]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/gpu/drm/nouveau/dispnv50/disp.c
drm/nouveau/kms/nv50-: also flush fb writes when rewinding push buffer
[thirdparty/linux.git] / drivers / gpu / drm / nouveau / dispnv50 / disp.c
1 /*
2 * Copyright 2011 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Ben Skeggs
23 */
24 #include "disp.h"
25 #include "atom.h"
26 #include "core.h"
27 #include "head.h"
28 #include "wndw.h"
29
30 #include <linux/dma-mapping.h>
31 #include <linux/hdmi.h>
32
33 #include <drm/drmP.h>
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc_helper.h>
36 #include <drm/drm_dp_helper.h>
37 #include <drm/drm_fb_helper.h>
38 #include <drm/drm_plane_helper.h>
39 #include <drm/drm_scdc_helper.h>
40 #include <drm/drm_edid.h>
41
42 #include <nvif/class.h>
43 #include <nvif/cl0002.h>
44 #include <nvif/cl5070.h>
45 #include <nvif/cl507d.h>
46 #include <nvif/event.h>
47
48 #include "nouveau_drv.h"
49 #include "nouveau_dma.h"
50 #include "nouveau_gem.h"
51 #include "nouveau_connector.h"
52 #include "nouveau_encoder.h"
53 #include "nouveau_fence.h"
54 #include "nouveau_fbcon.h"
55
56 #include <subdev/bios/dp.h>
57
58 /******************************************************************************
59 * Atomic state
60 *****************************************************************************/
61
62 struct nv50_outp_atom {
63 struct list_head head;
64
65 struct drm_encoder *encoder;
66 bool flush_disable;
67
68 union nv50_outp_atom_mask {
69 struct {
70 bool ctrl:1;
71 };
72 u8 mask;
73 } set, clr;
74 };
75
76 /******************************************************************************
77 * EVO channel
78 *****************************************************************************/
79
80 static int
81 nv50_chan_create(struct nvif_device *device, struct nvif_object *disp,
82 const s32 *oclass, u8 head, void *data, u32 size,
83 struct nv50_chan *chan)
84 {
85 struct nvif_sclass *sclass;
86 int ret, i, n;
87
88 chan->device = device;
89
90 ret = n = nvif_object_sclass_get(disp, &sclass);
91 if (ret < 0)
92 return ret;
93
94 while (oclass[0]) {
95 for (i = 0; i < n; i++) {
96 if (sclass[i].oclass == oclass[0]) {
97 ret = nvif_object_init(disp, 0, oclass[0],
98 data, size, &chan->user);
99 if (ret == 0)
100 nvif_object_map(&chan->user, NULL, 0);
101 nvif_object_sclass_put(&sclass);
102 return ret;
103 }
104 }
105 oclass++;
106 }
107
108 nvif_object_sclass_put(&sclass);
109 return -ENOSYS;
110 }
111
112 static void
113 nv50_chan_destroy(struct nv50_chan *chan)
114 {
115 nvif_object_fini(&chan->user);
116 }
117
118 /******************************************************************************
119 * DMA EVO channel
120 *****************************************************************************/
121
122 void
123 nv50_dmac_destroy(struct nv50_dmac *dmac)
124 {
125 nvif_object_fini(&dmac->vram);
126 nvif_object_fini(&dmac->sync);
127
128 nv50_chan_destroy(&dmac->base);
129
130 nvif_mem_fini(&dmac->push);
131 }
132
133 int
134 nv50_dmac_create(struct nvif_device *device, struct nvif_object *disp,
135 const s32 *oclass, u8 head, void *data, u32 size, u64 syncbuf,
136 struct nv50_dmac *dmac)
137 {
138 struct nouveau_cli *cli = (void *)device->object.client;
139 struct nv50_disp_core_channel_dma_v0 *args = data;
140 u8 type = NVIF_MEM_COHERENT;
141 int ret;
142
143 mutex_init(&dmac->lock);
144
145 /* Pascal added support for 47-bit physical addresses, but some
146 * parts of EVO still only accept 40-bit PAs.
147 *
148 * To avoid issues on systems with large amounts of RAM, and on
149 * systems where an IOMMU maps pages at a high address, we need
150 * to allocate push buffers in VRAM instead.
151 *
152 * This appears to match NVIDIA's behaviour on Pascal.
153 */
154 if (device->info.family == NV_DEVICE_INFO_V0_PASCAL)
155 type |= NVIF_MEM_VRAM;
156
157 ret = nvif_mem_init_map(&cli->mmu, type, 0x1000, &dmac->push);
158 if (ret)
159 return ret;
160
161 dmac->ptr = dmac->push.object.map.ptr;
162
163 args->pushbuf = nvif_handle(&dmac->push.object);
164
165 ret = nv50_chan_create(device, disp, oclass, head, data, size,
166 &dmac->base);
167 if (ret)
168 return ret;
169
170 if (!syncbuf)
171 return 0;
172
173 ret = nvif_object_init(&dmac->base.user, 0xf0000000, NV_DMA_IN_MEMORY,
174 &(struct nv_dma_v0) {
175 .target = NV_DMA_V0_TARGET_VRAM,
176 .access = NV_DMA_V0_ACCESS_RDWR,
177 .start = syncbuf + 0x0000,
178 .limit = syncbuf + 0x0fff,
179 }, sizeof(struct nv_dma_v0),
180 &dmac->sync);
181 if (ret)
182 return ret;
183
184 ret = nvif_object_init(&dmac->base.user, 0xf0000001, NV_DMA_IN_MEMORY,
185 &(struct nv_dma_v0) {
186 .target = NV_DMA_V0_TARGET_VRAM,
187 .access = NV_DMA_V0_ACCESS_RDWR,
188 .start = 0,
189 .limit = device->info.ram_user - 1,
190 }, sizeof(struct nv_dma_v0),
191 &dmac->vram);
192 if (ret)
193 return ret;
194
195 return ret;
196 }
197
198 /******************************************************************************
199 * EVO channel helpers
200 *****************************************************************************/
201 static void
202 evo_flush(struct nv50_dmac *dmac)
203 {
204 /* Push buffer fetches are not coherent with BAR1, we need to ensure
205 * writes have been flushed right through to VRAM before writing PUT.
206 */
207 if (dmac->push.type & NVIF_MEM_VRAM) {
208 struct nvif_device *device = dmac->base.device;
209 nvif_wr32(&device->object, 0x070000, 0x00000001);
210 nvif_msec(device, 2000,
211 if (!(nvif_rd32(&device->object, 0x070000) & 0x00000002))
212 break;
213 );
214 }
215 }
216
217 u32 *
218 evo_wait(struct nv50_dmac *evoc, int nr)
219 {
220 struct nv50_dmac *dmac = evoc;
221 struct nvif_device *device = dmac->base.device;
222 u32 put = nvif_rd32(&dmac->base.user, 0x0000) / 4;
223
224 mutex_lock(&dmac->lock);
225 if (put + nr >= (PAGE_SIZE / 4) - 8) {
226 dmac->ptr[put] = 0x20000000;
227 evo_flush(dmac);
228
229 nvif_wr32(&dmac->base.user, 0x0000, 0x00000000);
230 if (nvif_msec(device, 2000,
231 if (!nvif_rd32(&dmac->base.user, 0x0004))
232 break;
233 ) < 0) {
234 mutex_unlock(&dmac->lock);
235 pr_err("nouveau: evo channel stalled\n");
236 return NULL;
237 }
238
239 put = 0;
240 }
241
242 return dmac->ptr + put;
243 }
244
245 void
246 evo_kick(u32 *push, struct nv50_dmac *evoc)
247 {
248 struct nv50_dmac *dmac = evoc;
249
250 evo_flush(dmac);
251
252 nvif_wr32(&dmac->base.user, 0x0000, (push - dmac->ptr) << 2);
253 mutex_unlock(&dmac->lock);
254 }
255
256 /******************************************************************************
257 * Output path helpers
258 *****************************************************************************/
259 static void
260 nv50_outp_release(struct nouveau_encoder *nv_encoder)
261 {
262 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
263 struct {
264 struct nv50_disp_mthd_v1 base;
265 } args = {
266 .base.version = 1,
267 .base.method = NV50_DISP_MTHD_V1_RELEASE,
268 .base.hasht = nv_encoder->dcb->hasht,
269 .base.hashm = nv_encoder->dcb->hashm,
270 };
271
272 nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
273 nv_encoder->or = -1;
274 nv_encoder->link = 0;
275 }
276
277 static int
278 nv50_outp_acquire(struct nouveau_encoder *nv_encoder)
279 {
280 struct nouveau_drm *drm = nouveau_drm(nv_encoder->base.base.dev);
281 struct nv50_disp *disp = nv50_disp(drm->dev);
282 struct {
283 struct nv50_disp_mthd_v1 base;
284 struct nv50_disp_acquire_v0 info;
285 } args = {
286 .base.version = 1,
287 .base.method = NV50_DISP_MTHD_V1_ACQUIRE,
288 .base.hasht = nv_encoder->dcb->hasht,
289 .base.hashm = nv_encoder->dcb->hashm,
290 };
291 int ret;
292
293 ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
294 if (ret) {
295 NV_ERROR(drm, "error acquiring output path: %d\n", ret);
296 return ret;
297 }
298
299 nv_encoder->or = args.info.or;
300 nv_encoder->link = args.info.link;
301 return 0;
302 }
303
304 static int
305 nv50_outp_atomic_check_view(struct drm_encoder *encoder,
306 struct drm_crtc_state *crtc_state,
307 struct drm_connector_state *conn_state,
308 struct drm_display_mode *native_mode)
309 {
310 struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
311 struct drm_display_mode *mode = &crtc_state->mode;
312 struct drm_connector *connector = conn_state->connector;
313 struct nouveau_conn_atom *asyc = nouveau_conn_atom(conn_state);
314 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
315
316 NV_ATOMIC(drm, "%s atomic_check\n", encoder->name);
317 asyc->scaler.full = false;
318 if (!native_mode)
319 return 0;
320
321 if (asyc->scaler.mode == DRM_MODE_SCALE_NONE) {
322 switch (connector->connector_type) {
323 case DRM_MODE_CONNECTOR_LVDS:
324 case DRM_MODE_CONNECTOR_eDP:
325 /* Force use of scaler for non-EDID modes. */
326 if (adjusted_mode->type & DRM_MODE_TYPE_DRIVER)
327 break;
328 mode = native_mode;
329 asyc->scaler.full = true;
330 break;
331 default:
332 break;
333 }
334 } else {
335 mode = native_mode;
336 }
337
338 if (!drm_mode_equal(adjusted_mode, mode)) {
339 drm_mode_copy(adjusted_mode, mode);
340 crtc_state->mode_changed = true;
341 }
342
343 return 0;
344 }
345
346 static int
