzling) {
1516 char *vaddr = kmap_atomic(page);
1517
1518 if (needs_clflush_before)
1519 drm_clflush_virt_range(vaddr + offset, len);
1520 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1521 if (needs_clflush_after)
1522 drm_clflush_virt_range(vaddr + offset, len);
1523
1524 kunmap_atomic(vaddr);
1525 }
1526 if (ret == 0)
1527 return ret;
1528
1529 return shmem_pwrite_slow(page, offset, len, user_data,
1530 page_do_bit17_swizzling,
1531 needs_clflush_before,
1532 needs_clflush_after);
1533 }
1534
1535 static int
1536 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1537 const struct drm_i915_gem_pwrite *args)
1538 {
1539 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1540 void __user *user_data;
1541 u64 remain;
1542 unsigned int obj_do_bit17_swizzling;
1543 unsigned int partial_cacheline_write;
1544 unsigned int needs_clflush;
1545 unsigned int offset, idx;
1546 int ret;
1547
1548 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1549 if (ret)
1550 return ret;
1551
1552 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1553 mutex_unlock(&i915->drm.struct_mutex);
1554 if (ret)
1555 return ret;
1556
1557 obj_do_bit17_swizzling = 0;
1558 if (i915_gem_object_needs_bit17_swizzle(obj))
1559 obj_do_bit17_swizzling = BIT(17);
1560
1561 /* If we don't overwrite a cacheline completely we need to be
1562 * careful to have up-to-date data by first clflushing. Don't
1563 * overcomplicate things and flush the entire patch.
1564 */
1565 partial_cacheline_write = 0;
1566 if (needs_clflush & CLFLUSH_BEFORE)
1567 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1568
1569 user_data = u64_to_user_ptr(args->data_ptr);
1570 remain = args->size;
1571 offset = offset_in_page(args->offset);
1572 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1573 struct page *page = i915_gem_object_get_page(obj, idx);
1574 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
1575
1576 ret = shmem_pwrite(page, offset, length, user_data,
1577 page_to_phys(page) & obj_do_bit17_swizzling,
1578 (offset | length) & partial_cacheline_write,
1579 needs_clflush & CLFLUSH_AFTER);
1580 if (ret)
1581 break;
1582
1583 remain -= length;
1584 user_data += length;
1585 offset = 0;
1586 }
1587
1588 intel_fb_obj_flush(obj, ORIGIN_CPU);
1589 i915_gem_obj_finish_shmem_access(obj);
1590 return ret;
1591 }
1592
1593 /**
1594 * Writes data to the object referenced by handle.
1595 * @dev: drm device
1596 * @data: ioctl data blob
1597 * @file: drm file
1598 *
1599 * On error, the contents of the buffer that were to be modified are undefined.
1600 */
1601 int
1602 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1603 struct drm_file *file)
1604 {
1605 struct drm_i915_gem_pwrite *args = data;
1606 struct drm_i915_gem_object *obj;
1607 int ret;
1608
1609 if (args->size == 0)
1610 return 0;
1611
1612 if (!access_ok(VERIFY_READ,
1613 u64_to_user_ptr(args->data_ptr),
1614 args->size))
1615 return -EFAULT;
1616
1617 obj = i915_gem_object_lookup(file, args->handle);
1618 if (!obj)
1619 return -ENOENT;
1620
1621 /* Bounds check destination. */
1622 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1623 ret = -EINVAL;
1624 goto err;
1625 }
1626
1627 /* Writes not allowed into this read-only object */
1628 if (i915_gem_object_is_readonly(obj)) {
1629 ret = -EINVAL;
1630 goto err;
1631 }
1632
1633 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1634
1635 ret = -ENODEV;
1636 if (obj->ops->pwrite)
1637 ret = obj->ops->pwrite(obj, args);
1638 if (ret != -ENODEV)
1639 goto err;
1640
1641 ret = i915_gem_object_wait(obj,
1642 I915_WAIT_INTERRUPTIBLE |
1643 I915_WAIT_ALL,
1644 MAX_SCHEDULE_TIMEOUT,
1645 to_rps_client(file));
1646 if (ret)
1647 goto err;
1648
1649 ret = i915_gem_object_pin_pages(obj);
1650 if (ret)
1651 goto err;
1652
1653 ret = -EFAULT;
1654 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1655 * it would end up going through the fenced access, and we'll get
1656 * different detiling behavior between reading and writing.
1657 * pread/pwrite currently are reading and writing from the CPU
1658 * perspective, requiring manual detiling by the client.
1659 */
1660 if (!i915_gem_object_has_struct_page(obj) ||
1661 cpu_write_needs_clflush(obj))
1662 /* Note that the gtt paths might fail with non-page-backed user
1663 * pointers (e.g. gtt mappings when moving data between
1664 * textures). Fallback to the shmem path in that case.
1665 */
1666 ret = i915_gem_gtt_pwrite_fast(obj, args);
1667
1668 if (ret == -EFAULT || ret == -ENOSPC) {
1669 if (obj->phys_handle)
1670 ret = i915_gem_phys_pwrite(obj, args, file);
1671 else
1672 ret = i915_gem_shmem_pwrite(obj, args);
1673 }
1674
1675 i915_gem_object_unpin_pages(obj);
1676 err:
1677 i915_gem_object_put(obj);
1678 return ret;
1679 }
1680
1681 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1682 {
1683 struct drm_i915_private *i915;
1684 struct list_head *list;
1685 struct i915_vma *vma;
1686
1687 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1688
1689 for_each_ggtt_vma(vma, obj) {
1690 if (i915_vma_is_active(vma))
1691 continue;
1692
1693 if (!drm_mm_node_allocated(&vma->node))
1694 continue;
1695
1696 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1697 }
1698
1699 i915 = to_i915(obj->base.dev);
1700 spin_lock(&i915->mm.obj_lock);
1701 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1702 list_move_tail(&obj->mm.link, list);
1703 spin_unlock(&i915->mm.obj_lock);
1704 }
1705
1706 /**
1707 * Called when user space prepares to use an object with the CPU, either
1708 * through the mmap ioctl's mapping or a GTT mapping.
1709 * @dev: drm device
1710 * @data: ioctl data blob
1711 * @file: drm file
1712 */
1713 int
1714 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1715 struct drm_file *file)
1716 {
1717 struct drm_i915_gem_set_domain *args = data;
1718 struct drm_i915_gem_object *obj;
1719 uint32_t read_domains = args->read_domains;
1720 uint32_t write_domain = args->write_domain;
1721 int err;
1722
1723 /* Only handle setting domains to types used by the CPU. */
1724 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1725 return -EINVAL;
1726
1727 /* Having something in the write domain implies it's in the read
1728 * domain, and only that read domain. Enforce that in the request.
1729 */
1730 if (write_domain != 0 && read_domains != write_domain)
1731 return -EINVAL;
1732
1733 obj = i915_gem_object_lookup(file, args->handle);
1734 if (!obj)
1735 return -ENOENT;
1736
1737 /* Try to flush the object off the GPU without holding the lock.
1738 * We will repeat the flush holding the lock in the normal manner
1739 * to catch cases where we are gazumped.
1740 */
1741 err = i915_gem_object_wait(obj,
1742 I915_WAIT_INTERRUPTIBLE |
1743 (write_domain ? I915_WAIT_ALL : 0),
1744 MAX_SCHEDULE_TIMEOUT,
1745 to_rps_client(file));
1746 if (err)
1747 goto out;
1748
1749 /*
1750 * Proxy objects do not control access to the backing storage, ergo
1751 * they cannot be used as a means to manipulate the cache domain
1752 * tracking for that backing storage. The proxy object is always
1753 * considered to be outside of any cache domain.
1754 */
1755 if (i915_gem_object_is_proxy(obj)) {
1756 err = -ENXIO;
1757 goto out;
1758 }
1759
1760 /*
1761 * Flush and acquire obj->pages so that we are coherent through
1762 * direct access in memory with previous cached writes through
1763 * shmemfs and that our cache domain tracking remains valid.
1764 * For example, if the obj->filp was moved to swap without us
1765 * being notified and releasing the pages, we would mistakenly
1766 * continue to assume that the obj remained out of the CPU cached
1767 * domain.
1768 */
1769 err = i915_gem_object_pin_pages(obj);
1770 if (err)
1771 goto out;
1772
1773 err = i915_mutex_lock_interruptible(dev);
1774 if (err)
1775 goto out_unpin;
1776
1777 if (read_domains & I915_GEM_DOMAIN_WC)
1778 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1779 else if (read_domains & I915_GEM_DOMAIN_GTT)
1780 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1781 else
1782 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1783
1784 /* And bump the LRU for this access */
1785 i915_gem_object_bump_inactive_ggtt(obj);
1786
1787 mutex_unlock(&dev->struct_mutex);
1788
1789 if (write_domain != 0)
1790 intel_fb_obj_invalidate(obj,
1791 fb_write_origin(obj, write_domain));
1792
1793 out_unpin:
1794 i915_gem_object_unpin_pages(obj);
1795 out:
1796 i915_gem_object_put(obj);
1797 return err;
1798 }
1799
1800 /**
1801 * Called when user space has done writes to this buffer
1802 * @dev: drm device
1803 * @data: ioctl data blob
1804 * @file: drm file
1805 */
1806 int
1807 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1808 struct drm_file *file)
1809 {
1810 struct drm_i915_gem_sw_finish *args = data;
1811 struct drm_i915_gem_object *obj;
1812
1813 obj = i915_gem_object_lookup(file, args->handle);
1814 if (!obj)
1815 return -ENOENT;
1816
1817 /*
1818 * Proxy objects are barred from CPU access, so there is no
1819 * need to ban sw_finish as it is a nop.
1820 */
1821
1822 /* Pinned buffers may be scanout, so flush the cache */
1823 i915_gem_object_flush_if_display(obj);
1824 i915_gem_object_put(obj);
1825
1826 return 0;
1827 }
1828
1829 /**
1830 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1831 * it is mapped to.
1832 * @dev: drm device
1833 * @data: ioctl data blob
1834 * @file: drm file
1835 *
1836 * While the mapping holds a reference on the contents of the object, it doesn't
1837 * imply a ref on the object itself.
1838 *
1839 * IMPORTANT:
1840 *
1841 * DRM driver writers who look a this function as an example for how to do GEM
1842 * mmap support, please don't implement mmap support like here. The modern way
1843 * to implement DRM mmap support is with an mmap offset ioctl (like
1844 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1845 * That way debug tooling like valgrind will understand what's going on, hiding
1846 * the mmap call in a driver private ioctl will break that. The i915 driver only
1847 * does cpu mmaps this way because we didn't know better.
1848 */
1849 int
1850 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1851 struct drm_file *file)
1852 {
1853 struct drm_i915_gem_mmap *args = data;
1854 struct drm_i915_gem_object *obj;
1855 unsigned long addr;
1856
1857 if (args->flags & ~(I915_MMAP_WC))
1858 return -EINVAL;
1859
1860 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1861 return -ENODEV;
1862
1863 obj = i915_gem_object_lookup(file, args->handle);
1864 if (!obj)
1865 return -ENOENT;
1866
1867 /* prime objects have no backing filp to GEM mmap
1868 * pages from.
1869 */
1870 if (!obj->base.filp) {
1871 i915_gem_object_put(obj);
1872 return -ENXIO;
1873 }
1874
1875 addr = vm_mmap(obj->base.filp, 0, args->size,
1876 PROT_READ | PROT_WRITE, MAP_SHARED,
1877 args->offset);
1878 if (args->flags & I915_MMAP_WC) {
1879 struct mm_struct *mm = current->mm;
1880 struct vm_area_struct *vma;
1881
1882 if (down_write_killable(&mm->mmap_sem)) {
1883 i915_gem_object_put(obj);
1884 return -EINTR;
1885 }
1886 vma = find_vma(mm, addr);
1887 if (vma)
1888 vma->vm_page_prot =
1889 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1890 else
1891 addr = -ENOMEM;
1892 up_write(&mm->mmap_sem);
1893
1894 /* This may race, but that's ok, it only gets set */
1895 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1896 }
1897 i915_gem_object_put(obj);
1898 if (IS_ERR((void *)addr))
1899 return addr;
1900
1901 args->addr_ptr = (uint64_t) addr;
1902
1903 return 0;
1904 }
1905
1906 static unsigned int tile_row_pages(const struct drm_i915_gem_object *obj)
1907 {
1908 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1909 }
1910
1911 /**
1912 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1913 *
1914 * A history of the GTT mmap interface:
1915 *
1916 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1917 * aligned and suitable for fencing, and still fit into the available
1918 * mappable space left by the pinned display objects. A classic problem
1919 * we called the page-fault-of-doom where we would ping-pong between
1920 * two objects that could not fit inside the GTT and so the memcpy
1921 * would page one object in at the expense of the other between every
1922 * single byte.
1923 *
1924 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1925 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1926 * object is too large for the available space (or simply too large
1927 * for the mappable aperture!), a view is created instead and faulted
1928 * into userspace. (This view is aligned and sized appropriately for
1929 * fenced access.)
1930 *
1931 * 2 - Recognise WC as a separate cache domain so that we can flush the
1932 * delayed writes via GTT before performing direct access via WC.
1933 *
1934 * Restrictions:
1935 *
1936 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1937 * hangs on some architectures, corruption on others. An attempt to service
1938 * a GTT page fault from a snoopable object will generate a SIGBUS.
1939 *
1940 * * the object must be able to fit into RAM (physical memory, though no
1941 * limited to the mappable aperture).
1942 *
1943 *
1944 * Caveats:
1945 *
1946 * * a new GTT page fault will synchronize rendering from the GPU and flush
1947 * all data to system memory. Subsequent access will not be synchronized.
1948 *
1949 * * all mappings are revoked on runtime device suspend.
1950 *
1951 * * there are only 8, 16 or 32 fence registers to share between all users
1952 * (older machines require fence register for display and blitter access
1953 * as well). Contention of the fence registers will cause the previous users
1954 * to be unmapped and any new access will generate new page faults.
1955 *
1956 * * running out of memory while servicing a fault may generate a SIGBUS,
1957 * rather than the expected SIGSEGV.
1958 */
1959 int i915_gem_mmap_gtt_version(void)
1960 {
1961 return 2;
1962 }
1963
1964 static inline struct i915_ggtt_view
1965 compute_partial_view(const struct drm_i915_gem_object *obj,
1966 pgoff_t page_offset,
1967 unsigned int chunk)
1968 {
1969 struct i915_ggtt_view view;
1970
1971 if (i915_gem_object_is_tiled(obj))
1972 chunk = roundup(chunk, tile_row_pages(obj));
1973
1974 view.type = I915_GGTT_VIEW_PARTIAL;
1975 view.partial.offset = rounddown(page_offset, chunk);
1976 view.partial.size =
1977 min_t(unsigned int, chunk,
1978 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1979
1980 /* If the partial covers the entire object, just create a normal VMA. */
1981 if (chunk >= obj->base.size >> PAGE_SHIFT)
1982 view.type = I915_GGTT_VIEW_NORMAL;
1983
1984 return view;
1985 }
1986
1987 /**
1988 * i915_gem_fault - fault a page into the GTT
1989 * @vmf: fault info
1990 *
1991 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1992 * from userspace. The fault handler takes care of binding the object to
1993 * the GTT (if needed), allocating and programming a fence register (again,
1994 * only if needed based on whether the old reg is still valid or the object
1995 * is tiled) and inserting a new PTE into the faulting process.
1996 *
1997 * Note that the faulting process may involve evicting existing objects
1998 * from the GTT and/or fence registers to make room. So performance may
1999 * suffer if the GTT working set is large or there are few fence registers
2000 * left.
2001 *
2002 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
2003 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
2004 */
2005 vm_fault_t i915_gem_fault(struct vm_fault *vmf)
2006 {
2007 #define MIN_CHUNK_PAGES (SZ_1M >> PAGE_SHIFT)
2008 struct vm_area_struct *area = vmf->vma;
2009 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
2010 struct drm_device *dev = obj->base.dev;
2011 struct drm_i915_private *dev_priv = to_i915(dev);
2012 struct i915_ggtt *ggtt = &dev_priv->ggtt;
2013 bool write = area->vm_flags & VM_WRITE;
2014 struct i915_vma *vma;
2015 pgoff_t page_offset;
2016 int ret;
2017
2018 /* Sanity check that we allow writing into this object */
2019 if (i915_gem_object_is_readonly(obj) && write)
2020 return VM_FAULT_SIGBUS;
2021
2022 /* We don't use vmf->pgoff since that has the fake offset */
2023 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
2024
2025 trace_i915_gem_object_fault(obj, page_offset, true, write);
2026
2027 /* Try to flush the object off the GPU first without holding the lock.
2028 * Upon acquiring the lock, we will perform our sanity checks and then
2029 * repeat the flush holding the lock in the normal manner to catch cases
2030 * where we are gazumped.
2031 */
2032 ret = i915_gem_object_wait(obj,
2033 I915_WAIT_INTERRUPTIBLE,
2034 MAX_SCHEDULE_TIMEOUT,
2035 NULL);
2036 if (ret)
2037 goto err;
2038
2039 ret = i915_gem_object_pin_pages(obj);
2040 if (ret)
2041 goto err;
2042
2043 intel_runtime_pm_get(dev_priv);
2044
2045 ret = i915_mutex_lock_interruptible(dev);
2046 if (ret)
2047 goto err_rpm;
2048
2049 /* Access to snoopable pages through the GTT is incoherent. */
2050 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
2051 ret = -EFAULT;
2052 goto err_unlock;
2053 }
2054
2055
2056 /* Now pin it into the GTT as needed */
2057 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
2058 PIN_MAPPABLE |
2059 PIN_NONBLOCK |
2060 PIN_NONFAULT);
2061 if (IS_ERR(vma)) {
2062 /* Use a partial view if it is bigger than available space */
2063 struct i915_ggtt_view view =
2064 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
2065 unsigned int flags;
2066
2067 flags = PIN_MAPPABLE;
2068 if (view.type == I915_GGTT_VIEW_NORMAL)
2069 flags |= PIN_NONBLOCK; /* avoid warnings for pinned */
2070
2071 /*
2072 * Userspace is now writing through an untracked VMA, abandon
2073 * all hope that the hardware is able to track future writes.
2074 */
2075 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
2076
2077 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2078 if (IS_ERR(vma) && !view.type) {
2079 flags = PIN_MAPPABLE;
2080 view.type = I915_GGTT_VIEW_PARTIAL;
2081 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, flags);
2082 }
2083 }
2084 if (IS_ERR(vma)) {
2085 ret = PTR_ERR(vma);
2086 goto err_unlock;
2087 }
2088
2089 ret = i915_gem_object_set_to_gtt_domain(obj, write);
2090 if (ret)
2091 goto err_unpin;
2092
2093 ret = i915_vma_pin_fence(vma);
2094 if (ret)
2095 goto err_unpin;
2096
2097 /* Finally, remap it using the new GTT offset */
2098 ret = remap_io_mapping(area,
2099 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
2100 (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
2101 min_t(u64, vma->size, area->vm_end - area->vm_start),
2102 &ggtt->iomap);
2103 if (ret)
2104 goto err_fence;
2105
2106 /* Mark as being mmapped into userspace for later revocation */
2107 assert_rpm_wakelock_held(dev_priv);
2108 if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
2109 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
2110 GEM_BUG_ON(!obj->userfault_count);
2111
2112 i915_vma_set_ggtt_write(vma);
2113
2114 err_fence:
2115 i915_vma_unpin_fence(vma);
2116 err_unpin:
2117 __i915_vma_unpin(vma);
2118 err_unlock:
2119 mutex_unlock(&dev->struct_mutex);
2120 err_rpm:
2121 intel_runtime_pm_put(dev_priv);
2122 i915_gem_object_unpin_pages(obj);
2123 err:
2124 switch (ret) {
2125 case -EIO:
2126 /*
2127 * We eat errors when the gpu is terminally wedged to avoid
2128 * userspace unduly crashing (gl has no provisions for mmaps to
2129 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2130 * and so needs to be reported.
