]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/i915/i915_perf.c
Merge tag 'drm-next-2020-06-02' of git://anongit.freedesktop.org/drm/drm
[thirdparty/linux.git] / drivers / gpu / drm / i915 / i915_perf.c
1 /*
2 * Copyright © 2015-2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Robert Bragg <robert@sixbynine.org>
25 */
26
27
28 /**
29 * DOC: i915 Perf Overview
30 *
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
33 * GPU.
34 *
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
38 *
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41 *
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46 * sysctl option.
47 *
48 */
49
50 /**
51 * DOC: i915 Perf History and Comparison with Core Perf
52 *
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
55 *
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration. For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
67 *
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
71 *
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
80 *
81 *
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84 *
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
89 *
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
93 *
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
100 *
101 *
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
104 * hit:
105 *
106 * - The perf based OA PMU driver broke some significant design assumptions:
107 *
108 * Existing perf pmus are used for profiling work on a cpu and we were
109 * introducing the idea of _IS_DEVICE pmus with different security
110 * implications, the need to fake cpu-related data (such as user/kernel
111 * registers) to fit with perf's current design, and adding _DEVICE records
112 * as a way to forward device-specific status records.
113 *
114 * The OA unit writes reports of counters into a circular buffer, without
115 * involvement from the CPU, making our PMU driver the first of a kind.
116 *
117 * Given the way we were periodically forward data from the GPU-mapped, OA
118 * buffer to perf's buffer, those bursts of sample writes looked to perf like
119 * we were sampling too fast and so we had to subvert its throttling checks.
120 *
121 * Perf supports groups of counters and allows those to be read via
122 * transactions internally but transactions currently seem designed to be
123 * explicitly initiated from the cpu (say in response to a userspace read())
124 * and while we could pull a report out of the OA buffer we can't
125 * trigger a report from the cpu on demand.
126 *
127 * Related to being report based; the OA counters are configured in HW as a
128 * set while perf generally expects counter configurations to be orthogonal.
129 * Although counters can be associated with a group leader as they are
130 * opened, there's no clear precedent for being able to provide group-wide
131 * configuration attributes (for example we want to let userspace choose the
132 * OA unit report format used to capture all counters in a set, or specify a
133 * GPU context to filter metrics on). We avoided using perf's grouping
134 * feature and forwarded OA reports to userspace via perf's 'raw' sample
135 * field. This suited our userspace well considering how coupled the counters
136 * are when dealing with normalizing. It would be inconvenient to split
137 * counters up into separate events, only to require userspace to recombine
138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 * for combining with the side-band raw reports it captures using
140 * MI_REPORT_PERF_COUNT commands.
141 *
142 * - As a side note on perf's grouping feature; there was also some concern
143 * that using PERF_FORMAT_GROUP as a way to pack together counter values
144 * would quite drastically inflate our sample sizes, which would likely
145 * lower the effective sampling resolutions we could use when the available
146 * memory bandwidth is limited.
147 *
148 * With the OA unit's report formats, counters are packed together as 32
149 * or 40bit values, with the largest report size being 256 bytes.
150 *
151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 * documented ordering to the values, implying PERF_FORMAT_ID must also be
153 * used to add a 64bit ID before each value; giving 16 bytes per counter.
154 *
155 * Related to counter orthogonality; we can't time share the OA unit, while
156 * event scheduling is a central design idea within perf for allowing
157 * userspace to open + enable more events than can be configured in HW at any
158 * one time. The OA unit is not designed to allow re-configuration while in
159 * use. We can't reconfigure the OA unit without losing internal OA unit
160 * state which we can't access explicitly to save and restore. Reconfiguring
161 * the OA unit is also relatively slow, involving ~100 register writes. From
162 * userspace Mesa also depends on a stable OA configuration when emitting
163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 * disabled while there are outstanding MI_RPC commands lest we hang the
165 * command streamer.
166 *
167 * The contents of sample records aren't extensible by device drivers (i.e.
168 * the sample_type bits). As an example; Sourab Gupta had been looking to
169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 * into sample records by using the 'raw' field, but it's tricky to pack more
171 * than one thing into this field because events/core.c currently only lets a
172 * pmu give a single raw data pointer plus len which will be copied into the
173 * ring buffer. To include more than the OA report we'd have to copy the
174 * report into an intermediate larger buffer. I'd been considering allowing a
175 * vector of data+len values to be specified for copying the raw data, but
176 * it felt like a kludge to being using the raw field for this purpose.
177 *
178 * - It felt like our perf based PMU was making some technical compromises
179 * just for the sake of using perf:
180 *
181 * perf_event_open() requires events to either relate to a pid or a specific
182 * cpu core, while our device pmu related to neither. Events opened with a
183 * pid will be automatically enabled/disabled according to the scheduling of
184 * that process - so not appropriate for us. When an event is related to a
185 * cpu id, perf ensures pmu methods will be invoked via an inter process
186 * interrupt on that core. To avoid invasive changes our userspace opened OA
187 * perf events for a specific cpu. This was workable but it meant the
188 * majority of the OA driver ran in atomic context, including all OA report
189 * forwarding, which wasn't really necessary in our case and seems to make
190 * our locking requirements somewhat complex as we handled the interaction
191 * with the rest of the i915 driver.
192 */
193
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
197
198 #include "gem/i915_gem_context.h"
199 #include "gt/intel_engine_pm.h"
200 #include "gt/intel_engine_user.h"
201 #include "gt/intel_gt.h"
202 #include "gt/intel_lrc_reg.h"
203 #include "gt/intel_ring.h"
204
205 #include "i915_drv.h"
206 #include "i915_perf.h"
207
208 /* HW requires this to be a power of two, between 128k and 16M, though driver
209 * is currently generally designed assuming the largest 16M size is used such
210 * that the overflow cases are unlikely in normal operation.
211 */
212 #define OA_BUFFER_SIZE SZ_16M
213
214 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
215
216 /**
217 * DOC: OA Tail Pointer Race
218 *
219 * There's a HW race condition between OA unit tail pointer register updates and
220 * writes to memory whereby the tail pointer can sometimes get ahead of what's
221 * been written out to the OA buffer so far (in terms of what's visible to the
222 * CPU).
223 *
224 * Although this can be observed explicitly while copying reports to userspace
225 * by checking for a zeroed report-id field in tail reports, we want to account
226 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
227 * redundant read() attempts.
228 *
229 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
230 * in the OA buffer, starting from the tail reported by the HW until we find a
231 * report with its first 2 dwords not 0 meaning its previous report is
232 * completely in memory and ready to be read. Those dwords are also set to 0
233 * once read and the whole buffer is cleared upon OA buffer initialization. The
234 * first dword is the reason for this report while the second is the timestamp,
235 * making the chances of having those 2 fields at 0 fairly unlikely. A more
236 * detailed explanation is available in oa_buffer_check_unlocked().
237 *
238 * Most of the implementation details for this workaround are in
239 * oa_buffer_check_unlocked() and _append_oa_reports()
240 *
241 * Note for posterity: previously the driver used to define an effective tail
242 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
243 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
244 * This was flawed considering that the OA unit may also automatically generate
245 * non-periodic reports (such as on context switch) or the OA unit may be
246 * enabled without any periodic sampling.
247 */
248 #define OA_TAIL_MARGIN_NSEC 100000ULL
249 #define INVALID_TAIL_PTR 0xffffffff
250
251 /* The default frequency for checking whether the OA unit has written new
252 * reports to the circular OA buffer...
253 */
254 #define DEFAULT_POLL_FREQUENCY_HZ 200
255 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
256
257 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
258 static u32 i915_perf_stream_paranoid = true;
259
260 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
261 * of the 64bit timestamp bits to trigger reports from) but there's currently
262 * no known use case for sampling as infrequently as once per 47 thousand years.
263 *
264 * Since the timestamps included in OA reports are only 32bits it seems
265 * reasonable to limit the OA exponent where it's still possible to account for
266 * overflow in OA report timestamps.
267 */
268 #define OA_EXPONENT_MAX 31
269
270 #define INVALID_CTX_ID 0xffffffff
271
272 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
273 #define OAREPORT_REASON_MASK 0x3f
274 #define OAREPORT_REASON_MASK_EXTENDED 0x7f
275 #define OAREPORT_REASON_SHIFT 19
276 #define OAREPORT_REASON_TIMER (1<<0)
277 #define OAREPORT_REASON_CTX_SWITCH (1<<3)
278 #define OAREPORT_REASON_CLK_RATIO (1<<5)
279
280
281 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
282 *
283 * The highest sampling frequency we can theoretically program the OA unit
284 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
285 *
286 * Initialized just before we register the sysctl parameter.
287 */
288 static int oa_sample_rate_hard_limit;
289
290 /* Theoretically we can program the OA unit to sample every 160ns but don't
291 * allow that by default unless root...
292 *
293 * The default threshold of 100000Hz is based on perf's similar
294 * kernel.perf_event_max_sample_rate sysctl parameter.
295 */
296 static u32 i915_oa_max_sample_rate = 100000;
297
298 /* XXX: beware if future OA HW adds new report formats that the current
299 * code assumes all reports have a power-of-two size and ~(size - 1) can
300 * be used as a mask to align the OA tail pointer.
301 */
302 static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
303 [I915_OA_FORMAT_A13] = { 0, 64 },
304 [I915_OA_FORMAT_A29] = { 1, 128 },
305 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 },
306 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
307 [I915_OA_FORMAT_B4_C8] = { 4, 64 },
308 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 },
309 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 },
310 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
311 };
312
313 static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
314 [I915_OA_FORMAT_A12] = { 0, 64 },
315 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 },
316 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
317 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
318 };
319
320 static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = {
321 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
322 };
323
324 #define SAMPLE_OA_REPORT (1<<0)
325
326 /**
327 * struct perf_open_properties - for validated properties given to open a stream
328 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
329 * @single_context: Whether a single or all gpu contexts should be monitored
330 * @hold_preemption: Whether the preemption is disabled for the filtered
331 * context
332 * @ctx_handle: A gem ctx handle for use with @single_context
333 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
334 * @oa_format: An OA unit HW report format
335 * @oa_periodic: Whether to enable periodic OA unit sampling
336 * @oa_period_exponent: The OA unit sampling period is derived from this
337 * @engine: The engine (typically rcs0) being monitored by the OA unit
338 * @has_sseu: Whether @sseu was specified by userspace
339 * @sseu: internal SSEU configuration computed either from the userspace
340 * specified configuration in the opening parameters or a default value
341 * (see get_default_sseu_config())
342 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
343 * data availability
344 *
345 * As read_properties_unlocked() enumerates and validates the properties given
346 * to open a stream of metrics the configuration is built up in the structure
347 * which starts out zero initialized.
348 */
349 struct perf_open_properties {
350 u32 sample_flags;
351
352 u64 single_context:1;
353 u64 hold_preemption:1;
354 u64 ctx_handle;
355
356 /* OA sampling state */
357 int metrics_set;
358 int oa_format;
359 bool oa_periodic;
360 int oa_period_exponent;
361
362 struct intel_engine_cs *engine;
363
364 bool has_sseu;
365 struct intel_sseu sseu;
366
367 u64 poll_oa_period;
368 };
369
370 struct i915_oa_config_bo {
371 struct llist_node node;
372
373 struct i915_oa_config *oa_config;
374 struct i915_vma *vma;
375 };
376
377 static struct ctl_table_header *sysctl_header;
378
379 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
380
381 void i915_oa_config_release(struct kref *ref)
382 {
383 struct i915_oa_config *oa_config =
384 container_of(ref, typeof(*oa_config), ref);
385
386 kfree(oa_config->flex_regs);
387 kfree(oa_config->b_counter_regs);
388 kfree(oa_config->mux_regs);
389
390 kfree_rcu(oa_config, rcu);
391 }
392
393 struct i915_oa_config *
394 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
395 {
396 struct i915_oa_config *oa_config;
397
398 rcu_read_lock();
399 oa_config = idr_find(&perf->metrics_idr, metrics_set);
400 if (oa_config)
401 oa_config = i915_oa_config_get(oa_config);
402 rcu_read_unlock();
403
404 return oa_config;
405 }
406
407 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
408 {
409 i915_oa_config_put(oa_bo->oa_config);
410 i915_vma_put(oa_bo->vma);
411 kfree(oa_bo);
412 }
413
414 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
415 {
416 struct intel_uncore *uncore = stream->uncore;
417
418 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
419 GEN12_OAG_OATAILPTR_MASK;
420 }
421
422 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
423 {
424 struct intel_uncore *uncore = stream->uncore;
425
426 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
427 }
428
429 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
430 {
431 struct intel_uncore *uncore = stream->uncore;
432 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
433
434 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
435 }
436
437 /**
438 * oa_buffer_check_unlocked - check for data and update tail ptr state
439 * @stream: i915 stream instance
440 *
441 * This is either called via fops (for blocking reads in user ctx) or the poll
442 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
443 * if there is data available for userspace to read.
444 *
445 * This function is central to providing a workaround for the OA unit tail
446 * pointer having a race with respect to what data is visible to the CPU.
447 * It is responsible for reading tail pointers from the hardware and giving
448 * the pointers time to 'age' before they are made available for reading.
449 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
450 *
451 * Besides returning true when there is data available to read() this function
452 * also updates the tail, aging_tail and aging_timestamp in the oa_buffer
453 * object.
454 *
455 * Note: It's safe to read OA config state here unlocked, assuming that this is
456 * only called while the stream is enabled, while the global OA configuration
457 * can't be modified.
458 *
459 * Returns: %true if the OA buffer contains data, else %false
460 */
461 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
462 {
463 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
464 int report_size = stream->oa_buffer.format_size;
465 unsigned long flags;
466 bool pollin;
467 u32 hw_tail;
468 u64 now;
469
470 /* We have to consider the (unlikely) possibility that read() errors
471 * could result in an OA buffer reset which might reset the head and
472 * tail state.
473 */
474 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
475
476 hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
477
478 /* The tail pointer increases in 64 byte increments,
479 * not in report_size steps...
480 */
481 hw_tail &= ~(report_size - 1);
482
483 now = ktime_get_mono_fast_ns();
484
485 if (hw_tail == stream->oa_buffer.aging_tail &&
486 (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) {
487 /* If the HW tail hasn't move since the last check and the HW
488 * tail has been aging for long enough, declare it the new
489 * tail.
490 */
491 stream->oa_buffer.tail = stream->oa_buffer.aging_tail;
492 } else {
493 u32 head, tail, aged_tail;
494
495 /* NB: The head we observe here might effectively be a little
496 * out of date. If a read() is in progress, the head could be
497 * anywhere between this head and stream->oa_buffer.tail.
498 */
499 head = stream->oa_buffer.head - gtt_offset;
500 aged_tail = stream->oa_buffer.tail - gtt_offset;
501
502 hw_tail -= gtt_offset;
503 tail = hw_tail;
504
505 /* Walk the stream backward until we find a report with dword 0
506 * & 1 not at 0. Since the circular buffer pointers progress by
507 * increments of 64 bytes and that reports can be up to 256
508 * bytes long, we can't tell whether a report has fully landed
509 * in memory before the first 2 dwords of the following report
510 * have effectively landed.
511 *
512 * This is assuming that the writes of the OA unit land in
513 * memory in the order they were written to.
514 * If not : (╯°□°)╯︵ ┻━┻
515 */
516 while (OA_TAKEN(tail, aged_tail) >= report_size) {
517 u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail);
518
519 if (report32[0] != 0 || report32[1] != 0)
520 break;
521
522 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
523 }
524
525 if (OA_TAKEN(hw_tail, tail) > report_size &&
526 __ratelimit(&stream->perf->tail_pointer_race))
527 DRM_NOTE("unlanded report(s) head=0x%x "
528 "tail=0x%x hw_tail=0x%x\n",
529 head, tail, hw_tail);
530
531 stream->oa_buffer.tail = gtt_offset + tail;
532 stream->oa_buffer.aging_tail = gtt_offset + hw_tail;
533 stream->oa_buffer.aging_timestamp = now;
534 }
535
536 pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset,
537 stream->oa_buffer.head - gtt_offset) >= report_size;
538
539 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
540
541 return pollin;
542 }
543
544 /**
545 * append_oa_status - Appends a status record to a userspace read() buffer.
546 * @stream: An i915-perf stream opened for OA metrics
547 * @buf: destination buffer given by userspace
548 * @count: the number of bytes userspace wants to read
549 * @offset: (inout): the current position for writing into @buf
550 * @type: The kind of status to report to userspace
551 *
552 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
553 * into the userspace read() buffer.
554 *
555 * The @buf @offset will only be updated on success.
556 *
557 * Returns: 0 on success, negative error code on failure.
558 */
559 static int append_oa_status(struct i915_perf_stream *stream,
560 char __user *buf,
561 size_t count,
562 size_t *offset,
563 enum drm_i915_perf_record_type type)
564 {
565 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
566
567 if ((count - *offset) < header.size)
568 return -ENOSPC;
569
570 if (copy_to_user(buf + *offset, &header, sizeof(header)))
571 return -EFAULT;
572
573 (*offset) += header.size;
574
575 return 0;
576 }
577
578 /**
579 * append_oa_sample - Copies single OA report into userspace read() buffer.
580 * @stream: An i915-perf stream opened for OA metrics
581 * @buf: destination buffer given by userspace
582 * @count: the number of bytes userspace wants to read
583 * @offset: (inout): the current position for writing into @buf
584 * @report: A single OA report to (optionally) include as part of the sample
585 *
586 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
587 * properties when opening a stream, tracked as `stream->sample_flags`. This
588 * function copies the requested components of a single sample to the given
589 * read() @buf.