347 nv50_outp_atomic_check(struct drm_encoder *encoder,
348 struct drm_crtc_state *crtc_state,
349 struct drm_connector_state *conn_state)
350 {
351 struct nouveau_connector *nv_connector =
352 nouveau_connector(conn_state->connector);
353 return nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
354 nv_connector->native_mode);
355 }
356
357 /******************************************************************************
358 * DAC
359 *****************************************************************************/
360 static void
361 nv50_dac_disable(struct drm_encoder *encoder)
362 {
363 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
364 struct nv50_core *core = nv50_disp(encoder->dev)->core;
365 if (nv_encoder->crtc)
366 core->func->dac->ctrl(core, nv_encoder->or, 0x00000000, NULL);
367 nv_encoder->crtc = NULL;
368 nv50_outp_release(nv_encoder);
369 }
370
371 static void
372 nv50_dac_enable(struct drm_encoder *encoder)
373 {
374 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
375 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
376 struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state);
377 struct nv50_core *core = nv50_disp(encoder->dev)->core;
378
379 nv50_outp_acquire(nv_encoder);
380
381 core->func->dac->ctrl(core, nv_encoder->or, 1 << nv_crtc->index, asyh);
382 asyh->or.depth = 0;
383
384 nv_encoder->crtc = encoder->crtc;
385 }
386
387 static enum drm_connector_status
388 nv50_dac_detect(struct drm_encoder *encoder, struct drm_connector *connector)
389 {
390 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
391 struct nv50_disp *disp = nv50_disp(encoder->dev);
392 struct {
393 struct nv50_disp_mthd_v1 base;
394 struct nv50_disp_dac_load_v0 load;
395 } args = {
396 .base.version = 1,
397 .base.method = NV50_DISP_MTHD_V1_DAC_LOAD,
398 .base.hasht = nv_encoder->dcb->hasht,
399 .base.hashm = nv_encoder->dcb->hashm,
400 };
401 int ret;
402
403 args.load.data = nouveau_drm(encoder->dev)->vbios.dactestval;
404 if (args.load.data == 0)
405 args.load.data = 340;
406
407 ret = nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
408 if (ret || !args.load.load)
409 return connector_status_disconnected;
410
411 return connector_status_connected;
412 }
413
414 static const struct drm_encoder_helper_funcs
415 nv50_dac_help = {
416 .atomic_check = nv50_outp_atomic_check,
417 .enable = nv50_dac_enable,
418 .disable = nv50_dac_disable,
419 .detect = nv50_dac_detect
420 };
421
422 static void
423 nv50_dac_destroy(struct drm_encoder *encoder)
424 {
425 drm_encoder_cleanup(encoder);
426 kfree(encoder);
427 }
428
429 static const struct drm_encoder_funcs
430 nv50_dac_func = {
431 .destroy = nv50_dac_destroy,
432 };
433
434 static int
435 nv50_dac_create(struct drm_connector *connector, struct dcb_output *dcbe)
436 {
437 struct nouveau_drm *drm = nouveau_drm(connector->dev);
438 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
439 struct nvkm_i2c_bus *bus;
440 struct nouveau_encoder *nv_encoder;
441 struct drm_encoder *encoder;
442 int type = DRM_MODE_ENCODER_DAC;
443
444 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
445 if (!nv_encoder)
446 return -ENOMEM;
447 nv_encoder->dcb = dcbe;
448
449 bus = nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
450 if (bus)
451 nv_encoder->i2c = &bus->i2c;
452
453 encoder = to_drm_encoder(nv_encoder);
454 encoder->possible_crtcs = dcbe->heads;
455 encoder->possible_clones = 0;
456 drm_encoder_init(connector->dev, encoder, &nv50_dac_func, type,
457 "dac-%04x-%04x", dcbe->hasht, dcbe->hashm);
458 drm_encoder_helper_add(encoder, &nv50_dac_help);
459
460 drm_connector_attach_encoder(connector, encoder);
461 return 0;
462 }
463
464 /******************************************************************************
465 * Audio
466 *****************************************************************************/
467 static void
468 nv50_audio_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
469 {
470 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
471 struct nv50_disp *disp = nv50_disp(encoder->dev);
472 struct {
473 struct nv50_disp_mthd_v1 base;
474 struct nv50_disp_sor_hda_eld_v0 eld;
475 } args = {
476 .base.version = 1,
477 .base.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
478 .base.hasht = nv_encoder->dcb->hasht,
479 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
480 (0x0100 << nv_crtc->index),
481 };
482
483 nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
484 }
485
486 static void
487 nv50_audio_enable(struct drm_encoder *encoder, struct drm_display_mode *mode)
488 {
489 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
490 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
491 struct nouveau_connector *nv_connector;
492 struct nv50_disp *disp = nv50_disp(encoder->dev);
493 struct __packed {
494 struct {
495 struct nv50_disp_mthd_v1 mthd;
496 struct nv50_disp_sor_hda_eld_v0 eld;
497 } base;
498 u8 data[sizeof(nv_connector->base.eld)];
499 } args = {
500 .base.mthd.version = 1,
501 .base.mthd.method = NV50_DISP_MTHD_V1_SOR_HDA_ELD,
502 .base.mthd.hasht = nv_encoder->dcb->hasht,
503 .base.mthd.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
504 (0x0100 << nv_crtc->index),
505 };
506
507 nv_connector = nouveau_encoder_connector_get(nv_encoder);
508 if (!drm_detect_monitor_audio(nv_connector->edid))
509 return;
510
511 memcpy(args.data, nv_connector->base.eld, sizeof(args.data));
512
513 nvif_mthd(&disp->disp->object, 0, &args,
514 sizeof(args.base) + drm_eld_size(args.data));
515 }
516
517 /******************************************************************************
518 * HDMI
519 *****************************************************************************/
520 static void
521 nv50_hdmi_disable(struct drm_encoder *encoder, struct nouveau_crtc *nv_crtc)
522 {
523 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
524 struct nv50_disp *disp = nv50_disp(encoder->dev);
525 struct {
526 struct nv50_disp_mthd_v1 base;
527 struct nv50_disp_sor_hdmi_pwr_v0 pwr;
528 } args = {
529 .base.version = 1,
530 .base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
531 .base.hasht = nv_encoder->dcb->hasht,
532 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
533 (0x0100 << nv_crtc->index),
534 };
535
536 nvif_mthd(&disp->disp->object, 0, &args, sizeof(args));
537 }
538
539 static void
540 nv50_hdmi_enable(struct drm_encoder *encoder, struct drm_display_mode *mode)
541 {
542 struct nouveau_drm *drm = nouveau_drm(encoder->dev);
543 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
544 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
545 struct nv50_disp *disp = nv50_disp(encoder->dev);
546 struct {
547 struct nv50_disp_mthd_v1 base;
548 struct nv50_disp_sor_hdmi_pwr_v0 pwr;
549 u8 infoframes[2 * 17]; /* two frames, up to 17 bytes each */
550 } args = {
551 .base.version = 1,
552 .base.method = NV50_DISP_MTHD_V1_SOR_HDMI_PWR,
553 .base.hasht = nv_encoder->dcb->hasht,
554 .base.hashm = (0xf0ff & nv_encoder->dcb->hashm) |
555 (0x0100 << nv_crtc->index),
556 .pwr.state = 1,
557 .pwr.rekey = 56, /* binary driver, and tegra, constant */
558 };
559 struct nouveau_connector *nv_connector;
560 struct drm_hdmi_info *hdmi;
561 u32 max_ac_packet;
562 union hdmi_infoframe avi_frame;
563 union hdmi_infoframe vendor_frame;
564 bool scdc_supported, high_tmds_clock_ratio = false, scrambling = false;
565 u8 config;
566 int ret;
567 int size;
568
569 nv_connector = nouveau_encoder_connector_get(nv_encoder);
570 if (!drm_detect_hdmi_monitor(nv_connector->edid))
571 return;
572
573 hdmi = &nv_connector->base.display_info.hdmi;
574 scdc_supported = hdmi->scdc.supported;
575
576 ret = drm_hdmi_avi_infoframe_from_display_mode(&avi_frame.avi, mode,
577 scdc_supported);
578 if (!ret) {
579 /* We have an AVI InfoFrame, populate it to the display */
580 args.pwr.avi_infoframe_length
581 = hdmi_infoframe_pack(&avi_frame, args.infoframes, 17);
582 }
583
584 ret = drm_hdmi_vendor_infoframe_from_display_mode(&vendor_frame.vendor.hdmi,
585 &nv_connector->base, mode);
586 if (!ret) {
587 /* We have a Vendor InfoFrame, populate it to the display */
588 args.pwr.vendor_infoframe_length
589 = hdmi_infoframe_pack(&vendor_frame,
590 args.infoframes
591 + args.pwr.avi_infoframe_length,
592 17);
593 }
594
595 max_ac_packet = mode->htotal - mode->hdisplay;
596 max_ac_packet -= args.pwr.rekey;
597 max_ac_packet -= 18; /* constant from tegra */
598 args.pwr.max_ac_packet = max_ac_packet / 32;
599
600 if (hdmi->scdc.scrambling.supported) {
601 high_tmds_clock_ratio = mode->clock > 340000;
602 scrambling = high_tmds_clock_ratio ||
603 hdmi->scdc.scrambling.low_rates;
604 }
605
606 args.pwr.scdc =
607 NV50_DISP_SOR_HDMI_PWR_V0_SCDC_SCRAMBLE * scrambling |
608 NV50_DISP_SOR_HDMI_PWR_V0_SCDC_DIV_BY_4 * high_tmds_clock_ratio;
609
610 size = sizeof(args.base)
611 + sizeof(args.pwr)
612 + args.pwr.avi_infoframe_length
613 + args.pwr.vendor_infoframe_length;
614 nvif_mthd(&disp->disp->object, 0, &args, size);
615
616 nv50_audio_enable(encoder, mode);
617
618 /* If SCDC is supported by the downstream monitor, update
619 * divider / scrambling settings to what we programmed above.
