]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/hid/hid-logitech-hidpp.c
percpu: stop printing kernel addresses
[thirdparty/linux.git] / drivers / hid / hid-logitech-hidpp.c
1 /*
2 * HIDPP protocol for Logitech Unifying receivers
3 *
4 * Copyright (c) 2011 Logitech (c)
5 * Copyright (c) 2012-2013 Google (c)
6 * Copyright (c) 2013-2014 Red Hat Inc.
7 */
8
9 /*
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the Free
12 * Software Foundation; version 2 of the License.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/device.h>
18 #include <linux/input.h>
19 #include <linux/usb.h>
20 #include <linux/hid.h>
21 #include <linux/module.h>
22 #include <linux/slab.h>
23 #include <linux/sched.h>
24 #include <linux/sched/clock.h>
25 #include <linux/kfifo.h>
26 #include <linux/input/mt.h>
27 #include <linux/workqueue.h>
28 #include <linux/atomic.h>
29 #include <linux/fixp-arith.h>
30 #include <asm/unaligned.h>
31 #include "usbhid/usbhid.h"
32 #include "hid-ids.h"
33
34 MODULE_LICENSE("GPL");
35 MODULE_AUTHOR("Benjamin Tissoires <benjamin.tissoires@gmail.com>");
36 MODULE_AUTHOR("Nestor Lopez Casado <nlopezcasad@logitech.com>");
37
38 static bool disable_raw_mode;
39 module_param(disable_raw_mode, bool, 0644);
40 MODULE_PARM_DESC(disable_raw_mode,
41 "Disable Raw mode reporting for touchpads and keep firmware gestures.");
42
43 static bool disable_tap_to_click;
44 module_param(disable_tap_to_click, bool, 0644);
45 MODULE_PARM_DESC(disable_tap_to_click,
46 "Disable Tap-To-Click mode reporting for touchpads (only on the K400 currently).");
47
48 #define REPORT_ID_HIDPP_SHORT 0x10
49 #define REPORT_ID_HIDPP_LONG 0x11
50 #define REPORT_ID_HIDPP_VERY_LONG 0x12
51
52 #define HIDPP_REPORT_SHORT_LENGTH 7
53 #define HIDPP_REPORT_LONG_LENGTH 20
54 #define HIDPP_REPORT_VERY_LONG_LENGTH 64
55
56 #define HIDPP_QUIRK_CLASS_WTP BIT(0)
57 #define HIDPP_QUIRK_CLASS_M560 BIT(1)
58 #define HIDPP_QUIRK_CLASS_K400 BIT(2)
59 #define HIDPP_QUIRK_CLASS_G920 BIT(3)
60 #define HIDPP_QUIRK_CLASS_K750 BIT(4)
61
62 /* bits 2..20 are reserved for classes */
63 /* #define HIDPP_QUIRK_CONNECT_EVENTS BIT(21) disabled */
64 #define HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS BIT(22)
65 #define HIDPP_QUIRK_NO_HIDINPUT BIT(23)
66 #define HIDPP_QUIRK_FORCE_OUTPUT_REPORTS BIT(24)
67 #define HIDPP_QUIRK_UNIFYING BIT(25)
68 #define HIDPP_QUIRK_HI_RES_SCROLL_1P0 BIT(26)
69 #define HIDPP_QUIRK_HI_RES_SCROLL_X2120 BIT(27)
70 #define HIDPP_QUIRK_HI_RES_SCROLL_X2121 BIT(28)
71
72 /* Convenience constant to check for any high-res support. */
73 #define HIDPP_QUIRK_HI_RES_SCROLL (HIDPP_QUIRK_HI_RES_SCROLL_1P0 | \
74 HIDPP_QUIRK_HI_RES_SCROLL_X2120 | \
75 HIDPP_QUIRK_HI_RES_SCROLL_X2121)
76
77 #define HIDPP_QUIRK_DELAYED_INIT HIDPP_QUIRK_NO_HIDINPUT
78
79 #define HIDPP_CAPABILITY_HIDPP10_BATTERY BIT(0)
80 #define HIDPP_CAPABILITY_HIDPP20_BATTERY BIT(1)
81 #define HIDPP_CAPABILITY_BATTERY_MILEAGE BIT(2)
82 #define HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS BIT(3)
83
84 /*
85 * There are two hidpp protocols in use, the first version hidpp10 is known
86 * as register access protocol or RAP, the second version hidpp20 is known as
87 * feature access protocol or FAP
88 *
89 * Most older devices (including the Unifying usb receiver) use the RAP protocol
90 * where as most newer devices use the FAP protocol. Both protocols are
91 * compatible with the underlying transport, which could be usb, Unifiying, or
92 * bluetooth. The message lengths are defined by the hid vendor specific report
93 * descriptor for the HIDPP_SHORT report type (total message lenth 7 bytes) and
94 * the HIDPP_LONG report type (total message length 20 bytes)
95 *
96 * The RAP protocol uses both report types, whereas the FAP only uses HIDPP_LONG
97 * messages. The Unifying receiver itself responds to RAP messages (device index
98 * is 0xFF for the receiver), and all messages (short or long) with a device
99 * index between 1 and 6 are passed untouched to the corresponding paired
100 * Unifying device.