590 *
591 * The @buf @offset will only be updated on success.
592 *
593 * Returns: 0 on success, negative error code on failure.
594 */
595 static int append_oa_sample(struct i915_perf_stream *stream,
596 char __user *buf,
597 size_t count,
598 size_t *offset,
599 const u8 *report)
600 {
601 int report_size = stream->oa_buffer.format_size;
602 struct drm_i915_perf_record_header header;
603 u32 sample_flags = stream->sample_flags;
604
605 header.type = DRM_I915_PERF_RECORD_SAMPLE;
606 header.pad = 0;
607 header.size = stream->sample_size;
608
609 if ((count - *offset) < header.size)
610 return -ENOSPC;
611
612 buf += *offset;
613 if (copy_to_user(buf, &header, sizeof(header)))
614 return -EFAULT;
615 buf += sizeof(header);
616
617 if (sample_flags & SAMPLE_OA_REPORT) {
618 if (copy_to_user(buf, report, report_size))
619 return -EFAULT;
620 }
621
622 (*offset) += header.size;
623
624 return 0;
625 }
626
627 /**
628 * Copies all buffered OA reports into userspace read() buffer.
629 * @stream: An i915-perf stream opened for OA metrics
630 * @buf: destination buffer given by userspace
631 * @count: the number of bytes userspace wants to read
632 * @offset: (inout): the current position for writing into @buf
633 *
634 * Notably any error condition resulting in a short read (-%ENOSPC or
635 * -%EFAULT) will be returned even though one or more records may
636 * have been successfully copied. In this case it's up to the caller
637 * to decide if the error should be squashed before returning to
638 * userspace.
639 *
640 * Note: reports are consumed from the head, and appended to the
641 * tail, so the tail chases the head?... If you think that's mad
642 * and back-to-front you're not alone, but this follows the
643 * Gen PRM naming convention.
644 *
645 * Returns: 0 on success, negative error code on failure.
646 */
647 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
648 char __user *buf,
649 size_t count,
650 size_t *offset)
651 {
652 struct intel_uncore *uncore = stream->uncore;
653 int report_size = stream->oa_buffer.format_size;
654 u8 *oa_buf_base = stream->oa_buffer.vaddr;
655 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
656 u32 mask = (OA_BUFFER_SIZE - 1);
657 size_t start_offset = *offset;
658 unsigned long flags;
659 u32 head, tail;
660 u32 taken;
661 int ret = 0;
662
663 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
664 return -EIO;
665
666 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
667
668 head = stream->oa_buffer.head;
669 tail = stream->oa_buffer.tail;
670
671 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
672
673 /*
674 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
675 * while indexing relative to oa_buf_base.
676 */
677 head -= gtt_offset;
678 tail -= gtt_offset;
679
680 /*
681 * An out of bounds or misaligned head or tail pointer implies a driver
682 * bug since we validate + align the tail pointers we read from the
683 * hardware and we are in full control of the head pointer which should
684 * only be incremented by multiples of the report size (notably also
685 * all a power of two).
686 */
687 if (drm_WARN_ONCE(&uncore->i915->drm,
688 head > OA_BUFFER_SIZE || head % report_size ||
689 tail > OA_BUFFER_SIZE || tail % report_size,
690 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
691 head, tail))
692 return -EIO;
693
694
695 for (/* none */;
696 (taken = OA_TAKEN(tail, head));
697 head = (head + report_size) & mask) {
698 u8 *report = oa_buf_base + head;
699 u32 *report32 = (void *)report;
700 u32 ctx_id;
701 u32 reason;
702
703 /*
704 * All the report sizes factor neatly into the buffer
705 * size so we never expect to see a report split
706 * between the beginning and end of the buffer.
707 *
708 * Given the initial alignment check a misalignment
709 * here would imply a driver bug that would result
710 * in an overrun.
711 */
712 if (drm_WARN_ON(&uncore->i915->drm,
713 (OA_BUFFER_SIZE - head) < report_size)) {
714 drm_err(&uncore->i915->drm,
715 "Spurious OA head ptr: non-integral report offset\n");
716 break;
717 }
718
719 /*
720 * The reason field includes flags identifying what
721 * triggered this specific report (mostly timer
722 * triggered or e.g. due to a context switch).
723 *
724 * This field is never expected to be zero so we can
725 * check that the report isn't invalid before copying
726 * it to userspace...
727 */
728 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
729 (IS_GEN(stream->perf->i915, 12) ?
730 OAREPORT_REASON_MASK_EXTENDED :
731 OAREPORT_REASON_MASK));
732 if (reason == 0) {
733 if (__ratelimit(&stream->perf->spurious_report_rs))
734 DRM_NOTE("Skipping spurious, invalid OA report\n");
735 continue;
736 }
737
738 ctx_id = report32[2] & stream->specific_ctx_id_mask;
739
740 /*
741 * Squash whatever is in the CTX_ID field if it's marked as
742 * invalid to be sure we avoid false-positive, single-context
743 * filtering below...
744 *
745 * Note: that we don't clear the valid_ctx_bit so userspace can
746 * understand that the ID has been squashed by the kernel.
747 */
748 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
749 INTEL_GEN(stream->perf->i915) <= 11)
750 ctx_id = report32[2] = INVALID_CTX_ID;
751
752 /*
753 * NB: For Gen 8 the OA unit no longer supports clock gating
754 * off for a specific context and the kernel can't securely
755 * stop the counters from updating as system-wide / global
756 * values.
757 *
758 * Automatic reports now include a context ID so reports can be
759 * filtered on the cpu but it's not worth trying to
760 * automatically subtract/hide counter progress for other
761 * contexts while filtering since we can't stop userspace
762 * issuing MI_REPORT_PERF_COUNT commands which would still
763 * provide a side-band view of the real values.
764 *
765 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
766 * to normalize counters for a single filtered context then it
767 * needs be forwarded bookend context-switch reports so that it
768 * can track switches in between MI_REPORT_PERF_COUNT commands
769 * and can itself subtract/ignore the progress of counters
770 * associated with other contexts. Note that the hardware
771 * automatically triggers reports when switching to a new
772 * context which are tagged with the ID of the newly active
773 * context. To avoid the complexity (and likely fragility) of
774 * reading ahead while parsing reports to try and minimize
775 * forwarding redundant context switch reports (i.e. between
776 * other, unrelated contexts) we simply elect to forward them
777 * all.
778 *
779 * We don't rely solely on the reason field to identify context
780 * switches since it's not-uncommon for periodic samples to
781 * identify a switch before any 'context switch' report.
782 */
783 if (!stream->perf->exclusive_stream->ctx ||
784 stream->specific_ctx_id == ctx_id ||
785 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
786 reason & OAREPORT_REASON_CTX_SWITCH) {
787
788 /*
789 * While filtering for a single context we avoid
790 * leaking the IDs of other contexts.
791 */
792 if (stream->perf->exclusive_stream->ctx &&
793 stream->specific_ctx_id != ctx_id) {
794 report32[2] = INVALID_CTX_ID;
795 }
796
797 ret = append_oa_sample(stream, buf, count, offset,
798 report);
799 if (ret)
800 break;
801
802 stream->oa_buffer.last_ctx_id = ctx_id;
803 }
804
805 /*
806 * Clear out the first 2 dword as a mean to detect unlanded
807 * reports.
808 */
809 report32[0] = 0;
810 report32[1] = 0;
811 }
812
813 if (start_offset != *offset) {
814 i915_reg_t oaheadptr;
815
816 oaheadptr = IS_GEN(stream->perf->i915, 12) ?
817 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
818
819 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
820
821 /*
822 * We removed the gtt_offset for the copy loop above, indexing
823 * relative to oa_buf_base so put back here...
824 */
825 head += gtt_offset;
826 intel_uncore_write(uncore, oaheadptr,
827 head & GEN12_OAG_OAHEADPTR_MASK);
828 stream->oa_buffer.head = head;
829
830 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
831 }
832
833 return ret;
834 }
835
836 /**
837 * gen8_oa_read - copy status records then buffered OA reports
838 * @stream: An i915-perf stream opened for OA metrics
839 * @buf: destination buffer given by userspace
840 * @count: the number of bytes userspace wants to read
841 * @offset: (inout): the current position for writing into @buf
842 *
843 * Checks OA unit status registers and if necessary appends corresponding
844 * status records for userspace (such as for a buffer full condition) and then
845 * initiate appending any buffered OA reports.
846 *
847 * Updates @offset according to the number of bytes successfully copied into
848 * the userspace buffer.
849 *
850 * NB: some data may be successfully copied to the userspace buffer
851 * even if an error is returned, and this is reflected in the
852 * updated @offset.
853 *
854 * Returns: zero on success or a negative error code
855 */
856 static int gen8_oa_read(struct i915_perf_stream *stream,
857 char __user *buf,
858 size_t count,
859 size_t *offset)
860 {
861 struct intel_uncore *uncore = stream->uncore;
862 u32 oastatus;
863 i915_reg_t oastatus_reg;
864 int ret;
865
866 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
867 return -EIO;
868
869 oastatus_reg = IS_GEN(stream->perf->i915, 12) ?
870 GEN12_OAG_OASTATUS : GEN8_OASTATUS;
871
872 oastatus = intel_uncore_read(uncore, oastatus_reg);
873
874 /*
875 * We treat OABUFFER_OVERFLOW as a significant error:
876 *
877 * Although theoretically we could handle this more gracefully
878 * sometimes, some Gens don't correctly suppress certain
879 * automatically triggered reports in this condition and so we
880 * have to assume that old reports are now being trampled
881 * over.
882 *
883 * Considering how we don't currently give userspace control
884 * over the OA buffer size and always configure a large 16MB
885 * buffer, then a buffer overflow does anyway likely indicate
886 * that something has gone quite badly wrong.
887 */
888 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
889 ret = append_oa_status(stream, buf, count, offset,
890 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
891 if (ret)
892 return ret;
893
894 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
895 stream->period_exponent);
896
897 stream->perf->ops.oa_disable(stream);
898 stream->perf->ops.oa_enable(stream);
899
900 /*
901 * Note: .oa_enable() is expected to re-init the oabuffer and
902 * reset GEN8_OASTATUS for us
903 */
904 oastatus = intel_uncore_read(uncore, oastatus_reg);
905 }
906
907 if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
908 ret = append_oa_status(stream, buf, count, offset,
909 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
910 if (ret)
911 return ret;
912 intel_uncore_write(uncore, oastatus_reg,
913 oastatus & ~GEN8_OASTATUS_REPORT_LOST);
914 }
915
916 return gen8_append_oa_reports(stream, buf, count, offset);
917 }
918
919 /**
920 * Copies all buffered OA reports into userspace read() buffer.
921 * @stream: An i915-perf stream opened for OA metrics
922 * @buf: destination buffer given by userspace
923 * @count: the number of bytes userspace wants to read
924 * @offset: (inout): the current position for writing into @buf
925 *
926 * Notably any error condition resulting in a short read (-%ENOSPC or
927 * -%EFAULT) will be returned even though one or more records may
928 * have been successfully copied. In this case it's up to the caller
929 * to decide if the error should be squashed before returning to
930 * userspace.
931 *
932 * Note: reports are consumed from the head, and appended to the
933 * tail, so the tail chases the head?... If you think that's mad
934 * and back-to-front you're not alone, but this follows the
935 * Gen PRM naming convention.
936 *
937 * Returns: 0 on success, negative error code on failure.
938 */
939 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
940 char __user *buf,
941 size_t count,
942 size_t *offset)
943 {
944 struct intel_uncore *uncore = stream->uncore;
945 int report_size = stream->oa_buffer.format_size;
946 u8 *oa_buf_base = stream->oa_buffer.vaddr;
947 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
948 u32 mask = (OA_BUFFER_SIZE - 1);
949 size_t start_offset = *offset;
950 unsigned long flags;
951 u32 head, tail;
952 u32 taken;
953 int ret = 0;
954
955 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
956 return -EIO;
957
958 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
959
960 head = stream->oa_buffer.head;
961 tail = stream->oa_buffer.tail;
962
963 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
964
965 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
966 * while indexing relative to oa_buf_base.
967 */
968 head -= gtt_offset;
969 tail -= gtt_offset;
970
971 /* An out of bounds or misaligned head or tail pointer implies a driver
972 * bug since we validate + align the tail pointers we read from the
973 * hardware and we are in full control of the head pointer which should
974 * only be incremented by multiples of the report size (notably also
975 * all a power of two).
976 */
977 if (drm_WARN_ONCE(&uncore->i915->drm,
978 head > OA_BUFFER_SIZE || head % report_size ||
979 tail > OA_BUFFER_SIZE || tail % report_size,
980 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
981 head, tail))
982 return -EIO;
983
984
985 for (/* none */;
986 (taken = OA_TAKEN(tail, head));
987 head = (head + report_size) & mask) {
988 u8 *report = oa_buf_base + head;
989 u32 *report32 = (void *)report;
990
991 /* All the report sizes factor neatly into the buffer
992 * size so we never expect to see a report split
993 * between the beginning and end of the buffer.
994 *
995 * Given the initial alignment check a misalignment
996 * here would imply a driver bug that would result
997 * in an overrun.
998 */
999 if (drm_WARN_ON(&uncore->i915->drm,
1000 (OA_BUFFER_SIZE - head) < report_size)) {
1001 drm_err(&uncore->i915->drm,
1002 "Spurious OA head ptr: non-integral report offset\n");
1003 break;
1004 }
1005
1006 /* The report-ID field for periodic samples includes
1007 * some undocumented flags related to what triggered
1008 * the report and is never expected to be zero so we
1009 * can check that the report isn't invalid before
1010 * copying it to userspace...
1011 */
1012 if (report32[0] == 0) {
1013 if (__ratelimit(&stream->perf->spurious_report_rs))
1014 DRM_NOTE("Skipping spurious, invalid OA report\n");
1015 continue;
1016 }
1017
1018 ret = append_oa_sample(stream, buf, count, offset, report);
1019 if (ret)
1020 break;
1021
1022 /* Clear out the first 2 dwords as a mean to detect unlanded
1023 * reports.
1024 */
1025 report32[0] = 0;
1026 report32[1] = 0;
1027 }
1028
1029 if (start_offset != *offset) {
1030 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1031
1032 /* We removed the gtt_offset for the copy loop above, indexing
1033 * relative to oa_buf_base so put back here...
1034 */
1035 head += gtt_offset;
1036
1037 intel_uncore_write(uncore, GEN7_OASTATUS2,
1038 (head & GEN7_OASTATUS2_HEAD_MASK) |
1039 GEN7_OASTATUS2_MEM_SELECT_GGTT);
1040 stream->oa_buffer.head = head;
1041
1042 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1043 }
1044
1045 return ret;
1046 }
1047
1048 /**
1049 * gen7_oa_read - copy status records then buffered OA reports
1050 * @stream: An i915-perf stream opened for OA metrics
1051 * @buf: destination buffer given by userspace
1052 * @count: the number of bytes userspace wants to read
1053 * @offset: (inout): the current position for writing into @buf
1054 *
1055 * Checks Gen 7 specific OA unit status registers and if necessary appends
1056 * corresponding status records for userspace (such as for a buffer full
1057 * condition) and then initiate appending any buffered OA reports.
1058 *
1059 * Updates @offset according to the number of bytes successfully copied into
1060 * the userspace buffer.
1061 *
1062 * Returns: zero on success or a negative error code
1063 */
1064 static int gen7_oa_read(struct i915_perf_stream *stream,
1065 char __user *buf,
1066 size_t count,
1067 size_t *offset)
1068 {
1069 struct intel_uncore *uncore = stream->uncore;
1070 u32 oastatus1;
1071 int ret;
1072
1073 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1074 return -EIO;
1075
1076 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1077
1078 /* XXX: On Haswell we don't have a safe way to clear oastatus1
1079 * bits while the OA unit is enabled (while the tail pointer
1080 * may be updated asynchronously) so we ignore status bits
1081 * that have already been reported to userspace.
1082 */
1083 oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1084
1085 /* We treat OABUFFER_OVERFLOW as a significant error:
1086 *
1087 * - The status can be interpreted to mean that the buffer is
1088 * currently full (with a higher precedence than OA_TAKEN()
1089 * which will start to report a near-empty buffer after an
1090 * overflow) but it's awkward that we can't clear the status
1091 * on Haswell, so without a reset we won't be able to catch
1092 * the state again.
1093 *
1094 * - Since it also implies the HW has started overwriting old
1095 * reports it may also affect our sanity checks for invalid
1096 * reports when copying to userspace that assume new reports
1097 * are being written to cleared memory.
1098 *
1099 * - In the future we may want to introduce a flight recorder
1100 * mode where the driver will automatically maintain a safe
1101 * guard band between head/tail, avoiding this overflow
1102 * condition, but we avoid the added driver complexity for
1103 * now.
1104 */
1105 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1106 ret = append_oa_status(stream, buf, count, offset,
1107 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1108 if (ret)
1109 return ret;
1110
1111 DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1112 stream->period_exponent);
1113
1114 stream->perf->ops.oa_disable(stream);
1115 stream->perf->ops.oa_enable(stream);
1116
1117 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1118 }
1119
1120 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1121 ret = append_oa_status(stream, buf, count, offset,
1122 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1123 if (ret)
1124 return ret;
1125 stream->perf->gen7_latched_oastatus1 |=
1126 GEN7_OASTATUS1_REPORT_LOST;
1127 }
1128
1129 return gen7_append_oa_reports(stream, buf, count, offset);
1130 }
1131
1132 /**
1133 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1134 * @stream: An i915-perf stream opened for OA metrics
1135 *
1136 * Called when userspace tries to read() from a blocking stream FD opened
1137 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1138 * OA buffer and wakes us.