620 */
621 if (!hdmi->scdc.scrambling.supported)
622 return;
623
624 ret = drm_scdc_readb(nv_encoder->i2c, SCDC_TMDS_CONFIG, &config);
625 if (ret < 0) {
626 NV_ERROR(drm, "Failure to read SCDC_TMDS_CONFIG: %d\n", ret);
627 return;
628 }
629 config &= ~(SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 | SCDC_SCRAMBLING_ENABLE);
630 config |= SCDC_TMDS_BIT_CLOCK_RATIO_BY_40 * high_tmds_clock_ratio;
631 config |= SCDC_SCRAMBLING_ENABLE * scrambling;
632 ret = drm_scdc_writeb(nv_encoder->i2c, SCDC_TMDS_CONFIG, config);
633 if (ret < 0)
634 NV_ERROR(drm, "Failure to write SCDC_TMDS_CONFIG = 0x%02x: %d\n",
635 config, ret);
636 }
637
638 /******************************************************************************
639 * MST
640 *****************************************************************************/
641 #define nv50_mstm(p) container_of((p), struct nv50_mstm, mgr)
642 #define nv50_mstc(p) container_of((p), struct nv50_mstc, connector)
643 #define nv50_msto(p) container_of((p), struct nv50_msto, encoder)
644
645 struct nv50_mstm {
646 struct nouveau_encoder *outp;
647
648 struct drm_dp_mst_topology_mgr mgr;
649 struct nv50_msto *msto[4];
650
651 bool modified;
652 bool disabled;
653 int links;
654 };
655
656 struct nv50_mstc {
657 struct nv50_mstm *mstm;
658 struct drm_dp_mst_port *port;
659 struct drm_connector connector;
660
661 struct drm_display_mode *native;
662 struct edid *edid;
663
664 int pbn;
665 };
666
667 struct nv50_msto {
668 struct drm_encoder encoder;
669
670 struct nv50_head *head;
671 struct nv50_mstc *mstc;
672 bool disabled;
673 };
674
675 static struct drm_dp_payload *
676 nv50_msto_payload(struct nv50_msto *msto)
677 {
678 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
679 struct nv50_mstc *mstc = msto->mstc;
680 struct nv50_mstm *mstm = mstc->mstm;
681 int vcpi = mstc->port->vcpi.vcpi, i;
682
683 NV_ATOMIC(drm, "%s: vcpi %d\n", msto->encoder.name, vcpi);
684 for (i = 0; i < mstm->mgr.max_payloads; i++) {
685 struct drm_dp_payload *payload = &mstm->mgr.payloads[i];
686 NV_ATOMIC(drm, "%s: %d: vcpi %d start 0x%02x slots 0x%02x\n",
687 mstm->outp->base.base.name, i, payload->vcpi,
688 payload->start_slot, payload->num_slots);
689 }
690
691 for (i = 0; i < mstm->mgr.max_payloads; i++) {
692 struct drm_dp_payload *payload = &mstm->mgr.payloads[i];
693 if (payload->vcpi == vcpi)
694 return payload;
695 }
696
697 return NULL;
698 }
699
700 static void
701 nv50_msto_cleanup(struct nv50_msto *msto)
702 {
703 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
704 struct nv50_mstc *mstc = msto->mstc;
705 struct nv50_mstm *mstm = mstc->mstm;
706
707 NV_ATOMIC(drm, "%s: msto cleanup\n", msto->encoder.name);
708 if (mstc->port && mstc->port->vcpi.vcpi > 0 && !nv50_msto_payload(msto))
709 drm_dp_mst_deallocate_vcpi(&mstm->mgr, mstc->port);
710 if (msto->disabled) {
711 msto->mstc = NULL;
712 msto->head = NULL;
713 msto->disabled = false;
714 }
715 }
716
717 static void
718 nv50_msto_prepare(struct nv50_msto *msto)
719 {
720 struct nouveau_drm *drm = nouveau_drm(msto->encoder.dev);
721 struct nv50_mstc *mstc = msto->mstc;
722 struct nv50_mstm *mstm = mstc->mstm;
723 struct {
724 struct nv50_disp_mthd_v1 base;
725 struct nv50_disp_sor_dp_mst_vcpi_v0 vcpi;
726 } args = {
727 .base.version = 1,
728 .base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_VCPI,
729 .base.hasht = mstm->outp->dcb->hasht,
730 .base.hashm = (0xf0ff & mstm->outp->dcb->hashm) |
731 (0x0100 << msto->head->base.index),
732 };
733
734 NV_ATOMIC(drm, "%s: msto prepare\n", msto->encoder.name);
735 if (mstc->port && mstc->port->vcpi.vcpi > 0) {
736 struct drm_dp_payload *payload = nv50_msto_payload(msto);
737 if (payload) {
738 args.vcpi.start_slot = payload->start_slot;
739 args.vcpi.num_slots = payload->num_slots;
740 args.vcpi.pbn = mstc->port->vcpi.pbn;
741 args.vcpi.aligned_pbn = mstc->port->vcpi.aligned_pbn;
742 }
743 }
744
745 NV_ATOMIC(drm, "%s: %s: %02x %02x %04x %04x\n",
746 msto->encoder.name, msto->head->base.base.name,
747 args.vcpi.start_slot, args.vcpi.num_slots,
748 args.vcpi.pbn, args.vcpi.aligned_pbn);
749 nvif_mthd(&drm->display->disp.object, 0, &args, sizeof(args));
750 }
751
752 static int
753 nv50_msto_atomic_check(struct drm_encoder *encoder,
754 struct drm_crtc_state *crtc_state,
755 struct drm_connector_state *conn_state)
756 {
757 struct nv50_mstc *mstc = nv50_mstc(conn_state->connector);
758 struct nv50_mstm *mstm = mstc->mstm;
759 int bpp = conn_state->connector->display_info.bpc * 3;
760 int slots;
761
762 mstc->pbn = drm_dp_calc_pbn_mode(crtc_state->adjusted_mode.clock, bpp);
763
764 slots = drm_dp_find_vcpi_slots(&mstm->mgr, mstc->pbn);
765 if (slots < 0)
766 return slots;
767
768 return nv50_outp_atomic_check_view(encoder, crtc_state, conn_state,
769 mstc->native);
770 }
771
772 static void
773 nv50_msto_enable(struct drm_encoder *encoder)
774 {
775 struct nv50_head *head = nv50_head(encoder->crtc);
776 struct nv50_msto *msto = nv50_msto(encoder);
777 struct nv50_mstc *mstc = NULL;
778 struct nv50_mstm *mstm = NULL;
779 struct drm_connector *connector;
780 struct drm_connector_list_iter conn_iter;
781 u8 proto, depth;
782 int slots;
783 bool r;
784
785 drm_connector_list_iter_begin(encoder->dev, &conn_iter);
786 drm_for_each_connector_iter(connector, &conn_iter) {
787 if (connector->state->best_encoder == &msto->encoder) {
788 mstc = nv50_mstc(connector);
789 mstm = mstc->mstm;
790 break;
791 }
792 }
793 drm_connector_list_iter_end(&conn_iter);
794
795 if (WARN_ON(!mstc))
796 return;
797
798 slots = drm_dp_find_vcpi_slots(&mstm->mgr, mstc->pbn);
799 r = drm_dp_mst_allocate_vcpi(&mstm->mgr, mstc->port, mstc->pbn, slots);
800 WARN_ON(!r);
801
802 if (!mstm->links++)
803 nv50_outp_acquire(mstm->outp);
804
805 if (mstm->outp->link & 1)
806 proto = 0x8;
807 else
808 proto = 0x9;
809
810 switch (mstc->connector.display_info.bpc) {
811 case 6: depth = 0x2; break;
812 case 8: depth = 0x5; break;
813 case 10:
814 default: depth = 0x6; break;
815 }
816
817 mstm->outp->update(mstm->outp, head->base.index,
818 nv50_head_atom(head->base.base.state), proto, depth);
819
820 msto->head = head;
821 msto->mstc = mstc;
822 mstm->modified = true;
823 }
824
825 static void
826 nv50_msto_disable(struct drm_encoder *encoder)
827 {
828 struct nv50_msto *msto = nv50_msto(encoder);
829 struct nv50_mstc *mstc = msto->mstc;
830 struct nv50_mstm *mstm = mstc->mstm;
831
832 if (mstc->port)
833 drm_dp_mst_reset_vcpi_slots(&mstm->mgr, mstc->port);
834
835 mstm->outp->update(mstm->outp, msto->head->base.index, NULL, 0, 0);
836 mstm->modified = true;
837 if (!--mstm->links)
838 mstm->disabled = true;
839 msto->disabled = true;
840 }
841
842 static const struct drm_encoder_helper_funcs
843 nv50_msto_help = {
844 .disable = nv50_msto_disable,
845 .enable = nv50_msto_enable,
846 .atomic_check = nv50_msto_atomic_check,
847 };
848
849 static void
850 nv50_msto_destroy(struct drm_encoder *encoder)
851 {
852 struct nv50_msto *msto = nv50_msto(encoder);
853 drm_encoder_cleanup(&msto->encoder);
854 kfree(msto);
855 }
856
857 static const struct drm_encoder_funcs
858 nv50_msto = {
859 .destroy = nv50_msto_destroy,
860 };
861
862 static int
863 nv50_msto_new(struct drm_device *dev, u32 heads, const char *name, int id,
864 struct nv50_msto **pmsto)
865 {
866 struct nv50_msto *msto;
867 int ret;
868
869 if (!(msto = *pmsto = kzalloc(sizeof(*msto), GFP_KERNEL)))
870 return -ENOMEM;
871
872 ret = drm_encoder_init(dev, &msto->encoder, &nv50_msto,
873 DRM_MODE_ENCODER_DPMST, "%s-mst-%d", name, id);
874 if (ret) {
875 kfree(*pmsto);
876 *pmsto = NULL;
877 return ret;
878 }
879
880 drm_encoder_helper_add(&msto->encoder, &nv50_msto_help);
881 msto->encoder.possible_crtcs = heads;
882 return 0;
883 }
884
885 static struct drm_encoder *
886 nv50_mstc_atomic_best_encoder(struct drm_connector *connector,
887 struct drm_connector_state *connector_state)
888 {
889 struct nv50_head *head = nv50_head(connector_state->crtc);
890 struct nv50_mstc *mstc = nv50_mstc(connector);
891 if (mstc->port) {
892 struct nv50_mstm *mstm = mstc->mstm;
893 return &mstm->msto[head->base.index]->encoder;
894 }
895 return NULL;
896 }
897
898 static struct drm_encoder *
899 nv50_mstc_best_encoder(struct drm_connector *connector)
900 {
901 struct nv50_mstc *mstc = nv50_mstc(connector);
902 if (mstc->port) {
903 struct nv50_mstm *mstm = mstc->mstm;
904 return &mstm->msto[0]->encoder;
905 }
906 return NULL;
907 }
908
909 static enum drm_mode_status
910 nv50_mstc_mode_valid(struct drm_connector *connector,
911 struct drm_display_mode *mode)
912 {
913 return MODE_OK;
914 }
915
916 static int
917 nv50_mstc_get_modes(struct drm_connector *connector)
918 {
919 struct nv50_mstc *mstc = nv50_mstc(connector);
920 int ret = 0;
921
922 mstc->edid = drm_dp_mst_get_edid(&mstc->connector, mstc->port->mgr, mstc->port);
923 drm_connector_update_edid_property(&mstc->connector, mstc->edid);
924 if (mstc->edid)
925 ret = drm_add_edid_modes(&mstc->connector, mstc->edid);
926
927 if (!mstc->connector.display_info.bpc)
928 mstc->connector.display_info.bpc = 8;
929
930 if (mstc->native)
931 drm_mode_destroy(mstc->connector.dev, mstc->native);
932 mstc->native = nouveau_conn_native_mode(&mstc->connector);
933 return ret;
934 }
935
936 static const struct drm_connector_helper_funcs
937 nv50_mstc_help = {
938 .get_modes = nv50_mstc_get_modes,
939 .mode_valid = nv50_mstc_mode_valid,
940 .best_encoder = nv50_mstc_best_encoder,
941 .atomic_best_encoder = nv50_mstc_atomic_best_encoder,
942 };
943
944 static enum drm_connector_status
945 nv50_mstc_detect(struct drm_connector *connector, bool force)
946 {