2131 */
2132 if (!i915_terminally_wedged(&dev_priv->gpu_error))
2133 return VM_FAULT_SIGBUS;
2134 /* else: fall through */
2135 case -EAGAIN:
2136 /*
2137 * EAGAIN means the gpu is hung and we'll wait for the error
2138 * handler to reset everything when re-faulting in
2139 * i915_mutex_lock_interruptible.
2140 */
2141 case 0:
2142 case -ERESTARTSYS:
2143 case -EINTR:
2144 case -EBUSY:
2145 /*
2146 * EBUSY is ok: this just means that another thread
2147 * already did the job.
2148 */
2149 return VM_FAULT_NOPAGE;
2150 case -ENOMEM:
2151 return VM_FAULT_OOM;
2152 case -ENOSPC:
2153 case -EFAULT:
2154 return VM_FAULT_SIGBUS;
2155 default:
2156 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2157 return VM_FAULT_SIGBUS;
2158 }
2159 }
2160
2161 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2162 {
2163 struct i915_vma *vma;
2164
2165 GEM_BUG_ON(!obj->userfault_count);
2166
2167 obj->userfault_count = 0;
2168 list_del(&obj->userfault_link);
2169 drm_vma_node_unmap(&obj->base.vma_node,
2170 obj->base.dev->anon_inode->i_mapping);
2171
2172 for_each_ggtt_vma(vma, obj)
2173 i915_vma_unset_userfault(vma);
2174 }
2175
2176 /**
2177 * i915_gem_release_mmap - remove physical page mappings
2178 * @obj: obj in question
2179 *
2180 * Preserve the reservation of the mmapping with the DRM core code, but
2181 * relinquish ownership of the pages back to the system.
2182 *
2183 * It is vital that we remove the page mapping if we have mapped a tiled
2184 * object through the GTT and then lose the fence register due to
2185 * resource pressure. Similarly if the object has been moved out of the
2186 * aperture, than pages mapped into userspace must be revoked. Removing the
2187 * mapping will then trigger a page fault on the next user access, allowing
2188 * fixup by i915_gem_fault().
2189 */
2190 void
2191 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2192 {
2193 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2194
2195 /* Serialisation between user GTT access and our code depends upon
2196 * revoking the CPU's PTE whilst the mutex is held. The next user
2197 * pagefault then has to wait until we release the mutex.
2198 *
2199 * Note that RPM complicates somewhat by adding an additional
2200 * requirement that operations to the GGTT be made holding the RPM
2201 * wakeref.
2202 */
2203 lockdep_assert_held(&i915->drm.struct_mutex);
2204 intel_runtime_pm_get(i915);
2205
2206 if (!obj->userfault_count)
2207 goto out;
2208
2209 __i915_gem_object_release_mmap(obj);
2210
2211 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2212 * memory transactions from userspace before we return. The TLB
2213 * flushing implied above by changing the PTE above *should* be
2214 * sufficient, an extra barrier here just provides us with a bit
2215 * of paranoid documentation about our requirement to serialise
2216 * memory writes before touching registers / GSM.
2217 */
2218 wmb();
2219
2220 out:
2221 intel_runtime_pm_put(i915);
2222 }
2223
2224 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2225 {
2226 struct drm_i915_gem_object *obj, *on;
2227 int i;
2228
2229 /*
2230 * Only called during RPM suspend. All users of the userfault_list
2231 * must be holding an RPM wakeref to ensure that this can not
2232 * run concurrently with themselves (and use the struct_mutex for
2233 * protection between themselves).
2234 */
2235
2236 list_for_each_entry_safe(obj, on,
2237 &dev_priv->mm.userfault_list, userfault_link)
2238 __i915_gem_object_release_mmap(obj);
2239
2240 /* The fence will be lost when the device powers down. If any were
2241 * in use by hardware (i.e. they are pinned), we should not be powering
2242 * down! All other fences will be reacquired by the user upon waking.
2243 */
2244 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2245 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2246
2247 /* Ideally we want to assert that the fence register is not
2248 * live at this point (i.e. that no piece of code will be
2249 * trying to write through fence + GTT, as that both violates
2250 * our tracking of activity and associated locking/barriers,
2251 * but also is illegal given that the hw is powered down).
2252 *
2253 * Previously we used reg->pin_count as a "liveness" indicator.
2254 * That is not sufficient, and we need a more fine-grained
2255 * tool if we want to have a sanity check here.
2256 */
2257
2258 if (!reg->vma)
2259 continue;
2260
2261 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2262 reg->dirty = true;
2263 }
2264 }
2265
2266 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2267 {
2268 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2269 int err;
2270
2271 err = drm_gem_create_mmap_offset(&obj->base);
2272 if (likely(!err))
2273 return 0;
2274
2275 /* Attempt to reap some mmap space from dead objects */
2276 do {
2277 err = i915_gem_wait_for_idle(dev_priv,
2278 I915_WAIT_INTERRUPTIBLE,
2279 MAX_SCHEDULE_TIMEOUT);
2280 if (err)
2281 break;
2282
2283 i915_gem_drain_freed_objects(dev_priv);
2284 err = drm_gem_create_mmap_offset(&obj->base);
2285 if (!err)
2286 break;
2287
2288 } while (flush_delayed_work(&dev_priv->gt.retire_work));
2289
2290 return err;
2291 }
2292
2293 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2294 {
2295 drm_gem_free_mmap_offset(&obj->base);
2296 }
2297
2298 int
2299 i915_gem_mmap_gtt(struct drm_file *file,
2300 struct drm_device *dev,
2301 uint32_t handle,
2302 uint64_t *offset)
2303 {
2304 struct drm_i915_gem_object *obj;
2305 int ret;
2306
2307 obj = i915_gem_object_lookup(file, handle);
2308 if (!obj)
2309 return -ENOENT;
2310
2311 ret = i915_gem_object_create_mmap_offset(obj);
2312 if (ret == 0)
2313 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2314
2315 i915_gem_object_put(obj);
2316 return ret;
2317 }
2318
2319 /**
2320 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2321 * @dev: DRM device
2322 * @data: GTT mapping ioctl data
2323 * @file: GEM object info
2324 *
2325 * Simply returns the fake offset to userspace so it can mmap it.
2326 * The mmap call will end up in drm_gem_mmap(), which will set things
2327 * up so we can get faults in the handler above.
2328 *
2329 * The fault handler will take care of binding the object into the GTT
2330 * (since it may have been evicted to make room for something), allocating
2331 * a fence register, and mapping the appropriate aperture address into
2332 * userspace.
2333 */
2334 int
2335 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2336 struct drm_file *file)
2337 {
2338 struct drm_i915_gem_mmap_gtt *args = data;
2339
2340 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2341 }
2342
2343 /* Immediately discard the backing storage */
2344 static void
2345 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2346 {
2347 i915_gem_object_free_mmap_offset(obj);
2348
2349 if (obj->base.filp == NULL)
2350 return;
2351
2352 /* Our goal here is to return as much of the memory as
2353 * is possible back to the system as we are called from OOM.
2354 * To do this we must instruct the shmfs to drop all of its
2355 * backing pages, *now*.
2356 */
2357 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2358 obj->mm.madv = __I915_MADV_PURGED;
2359 obj->mm.pages = ERR_PTR(-EFAULT);
2360 }
2361
2362 /* Try to discard unwanted pages */
2363 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2364 {
2365 struct address_space *mapping;
2366
2367 lockdep_assert_held(&obj->mm.lock);
2368 GEM_BUG_ON(i915_gem_object_has_pages(obj));
2369
2370 switch (obj->mm.madv) {
2371 case I915_MADV_DONTNEED:
2372 i915_gem_object_truncate(obj);
2373 case __I915_MADV_PURGED:
2374 return;
2375 }
2376
2377 if (obj->base.filp == NULL)
2378 return;
2379
2380 mapping = obj->base.filp->f_mapping,
2381 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2382 }
2383
2384 static void
2385 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2386 struct sg_table *pages)
2387 {
2388 struct sgt_iter sgt_iter;
2389 struct page *page;
2390
2391 __i915_gem_object_release_shmem(obj, pages, true);
2392
2393 i915_gem_gtt_finish_pages(obj, pages);
2394
2395 if (i915_gem_object_needs_bit17_swizzle(obj))
2396 i915_gem_object_save_bit_17_swizzle(obj, pages);
2397
2398 for_each_sgt_page(page, sgt_iter, pages) {
2399 if (obj->mm.dirty)
2400 set_page_dirty(page);
2401
2402 if (obj->mm.madv == I915_MADV_WILLNEED)
2403 mark_page_accessed(page);
2404
2405 put_page(page);
2406 }
2407 obj->mm.dirty = false;
2408
2409 sg_free_table(pages);
2410 kfree(pages);
2411 }
2412
2413 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2414 {
2415 struct radix_tree_iter iter;
2416 void __rcu **slot;
2417
2418 rcu_read_lock();
2419 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2420 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2421 rcu_read_unlock();
2422 }
2423
2424 static struct sg_table *
2425 __i915_gem_object_unset_pages(struct drm_i915_gem_object *obj)
2426 {
2427 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2428 struct sg_table *pages;
2429
2430 pages = fetch_and_zero(&obj->mm.pages);
2431 if (!pages)
2432 return NULL;
2433
2434 spin_lock(&i915->mm.obj_lock);
2435 list_del(&obj->mm.link);
2436 spin_unlock(&i915->mm.obj_lock);
2437
2438 if (obj->mm.mapping) {
2439 void *ptr;
2440
2441 ptr = page_mask_bits(obj->mm.mapping);
2442 if (is_vmalloc_addr(ptr))
2443 vunmap(ptr);
2444 else
2445 kunmap(kmap_to_page(ptr));
2446
2447 obj->mm.mapping = NULL;
2448 }
2449
2450 __i915_gem_object_reset_page_iter(obj);
2451 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2452
2453 return pages;
2454 }
2455
2456 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2457 enum i915_mm_subclass subclass)
2458 {
2459 struct sg_table *pages;
2460
2461 if (i915_gem_object_has_pinned_pages(obj))
2462 return;
2463
2464 GEM_BUG_ON(obj->bind_count);
2465 if (!i915_gem_object_has_pages(obj))
2466 return;
2467
2468 /* May be called by shrinker from within get_pages() (on another bo) */
2469 mutex_lock_nested(&obj->mm.lock, subclass);
2470 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2471 goto unlock;
2472
2473 /*
2474 * ->put_pages might need to allocate memory for the bit17 swizzle
2475 * array, hence protect them from being reaped by removing them from gtt
2476 * lists early.
2477 */
2478 pages = __i915_gem_object_unset_pages(obj);
2479 if (!IS_ERR(pages))
2480 obj->ops->put_pages(obj, pages);
2481
2482 unlock:
2483 mutex_unlock(&obj->mm.lock);
2484 }
2485
2486 static bool i915_sg_trim(struct sg_table *orig_st)
2487 {
2488 struct sg_table new_st;
2489 struct scatterlist *sg, *new_sg;
2490 unsigned int i;
2491
2492 if (orig_st->nents == orig_st->orig_nents)
2493 return false;
2494
2495 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2496 return false;
2497
2498 new_sg = new_st.sgl;
2499 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2500 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2501 sg_dma_address(new_sg) = sg_dma_address(sg);
2502 sg_dma_len(new_sg) = sg_dma_len(sg);
2503
2504 new_sg = sg_next(new_sg);
2505 }
2506 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2507
2508 sg_free_table(orig_st);
2509
2510 *orig_st = new_st;
2511 return true;
2512 }
2513
2514 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2515 {
2516 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2517 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2518 unsigned long i;
2519 struct address_space *mapping;
2520 struct sg_table *st;
2521 struct scatterlist *sg;
2522 struct sgt_iter sgt_iter;
2523 struct page *page;
2524 unsigned long last_pfn = 0; /* suppress gcc warning */
2525 unsigned int max_segment = i915_sg_segment_size();
2526 unsigned int sg_page_sizes;
2527 gfp_t noreclaim;
2528 int ret;
2529
2530 /*
2531 * Assert that the object is not currently in any GPU domain. As it
2532 * wasn't in the GTT, there shouldn't be any way it could have been in
2533 * a GPU cache
2534 */
2535 GEM_BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2536 GEM_BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2537
2538 /*
2539 * If there's no chance of allocating enough pages for the whole
2540 * object, bail early.
2541 */
2542 if (page_count > totalram_pages)
2543 return -ENOMEM;
2544
2545 st = kmalloc(sizeof(*st), GFP_KERNEL);
2546 if (st == NULL)
2547 return -ENOMEM;
2548
2549 rebuild_st:
2550 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2551 kfree(st);
2552 return -ENOMEM;
2553 }
2554
2555 /*
2556 * Get the list of pages out of our struct file. They'll be pinned
2557 * at this point until we release them.
2558 *
2559 * Fail silently without starting the shrinker
2560 */
2561 mapping = obj->base.filp->f_mapping;
2562 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2563 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2564
2565 sg = st->sgl;
2566 st->nents = 0;
2567 sg_page_sizes = 0;
2568 for (i = 0; i < page_count; i++) {
2569 const unsigned int shrink[] = {
2570 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2571 0,
2572 }, *s = shrink;
2573 gfp_t gfp = noreclaim;
2574
2575 do {
2576 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2577 if (likely(!IS_ERR(page)))
2578 break;
2579
2580 if (!*s) {
2581 ret = PTR_ERR(page);
2582 goto err_sg;
2583 }
2584
2585 i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2586 cond_resched();
2587
2588 /*
2589 * We've tried hard to allocate the memory by reaping
2590 * our own buffer, now let the real VM do its job and
2591 * go down in flames if truly OOM.
2592 *
2593 * However, since graphics tend to be disposable,
2594 * defer the oom here by reporting the ENOMEM back
2595 * to userspace.
2596 */
2597 if (!*s) {
2598 /* reclaim and warn, but no oom */
2599 gfp = mapping_gfp_mask(mapping);
2600
2601 /*
2602 * Our bo are always dirty and so we require
2603 * kswapd to reclaim our pages (direct reclaim
2604 * does not effectively begin pageout of our
2605 * buffers on its own). However, direct reclaim
2606 * only waits for kswapd when under allocation
2607 * congestion. So as a result __GFP_RECLAIM is
2608 * unreliable and fails to actually reclaim our
2609 * dirty pages -- unless you try over and over
2610 * again with !__GFP_NORETRY. However, we still
2611 * want to fail this allocation rather than
2612 * trigger the out-of-memory killer and for
2613 * this we want __GFP_RETRY_MAYFAIL.
2614 */
2615 gfp |= __GFP_RETRY_MAYFAIL;
2616 }
2617 } while (1);
2618
2619 if (!i ||
2620 sg->length >= max_segment ||
2621 page_to_pfn(page) != last_pfn + 1) {
2622 if (i) {
2623 sg_page_sizes |= sg->length;
2624 sg = sg_next(sg);
2625 }
2626 st->nents++;
2627 sg_set_page(sg, page, PAGE_SIZE, 0);
2628 } else {
2629 sg->length += PAGE_SIZE;
2630 }
2631 last_pfn = page_to_pfn(page);
2632
2633 /* Check that the i965g/gm workaround works. */
2634 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2635 }
2636 if (sg) { /* loop terminated early; short sg table */
2637 sg_page_sizes |= sg->length;
2638 sg_mark_end(sg);
2639 }
2640
2641 /* Trim unused sg entries to avoid wasting memory. */
2642 i915_sg_trim(st);
2643
2644 ret = i915_gem_gtt_prepare_pages(obj, st);
2645 if (ret) {
2646 /*
2647 * DMA remapping failed? One possible cause is that
2648 * it could not reserve enough large entries, asking
2649 * for PAGE_SIZE chunks instead may be helpful.
2650 */
2651 if (max_segment > PAGE_SIZE) {
2652 for_each_sgt_page(page, sgt_iter, st)
2653 put_page(page);
2654 sg_free_table(st);
2655
2656 max_segment = PAGE_SIZE;
2657 goto rebuild_st;
2658 } else {
2659 dev_warn(&dev_priv->drm.pdev->dev,
2660 "Failed to DMA remap %lu pages\n",
2661 page_count);
2662 goto err_pages;
2663 }
2664 }
2665
2666 if (i915_gem_object_needs_bit17_swizzle(obj))
2667 i915_gem_object_do_bit_17_swizzle(obj, st);
2668
2669 __i915_gem_object_set_pages(obj, st, sg_page_sizes);
2670
2671 return 0;
2672
2673 err_sg:
2674 sg_mark_end(sg);
2675 err_pages:
2676 for_each_sgt_page(page, sgt_iter, st)
2677 put_page(page);
2678 sg_free_table(st);
2679 kfree(st);
2680
2681 /*
2682 * shmemfs first checks if there is enough memory to allocate the page
2683 * and reports ENOSPC should there be insufficient, along with the usual
2684 * ENOMEM for a genuine allocation failure.
2685 *
2686 * We use ENOSPC in our driver to mean that we have run out of aperture
2687 * space and so want to translate the error from shmemfs back to our
2688 * usual understanding of ENOMEM.
2689 */
2690 if (ret == -ENOSPC)
2691 ret = -ENOMEM;
2692
2693 return ret;
2694 }
2695
2696 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2697 struct sg_table *pages,
2698 unsigned int sg_page_sizes)
2699 {
2700 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2701 unsigned long supported = INTEL_INFO(i915)->page_sizes;
2702 int i;
2703
2704 lockdep_assert_held(&obj->mm.lock);
2705
2706 obj->mm.get_page.sg_pos = pages->sgl;
2707 obj->mm.get_page.sg_idx = 0;
2708
2709 obj->mm.pages = pages;
2710
2711 if (i915_gem_object_is_tiled(obj) &&
2712 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2713 GEM_BUG_ON(obj->mm.quirked);
2714 __i915_gem_object_pin_pages(obj);
2715 obj->mm.quirked = true;
2716 }
2717
2718 GEM_BUG_ON(!sg_page_sizes);
2719 obj->mm.page_sizes.phys = sg_page_sizes;
2720
2721 /*
2722 * Calculate the supported page-sizes which fit into the given
2723 * sg_page_sizes. This will give us the page-sizes which we may be able
2724 * to use opportunistically when later inserting into the GTT. For
2725 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2726 * 64K or 4K pages, although in practice this will depend on a number of
2727 * other factors.