1139 *
1140 * Note: it's acceptable to have this return with some false positives
1141 * since any subsequent read handling will return -EAGAIN if there isn't
1142 * really data ready for userspace yet.
1143 *
1144 * Returns: zero on success or a negative error code
1145 */
1146 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1147 {
1148 /* We would wait indefinitely if periodic sampling is not enabled */
1149 if (!stream->periodic)
1150 return -EIO;
1151
1152 return wait_event_interruptible(stream->poll_wq,
1153 oa_buffer_check_unlocked(stream));
1154 }
1155
1156 /**
1157 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1158 * @stream: An i915-perf stream opened for OA metrics
1159 * @file: An i915 perf stream file
1160 * @wait: poll() state table
1161 *
1162 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1163 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1164 * when it sees data ready to read in the circular OA buffer.
1165 */
1166 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1167 struct file *file,
1168 poll_table *wait)
1169 {
1170 poll_wait(file, &stream->poll_wq, wait);
1171 }
1172
1173 /**
1174 * i915_oa_read - just calls through to &i915_oa_ops->read
1175 * @stream: An i915-perf stream opened for OA metrics
1176 * @buf: destination buffer given by userspace
1177 * @count: the number of bytes userspace wants to read
1178 * @offset: (inout): the current position for writing into @buf
1179 *
1180 * Updates @offset according to the number of bytes successfully copied into
1181 * the userspace buffer.
1182 *
1183 * Returns: zero on success or a negative error code
1184 */
1185 static int i915_oa_read(struct i915_perf_stream *stream,
1186 char __user *buf,
1187 size_t count,
1188 size_t *offset)
1189 {
1190 return stream->perf->ops.read(stream, buf, count, offset);
1191 }
1192
1193 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1194 {
1195 struct i915_gem_engines_iter it;
1196 struct i915_gem_context *ctx = stream->ctx;
1197 struct intel_context *ce;
1198 int err;
1199
1200 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1201 if (ce->engine != stream->engine) /* first match! */
1202 continue;
1203
1204 /*
1205 * As the ID is the gtt offset of the context's vma we
1206 * pin the vma to ensure the ID remains fixed.
1207 */
1208 err = intel_context_pin(ce);
1209 if (err == 0) {
1210 stream->pinned_ctx = ce;
1211 break;
1212 }
1213 }
1214 i915_gem_context_unlock_engines(ctx);
1215
1216 return stream->pinned_ctx;
1217 }
1218
1219 /**
1220 * oa_get_render_ctx_id - determine and hold ctx hw id
1221 * @stream: An i915-perf stream opened for OA metrics
1222 *
1223 * Determine the render context hw id, and ensure it remains fixed for the
1224 * lifetime of the stream. This ensures that we don't have to worry about
1225 * updating the context ID in OACONTROL on the fly.
1226 *
1227 * Returns: zero on success or a negative error code
1228 */
1229 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1230 {
1231 struct intel_context *ce;
1232
1233 ce = oa_pin_context(stream);
1234 if (IS_ERR(ce))
1235 return PTR_ERR(ce);
1236
1237 switch (INTEL_GEN(ce->engine->i915)) {
1238 case 7: {
1239 /*
1240 * On Haswell we don't do any post processing of the reports
1241 * and don't need to use the mask.
1242 */
1243 stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1244 stream->specific_ctx_id_mask = 0;
1245 break;
1246 }
1247
1248 case 8:
1249 case 9:
1250 case 10:
1251 if (intel_engine_in_execlists_submission_mode(ce->engine)) {
1252 stream->specific_ctx_id_mask =
1253 (1U << GEN8_CTX_ID_WIDTH) - 1;
1254 stream->specific_ctx_id = stream->specific_ctx_id_mask;
1255 } else {
1256 /*
1257 * When using GuC, the context descriptor we write in
1258 * i915 is read by GuC and rewritten before it's
1259 * actually written into the hardware. The LRCA is
1260 * what is put into the context id field of the
1261 * context descriptor by GuC. Because it's aligned to
1262 * a page, the lower 12bits are always at 0 and
1263 * dropped by GuC. They won't be part of the context
1264 * ID in the OA reports, so squash those lower bits.
1265 */
1266 stream->specific_ctx_id = ce->lrc.lrca >> 12;
1267
1268 /*
1269 * GuC uses the top bit to signal proxy submission, so
1270 * ignore that bit.
1271 */
1272 stream->specific_ctx_id_mask =
1273 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1274 }
1275 break;
1276
1277 case 11:
1278 case 12: {
1279 stream->specific_ctx_id_mask =
1280 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1281 /*
1282 * Pick an unused context id
1283 * 0 - BITS_PER_LONG are used by other contexts
1284 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context
1285 */
1286 stream->specific_ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1287 break;
1288 }
1289
1290 default:
1291 MISSING_CASE(INTEL_GEN(ce->engine->i915));
1292 }
1293
1294 ce->tag = stream->specific_ctx_id;
1295
1296 drm_dbg(&stream->perf->i915->drm,
1297 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1298 stream->specific_ctx_id,
1299 stream->specific_ctx_id_mask);
1300
1301 return 0;
1302 }
1303
1304 /**
1305 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1306 * @stream: An i915-perf stream opened for OA metrics
1307 *
1308 * In case anything needed doing to ensure the context HW ID would remain valid
1309 * for the lifetime of the stream, then that can be undone here.
1310 */
1311 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1312 {
1313 struct intel_context *ce;
1314
1315 ce = fetch_and_zero(&stream->pinned_ctx);
1316 if (ce) {
1317 ce->tag = 0; /* recomputed on next submission after parking */
1318 intel_context_unpin(ce);
1319 }
1320
1321 stream->specific_ctx_id = INVALID_CTX_ID;
1322 stream->specific_ctx_id_mask = 0;
1323 }
1324
1325 static void
1326 free_oa_buffer(struct i915_perf_stream *stream)
1327 {
1328 i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1329 I915_VMA_RELEASE_MAP);
1330
1331 stream->oa_buffer.vaddr = NULL;
1332 }
1333
1334 static void
1335 free_oa_configs(struct i915_perf_stream *stream)
1336 {
1337 struct i915_oa_config_bo *oa_bo, *tmp;
1338
1339 i915_oa_config_put(stream->oa_config);
1340 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1341 free_oa_config_bo(oa_bo);
1342 }
1343
1344 static void
1345 free_noa_wait(struct i915_perf_stream *stream)
1346 {
1347 i915_vma_unpin_and_release(&stream->noa_wait, 0);
1348 }
1349
1350 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1351 {
1352 struct i915_perf *perf = stream->perf;
1353
1354 BUG_ON(stream != perf->exclusive_stream);
1355
1356 /*
1357 * Unset exclusive_stream first, it will be checked while disabling
1358 * the metric set on gen8+.
1359 *
1360 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1361 */
1362 WRITE_ONCE(perf->exclusive_stream, NULL);
1363 perf->ops.disable_metric_set(stream);
1364
1365 free_oa_buffer(stream);
1366
1367 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1368 intel_engine_pm_put(stream->engine);
1369
1370 if (stream->ctx)
1371 oa_put_render_ctx_id(stream);
1372
1373 free_oa_configs(stream);
1374 free_noa_wait(stream);
1375
1376 if (perf->spurious_report_rs.missed) {
1377 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1378 perf->spurious_report_rs.missed);
1379 }
1380 }
1381
1382 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1383 {
1384 struct intel_uncore *uncore = stream->uncore;
1385 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1386 unsigned long flags;
1387
1388 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1389
1390 /* Pre-DevBDW: OABUFFER must be set with counters off,
1391 * before OASTATUS1, but after OASTATUS2
1392 */
1393 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1394 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1395 stream->oa_buffer.head = gtt_offset;
1396
1397 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1398
1399 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1400 gtt_offset | OABUFFER_SIZE_16M);
1401
1402 /* Mark that we need updated tail pointers to read from... */
1403 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1404 stream->oa_buffer.tail = gtt_offset;
1405
1406 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1407
1408 /* On Haswell we have to track which OASTATUS1 flags we've
1409 * already seen since they can't be cleared while periodic
1410 * sampling is enabled.
1411 */
1412 stream->perf->gen7_latched_oastatus1 = 0;
1413
1414 /* NB: although the OA buffer will initially be allocated
1415 * zeroed via shmfs (and so this memset is redundant when
1416 * first allocating), we may re-init the OA buffer, either
1417 * when re-enabling a stream or in error/reset paths.
1418 *
1419 * The reason we clear the buffer for each re-init is for the
1420 * sanity check in gen7_append_oa_reports() that looks at the
1421 * report-id field to make sure it's non-zero which relies on
1422 * the assumption that new reports are being written to zeroed
1423 * memory...
1424 */
1425 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1426 }
1427
1428 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1429 {
1430 struct intel_uncore *uncore = stream->uncore;
1431 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1432 unsigned long flags;
1433
1434 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1435
1436 intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1437 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1438 stream->oa_buffer.head = gtt_offset;
1439
1440 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1441
1442 /*
1443 * PRM says:
1444 *
1445 * "This MMIO must be set before the OATAILPTR
1446 * register and after the OAHEADPTR register. This is
1447 * to enable proper functionality of the overflow
1448 * bit."
1449 */
1450 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1451 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1452 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1453
1454 /* Mark that we need updated tail pointers to read from... */
1455 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1456 stream->oa_buffer.tail = gtt_offset;
1457
1458 /*
1459 * Reset state used to recognise context switches, affecting which
1460 * reports we will forward to userspace while filtering for a single
1461 * context.
1462 */
1463 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1464
1465 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1466
1467 /*
1468 * NB: although the OA buffer will initially be allocated
1469 * zeroed via shmfs (and so this memset is redundant when
1470 * first allocating), we may re-init the OA buffer, either
1471 * when re-enabling a stream or in error/reset paths.
1472 *
1473 * The reason we clear the buffer for each re-init is for the
1474 * sanity check in gen8_append_oa_reports() that looks at the
1475 * reason field to make sure it's non-zero which relies on
1476 * the assumption that new reports are being written to zeroed
1477 * memory...
1478 */
1479 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1480 }
1481
1482 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1483 {
1484 struct intel_uncore *uncore = stream->uncore;
1485 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1486 unsigned long flags;
1487
1488 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1489
1490 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
1491 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
1492 gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1493 stream->oa_buffer.head = gtt_offset;
1494
1495 /*
1496 * PRM says:
1497 *
1498 * "This MMIO must be set before the OATAILPTR
1499 * register and after the OAHEADPTR register. This is
1500 * to enable proper functionality of the overflow
1501 * bit."
1502 */
1503 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
1504 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1505 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
1506 gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1507
1508 /* Mark that we need updated tail pointers to read from... */
1509 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1510 stream->oa_buffer.tail = gtt_offset;
1511
1512 /*
1513 * Reset state used to recognise context switches, affecting which
1514 * reports we will forward to userspace while filtering for a single
1515 * context.
1516 */
1517 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1518
1519 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1520
1521 /*
1522 * NB: although the OA buffer will initially be allocated
1523 * zeroed via shmfs (and so this memset is redundant when
1524 * first allocating), we may re-init the OA buffer, either
1525 * when re-enabling a stream or in error/reset paths.
1526 *
1527 * The reason we clear the buffer for each re-init is for the
1528 * sanity check in gen8_append_oa_reports() that looks at the
1529 * reason field to make sure it's non-zero which relies on
1530 * the assumption that new reports are being written to zeroed
1531 * memory...
1532 */
1533 memset(stream->oa_buffer.vaddr, 0,
1534 stream->oa_buffer.vma->size);
1535 }
1536
1537 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1538 {
1539 struct drm_i915_private *i915 = stream->perf->i915;
1540 struct drm_i915_gem_object *bo;
1541 struct i915_vma *vma;
1542 int ret;
1543
1544 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1545 return -ENODEV;
1546
1547 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1548 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1549
1550 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1551 if (IS_ERR(bo)) {
1552 drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1553 return PTR_ERR(bo);
1554 }
1555
1556 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1557
1558 /* PreHSW required 512K alignment, HSW requires 16M */
1559 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1560 if (IS_ERR(vma)) {
1561 ret = PTR_ERR(vma);
1562 goto err_unref;
1563 }
1564 stream->oa_buffer.vma = vma;
1565
1566 stream->oa_buffer.vaddr =
1567 i915_gem_object_pin_map(bo, I915_MAP_WB);
1568 if (IS_ERR(stream->oa_buffer.vaddr)) {
1569 ret = PTR_ERR(stream->oa_buffer.vaddr);
1570 goto err_unpin;
1571 }
1572
1573 return 0;
1574
1575 err_unpin:
1576 __i915_vma_unpin(vma);
1577
1578 err_unref:
1579 i915_gem_object_put(bo);
1580
1581 stream->oa_buffer.vaddr = NULL;
1582 stream->oa_buffer.vma = NULL;
1583
1584 return ret;
1585 }
1586
1587 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1588 bool save, i915_reg_t reg, u32 offset,
1589 u32 dword_count)
1590 {
1591 u32 cmd;
1592 u32 d;
1593
1594 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1595 if (INTEL_GEN(stream->perf->i915) >= 8)
1596 cmd++;
1597
1598 for (d = 0; d < dword_count; d++) {
1599 *cs++ = cmd;
1600 *cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1601 *cs++ = intel_gt_scratch_offset(stream->engine->gt,
1602 offset) + 4 * d;
1603 *cs++ = 0;
1604 }
1605
1606 return cs;
1607 }
1608
1609 static int alloc_noa_wait(struct i915_perf_stream *stream)
1610 {
1611 struct drm_i915_private *i915 = stream->perf->i915;
1612 struct drm_i915_gem_object *bo;
1613 struct i915_vma *vma;
1614 const u64 delay_ticks = 0xffffffffffffffff -
1615 i915_cs_timestamp_ns_to_ticks(i915, atomic64_read(&stream->perf->noa_programming_delay));
1616 const u32 base = stream->engine->mmio_base;
1617 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1618 u32 *batch, *ts0, *cs, *jump;
1619 int ret, i;
1620 enum {
1621 START_TS,
1622 NOW_TS,
1623 DELTA_TS,
1624 JUMP_PREDICATE,
1625 DELTA_TARGET,
1626 N_CS_GPR
1627 };
1628
1629 bo = i915_gem_object_create_internal(i915, 4096);
1630 if (IS_ERR(bo)) {
1631 drm_err(&i915->drm,
1632 "Failed to allocate NOA wait batchbuffer\n");
1633 return PTR_ERR(bo);
1634 }
1635
1636 /*
1637 * We pin in GGTT because we jump into this buffer now because
1638 * multiple OA config BOs will have a jump to this address and it
1639 * needs to be fixed during the lifetime of the i915/perf stream.
1640 */
1641 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH);
1642 if (IS_ERR(vma)) {
1643 ret = PTR_ERR(vma);
1644 goto err_unref;
1645 }
1646
1647 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1648 if (IS_ERR(batch)) {
1649 ret = PTR_ERR(batch);
1650 goto err_unpin;
1651 }
1652
1653 /* Save registers. */
1654 for (i = 0; i < N_CS_GPR; i++)
1655 cs = save_restore_register(
1656 stream, cs, true /* save */, CS_GPR(i),
1657 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1658 cs = save_restore_register(
1659 stream, cs, true /* save */, MI_PREDICATE_RESULT_1,
1660 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1661
1662 /* First timestamp snapshot location. */
1663 ts0 = cs;
1664
1665 /*
1666 * Initial snapshot of the timestamp register to implement the wait.
1667 * We work with 32b values, so clear out the top 32b bits of the
1668 * register because the ALU works 64bits.
1669 */
1670 *cs++ = MI_LOAD_REGISTER_IMM(1);
1671 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1672 *cs++ = 0;
1673 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1674 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1675 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1676
1677 /*
1678 * This is the location we're going to jump back into until the
1679 * required amount of time has passed.
1680 */
1681 jump = cs;
1682
1683 /*
1684 * Take another snapshot of the timestamp register. Take care to clear
1685 * up the top 32bits of CS_GPR(1) as we're using it for other
1686 * operations below.
1687 */
1688 *cs++ = MI_LOAD_REGISTER_IMM(1);
1689 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
1690 *cs++ = 0;
1691 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1692 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1693 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
1694
1695 /*
1696 * Do a diff between the 2 timestamps and store the result back into
1697 * CS_GPR(1).
1698 */
1699 *cs++ = MI_MATH(5);
1700 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
1701 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
1702 *cs++ = MI_MATH_SUB;
1703 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
1704 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1705
1706 /*
1707 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1708 * timestamp have rolled over the 32bits) into the predicate register
1709 * to be used for the predicated jump.
1710 */
1711 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1712 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1713 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1714
1715 /* Restart from the beginning if we had timestamps roll over. */
1716 *cs++ = (INTEL_GEN(i915) < 8 ?
1717 MI_BATCH_BUFFER_START :
1718 MI_BATCH_BUFFER_START_GEN8) |
1719 MI_BATCH_PREDICATE;
1720 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
1721 *cs++ = 0;
1722
1723 /*
1724 * Now add the diff between to previous timestamps and add it to :
1725 * (((1 * << 64) - 1) - delay_ns)
1726 *
1727 * When the Carry Flag contains 1 this means the elapsed time is
1728 * longer than the expected delay, and we can exit the wait loop.