947 struct nv50_mstc *mstc = nv50_mstc(connector);
948 if (!mstc->port)
949 return connector_status_disconnected;
950 return drm_dp_mst_detect_port(connector, mstc->port->mgr, mstc->port);
951 }
952
953 static void
954 nv50_mstc_destroy(struct drm_connector *connector)
955 {
956 struct nv50_mstc *mstc = nv50_mstc(connector);
957 drm_connector_cleanup(&mstc->connector);
958 kfree(mstc);
959 }
960
961 static const struct drm_connector_funcs
962 nv50_mstc = {
963 .reset = nouveau_conn_reset,
964 .detect = nv50_mstc_detect,
965 .fill_modes = drm_helper_probe_single_connector_modes,
966 .destroy = nv50_mstc_destroy,
967 .atomic_duplicate_state = nouveau_conn_atomic_duplicate_state,
968 .atomic_destroy_state = nouveau_conn_atomic_destroy_state,
969 .atomic_set_property = nouveau_conn_atomic_set_property,
970 .atomic_get_property = nouveau_conn_atomic_get_property,
971 };
972
973 static int
974 nv50_mstc_new(struct nv50_mstm *mstm, struct drm_dp_mst_port *port,
975 const char *path, struct nv50_mstc **pmstc)
976 {
977 struct drm_device *dev = mstm->outp->base.base.dev;
978 struct nv50_mstc *mstc;
979 int ret, i;
980
981 if (!(mstc = *pmstc = kzalloc(sizeof(*mstc), GFP_KERNEL)))
982 return -ENOMEM;
983 mstc->mstm = mstm;
984 mstc->port = port;
985
986 ret = drm_connector_init(dev, &mstc->connector, &nv50_mstc,
987 DRM_MODE_CONNECTOR_DisplayPort);
988 if (ret) {
989 kfree(*pmstc);
990 *pmstc = NULL;
991 return ret;
992 }
993
994 drm_connector_helper_add(&mstc->connector, &nv50_mstc_help);
995
996 mstc->connector.funcs->reset(&mstc->connector);
997 nouveau_conn_attach_properties(&mstc->connector);
998
999 for (i = 0; i < ARRAY_SIZE(mstm->msto) && mstm->msto[i]; i++)
1000 drm_connector_attach_encoder(&mstc->connector, &mstm->msto[i]->encoder);
1001
1002 drm_object_attach_property(&mstc->connector.base, dev->mode_config.path_property, 0);
1003 drm_object_attach_property(&mstc->connector.base, dev->mode_config.tile_property, 0);
1004 drm_connector_set_path_property(&mstc->connector, path);
1005 return 0;
1006 }
1007
1008 static void
1009 nv50_mstm_cleanup(struct nv50_mstm *mstm)
1010 {
1011 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1012 struct drm_encoder *encoder;
1013 int ret;
1014
1015 NV_ATOMIC(drm, "%s: mstm cleanup\n", mstm->outp->base.base.name);
1016 ret = drm_dp_check_act_status(&mstm->mgr);
1017
1018 ret = drm_dp_update_payload_part2(&mstm->mgr);
1019
1020 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1021 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1022 struct nv50_msto *msto = nv50_msto(encoder);
1023 struct nv50_mstc *mstc = msto->mstc;
1024 if (mstc && mstc->mstm == mstm)
1025 nv50_msto_cleanup(msto);
1026 }
1027 }
1028
1029 mstm->modified = false;
1030 }
1031
1032 static void
1033 nv50_mstm_prepare(struct nv50_mstm *mstm)
1034 {
1035 struct nouveau_drm *drm = nouveau_drm(mstm->outp->base.base.dev);
1036 struct drm_encoder *encoder;
1037 int ret;
1038
1039 NV_ATOMIC(drm, "%s: mstm prepare\n", mstm->outp->base.base.name);
1040 ret = drm_dp_update_payload_part1(&mstm->mgr);
1041
1042 drm_for_each_encoder(encoder, mstm->outp->base.base.dev) {
1043 if (encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
1044 struct nv50_msto *msto = nv50_msto(encoder);
1045 struct nv50_mstc *mstc = msto->mstc;
1046 if (mstc && mstc->mstm == mstm)
1047 nv50_msto_prepare(msto);
1048 }
1049 }
1050
1051 if (mstm->disabled) {
1052 if (!mstm->links)
1053 nv50_outp_release(mstm->outp);
1054 mstm->disabled = false;
1055 }
1056 }
1057
1058 static void
1059 nv50_mstm_hotplug(struct drm_dp_mst_topology_mgr *mgr)
1060 {
1061 struct nv50_mstm *mstm = nv50_mstm(mgr);
1062 drm_kms_helper_hotplug_event(mstm->outp->base.base.dev);
1063 }
1064
1065 static void
1066 nv50_mstm_destroy_connector(struct drm_dp_mst_topology_mgr *mgr,
1067 struct drm_connector *connector)
1068 {
1069 struct nouveau_drm *drm = nouveau_drm(connector->dev);
1070 struct nv50_mstc *mstc = nv50_mstc(connector);
1071
1072 drm_connector_unregister(&mstc->connector);
1073
1074 drm_fb_helper_remove_one_connector(&drm->fbcon->helper, &mstc->connector);
1075
1076 drm_modeset_lock(&drm->dev->mode_config.connection_mutex, NULL);
1077 mstc->port = NULL;
1078 drm_modeset_unlock(&drm->dev->mode_config.connection_mutex);
1079
1080 drm_connector_put(&mstc->connector);
1081 }
1082
1083 static void
1084 nv50_mstm_register_connector(struct drm_connector *connector)
1085 {
1086 struct nouveau_drm *drm = nouveau_drm(connector->dev);
1087
1088 drm_fb_helper_add_one_connector(&drm->fbcon->helper, connector);
1089
1090 drm_connector_register(connector);
1091 }
1092
1093 static struct drm_connector *
1094 nv50_mstm_add_connector(struct drm_dp_mst_topology_mgr *mgr,
1095 struct drm_dp_mst_port *port, const char *path)
1096 {
1097 struct nv50_mstm *mstm = nv50_mstm(mgr);
1098 struct nv50_mstc *mstc;
1099 int ret;
1100
1101 ret = nv50_mstc_new(mstm, port, path, &mstc);
1102 if (ret) {
1103 if (mstc)
1104 mstc->connector.funcs->destroy(&mstc->connector);
1105 return NULL;
1106 }
1107
1108 return &mstc->connector;
1109 }
1110
1111 static const struct drm_dp_mst_topology_cbs
1112 nv50_mstm = {
1113 .add_connector = nv50_mstm_add_connector,
1114 .register_connector = nv50_mstm_register_connector,
1115 .destroy_connector = nv50_mstm_destroy_connector,
1116 .hotplug = nv50_mstm_hotplug,
1117 };
1118
1119 void
1120 nv50_mstm_service(struct nv50_mstm *mstm)
1121 {
1122 struct drm_dp_aux *aux = mstm ? mstm->mgr.aux : NULL;
1123 bool handled = true;
1124 int ret;
1125 u8 esi[8] = {};
1126
1127 if (!aux)
1128 return;
1129
1130 while (handled) {
1131 ret = drm_dp_dpcd_read(aux, DP_SINK_COUNT_ESI, esi, 8);
1132 if (ret != 8) {
1133 drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1134 return;
1135 }
1136
1137 drm_dp_mst_hpd_irq(&mstm->mgr, esi, &handled);
1138 if (!handled)
1139 break;
1140
1141 drm_dp_dpcd_write(aux, DP_SINK_COUNT_ESI + 1, &esi[1], 3);
1142 }
1143 }
1144
1145 void
1146 nv50_mstm_remove(struct nv50_mstm *mstm)
1147 {
1148 if (mstm)
1149 drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, false);
1150 }
1151
1152 static int
1153 nv50_mstm_enable(struct nv50_mstm *mstm, u8 dpcd, int state)
1154 {
1155 struct nouveau_encoder *outp = mstm->outp;
1156 struct {
1157 struct nv50_disp_mthd_v1 base;
1158 struct nv50_disp_sor_dp_mst_link_v0 mst;
1159 } args = {
1160 .base.version = 1,
1161 .base.method = NV50_DISP_MTHD_V1_SOR_DP_MST_LINK,
1162 .base.hasht = outp->dcb->hasht,
1163 .base.hashm = outp->dcb->hashm,
1164 .mst.state = state,
1165 };
1166 struct nouveau_drm *drm = nouveau_drm(outp->base.base.dev);
1167 struct nvif_object *disp = &drm->display->disp.object;
1168 int ret;
1169
1170 if (dpcd >= 0x12) {
1171 /* Even if we're enabling MST, start with disabling the
1172 * branching unit to clear any sink-side MST topology state
1173 * that wasn't set by us
1174 */
1175 ret = drm_dp_dpcd_writeb(mstm->mgr.aux, DP_MSTM_CTRL, 0);
1176 if (ret < 0)
1177 return ret;
1178
1179 if (state) {
1180 /* Now, start initializing */
1181 ret = drm_dp_dpcd_writeb(mstm->mgr.aux, DP_MSTM_CTRL,
1182 DP_MST_EN);
1183 if (ret < 0)
1184 return ret;
1185 }
1186 }
1187
1188 return nvif_mthd(disp, 0, &args, sizeof(args));
1189 }
1190
1191 int
1192 nv50_mstm_detect(struct nv50_mstm *mstm, u8 dpcd[8], int allow)
1193 {
1194 struct drm_dp_aux *aux;
1195 int ret;
1196 bool old_state, new_state;
1197 u8 mstm_ctrl;
1198
1199 if (!mstm)
1200 return 0;
1201
1202 mutex_lock(&mstm->mgr.lock);
1203
1204 old_state = mstm->mgr.mst_state;
1205 new_state = old_state;
1206 aux = mstm->mgr.aux;
1207
1208 if (old_state) {
1209 /* Just check that the MST hub is still as we expect it */
1210 ret = drm_dp_dpcd_readb(aux, DP_MSTM_CTRL, &mstm_ctrl);
1211 if (ret < 0 || !(mstm_ctrl & DP_MST_EN)) {
1212 DRM_DEBUG_KMS("Hub gone, disabling MST topology\n");
1213 new_state = false;
1214 }
1215 } else if (dpcd[0] >= 0x12) {
1216 ret = drm_dp_dpcd_readb(aux, DP_MSTM_CAP, &dpcd[1]);
1217 if (ret < 0)
1218 goto probe_error;
1219
1220 if (!(dpcd[1] & DP_MST_CAP))
1221 dpcd[0] = 0x11;
1222 else
1223 new_state = allow;
1224 }
1225
1226 if (new_state == old_state) {
1227 mutex_unlock(&mstm->mgr.lock);
1228 return new_state;
1229 }
1230
1231 ret = nv50_mstm_enable(mstm, dpcd[0], new_state);
1232 if (ret)
1233 goto probe_error;
1234
1235 mutex_unlock(&mstm->mgr.lock);
1236
1237 ret = drm_dp_mst_topology_mgr_set_mst(&mstm->mgr, new_state);
1238 if (ret)
1239 return nv50_mstm_enable(mstm, dpcd[0], 0);
1240
1241 return new_state;
1242
1243 probe_error:
1244 mutex_unlock(&mstm->mgr.lock);
1245 return ret;
1246 }
1247
1248 static void
1249 nv50_mstm_fini(struct nv50_mstm *mstm)
1250 {
1251 if (mstm && mstm->mgr.mst_state)
1252 drm_dp_mst_topology_mgr_suspend(&mstm->mgr);
1253 }
1254
1255 static void
1256 nv50_mstm_init(struct nv50_mstm *mstm)
1257 {
1258 if (mstm && mstm->mgr.mst_state)
1259 drm_dp_mst_topology_mgr_resume(&mstm->mgr);
1260 }
1261
1262 static void
1263 nv50_mstm_del(struct nv50_mstm **pmstm)
1264 {
1265 struct nv50_mstm *mstm = *pmstm;
1266 if (mstm) {
1267 kfree(*pmstm);
1268 *pmstm = NULL;
1269 }
1270 }
1271
1272 static int
1273 nv50_mstm_new(struct nouveau_encoder *outp, struct drm_dp_aux *aux, int aux_max,
1274 int conn_base_id, struct nv50_mstm **pmstm)
1275 {
1276 const int max_payloads = hweight8(outp->dcb->heads);
1277 struct drm_device *dev = outp->base.base.dev;
1278 struct nv50_mstm *mstm;
1279 int ret, i;
1280 u8 dpcd;
1281
1282 /* This is a workaround for some monitors not functioning
1283 * correctly in MST mode on initial module load. I think
1284 * some bad interaction with the VBIOS may be responsible.