2728 */
2729 obj->mm.page_sizes.sg = 0;
2730 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2731 if (obj->mm.page_sizes.phys & ~0u << i)
2732 obj->mm.page_sizes.sg |= BIT(i);
2733 }
2734 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2735
2736 spin_lock(&i915->mm.obj_lock);
2737 list_add(&obj->mm.link, &i915->mm.unbound_list);
2738 spin_unlock(&i915->mm.obj_lock);
2739 }
2740
2741 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2742 {
2743 int err;
2744
2745 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2746 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2747 return -EFAULT;
2748 }
2749
2750 err = obj->ops->get_pages(obj);
2751 GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2752
2753 return err;
2754 }
2755
2756 /* Ensure that the associated pages are gathered from the backing storage
2757 * and pinned into our object. i915_gem_object_pin_pages() may be called
2758 * multiple times before they are released by a single call to
2759 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2760 * either as a result of memory pressure (reaping pages under the shrinker)
2761 * or as the object is itself released.
2762 */
2763 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2764 {
2765 int err;
2766
2767 err = mutex_lock_interruptible(&obj->mm.lock);
2768 if (err)
2769 return err;
2770
2771 if (unlikely(!i915_gem_object_has_pages(obj))) {
2772 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2773
2774 err = ____i915_gem_object_get_pages(obj);
2775 if (err)
2776 goto unlock;
2777
2778 smp_mb__before_atomic();
2779 }
2780 atomic_inc(&obj->mm.pages_pin_count);
2781
2782 unlock:
2783 mutex_unlock(&obj->mm.lock);
2784 return err;
2785 }
2786
2787 /* The 'mapping' part of i915_gem_object_pin_map() below */
2788 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2789 enum i915_map_type type)
2790 {
2791 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2792 struct sg_table *sgt = obj->mm.pages;
2793 struct sgt_iter sgt_iter;
2794 struct page *page;
2795 struct page *stack_pages[32];
2796 struct page **pages = stack_pages;
2797 unsigned long i = 0;
2798 pgprot_t pgprot;
2799 void *addr;
2800
2801 /* A single page can always be kmapped */
2802 if (n_pages == 1 && type == I915_MAP_WB)
2803 return kmap(sg_page(sgt->sgl));
2804
2805 if (n_pages > ARRAY_SIZE(stack_pages)) {
2806 /* Too big for stack -- allocate temporary array instead */
2807 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2808 if (!pages)
2809 return NULL;
2810 }
2811
2812 for_each_sgt_page(page, sgt_iter, sgt)
2813 pages[i++] = page;
2814
2815 /* Check that we have the expected number of pages */
2816 GEM_BUG_ON(i != n_pages);
2817
2818 switch (type) {
2819 default:
2820 MISSING_CASE(type);
2821 /* fallthrough to use PAGE_KERNEL anyway */
2822 case I915_MAP_WB:
2823 pgprot = PAGE_KERNEL;
2824 break;
2825 case I915_MAP_WC:
2826 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2827 break;
2828 }
2829 addr = vmap(pages, n_pages, 0, pgprot);
2830
2831 if (pages != stack_pages)
2832 kvfree(pages);
2833
2834 return addr;
2835 }
2836
2837 /* get, pin, and map the pages of the object into kernel space */
2838 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2839 enum i915_map_type type)
2840 {
2841 enum i915_map_type has_type;
2842 bool pinned;
2843 void *ptr;
2844 int ret;
2845
2846 if (unlikely(!i915_gem_object_has_struct_page(obj)))
2847 return ERR_PTR(-ENXIO);
2848
2849 ret = mutex_lock_interruptible(&obj->mm.lock);
2850 if (ret)
2851 return ERR_PTR(ret);
2852
2853 pinned = !(type & I915_MAP_OVERRIDE);
2854 type &= ~I915_MAP_OVERRIDE;
2855
2856 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2857 if (unlikely(!i915_gem_object_has_pages(obj))) {
2858 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2859
2860 ret = ____i915_gem_object_get_pages(obj);
2861 if (ret)
2862 goto err_unlock;
2863
2864 smp_mb__before_atomic();
2865 }
2866 atomic_inc(&obj->mm.pages_pin_count);
2867 pinned = false;
2868 }
2869 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2870
2871 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2872 if (ptr && has_type != type) {
2873 if (pinned) {
2874 ret = -EBUSY;
2875 goto err_unpin;
2876 }
2877
2878 if (is_vmalloc_addr(ptr))
2879 vunmap(ptr);
2880 else
2881 kunmap(kmap_to_page(ptr));
2882
2883 ptr = obj->mm.mapping = NULL;
2884 }
2885
2886 if (!ptr) {
2887 ptr = i915_gem_object_map(obj, type);
2888 if (!ptr) {
2889 ret = -ENOMEM;
2890 goto err_unpin;
2891 }
2892
2893 obj->mm.mapping = page_pack_bits(ptr, type);
2894 }
2895
2896 out_unlock:
2897 mutex_unlock(&obj->mm.lock);
2898 return ptr;
2899
2900 err_unpin:
2901 atomic_dec(&obj->mm.pages_pin_count);
2902 err_unlock:
2903 ptr = ERR_PTR(ret);
2904 goto out_unlock;
2905 }
2906
2907 static int
2908 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2909 const struct drm_i915_gem_pwrite *arg)
2910 {
2911 struct address_space *mapping = obj->base.filp->f_mapping;
2912 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2913 u64 remain, offset;
2914 unsigned int pg;
2915
2916 /* Before we instantiate/pin the backing store for our use, we
2917 * can prepopulate the shmemfs filp efficiently using a write into
2918 * the pagecache. We avoid the penalty of instantiating all the
2919 * pages, important if the user is just writing to a few and never
2920 * uses the object on the GPU, and using a direct write into shmemfs
2921 * allows it to avoid the cost of retrieving a page (either swapin
2922 * or clearing-before-use) before it is overwritten.
2923 */
2924 if (i915_gem_object_has_pages(obj))
2925 return -ENODEV;
2926
2927 if (obj->mm.madv != I915_MADV_WILLNEED)
2928 return -EFAULT;
2929
2930 /* Before the pages are instantiated the object is treated as being
2931 * in the CPU domain. The pages will be clflushed as required before
2932 * use, and we can freely write into the pages directly. If userspace
2933 * races pwrite with any other operation; corruption will ensue -
2934 * that is userspace's prerogative!
2935 */
2936
2937 remain = arg->size;
2938 offset = arg->offset;
2939 pg = offset_in_page(offset);
2940
2941 do {
2942 unsigned int len, unwritten;
2943 struct page *page;
2944 void *data, *vaddr;
2945 int err;
2946
2947 len = PAGE_SIZE - pg;
2948 if (len > remain)
2949 len = remain;
2950
2951 err = pagecache_write_begin(obj->base.filp, mapping,
2952 offset, len, 0,
2953 &page, &data);
2954 if (err < 0)
2955 return err;
2956
2957 vaddr = kmap(page);
2958 unwritten = copy_from_user(vaddr + pg, user_data, len);
2959 kunmap(page);
2960
2961 err = pagecache_write_end(obj->base.filp, mapping,
2962 offset, len, len - unwritten,
2963 page, data);
2964 if (err < 0)
2965 return err;
2966
2967 if (unwritten)
2968 return -EFAULT;
2969
2970 remain -= len;
2971 user_data += len;
2972 offset += len;
2973 pg = 0;
2974 } while (remain);
2975
2976 return 0;
2977 }
2978
2979 static void i915_gem_client_mark_guilty(struct drm_i915_file_private *file_priv,
2980 const struct i915_gem_context *ctx)
2981 {
2982 unsigned int score;
2983 unsigned long prev_hang;
2984
2985 if (i915_gem_context_is_banned(ctx))
2986 score = I915_CLIENT_SCORE_CONTEXT_BAN;
2987 else
2988 score = 0;
2989
2990 prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
2991 if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
2992 score += I915_CLIENT_SCORE_HANG_FAST;
2993
2994 if (score) {
2995 atomic_add(score, &file_priv->ban_score);
2996
2997 DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
2998 ctx->name, score,
2999 atomic_read(&file_priv->ban_score));
3000 }
3001 }
3002
3003 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
3004 {
3005 unsigned int score;
3006 bool banned, bannable;
3007
3008 atomic_inc(&ctx->guilty_count);
3009
3010 bannable = i915_gem_context_is_bannable(ctx);
3011 score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
3012 banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
3013
3014 /* Cool contexts don't accumulate client ban score */
3015 if (!bannable)
3016 return;
3017
3018 if (banned) {
3019 DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, banned\n",
3020 ctx->name, atomic_read(&ctx->guilty_count),
3021 score);
3022 i915_gem_context_set_banned(ctx);
3023 }
3024
3025 if (!IS_ERR_OR_NULL(ctx->file_priv))
3026 i915_gem_client_mark_guilty(ctx->file_priv, ctx);
3027 }
3028
3029 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
3030 {
3031 atomic_inc(&ctx->active_count);
3032 }
3033
3034 struct i915_request *
3035 i915_gem_find_active_request(struct intel_engine_cs *engine)
3036 {
3037 struct i915_request *request, *active = NULL;
3038 unsigned long flags;
3039
3040 /*
3041 * We are called by the error capture, reset and to dump engine
3042 * state at random points in time. In particular, note that neither is
3043 * crucially ordered with an interrupt. After a hang, the GPU is dead
3044 * and we assume that no more writes can happen (we waited long enough
3045 * for all writes that were in transaction to be flushed) - adding an
3046 * extra delay for a recent interrupt is pointless. Hence, we do
3047 * not need an engine->irq_seqno_barrier() before the seqno reads.
3048 * At all other times, we must assume the GPU is still running, but
3049 * we only care about the snapshot of this moment.
3050 */
3051 spin_lock_irqsave(&engine->timeline.lock, flags);
3052 list_for_each_entry(request, &engine->timeline.requests, link) {
3053 if (__i915_request_completed(request, request->global_seqno))
3054 continue;
3055
3056 active = request;
3057 break;
3058 }
3059 spin_unlock_irqrestore(&engine->timeline.lock, flags);
3060
3061 return active;
3062 }
3063
3064 /*
3065 * Ensure irq handler finishes, and not run again.
3066 * Also return the active request so that we only search for it once.
3067 */
3068 struct i915_request *
3069 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
3070 {
3071 struct i915_request *request;
3072
3073 /*
3074 * During the reset sequence, we must prevent the engine from
3075 * entering RC6. As the context state is undefined until we restart
3076 * the engine, if it does enter RC6 during the reset, the state
3077 * written to the powercontext is undefined and so we may lose
3078 * GPU state upon resume, i.e. fail to restart after a reset.
3079 */
3080 intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
3081
3082 request = engine->reset.prepare(engine);
3083 if (request && request->fence.error == -EIO)
3084 request = ERR_PTR(-EIO); /* Previous reset failed! */
3085
3086 return request;
3087 }
3088
3089 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
3090 {
3091 struct intel_engine_cs *engine;
3092 struct i915_request *request;
3093 enum intel_engine_id id;
3094 int err = 0;
3095
3096 for_each_engine(engine, dev_priv, id) {
3097 request = i915_gem_reset_prepare_engine(engine);
3098 if (IS_ERR(request)) {
3099 err = PTR_ERR(request);
3100 continue;
3101 }
3102
3103 engine->hangcheck.active_request = request;
3104 }
3105
3106 i915_gem_revoke_fences(dev_priv);
3107 intel_uc_sanitize(dev_priv);
3108
3109 return err;
3110 }
3111
3112 static void engine_skip_context(struct i915_request *request)
3113 {
3114 struct intel_engine_cs *engine = request->engine;
3115 struct i915_gem_context *hung_ctx = request->gem_context;
3116 struct i915_timeline *timeline = request->timeline;
3117 unsigned long flags;
3118
3119 GEM_BUG_ON(timeline == &engine->timeline);
3120
3121 spin_lock_irqsave(&engine->timeline.lock, flags);
3122 spin_lock(&timeline->lock);
3123
3124 list_for_each_entry_continue(request, &engine->timeline.requests, link)
3125 if (request->gem_context == hung_ctx)
3126 i915_request_skip(request, -EIO);
3127
3128 list_for_each_entry(request, &timeline->requests, link)
3129 i915_request_skip(request, -EIO);
3130
3131 spin_unlock(&timeline->lock);
3132 spin_unlock_irqrestore(&engine->timeline.lock, flags);
3133 }
3134
3135 /* Returns the request if it was guilty of the hang */
3136 static struct i915_request *
3137 i915_gem_reset_request(struct intel_engine_cs *engine,
3138 struct i915_request *request,
3139 bool stalled)
3140 {
3141 /* The guilty request will get skipped on a hung engine.
3142 *
3143 * Users of client default contexts do not rely on logical
3144 * state preserved between batches so it is safe to execute
3145 * queued requests following the hang. Non default contexts
3146 * rely on preserved state, so skipping a batch loses the
3147 * evolution of the state and it needs to be considered corrupted.
3148 * Executing more queued batches on top of corrupted state is
3149 * risky. But we take the risk by trying to advance through
3150 * the queued requests in order to make the client behaviour
3151 * more predictable around resets, by not throwing away random
3152 * amount of batches it has prepared for execution. Sophisticated
3153 * clients can use gem_reset_stats_ioctl and dma fence status
3154 * (exported via sync_file info ioctl on explicit fences) to observe
3155 * when it loses the context state and should rebuild accordingly.
3156 *
3157 * The context ban, and ultimately the client ban, mechanism are safety
3158 * valves if client submission ends up resulting in nothing more than
3159 * subsequent hangs.
3160 */
3161
3162 if (i915_request_completed(request)) {
3163 GEM_TRACE("%s pardoned global=%d (fence %llx:%d), current %d\n",
3164 engine->name, request->global_seqno,
3165 request->fence.context, request->fence.seqno,
3166 intel_engine_get_seqno(engine));
3167 stalled = false;
3168 }
3169
3170 if (stalled) {
3171 i915_gem_context_mark_guilty(request->gem_context);
3172 i915_request_skip(request, -EIO);
3173
3174 /* If this context is now banned, skip all pending requests. */
3175 if (i915_gem_context_is_banned(request->gem_context))
3176 engine_skip_context(request);
3177 } else {
3178 /*
3179 * Since this is not the hung engine, it may have advanced
3180 * since the hang declaration. Double check by refinding
3181 * the active request at the time of the reset.
3182 */
3183 request = i915_gem_find_active_request(engine);
3184 if (request) {
3185 unsigned long flags;
3186
3187 i915_gem_context_mark_innocent(request->gem_context);
3188 dma_fence_set_error(&request->fence, -EAGAIN);
3189
3190 /* Rewind the engine to replay the incomplete rq */
3191 spin_lock_irqsave(&engine->timeline.lock, flags);
3192 request = list_prev_entry(request, link);
3193 if (&request->link == &engine->timeline.requests)
3194 request = NULL;
3195 spin_unlock_irqrestore(&engine->timeline.lock, flags);
3196 }
3197 }
3198
3199 return request;
3200 }
3201
3202 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3203 struct i915_request *request,
3204 bool stalled)
3205 {
3206 /*
3207 * Make sure this write is visible before we re-enable the interrupt
3208 * handlers on another CPU, as tasklet_enable() resolves to just
3209 * a compiler barrier which is insufficient for our purpose here.
3210 */
3211 smp_store_mb(engine->irq_posted, 0);
3212
3213 if (request)
3214 request = i915_gem_reset_request(engine, request, stalled);
3215
3216 /* Setup the CS to resume from the breadcrumb of the hung request */
3217 engine->reset.reset(engine, request);
3218 }
3219
3220 void i915_gem_reset(struct drm_i915_private *dev_priv,
3221 unsigned int stalled_mask)
3222 {
3223 struct intel_engine_cs *engine;
3224 enum intel_engine_id id;
3225
3226 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3227
3228 i915_retire_requests(dev_priv);
3229
3230 for_each_engine(engine, dev_priv, id) {
3231 struct intel_context *ce;
3232
3233 i915_gem_reset_engine(engine,
3234 engine->hangcheck.active_request,
3235 stalled_mask & ENGINE_MASK(id));
3236 ce = fetch_and_zero(&engine->last_retired_context);
3237 if (ce)
3238 intel_context_unpin(ce);
3239
3240 /*
3241 * Ostensibily, we always want a context loaded for powersaving,
3242 * so if the engine is idle after the reset, send a request
3243 * to load our scratch kernel_context.
3244 *
3245 * More mysteriously, if we leave the engine idle after a reset,
3246 * the next userspace batch may hang, with what appears to be
3247 * an incoherent read by the CS (presumably stale TLB). An
3248 * empty request appears sufficient to paper over the glitch.
3249 */
3250 if (intel_engine_is_idle(engine)) {
3251 struct i915_request *rq;
3252
3253 rq = i915_request_alloc(engine,
3254 dev_priv->kernel_context);
3255 if (!IS_ERR(rq))
3256 i915_request_add(rq);
3257 }
3258 }
3259
3260 i915_gem_restore_fences(dev_priv);
3261 }
3262
3263 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3264 {
3265 engine->reset.finish(engine);
3266
3267 intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3268 }
3269
3270 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3271 {
3272 struct intel_engine_cs *engine;
3273 enum intel_engine_id id;
3274
3275 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3276
3277 for_each_engine(engine, dev_priv, id) {
3278 engine->hangcheck.active_request = NULL;
3279 i915_gem_reset_finish_engine(engine);
3280 }
3281 }
3282
3283 static void nop_submit_request(struct i915_request *request)
3284 {
3285 GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3286 request->engine->name,
3287 request->fence.context, request->fence.seqno);
3288 dma_fence_set_error(&request->fence, -EIO);
3289
3290 i915_request_submit(request);
3291 }
3292
3293 static void nop_complete_submit_request(struct i915_request *request)
3294 {
3295 unsigned long flags;
3296
3297 GEM_TRACE("%s fence %llx:%d -> -EIO\n",
3298 request->engine->name,
3299 request->fence.context, request->fence.seqno);
3300 dma_fence_set_error(&request->fence, -EIO);
3301
3302 spin_lock_irqsave(&request->engine->timeline.lock, flags);
3303 __i915_request_submit(request);
3304 intel_engine_init_global_seqno(request->engine, request->global_seqno);
3305 spin_unlock_irqrestore(&request->engine->timeline.lock, flags);
3306 }
3307
3308 void i915_gem_set_wedged(struct drm_i915_private *i915)
3309 {
3310 struct intel_engine_cs *engine;
3311 enum intel_engine_id id;
3312
3313 GEM_TRACE("start\n");
3314
3315 if (GEM_SHOW_DEBUG()) {
3316 struct drm_printer p = drm_debug_printer(__func__);
3317
3318 for_each_engine(engine, i915, id)
3319 intel_engine_dump(engine, &p, "%s\n", engine->name);
3320 }
3321
3322 if (test_and_set_bit(I915_WEDGED, &i915->gpu_error.flags))
3323 goto out;
3324
3325 /*
3326 * First, stop submission to hw, but do not yet complete requests by
3327 * rolling the global seqno forward (since this would complete requests
3328 * for which we haven't set the fence error to EIO yet).
3329 */
3330 for_each_engine(engine, i915, id) {
3331 i915_gem_reset_prepare_engine(engine);
3332
3333 engine->submit_request = nop_submit_request;
3334 engine->schedule = NULL;
3335 }
3336 i915->caps.scheduler = 0;
3337
3338 /* Even if the GPU reset fails, it should still stop the engines */
3339 if (INTEL_GEN(i915) >= 5)
3340 intel_gpu_reset(i915, ALL_ENGINES);
3341
3342 /*
3343 * Make sure no one is running the old callback before we proceed with
3344 * cancelling requests and resetting the completion tracking. Otherwise
3345 * we might submit a request to the hardware which never completes.