1729 */
1730 *cs++ = MI_LOAD_REGISTER_IMM(2);
1731 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
1732 *cs++ = lower_32_bits(delay_ticks);
1733 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
1734 *cs++ = upper_32_bits(delay_ticks);
1735
1736 *cs++ = MI_MATH(4);
1737 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
1738 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
1739 *cs++ = MI_MATH_ADD;
1740 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1741
1742 *cs++ = MI_ARB_CHECK;
1743
1744 /*
1745 * Transfer the result into the predicate register to be used for the
1746 * predicated jump.
1747 */
1748 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1749 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1750 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1751
1752 /* Predicate the jump. */
1753 *cs++ = (INTEL_GEN(i915) < 8 ?
1754 MI_BATCH_BUFFER_START :
1755 MI_BATCH_BUFFER_START_GEN8) |
1756 MI_BATCH_PREDICATE;
1757 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
1758 *cs++ = 0;
1759
1760 /* Restore registers. */
1761 for (i = 0; i < N_CS_GPR; i++)
1762 cs = save_restore_register(
1763 stream, cs, false /* restore */, CS_GPR(i),
1764 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1765 cs = save_restore_register(
1766 stream, cs, false /* restore */, MI_PREDICATE_RESULT_1,
1767 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1768
1769 /* And return to the ring. */
1770 *cs++ = MI_BATCH_BUFFER_END;
1771
1772 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
1773
1774 i915_gem_object_flush_map(bo);
1775 i915_gem_object_unpin_map(bo);
1776
1777 stream->noa_wait = vma;
1778 return 0;
1779
1780 err_unpin:
1781 i915_vma_unpin_and_release(&vma, 0);
1782 err_unref:
1783 i915_gem_object_put(bo);
1784 return ret;
1785 }
1786
1787 static u32 *write_cs_mi_lri(u32 *cs,
1788 const struct i915_oa_reg *reg_data,
1789 u32 n_regs)
1790 {
1791 u32 i;
1792
1793 for (i = 0; i < n_regs; i++) {
1794 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
1795 u32 n_lri = min_t(u32,
1796 n_regs - i,
1797 MI_LOAD_REGISTER_IMM_MAX_REGS);
1798
1799 *cs++ = MI_LOAD_REGISTER_IMM(n_lri);
1800 }
1801 *cs++ = i915_mmio_reg_offset(reg_data[i].addr);
1802 *cs++ = reg_data[i].value;
1803 }
1804
1805 return cs;
1806 }
1807
1808 static int num_lri_dwords(int num_regs)
1809 {
1810 int count = 0;
1811
1812 if (num_regs > 0) {
1813 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
1814 count += num_regs * 2;
1815 }
1816
1817 return count;
1818 }
1819
1820 static struct i915_oa_config_bo *
1821 alloc_oa_config_buffer(struct i915_perf_stream *stream,
1822 struct i915_oa_config *oa_config)
1823 {
1824 struct drm_i915_gem_object *obj;
1825 struct i915_oa_config_bo *oa_bo;
1826 size_t config_length = 0;
1827 u32 *cs;
1828 int err;
1829
1830 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
1831 if (!oa_bo)
1832 return ERR_PTR(-ENOMEM);
1833
1834 config_length += num_lri_dwords(oa_config->mux_regs_len);
1835 config_length += num_lri_dwords(oa_config->b_counter_regs_len);
1836 config_length += num_lri_dwords(oa_config->flex_regs_len);
1837 config_length += 3; /* MI_BATCH_BUFFER_START */
1838 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
1839
1840 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
1841 if (IS_ERR(obj)) {
1842 err = PTR_ERR(obj);
1843 goto err_free;
1844 }
1845
1846 cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
1847 if (IS_ERR(cs)) {
1848 err = PTR_ERR(cs);
1849 goto err_oa_bo;
1850 }
1851
1852 cs = write_cs_mi_lri(cs,
1853 oa_config->mux_regs,
1854 oa_config->mux_regs_len);
1855 cs = write_cs_mi_lri(cs,
1856 oa_config->b_counter_regs,
1857 oa_config->b_counter_regs_len);
1858 cs = write_cs_mi_lri(cs,
1859 oa_config->flex_regs,
1860 oa_config->flex_regs_len);
1861
1862 /* Jump into the active wait. */
1863 *cs++ = (INTEL_GEN(stream->perf->i915) < 8 ?
1864 MI_BATCH_BUFFER_START :
1865 MI_BATCH_BUFFER_START_GEN8);
1866 *cs++ = i915_ggtt_offset(stream->noa_wait);
1867 *cs++ = 0;
1868
1869 i915_gem_object_flush_map(obj);
1870 i915_gem_object_unpin_map(obj);
1871
1872 oa_bo->vma = i915_vma_instance(obj,
1873 &stream->engine->gt->ggtt->vm,
1874 NULL);
1875 if (IS_ERR(oa_bo->vma)) {
1876 err = PTR_ERR(oa_bo->vma);
1877 goto err_oa_bo;
1878 }
1879
1880 oa_bo->oa_config = i915_oa_config_get(oa_config);
1881 llist_add(&oa_bo->node, &stream->oa_config_bos);
1882
1883 return oa_bo;
1884
1885 err_oa_bo:
1886 i915_gem_object_put(obj);
1887 err_free:
1888 kfree(oa_bo);
1889 return ERR_PTR(err);
1890 }
1891
1892 static struct i915_vma *
1893 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
1894 {
1895 struct i915_oa_config_bo *oa_bo;
1896
1897 /*
1898 * Look for the buffer in the already allocated BOs attached
1899 * to the stream.
1900 */
1901 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
1902 if (oa_bo->oa_config == oa_config &&
1903 memcmp(oa_bo->oa_config->uuid,
1904 oa_config->uuid,
1905 sizeof(oa_config->uuid)) == 0)
1906 goto out;
1907 }
1908
1909 oa_bo = alloc_oa_config_buffer(stream, oa_config);
1910 if (IS_ERR(oa_bo))
1911 return ERR_CAST(oa_bo);
1912
1913 out:
1914 return i915_vma_get(oa_bo->vma);
1915 }
1916
1917 static int
1918 emit_oa_config(struct i915_perf_stream *stream,
1919 struct i915_oa_config *oa_config,
1920 struct intel_context *ce,
1921 struct i915_active *active)
1922 {
1923 struct i915_request *rq;
1924 struct i915_vma *vma;
1925 int err;
1926
1927 vma = get_oa_vma(stream, oa_config);
1928 if (IS_ERR(vma))
1929 return PTR_ERR(vma);
1930
1931 err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1932 if (err)
1933 goto err_vma_put;
1934
1935 intel_engine_pm_get(ce->engine);
1936 rq = i915_request_create(ce);
1937 intel_engine_pm_put(ce->engine);
1938 if (IS_ERR(rq)) {
1939 err = PTR_ERR(rq);
1940 goto err_vma_unpin;
1941 }
1942
1943 if (!IS_ERR_OR_NULL(active)) {
1944 /* After all individual context modifications */
1945 err = i915_request_await_active(rq, active,
1946 I915_ACTIVE_AWAIT_ACTIVE);
1947 if (err)
1948 goto err_add_request;
1949
1950 err = i915_active_add_request(active, rq);
1951 if (err)
1952 goto err_add_request;
1953 }
1954
1955 i915_vma_lock(vma);
1956 err = i915_request_await_object(rq, vma->obj, 0);
1957 if (!err)
1958 err = i915_vma_move_to_active(vma, rq, 0);
1959 i915_vma_unlock(vma);
1960 if (err)
1961 goto err_add_request;
1962
1963 err = rq->engine->emit_bb_start(rq,
1964 vma->node.start, 0,
1965 I915_DISPATCH_SECURE);
1966 if (err)
1967 goto err_add_request;
1968
1969 err_add_request:
1970 i915_request_add(rq);
1971 err_vma_unpin:
1972 i915_vma_unpin(vma);
1973 err_vma_put:
1974 i915_vma_put(vma);
1975 return err;
1976 }
1977
1978 static struct intel_context *oa_context(struct i915_perf_stream *stream)
1979 {
1980 return stream->pinned_ctx ?: stream->engine->kernel_context;
1981 }
1982
1983 static int
1984 hsw_enable_metric_set(struct i915_perf_stream *stream,
1985 struct i915_active *active)
1986 {
1987 struct intel_uncore *uncore = stream->uncore;
1988
1989 /*
1990 * PRM:
1991 *
1992 * OA unit is using “crclk” for its functionality. When trunk
1993 * level clock gating takes place, OA clock would be gated,
1994 * unable to count the events from non-render clock domain.
1995 * Render clock gating must be disabled when OA is enabled to
1996 * count the events from non-render domain. Unit level clock
1997 * gating for RCS should also be disabled.
1998 */
1999 intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2000 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2001 intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2002 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2003
2004 return emit_oa_config(stream,
2005 stream->oa_config, oa_context(stream),
2006 active);
2007 }
2008
2009 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2010 {
2011 struct intel_uncore *uncore = stream->uncore;
2012
2013 intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2014 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2015 intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2016 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2017
2018 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2019 }
2020
2021 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2022 i915_reg_t reg)
2023 {
2024 u32 mmio = i915_mmio_reg_offset(reg);
2025 int i;
2026
2027 /*
2028 * This arbitrary default will select the 'EU FPU0 Pipeline
2029 * Active' event. In the future it's anticipated that there
2030 * will be an explicit 'No Event' we can select, but not yet...
2031 */
2032 if (!oa_config)
2033 return 0;
2034
2035 for (i = 0; i < oa_config->flex_regs_len; i++) {
2036 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2037 return oa_config->flex_regs[i].value;
2038 }
2039
2040 return 0;
2041 }
2042 /*
2043 * NB: It must always remain pointer safe to run this even if the OA unit
2044 * has been disabled.
2045 *
2046 * It's fine to put out-of-date values into these per-context registers
2047 * in the case that the OA unit has been disabled.
2048 */
2049 static void
2050 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2051 const struct i915_perf_stream *stream)
2052 {
2053 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2054 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2055 /* The MMIO offsets for Flex EU registers aren't contiguous */
2056 i915_reg_t flex_regs[] = {
2057 EU_PERF_CNTL0,
2058 EU_PERF_CNTL1,
2059 EU_PERF_CNTL2,
2060 EU_PERF_CNTL3,
2061 EU_PERF_CNTL4,
2062 EU_PERF_CNTL5,
2063 EU_PERF_CNTL6,
2064 };
2065 u32 *reg_state = ce->lrc_reg_state;
2066 int i;
2067
2068 reg_state[ctx_oactxctrl + 1] =
2069 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2070 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2071 GEN8_OA_COUNTER_RESUME;
2072
2073 for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2074 reg_state[ctx_flexeu0 + i * 2 + 1] =
2075 oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2076 }
2077
2078 struct flex {
2079 i915_reg_t reg;
2080 u32 offset;
2081 u32 value;
2082 };
2083
2084 static int
2085 gen8_store_flex(struct i915_request *rq,
2086 struct intel_context *ce,
2087 const struct flex *flex, unsigned int count)
2088 {
2089 u32 offset;
2090 u32 *cs;
2091
2092 cs = intel_ring_begin(rq, 4 * count);
2093 if (IS_ERR(cs))
2094 return PTR_ERR(cs);
2095
2096 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2097 do {
2098 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2099 *cs++ = offset + flex->offset * sizeof(u32);
2100 *cs++ = 0;
2101 *cs++ = flex->value;
2102 } while (flex++, --count);
2103
2104 intel_ring_advance(rq, cs);
2105
2106 return 0;
2107 }
2108
2109 static int
2110 gen8_load_flex(struct i915_request *rq,
2111 struct intel_context *ce,
2112 const struct flex *flex, unsigned int count)
2113 {
2114 u32 *cs;
2115
2116 GEM_BUG_ON(!count || count > 63);
2117
2118 cs = intel_ring_begin(rq, 2 * count + 2);
2119 if (IS_ERR(cs))
2120 return PTR_ERR(cs);
2121
2122 *cs++ = MI_LOAD_REGISTER_IMM(count);
2123 do {
2124 *cs++ = i915_mmio_reg_offset(flex->reg);
2125 *cs++ = flex->value;
2126 } while (flex++, --count);
2127 *cs++ = MI_NOOP;
2128
2129 intel_ring_advance(rq, cs);
2130
2131 return 0;
2132 }
2133
2134 static int gen8_modify_context(struct intel_context *ce,
2135 const struct flex *flex, unsigned int count)
2136 {
2137 struct i915_request *rq;
2138 int err;
2139
2140 rq = intel_engine_create_kernel_request(ce->engine);
2141 if (IS_ERR(rq))
2142 return PTR_ERR(rq);
2143
2144 /* Serialise with the remote context */
2145 err = intel_context_prepare_remote_request(ce, rq);
2146 if (err == 0)
2147 err = gen8_store_flex(rq, ce, flex, count);
2148
2149 i915_request_add(rq);
2150 return err;
2151 }
2152
2153 static int
2154 gen8_modify_self(struct intel_context *ce,
2155 const struct flex *flex, unsigned int count,
2156 struct i915_active *active)
2157 {
2158 struct i915_request *rq;
2159 int err;
2160
2161 intel_engine_pm_get(ce->engine);
2162 rq = i915_request_create(ce);
2163 intel_engine_pm_put(ce->engine);
2164 if (IS_ERR(rq))
2165 return PTR_ERR(rq);
2166
2167 if (!IS_ERR_OR_NULL(active)) {
2168 err = i915_active_add_request(active, rq);
2169 if (err)
2170 goto err_add_request;
2171 }
2172
2173 err = gen8_load_flex(rq, ce, flex, count);
2174 if (err)
2175 goto err_add_request;
2176
2177 err_add_request:
2178 i915_request_add(rq);
2179 return err;
2180 }
2181
2182 static int gen8_configure_context(struct i915_gem_context *ctx,
2183 struct flex *flex, unsigned int count)
2184 {
2185 struct i915_gem_engines_iter it;
2186 struct intel_context *ce;
2187 int err = 0;
2188
2189 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2190 GEM_BUG_ON(ce == ce->engine->kernel_context);
2191
2192 if (ce->engine->class != RENDER_CLASS)
2193 continue;
2194
2195 /* Otherwise OA settings will be set upon first use */
2196 if (!intel_context_pin_if_active(ce))
2197 continue;
2198
2199 flex->value = intel_sseu_make_rpcs(ctx->i915, &ce->sseu);
2200 err = gen8_modify_context(ce, flex, count);
2201
2202 intel_context_unpin(ce);
2203 if (err)
2204 break;
2205 }
2206 i915_gem_context_unlock_engines(ctx);
2207
2208 return err;
2209 }
2210
2211 static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2212 struct i915_active *active)
2213 {
2214 int err;
2215 struct intel_context *ce = stream->pinned_ctx;
2216 u32 format = stream->oa_buffer.format;
2217 struct flex regs_context[] = {
2218 {
2219 GEN8_OACTXCONTROL,
2220 stream->perf->ctx_oactxctrl_offset + 1,
2221 active ? GEN8_OA_COUNTER_RESUME : 0,
2222 },
2223 };
2224 /* Offsets in regs_lri are not used since this configuration is only
2225 * applied using LRI. Initialize the correct offsets for posterity.
2226 */
2227 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2228 struct flex regs_lri[] = {
2229 {
2230 GEN12_OAR_OACONTROL,
2231 GEN12_OAR_OACONTROL_OFFSET + 1,
2232 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2233 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2234 },
2235 {
2236 RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2237 CTX_CONTEXT_CONTROL,
2238 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2239 active ?
2240 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2241 0)
2242 },
2243 };
2244
2245 /* Modify the context image of pinned context with regs_context*/
2246 err = intel_context_lock_pinned(ce);
2247 if (err)
2248 return err;
2249
2250 err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context));
2251 intel_context_unlock_pinned(ce);
2252 if (err)
2253 return err;
2254
2255 /* Apply regs_lri using LRI with pinned context */
2256 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2257 }
2258
2259 /*
2260 * Manages updating the per-context aspects of the OA stream
2261 * configuration across all contexts.
2262 *
2263 * The awkward consideration here is that OACTXCONTROL controls the
2264 * exponent for periodic sampling which is primarily used for system
2265 * wide profiling where we'd like a consistent sampling period even in
2266 * the face of context switches.
2267 *
2268 * Our approach of updating the register state context (as opposed to
2269 * say using a workaround batch buffer) ensures that the hardware
2270 * won't automatically reload an out-of-date timer exponent even
2271 * transiently before a WA BB could be parsed.
2272 *
2273 * This function needs to:
2274 * - Ensure the currently running context's per-context OA state is
2275 * updated
2276 * - Ensure that all existing contexts will have the correct per-context
2277 * OA state if they are scheduled for use.
2278 * - Ensure any new contexts will be initialized with the correct
2279 * per-context OA state.
2280 *
2281 * Note: it's only the RCS/Render context that has any OA state.
2282 * Note: the first flex register passed must always be R_PWR_CLK_STATE
2283 */
2284 static int
2285 oa_configure_all_contexts(struct i915_perf_stream *stream,
2286 struct flex *regs,
2287 size_t num_regs,
2288 struct i915_active *active)
2289 {
2290 struct drm_i915_private *i915 = stream->perf->i915;
2291 struct intel_engine_cs *engine;
2292 struct i915_gem_context *ctx, *cn;
2293 int err;
2294
2295 lockdep_assert_held(&stream->perf->lock);
2296
2297 /*
2298 * The OA register config is setup through the context image. This image
2299 * might be written to by the GPU on context switch (in particular on
2300 * lite-restore). This means we can't safely update a context's image,
2301 * if this context is scheduled/submitted to run on the GPU.