1285 *
1286 * A good ol' off and on again seems to work here ;)
1287 */
1288 ret = drm_dp_dpcd_readb(aux, DP_DPCD_REV, &dpcd);
1289 if (ret >= 0 && dpcd >= 0x12)
1290 drm_dp_dpcd_writeb(aux, DP_MSTM_CTRL, 0);
1291
1292 if (!(mstm = *pmstm = kzalloc(sizeof(*mstm), GFP_KERNEL)))
1293 return -ENOMEM;
1294 mstm->outp = outp;
1295 mstm->mgr.cbs = &nv50_mstm;
1296
1297 ret = drm_dp_mst_topology_mgr_init(&mstm->mgr, dev, aux, aux_max,
1298 max_payloads, conn_base_id);
1299 if (ret)
1300 return ret;
1301
1302 for (i = 0; i < max_payloads; i++) {
1303 ret = nv50_msto_new(dev, outp->dcb->heads, outp->base.base.name,
1304 i, &mstm->msto[i]);
1305 if (ret)
1306 return ret;
1307 }
1308
1309 return 0;
1310 }
1311
1312 /******************************************************************************
1313 * SOR
1314 *****************************************************************************/
1315 static void
1316 nv50_sor_update(struct nouveau_encoder *nv_encoder, u8 head,
1317 struct nv50_head_atom *asyh, u8 proto, u8 depth)
1318 {
1319 struct nv50_disp *disp = nv50_disp(nv_encoder->base.base.dev);
1320 struct nv50_core *core = disp->core;
1321
1322 if (!asyh) {
1323 nv_encoder->ctrl &= ~BIT(head);
1324 if (!(nv_encoder->ctrl & 0x0000000f))
1325 nv_encoder->ctrl = 0;
1326 } else {
1327 nv_encoder->ctrl |= proto << 8;
1328 nv_encoder->ctrl |= BIT(head);
1329 asyh->or.depth = depth;
1330 }
1331
1332 core->func->sor->ctrl(core, nv_encoder->or, nv_encoder->ctrl, asyh);
1333 }
1334
1335 static void
1336 nv50_sor_disable(struct drm_encoder *encoder)
1337 {
1338 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1339 struct nouveau_crtc *nv_crtc = nouveau_crtc(nv_encoder->crtc);
1340
1341 nv_encoder->crtc = NULL;
1342
1343 if (nv_crtc) {
1344 struct nvkm_i2c_aux *aux = nv_encoder->aux;
1345 u8 pwr;
1346
1347 if (aux) {
1348 int ret = nvkm_rdaux(aux, DP_SET_POWER, &pwr, 1);
1349 if (ret == 0) {
1350 pwr &= ~DP_SET_POWER_MASK;
1351 pwr |= DP_SET_POWER_D3;
1352 nvkm_wraux(aux, DP_SET_POWER, &pwr, 1);
1353 }
1354 }
1355
1356 nv_encoder->update(nv_encoder, nv_crtc->index, NULL, 0, 0);
1357 nv50_audio_disable(encoder, nv_crtc);
1358 nv50_hdmi_disable(&nv_encoder->base.base, nv_crtc);
1359 nv50_outp_release(nv_encoder);
1360 }
1361 }
1362
1363 static void
1364 nv50_sor_enable(struct drm_encoder *encoder)
1365 {
1366 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1367 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1368 struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state);
1369 struct drm_display_mode *mode = &asyh->state.adjusted_mode;
1370 struct {
1371 struct nv50_disp_mthd_v1 base;
1372 struct nv50_disp_sor_lvds_script_v0 lvds;
1373 } lvds = {
1374 .base.version = 1,
1375 .base.method = NV50_DISP_MTHD_V1_SOR_LVDS_SCRIPT,
1376 .base.hasht = nv_encoder->dcb->hasht,
1377 .base.hashm = nv_encoder->dcb->hashm,
1378 };
1379 struct nv50_disp *disp = nv50_disp(encoder->dev);
1380 struct drm_device *dev = encoder->dev;
1381 struct nouveau_drm *drm = nouveau_drm(dev);
1382 struct nouveau_connector *nv_connector;
1383 struct nvbios *bios = &drm->vbios;
1384 u8 proto = 0xf;
1385 u8 depth = 0x0;
1386
1387 nv_connector = nouveau_encoder_connector_get(nv_encoder);
1388 nv_encoder->crtc = encoder->crtc;
1389 nv50_outp_acquire(nv_encoder);
1390
1391 switch (nv_encoder->dcb->type) {
1392 case DCB_OUTPUT_TMDS:
1393 if (nv_encoder->link & 1) {
1394 proto = 0x1;
1395 /* Only enable dual-link if:
1396 * - Need to (i.e. rate > 165MHz)
1397 * - DCB says we can
1398 * - Not an HDMI monitor, since there's no dual-link
1399 * on HDMI.
1400 */
1401 if (mode->clock >= 165000 &&
1402 nv_encoder->dcb->duallink_possible &&
1403 !drm_detect_hdmi_monitor(nv_connector->edid))
1404 proto |= 0x4;
1405 } else {
1406 proto = 0x2;
1407 }
1408
1409 nv50_hdmi_enable(&nv_encoder->base.base, mode);
1410 break;
1411 case DCB_OUTPUT_LVDS:
1412 proto = 0x0;
1413
1414 if (bios->fp_no_ddc) {
1415 if (bios->fp.dual_link)
1416 lvds.lvds.script |= 0x0100;
1417 if (bios->fp.if_is_24bit)
1418 lvds.lvds.script |= 0x0200;
1419 } else {
1420 if (nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
1421 if (((u8 *)nv_connector->edid)[121] == 2)
1422 lvds.lvds.script |= 0x0100;
1423 } else
1424 if (mode->clock >= bios->fp.duallink_transition_clk) {
1425 lvds.lvds.script |= 0x0100;
1426 }
1427
1428 if (lvds.lvds.script & 0x0100) {
1429 if (bios->fp.strapless_is_24bit & 2)
1430 lvds.lvds.script |= 0x0200;
1431 } else {
1432 if (bios->fp.strapless_is_24bit & 1)
1433 lvds.lvds.script |= 0x0200;
1434 }
1435
1436 if (nv_connector->base.display_info.bpc == 8)
1437 lvds.lvds.script |= 0x0200;
1438 }
1439
1440 nvif_mthd(&disp->disp->object, 0, &lvds, sizeof(lvds));
1441 break;
1442 case DCB_OUTPUT_DP:
1443 if (nv_connector->base.display_info.bpc == 6)
1444 depth = 0x2;
1445 else
1446 if (nv_connector->base.display_info.bpc == 8)
1447 depth = 0x5;
1448 else
1449 depth = 0x6;
1450
1451 if (nv_encoder->link & 1)
1452 proto = 0x8;
1453 else
1454 proto = 0x9;
1455
1456 nv50_audio_enable(encoder, mode);
1457 break;
1458 default:
1459 BUG();
1460 break;
1461 }
1462
1463 nv_encoder->update(nv_encoder, nv_crtc->index, asyh, proto, depth);
1464 }
1465
1466 static const struct drm_encoder_helper_funcs
1467 nv50_sor_help = {
1468 .atomic_check = nv50_outp_atomic_check,
1469 .enable = nv50_sor_enable,
1470 .disable = nv50_sor_disable,
1471 };
1472
1473 static void
1474 nv50_sor_destroy(struct drm_encoder *encoder)
1475 {
1476 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1477 nv50_mstm_del(&nv_encoder->dp.mstm);
1478 drm_encoder_cleanup(encoder);
1479 kfree(encoder);
1480 }
1481
1482 static const struct drm_encoder_funcs
1483 nv50_sor_func = {
1484 .destroy = nv50_sor_destroy,
1485 };
1486
1487 static int
1488 nv50_sor_create(struct drm_connector *connector, struct dcb_output *dcbe)
1489 {
1490 struct nouveau_connector *nv_connector = nouveau_connector(connector);
1491 struct nouveau_drm *drm = nouveau_drm(connector->dev);
1492 struct nvkm_bios *bios = nvxx_bios(&drm->client.device);
1493 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1494 struct nouveau_encoder *nv_encoder;
1495 struct drm_encoder *encoder;
1496 u8 ver, hdr, cnt, len;
1497 u32 data;
1498 int type, ret;
1499
1500 switch (dcbe->type) {
1501 case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; break;
1502 case DCB_OUTPUT_TMDS:
1503 case DCB_OUTPUT_DP:
1504 default:
1505 type = DRM_MODE_ENCODER_TMDS;
1506 break;
1507 }
1508
1509 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1510 if (!nv_encoder)
1511 return -ENOMEM;
1512 nv_encoder->dcb = dcbe;
1513 nv_encoder->update = nv50_sor_update;
1514
1515 encoder = to_drm_encoder(nv_encoder);
1516 encoder->possible_crtcs = dcbe->heads;
1517 encoder->possible_clones = 0;
1518 drm_encoder_init(connector->dev, encoder, &nv50_sor_func, type,
1519 "sor-%04x-%04x", dcbe->hasht, dcbe->hashm);
1520 drm_encoder_helper_add(encoder, &nv50_sor_help);
1521
1522 drm_connector_attach_encoder(connector, encoder);
1523
1524 if (dcbe->type == DCB_OUTPUT_DP) {
1525 struct nv50_disp *disp = nv50_disp(encoder->dev);
1526 struct nvkm_i2c_aux *aux =
1527 nvkm_i2c_aux_find(i2c, dcbe->i2c_index);
1528 if (aux) {
1529 if (disp->disp->object.oclass < GF110_DISP) {
1530 /* HW has no support for address-only
1531 * transactions, so we're required to
1532 * use custom I2C-over-AUX code.