3346 */
3347 synchronize_rcu();
3348
3349 for_each_engine(engine, i915, id) {
3350 /* Mark all executing requests as skipped */
3351 engine->cancel_requests(engine);
3352
3353 /*
3354 * Only once we've force-cancelled all in-flight requests can we
3355 * start to complete all requests.
3356 */
3357 engine->submit_request = nop_complete_submit_request;
3358 }
3359
3360 /*
3361 * Make sure no request can slip through without getting completed by
3362 * either this call here to intel_engine_init_global_seqno, or the one
3363 * in nop_complete_submit_request.
3364 */
3365 synchronize_rcu();
3366
3367 for_each_engine(engine, i915, id) {
3368 unsigned long flags;
3369
3370 /*
3371 * Mark all pending requests as complete so that any concurrent
3372 * (lockless) lookup doesn't try and wait upon the request as we
3373 * reset it.
3374 */
3375 spin_lock_irqsave(&engine->timeline.lock, flags);
3376 intel_engine_init_global_seqno(engine,
3377 intel_engine_last_submit(engine));
3378 spin_unlock_irqrestore(&engine->timeline.lock, flags);
3379
3380 i915_gem_reset_finish_engine(engine);
3381 }
3382
3383 out:
3384 GEM_TRACE("end\n");
3385
3386 wake_up_all(&i915->gpu_error.reset_queue);
3387 }
3388
3389 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3390 {
3391 struct i915_timeline *tl;
3392
3393 lockdep_assert_held(&i915->drm.struct_mutex);
3394 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3395 return true;
3396
3397 GEM_TRACE("start\n");
3398
3399 /*
3400 * Before unwedging, make sure that all pending operations
3401 * are flushed and errored out - we may have requests waiting upon
3402 * third party fences. We marked all inflight requests as EIO, and
3403 * every execbuf since returned EIO, for consistency we want all
3404 * the currently pending requests to also be marked as EIO, which
3405 * is done inside our nop_submit_request - and so we must wait.
3406 *
3407 * No more can be submitted until we reset the wedged bit.
3408 */
3409 list_for_each_entry(tl, &i915->gt.timelines, link) {
3410 struct i915_request *rq;
3411
3412 rq = i915_gem_active_peek(&tl->last_request,
3413 &i915->drm.struct_mutex);
3414 if (!rq)
3415 continue;
3416
3417 /*
3418 * We can't use our normal waiter as we want to
3419 * avoid recursively trying to handle the current
3420 * reset. The basic dma_fence_default_wait() installs
3421 * a callback for dma_fence_signal(), which is
3422 * triggered by our nop handler (indirectly, the
3423 * callback enables the signaler thread which is
3424 * woken by the nop_submit_request() advancing the seqno
3425 * and when the seqno passes the fence, the signaler
3426 * then signals the fence waking us up).
3427 */
3428 if (dma_fence_default_wait(&rq->fence, true,
3429 MAX_SCHEDULE_TIMEOUT) < 0)
3430 return false;
3431 }
3432 i915_retire_requests(i915);
3433 GEM_BUG_ON(i915->gt.active_requests);
3434
3435 if (!intel_gpu_reset(i915, ALL_ENGINES))
3436 intel_engines_sanitize(i915);
3437
3438 /*
3439 * Undo nop_submit_request. We prevent all new i915 requests from
3440 * being queued (by disallowing execbuf whilst wedged) so having
3441 * waited for all active requests above, we know the system is idle
3442 * and do not have to worry about a thread being inside
3443 * engine->submit_request() as we swap over. So unlike installing
3444 * the nop_submit_request on reset, we can do this from normal
3445 * context and do not require stop_machine().
3446 */
3447 intel_engines_reset_default_submission(i915);
3448 i915_gem_contexts_lost(i915);
3449
3450 GEM_TRACE("end\n");
3451
3452 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3453 clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3454
3455 return true;
3456 }
3457
3458 static void
3459 i915_gem_retire_work_handler(struct work_struct *work)
3460 {
3461 struct drm_i915_private *dev_priv =
3462 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3463 struct drm_device *dev = &dev_priv->drm;
3464
3465 /* Come back later if the device is busy... */
3466 if (mutex_trylock(&dev->struct_mutex)) {
3467 i915_retire_requests(dev_priv);
3468 mutex_unlock(&dev->struct_mutex);
3469 }
3470
3471 /*
3472 * Keep the retire handler running until we are finally idle.
3473 * We do not need to do this test under locking as in the worst-case
3474 * we queue the retire worker once too often.
3475 */
3476 if (READ_ONCE(dev_priv->gt.awake))
3477 queue_delayed_work(dev_priv->wq,
3478 &dev_priv->gt.retire_work,
3479 round_jiffies_up_relative(HZ));
3480 }
3481
3482 static void shrink_caches(struct drm_i915_private *i915)
3483 {
3484 /*
3485 * kmem_cache_shrink() discards empty slabs and reorders partially
3486 * filled slabs to prioritise allocating from the mostly full slabs,
3487 * with the aim of reducing fragmentation.
3488 */
3489 kmem_cache_shrink(i915->priorities);
3490 kmem_cache_shrink(i915->dependencies);
3491 kmem_cache_shrink(i915->requests);
3492 kmem_cache_shrink(i915->luts);
3493 kmem_cache_shrink(i915->vmas);
3494 kmem_cache_shrink(i915->objects);
3495 }
3496
3497 struct sleep_rcu_work {
3498 union {
3499 struct rcu_head rcu;
3500 struct work_struct work;
3501 };
3502 struct drm_i915_private *i915;
3503 unsigned int epoch;
3504 };
3505
3506 static inline bool
3507 same_epoch(struct drm_i915_private *i915, unsigned int epoch)
3508 {
3509 /*
3510 * There is a small chance that the epoch wrapped since we started
3511 * sleeping. If we assume that epoch is at least a u32, then it will
3512 * take at least 2^32 * 100ms for it to wrap, or about 326 years.
3513 */
3514 return epoch == READ_ONCE(i915->gt.epoch);
3515 }
3516
3517 static void __sleep_work(struct work_struct *work)
3518 {
3519 struct sleep_rcu_work *s = container_of(work, typeof(*s), work);
3520 struct drm_i915_private *i915 = s->i915;
3521 unsigned int epoch = s->epoch;
3522
3523 kfree(s);
3524 if (same_epoch(i915, epoch))
3525 shrink_caches(i915);
3526 }
3527
3528 static void __sleep_rcu(struct rcu_head *rcu)
3529 {
3530 struct sleep_rcu_work *s = container_of(rcu, typeof(*s), rcu);
3531 struct drm_i915_private *i915 = s->i915;
3532
3533 if (same_epoch(i915, s->epoch)) {
3534 INIT_WORK(&s->work, __sleep_work);
3535 queue_work(i915->wq, &s->work);
3536 } else {
3537 kfree(s);
3538 }
3539 }
3540
3541 static inline bool
3542 new_requests_since_last_retire(const struct drm_i915_private *i915)
3543 {
3544 return (READ_ONCE(i915->gt.active_requests) ||
3545 work_pending(&i915->gt.idle_work.work));
3546 }
3547
3548 static void assert_kernel_context_is_current(struct drm_i915_private *i915)
3549 {
3550 struct intel_engine_cs *engine;
3551 enum intel_engine_id id;
3552
3553 if (i915_terminally_wedged(&i915->gpu_error))
3554 return;
3555
3556 GEM_BUG_ON(i915->gt.active_requests);
3557 for_each_engine(engine, i915, id) {
3558 GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline.last_request));
3559 GEM_BUG_ON(engine->last_retired_context !=
3560 to_intel_context(i915->kernel_context, engine));
3561 }
3562 }
3563
3564 static void
3565 i915_gem_idle_work_handler(struct work_struct *work)
3566 {
3567 struct drm_i915_private *dev_priv =
3568 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3569 unsigned int epoch = I915_EPOCH_INVALID;
3570 bool rearm_hangcheck;
3571
3572 if (!READ_ONCE(dev_priv->gt.awake))
3573 return;
3574
3575 if (READ_ONCE(dev_priv->gt.active_requests))
3576 return;
3577
3578 /*
3579 * Flush out the last user context, leaving only the pinned
3580 * kernel context resident. When we are idling on the kernel_context,
3581 * no more new requests (with a context switch) are emitted and we
3582 * can finally rest. A consequence is that the idle work handler is
3583 * always called at least twice before idling (and if the system is
3584 * idle that implies a round trip through the retire worker).
3585 */
3586 mutex_lock(&dev_priv->drm.struct_mutex);
3587 i915_gem_switch_to_kernel_context(dev_priv);
3588 mutex_unlock(&dev_priv->drm.struct_mutex);
3589
3590 GEM_TRACE("active_requests=%d (after switch-to-kernel-context)\n",
3591 READ_ONCE(dev_priv->gt.active_requests));
3592
3593 /*
3594 * Wait for last execlists context complete, but bail out in case a
3595 * new request is submitted. As we don't trust the hardware, we
3596 * continue on if the wait times out. This is necessary to allow
3597 * the machine to suspend even if the hardware dies, and we will
3598 * try to recover in resume (after depriving the hardware of power,
3599 * it may be in a better mmod).
3600 */
3601 __wait_for(if (new_requests_since_last_retire(dev_priv)) return,
3602 intel_engines_are_idle(dev_priv),
3603 I915_IDLE_ENGINES_TIMEOUT * 1000,
3604 10, 500);
3605
3606 rearm_hangcheck =
3607 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3608
3609 if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3610 /* Currently busy, come back later */
3611 mod_delayed_work(dev_priv->wq,
3612 &dev_priv->gt.idle_work,
3613 msecs_to_jiffies(50));
3614 goto out_rearm;
3615 }
3616
3617 /*
3618 * New request retired after this work handler started, extend active
3619 * period until next instance of the work.
3620 */
3621 if (new_requests_since_last_retire(dev_priv))
3622 goto out_unlock;
3623
3624 epoch = __i915_gem_park(dev_priv);
3625
3626 assert_kernel_context_is_current(dev_priv);
3627
3628 rearm_hangcheck = false;
3629 out_unlock:
3630 mutex_unlock(&dev_priv->drm.struct_mutex);
3631
3632 out_rearm:
3633 if (rearm_hangcheck) {
3634 GEM_BUG_ON(!dev_priv->gt.awake);
3635 i915_queue_hangcheck(dev_priv);
3636 }
3637
3638 /*
3639 * When we are idle, it is an opportune time to reap our caches.
3640 * However, we have many objects that utilise RCU and the ordered
3641 * i915->wq that this work is executing on. To try and flush any
3642 * pending frees now we are idle, we first wait for an RCU grace
3643 * period, and then queue a task (that will run last on the wq) to
3644 * shrink and re-optimize the caches.
3645 */
3646 if (same_epoch(dev_priv, epoch)) {
3647 struct sleep_rcu_work *s = kmalloc(sizeof(*s), GFP_KERNEL);
3648 if (s) {
3649 s->i915 = dev_priv;
3650 s->epoch = epoch;
3651 call_rcu(&s->rcu, __sleep_rcu);
3652 }
3653 }
3654 }
3655
3656 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3657 {
3658 struct drm_i915_private *i915 = to_i915(gem->dev);
3659 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3660 struct drm_i915_file_private *fpriv = file->driver_priv;
3661 struct i915_lut_handle *lut, *ln;
3662
3663 mutex_lock(&i915->drm.struct_mutex);
3664
3665 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3666 struct i915_gem_context *ctx = lut->ctx;
3667 struct i915_vma *vma;
3668
3669 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3670 if (ctx->file_priv != fpriv)
3671 continue;
3672
3673 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3674 GEM_BUG_ON(vma->obj != obj);
3675
3676 /* We allow the process to have multiple handles to the same
3677 * vma, in the same fd namespace, by virtue of flink/open.
3678 */
3679 GEM_BUG_ON(!vma->open_count);
3680 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3681 i915_vma_close(vma);
3682
3683 list_del(&lut->obj_link);
3684 list_del(&lut->ctx_link);
3685
3686 kmem_cache_free(i915->luts, lut);
3687 __i915_gem_object_release_unless_active(obj);
3688 }
3689
3690 mutex_unlock(&i915->drm.struct_mutex);
3691 }
3692
3693 static unsigned long to_wait_timeout(s64 timeout_ns)
3694 {
3695 if (timeout_ns < 0)
3696 return MAX_SCHEDULE_TIMEOUT;
3697
3698 if (timeout_ns == 0)
3699 return 0;
3700
3701 return nsecs_to_jiffies_timeout(timeout_ns);
3702 }
3703
3704 /**
3705 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3706 * @dev: drm device pointer
3707 * @data: ioctl data blob
3708 * @file: drm file pointer
3709 *
3710 * Returns 0 if successful, else an error is returned with the remaining time in
3711 * the timeout parameter.
3712 * -ETIME: object is still busy after timeout
3713 * -ERESTARTSYS: signal interrupted the wait
3714 * -ENONENT: object doesn't exist
3715 * Also possible, but rare:
3716 * -EAGAIN: incomplete, restart syscall
3717 * -ENOMEM: damn
3718 * -ENODEV: Internal IRQ fail
3719 * -E?: The add request failed
3720 *
3721 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3722 * non-zero timeout parameter the wait ioctl will wait for the given number of
3723 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3724 * without holding struct_mutex the object may become re-busied before this
3725 * function completes. A similar but shorter * race condition exists in the busy
3726 * ioctl
3727 */
3728 int
3729 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3730 {
3731 struct drm_i915_gem_wait *args = data;
3732 struct drm_i915_gem_object *obj;
3733 ktime_t start;
3734 long ret;
3735
3736 if (args->flags != 0)
3737 return -EINVAL;
3738
3739 obj = i915_gem_object_lookup(file, args->bo_handle);
3740 if (!obj)
3741 return -ENOENT;
3742
3743 start = ktime_get();
3744
3745 ret = i915_gem_object_wait(obj,
3746 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3747 to_wait_timeout(args->timeout_ns),
3748 to_rps_client(file));
3749
3750 if (args->timeout_ns > 0) {
3751 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3752 if (args->timeout_ns < 0)
3753 args->timeout_ns = 0;
3754
3755 /*
3756 * Apparently ktime isn't accurate enough and occasionally has a
3757 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3758 * things up to make the test happy. We allow up to 1 jiffy.
3759 *
3760 * This is a regression from the timespec->ktime conversion.
3761 */
3762 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3763 args->timeout_ns = 0;
3764
3765 /* Asked to wait beyond the jiffie/scheduler precision? */
3766 if (ret == -ETIME && args->timeout_ns)
3767 ret = -EAGAIN;
3768 }
3769
3770 i915_gem_object_put(obj);
3771 return ret;
3772 }
3773
3774 static long wait_for_timeline(struct i915_timeline *tl,
3775 unsigned int flags, long timeout)
3776 {
3777 struct i915_request *rq;
3778
3779 rq = i915_gem_active_get_unlocked(&tl->last_request);
3780 if (!rq)
3781 return timeout;
3782
3783 /*
3784 * "Race-to-idle".
3785 *
3786 * Switching to the kernel context is often used a synchronous
3787 * step prior to idling, e.g. in suspend for flushing all
3788 * current operations to memory before sleeping. These we
3789 * want to complete as quickly as possible to avoid prolonged
3790 * stalls, so allow the gpu to boost to maximum clocks.
3791 */
3792 if (flags & I915_WAIT_FOR_IDLE_BOOST)
3793 gen6_rps_boost(rq, NULL);
3794
3795 timeout = i915_request_wait(rq, flags, timeout);
3796 i915_request_put(rq);
3797
3798 return timeout;
3799 }
3800
3801 static int wait_for_engines(struct drm_i915_private *i915)
3802 {
3803 if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3804 dev_err(i915->drm.dev,
3805 "Failed to idle engines, declaring wedged!\n");
3806 GEM_TRACE_DUMP();
3807 i915_gem_set_wedged(i915);
3808 return -EIO;
3809 }
3810
3811 return 0;
3812 }
3813
3814 int i915_gem_wait_for_idle(struct drm_i915_private *i915,
3815 unsigned int flags, long timeout)
3816 {
3817 GEM_TRACE("flags=%x (%s), timeout=%ld%s\n",
3818 flags, flags & I915_WAIT_LOCKED ? "locked" : "unlocked",
3819 timeout, timeout == MAX_SCHEDULE_TIMEOUT ? " (forever)" : "");
3820
3821 /* If the device is asleep, we have no requests outstanding */
3822 if (!READ_ONCE(i915->gt.awake))
3823 return 0;
3824
3825 if (flags & I915_WAIT_LOCKED) {
3826 struct i915_timeline *tl;
3827 int err;
3828
3829 lockdep_assert_held(&i915->drm.struct_mutex);
3830
3831 list_for_each_entry(tl, &i915->gt.timelines, link) {
3832 timeout = wait_for_timeline(tl, flags, timeout);
3833 if (timeout < 0)
3834 return timeout;
3835 }
3836 if (GEM_SHOW_DEBUG() && !timeout) {
3837 /* Presume that timeout was non-zero to begin with! */
3838 dev_warn(&i915->drm.pdev->dev,
3839 "Missed idle-completion interrupt!\n");
3840 GEM_TRACE_DUMP();
3841 }
3842
3843 err = wait_for_engines(i915);
3844 if (err)
3845 return err;
3846
3847 i915_retire_requests(i915);
3848 GEM_BUG_ON(i915->gt.active_requests);
3849 } else {
3850 struct intel_engine_cs *engine;
3851 enum intel_engine_id id;
3852
3853 for_each_engine(engine, i915, id) {
3854 struct i915_timeline *tl = &engine->timeline;
3855
3856 timeout = wait_for_timeline(tl, flags, timeout);
3857 if (timeout < 0)
3858 return timeout;
3859 }
3860 }
3861
3862 return 0;
3863 }
3864
3865 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3866 {
3867 /*
3868 * We manually flush the CPU domain so that we can override and
3869 * force the flush for the display, and perform it asyncrhonously.
3870 */
3871 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3872 if (obj->cache_dirty)
3873 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3874 obj->write_domain = 0;
3875 }
3876
3877 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3878 {
3879 if (!READ_ONCE(obj->pin_global))
3880 return;
3881
3882 mutex_lock(&obj->base.dev->struct_mutex);
3883 __i915_gem_object_flush_for_display(obj);
3884 mutex_unlock(&obj->base.dev->struct_mutex);
3885 }
3886
3887 /**
3888 * Moves a single object to the WC read, and possibly write domain.
3889 * @obj: object to act on
3890 * @write: ask for write access or read only
3891 *
3892 * This function returns when the move is complete, including waiting on
3893 * flushes to occur.
3894 */
3895 int
3896 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3897 {
3898 int ret;
3899
3900 lockdep_assert_held(&obj->base.dev->struct_mutex);
3901
3902 ret = i915_gem_object_wait(obj,
3903 I915_WAIT_INTERRUPTIBLE |
3904 I915_WAIT_LOCKED |
3905 (write ? I915_WAIT_ALL : 0),
3906 MAX_SCHEDULE_TIMEOUT,
3907 NULL);
3908 if (ret)
3909 return ret;
3910
3911 if (obj->write_domain == I915_GEM_DOMAIN_WC)
3912 return 0;
3913
3914 /* Flush and acquire obj->pages so that we are coherent through
3915 * direct access in memory with previous cached writes through
3916 * shmemfs and that our cache domain tracking remains valid.