2302 *
2303 * We could emit the OA register config through the batch buffer but
2304 * this might leave small interval of time where the OA unit is
2305 * configured at an invalid sampling period.
2306 *
2307 * Note that since we emit all requests from a single ring, there
2308 * is still an implicit global barrier here that may cause a high
2309 * priority context to wait for an otherwise independent low priority
2310 * context. Contexts idle at the time of reconfiguration are not
2311 * trapped behind the barrier.
2312 */
2313 spin_lock(&i915->gem.contexts.lock);
2314 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2315 if (!kref_get_unless_zero(&ctx->ref))
2316 continue;
2317
2318 spin_unlock(&i915->gem.contexts.lock);
2319
2320 err = gen8_configure_context(ctx, regs, num_regs);
2321 if (err) {
2322 i915_gem_context_put(ctx);
2323 return err;
2324 }
2325
2326 spin_lock(&i915->gem.contexts.lock);
2327 list_safe_reset_next(ctx, cn, link);
2328 i915_gem_context_put(ctx);
2329 }
2330 spin_unlock(&i915->gem.contexts.lock);
2331
2332 /*
2333 * After updating all other contexts, we need to modify ourselves.
2334 * If we don't modify the kernel_context, we do not get events while
2335 * idle.
2336 */
2337 for_each_uabi_engine(engine, i915) {
2338 struct intel_context *ce = engine->kernel_context;
2339
2340 if (engine->class != RENDER_CLASS)
2341 continue;
2342
2343 regs[0].value = intel_sseu_make_rpcs(i915, &ce->sseu);
2344
2345 err = gen8_modify_self(ce, regs, num_regs, active);
2346 if (err)
2347 return err;
2348 }
2349
2350 return 0;
2351 }
2352
2353 static int
2354 gen12_configure_all_contexts(struct i915_perf_stream *stream,
2355 const struct i915_oa_config *oa_config,
2356 struct i915_active *active)
2357 {
2358 struct flex regs[] = {
2359 {
2360 GEN8_R_PWR_CLK_STATE,
2361 CTX_R_PWR_CLK_STATE,
2362 },
2363 };
2364
2365 return oa_configure_all_contexts(stream,
2366 regs, ARRAY_SIZE(regs),
2367 active);
2368 }
2369
2370 static int
2371 lrc_configure_all_contexts(struct i915_perf_stream *stream,
2372 const struct i915_oa_config *oa_config,
2373 struct i915_active *active)
2374 {
2375 /* The MMIO offsets for Flex EU registers aren't contiguous */
2376 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2377 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2378 struct flex regs[] = {
2379 {
2380 GEN8_R_PWR_CLK_STATE,
2381 CTX_R_PWR_CLK_STATE,
2382 },
2383 {
2384 GEN8_OACTXCONTROL,
2385 stream->perf->ctx_oactxctrl_offset + 1,
2386 },
2387 { EU_PERF_CNTL0, ctx_flexeuN(0) },
2388 { EU_PERF_CNTL1, ctx_flexeuN(1) },
2389 { EU_PERF_CNTL2, ctx_flexeuN(2) },
2390 { EU_PERF_CNTL3, ctx_flexeuN(3) },
2391 { EU_PERF_CNTL4, ctx_flexeuN(4) },
2392 { EU_PERF_CNTL5, ctx_flexeuN(5) },
2393 { EU_PERF_CNTL6, ctx_flexeuN(6) },
2394 };
2395 #undef ctx_flexeuN
2396 int i;
2397
2398 regs[1].value =
2399 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2400 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2401 GEN8_OA_COUNTER_RESUME;
2402
2403 for (i = 2; i < ARRAY_SIZE(regs); i++)
2404 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2405
2406 return oa_configure_all_contexts(stream,
2407 regs, ARRAY_SIZE(regs),
2408 active);
2409 }
2410
2411 static int
2412 gen8_enable_metric_set(struct i915_perf_stream *stream,
2413 struct i915_active *active)
2414 {
2415 struct intel_uncore *uncore = stream->uncore;
2416 struct i915_oa_config *oa_config = stream->oa_config;
2417 int ret;
2418
2419 /*
2420 * We disable slice/unslice clock ratio change reports on SKL since
2421 * they are too noisy. The HW generates a lot of redundant reports
2422 * where the ratio hasn't really changed causing a lot of redundant
2423 * work to processes and increasing the chances we'll hit buffer
2424 * overruns.
2425 *
2426 * Although we don't currently use the 'disable overrun' OABUFFER
2427 * feature it's worth noting that clock ratio reports have to be
2428 * disabled before considering to use that feature since the HW doesn't
2429 * correctly block these reports.
2430 *
2431 * Currently none of the high-level metrics we have depend on knowing
2432 * this ratio to normalize.
2433 *
2434 * Note: This register is not power context saved and restored, but
2435 * that's OK considering that we disable RC6 while the OA unit is
2436 * enabled.
2437 *
2438 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2439 * be read back from automatically triggered reports, as part of the
2440 * RPT_ID field.
2441 */
2442 if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) {
2443 intel_uncore_write(uncore, GEN8_OA_DEBUG,
2444 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2445 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2446 }
2447
2448 /*
2449 * Update all contexts prior writing the mux configurations as we need
2450 * to make sure all slices/subslices are ON before writing to NOA
2451 * registers.
2452 */
2453 ret = lrc_configure_all_contexts(stream, oa_config, active);
2454 if (ret)
2455 return ret;
2456
2457 return emit_oa_config(stream,
2458 stream->oa_config, oa_context(stream),
2459 active);
2460 }
2461
2462 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2463 {
2464 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2465 (stream->sample_flags & SAMPLE_OA_REPORT) ?
2466 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2467 }
2468
2469 static int
2470 gen12_enable_metric_set(struct i915_perf_stream *stream,
2471 struct i915_active *active)
2472 {
2473 struct intel_uncore *uncore = stream->uncore;
2474 struct i915_oa_config *oa_config = stream->oa_config;
2475 bool periodic = stream->periodic;
2476 u32 period_exponent = stream->period_exponent;
2477 int ret;
2478
2479 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
2480 /* Disable clk ratio reports, like previous Gens. */
2481 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2482 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2483 /*
2484 * If the user didn't require OA reports, instruct
2485 * the hardware not to emit ctx switch reports.
2486 */
2487 oag_report_ctx_switches(stream));
2488
2489 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
2490 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2491 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2492 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2493 : 0);
2494
2495 /*
2496 * Update all contexts prior writing the mux configurations as we need
2497 * to make sure all slices/subslices are ON before writing to NOA
2498 * registers.
2499 */
2500 ret = gen12_configure_all_contexts(stream, oa_config, active);
2501 if (ret)
2502 return ret;
2503
2504 /*
2505 * For Gen12, performance counters are context
2506 * saved/restored. Only enable it for the context that
2507 * requested this.
2508 */
2509 if (stream->ctx) {
2510 ret = gen12_configure_oar_context(stream, active);
2511 if (ret)
2512 return ret;
2513 }
2514
2515 return emit_oa_config(stream,
2516 stream->oa_config, oa_context(stream),
2517 active);
2518 }
2519
2520 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2521 {
2522 struct intel_uncore *uncore = stream->uncore;
2523
2524 /* Reset all contexts' slices/subslices configurations. */
2525 lrc_configure_all_contexts(stream, NULL, NULL);
2526
2527 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2528 }
2529
2530 static void gen10_disable_metric_set(struct i915_perf_stream *stream)
2531 {
2532 struct intel_uncore *uncore = stream->uncore;
2533
2534 /* Reset all contexts' slices/subslices configurations. */
2535 lrc_configure_all_contexts(stream, NULL, NULL);
2536
2537 /* Make sure we disable noa to save power. */
2538 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2539 }
2540
2541 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2542 {
2543 struct intel_uncore *uncore = stream->uncore;
2544
2545 /* Reset all contexts' slices/subslices configurations. */
2546 gen12_configure_all_contexts(stream, NULL, NULL);
2547
2548 /* disable the context save/restore or OAR counters */
2549 if (stream->ctx)
2550 gen12_configure_oar_context(stream, NULL);
2551
2552 /* Make sure we disable noa to save power. */
2553 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2554 }
2555
2556 static void gen7_oa_enable(struct i915_perf_stream *stream)
2557 {
2558 struct intel_uncore *uncore = stream->uncore;
2559 struct i915_gem_context *ctx = stream->ctx;
2560 u32 ctx_id = stream->specific_ctx_id;
2561 bool periodic = stream->periodic;
2562 u32 period_exponent = stream->period_exponent;
2563 u32 report_format = stream->oa_buffer.format;
2564
2565 /*
2566 * Reset buf pointers so we don't forward reports from before now.
2567 *
2568 * Think carefully if considering trying to avoid this, since it
2569 * also ensures status flags and the buffer itself are cleared
2570 * in error paths, and we have checks for invalid reports based
2571 * on the assumption that certain fields are written to zeroed
2572 * memory which this helps maintains.
2573 */
2574 gen7_init_oa_buffer(stream);
2575
2576 intel_uncore_write(uncore, GEN7_OACONTROL,
2577 (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2578 (period_exponent <<
2579 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2580 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2581 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2582 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2583 GEN7_OACONTROL_ENABLE);
2584 }
2585
2586 static void gen8_oa_enable(struct i915_perf_stream *stream)
2587 {
2588 struct intel_uncore *uncore = stream->uncore;
2589 u32 report_format = stream->oa_buffer.format;
2590
2591 /*
2592 * Reset buf pointers so we don't forward reports from before now.
2593 *
2594 * Think carefully if considering trying to avoid this, since it
2595 * also ensures status flags and the buffer itself are cleared
2596 * in error paths, and we have checks for invalid reports based
2597 * on the assumption that certain fields are written to zeroed
2598 * memory which this helps maintains.
2599 */
2600 gen8_init_oa_buffer(stream);
2601
2602 /*
2603 * Note: we don't rely on the hardware to perform single context
2604 * filtering and instead filter on the cpu based on the context-id
2605 * field of reports
2606 */
2607 intel_uncore_write(uncore, GEN8_OACONTROL,
2608 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
2609 GEN8_OA_COUNTER_ENABLE);
2610 }
2611
2612 static void gen12_oa_enable(struct i915_perf_stream *stream)
2613 {
2614 struct intel_uncore *uncore = stream->uncore;
2615 u32 report_format = stream->oa_buffer.format;
2616
2617 /*
2618 * If we don't want OA reports from the OA buffer, then we don't even
2619 * need to program the OAG unit.
2620 */
2621 if (!(stream->sample_flags & SAMPLE_OA_REPORT))
2622 return;
2623
2624 gen12_init_oa_buffer(stream);
2625
2626 intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
2627 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
2628 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
2629 }
2630
2631 /**
2632 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2633 * @stream: An i915 perf stream opened for OA metrics
2634 *
2635 * [Re]enables hardware periodic sampling according to the period configured
2636 * when opening the stream. This also starts a hrtimer that will periodically
2637 * check for data in the circular OA buffer for notifying userspace (e.g.
2638 * during a read() or poll()).
2639 */
2640 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2641 {
2642 stream->pollin = false;
2643
2644 stream->perf->ops.oa_enable(stream);
2645
2646 if (stream->periodic)
2647 hrtimer_start(&stream->poll_check_timer,
2648 ns_to_ktime(stream->poll_oa_period),
2649 HRTIMER_MODE_REL_PINNED);
2650 }
2651
2652 static void gen7_oa_disable(struct i915_perf_stream *stream)
2653 {
2654 struct intel_uncore *uncore = stream->uncore;
2655
2656 intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2657 if (intel_wait_for_register(uncore,
2658 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2659 50))
2660 drm_err(&stream->perf->i915->drm,
2661 "wait for OA to be disabled timed out\n");
2662 }
2663
2664 static void gen8_oa_disable(struct i915_perf_stream *stream)
2665 {
2666 struct intel_uncore *uncore = stream->uncore;
2667
2668 intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2669 if (intel_wait_for_register(uncore,
2670 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2671 50))
2672 drm_err(&stream->perf->i915->drm,
2673 "wait for OA to be disabled timed out\n");
2674 }
2675
2676 static void gen12_oa_disable(struct i915_perf_stream *stream)
2677 {
2678 struct intel_uncore *uncore = stream->uncore;
2679
2680 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
2681 if (intel_wait_for_register(uncore,
2682 GEN12_OAG_OACONTROL,
2683 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
2684 50))
2685 drm_err(&stream->perf->i915->drm,
2686 "wait for OA to be disabled timed out\n");
2687
2688 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
2689 if (intel_wait_for_register(uncore,
2690 GEN12_OA_TLB_INV_CR,
2691 1, 0,
2692 50))
2693 drm_err(&stream->perf->i915->drm,
2694 "wait for OA tlb invalidate timed out\n");
2695 }
2696
2697 /**
2698 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2699 * @stream: An i915 perf stream opened for OA metrics
2700 *
2701 * Stops the OA unit from periodically writing counter reports into the
2702 * circular OA buffer. This also stops the hrtimer that periodically checks for
2703 * data in the circular OA buffer, for notifying userspace.
2704 */
2705 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2706 {
2707 stream->perf->ops.oa_disable(stream);
2708
2709 if (stream->periodic)
2710 hrtimer_cancel(&stream->poll_check_timer);
2711 }
2712
2713 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2714 .destroy = i915_oa_stream_destroy,
2715 .enable = i915_oa_stream_enable,
2716 .disable = i915_oa_stream_disable,
2717 .wait_unlocked = i915_oa_wait_unlocked,
2718 .poll_wait = i915_oa_poll_wait,
2719 .read = i915_oa_read,
2720 };
2721
2722 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
2723 {
2724 struct i915_active *active;
2725 int err;
2726
2727 active = i915_active_create();
2728 if (!active)
2729 return -ENOMEM;
2730
2731 err = stream->perf->ops.enable_metric_set(stream, active);
2732 if (err == 0)
2733 __i915_active_wait(active, TASK_UNINTERRUPTIBLE);
2734
2735 i915_active_put(active);
2736 return err;
2737 }
2738
2739 static void
2740 get_default_sseu_config(struct intel_sseu *out_sseu,
2741 struct intel_engine_cs *engine)
2742 {
2743 const struct sseu_dev_info *devinfo_sseu =
2744 &RUNTIME_INFO(engine->i915)->sseu;
2745
2746 *out_sseu = intel_sseu_from_device_info(devinfo_sseu);
2747
2748 if (IS_GEN(engine->i915, 11)) {
2749 /*
2750 * We only need subslice count so it doesn't matter which ones
2751 * we select - just turn off low bits in the amount of half of
2752 * all available subslices per slice.
2753 */
2754 out_sseu->subslice_mask =
2755 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
2756 out_sseu->slice_mask = 0x1;
2757 }
2758 }
2759
2760 static int
2761 get_sseu_config(struct intel_sseu *out_sseu,
2762 struct intel_engine_cs *engine,
2763 const struct drm_i915_gem_context_param_sseu *drm_sseu)
2764 {
2765 if (drm_sseu->engine.engine_class != engine->uabi_class ||
2766 drm_sseu->engine.engine_instance != engine->uabi_instance)
2767 return -EINVAL;
2768
2769 return i915_gem_user_to_context_sseu(engine->i915, drm_sseu, out_sseu);
2770 }
2771
2772 /**
2773 * i915_oa_stream_init - validate combined props for OA stream and init
2774 * @stream: An i915 perf stream
2775 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2776 * @props: The property state that configures stream (individually validated)
2777 *
2778 * While read_properties_unlocked() validates properties in isolation it
2779 * doesn't ensure that the combination necessarily makes sense.
2780 *
2781 * At this point it has been determined that userspace wants a stream of
2782 * OA metrics, but still we need to further validate the combined
2783 * properties are OK.
2784 *
2785 * If the configuration makes sense then we can allocate memory for
2786 * a circular OA buffer and apply the requested metric set configuration.
2787 *
2788 * Returns: zero on success or a negative error code.