1533 */
1534 nv_encoder->i2c = &aux->i2c;
1535 } else {
1536 nv_encoder->i2c = &nv_connector->aux.ddc;
1537 }
1538 nv_encoder->aux = aux;
1539 }
1540
1541 if ((data = nvbios_dp_table(bios, &ver, &hdr, &cnt, &len)) &&
1542 ver >= 0x40 && (nvbios_rd08(bios, data + 0x08) & 0x04)) {
1543 ret = nv50_mstm_new(nv_encoder, &nv_connector->aux, 16,
1544 nv_connector->base.base.id,
1545 &nv_encoder->dp.mstm);
1546 if (ret)
1547 return ret;
1548 }
1549 } else {
1550 struct nvkm_i2c_bus *bus =
1551 nvkm_i2c_bus_find(i2c, dcbe->i2c_index);
1552 if (bus)
1553 nv_encoder->i2c = &bus->i2c;
1554 }
1555
1556 return 0;
1557 }
1558
1559 /******************************************************************************
1560 * PIOR
1561 *****************************************************************************/
1562 static int
1563 nv50_pior_atomic_check(struct drm_encoder *encoder,
1564 struct drm_crtc_state *crtc_state,
1565 struct drm_connector_state *conn_state)
1566 {
1567 int ret = nv50_outp_atomic_check(encoder, crtc_state, conn_state);
1568 if (ret)
1569 return ret;
1570 crtc_state->adjusted_mode.clock *= 2;
1571 return 0;
1572 }
1573
1574 static void
1575 nv50_pior_disable(struct drm_encoder *encoder)
1576 {
1577 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1578 struct nv50_core *core = nv50_disp(encoder->dev)->core;
1579 if (nv_encoder->crtc)
1580 core->func->pior->ctrl(core, nv_encoder->or, 0x00000000, NULL);
1581 nv_encoder->crtc = NULL;
1582 nv50_outp_release(nv_encoder);
1583 }
1584
1585 static void
1586 nv50_pior_enable(struct drm_encoder *encoder)
1587 {
1588 struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
1589 struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
1590 struct nouveau_connector *nv_connector;
1591 struct nv50_head_atom *asyh = nv50_head_atom(nv_crtc->base.state);
1592 struct nv50_core *core = nv50_disp(encoder->dev)->core;
1593 u8 owner = 1 << nv_crtc->index;
1594 u8 proto;
1595
1596 nv50_outp_acquire(nv_encoder);
1597
1598 nv_connector = nouveau_encoder_connector_get(nv_encoder);
1599 switch (nv_connector->base.display_info.bpc) {
1600 case 10: asyh->or.depth = 0x6; break;
1601 case 8: asyh->or.depth = 0x5; break;
1602 case 6: asyh->or.depth = 0x2; break;
1603 default: asyh->or.depth = 0x0; break;
1604 }
1605
1606 switch (nv_encoder->dcb->type) {
1607 case DCB_OUTPUT_TMDS:
1608 case DCB_OUTPUT_DP:
1609 proto = 0x0;
1610 break;
1611 default:
1612 BUG();
1613 break;
1614 }
1615
1616 core->func->pior->ctrl(core, nv_encoder->or, (proto << 8) | owner, asyh);
1617 nv_encoder->crtc = encoder->crtc;
1618 }
1619
1620 static const struct drm_encoder_helper_funcs
1621 nv50_pior_help = {
1622 .atomic_check = nv50_pior_atomic_check,
1623 .enable = nv50_pior_enable,
1624 .disable = nv50_pior_disable,
1625 };
1626
1627 static void
1628 nv50_pior_destroy(struct drm_encoder *encoder)
1629 {
1630 drm_encoder_cleanup(encoder);
1631 kfree(encoder);
1632 }
1633
1634 static const struct drm_encoder_funcs
1635 nv50_pior_func = {
1636 .destroy = nv50_pior_destroy,
1637 };
1638
1639 static int
1640 nv50_pior_create(struct drm_connector *connector, struct dcb_output *dcbe)
1641 {
1642 struct nouveau_drm *drm = nouveau_drm(connector->dev);
1643 struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
1644 struct nvkm_i2c_bus *bus = NULL;
1645 struct nvkm_i2c_aux *aux = NULL;
1646 struct i2c_adapter *ddc;
1647 struct nouveau_encoder *nv_encoder;
1648 struct drm_encoder *encoder;
1649 int type;
1650
1651 switch (dcbe->type) {
1652 case DCB_OUTPUT_TMDS:
1653 bus = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_EXT(dcbe->extdev));
1654 ddc = bus ? &bus->i2c : NULL;
1655 type = DRM_MODE_ENCODER_TMDS;
1656 break;
1657 case DCB_OUTPUT_DP:
1658 aux = nvkm_i2c_aux_find(i2c, NVKM_I2C_AUX_EXT(dcbe->extdev));
1659 ddc = aux ? &aux->i2c : NULL;
1660 type = DRM_MODE_ENCODER_TMDS;
1661 break;
1662 default:
1663 return -ENODEV;
1664 }
1665
1666 nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
1667 if (!nv_encoder)
1668 return -ENOMEM;
1669 nv_encoder->dcb = dcbe;
1670 nv_encoder->i2c = ddc;
1671 nv_encoder->aux = aux;
1672
1673 encoder = to_drm_encoder(nv_encoder);
1674 encoder->possible_crtcs = dcbe->heads;
1675 encoder->possible_clones = 0;
1676 drm_encoder_init(connector->dev, encoder, &nv50_pior_func, type,
1677 "pior-%04x-%04x", dcbe->hasht, dcbe->hashm);
1678 drm_encoder_helper_add(encoder, &nv50_pior_help);
1679
1680 drm_connector_attach_encoder(connector, encoder);
1681 return 0;
1682 }
1683
1684 /******************************************************************************
1685 * Atomic
1686 *****************************************************************************/
1687
1688 static void
1689 nv50_disp_atomic_commit_core(struct drm_atomic_state *state, u32 *interlock)
1690 {
1691 struct nouveau_drm *drm = nouveau_drm(state->dev);
1692 struct nv50_disp *disp = nv50_disp(drm->dev);
1693 struct nv50_core *core = disp->core;
1694 struct nv50_mstm *mstm;
1695 struct drm_encoder *encoder;
1696
1697 NV_ATOMIC(drm, "commit core %08x\n", interlock[NV50_DISP_INTERLOCK_BASE]);
1698
1699 drm_for_each_encoder(encoder, drm->dev) {
1700 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
1701 mstm = nouveau_encoder(encoder)->dp.mstm;
1702 if (mstm && mstm->modified)
1703 nv50_mstm_prepare(mstm);
1704 }
1705 }
1706
1707 core->func->ntfy_init(disp->sync, NV50_DISP_CORE_NTFY);
1708 core->func->update(core, interlock, true);
1709 if (core->func->ntfy_wait_done(disp->sync, NV50_DISP_CORE_NTFY,
1710 disp->core->chan.base.device))
1711 NV_ERROR(drm, "core notifier timeout\n");
1712
1713 drm_for_each_encoder(encoder, drm->dev) {
1714 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
1715 mstm = nouveau_encoder(encoder)->dp.mstm;
1716 if (mstm && mstm->modified)
1717 nv50_mstm_cleanup(mstm);
1718 }
1719 }
1720 }
1721
1722 static void
1723 nv50_disp_atomic_commit_wndw(struct drm_atomic_state *state, u32 *interlock)
1724 {
1725 struct drm_plane_state *new_plane_state;
1726 struct drm_plane *plane;
1727 int i;
1728
1729 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
1730 struct nv50_wndw *wndw = nv50_wndw(plane);
1731 if (interlock[wndw->interlock.type] & wndw->interlock.data) {
1732 if (wndw->func->update)
1733 wndw->func->update(wndw, interlock);
1734 }
1735 }
1736 }
1737
1738 static void
1739 nv50_disp_atomic_commit_tail(struct drm_atomic_state *state)
1740 {
1741 struct drm_device *dev = state->dev;
1742 struct drm_crtc_state *new_crtc_state, *old_crtc_state;
1743 struct drm_crtc *crtc;
1744 struct drm_plane_state *new_plane_state;
1745 struct drm_plane *plane;
1746 struct nouveau_drm *drm = nouveau_drm(dev);
1747 struct nv50_disp *disp = nv50_disp(dev);
1748 struct nv50_atom *atom = nv50_atom(state);
1749 struct nv50_outp_atom *outp, *outt;
1750 u32 interlock[NV50_DISP_INTERLOCK__SIZE] = {};
1751 int i;
1752
1753 NV_ATOMIC(drm, "commit %d %d\n", atom->lock_core, atom->flush_disable);
1754 drm_atomic_helper_wait_for_fences(dev, state, false);
1755 drm_atomic_helper_wait_for_dependencies(state);
1756 drm_atomic_helper_update_legacy_modeset_state(dev, state);
1757
1758 if (atom->lock_core)
1759 mutex_lock(&disp->mutex);
1760
1761 /* Disable head(s). */
1762 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
1763 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
1764 struct nv50_head *head = nv50_head(crtc);
1765
1766 NV_ATOMIC(drm, "%s: clr %04x (set %04x)\n", crtc->name,
1767 asyh->clr.mask, asyh->set.mask);
1768 if (old_crtc_state->active && !new_crtc_state->active)
1769 drm_crtc_vblank_off(crtc);
1770
1771 if (asyh->clr.mask) {
1772 nv50_head_flush_clr(head, asyh, atom->flush_disable);
1773 interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
1774 }
1775 }
1776
1777 /* Disable plane(s). */
1778 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
1779 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
1780 struct nv50_wndw *wndw = nv50_wndw(plane);
1781
1782 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", plane->name,
1783 asyw->clr.mask, asyw->set.mask);
1784 if (!asyw->clr.mask)