3917 * For example, if the obj->filp was moved to swap without us
3918 * being notified and releasing the pages, we would mistakenly
3919 * continue to assume that the obj remained out of the CPU cached
3920 * domain.
3921 */
3922 ret = i915_gem_object_pin_pages(obj);
3923 if (ret)
3924 return ret;
3925
3926 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3927
3928 /* Serialise direct access to this object with the barriers for
3929 * coherent writes from the GPU, by effectively invalidating the
3930 * WC domain upon first access.
3931 */
3932 if ((obj->read_domains & I915_GEM_DOMAIN_WC) == 0)
3933 mb();
3934
3935 /* It should now be out of any other write domains, and we can update
3936 * the domain values for our changes.
3937 */
3938 GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3939 obj->read_domains |= I915_GEM_DOMAIN_WC;
3940 if (write) {
3941 obj->read_domains = I915_GEM_DOMAIN_WC;
3942 obj->write_domain = I915_GEM_DOMAIN_WC;
3943 obj->mm.dirty = true;
3944 }
3945
3946 i915_gem_object_unpin_pages(obj);
3947 return 0;
3948 }
3949
3950 /**
3951 * Moves a single object to the GTT read, and possibly write domain.
3952 * @obj: object to act on
3953 * @write: ask for write access or read only
3954 *
3955 * This function returns when the move is complete, including waiting on
3956 * flushes to occur.
3957 */
3958 int
3959 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3960 {
3961 int ret;
3962
3963 lockdep_assert_held(&obj->base.dev->struct_mutex);
3964
3965 ret = i915_gem_object_wait(obj,
3966 I915_WAIT_INTERRUPTIBLE |
3967 I915_WAIT_LOCKED |
3968 (write ? I915_WAIT_ALL : 0),
3969 MAX_SCHEDULE_TIMEOUT,
3970 NULL);
3971 if (ret)
3972 return ret;
3973
3974 if (obj->write_domain == I915_GEM_DOMAIN_GTT)
3975 return 0;
3976
3977 /* Flush and acquire obj->pages so that we are coherent through
3978 * direct access in memory with previous cached writes through
3979 * shmemfs and that our cache domain tracking remains valid.
3980 * For example, if the obj->filp was moved to swap without us
3981 * being notified and releasing the pages, we would mistakenly
3982 * continue to assume that the obj remained out of the CPU cached
3983 * domain.
3984 */
3985 ret = i915_gem_object_pin_pages(obj);
3986 if (ret)
3987 return ret;
3988
3989 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3990
3991 /* Serialise direct access to this object with the barriers for
3992 * coherent writes from the GPU, by effectively invalidating the
3993 * GTT domain upon first access.
3994 */
3995 if ((obj->read_domains & I915_GEM_DOMAIN_GTT) == 0)
3996 mb();
3997
3998 /* It should now be out of any other write domains, and we can update
3999 * the domain values for our changes.
4000 */
4001 GEM_BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4002 obj->read_domains |= I915_GEM_DOMAIN_GTT;
4003 if (write) {
4004 obj->read_domains = I915_GEM_DOMAIN_GTT;
4005 obj->write_domain = I915_GEM_DOMAIN_GTT;
4006 obj->mm.dirty = true;
4007 }
4008
4009 i915_gem_object_unpin_pages(obj);
4010 return 0;
4011 }
4012
4013 /**
4014 * Changes the cache-level of an object across all VMA.
4015 * @obj: object to act on
4016 * @cache_level: new cache level to set for the object
4017 *
4018 * After this function returns, the object will be in the new cache-level
4019 * across all GTT and the contents of the backing storage will be coherent,
4020 * with respect to the new cache-level. In order to keep the backing storage
4021 * coherent for all users, we only allow a single cache level to be set
4022 * globally on the object and prevent it from being changed whilst the
4023 * hardware is reading from the object. That is if the object is currently
4024 * on the scanout it will be set to uncached (or equivalent display
4025 * cache coherency) and all non-MOCS GPU access will also be uncached so
4026 * that all direct access to the scanout remains coherent.
4027 */
4028 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4029 enum i915_cache_level cache_level)
4030 {
4031 struct i915_vma *vma;
4032 int ret;
4033
4034 lockdep_assert_held(&obj->base.dev->struct_mutex);
4035
4036 if (obj->cache_level == cache_level)
4037 return 0;
4038
4039 /* Inspect the list of currently bound VMA and unbind any that would
4040 * be invalid given the new cache-level. This is principally to
4041 * catch the issue of the CS prefetch crossing page boundaries and
4042 * reading an invalid PTE on older architectures.
4043 */
4044 restart:
4045 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4046 if (!drm_mm_node_allocated(&vma->node))
4047 continue;
4048
4049 if (i915_vma_is_pinned(vma)) {
4050 DRM_DEBUG("can not change the cache level of pinned objects\n");
4051 return -EBUSY;
4052 }
4053
4054 if (!i915_vma_is_closed(vma) &&
4055 i915_gem_valid_gtt_space(vma, cache_level))
4056 continue;
4057
4058 ret = i915_vma_unbind(vma);
4059 if (ret)
4060 return ret;
4061
4062 /* As unbinding may affect other elements in the
4063 * obj->vma_list (due to side-effects from retiring
4064 * an active vma), play safe and restart the iterator.
4065 */
4066 goto restart;
4067 }
4068
4069 /* We can reuse the existing drm_mm nodes but need to change the
4070 * cache-level on the PTE. We could simply unbind them all and
4071 * rebind with the correct cache-level on next use. However since
4072 * we already have a valid slot, dma mapping, pages etc, we may as
4073 * rewrite the PTE in the belief that doing so tramples upon less
4074 * state and so involves less work.
4075 */
4076 if (obj->bind_count) {
4077 /* Before we change the PTE, the GPU must not be accessing it.
4078 * If we wait upon the object, we know that all the bound
4079 * VMA are no longer active.
4080 */
4081 ret = i915_gem_object_wait(obj,
4082 I915_WAIT_INTERRUPTIBLE |
4083 I915_WAIT_LOCKED |
4084 I915_WAIT_ALL,
4085 MAX_SCHEDULE_TIMEOUT,
4086 NULL);
4087 if (ret)
4088 return ret;
4089
4090 if (!HAS_LLC(to_i915(obj->base.dev)) &&
4091 cache_level != I915_CACHE_NONE) {
4092 /* Access to snoopable pages through the GTT is
4093 * incoherent and on some machines causes a hard
4094 * lockup. Relinquish the CPU mmaping to force
4095 * userspace to refault in the pages and we can
4096 * then double check if the GTT mapping is still
4097 * valid for that pointer access.
4098 */
4099 i915_gem_release_mmap(obj);
4100
4101 /* As we no longer need a fence for GTT access,
4102 * we can relinquish it now (and so prevent having
4103 * to steal a fence from someone else on the next
4104 * fence request). Note GPU activity would have
4105 * dropped the fence as all snoopable access is
4106 * supposed to be linear.
4107 */
4108 for_each_ggtt_vma(vma, obj) {
4109 ret = i915_vma_put_fence(vma);
4110 if (ret)
4111 return ret;
4112 }
4113 } else {
4114 /* We either have incoherent backing store and
4115 * so no GTT access or the architecture is fully
4116 * coherent. In such cases, existing GTT mmaps
4117 * ignore the cache bit in the PTE and we can
4118 * rewrite it without confusing the GPU or having
4119 * to force userspace to fault back in its mmaps.
4120 */
4121 }
4122
4123 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4124 if (!drm_mm_node_allocated(&vma->node))
4125 continue;
4126
4127 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4128 if (ret)
4129 return ret;
4130 }
4131 }
4132
4133 list_for_each_entry(vma, &obj->vma_list, obj_link)
4134 vma->node.color = cache_level;
4135 i915_gem_object_set_cache_coherency(obj, cache_level);
4136 obj->cache_dirty = true; /* Always invalidate stale cachelines */
4137
4138 return 0;
4139 }
4140
4141 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4142 struct drm_file *file)
4143 {
4144 struct drm_i915_gem_caching *args = data;
4145 struct drm_i915_gem_object *obj;
4146 int err = 0;
4147
4148 rcu_read_lock();
4149 obj = i915_gem_object_lookup_rcu(file, args->handle);
4150 if (!obj) {
4151 err = -ENOENT;
4152 goto out;
4153 }
4154
4155 switch (obj->cache_level) {
4156 case I915_CACHE_LLC:
4157 case I915_CACHE_L3_LLC:
4158 args->caching = I915_CACHING_CACHED;
4159 break;
4160
4161 case I915_CACHE_WT:
4162 args->caching = I915_CACHING_DISPLAY;
4163 break;
4164
4165 default:
4166 args->caching = I915_CACHING_NONE;
4167 break;
4168 }
4169 out:
4170 rcu_read_unlock();
4171 return err;
4172 }
4173
4174 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4175 struct drm_file *file)
4176 {
4177 struct drm_i915_private *i915 = to_i915(dev);
4178 struct drm_i915_gem_caching *args = data;
4179 struct drm_i915_gem_object *obj;
4180 enum i915_cache_level level;
4181 int ret = 0;
4182
4183 switch (args->caching) {
4184 case I915_CACHING_NONE:
4185 level = I915_CACHE_NONE;
4186 break;
4187 case I915_CACHING_CACHED:
4188 /*
4189 * Due to a HW issue on BXT A stepping, GPU stores via a
4190 * snooped mapping may leave stale data in a corresponding CPU
4191 * cacheline, whereas normally such cachelines would get
4192 * invalidated.
4193 */
4194 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
4195 return -ENODEV;
4196
4197 level = I915_CACHE_LLC;
4198 break;
4199 case I915_CACHING_DISPLAY:
4200 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
4201 break;
4202 default:
4203 return -EINVAL;
4204 }
4205
4206 obj = i915_gem_object_lookup(file, args->handle);
4207 if (!obj)
4208 return -ENOENT;
4209
4210 /*
4211 * The caching mode of proxy object is handled by its generator, and
4212 * not allowed to be changed by userspace.
4213 */
4214 if (i915_gem_object_is_proxy(obj)) {
4215 ret = -ENXIO;
4216 goto out;
4217 }
4218
4219 if (obj->cache_level == level)
4220 goto out;
4221
4222 ret = i915_gem_object_wait(obj,
4223 I915_WAIT_INTERRUPTIBLE,
4224 MAX_SCHEDULE_TIMEOUT,
4225 to_rps_client(file));
4226 if (ret)
4227 goto out;
4228
4229 ret = i915_mutex_lock_interruptible(dev);
4230 if (ret)
4231 goto out;
4232
4233 ret = i915_gem_object_set_cache_level(obj, level);
4234 mutex_unlock(&dev->struct_mutex);
4235
4236 out:
4237 i915_gem_object_put(obj);
4238 return ret;
4239 }
4240
4241 /*
4242 * Prepare buffer for display plane (scanout, cursors, etc). Can be called from
4243 * an uninterruptible phase (modesetting) and allows any flushes to be pipelined
4244 * (for pageflips). We only flush the caches while preparing the buffer for
4245 * display, the callers are responsible for frontbuffer flush.
4246 */
4247 struct i915_vma *
4248 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4249 u32 alignment,
4250 const struct i915_ggtt_view *view,
4251 unsigned int flags)
4252 {
4253 struct i915_vma *vma;
4254 int ret;
4255
4256 lockdep_assert_held(&obj->base.dev->struct_mutex);
4257
4258 /* Mark the global pin early so that we account for the
4259 * display coherency whilst setting up the cache domains.
4260 */
4261 obj->pin_global++;
4262
4263 /* The display engine is not coherent with the LLC cache on gen6. As
4264 * a result, we make sure that the pinning that is about to occur is
4265 * done with uncached PTEs. This is lowest common denominator for all
4266 * chipsets.
4267 *
4268 * However for gen6+, we could do better by using the GFDT bit instead
4269 * of uncaching, which would allow us to flush all the LLC-cached data
4270 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4271 */
4272 ret = i915_gem_object_set_cache_level(obj,
4273 HAS_WT(to_i915(obj->base.dev)) ?
4274 I915_CACHE_WT : I915_CACHE_NONE);
4275 if (ret) {
4276 vma = ERR_PTR(ret);
4277 goto err_unpin_global;
4278 }
4279
4280 /* As the user may map the buffer once pinned in the display plane
4281 * (e.g. libkms for the bootup splash), we have to ensure that we
4282 * always use map_and_fenceable for all scanout buffers. However,
4283 * it may simply be too big to fit into mappable, in which case
4284 * put it anyway and hope that userspace can cope (but always first
4285 * try to preserve the existing ABI).
4286 */
4287 vma = ERR_PTR(-ENOSPC);
4288 if ((flags & PIN_MAPPABLE) == 0 &&
4289 (!view || view->type == I915_GGTT_VIEW_NORMAL))
4290 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4291 flags |
4292 PIN_MAPPABLE |
4293 PIN_NONBLOCK);
4294 if (IS_ERR(vma))
4295 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4296 if (IS_ERR(vma))
4297 goto err_unpin_global;
4298
4299 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4300
4301 __i915_gem_object_flush_for_display(obj);
4302
4303 /* It should now be out of any other write domains, and we can update
4304 * the domain values for our changes.
4305 */
4306 obj->read_domains |= I915_GEM_DOMAIN_GTT;
4307
4308 return vma;
4309
4310 err_unpin_global:
4311 obj->pin_global--;
4312 return vma;
4313 }
4314
4315 void
4316 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4317 {
4318 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4319
4320 if (WARN_ON(vma->obj->pin_global == 0))
4321 return;
4322
4323 if (--vma->obj->pin_global == 0)
4324 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4325
4326 /* Bump the LRU to try and avoid premature eviction whilst flipping */
4327 i915_gem_object_bump_inactive_ggtt(vma->obj);
4328
4329 i915_vma_unpin(vma);
4330 }
4331
4332 /**
4333 * Moves a single object to the CPU read, and possibly write domain.
4334 * @obj: object to act on
4335 * @write: requesting write or read-only access
4336 *
4337 * This function returns when the move is complete, including waiting on
4338 * flushes to occur.
4339 */
4340 int
4341 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4342 {
4343 int ret;
4344
4345 lockdep_assert_held(&obj->base.dev->struct_mutex);
4346
4347 ret = i915_gem_object_wait(obj,
4348 I915_WAIT_INTERRUPTIBLE |
4349 I915_WAIT_LOCKED |
4350 (write ? I915_WAIT_ALL : 0),
4351 MAX_SCHEDULE_TIMEOUT,
4352 NULL);
4353 if (ret)
4354 return ret;
4355
4356 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4357
4358 /* Flush the CPU cache if it's still invalid. */
4359 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4360 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4361 obj->read_domains |= I915_GEM_DOMAIN_CPU;
4362 }
4363
4364 /* It should now be out of any other write domains, and we can update
4365 * the domain values for our changes.
4366 */
4367 GEM_BUG_ON(obj->write_domain & ~I915_GEM_DOMAIN_CPU);
4368
4369 /* If we're writing through the CPU, then the GPU read domains will
4370 * need to be invalidated at next use.
4371 */
4372 if (write)
4373 __start_cpu_write(obj);
4374
4375 return 0;
4376 }
4377
4378 /* Throttle our rendering by waiting until the ring has completed our requests
4379 * emitted over 20 msec ago.
4380 *
4381 * Note that if we were to use the current jiffies each time around the loop,
4382 * we wouldn't escape the function with any frames outstanding if the time to
4383 * render a frame was over 20ms.
4384 *
4385 * This should get us reasonable parallelism between CPU and GPU but also
4386 * relatively low latency when blocking on a particular request to finish.
4387 */
4388 static int
4389 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4390 {
4391 struct drm_i915_private *dev_priv = to_i915(dev);
4392 struct drm_i915_file_private *file_priv = file->driver_priv;
4393 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4394 struct i915_request *request, *target = NULL;
4395 long ret;
4396
4397 /* ABI: return -EIO if already wedged */
4398 if (i915_terminally_wedged(&dev_priv->gpu_error))
4399 return -EIO;
4400
4401 spin_lock(&file_priv->mm.lock);
4402 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4403 if (time_after_eq(request->emitted_jiffies, recent_enough))
4404 break;
4405
4406 if (target) {
4407 list_del(&target->client_link);
4408 target->file_priv = NULL;
4409 }
4410
4411 target = request;
4412 }
4413 if (target)
4414 i915_request_get(target);
4415 spin_unlock(&file_priv->mm.lock);
4416
4417 if (target == NULL)
4418 return 0;
4419
4420 ret = i915_request_wait(target,
4421 I915_WAIT_INTERRUPTIBLE,
4422 MAX_SCHEDULE_TIMEOUT);
4423 i915_request_put(target);
4424
4425 return ret < 0 ? ret : 0;
4426 }
4427
4428 struct i915_vma *
4429 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4430 const struct i915_ggtt_view *view,
4431 u64 size,
4432 u64 alignment,
4433 u64 flags)
4434 {
4435 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4436 struct i915_address_space *vm = &dev_priv->ggtt.vm;
4437 struct i915_vma *vma;
4438 int ret;
4439
4440 lockdep_assert_held(&obj->base.dev->struct_mutex);
4441
4442 if (flags & PIN_MAPPABLE &&
4443 (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
4444 /* If the required space is larger than the available
4445 * aperture, we will not able to find a slot for the
4446 * object and unbinding the object now will be in
4447 * vain. Worse, doing so may cause us to ping-pong
4448 * the object in and out of the Global GTT and
4449 * waste a lot of cycles under the mutex.
4450 */
4451 if (obj->base.size > dev_priv->ggtt.mappable_end)
4452 return ERR_PTR(-E2BIG);
4453
4454 /* If NONBLOCK is set the caller is optimistically
4455 * trying to cache the full object within the mappable
4456 * aperture, and *must* have a fallback in place for
4457 * situations where we cannot bind the object. We
4458 * can be a little more lax here and use the fallback
4459 * more often to avoid costly migrations of ourselves
4460 * and other objects within the aperture.
4461 *
4462 * Half-the-aperture is used as a simple heuristic.
4463 * More interesting would to do search for a free
4464 * block prior to making the commitment to unbind.
4465 * That caters for the self-harm case, and with a
4466 * little more heuristics (e.g. NOFAULT, NOEVICT)
4467 * we could try to minimise harm to others.
4468 */
4469 if (flags & PIN_NONBLOCK &&
4470 obj->base.size > dev_priv->ggtt.mappable_end / 2)
4471 return ERR_PTR(-ENOSPC);
4472 }
4473
4474 vma = i915_vma_instance(obj, vm, view);
4475 if (unlikely(IS_ERR(vma)))
4476 return vma;
4477
4478 if (i915_vma_misplaced(vma, size, alignment, flags)) {
4479 if (flags & PIN_NONBLOCK) {
4480 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4481 return ERR_PTR(-ENOSPC);
4482
4483 if (flags & PIN_MAPPABLE &&
4484 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4485 return ERR_PTR(-ENOSPC);
4486 }
4487
4488 WARN(i915_vma_is_pinned(vma),
4489 "bo is already pinned in ggtt with incorrect alignment:"
4490 " offset=%08x, req.alignment=%llx,"
4491 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4492 i915_ggtt_offset(vma), alignment,
4493 !!(flags & PIN_MAPPABLE),
4494 i915_vma_is_map_and_fenceable(vma));
4495 ret = i915_vma_unbind(vma);
4496 if (ret)
4497 return ERR_PTR(ret);
4498 }
4499
4500 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4501 if (ret)
4502 return ERR_PTR(ret);
4503
4504 return vma;
4505 }
4506
4507 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4508 {
4509 /* Note that we could alias engines in the execbuf API, but
4510 * that would be very unwise as it prevents userspace from
4511 * fine control over engine selection. Ahem.