2789 */
2790 static int i915_oa_stream_init(struct i915_perf_stream *stream,
2791 struct drm_i915_perf_open_param *param,
2792 struct perf_open_properties *props)
2793 {
2794 struct drm_i915_private *i915 = stream->perf->i915;
2795 struct i915_perf *perf = stream->perf;
2796 int format_size;
2797 int ret;
2798
2799 if (!props->engine) {
2800 DRM_DEBUG("OA engine not specified\n");
2801 return -EINVAL;
2802 }
2803
2804 /*
2805 * If the sysfs metrics/ directory wasn't registered for some
2806 * reason then don't let userspace try their luck with config
2807 * IDs
2808 */
2809 if (!perf->metrics_kobj) {
2810 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2811 return -EINVAL;
2812 }
2813
2814 if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
2815 (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) {
2816 DRM_DEBUG("Only OA report sampling supported\n");
2817 return -EINVAL;
2818 }
2819
2820 if (!perf->ops.enable_metric_set) {
2821 DRM_DEBUG("OA unit not supported\n");
2822 return -ENODEV;
2823 }
2824
2825 /*
2826 * To avoid the complexity of having to accurately filter
2827 * counter reports and marshal to the appropriate client
2828 * we currently only allow exclusive access
2829 */
2830 if (perf->exclusive_stream) {
2831 DRM_DEBUG("OA unit already in use\n");
2832 return -EBUSY;
2833 }
2834
2835 if (!props->oa_format) {
2836 DRM_DEBUG("OA report format not specified\n");
2837 return -EINVAL;
2838 }
2839
2840 stream->engine = props->engine;
2841 stream->uncore = stream->engine->gt->uncore;
2842
2843 stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2844
2845 format_size = perf->oa_formats[props->oa_format].size;
2846
2847 stream->sample_flags = props->sample_flags;
2848 stream->sample_size += format_size;
2849
2850 stream->oa_buffer.format_size = format_size;
2851 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0))
2852 return -EINVAL;
2853
2854 stream->hold_preemption = props->hold_preemption;
2855
2856 stream->oa_buffer.format =
2857 perf->oa_formats[props->oa_format].format;
2858
2859 stream->periodic = props->oa_periodic;
2860 if (stream->periodic)
2861 stream->period_exponent = props->oa_period_exponent;
2862
2863 if (stream->ctx) {
2864 ret = oa_get_render_ctx_id(stream);
2865 if (ret) {
2866 DRM_DEBUG("Invalid context id to filter with\n");
2867 return ret;
2868 }
2869 }
2870
2871 ret = alloc_noa_wait(stream);
2872 if (ret) {
2873 DRM_DEBUG("Unable to allocate NOA wait batch buffer\n");
2874 goto err_noa_wait_alloc;
2875 }
2876
2877 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
2878 if (!stream->oa_config) {
2879 DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2880 ret = -EINVAL;
2881 goto err_config;
2882 }
2883
2884 /* PRM - observability performance counters:
2885 *
2886 * OACONTROL, performance counter enable, note:
2887 *
2888 * "When this bit is set, in order to have coherent counts,
2889 * RC6 power state and trunk clock gating must be disabled.
2890 * This can be achieved by programming MMIO registers as
2891 * 0xA094=0 and 0xA090[31]=1"
2892 *
2893 * In our case we are expecting that taking pm + FORCEWAKE
2894 * references will effectively disable RC6.
2895 */
2896 intel_engine_pm_get(stream->engine);
2897 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
2898
2899 ret = alloc_oa_buffer(stream);
2900 if (ret)
2901 goto err_oa_buf_alloc;
2902
2903 stream->ops = &i915_oa_stream_ops;
2904
2905 perf->sseu = props->sseu;
2906 WRITE_ONCE(perf->exclusive_stream, stream);
2907
2908 ret = i915_perf_stream_enable_sync(stream);
2909 if (ret) {
2910 DRM_DEBUG("Unable to enable metric set\n");
2911 goto err_enable;
2912 }
2913
2914 DRM_DEBUG("opening stream oa config uuid=%s\n",
2915 stream->oa_config->uuid);
2916
2917 hrtimer_init(&stream->poll_check_timer,
2918 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2919 stream->poll_check_timer.function = oa_poll_check_timer_cb;
2920 init_waitqueue_head(&stream->poll_wq);
2921 spin_lock_init(&stream->oa_buffer.ptr_lock);
2922
2923 return 0;
2924
2925 err_enable:
2926 WRITE_ONCE(perf->exclusive_stream, NULL);
2927 perf->ops.disable_metric_set(stream);
2928
2929 free_oa_buffer(stream);
2930
2931 err_oa_buf_alloc:
2932 free_oa_configs(stream);
2933
2934 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
2935 intel_engine_pm_put(stream->engine);
2936
2937 err_config:
2938 free_noa_wait(stream);
2939
2940 err_noa_wait_alloc:
2941 if (stream->ctx)
2942 oa_put_render_ctx_id(stream);
2943
2944 return ret;
2945 }
2946
2947 void i915_oa_init_reg_state(const struct intel_context *ce,
2948 const struct intel_engine_cs *engine)
2949 {
2950 struct i915_perf_stream *stream;
2951
2952 if (engine->class != RENDER_CLASS)
2953 return;
2954
2955 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
2956 stream = READ_ONCE(engine->i915->perf.exclusive_stream);
2957 if (stream && INTEL_GEN(stream->perf->i915) < 12)
2958 gen8_update_reg_state_unlocked(ce, stream);
2959 }
2960
2961 /**
2962 * i915_perf_read - handles read() FOP for i915 perf stream FDs
2963 * @file: An i915 perf stream file
2964 * @buf: destination buffer given by userspace
2965 * @count: the number of bytes userspace wants to read
2966 * @ppos: (inout) file seek position (unused)
2967 *
2968 * The entry point for handling a read() on a stream file descriptor from
2969 * userspace. Most of the work is left to the i915_perf_read_locked() and
2970 * &i915_perf_stream_ops->read but to save having stream implementations (of
2971 * which we might have multiple later) we handle blocking read here.
2972 *
2973 * We can also consistently treat trying to read from a disabled stream
2974 * as an IO error so implementations can assume the stream is enabled
2975 * while reading.
2976 *
2977 * Returns: The number of bytes copied or a negative error code on failure.
2978 */
2979 static ssize_t i915_perf_read(struct file *file,
2980 char __user *buf,
2981 size_t count,
2982 loff_t *ppos)
2983 {
2984 struct i915_perf_stream *stream = file->private_data;
2985 struct i915_perf *perf = stream->perf;
2986 size_t offset = 0;
2987 int ret;
2988
2989 /* To ensure it's handled consistently we simply treat all reads of a
2990 * disabled stream as an error. In particular it might otherwise lead
2991 * to a deadlock for blocking file descriptors...
2992 */
2993 if (!stream->enabled)
2994 return -EIO;
2995
2996 if (!(file->f_flags & O_NONBLOCK)) {
2997 /* There's the small chance of false positives from
2998 * stream->ops->wait_unlocked.
2999 *
3000 * E.g. with single context filtering since we only wait until
3001 * oabuffer has >= 1 report we don't immediately know whether
3002 * any reports really belong to the current context
3003 */
3004 do {
3005 ret = stream->ops->wait_unlocked(stream);
3006 if (ret)
3007 return ret;
3008
3009 mutex_lock(&perf->lock);
3010 ret = stream->ops->read(stream, buf, count, &offset);
3011 mutex_unlock(&perf->lock);
3012 } while (!offset && !ret);
3013 } else {
3014 mutex_lock(&perf->lock);
3015 ret = stream->ops->read(stream, buf, count, &offset);
3016 mutex_unlock(&perf->lock);
3017 }
3018
3019 /* We allow the poll checking to sometimes report false positive EPOLLIN
3020 * events where we might actually report EAGAIN on read() if there's
3021 * not really any data available. In this situation though we don't
3022 * want to enter a busy loop between poll() reporting a EPOLLIN event
3023 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3024 * effectively ensures we back off until the next hrtimer callback
3025 * before reporting another EPOLLIN event.
3026 * The exception to this is if ops->read() returned -ENOSPC which means
3027 * that more OA data is available than could fit in the user provided
3028 * buffer. In this case we want the next poll() call to not block.
3029 */
3030 if (ret != -ENOSPC)
3031 stream->pollin = false;
3032
3033 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3034 return offset ?: (ret ?: -EAGAIN);
3035 }
3036
3037 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3038 {
3039 struct i915_perf_stream *stream =
3040 container_of(hrtimer, typeof(*stream), poll_check_timer);
3041
3042 if (oa_buffer_check_unlocked(stream)) {
3043 stream->pollin = true;
3044 wake_up(&stream->poll_wq);
3045 }
3046
3047 hrtimer_forward_now(hrtimer,
3048 ns_to_ktime(stream->poll_oa_period));
3049
3050 return HRTIMER_RESTART;
3051 }
3052
3053 /**
3054 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3055 * @stream: An i915 perf stream
3056 * @file: An i915 perf stream file
3057 * @wait: poll() state table
3058 *
3059 * For handling userspace polling on an i915 perf stream, this calls through to
3060 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3061 * will be woken for new stream data.
3062 *
3063 * Note: The &perf->lock mutex has been taken to serialize
3064 * with any non-file-operation driver hooks.
3065 *
3066 * Returns: any poll events that are ready without sleeping
3067 */
3068 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3069 struct file *file,
3070 poll_table *wait)
3071 {
3072 __poll_t events = 0;
3073
3074 stream->ops->poll_wait(stream, file, wait);
3075
3076 /* Note: we don't explicitly check whether there's something to read
3077 * here since this path may be very hot depending on what else
3078 * userspace is polling, or on the timeout in use. We rely solely on
3079 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3080 * samples to read.
3081 */
3082 if (stream->pollin)
3083 events |= EPOLLIN;
3084
3085 return events;
3086 }
3087
3088 /**
3089 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3090 * @file: An i915 perf stream file
3091 * @wait: poll() state table
3092 *
3093 * For handling userspace polling on an i915 perf stream, this ensures
3094 * poll_wait() gets called with a wait queue that will be woken for new stream
3095 * data.
3096 *
3097 * Note: Implementation deferred to i915_perf_poll_locked()
3098 *
3099 * Returns: any poll events that are ready without sleeping
3100 */
3101 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3102 {
3103 struct i915_perf_stream *stream = file->private_data;
3104 struct i915_perf *perf = stream->perf;
3105 __poll_t ret;
3106
3107 mutex_lock(&perf->lock);
3108 ret = i915_perf_poll_locked(stream, file, wait);
3109 mutex_unlock(&perf->lock);
3110
3111 return ret;
3112 }
3113
3114 /**
3115 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3116 * @stream: A disabled i915 perf stream
3117 *
3118 * [Re]enables the associated capture of data for this stream.
3119 *
3120 * If a stream was previously enabled then there's currently no intention
3121 * to provide userspace any guarantee about the preservation of previously
3122 * buffered data.
3123 */
3124 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3125 {
3126 if (stream->enabled)
3127 return;
3128
3129 /* Allow stream->ops->enable() to refer to this */
3130 stream->enabled = true;
3131
3132 if (stream->ops->enable)
3133 stream->ops->enable(stream);
3134
3135 if (stream->hold_preemption)
3136 intel_context_set_nopreempt(stream->pinned_ctx);
3137 }
3138
3139 /**
3140 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3141 * @stream: An enabled i915 perf stream
3142 *
3143 * Disables the associated capture of data for this stream.
3144 *
3145 * The intention is that disabling an re-enabling a stream will ideally be
3146 * cheaper than destroying and re-opening a stream with the same configuration,
3147 * though there are no formal guarantees about what state or buffered data
3148 * must be retained between disabling and re-enabling a stream.
3149 *
3150 * Note: while a stream is disabled it's considered an error for userspace
3151 * to attempt to read from the stream (-EIO).
3152 */
3153 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3154 {
3155 if (!stream->enabled)
3156 return;
3157
3158 /* Allow stream->ops->disable() to refer to this */
3159 stream->enabled = false;
3160
3161 if (stream->hold_preemption)
3162 intel_context_clear_nopreempt(stream->pinned_ctx);
3163
3164 if (stream->ops->disable)
3165 stream->ops->disable(stream);
3166 }
3167
3168 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3169 unsigned long metrics_set)
3170 {
3171 struct i915_oa_config *config;
3172 long ret = stream->oa_config->id;
3173
3174 config = i915_perf_get_oa_config(stream->perf, metrics_set);
3175 if (!config)
3176 return -EINVAL;
3177
3178 if (config != stream->oa_config) {
3179 int err;
3180
3181 /*
3182 * If OA is bound to a specific context, emit the
3183 * reconfiguration inline from that context. The update
3184 * will then be ordered with respect to submission on that
3185 * context.
3186 *
3187 * When set globally, we use a low priority kernel context,
3188 * so it will effectively take effect when idle.
3189 */
3190 err = emit_oa_config(stream, config, oa_context(stream), NULL);
3191 if (!err)
3192 config = xchg(&stream->oa_config, config);
3193 else
3194 ret = err;
3195 }
3196
3197 i915_oa_config_put(config);
3198
3199 return ret;
3200 }
3201
3202 /**
3203 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3204 * @stream: An i915 perf stream
3205 * @cmd: the ioctl request
3206 * @arg: the ioctl data
3207 *
3208 * Note: The &perf->lock mutex has been taken to serialize
3209 * with any non-file-operation driver hooks.
3210 *
3211 * Returns: zero on success or a negative error code. Returns -EINVAL for
3212 * an unknown ioctl request.
3213 */
3214 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3215 unsigned int cmd,
3216 unsigned long arg)
3217 {
3218 switch (cmd) {
3219 case I915_PERF_IOCTL_ENABLE:
3220 i915_perf_enable_locked(stream);
3221 return 0;
3222 case I915_PERF_IOCTL_DISABLE:
3223 i915_perf_disable_locked(stream);
3224 return 0;
3225 case I915_PERF_IOCTL_CONFIG:
3226 return i915_perf_config_locked(stream, arg);
3227 }
3228
3229 return -EINVAL;
3230 }
3231
3232 /**
3233 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3234 * @file: An i915 perf stream file
3235 * @cmd: the ioctl request
3236 * @arg: the ioctl data
3237 *
3238 * Implementation deferred to i915_perf_ioctl_locked().
3239 *
3240 * Returns: zero on success or a negative error code. Returns -EINVAL for
3241 * an unknown ioctl request.
3242 */
3243 static long i915_perf_ioctl(struct file *file,
3244 unsigned int cmd,
3245 unsigned long arg)
3246 {
3247 struct i915_perf_stream *stream = file->private_data;
3248 struct i915_perf *perf = stream->perf;
3249 long ret;
3250
3251 mutex_lock(&perf->lock);
3252 ret = i915_perf_ioctl_locked(stream, cmd, arg);
3253 mutex_unlock(&perf->lock);
3254
3255 return ret;
3256 }
3257
3258 /**
3259 * i915_perf_destroy_locked - destroy an i915 perf stream
3260 * @stream: An i915 perf stream
3261 *
3262 * Frees all resources associated with the given i915 perf @stream, disabling
3263 * any associated data capture in the process.
3264 *
3265 * Note: The &perf->lock mutex has been taken to serialize
3266 * with any non-file-operation driver hooks.
3267 */
3268 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3269 {
3270 if (stream->enabled)
3271 i915_perf_disable_locked(stream);
3272
3273 if (stream->ops->destroy)
3274 stream->ops->destroy(stream);
3275
3276 if (stream->ctx)
3277 i915_gem_context_put(stream->ctx);
3278
3279 kfree(stream);
3280 }
3281
3282 /**
3283 * i915_perf_release - handles userspace close() of a stream file
3284 * @inode: anonymous inode associated with file
3285 * @file: An i915 perf stream file
3286 *
3287 * Cleans up any resources associated with an open i915 perf stream file.
3288 *
3289 * NB: close() can't really fail from the userspace point of view.
3290 *
3291 * Returns: zero on success or a negative error code.
3292 */
3293 static int i915_perf_release(struct inode *inode, struct file *file)
3294 {
3295 struct i915_perf_stream *stream = file->private_data;
3296 struct i915_perf *perf = stream->perf;
3297
3298 mutex_lock(&perf->lock);
3299 i915_perf_destroy_locked(stream);
3300 mutex_unlock(&perf->lock);
3301
3302 /* Release the reference the perf stream kept on the driver. */
3303 drm_dev_put(&perf->i915->drm);
3304
3305 return 0;
3306 }
3307
3308
3309 static const struct file_operations fops = {
3310 .owner = THIS_MODULE,
3311 .llseek = no_llseek,
3312 .release = i915_perf_release,
3313 .poll = i915_perf_poll,
3314 .read = i915_perf_read,
3315 .unlocked_ioctl = i915_perf_ioctl,
3316 /* Our ioctl have no arguments, so it's safe to use the same function
3317 * to handle 32bits compatibility.
3318 */
3319 .compat_ioctl = i915_perf_ioctl,
3320 };
3321
3322
3323 /**
3324 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3325 * @perf: i915 perf instance
3326 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3327 * @props: individually validated u64 property value pairs
3328 * @file: drm file
3329 *
3330 * See i915_perf_ioctl_open() for interface details.
3331 *
3332 * Implements further stream config validation and stream initialization on
3333 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
3334 * taken to serialize with any non-file-operation driver hooks.
3335 *
3336 * Note: at this point the @props have only been validated in isolation and
3337 * it's still necessary to validate that the combination of properties makes
3338 * sense.
3339 *
3340 * In the case where userspace is interested in OA unit metrics then further
3341 * config validation and stream initialization details will be handled by
3342 * i915_oa_stream_init(). The code here should only validate config state that
3343 * will be relevant to all stream types / backends.
3344 *
3345 * Returns: zero on success or a negative error code.
3346 */
3347 static int
3348 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3349 struct drm_i915_perf_open_param *param,
3350 struct perf_open_properties *props,
3351 struct drm_file *file)
3352 {
3353 struct i915_gem_context *specific_ctx = NULL;
3354 struct i915_perf_stream *stream = NULL;
3355 unsigned long f_flags = 0;
3356 bool privileged_op = true;
3357 int stream_fd;
3358 int ret;
3359
3360 if (props->single_context) {
3361 u32 ctx_handle = props->ctx_handle;
3362 struct drm_i915_file_private *file_priv = file->driver_priv;
3363
3364 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3365 if (!specific_ctx) {
3366 DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
3367 ctx_handle);
3368 ret = -ENOENT;
3369 goto err;
3370 }
3371 }
3372
3373 /*
3374 * On Haswell the OA unit supports clock gating off for a specific
3375 * context and in this mode there's no visibility of metrics for the
3376 * rest of the system, which we consider acceptable for a
3377 * non-privileged client.