101 *
102 * The paired device can be RAP or FAP, it will receive the message untouched
103 * from the Unifiying receiver.
104 */
105
106 struct fap {
107 u8 feature_index;
108 u8 funcindex_clientid;
109 u8 params[HIDPP_REPORT_VERY_LONG_LENGTH - 4U];
110 };
111
112 struct rap {
113 u8 sub_id;
114 u8 reg_address;
115 u8 params[HIDPP_REPORT_VERY_LONG_LENGTH - 4U];
116 };
117
118 struct hidpp_report {
119 u8 report_id;
120 u8 device_index;
121 union {
122 struct fap fap;
123 struct rap rap;
124 u8 rawbytes[sizeof(struct fap)];
125 };
126 } __packed;
127
128 struct hidpp_battery {
129 u8 feature_index;
130 u8 solar_feature_index;
131 struct power_supply_desc desc;
132 struct power_supply *ps;
133 char name[64];
134 int status;
135 int capacity;
136 int level;
137 bool online;
138 };
139
140 /**
141 * struct hidpp_scroll_counter - Utility class for processing high-resolution
142 * scroll events.
143 * @dev: the input device for which events should be reported.
144 * @wheel_multiplier: the scalar multiplier to be applied to each wheel event
145 * @remainder: counts the number of high-resolution units moved since the last
146 * low-resolution event (REL_WHEEL or REL_HWHEEL) was sent. Should
147 * only be used by class methods.
148 * @direction: direction of last movement (1 or -1)
149 * @last_time: last event time, used to reset remainder after inactivity
150 */
151 struct hidpp_scroll_counter {
152 struct input_dev *dev;
153 int wheel_multiplier;
154 int remainder;
155 int direction;
156 unsigned long long last_time;
157 };
158
159 struct hidpp_device {
160 struct hid_device *hid_dev;
161 struct mutex send_mutex;
162 void *send_receive_buf;
163 char *name; /* will never be NULL and should not be freed */
164 wait_queue_head_t wait;
165 bool answer_available;
166 u8 protocol_major;
167 u8 protocol_minor;
168
169 void *private_data;
170
171 struct work_struct work;
172 struct kfifo delayed_work_fifo;
173 atomic_t connected;
174 struct input_dev *delayed_input;
175
176 unsigned long quirks;
177 unsigned long capabilities;
178
179 struct hidpp_battery battery;
180 struct hidpp_scroll_counter vertical_wheel_counter;
181 };
182
183 /* HID++ 1.0 error codes */
184 #define HIDPP_ERROR 0x8f
185 #define HIDPP_ERROR_SUCCESS 0x00
186 #define HIDPP_ERROR_INVALID_SUBID 0x01
187 #define HIDPP_ERROR_INVALID_ADRESS 0x02
188 #define HIDPP_ERROR_INVALID_VALUE 0x03
189 #define HIDPP_ERROR_CONNECT_FAIL 0x04
190 #define HIDPP_ERROR_TOO_MANY_DEVICES 0x05
191 #define HIDPP_ERROR_ALREADY_EXISTS 0x06
192 #define HIDPP_ERROR_BUSY 0x07
193 #define HIDPP_ERROR_UNKNOWN_DEVICE 0x08
194 #define HIDPP_ERROR_RESOURCE_ERROR 0x09
195 #define HIDPP_ERROR_REQUEST_UNAVAILABLE 0x0a
196 #define HIDPP_ERROR_INVALID_PARAM_VALUE 0x0b