1785 continue;
1786
1787 nv50_wndw_flush_clr(wndw, interlock, atom->flush_disable, asyw);
1788 }
1789
1790 /* Disable output path(s). */
1791 list_for_each_entry(outp, &atom->outp, head) {
1792 const struct drm_encoder_helper_funcs *help;
1793 struct drm_encoder *encoder;
1794
1795 encoder = outp->encoder;
1796 help = encoder->helper_private;
1797
1798 NV_ATOMIC(drm, "%s: clr %02x (set %02x)\n", encoder->name,
1799 outp->clr.mask, outp->set.mask);
1800
1801 if (outp->clr.mask) {
1802 help->disable(encoder);
1803 interlock[NV50_DISP_INTERLOCK_CORE] |= 1;
1804 if (outp->flush_disable) {
1805 nv50_disp_atomic_commit_wndw(state, interlock);
1806 nv50_disp_atomic_commit_core(state, interlock);
1807 memset(interlock, 0x00, sizeof(interlock));
1808 }
1809 }
1810 }
1811
1812 /* Flush disable. */
1813 if (interlock[NV50_DISP_INTERLOCK_CORE]) {
1814 if (atom->flush_disable) {
1815 nv50_disp_atomic_commit_wndw(state, interlock);
1816 nv50_disp_atomic_commit_core(state, interlock);
1817 memset(interlock, 0x00, sizeof(interlock));
1818 }
1819 }
1820
1821 /* Update output path(s). */
1822 list_for_each_entry_safe(outp, outt, &atom->outp, head) {
1823 const struct drm_encoder_helper_funcs *help;
1824 struct drm_encoder *encoder;
1825
1826 encoder = outp->encoder;
1827 help = encoder->helper_private;
1828
1829 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", encoder->name,
1830 outp->set.mask, outp->clr.mask);
1831
1832 if (outp->set.mask) {
1833 help->enable(encoder);
1834 interlock[NV50_DISP_INTERLOCK_CORE] = 1;
1835 }
1836
1837 list_del(&outp->head);
1838 kfree(outp);
1839 }
1840
1841 /* Update head(s). */
1842 for_each_oldnew_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
1843 struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
1844 struct nv50_head *head = nv50_head(crtc);
1845
1846 NV_ATOMIC(drm, "%s: set %04x (clr %04x)\n", crtc->name,
1847 asyh->set.mask, asyh->clr.mask);
1848
1849 if (asyh->set.mask) {
1850 nv50_head_flush_set(head, asyh);
1851 interlock[NV50_DISP_INTERLOCK_CORE] = 1;
1852 }
1853
1854 if (new_crtc_state->active) {
1855 if (!old_crtc_state->active)
1856 drm_crtc_vblank_on(crtc);
1857 if (new_crtc_state->event)
1858 drm_crtc_vblank_get(crtc);
1859 }
1860 }
1861
1862 /* Update plane(s). */
1863 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
1864 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
1865 struct nv50_wndw *wndw = nv50_wndw(plane);
1866
1867 NV_ATOMIC(drm, "%s: set %02x (clr %02x)\n", plane->name,
1868 asyw->set.mask, asyw->clr.mask);
1869 if ( !asyw->set.mask &&
1870 (!asyw->clr.mask || atom->flush_disable))
1871 continue;
1872
1873 nv50_wndw_flush_set(wndw, interlock, asyw);
1874 }
1875
1876 /* Flush update. */
1877 nv50_disp_atomic_commit_wndw(state, interlock);
1878
1879 if (interlock[NV50_DISP_INTERLOCK_CORE]) {
1880 if (interlock[NV50_DISP_INTERLOCK_BASE] ||
1881 interlock[NV50_DISP_INTERLOCK_OVLY] ||
1882 interlock[NV50_DISP_INTERLOCK_WNDW] ||
1883 !atom->state.legacy_cursor_update)
1884 nv50_disp_atomic_commit_core(state, interlock);
1885 else
1886 disp->core->func->update(disp->core, interlock, false);
1887 }
1888
1889 if (atom->lock_core)
1890 mutex_unlock(&disp->mutex);
1891
1892 /* Wait for HW to signal completion. */
1893 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
1894 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
1895 struct nv50_wndw *wndw = nv50_wndw(plane);
1896 int ret = nv50_wndw_wait_armed(wndw, asyw);
1897 if (ret)
1898 NV_ERROR(drm, "%s: timeout\n", plane->name);
1899 }
1900
1901 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
1902 if (new_crtc_state->event) {
1903 unsigned long flags;
1904 /* Get correct count/ts if racing with vblank irq */
1905 if (new_crtc_state->active)
1906 drm_crtc_accurate_vblank_count(crtc);
1907 spin_lock_irqsave(&crtc->dev->event_lock, flags);
1908 drm_crtc_send_vblank_event(crtc, new_crtc_state->event);
1909 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
1910
1911 new_crtc_state->event = NULL;
1912 if (new_crtc_state->active)
1913 drm_crtc_vblank_put(crtc);
1914 }
1915 }
1916
1917 drm_atomic_helper_commit_hw_done(state);
1918 drm_atomic_helper_cleanup_planes(dev, state);
1919 drm_atomic_helper_commit_cleanup_done(state);
1920 drm_atomic_state_put(state);
1921 }
1922
1923 static void
1924 nv50_disp_atomic_commit_work(struct work_struct *work)
1925 {
1926 struct drm_atomic_state *state =
1927 container_of(work, typeof(*state), commit_work);
1928 nv50_disp_atomic_commit_tail(state);
1929 }
1930
1931 static int
1932 nv50_disp_atomic_commit(struct drm_device *dev,
1933 struct drm_atomic_state *state, bool nonblock)
1934 {
1935 struct nouveau_drm *drm = nouveau_drm(dev);
1936 struct drm_plane_state *new_plane_state;
1937 struct drm_plane *plane;
1938 struct drm_crtc *crtc;
1939 bool active = false;
1940 int ret, i;
1941
1942 ret = pm_runtime_get_sync(dev->dev);
1943 if (ret < 0 && ret != -EACCES)
1944 return ret;
1945
1946 ret = drm_atomic_helper_setup_commit(state, nonblock);
1947 if (ret)
1948 goto done;
1949
1950 INIT_WORK(&state->commit_work, nv50_disp_atomic_commit_work);
1951
1952 ret = drm_atomic_helper_prepare_planes(dev, state);
1953 if (ret)
1954 goto done;
1955
1956 if (!nonblock) {
1957 ret = drm_atomic_helper_wait_for_fences(dev, state, true);
1958 if (ret)
1959 goto err_cleanup;
1960 }
1961
1962 ret = drm_atomic_helper_swap_state(state, true);
1963 if (ret)
1964 goto err_cleanup;
1965
1966 for_each_new_plane_in_state(state, plane, new_plane_state, i) {
1967 struct nv50_wndw_atom *asyw = nv50_wndw_atom(new_plane_state);
1968 struct nv50_wndw *wndw = nv50_wndw(plane);
1969
1970 if (asyw->set.image)
1971 nv50_wndw_ntfy_enable(wndw, asyw);
1972 }
1973
1974 drm_atomic_state_get(state);
1975
1976 if (nonblock)
1977 queue_work(system_unbound_wq, &state->commit_work);
1978 else
1979 nv50_disp_atomic_commit_tail(state);
1980
1981 drm_for_each_crtc(crtc, dev) {
1982 if (crtc->state->active) {
1983 if (!drm->have_disp_power_ref) {
1984 drm->have_disp_power_ref = true;
1985 return 0;
1986 }
1987 active = true;
1988 break;
1989 }
1990 }
1991
1992 if (!active && drm->have_disp_power_ref) {
1993 pm_runtime_put_autosuspend(dev->dev);
1994 drm->have_disp_power_ref = false;
1995 }
1996
1997 err_cleanup:
1998 if (ret)
1999 drm_atomic_helper_cleanup_planes(dev, state);
2000 done:
2001 pm_runtime_put_autosuspend(dev->dev);
2002 return ret;
2003 }
2004
2005 static struct nv50_outp_atom *
2006 nv50_disp_outp_atomic_add(struct nv50_atom *atom, struct drm_encoder *encoder)
2007 {
2008 struct nv50_outp_atom *outp;
2009
2010 list_for_each_entry(outp, &atom->outp, head) {
2011 if (outp->encoder == encoder)
2012 return outp;
2013 }
2014
2015 outp = kzalloc(sizeof(*outp), GFP_KERNEL);
2016 if (!outp)
2017 return ERR_PTR(-ENOMEM);
2018
2019 list_add(&outp->head, &atom->outp);
2020 outp->encoder = encoder;
2021 return outp;
2022 }
2023
2024 static int
2025 nv50_disp_outp_atomic_check_clr(struct nv50_atom *atom,
2026 struct drm_connector_state *old_connector_state)
2027 {
2028 struct drm_encoder *encoder = old_connector_state->best_encoder;
2029 struct drm_crtc_state *old_crtc_state, *new_crtc_state;
2030 struct drm_crtc *crtc;
2031 struct nv50_outp_atom *outp;
2032
2033 if (!(crtc = old_connector_state->crtc))
2034 return 0;
2035
2036 old_crtc_state = drm_atomic_get_old_crtc_state(&atom->state, crtc);
2037 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2038 if (old_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2039 outp = nv50_disp_outp_atomic_add(atom, encoder);
2040 if (IS_ERR(outp))
2041 return PTR_ERR(outp);
2042
2043 if (outp->encoder->encoder_type == DRM_MODE_ENCODER_DPMST) {
2044 outp->flush_disable = true;
2045 atom->flush_disable = true;
2046 }
2047 outp->clr.ctrl = true;
2048 atom->lock_core = true;
2049 }
2050
2051 return 0;
2052 }
2053
2054 static int
2055 nv50_disp_outp_atomic_check_set(struct nv50_atom *atom,
2056 struct drm_connector_state *connector_state)
2057 {
2058 struct drm_encoder *encoder = connector_state->best_encoder;
2059 struct drm_crtc_state *new_crtc_state;