4512 *
4513 * This should be something like EXEC_MAX_ENGINE instead of
4514 * I915_NUM_ENGINES.
4515 */
4516 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4517 return 0x10000 << id;
4518 }
4519
4520 static __always_inline unsigned int __busy_write_id(unsigned int id)
4521 {
4522 /* The uABI guarantees an active writer is also amongst the read
4523 * engines. This would be true if we accessed the activity tracking
4524 * under the lock, but as we perform the lookup of the object and
4525 * its activity locklessly we can not guarantee that the last_write
4526 * being active implies that we have set the same engine flag from
4527 * last_read - hence we always set both read and write busy for
4528 * last_write.
4529 */
4530 return id | __busy_read_flag(id);
4531 }
4532
4533 static __always_inline unsigned int
4534 __busy_set_if_active(const struct dma_fence *fence,
4535 unsigned int (*flag)(unsigned int id))
4536 {
4537 struct i915_request *rq;
4538
4539 /* We have to check the current hw status of the fence as the uABI
4540 * guarantees forward progress. We could rely on the idle worker
4541 * to eventually flush us, but to minimise latency just ask the
4542 * hardware.
4543 *
4544 * Note we only report on the status of native fences.
4545 */
4546 if (!dma_fence_is_i915(fence))
4547 return 0;
4548
4549 /* opencode to_request() in order to avoid const warnings */
4550 rq = container_of(fence, struct i915_request, fence);
4551 if (i915_request_completed(rq))
4552 return 0;
4553
4554 return flag(rq->engine->uabi_id);
4555 }
4556
4557 static __always_inline unsigned int
4558 busy_check_reader(const struct dma_fence *fence)
4559 {
4560 return __busy_set_if_active(fence, __busy_read_flag);
4561 }
4562
4563 static __always_inline unsigned int
4564 busy_check_writer(const struct dma_fence *fence)
4565 {
4566 if (!fence)
4567 return 0;
4568
4569 return __busy_set_if_active(fence, __busy_write_id);
4570 }
4571
4572 int
4573 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4574 struct drm_file *file)
4575 {
4576 struct drm_i915_gem_busy *args = data;
4577 struct drm_i915_gem_object *obj;
4578 struct reservation_object_list *list;
4579 unsigned int seq;
4580 int err;
4581
4582 err = -ENOENT;
4583 rcu_read_lock();
4584 obj = i915_gem_object_lookup_rcu(file, args->handle);
4585 if (!obj)
4586 goto out;
4587
4588 /* A discrepancy here is that we do not report the status of
4589 * non-i915 fences, i.e. even though we may report the object as idle,
4590 * a call to set-domain may still stall waiting for foreign rendering.
4591 * This also means that wait-ioctl may report an object as busy,
4592 * where busy-ioctl considers it idle.
4593 *
4594 * We trade the ability to warn of foreign fences to report on which
4595 * i915 engines are active for the object.
4596 *
4597 * Alternatively, we can trade that extra information on read/write
4598 * activity with
4599 * args->busy =
4600 * !reservation_object_test_signaled_rcu(obj->resv, true);
4601 * to report the overall busyness. This is what the wait-ioctl does.
4602 *
4603 */
4604 retry:
4605 seq = raw_read_seqcount(&obj->resv->seq);
4606
4607 /* Translate the exclusive fence to the READ *and* WRITE engine */
4608 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4609
4610 /* Translate shared fences to READ set of engines */
4611 list = rcu_dereference(obj->resv->fence);
4612 if (list) {
4613 unsigned int shared_count = list->shared_count, i;
4614
4615 for (i = 0; i < shared_count; ++i) {
4616 struct dma_fence *fence =
4617 rcu_dereference(list->shared[i]);
4618
4619 args->busy |= busy_check_reader(fence);
4620 }
4621 }
4622
4623 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4624 goto retry;
4625
4626 err = 0;
4627 out:
4628 rcu_read_unlock();
4629 return err;
4630 }
4631
4632 int
4633 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4634 struct drm_file *file_priv)
4635 {
4636 return i915_gem_ring_throttle(dev, file_priv);
4637 }
4638
4639 int
4640 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4641 struct drm_file *file_priv)
4642 {
4643 struct drm_i915_private *dev_priv = to_i915(dev);
4644 struct drm_i915_gem_madvise *args = data;
4645 struct drm_i915_gem_object *obj;
4646 int err;
4647
4648 switch (args->madv) {
4649 case I915_MADV_DONTNEED:
4650 case I915_MADV_WILLNEED:
4651 break;
4652 default:
4653 return -EINVAL;
4654 }
4655
4656 obj = i915_gem_object_lookup(file_priv, args->handle);
4657 if (!obj)
4658 return -ENOENT;
4659
4660 err = mutex_lock_interruptible(&obj->mm.lock);
4661 if (err)
4662 goto out;
4663
4664 if (i915_gem_object_has_pages(obj) &&
4665 i915_gem_object_is_tiled(obj) &&
4666 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4667 if (obj->mm.madv == I915_MADV_WILLNEED) {
4668 GEM_BUG_ON(!obj->mm.quirked);
4669 __i915_gem_object_unpin_pages(obj);
4670 obj->mm.quirked = false;
4671 }
4672 if (args->madv == I915_MADV_WILLNEED) {
4673 GEM_BUG_ON(obj->mm.quirked);
4674 __i915_gem_object_pin_pages(obj);
4675 obj->mm.quirked = true;
4676 }
4677 }
4678
4679 if (obj->mm.madv != __I915_MADV_PURGED)
4680 obj->mm.madv = args->madv;
4681
4682 /* if the object is no longer attached, discard its backing storage */
4683 if (obj->mm.madv == I915_MADV_DONTNEED &&
4684 !i915_gem_object_has_pages(obj))
4685 i915_gem_object_truncate(obj);
4686
4687 args->retained = obj->mm.madv != __I915_MADV_PURGED;
4688 mutex_unlock(&obj->mm.lock);
4689
4690 out:
4691 i915_gem_object_put(obj);
4692 return err;
4693 }
4694
4695 static void
4696 frontbuffer_retire(struct i915_gem_active *active, struct i915_request *request)
4697 {
4698 struct drm_i915_gem_object *obj =
4699 container_of(active, typeof(*obj), frontbuffer_write);
4700
4701 intel_fb_obj_flush(obj, ORIGIN_CS);
4702 }
4703
4704 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4705 const struct drm_i915_gem_object_ops *ops)
4706 {
4707 mutex_init(&obj->mm.lock);
4708
4709 INIT_LIST_HEAD(&obj->vma_list);
4710 INIT_LIST_HEAD(&obj->lut_list);
4711 INIT_LIST_HEAD(&obj->batch_pool_link);
4712
4713 obj->ops = ops;
4714
4715 reservation_object_init(&obj->__builtin_resv);
4716 obj->resv = &obj->__builtin_resv;
4717
4718 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4719 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4720
4721 obj->mm.madv = I915_MADV_WILLNEED;
4722 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4723 mutex_init(&obj->mm.get_page.lock);
4724
4725 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4726 }
4727
4728 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4729 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4730 I915_GEM_OBJECT_IS_SHRINKABLE,
4731
4732 .get_pages = i915_gem_object_get_pages_gtt,
4733 .put_pages = i915_gem_object_put_pages_gtt,
4734
4735 .pwrite = i915_gem_object_pwrite_gtt,
4736 };
4737
4738 static int i915_gem_object_create_shmem(struct drm_device *dev,
4739 struct drm_gem_object *obj,
4740 size_t size)
4741 {
4742 struct drm_i915_private *i915 = to_i915(dev);
4743 unsigned long flags = VM_NORESERVE;
4744 struct file *filp;
4745
4746 drm_gem_private_object_init(dev, obj, size);
4747
4748 if (i915->mm.gemfs)
4749 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4750 flags);
4751 else
4752 filp = shmem_file_setup("i915", size, flags);
4753
4754 if (IS_ERR(filp))
4755 return PTR_ERR(filp);
4756
4757 obj->filp = filp;
4758
4759 return 0;
4760 }
4761
4762 struct drm_i915_gem_object *
4763 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4764 {
4765 struct drm_i915_gem_object *obj;
4766 struct address_space *mapping;
4767 unsigned int cache_level;
4768 gfp_t mask;
4769 int ret;
4770
4771 /* There is a prevalence of the assumption that we fit the object's
4772 * page count inside a 32bit _signed_ variable. Let's document this and
4773 * catch if we ever need to fix it. In the meantime, if you do spot
4774 * such a local variable, please consider fixing!
4775 */
4776 if (size >> PAGE_SHIFT > INT_MAX)
4777 return ERR_PTR(-E2BIG);
4778
4779 if (overflows_type(size, obj->base.size))
4780 return ERR_PTR(-E2BIG);
4781
4782 obj = i915_gem_object_alloc(dev_priv);
4783 if (obj == NULL)
4784 return ERR_PTR(-ENOMEM);
4785
4786 ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4787 if (ret)
4788 goto fail;
4789
4790 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4791 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4792 /* 965gm cannot relocate objects above 4GiB. */
4793 mask &= ~__GFP_HIGHMEM;
4794 mask |= __GFP_DMA32;
4795 }
4796
4797 mapping = obj->base.filp->f_mapping;
4798 mapping_set_gfp_mask(mapping, mask);
4799 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4800
4801 i915_gem_object_init(obj, &i915_gem_object_ops);
4802
4803 obj->write_domain = I915_GEM_DOMAIN_CPU;
4804 obj->read_domains = I915_GEM_DOMAIN_CPU;
4805
4806 if (HAS_LLC(dev_priv))
4807 /* On some devices, we can have the GPU use the LLC (the CPU
4808 * cache) for about a 10% performance improvement
4809 * compared to uncached. Graphics requests other than
4810 * display scanout are coherent with the CPU in
4811 * accessing this cache. This means in this mode we
4812 * don't need to clflush on the CPU side, and on the
4813 * GPU side we only need to flush internal caches to
4814 * get data visible to the CPU.
4815 *
4816 * However, we maintain the display planes as UC, and so
4817 * need to rebind when first used as such.
4818 */
4819 cache_level = I915_CACHE_LLC;
4820 else
4821 cache_level = I915_CACHE_NONE;
4822
4823 i915_gem_object_set_cache_coherency(obj, cache_level);
4824
4825 trace_i915_gem_object_create(obj);
4826
4827 return obj;
4828
4829 fail:
4830 i915_gem_object_free(obj);
4831 return ERR_PTR(ret);
4832 }
4833
4834 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4835 {
4836 /* If we are the last user of the backing storage (be it shmemfs
4837 * pages or stolen etc), we know that the pages are going to be
4838 * immediately released. In this case, we can then skip copying
4839 * back the contents from the GPU.
4840 */
4841
4842 if (obj->mm.madv != I915_MADV_WILLNEED)
4843 return false;
4844
4845 if (obj->base.filp == NULL)
4846 return true;
4847
4848 /* At first glance, this looks racy, but then again so would be
4849 * userspace racing mmap against close. However, the first external
4850 * reference to the filp can only be obtained through the
4851 * i915_gem_mmap_ioctl() which safeguards us against the user
4852 * acquiring such a reference whilst we are in the middle of
4853 * freeing the object.
4854 */
4855 return atomic_long_read(&obj->base.filp->f_count) == 1;
4856 }
4857
4858 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4859 struct llist_node *freed)
4860 {
4861 struct drm_i915_gem_object *obj, *on;
4862
4863 intel_runtime_pm_get(i915);
4864 llist_for_each_entry_safe(obj, on, freed, freed) {
4865 struct i915_vma *vma, *vn;
4866
4867 trace_i915_gem_object_destroy(obj);
4868
4869 mutex_lock(&i915->drm.struct_mutex);
4870
4871 GEM_BUG_ON(i915_gem_object_is_active(obj));
4872 list_for_each_entry_safe(vma, vn,
4873 &obj->vma_list, obj_link) {
4874 GEM_BUG_ON(i915_vma_is_active(vma));
4875 vma->flags &= ~I915_VMA_PIN_MASK;
4876 i915_vma_destroy(vma);
4877 }
4878 GEM_BUG_ON(!list_empty(&obj->vma_list));
4879 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4880
4881 /* This serializes freeing with the shrinker. Since the free
4882 * is delayed, first by RCU then by the workqueue, we want the
4883 * shrinker to be able to free pages of unreferenced objects,
4884 * or else we may oom whilst there are plenty of deferred
4885 * freed objects.
4886 */
4887 if (i915_gem_object_has_pages(obj)) {
4888 spin_lock(&i915->mm.obj_lock);
4889 list_del_init(&obj->mm.link);
4890 spin_unlock(&i915->mm.obj_lock);
4891 }
4892
4893 mutex_unlock(&i915->drm.struct_mutex);
4894
4895 GEM_BUG_ON(obj->bind_count);
4896 GEM_BUG_ON(obj->userfault_count);
4897 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4898 GEM_BUG_ON(!list_empty(&obj->lut_list));
4899
4900 if (obj->ops->release)
4901 obj->ops->release(obj);
4902
4903 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4904 atomic_set(&obj->mm.pages_pin_count, 0);
4905 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4906 GEM_BUG_ON(i915_gem_object_has_pages(obj));
4907
4908 if (obj->base.import_attach)
4909 drm_prime_gem_destroy(&obj->base, NULL);
4910
4911 reservation_object_fini(&obj->__builtin_resv);
4912 drm_gem_object_release(&obj->base);
4913 i915_gem_info_remove_obj(i915, obj->base.size);
4914
4915 kfree(obj->bit_17);
4916 i915_gem_object_free(obj);
4917
4918 GEM_BUG_ON(!atomic_read(&i915->mm.free_count));
4919 atomic_dec(&i915->mm.free_count);
4920
4921 if (on)
4922 cond_resched();
4923 }
4924 intel_runtime_pm_put(i915);
4925 }
4926
4927 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4928 {
4929 struct llist_node *freed;
4930
4931 /* Free the oldest, most stale object to keep the free_list short */
4932 freed = NULL;
4933 if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4934 /* Only one consumer of llist_del_first() allowed */
4935 spin_lock(&i915->mm.free_lock);
4936 freed = llist_del_first(&i915->mm.free_list);
4937 spin_unlock(&i915->mm.free_lock);
4938 }
4939 if (unlikely(freed)) {
4940 freed->next = NULL;
4941 __i915_gem_free_objects(i915, freed);
4942 }
4943 }
4944
4945 static void __i915_gem_free_work(struct work_struct *work)
4946 {
4947 struct drm_i915_private *i915 =
4948 container_of(work, struct drm_i915_private, mm.free_work);
4949 struct llist_node *freed;
4950
4951 /*
4952 * All file-owned VMA should have been released by this point through
4953 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4954 * However, the object may also be bound into the global GTT (e.g.
4955 * older GPUs without per-process support, or for direct access through
4956 * the GTT either for the user or for scanout). Those VMA still need to
4957 * unbound now.
4958 */
4959
4960 spin_lock(&i915->mm.free_lock);
4961 while ((freed = llist_del_all(&i915->mm.free_list))) {
4962 spin_unlock(&i915->mm.free_lock);
4963
4964 __i915_gem_free_objects(i915, freed);
4965 if (need_resched())
4966 return;
4967
4968 spin_lock(&i915->mm.free_lock);
4969 }
4970 spin_unlock(&i915->mm.free_lock);
4971 }
4972
4973 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4974 {
4975 struct drm_i915_gem_object *obj =
4976 container_of(head, typeof(*obj), rcu);
4977 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4978
4979 /*
4980 * Since we require blocking on struct_mutex to unbind the freed
4981 * object from the GPU before releasing resources back to the
4982 * system, we can not do that directly from the RCU callback (which may
4983 * be a softirq context), but must instead then defer that work onto a
4984 * kthread. We use the RCU callback rather than move the freed object
4985 * directly onto the work queue so that we can mix between using the
4986 * worker and performing frees directly from subsequent allocations for
4987 * crude but effective memory throttling.
4988 */
4989 if (llist_add(&obj->freed, &i915->mm.free_list))
4990 queue_work(i915->wq, &i915->mm.free_work);
4991 }
4992
4993 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4994 {
4995 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4996
4997 if (obj->mm.quirked)
4998 __i915_gem_object_unpin_pages(obj);
4999
5000 if (discard_backing_storage(obj))
5001 obj->mm.madv = I915_MADV_DONTNEED;
5002
5003 /*
5004 * Before we free the object, make sure any pure RCU-only
5005 * read-side critical sections are complete, e.g.
5006 * i915_gem_busy_ioctl(). For the corresponding synchronized
5007 * lookup see i915_gem_object_lookup_rcu().
5008 */
5009 atomic_inc(&to_i915(obj->base.dev)->mm.free_count);
5010 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
5011 }
5012
5013 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
5014 {
5015 lockdep_assert_held(&obj->base.dev->struct_mutex);
5016
5017 if (!i915_gem_object_has_active_reference(obj) &&
5018 i915_gem_object_is_active(obj))
5019 i915_gem_object_set_active_reference(obj);
5020 else
5021 i915_gem_object_put(obj);
5022 }
5023
5024 void i915_gem_sanitize(struct drm_i915_private *i915)
5025 {
5026 int err;
5027
5028 GEM_TRACE("\n");
5029
5030 mutex_lock(&i915->drm.struct_mutex);
5031
5032 intel_runtime_pm_get(i915);
5033 intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5034
5035 /*
5036 * As we have just resumed the machine and woken the device up from
5037 * deep PCI sleep (presumably D3_cold), assume the HW has been reset
5038 * back to defaults, recovering from whatever wedged state we left it
5039 * in and so worth trying to use the device once more.
5040 */
5041 if (i915_terminally_wedged(&i915->gpu_error))
5042 i915_gem_unset_wedged(i915);
5043
5044 /*
5045 * If we inherit context state from the BIOS or earlier occupants
5046 * of the GPU, the GPU may be in an inconsistent state when we
5047 * try to take over. The only way to remove the earlier state
5048 * is by resetting. However, resetting on earlier gen is tricky as
5049 * it may impact the display and we are uncertain about the stability
5050 * of the reset, so this could be applied to even earlier gen.