3378 *
3379 * For Gen8->11 the OA unit no longer supports clock gating off for a
3380 * specific context and the kernel can't securely stop the counters
3381 * from updating as system-wide / global values. Even though we can
3382 * filter reports based on the included context ID we can't block
3383 * clients from seeing the raw / global counter values via
3384 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3385 * enable the OA unit by default.
3386 *
3387 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3388 * per context basis. So we can relax requirements there if the user
3389 * doesn't request global stream access (i.e. query based sampling
3390 * using MI_RECORD_PERF_COUNT.
3391 */
3392 if (IS_HASWELL(perf->i915) && specific_ctx)
3393 privileged_op = false;
3394 else if (IS_GEN(perf->i915, 12) && specific_ctx &&
3395 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3396 privileged_op = false;
3397
3398 if (props->hold_preemption) {
3399 if (!props->single_context) {
3400 DRM_DEBUG("preemption disable with no context\n");
3401 ret = -EINVAL;
3402 goto err;
3403 }
3404 privileged_op = true;
3405 }
3406
3407 /*
3408 * Asking for SSEU configuration is a priviliged operation.
3409 */
3410 if (props->has_sseu)
3411 privileged_op = true;
3412 else
3413 get_default_sseu_config(&props->sseu, props->engine);
3414
3415 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3416 * we check a dev.i915.perf_stream_paranoid sysctl option
3417 * to determine if it's ok to access system wide OA counters
3418 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3419 */
3420 if (privileged_op &&
3421 i915_perf_stream_paranoid && !perfmon_capable()) {
3422 DRM_DEBUG("Insufficient privileges to open i915 perf stream\n");
3423 ret = -EACCES;
3424 goto err_ctx;
3425 }
3426
3427 stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3428 if (!stream) {
3429 ret = -ENOMEM;
3430 goto err_ctx;
3431 }
3432
3433 stream->perf = perf;
3434 stream->ctx = specific_ctx;
3435 stream->poll_oa_period = props->poll_oa_period;
3436
3437 ret = i915_oa_stream_init(stream, param, props);
3438 if (ret)
3439 goto err_alloc;
3440
3441 /* we avoid simply assigning stream->sample_flags = props->sample_flags
3442 * to have _stream_init check the combination of sample flags more
3443 * thoroughly, but still this is the expected result at this point.
3444 */
3445 if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3446 ret = -ENODEV;
3447 goto err_flags;
3448 }
3449
3450 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3451 f_flags |= O_CLOEXEC;
3452 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3453 f_flags |= O_NONBLOCK;
3454
3455 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3456 if (stream_fd < 0) {
3457 ret = stream_fd;
3458 goto err_flags;
3459 }
3460
3461 if (!(param->flags & I915_PERF_FLAG_DISABLED))
3462 i915_perf_enable_locked(stream);
3463
3464 /* Take a reference on the driver that will be kept with stream_fd
3465 * until its release.
3466 */
3467 drm_dev_get(&perf->i915->drm);
3468
3469 return stream_fd;
3470
3471 err_flags:
3472 if (stream->ops->destroy)
3473 stream->ops->destroy(stream);
3474 err_alloc:
3475 kfree(stream);
3476 err_ctx:
3477 if (specific_ctx)
3478 i915_gem_context_put(specific_ctx);
3479 err:
3480 return ret;
3481 }
3482
3483 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3484 {
3485 return i915_cs_timestamp_ticks_to_ns(perf->i915, 2ULL << exponent);
3486 }
3487
3488 /**
3489 * read_properties_unlocked - validate + copy userspace stream open properties
3490 * @perf: i915 perf instance
3491 * @uprops: The array of u64 key value pairs given by userspace
3492 * @n_props: The number of key value pairs expected in @uprops
3493 * @props: The stream configuration built up while validating properties
3494 *
3495 * Note this function only validates properties in isolation it doesn't
3496 * validate that the combination of properties makes sense or that all
3497 * properties necessary for a particular kind of stream have been set.
3498 *
3499 * Note that there currently aren't any ordering requirements for properties so
3500 * we shouldn't validate or assume anything about ordering here. This doesn't
3501 * rule out defining new properties with ordering requirements in the future.
3502 */
3503 static int read_properties_unlocked(struct i915_perf *perf,
3504 u64 __user *uprops,
3505 u32 n_props,
3506 struct perf_open_properties *props)
3507 {
3508 u64 __user *uprop = uprops;
3509 u32 i;
3510 int ret;
3511
3512 memset(props, 0, sizeof(struct perf_open_properties));
3513 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
3514
3515 if (!n_props) {
3516 DRM_DEBUG("No i915 perf properties given\n");
3517 return -EINVAL;
3518 }
3519
3520 /* At the moment we only support using i915-perf on the RCS. */
3521 props->engine = intel_engine_lookup_user(perf->i915,
3522 I915_ENGINE_CLASS_RENDER,
3523 0);
3524 if (!props->engine) {
3525 DRM_DEBUG("No RENDER-capable engines\n");
3526 return -EINVAL;
3527 }
3528
3529 /* Considering that ID = 0 is reserved and assuming that we don't
3530 * (currently) expect any configurations to ever specify duplicate
3531 * values for a particular property ID then the last _PROP_MAX value is
3532 * one greater than the maximum number of properties we expect to get
3533 * from userspace.
3534 */
3535 if (n_props >= DRM_I915_PERF_PROP_MAX) {
3536 DRM_DEBUG("More i915 perf properties specified than exist\n");
3537 return -EINVAL;
3538 }
3539
3540 for (i = 0; i < n_props; i++) {
3541 u64 oa_period, oa_freq_hz;
3542 u64 id, value;
3543
3544 ret = get_user(id, uprop);
3545 if (ret)
3546 return ret;
3547
3548 ret = get_user(value, uprop + 1);
3549 if (ret)
3550 return ret;
3551
3552 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
3553 DRM_DEBUG("Unknown i915 perf property ID\n");
3554 return -EINVAL;
3555 }
3556
3557 switch ((enum drm_i915_perf_property_id)id) {
3558 case DRM_I915_PERF_PROP_CTX_HANDLE:
3559 props->single_context = 1;
3560 props->ctx_handle = value;
3561 break;
3562 case DRM_I915_PERF_PROP_SAMPLE_OA:
3563 if (value)
3564 props->sample_flags |= SAMPLE_OA_REPORT;
3565 break;
3566 case DRM_I915_PERF_PROP_OA_METRICS_SET:
3567 if (value == 0) {
3568 DRM_DEBUG("Unknown OA metric set ID\n");
3569 return -EINVAL;
3570 }
3571 props->metrics_set = value;
3572 break;
3573 case DRM_I915_PERF_PROP_OA_FORMAT:
3574 if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3575 DRM_DEBUG("Out-of-range OA report format %llu\n",
3576 value);
3577 return -EINVAL;
3578 }
3579 if (!perf->oa_formats[value].size) {
3580 DRM_DEBUG("Unsupported OA report format %llu\n",
3581 value);
3582 return -EINVAL;
3583 }
3584 props->oa_format = value;
3585 break;
3586 case DRM_I915_PERF_PROP_OA_EXPONENT:
3587 if (value > OA_EXPONENT_MAX) {
3588 DRM_DEBUG("OA timer exponent too high (> %u)\n",
3589 OA_EXPONENT_MAX);
3590 return -EINVAL;
3591 }
3592
3593 /* Theoretically we can program the OA unit to sample
3594 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
3595 * for BXT. We don't allow such high sampling
3596 * frequencies by default unless root.
3597 */
3598
3599 BUILD_BUG_ON(sizeof(oa_period) != 8);
3600 oa_period = oa_exponent_to_ns(perf, value);
3601
3602 /* This check is primarily to ensure that oa_period <=
3603 * UINT32_MAX (before passing to do_div which only
3604 * accepts a u32 denominator), but we can also skip
3605 * checking anything < 1Hz which implicitly can't be
3606 * limited via an integer oa_max_sample_rate.
3607 */
3608 if (oa_period <= NSEC_PER_SEC) {
3609 u64 tmp = NSEC_PER_SEC;
3610 do_div(tmp, oa_period);
3611 oa_freq_hz = tmp;
3612 } else
3613 oa_freq_hz = 0;
3614
3615 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
3616 DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
3617 i915_oa_max_sample_rate);
3618 return -EACCES;
3619 }
3620
3621 props->oa_periodic = true;
3622 props->oa_period_exponent = value;
3623 break;
3624 case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
3625 props->hold_preemption = !!value;
3626 break;
3627 case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
3628 struct drm_i915_gem_context_param_sseu user_sseu;
3629
3630 if (copy_from_user(&user_sseu,
3631 u64_to_user_ptr(value),
3632 sizeof(user_sseu))) {
3633 DRM_DEBUG("Unable to copy global sseu parameter\n");
3634 return -EFAULT;
3635 }
3636
3637 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
3638 if (ret) {
3639 DRM_DEBUG("Invalid SSEU configuration\n");
3640 return ret;
3641 }
3642 props->has_sseu = true;
3643 break;
3644 }
3645 case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
3646 if (value < 100000 /* 100us */) {
3647 DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n",
3648 value);
3649 return -EINVAL;
3650 }
3651 props->poll_oa_period = value;
3652 break;
3653 case DRM_I915_PERF_PROP_MAX:
3654 MISSING_CASE(id);
3655 return -EINVAL;
3656 }
3657
3658 uprop += 2;
3659 }
3660
3661 return 0;
3662 }
3663
3664 /**
3665 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
3666 * @dev: drm device
3667 * @data: ioctl data copied from userspace (unvalidated)
3668 * @file: drm file
3669 *
3670 * Validates the stream open parameters given by userspace including flags
3671 * and an array of u64 key, value pair properties.
3672 *
3673 * Very little is assumed up front about the nature of the stream being
3674 * opened (for instance we don't assume it's for periodic OA unit metrics). An
3675 * i915-perf stream is expected to be a suitable interface for other forms of
3676 * buffered data written by the GPU besides periodic OA metrics.
3677 *
3678 * Note we copy the properties from userspace outside of the i915 perf
3679 * mutex to avoid an awkward lockdep with mmap_sem.
3680 *
3681 * Most of the implementation details are handled by
3682 * i915_perf_open_ioctl_locked() after taking the &perf->lock
3683 * mutex for serializing with any non-file-operation driver hooks.
3684 *
3685 * Return: A newly opened i915 Perf stream file descriptor or negative
3686 * error code on failure.
3687 */
3688 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3689 struct drm_file *file)
3690 {
3691 struct i915_perf *perf = &to_i915(dev)->perf;
3692 struct drm_i915_perf_open_param *param = data;
3693 struct perf_open_properties props;
3694 u32 known_open_flags;
3695 int ret;
3696
3697 if (!perf->i915) {
3698 DRM_DEBUG("i915 perf interface not available for this system\n");
3699 return -ENOTSUPP;
3700 }
3701
3702 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3703 I915_PERF_FLAG_FD_NONBLOCK |
3704 I915_PERF_FLAG_DISABLED;
3705 if (param->flags & ~known_open_flags) {
3706 DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3707 return -EINVAL;
3708 }
3709
3710 ret = read_properties_unlocked(perf,
3711 u64_to_user_ptr(param->properties_ptr),
3712 param->num_properties,
3713 &props);
3714 if (ret)
3715 return ret;
3716
3717 mutex_lock(&perf->lock);
3718 ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
3719 mutex_unlock(&perf->lock);
3720
3721 return ret;
3722 }
3723
3724 /**
3725 * i915_perf_register - exposes i915-perf to userspace
3726 * @i915: i915 device instance
3727 *
3728 * In particular OA metric sets are advertised under a sysfs metrics/
3729 * directory allowing userspace to enumerate valid IDs that can be
3730 * used to open an i915-perf stream.
3731 */
3732 void i915_perf_register(struct drm_i915_private *i915)
3733 {
3734 struct i915_perf *perf = &i915->perf;
3735
3736 if (!perf->i915)
3737 return;
3738
3739 /* To be sure we're synchronized with an attempted
3740 * i915_perf_open_ioctl(); considering that we register after
3741 * being exposed to userspace.
3742 */
3743 mutex_lock(&perf->lock);
3744
3745 perf->metrics_kobj =
3746 kobject_create_and_add("metrics",
3747 &i915->drm.primary->kdev->kobj);
3748
3749 mutex_unlock(&perf->lock);
3750 }
3751
3752 /**
3753 * i915_perf_unregister - hide i915-perf from userspace
3754 * @i915: i915 device instance
3755 *
3756 * i915-perf state cleanup is split up into an 'unregister' and
3757 * 'deinit' phase where the interface is first hidden from
3758 * userspace by i915_perf_unregister() before cleaning up
3759 * remaining state in i915_perf_fini().
3760 */
3761 void i915_perf_unregister(struct drm_i915_private *i915)
3762 {
3763 struct i915_perf *perf = &i915->perf;
3764
3765 if (!perf->metrics_kobj)
3766 return;
3767
3768 kobject_put(perf->metrics_kobj);
3769 perf->metrics_kobj = NULL;
3770 }
3771
3772 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
3773 {
3774 static const i915_reg_t flex_eu_regs[] = {
3775 EU_PERF_CNTL0,
3776 EU_PERF_CNTL1,
3777 EU_PERF_CNTL2,
3778 EU_PERF_CNTL3,
3779 EU_PERF_CNTL4,
3780 EU_PERF_CNTL5,
3781 EU_PERF_CNTL6,
3782 };
3783 int i;
3784
3785 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3786 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3787 return true;
3788 }
3789 return false;
3790 }
3791
3792 #define ADDR_IN_RANGE(addr, start, end) \
3793 ((addr) >= (start) && \
3794 (addr) <= (end))
3795
3796 #define REG_IN_RANGE(addr, start, end) \
3797 ((addr) >= i915_mmio_reg_offset(start) && \
3798 (addr) <= i915_mmio_reg_offset(end))
3799
3800 #define REG_EQUAL(addr, mmio) \
3801 ((addr) == i915_mmio_reg_offset(mmio))
3802
3803 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3804 {
3805 return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) ||
3806 REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) ||
3807 REG_IN_RANGE(addr, OACEC0_0, OACEC7_1);
3808 }
3809
3810 static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3811 {
3812 return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) ||
3813 REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) ||
3814 REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) ||
3815 REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI);
3816 }
3817
3818 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3819 {
3820 return gen7_is_valid_mux_addr(perf, addr) ||
3821 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3822 REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8));
3823 }
3824
3825 static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3826 {
3827 return gen8_is_valid_mux_addr(perf, addr) ||
3828 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3829 REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI);
3830 }
3831
3832 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3833 {
3834 return gen7_is_valid_mux_addr(perf, addr) ||
3835 ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) ||
3836 REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) ||
3837 REG_EQUAL(addr, HSW_MBVID2_MISR0);
3838 }
3839
3840 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3841 {
3842 return gen7_is_valid_mux_addr(perf, addr) ||
3843 ADDR_IN_RANGE(addr, 0x182300, 0x1823A4);
3844 }
3845
3846 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3847 {
3848 return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) ||
3849 REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) ||
3850 REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) ||
3851 REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) ||
3852 REG_EQUAL(addr, GEN12_OAA_DBG_REG) ||
3853 REG_EQUAL(addr, GEN12_OAG_OA_PESS) ||
3854 REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF);
3855 }
3856
3857 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3858 {
3859 return REG_EQUAL(addr, NOA_WRITE) ||
3860 REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3861 REG_EQUAL(addr, GDT_CHICKEN_BITS) ||
3862 REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3863 REG_EQUAL(addr, RPM_CONFIG0) ||
3864 REG_EQUAL(addr, RPM_CONFIG1) ||
3865 REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8));
3866 }
3867
3868 static u32 mask_reg_value(u32 reg, u32 val)
3869 {
3870 /* HALF_SLICE_CHICKEN2 is programmed with a the
3871 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3872 * programmed by userspace doesn't change this.
3873 */
3874 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
3875 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3876
3877 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3878 * indicated by its name and a bunch of selection fields used by OA
3879 * configs.