2060 struct drm_crtc *crtc;
2061 struct nv50_outp_atom *outp;
2062
2063 if (!(crtc = connector_state->crtc))
2064 return 0;
2065
2066 new_crtc_state = drm_atomic_get_new_crtc_state(&atom->state, crtc);
2067 if (new_crtc_state->active && drm_atomic_crtc_needs_modeset(new_crtc_state)) {
2068 outp = nv50_disp_outp_atomic_add(atom, encoder);
2069 if (IS_ERR(outp))
2070 return PTR_ERR(outp);
2071
2072 outp->set.ctrl = true;
2073 atom->lock_core = true;
2074 }
2075
2076 return 0;
2077 }
2078
2079 static int
2080 nv50_disp_atomic_check(struct drm_device *dev, struct drm_atomic_state *state)
2081 {
2082 struct nv50_atom *atom = nv50_atom(state);
2083 struct drm_connector_state *old_connector_state, *new_connector_state;
2084 struct drm_connector *connector;
2085 struct drm_crtc_state *new_crtc_state;
2086 struct drm_crtc *crtc;
2087 int ret, i;
2088
2089 /* We need to handle colour management on a per-plane basis. */
2090 for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
2091 if (new_crtc_state->color_mgmt_changed) {
2092 ret = drm_atomic_add_affected_planes(state, crtc);
2093 if (ret)
2094 return ret;
2095 }
2096 }
2097
2098 ret = drm_atomic_helper_check(dev, state);
2099 if (ret)
2100 return ret;
2101
2102 for_each_oldnew_connector_in_state(state, connector, old_connector_state, new_connector_state, i) {
2103 ret = nv50_disp_outp_atomic_check_clr(atom, old_connector_state);
2104 if (ret)
2105 return ret;
2106
2107 ret = nv50_disp_outp_atomic_check_set(atom, new_connector_state);
2108 if (ret)
2109 return ret;
2110 }
2111
2112 return 0;
2113 }
2114
2115 static void
2116 nv50_disp_atomic_state_clear(struct drm_atomic_state *state)
2117 {
2118 struct nv50_atom *atom = nv50_atom(state);
2119 struct nv50_outp_atom *outp, *outt;
2120
2121 list_for_each_entry_safe(outp, outt, &atom->outp, head) {
2122 list_del(&outp->head);
2123 kfree(outp);
2124 }
2125
2126 drm_atomic_state_default_clear(state);
2127 }
2128
2129 static void
2130 nv50_disp_atomic_state_free(struct drm_atomic_state *state)
2131 {
2132 struct nv50_atom *atom = nv50_atom(state);
2133 drm_atomic_state_default_release(&atom->state);
2134 kfree(atom);
2135 }
2136
2137 static struct drm_atomic_state *
2138 nv50_disp_atomic_state_alloc(struct drm_device *dev)
2139 {
2140 struct nv50_atom *atom;
2141 if (!(atom = kzalloc(sizeof(*atom), GFP_KERNEL)) ||
2142 drm_atomic_state_init(dev, &atom->state) < 0) {
2143 kfree(atom);
2144 return NULL;
2145 }
2146 INIT_LIST_HEAD(&atom->outp);
2147 return &atom->state;
2148 }
2149
2150 static const struct drm_mode_config_funcs
2151 nv50_disp_func = {
2152 .fb_create = nouveau_user_framebuffer_create,
2153 .output_poll_changed = nouveau_fbcon_output_poll_changed,
2154 .atomic_check = nv50_disp_atomic_check,
2155 .atomic_commit = nv50_disp_atomic_commit,
2156 .atomic_state_alloc = nv50_disp_atomic_state_alloc,
2157 .atomic_state_clear = nv50_disp_atomic_state_clear,
2158 .atomic_state_free = nv50_disp_atomic_state_free,
2159 };
2160
2161 /******************************************************************************
2162 * Init
2163 *****************************************************************************/
2164
2165 void
2166 nv50_display_fini(struct drm_device *dev)
2167 {
2168 struct nouveau_encoder *nv_encoder;
2169 struct drm_encoder *encoder;
2170 struct drm_plane *plane;
2171
2172 drm_for_each_plane(plane, dev) {
2173 struct nv50_wndw *wndw = nv50_wndw(plane);
2174 if (plane->funcs != &nv50_wndw)
2175 continue;
2176 nv50_wndw_fini(wndw);
2177 }
2178
2179 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2180 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2181 nv_encoder = nouveau_encoder(encoder);
2182 nv50_mstm_fini(nv_encoder->dp.mstm);
2183 }
2184 }
2185 }
2186
2187 int
2188 nv50_display_init(struct drm_device *dev)
2189 {
2190 struct nv50_core *core = nv50_disp(dev)->core;
2191 struct drm_encoder *encoder;
2192 struct drm_plane *plane;
2193
2194 core->func->init(core);
2195
2196 list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2197 if (encoder->encoder_type != DRM_MODE_ENCODER_DPMST) {
2198 struct nouveau_encoder *nv_encoder =
2199 nouveau_encoder(encoder);
2200 nv50_mstm_init(nv_encoder->dp.mstm);
2201 }
2202 }
2203
2204 drm_for_each_plane(plane, dev) {
2205 struct nv50_wndw *wndw = nv50_wndw(plane);
2206 if (plane->funcs != &nv50_wndw)
2207 continue;
2208 nv50_wndw_init(wndw);
2209 }
2210
2211 return 0;
2212 }
2213
2214 void
2215 nv50_display_destroy(struct drm_device *dev)
2216 {
2217 struct nv50_disp *disp = nv50_disp(dev);
2218
2219 nv50_core_del(&disp->core);
2220
2221 nouveau_bo_unmap(disp->sync);
2222 if (disp->sync)
2223 nouveau_bo_unpin(disp->sync);
2224 nouveau_bo_ref(NULL, &disp->sync);
2225
2226 nouveau_display(dev)->priv = NULL;
2227 kfree(disp);
2228 }
2229
2230 int
2231 nv50_display_create(struct drm_device *dev)
2232 {
2233 struct nvif_device *device = &nouveau_drm(dev)->client.device;
2234 struct nouveau_drm *drm = nouveau_drm(dev);
2235 struct dcb_table *dcb = &drm->vbios.dcb;
2236 struct drm_connector *connector, *tmp;
2237 struct nv50_disp *disp;
2238 struct dcb_output *dcbe;
2239 int crtcs, ret, i;
2240
2241 disp = kzalloc(sizeof(*disp), GFP_KERNEL);
2242 if (!disp)
2243 return -ENOMEM;
2244
2245 mutex_init(&disp->mutex);
2246
2247 nouveau_display(dev)->priv = disp;
2248 nouveau_display(dev)->dtor = nv50_display_destroy;
2249 nouveau_display(dev)->init = nv50_display_init;
2250 nouveau_display(dev)->fini = nv50_display_fini;
2251 disp->disp = &nouveau_display(dev)->disp;
2252 dev->mode_config.funcs = &nv50_disp_func;
2253 dev->mode_config.quirk_addfb_prefer_xbgr_30bpp = true;
2254
2255 /* small shared memory area we use for notifiers and semaphores */
2256 ret = nouveau_bo_new(&drm->client, 4096, 0x1000, TTM_PL_FLAG_VRAM,
2257 0, 0x0000, NULL, NULL, &disp->sync);
2258 if (!ret) {
2259 ret = nouveau_bo_pin(disp->sync, TTM_PL_FLAG_VRAM, true);
2260 if (!ret) {
2261 ret = nouveau_bo_map(disp->sync);
2262 if (ret)
2263 nouveau_bo_unpin(disp->sync);
2264 }
2265 if (ret)
2266 nouveau_bo_ref(NULL, &disp->sync);
2267 }
2268
2269 if (ret)
2270 goto out;
2271
2272 /* allocate master evo channel */
2273 ret = nv50_core_new(drm, &disp->core);
2274 if (ret)
2275 goto out;
2276
2277 /* create crtc objects to represent the hw heads */
2278 if (disp->disp->object.oclass >= GV100_DISP)
2279 crtcs = nvif_rd32(&device->object, 0x610060) & 0xff;
2280 else
2281 if (disp->disp->object.oclass >= GF110_DISP)
2282 crtcs = nvif_rd32(&device->object, 0x612004) & 0xf;
2283 else
2284 crtcs = 0x3;
2285
2286 for (i = 0; i < fls(crtcs); i++) {
2287 if (!(crtcs & (1 << i)))
2288 continue;
2289 ret = nv50_head_create(dev, i);
2290 if (ret)
2291 goto out;
2292 }
2293
2294 /* create encoder/connector objects based on VBIOS DCB table */
2295 for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) {
2296 connector = nouveau_connector_create(dev, dcbe->connector);
2297 if (IS_ERR(connector))
2298 continue;
2299
2300 if (dcbe->location == DCB_LOC_ON_CHIP) {
2301 switch (dcbe->type) {
2302 case DCB_OUTPUT_TMDS:
2303 case DCB_OUTPUT_LVDS:
2304 case DCB_OUTPUT_DP:
2305 ret = nv50_sor_create(connector, dcbe);
2306 break;
2307 case DCB_OUTPUT_ANALOG:
2308 ret = nv50_dac_create(connector, dcbe);
2309 break;
2310 default:
2311 ret = -ENODEV;
2312 break;
2313 }
2314 } else {
2315 ret = nv50_pior_create(connector, dcbe);
2316 }
2317
2318 if (ret) {
2319 NV_WARN(drm, "failed to create encoder %d/%d/%d: %d\n",
2320 dcbe->location, dcbe->type,
2321 ffs(dcbe->or) - 1, ret);
2322 ret = 0;
2323 }
2324 }
2325
2326 /* cull any connectors we created that don't have an encoder */
2327 list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) {
2328 if (connector->encoder_ids[0])
2329 continue;
2330
2331 NV_WARN(drm, "%s has no encoders, removing\n",
2332 connector->name);
2333 connector->funcs->destroy(connector);
2334 }
2335
2336 /* Disable vblank irqs aggressively for power-saving, safe on nv50+ */
2337 dev->vblank_disable_immediate = true;
2338
2339 out:
2340 if (ret)
2341 nv50_display_destroy(dev);
2342 return ret;
2343 }