5051 */
5052 err = -ENODEV;
5053 if (INTEL_GEN(i915) >= 5 && intel_has_gpu_reset(i915))
5054 err = WARN_ON(intel_gpu_reset(i915, ALL_ENGINES));
5055 if (!err)
5056 intel_engines_sanitize(i915);
5057
5058 intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5059 intel_runtime_pm_put(i915);
5060
5061 i915_gem_contexts_lost(i915);
5062 mutex_unlock(&i915->drm.struct_mutex);
5063 }
5064
5065 int i915_gem_suspend(struct drm_i915_private *i915)
5066 {
5067 int ret;
5068
5069 GEM_TRACE("\n");
5070
5071 intel_runtime_pm_get(i915);
5072 intel_suspend_gt_powersave(i915);
5073
5074 mutex_lock(&i915->drm.struct_mutex);
5075
5076 /*
5077 * We have to flush all the executing contexts to main memory so
5078 * that they can saved in the hibernation image. To ensure the last
5079 * context image is coherent, we have to switch away from it. That
5080 * leaves the i915->kernel_context still active when
5081 * we actually suspend, and its image in memory may not match the GPU
5082 * state. Fortunately, the kernel_context is disposable and we do
5083 * not rely on its state.
5084 */
5085 if (!i915_terminally_wedged(&i915->gpu_error)) {
5086 ret = i915_gem_switch_to_kernel_context(i915);
5087 if (ret)
5088 goto err_unlock;
5089
5090 ret = i915_gem_wait_for_idle(i915,
5091 I915_WAIT_INTERRUPTIBLE |
5092 I915_WAIT_LOCKED |
5093 I915_WAIT_FOR_IDLE_BOOST,
5094 MAX_SCHEDULE_TIMEOUT);
5095 if (ret && ret != -EIO)
5096 goto err_unlock;
5097
5098 assert_kernel_context_is_current(i915);
5099 }
5100 i915_retire_requests(i915); /* ensure we flush after wedging */
5101
5102 mutex_unlock(&i915->drm.struct_mutex);
5103
5104 intel_uc_suspend(i915);
5105
5106 cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
5107 cancel_delayed_work_sync(&i915->gt.retire_work);
5108
5109 /*
5110 * As the idle_work is rearming if it detects a race, play safe and
5111 * repeat the flush until it is definitely idle.
5112 */
5113 drain_delayed_work(&i915->gt.idle_work);
5114
5115 /*
5116 * Assert that we successfully flushed all the work and
5117 * reset the GPU back to its idle, low power state.
5118 */
5119 WARN_ON(i915->gt.awake);
5120 if (WARN_ON(!intel_engines_are_idle(i915)))
5121 i915_gem_set_wedged(i915); /* no hope, discard everything */
5122
5123 intel_runtime_pm_put(i915);
5124 return 0;
5125
5126 err_unlock:
5127 mutex_unlock(&i915->drm.struct_mutex);
5128 intel_runtime_pm_put(i915);
5129 return ret;
5130 }
5131
5132 void i915_gem_suspend_late(struct drm_i915_private *i915)
5133 {
5134 struct drm_i915_gem_object *obj;
5135 struct list_head *phases[] = {
5136 &i915->mm.unbound_list,
5137 &i915->mm.bound_list,
5138 NULL
5139 }, **phase;
5140
5141 /*
5142 * Neither the BIOS, ourselves or any other kernel
5143 * expects the system to be in execlists mode on startup,
5144 * so we need to reset the GPU back to legacy mode. And the only
5145 * known way to disable logical contexts is through a GPU reset.
5146 *
5147 * So in order to leave the system in a known default configuration,
5148 * always reset the GPU upon unload and suspend. Afterwards we then
5149 * clean up the GEM state tracking, flushing off the requests and
5150 * leaving the system in a known idle state.
5151 *
5152 * Note that is of the upmost importance that the GPU is idle and
5153 * all stray writes are flushed *before* we dismantle the backing
5154 * storage for the pinned objects.
5155 *
5156 * However, since we are uncertain that resetting the GPU on older
5157 * machines is a good idea, we don't - just in case it leaves the
5158 * machine in an unusable condition.
5159 */
5160
5161 mutex_lock(&i915->drm.struct_mutex);
5162 for (phase = phases; *phase; phase++) {
5163 list_for_each_entry(obj, *phase, mm.link)
5164 WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
5165 }
5166 mutex_unlock(&i915->drm.struct_mutex);
5167
5168 intel_uc_sanitize(i915);
5169 i915_gem_sanitize(i915);
5170 }
5171
5172 void i915_gem_resume(struct drm_i915_private *i915)
5173 {
5174 GEM_TRACE("\n");
5175
5176 WARN_ON(i915->gt.awake);
5177
5178 mutex_lock(&i915->drm.struct_mutex);
5179 intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
5180
5181 i915_gem_restore_gtt_mappings(i915);
5182 i915_gem_restore_fences(i915);
5183
5184 /*
5185 * As we didn't flush the kernel context before suspend, we cannot
5186 * guarantee that the context image is complete. So let's just reset
5187 * it and start again.
5188 */
5189 i915->gt.resume(i915);
5190
5191 if (i915_gem_init_hw(i915))
5192 goto err_wedged;
5193
5194 intel_uc_resume(i915);
5195
5196 /* Always reload a context for powersaving. */
5197 if (i915_gem_switch_to_kernel_context(i915))
5198 goto err_wedged;
5199
5200 out_unlock:
5201 intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
5202 mutex_unlock(&i915->drm.struct_mutex);
5203 return;
5204
5205 err_wedged:
5206 if (!i915_terminally_wedged(&i915->gpu_error)) {
5207 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
5208 i915_gem_set_wedged(i915);
5209 }
5210 goto out_unlock;
5211 }
5212
5213 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
5214 {
5215 if (INTEL_GEN(dev_priv) < 5 ||
5216 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5217 return;
5218
5219 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5220 DISP_TILE_SURFACE_SWIZZLING);
5221
5222 if (IS_GEN5(dev_priv))
5223 return;
5224
5225 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5226 if (IS_GEN6(dev_priv))
5227 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5228 else if (IS_GEN7(dev_priv))
5229 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5230 else if (IS_GEN8(dev_priv))
5231 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5232 else
5233 BUG();
5234 }
5235
5236 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
5237 {
5238 I915_WRITE(RING_CTL(base), 0);
5239 I915_WRITE(RING_HEAD(base), 0);
5240 I915_WRITE(RING_TAIL(base), 0);
5241 I915_WRITE(RING_START(base), 0);
5242 }
5243
5244 static void init_unused_rings(struct drm_i915_private *dev_priv)
5245 {
5246 if (IS_I830(dev_priv)) {
5247 init_unused_ring(dev_priv, PRB1_BASE);
5248 init_unused_ring(dev_priv, SRB0_BASE);
5249 init_unused_ring(dev_priv, SRB1_BASE);
5250 init_unused_ring(dev_priv, SRB2_BASE);
5251 init_unused_ring(dev_priv, SRB3_BASE);
5252 } else if (IS_GEN2(dev_priv)) {
5253 init_unused_ring(dev_priv, SRB0_BASE);
5254 init_unused_ring(dev_priv, SRB1_BASE);
5255 } else if (IS_GEN3(dev_priv)) {
5256 init_unused_ring(dev_priv, PRB1_BASE);
5257 init_unused_ring(dev_priv, PRB2_BASE);
5258 }
5259 }
5260
5261 static int __i915_gem_restart_engines(void *data)
5262 {
5263 struct drm_i915_private *i915 = data;
5264 struct intel_engine_cs *engine;
5265 enum intel_engine_id id;
5266 int err;
5267
5268 for_each_engine(engine, i915, id) {
5269 err = engine->init_hw(engine);
5270 if (err) {
5271 DRM_ERROR("Failed to restart %s (%d)\n",
5272 engine->name, err);
5273 return err;
5274 }
5275 }
5276
5277 return 0;
5278 }
5279
5280 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
5281 {
5282 int ret;
5283
5284 dev_priv->gt.last_init_time = ktime_get();
5285
5286 /* Double layer security blanket, see i915_gem_init() */
5287 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5288
5289 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5290 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5291
5292 if (IS_HASWELL(dev_priv))
5293 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5294 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5295
5296 if (HAS_PCH_NOP(dev_priv)) {
5297 if (IS_IVYBRIDGE(dev_priv)) {
5298 u32 temp = I915_READ(GEN7_MSG_CTL);
5299 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5300 I915_WRITE(GEN7_MSG_CTL, temp);
5301 } else if (INTEL_GEN(dev_priv) >= 7) {
5302 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5303 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5304 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5305 }
5306 }
5307
5308 intel_gt_apply_workarounds(dev_priv);
5309
5310 i915_gem_init_swizzling(dev_priv);
5311
5312 /*
5313 * At least 830 can leave some of the unused rings
5314 * "active" (ie. head != tail) after resume which
5315 * will prevent c3 entry. Makes sure all unused rings
5316 * are totally idle.
5317 */
5318 init_unused_rings(dev_priv);
5319
5320 BUG_ON(!dev_priv->kernel_context);
5321 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5322 ret = -EIO;
5323 goto out;
5324 }
5325
5326 ret = i915_ppgtt_init_hw(dev_priv);
5327 if (ret) {
5328 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
5329 goto out;
5330 }
5331
5332 ret = intel_wopcm_init_hw(&dev_priv->wopcm);
5333 if (ret) {
5334 DRM_ERROR("Enabling WOPCM failed (%d)\n", ret);
5335 goto out;
5336 }
5337
5338 /* We can't enable contexts until all firmware is loaded */
5339 ret = intel_uc_init_hw(dev_priv);
5340 if (ret) {
5341 DRM_ERROR("Enabling uc failed (%d)\n", ret);
5342 goto out;
5343 }
5344
5345 intel_mocs_init_l3cc_table(dev_priv);
5346
5347 /* Only when the HW is re-initialised, can we replay the requests */
5348 ret = __i915_gem_restart_engines(dev_priv);
5349 if (ret)
5350 goto cleanup_uc;
5351
5352 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5353
5354 return 0;
5355
5356 cleanup_uc:
5357 intel_uc_fini_hw(dev_priv);
5358 out:
5359 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5360
5361 return ret;
5362 }
5363
5364 static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5365 {
5366 struct i915_gem_context *ctx;
5367 struct intel_engine_cs *engine;
5368 enum intel_engine_id id;
5369 int err;
5370
5371 /*
5372 * As we reset the gpu during very early sanitisation, the current
5373 * register state on the GPU should reflect its defaults values.
5374 * We load a context onto the hw (with restore-inhibit), then switch
5375 * over to a second context to save that default register state. We
5376 * can then prime every new context with that state so they all start
5377 * from the same default HW values.
5378 */
5379
5380 ctx = i915_gem_context_create_kernel(i915, 0);
5381 if (IS_ERR(ctx))
5382 return PTR_ERR(ctx);
5383
5384 for_each_engine(engine, i915, id) {
5385 struct i915_request *rq;
5386
5387 rq = i915_request_alloc(engine, ctx);
5388 if (IS_ERR(rq)) {
5389 err = PTR_ERR(rq);
5390 goto out_ctx;
5391 }
5392
5393 err = 0;
5394 if (engine->init_context)
5395 err = engine->init_context(rq);
5396
5397 i915_request_add(rq);
5398 if (err)
5399 goto err_active;
5400 }
5401
5402 err = i915_gem_switch_to_kernel_context(i915);
5403 if (err)
5404 goto err_active;
5405
5406 if (i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED, HZ / 5)) {
5407 i915_gem_set_wedged(i915);
5408 err = -EIO; /* Caller will declare us wedged */
5409 goto err_active;
5410 }
5411
5412 assert_kernel_context_is_current(i915);
5413
5414 /*
5415 * Immediately park the GPU so that we enable powersaving and
5416 * treat it as idle. The next time we issue a request, we will
5417 * unpark and start using the engine->pinned_default_state, otherwise
5418 * it is in limbo and an early reset may fail.
5419 */
5420 __i915_gem_park(i915);
5421
5422 for_each_engine(engine, i915, id) {
5423 struct i915_vma *state;
5424 void *vaddr;
5425
5426 GEM_BUG_ON(to_intel_context(ctx, engine)->pin_count);
5427
5428 state = to_intel_context(ctx, engine)->state;
5429 if (!state)
5430 continue;
5431
5432 /*
5433 * As we will hold a reference to the logical state, it will
5434 * not be torn down with the context, and importantly the
5435 * object will hold onto its vma (making it possible for a
5436 * stray GTT write to corrupt our defaults). Unmap the vma
5437 * from the GTT to prevent such accidents and reclaim the
5438 * space.
5439 */
5440 err = i915_vma_unbind(state);
5441 if (err)
5442 goto err_active;
5443
5444 err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5445 if (err)
5446 goto err_active;
5447
5448 engine->default_state = i915_gem_object_get(state->obj);
5449
5450 /* Check we can acquire the image of the context state */
5451 vaddr = i915_gem_object_pin_map(engine->default_state,
5452 I915_MAP_FORCE_WB);
5453 if (IS_ERR(vaddr)) {
5454 err = PTR_ERR(vaddr);
5455 goto err_active;
5456 }
5457
5458 i915_gem_object_unpin_map(engine->default_state);
5459 }
5460
5461 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5462 unsigned int found = intel_engines_has_context_isolation(i915);
5463
5464 /*
5465 * Make sure that classes with multiple engine instances all
5466 * share the same basic configuration.
5467 */
5468 for_each_engine(engine, i915, id) {
5469 unsigned int bit = BIT(engine->uabi_class);
5470 unsigned int expected = engine->default_state ? bit : 0;
5471
5472 if ((found & bit) != expected) {
5473 DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5474 engine->uabi_class, engine->name);
5475 }
5476 }
5477 }
5478
5479 out_ctx:
5480 i915_gem_context_set_closed(ctx);
5481 i915_gem_context_put(ctx);
5482 return err;
5483
5484 err_active:
5485 /*
5486 * If we have to abandon now, we expect the engines to be idle
5487 * and ready to be torn-down. First try to flush any remaining
5488 * request, ensure we are pointing at the kernel context and
5489 * then remove it.
5490 */
5491 if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5492 goto out_ctx;
5493
5494 if (WARN_ON(i915_gem_wait_for_idle(i915,
5495 I915_WAIT_LOCKED,
5496 MAX_SCHEDULE_TIMEOUT)))
5497 goto out_ctx;
5498
5499 i915_gem_contexts_lost(i915);
5500 goto out_ctx;
5501 }
5502
5503 static int
5504 i915_gem_init_scratch(struct drm_i915_private *i915, unsigned int size)
5505 {
5506 struct drm_i915_gem_object *obj;
5507 struct i915_vma *vma;
5508 int ret;
5509
5510 obj = i915_gem_object_create_stolen(i915, size);
5511 if (!obj)
5512 obj = i915_gem_object_create_internal(i915, size);
5513 if (IS_ERR(obj)) {
5514 DRM_ERROR("Failed to allocate scratch page\n");
5515 return PTR_ERR(obj);
5516 }
5517
5518 vma = i915_vma_instance(obj, &i915->ggtt.vm, NULL);
5519 if (IS_ERR(vma)) {
5520 ret = PTR_ERR(vma);
5521 goto err_unref;
5522 }
5523
5524 ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
5525 if (ret)
5526 goto err_unref;
5527
5528 i915->gt.scratch = vma;
5529 return 0;
5530
5531 err_unref:
5532 i915_gem_object_put(obj);
5533 return ret;
5534 }
5535
5536 static void i915_gem_fini_scratch(struct drm_i915_private *i915)
5537 {
5538 i915_vma_unpin_and_release(&i915->gt.scratch, 0);
5539 }
5540
5541 int i915_gem_init(struct drm_i915_private *dev_priv)
5542 {
5543 int ret;
5544
5545 /* We need to fallback to 4K pages if host doesn't support huge gtt. */
5546 if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
5547 mkwrite_device_info(dev_priv)->page_sizes =
5548 I915_GTT_PAGE_SIZE_4K;
5549
5550 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5551
5552 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5553 dev_priv->gt.resume = intel_lr_context_resume;
5554 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5555 } else {
5556 dev_priv->gt.resume = intel_legacy_submission_resume;
5557 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5558 }
5559
5560 ret = i915_gem_init_userptr(dev_priv);
5561 if (ret)
5562 return ret;
5563
5564 ret = intel_uc_init_misc(dev_priv);
5565 if (ret)
5566 return ret;
5567
5568 ret = intel_wopcm_init(&dev_priv->wopcm);
5569 if (ret)
5570 goto err_uc_misc;
5571
5572 /* This is just a security blanket to placate dragons.
5573 * On some systems, we very sporadically observe that the first TLBs
5574 * used by the CS may be stale, despite us poking the TLB reset. If
5575 * we hold the forcewake during initialisation these problems
5576 * just magically go away.
5577 */
5578 mutex_lock(&dev_priv->drm.struct_mutex);
5579 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5580
5581 ret = i915_gem_init_ggtt(dev_priv);
5582 if (ret) {
5583 GEM_BUG_ON(ret == -EIO);
5584 goto err_unlock;
5585 }
5586
5587 ret = i915_gem_init_scratch(dev_priv,
5588 IS_GEN2(dev_priv) ? SZ_256K : PAGE_SIZE);
5589 if (ret) {
5590 GEM_BUG_ON(ret == -EIO);
5591 goto err_ggtt;
5592 }
5593
5594 ret = i915_gem_contexts_init(dev_priv);
5595 if (ret) {
5596 GEM_BUG_ON(ret == -EIO);
5597 goto err_scratch;
5598 }
5599
5600 ret = intel_engines_init(dev_priv);
5601 if (ret) {
5602 GEM_BUG_ON(ret == -EIO);
5603 goto err_context;
5604 }
5605
5606 intel_init_gt_powersave(dev_priv);
5607
5608 ret = intel_uc_init(dev_priv);
5609 if (ret)
5610 goto err_pm;
5611
5612 ret = i915_gem_init_hw(dev_priv);
5613 if (ret)
5614 goto err_uc_init;
5615
5616 /*
5617 * Despite its name intel_init_clock_gating applies both display
5618 * clock gating workarounds; GT mmio workarounds and the occasional
5619 * GT power context workaround. Worse, sometimes it includes a context
5620 * register workaround which we need to apply before we record the
5621 * default HW state for all contexts.
5622 *
5623 * FIXME: break up the workarounds and apply them at the right time!
5624 */
5625 intel_init_clock_gating(dev_priv);
5626
5627 ret = __intel_engines_record_defaults(dev_priv);
5628 if (ret)
5629 goto err_init_hw;
5630
5631 if (i915_inject_load_failure()) {
5632 ret = -ENODEV;
5633 goto err_init_hw;
5634 }
5635
5636 if (i915_inject_load_failure()) {
5637 ret = -EIO;
5638 goto err_init_hw;
5639 }
5640
5641 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5642 mutex_unlock(&dev_priv->drm.struct_mutex);
5643
5644 return 0;
5645
5646 /*
5647 * Unwinding is complicated by that we want to handle -EIO to mean
5648 * disable GPU submission but keep KMS alive. We want to mark the
5649 * HW as irrevisibly wedged, but keep enough state around that the
5650 * driver doesn't explode during runtime.