3880 */
3881 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
3882 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3883
3884 return val;
3885 }
3886
3887 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
3888 bool (*is_valid)(struct i915_perf *perf, u32 addr),
3889 u32 __user *regs,
3890 u32 n_regs)
3891 {
3892 struct i915_oa_reg *oa_regs;
3893 int err;
3894 u32 i;
3895
3896 if (!n_regs)
3897 return NULL;
3898
3899 if (!access_ok(regs, n_regs * sizeof(u32) * 2))
3900 return ERR_PTR(-EFAULT);
3901
3902 /* No is_valid function means we're not allowing any register to be programmed. */
3903 GEM_BUG_ON(!is_valid);
3904 if (!is_valid)
3905 return ERR_PTR(-EINVAL);
3906
3907 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3908 if (!oa_regs)
3909 return ERR_PTR(-ENOMEM);
3910
3911 for (i = 0; i < n_regs; i++) {
3912 u32 addr, value;
3913
3914 err = get_user(addr, regs);
3915 if (err)
3916 goto addr_err;
3917
3918 if (!is_valid(perf, addr)) {
3919 DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3920 err = -EINVAL;
3921 goto addr_err;
3922 }
3923
3924 err = get_user(value, regs + 1);
3925 if (err)
3926 goto addr_err;
3927
3928 oa_regs[i].addr = _MMIO(addr);
3929 oa_regs[i].value = mask_reg_value(addr, value);
3930
3931 regs += 2;
3932 }
3933
3934 return oa_regs;
3935
3936 addr_err:
3937 kfree(oa_regs);
3938 return ERR_PTR(err);
3939 }
3940
3941 static ssize_t show_dynamic_id(struct device *dev,
3942 struct device_attribute *attr,
3943 char *buf)
3944 {
3945 struct i915_oa_config *oa_config =
3946 container_of(attr, typeof(*oa_config), sysfs_metric_id);
3947
3948 return sprintf(buf, "%d\n", oa_config->id);
3949 }
3950
3951 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
3952 struct i915_oa_config *oa_config)
3953 {
3954 sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3955 oa_config->sysfs_metric_id.attr.name = "id";
3956 oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3957 oa_config->sysfs_metric_id.show = show_dynamic_id;
3958 oa_config->sysfs_metric_id.store = NULL;
3959
3960 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3961 oa_config->attrs[1] = NULL;
3962
3963 oa_config->sysfs_metric.name = oa_config->uuid;
3964 oa_config->sysfs_metric.attrs = oa_config->attrs;
3965
3966 return sysfs_create_group(perf->metrics_kobj,
3967 &oa_config->sysfs_metric);
3968 }
3969
3970 /**
3971 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
3972 * @dev: drm device
3973 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
3974 * userspace (unvalidated)
3975 * @file: drm file
3976 *
3977 * Validates the submitted OA register to be saved into a new OA config that
3978 * can then be used for programming the OA unit and its NOA network.
3979 *
3980 * Returns: A new allocated config number to be used with the perf open ioctl
3981 * or a negative error code on failure.
3982 */
3983 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3984 struct drm_file *file)
3985 {
3986 struct i915_perf *perf = &to_i915(dev)->perf;
3987 struct drm_i915_perf_oa_config *args = data;
3988 struct i915_oa_config *oa_config, *tmp;
3989 struct i915_oa_reg *regs;
3990 int err, id;
3991
3992 if (!perf->i915) {
3993 DRM_DEBUG("i915 perf interface not available for this system\n");
3994 return -ENOTSUPP;
3995 }
3996
3997 if (!perf->metrics_kobj) {
3998 DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
3999 return -EINVAL;
4000 }
4001
4002 if (i915_perf_stream_paranoid && !perfmon_capable()) {
4003 DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
4004 return -EACCES;
4005 }
4006
4007 if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4008 (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4009 (!args->flex_regs_ptr || !args->n_flex_regs)) {
4010 DRM_DEBUG("No OA registers given\n");
4011 return -EINVAL;
4012 }
4013
4014 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4015 if (!oa_config) {
4016 DRM_DEBUG("Failed to allocate memory for the OA config\n");
4017 return -ENOMEM;
4018 }
4019
4020 oa_config->perf = perf;
4021 kref_init(&oa_config->ref);
4022
4023 if (!uuid_is_valid(args->uuid)) {
4024 DRM_DEBUG("Invalid uuid format for OA config\n");
4025 err = -EINVAL;
4026 goto reg_err;
4027 }
4028
4029 /* Last character in oa_config->uuid will be 0 because oa_config is
4030 * kzalloc.
4031 */
4032 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4033
4034 oa_config->mux_regs_len = args->n_mux_regs;
4035 regs = alloc_oa_regs(perf,
4036 perf->ops.is_valid_mux_reg,
4037 u64_to_user_ptr(args->mux_regs_ptr),
4038 args->n_mux_regs);
4039
4040 if (IS_ERR(regs)) {
4041 DRM_DEBUG("Failed to create OA config for mux_regs\n");
4042 err = PTR_ERR(regs);
4043 goto reg_err;
4044 }
4045 oa_config->mux_regs = regs;
4046
4047 oa_config->b_counter_regs_len = args->n_boolean_regs;
4048 regs = alloc_oa_regs(perf,
4049 perf->ops.is_valid_b_counter_reg,
4050 u64_to_user_ptr(args->boolean_regs_ptr),
4051 args->n_boolean_regs);
4052
4053 if (IS_ERR(regs)) {
4054 DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
4055 err = PTR_ERR(regs);
4056 goto reg_err;
4057 }
4058 oa_config->b_counter_regs = regs;
4059
4060 if (INTEL_GEN(perf->i915) < 8) {
4061 if (args->n_flex_regs != 0) {
4062 err = -EINVAL;
4063 goto reg_err;
4064 }
4065 } else {
4066 oa_config->flex_regs_len = args->n_flex_regs;
4067 regs = alloc_oa_regs(perf,
4068 perf->ops.is_valid_flex_reg,
4069 u64_to_user_ptr(args->flex_regs_ptr),
4070 args->n_flex_regs);
4071
4072 if (IS_ERR(regs)) {
4073 DRM_DEBUG("Failed to create OA config for flex_regs\n");
4074 err = PTR_ERR(regs);
4075 goto reg_err;
4076 }
4077 oa_config->flex_regs = regs;
4078 }
4079
4080 err = mutex_lock_interruptible(&perf->metrics_lock);
4081 if (err)
4082 goto reg_err;
4083
4084 /* We shouldn't have too many configs, so this iteration shouldn't be
4085 * too costly.
4086 */
4087 idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4088 if (!strcmp(tmp->uuid, oa_config->uuid)) {
4089 DRM_DEBUG("OA config already exists with this uuid\n");
4090 err = -EADDRINUSE;
4091 goto sysfs_err;
4092 }
4093 }
4094
4095 err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4096 if (err) {
4097 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4098 goto sysfs_err;
4099 }
4100
4101 /* Config id 0 is invalid, id 1 for kernel stored test config. */
4102 oa_config->id = idr_alloc(&perf->metrics_idr,
4103 oa_config, 2,
4104 0, GFP_KERNEL);
4105 if (oa_config->id < 0) {
4106 DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4107 err = oa_config->id;
4108 goto sysfs_err;
4109 }
4110
4111 mutex_unlock(&perf->metrics_lock);
4112
4113 DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4114
4115 return oa_config->id;
4116
4117 sysfs_err:
4118 mutex_unlock(&perf->metrics_lock);
4119 reg_err:
4120 i915_oa_config_put(oa_config);
4121 DRM_DEBUG("Failed to add new OA config\n");
4122 return err;
4123 }
4124
4125 /**
4126 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4127 * @dev: drm device
4128 * @data: ioctl data (pointer to u64 integer) copied from userspace
4129 * @file: drm file
4130 *
4131 * Configs can be removed while being used, the will stop appearing in sysfs
4132 * and their content will be freed when the stream using the config is closed.
4133 *
4134 * Returns: 0 on success or a negative error code on failure.
4135 */
4136 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4137 struct drm_file *file)
4138 {
4139 struct i915_perf *perf = &to_i915(dev)->perf;
4140 u64 *arg = data;
4141 struct i915_oa_config *oa_config;
4142 int ret;
4143
4144 if (!perf->i915) {
4145 DRM_DEBUG("i915 perf interface not available for this system\n");
4146 return -ENOTSUPP;
4147 }
4148
4149 if (i915_perf_stream_paranoid && !perfmon_capable()) {
4150 DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
4151 return -EACCES;
4152 }
4153
4154 ret = mutex_lock_interruptible(&perf->metrics_lock);
4155 if (ret)
4156 return ret;
4157
4158 oa_config = idr_find(&perf->metrics_idr, *arg);
4159 if (!oa_config) {
4160 DRM_DEBUG("Failed to remove unknown OA config\n");
4161 ret = -ENOENT;
4162 goto err_unlock;
4163 }
4164
4165 GEM_BUG_ON(*arg != oa_config->id);
4166
4167 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4168
4169 idr_remove(&perf->metrics_idr, *arg);
4170
4171 mutex_unlock(&perf->metrics_lock);
4172
4173 DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4174
4175 i915_oa_config_put(oa_config);
4176
4177 return 0;
4178
4179 err_unlock:
4180 mutex_unlock(&perf->metrics_lock);
4181 return ret;
4182 }
4183
4184 static struct ctl_table oa_table[] = {
4185 {
4186 .procname = "perf_stream_paranoid",
4187 .data = &i915_perf_stream_paranoid,
4188 .maxlen = sizeof(i915_perf_stream_paranoid),
4189 .mode = 0644,
4190 .proc_handler = proc_dointvec_minmax,
4191 .extra1 = SYSCTL_ZERO,
4192 .extra2 = SYSCTL_ONE,
4193 },
4194 {
4195 .procname = "oa_max_sample_rate",
4196 .data = &i915_oa_max_sample_rate,
4197 .maxlen = sizeof(i915_oa_max_sample_rate),
4198 .mode = 0644,
4199 .proc_handler = proc_dointvec_minmax,
4200 .extra1 = SYSCTL_ZERO,
4201 .extra2 = &oa_sample_rate_hard_limit,
4202 },
4203 {}
4204 };
4205
4206 static struct ctl_table i915_root[] = {
4207 {
4208 .procname = "i915",
4209 .maxlen = 0,
4210 .mode = 0555,
4211 .child = oa_table,
4212 },
4213 {}
4214 };
4215
4216 static struct ctl_table dev_root[] = {
4217 {
4218 .procname = "dev",
4219 .maxlen = 0,
4220 .mode = 0555,
4221 .child = i915_root,
4222 },
4223 {}
4224 };
4225
4226 /**
4227 * i915_perf_init - initialize i915-perf state on module bind
4228 * @i915: i915 device instance
4229 *
4230 * Initializes i915-perf state without exposing anything to userspace.
4231 *
4232 * Note: i915-perf initialization is split into an 'init' and 'register'
4233 * phase with the i915_perf_register() exposing state to userspace.
4234 */
4235 void i915_perf_init(struct drm_i915_private *i915)
4236 {
4237 struct i915_perf *perf = &i915->perf;
4238
4239 /* XXX const struct i915_perf_ops! */
4240
4241 if (IS_HASWELL(i915)) {
4242 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
4243 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
4244 perf->ops.is_valid_flex_reg = NULL;
4245 perf->ops.enable_metric_set = hsw_enable_metric_set;
4246 perf->ops.disable_metric_set = hsw_disable_metric_set;
4247 perf->ops.oa_enable = gen7_oa_enable;
4248 perf->ops.oa_disable = gen7_oa_disable;
4249 perf->ops.read = gen7_oa_read;
4250 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
4251
4252 perf->oa_formats = hsw_oa_formats;
4253 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4254 /* Note: that although we could theoretically also support the
4255 * legacy ringbuffer mode on BDW (and earlier iterations of
4256 * this driver, before upstreaming did this) it didn't seem
4257 * worth the complexity to maintain now that BDW+ enable
4258 * execlist mode by default.
4259 */
4260 perf->ops.read = gen8_oa_read;
4261
4262 if (IS_GEN_RANGE(i915, 8, 9)) {
4263 perf->oa_formats = gen8_plus_oa_formats;
4264
4265 perf->ops.is_valid_b_counter_reg =
4266 gen7_is_valid_b_counter_addr;
4267 perf->ops.is_valid_mux_reg =
4268 gen8_is_valid_mux_addr;
4269 perf->ops.is_valid_flex_reg =
4270 gen8_is_valid_flex_addr;
4271
4272 if (IS_CHERRYVIEW(i915)) {
4273 perf->ops.is_valid_mux_reg =
4274 chv_is_valid_mux_addr;
4275 }
4276
4277 perf->ops.oa_enable = gen8_oa_enable;
4278 perf->ops.oa_disable = gen8_oa_disable;
4279 perf->ops.enable_metric_set = gen8_enable_metric_set;
4280 perf->ops.disable_metric_set = gen8_disable_metric_set;
4281 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4282
4283 if (IS_GEN(i915, 8)) {
4284 perf->ctx_oactxctrl_offset = 0x120;
4285 perf->ctx_flexeu0_offset = 0x2ce;
4286
4287 perf->gen8_valid_ctx_bit = BIT(25);
4288 } else {
4289 perf->ctx_oactxctrl_offset = 0x128;
4290 perf->ctx_flexeu0_offset = 0x3de;
4291
4292 perf->gen8_valid_ctx_bit = BIT(16);
4293 }
4294 } else if (IS_GEN_RANGE(i915, 10, 11)) {
4295 perf->oa_formats = gen8_plus_oa_formats;
4296
4297 perf->ops.is_valid_b_counter_reg =
4298 gen7_is_valid_b_counter_addr;
4299 perf->ops.is_valid_mux_reg =
4300 gen10_is_valid_mux_addr;
4301 perf->ops.is_valid_flex_reg =
4302 gen8_is_valid_flex_addr;
4303
4304 perf->ops.oa_enable = gen8_oa_enable;
4305 perf->ops.oa_disable = gen8_oa_disable;
4306 perf->ops.enable_metric_set = gen8_enable_metric_set;
4307 perf->ops.disable_metric_set = gen10_disable_metric_set;
4308 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4309
4310 if (IS_GEN(i915, 10)) {
4311 perf->ctx_oactxctrl_offset = 0x128;
4312 perf->ctx_flexeu0_offset = 0x3de;
4313 } else {
4314 perf->ctx_oactxctrl_offset = 0x124;
4315 perf->ctx_flexeu0_offset = 0x78e;
4316 }
4317 perf->gen8_valid_ctx_bit = BIT(16);
4318 } else if (IS_GEN(i915, 12)) {
4319 perf->oa_formats = gen12_oa_formats;
4320
4321 perf->ops.is_valid_b_counter_reg =
4322 gen12_is_valid_b_counter_addr;
4323 perf->ops.is_valid_mux_reg =
4324 gen12_is_valid_mux_addr;
4325 perf->ops.is_valid_flex_reg =
4326 gen8_is_valid_flex_addr;
4327
4328 perf->ops.oa_enable = gen12_oa_enable;
4329 perf->ops.oa_disable = gen12_oa_disable;
4330 perf->ops.enable_metric_set = gen12_enable_metric_set;
4331 perf->ops.disable_metric_set = gen12_disable_metric_set;
4332 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
4333
4334 perf->ctx_flexeu0_offset = 0;
4335 perf->ctx_oactxctrl_offset = 0x144;
4336 }
4337 }
4338
4339 if (perf->ops.enable_metric_set) {
4340 mutex_init(&perf->lock);
4341
4342 oa_sample_rate_hard_limit =
4343 RUNTIME_INFO(i915)->cs_timestamp_frequency_hz / 2;
4344
4345 mutex_init(&perf->metrics_lock);
4346 idr_init(&perf->metrics_idr);
4347
4348 /* We set up some ratelimit state to potentially throttle any
4349 * _NOTES about spurious, invalid OA reports which we don't
4350 * forward to userspace.
4351 *
4352 * We print a _NOTE about any throttling when closing the
4353 * stream instead of waiting until driver _fini which no one
4354 * would ever see.
4355 *
4356 * Using the same limiting factors as printk_ratelimit()
4357 */
4358 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4359 /* Since we use a DRM_NOTE for spurious reports it would be
4360 * inconsistent to let __ratelimit() automatically print a
4361 * warning for throttling.
4362 */
4363 ratelimit_set_flags(&perf->spurious_report_rs,
4364 RATELIMIT_MSG_ON_RELEASE);
4365
4366 ratelimit_state_init(&perf->tail_pointer_race,
4367 5 * HZ, 10);
4368 ratelimit_set_flags(&perf->tail_pointer_race,
4369 RATELIMIT_MSG_ON_RELEASE);
4370
4371 atomic64_set(&perf->noa_programming_delay,
4372 500 * 1000 /* 500us */);
4373
4374 perf->i915 = i915;
4375 }
4376 }
4377
4378 static int destroy_config(int id, void *p, void *data)
4379 {
4380 i915_oa_config_put(p);
4381 return 0;
4382 }
4383
4384 void i915_perf_sysctl_register(void)
4385 {
4386 sysctl_header = register_sysctl_table(dev_root);
4387 }
4388
4389 void i915_perf_sysctl_unregister(void)
4390 {
4391 unregister_sysctl_table(sysctl_header);
4392 }
4393
4394 /**
4395 * i915_perf_fini - Counter part to i915_perf_init()
4396 * @i915: i915 device instance
4397 */
4398 void i915_perf_fini(struct drm_i915_private *i915)
4399 {
4400 struct i915_perf *perf = &i915->perf;
4401
4402 if (!perf->i915)
4403 return;
4404
4405 idr_for_each(&perf->metrics_idr, destroy_config, perf);
4406 idr_destroy(&perf->metrics_idr);
4407
4408 memset(&perf->ops, 0, sizeof(perf->ops));
4409 perf->i915 = NULL;
4410 }
4411
4412 /**
4413 * i915_perf_ioctl_version - Version of the i915-perf subsystem
4414 *
4415 * This version number is used by userspace to detect available features.
4416 */
4417 int i915_perf_ioctl_version(void)
4418 {
4419 /*
4420 * 1: Initial version
4421 * I915_PERF_IOCTL_ENABLE
4422 * I915_PERF_IOCTL_DISABLE
4423 *
4424 * 2: Added runtime modification of OA config.
4425 * I915_PERF_IOCTL_CONFIG
4426 *
4427 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4428 * preemption on a particular context so that performance data is
4429 * accessible from a delta of MI_RPC reports without looking at the
4430 * OA buffer.
4431 *
4432 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
4433 * be run for the duration of the performance recording based on
4434 * their SSEU configuration.
4435 *
4436 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
4437 * interval for the hrtimer used to check for OA data.
4438 */
4439 return 5;
4440 }
4441
4442 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4443 #include "selftests/i915_perf.c"
4444 #endif