5651 */
5652 err_init_hw:
5653 mutex_unlock(&dev_priv->drm.struct_mutex);
5654
5655 WARN_ON(i915_gem_suspend(dev_priv));
5656 i915_gem_suspend_late(dev_priv);
5657
5658 i915_gem_drain_workqueue(dev_priv);
5659
5660 mutex_lock(&dev_priv->drm.struct_mutex);
5661 intel_uc_fini_hw(dev_priv);
5662 err_uc_init:
5663 intel_uc_fini(dev_priv);
5664 err_pm:
5665 if (ret != -EIO) {
5666 intel_cleanup_gt_powersave(dev_priv);
5667 i915_gem_cleanup_engines(dev_priv);
5668 }
5669 err_context:
5670 if (ret != -EIO)
5671 i915_gem_contexts_fini(dev_priv);
5672 err_scratch:
5673 i915_gem_fini_scratch(dev_priv);
5674 err_ggtt:
5675 err_unlock:
5676 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5677 mutex_unlock(&dev_priv->drm.struct_mutex);
5678
5679 err_uc_misc:
5680 intel_uc_fini_misc(dev_priv);
5681
5682 if (ret != -EIO)
5683 i915_gem_cleanup_userptr(dev_priv);
5684
5685 if (ret == -EIO) {
5686 mutex_lock(&dev_priv->drm.struct_mutex);
5687
5688 /*
5689 * Allow engine initialisation to fail by marking the GPU as
5690 * wedged. But we only want to do this where the GPU is angry,
5691 * for all other failure, such as an allocation failure, bail.
5692 */
5693 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5694 i915_load_error(dev_priv,
5695 "Failed to initialize GPU, declaring it wedged!\n");
5696 i915_gem_set_wedged(dev_priv);
5697 }
5698
5699 /* Minimal basic recovery for KMS */
5700 ret = i915_ggtt_enable_hw(dev_priv);
5701 i915_gem_restore_gtt_mappings(dev_priv);
5702 i915_gem_restore_fences(dev_priv);
5703 intel_init_clock_gating(dev_priv);
5704
5705 mutex_unlock(&dev_priv->drm.struct_mutex);
5706 }
5707
5708 i915_gem_drain_freed_objects(dev_priv);
5709 return ret;
5710 }
5711
5712 void i915_gem_fini(struct drm_i915_private *dev_priv)
5713 {
5714 i915_gem_suspend_late(dev_priv);
5715 intel_disable_gt_powersave(dev_priv);
5716
5717 /* Flush any outstanding unpin_work. */
5718 i915_gem_drain_workqueue(dev_priv);
5719
5720 mutex_lock(&dev_priv->drm.struct_mutex);
5721 intel_uc_fini_hw(dev_priv);
5722 intel_uc_fini(dev_priv);
5723 i915_gem_cleanup_engines(dev_priv);
5724 i915_gem_contexts_fini(dev_priv);
5725 i915_gem_fini_scratch(dev_priv);
5726 mutex_unlock(&dev_priv->drm.struct_mutex);
5727
5728 intel_wa_list_free(&dev_priv->gt_wa_list);
5729
5730 intel_cleanup_gt_powersave(dev_priv);
5731
5732 intel_uc_fini_misc(dev_priv);
5733 i915_gem_cleanup_userptr(dev_priv);
5734
5735 i915_gem_drain_freed_objects(dev_priv);
5736
5737 WARN_ON(!list_empty(&dev_priv->contexts.list));
5738 }
5739
5740 void i915_gem_init_mmio(struct drm_i915_private *i915)
5741 {
5742 i915_gem_sanitize(i915);
5743 }
5744
5745 void
5746 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5747 {
5748 struct intel_engine_cs *engine;
5749 enum intel_engine_id id;
5750
5751 for_each_engine(engine, dev_priv, id)
5752 dev_priv->gt.cleanup_engine(engine);
5753 }
5754
5755 void
5756 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5757 {
5758 int i;
5759
5760 if (INTEL_GEN(dev_priv) >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5761 !IS_CHERRYVIEW(dev_priv))
5762 dev_priv->num_fence_regs = 32;
5763 else if (INTEL_GEN(dev_priv) >= 4 ||
5764 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5765 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5766 dev_priv->num_fence_regs = 16;
5767 else
5768 dev_priv->num_fence_regs = 8;
5769
5770 if (intel_vgpu_active(dev_priv))
5771 dev_priv->num_fence_regs =
5772 I915_READ(vgtif_reg(avail_rs.fence_num));
5773
5774 /* Initialize fence registers to zero */
5775 for (i = 0; i < dev_priv->num_fence_regs; i++) {
5776 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5777
5778 fence->i915 = dev_priv;
5779 fence->id = i;
5780 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5781 }
5782 i915_gem_restore_fences(dev_priv);
5783
5784 i915_gem_detect_bit_6_swizzle(dev_priv);
5785 }
5786
5787 static void i915_gem_init__mm(struct drm_i915_private *i915)
5788 {
5789 spin_lock_init(&i915->mm.object_stat_lock);
5790 spin_lock_init(&i915->mm.obj_lock);
5791 spin_lock_init(&i915->mm.free_lock);
5792
5793 init_llist_head(&i915->mm.free_list);
5794
5795 INIT_LIST_HEAD(&i915->mm.unbound_list);
5796 INIT_LIST_HEAD(&i915->mm.bound_list);
5797 INIT_LIST_HEAD(&i915->mm.fence_list);
5798 INIT_LIST_HEAD(&i915->mm.userfault_list);
5799
5800 INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5801 }
5802
5803 int i915_gem_init_early(struct drm_i915_private *dev_priv)
5804 {
5805 int err = -ENOMEM;
5806
5807 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5808 if (!dev_priv->objects)
5809 goto err_out;
5810
5811 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5812 if (!dev_priv->vmas)
5813 goto err_objects;
5814
5815 dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5816 if (!dev_priv->luts)
5817 goto err_vmas;
5818
5819 dev_priv->requests = KMEM_CACHE(i915_request,
5820 SLAB_HWCACHE_ALIGN |
5821 SLAB_RECLAIM_ACCOUNT |
5822 SLAB_TYPESAFE_BY_RCU);
5823 if (!dev_priv->requests)
5824 goto err_luts;
5825
5826 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5827 SLAB_HWCACHE_ALIGN |
5828 SLAB_RECLAIM_ACCOUNT);
5829 if (!dev_priv->dependencies)
5830 goto err_requests;
5831
5832 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5833 if (!dev_priv->priorities)
5834 goto err_dependencies;
5835
5836 INIT_LIST_HEAD(&dev_priv->gt.timelines);
5837 INIT_LIST_HEAD(&dev_priv->gt.active_rings);
5838 INIT_LIST_HEAD(&dev_priv->gt.closed_vma);
5839
5840 i915_gem_init__mm(dev_priv);
5841
5842 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5843 i915_gem_retire_work_handler);
5844 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5845 i915_gem_idle_work_handler);
5846 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5847 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5848
5849 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5850
5851 spin_lock_init(&dev_priv->fb_tracking.lock);
5852
5853 err = i915_gemfs_init(dev_priv);
5854 if (err)
5855 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5856
5857 return 0;
5858
5859 err_dependencies:
5860 kmem_cache_destroy(dev_priv->dependencies);
5861 err_requests:
5862 kmem_cache_destroy(dev_priv->requests);
5863 err_luts:
5864 kmem_cache_destroy(dev_priv->luts);
5865 err_vmas:
5866 kmem_cache_destroy(dev_priv->vmas);
5867 err_objects:
5868 kmem_cache_destroy(dev_priv->objects);
5869 err_out:
5870 return err;
5871 }
5872
5873 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
5874 {
5875 i915_gem_drain_freed_objects(dev_priv);
5876 GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
5877 GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
5878 WARN_ON(dev_priv->mm.object_count);
5879 WARN_ON(!list_empty(&dev_priv->gt.timelines));
5880
5881 kmem_cache_destroy(dev_priv->priorities);
5882 kmem_cache_destroy(dev_priv->dependencies);
5883 kmem_cache_destroy(dev_priv->requests);
5884 kmem_cache_destroy(dev_priv->luts);
5885 kmem_cache_destroy(dev_priv->vmas);
5886 kmem_cache_destroy(dev_priv->objects);
5887
5888 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5889 rcu_barrier();
5890
5891 i915_gemfs_fini(dev_priv);
5892 }
5893
5894 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5895 {
5896 /* Discard all purgeable objects, let userspace recover those as
5897 * required after resuming.
5898 */
5899 i915_gem_shrink_all(dev_priv);
5900
5901 return 0;
5902 }
5903
5904 int i915_gem_freeze_late(struct drm_i915_private *i915)
5905 {
5906 struct drm_i915_gem_object *obj;
5907 struct list_head *phases[] = {
5908 &i915->mm.unbound_list,
5909 &i915->mm.bound_list,
5910 NULL
5911 }, **phase;
5912
5913 /*
5914 * Called just before we write the hibernation image.
5915 *
5916 * We need to update the domain tracking to reflect that the CPU
5917 * will be accessing all the pages to create and restore from the
5918 * hibernation, and so upon restoration those pages will be in the
5919 * CPU domain.
5920 *
5921 * To make sure the hibernation image contains the latest state,
5922 * we update that state just before writing out the image.
5923 *
5924 * To try and reduce the hibernation image, we manually shrink
5925 * the objects as well, see i915_gem_freeze()
5926 */
5927
5928 i915_gem_shrink(i915, -1UL, NULL, I915_SHRINK_UNBOUND);
5929 i915_gem_drain_freed_objects(i915);
5930
5931 mutex_lock(&i915->drm.struct_mutex);
5932 for (phase = phases; *phase; phase++) {
5933 list_for_each_entry(obj, *phase, mm.link)
5934 WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
5935 }
5936 mutex_unlock(&i915->drm.struct_mutex);
5937
5938 return 0;
5939 }
5940
5941 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5942 {
5943 struct drm_i915_file_private *file_priv = file->driver_priv;
5944 struct i915_request *request;
5945
5946 /* Clean up our request list when the client is going away, so that
5947 * later retire_requests won't dereference our soon-to-be-gone
5948 * file_priv.
5949 */
5950 spin_lock(&file_priv->mm.lock);
5951 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5952 request->file_priv = NULL;
5953 spin_unlock(&file_priv->mm.lock);
5954 }
5955
5956 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5957 {
5958 struct drm_i915_file_private *file_priv;
5959 int ret;
5960
5961 DRM_DEBUG("\n");
5962
5963 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5964 if (!file_priv)
5965 return -ENOMEM;
5966
5967 file->driver_priv = file_priv;
5968 file_priv->dev_priv = i915;
5969 file_priv->file = file;
5970
5971 spin_lock_init(&file_priv->mm.lock);
5972 INIT_LIST_HEAD(&file_priv->mm.request_list);
5973
5974 file_priv->bsd_engine = -1;
5975 file_priv->hang_timestamp = jiffies;
5976
5977 ret = i915_gem_context_open(i915, file);
5978 if (ret)
5979 kfree(file_priv);
5980
5981 return ret;
5982 }
5983
5984 /**
5985 * i915_gem_track_fb - update frontbuffer tracking
5986 * @old: current GEM buffer for the frontbuffer slots
5987 * @new: new GEM buffer for the frontbuffer slots
5988 * @frontbuffer_bits: bitmask of frontbuffer slots
5989 *
5990 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5991 * from @old and setting them in @new. Both @old and @new can be NULL.
5992 */
5993 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5994 struct drm_i915_gem_object *new,
5995 unsigned frontbuffer_bits)
5996 {
5997 /* Control of individual bits within the mask are guarded by
5998 * the owning plane->mutex, i.e. we can never see concurrent
5999 * manipulation of individual bits. But since the bitfield as a whole
6000 * is updated using RMW, we need to use atomics in order to update
6001 * the bits.
6002 */
6003 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
6004 sizeof(atomic_t) * BITS_PER_BYTE);
6005
6006 if (old) {
6007 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
6008 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
6009 }
6010
6011 if (new) {
6012 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
6013 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
6014 }
6015 }
6016
6017 /* Allocate a new GEM object and fill it with the supplied data */
6018 struct drm_i915_gem_object *
6019 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
6020 const void *data, size_t size)
6021 {
6022 struct drm_i915_gem_object *obj;
6023 struct file *file;
6024 size_t offset;
6025 int err;
6026
6027 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
6028 if (IS_ERR(obj))
6029 return obj;
6030
6031 GEM_BUG_ON(obj->write_domain != I915_GEM_DOMAIN_CPU);
6032
6033 file = obj->base.filp;
6034 offset = 0;
6035 do {
6036 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
6037 struct page *page;
6038 void *pgdata, *vaddr;
6039
6040 err = pagecache_write_begin(file, file->f_mapping,
6041 offset, len, 0,
6042 &page, &pgdata);
6043 if (err < 0)
6044 goto fail;
6045
6046 vaddr = kmap(page);
6047 memcpy(vaddr, data, len);
6048 kunmap(page);
6049
6050 err = pagecache_write_end(file, file->f_mapping,
6051 offset, len, len,
6052 page, pgdata);
6053 if (err < 0)
6054 goto fail;
6055
6056 size -= len;
6057 data += len;
6058 offset += len;
6059 } while (size);
6060
6061 return obj;
6062
6063 fail:
6064 i915_gem_object_put(obj);
6065 return ERR_PTR(err);
6066 }
6067
6068 struct scatterlist *
6069 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
6070 unsigned int n,
6071 unsigned int *offset)
6072 {
6073 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
6074 struct scatterlist *sg;
6075 unsigned int idx, count;
6076
6077 might_sleep();
6078 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
6079 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
6080
6081 /* As we iterate forward through the sg, we record each entry in a
6082 * radixtree for quick repeated (backwards) lookups. If we have seen
6083 * this index previously, we will have an entry for it.
6084 *
6085 * Initial lookup is O(N), but this is amortized to O(1) for
6086 * sequential page access (where each new request is consecutive
6087 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
6088 * i.e. O(1) with a large constant!
6089 */
6090 if (n < READ_ONCE(iter->sg_idx))
6091 goto lookup;
6092
6093 mutex_lock(&iter->lock);
6094
6095 /* We prefer to reuse the last sg so that repeated lookup of this
6096 * (or the subsequent) sg are fast - comparing against the last
6097 * sg is faster than going through the radixtree.
6098 */
6099
6100 sg = iter->sg_pos;
6101 idx = iter->sg_idx;
6102 count = __sg_page_count(sg);
6103
6104 while (idx + count <= n) {
6105 void *entry;
6106 unsigned long i;
6107 int ret;
6108
6109 /* If we cannot allocate and insert this entry, or the
6110 * individual pages from this range, cancel updating the
6111 * sg_idx so that on this lookup we are forced to linearly
6112 * scan onwards, but on future lookups we will try the
6113 * insertion again (in which case we need to be careful of
6114 * the error return reporting that we have already inserted
6115 * this index).
6116 */
6117 ret = radix_tree_insert(&iter->radix, idx, sg);
6118 if (ret && ret != -EEXIST)
6119 goto scan;
6120
6121 entry = xa_mk_value(idx);
6122 for (i = 1; i < count; i++) {
6123 ret = radix_tree_insert(&iter->radix, idx + i, entry);
6124 if (ret && ret != -EEXIST)
6125 goto scan;
6126 }
6127
6128 idx += count;
6129 sg = ____sg_next(sg);
6130 count = __sg_page_count(sg);
6131 }
6132
6133 scan:
6134 iter->sg_pos = sg;
6135 iter->sg_idx = idx;
6136
6137 mutex_unlock(&iter->lock);
6138
6139 if (unlikely(n < idx)) /* insertion completed by another thread */
6140 goto lookup;
6141
6142 /* In case we failed to insert the entry into the radixtree, we need
6143 * to look beyond the current sg.
6144 */
6145 while (idx + count <= n) {
6146 idx += count;
6147 sg = ____sg_next(sg);
6148 count = __sg_page_count(sg);
6149 }
6150
6151 *offset = n - idx;
6152 return sg;
6153
6154 lookup:
6155 rcu_read_lock();
6156
6157 sg = radix_tree_lookup(&iter->radix, n);
6158 GEM_BUG_ON(!sg);
6159
6160 /* If this index is in the middle of multi-page sg entry,
6161 * the radix tree will contain a value entry that points
6162 * to the start of that range. We will return the pointer to
6163 * the base page and the offset of this page within the
6164 * sg entry's range.
6165 */
6166 *offset = 0;
6167 if (unlikely(xa_is_value(sg))) {
6168 unsigned long base = xa_to_value(sg);
6169
6170 sg = radix_tree_lookup(&iter->radix, base);
6171 GEM_BUG_ON(!sg);
6172
6173 *offset = n - base;
6174 }
6175
6176 rcu_read_unlock();
6177
6178 return sg;
6179 }
6180
6181 struct page *
6182 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
6183 {
6184 struct scatterlist *sg;
6185 unsigned int offset;
6186
6187 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
6188
6189 sg = i915_gem_object_get_sg(obj, n, &offset);
6190 return nth_page(sg_page(sg), offset);
6191 }
6192
6193 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
6194 struct page *
6195 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
6196 unsigned int n)
6197 {
6198 struct page *page;
6199
6200 page = i915_gem_object_get_page(obj, n);
6201 if (!obj->mm.dirty)
6202 set_page_dirty(page);
6203
6204 return page;
6205 }
6206
6207 dma_addr_t
6208 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
6209 unsigned long n)
6210 {
6211 struct scatterlist *sg;
6212 unsigned int offset;
6213
6214 sg = i915_gem_object_get_sg(obj, n, &offset);
6215 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
6216 }
6217
6218 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
6219 {
6220 struct sg_table *pages;
6221 int err;
6222
6223 if (align > obj->base.size)
6224 return -EINVAL;
6225
6226 if (obj->ops == &i915_gem_phys_ops)
6227 return 0;
6228
6229 if (obj->ops != &i915_gem_object_ops)
6230 return -EINVAL;
6231
6232 err = i915_gem_object_unbind(obj);
6233 if (err)
6234 return err;
6235
6236 mutex_lock(&obj->mm.lock);
6237
6238 if (obj->mm.madv != I915_MADV_WILLNEED) {
6239 err = -EFAULT;
6240 goto err_unlock;
6241 }
6242
6243 if (obj->mm.quirked) {
6244 err = -EFAULT;
6245 goto err_unlock;
6246 }
6247
6248 if (obj->mm.mapping) {
6249 err = -EBUSY;
6250 goto err_unlock;
6251 }
6252
6253 pages = __i915_gem_object_unset_pages(obj);
6254
6255 obj->ops = &i915_gem_phys_ops;
6256
6257 err = ____i915_gem_object_get_pages(obj);
6258 if (err)
6259 goto err_xfer;
6260
6261 /* Perma-pin (until release) the physical set of pages */
6262 __i915_gem_object_pin_pages(obj);
6263
6264 if (!IS_ERR_OR_NULL(pages))
6265 i915_gem_object_ops.put_pages(obj, pages);
6266 mutex_unlock(&obj->mm.lock);
6267 return 0;
6268
6269 err_xfer:
6270 obj->ops = &i915_gem_object_ops;
6271 if (!IS_ERR_OR_NULL(pages)) {
6272 unsigned int sg_page_sizes = i915_sg_page_sizes(pages->sgl);
6273
6274 __i915_gem_object_set_pages(obj, pages, sg_page_sizes);
6275 }
6276 err_unlock:
6277 mutex_unlock(&obj->mm.lock);
6278 return err;
6279 }
6280
6281 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
6282 #include "selftests/scatterlist.c"
6283 #include "selftests/mock_gem_device.c"
6284 #include "selftests/huge_gem_object.c"
6285 #include "selftests/huge_pages.c"
6286 #include "selftests/i915_gem_object.c"
6287 #include "selftests/i915_gem_coherency.c"
6288 #include "selftests/i915_gem.c"
6289 #endif