197 #define HIDPP_ERROR_WRONG_PIN_CODE 0x0c
198 /* HID++ 2.0 error codes */
199 #define HIDPP20_ERROR 0xff
200
201 static void hidpp_connect_event(struct hidpp_device *hidpp_dev);
202
203 static int __hidpp_send_report(struct hid_device *hdev,
204 struct hidpp_report *hidpp_report)
205 {
206 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
207 int fields_count, ret;
208
209 hidpp = hid_get_drvdata(hdev);
210
211 switch (hidpp_report->report_id) {
212 case REPORT_ID_HIDPP_SHORT:
213 fields_count = HIDPP_REPORT_SHORT_LENGTH;
214 break;
215 case REPORT_ID_HIDPP_LONG:
216 fields_count = HIDPP_REPORT_LONG_LENGTH;
217 break;
218 case REPORT_ID_HIDPP_VERY_LONG:
219 fields_count = HIDPP_REPORT_VERY_LONG_LENGTH;
220 break;
221 default:
222 return -ENODEV;
223 }
224
225 /*
226 * set the device_index as the receiver, it will be overwritten by
227 * hid_hw_request if needed
228 */
229 hidpp_report->device_index = 0xff;
230
231 if (hidpp->quirks & HIDPP_QUIRK_FORCE_OUTPUT_REPORTS) {
232 ret = hid_hw_output_report(hdev, (u8 *)hidpp_report, fields_count);
233 } else {
234 ret = hid_hw_raw_request(hdev, hidpp_report->report_id,
235 (u8 *)hidpp_report, fields_count, HID_OUTPUT_REPORT,
236 HID_REQ_SET_REPORT);
237 }
238
239 return ret == fields_count ? 0 : -1;
240 }
241
242 /**
243 * hidpp_send_message_sync() returns 0 in case of success, and something else
244 * in case of a failure.
245 * - If ' something else' is positive, that means that an error has been raised
246 * by the protocol itself.
247 * - If ' something else' is negative, that means that we had a classic error
248 * (-ENOMEM, -EPIPE, etc...)
249 */
250 static int hidpp_send_message_sync(struct hidpp_device *hidpp,
251 struct hidpp_report *message,
252 struct hidpp_report *response)
253 {
254 int ret;
255
256 mutex_lock(&hidpp->send_mutex);
257
258 hidpp->send_receive_buf = response;
259 hidpp->answer_available = false;
260
261 /*
262 * So that we can later validate the answer when it arrives
263 * in hidpp_raw_event
264 */
265 *response = *message;
266
267 ret = __hidpp_send_report(hidpp->hid_dev, message);
268
269 if (ret) {
270 dbg_hid("__hidpp_send_report returned err: %d\n", ret);
271 memset(response, 0, sizeof(struct hidpp_report));
272 goto exit;
273 }
274
275 if (!wait_event_timeout(hidpp->wait, hidpp->answer_available,
276 5*HZ)) {
277 dbg_hid("%s:timeout waiting for response\n", __func__);
278 memset(response, 0, sizeof(struct hidpp_report));
279 ret = -ETIMEDOUT;
280 }
281
282 if (response->report_id == REPORT_ID_HIDPP_SHORT &&
283 response->rap.sub_id == HIDPP_ERROR) {
284 ret = response->rap.params[1];
285 dbg_hid("%s:got hidpp error %02X\n", __func__, ret);
286 goto exit;
287 }
288
289 if ((response->report_id == REPORT_ID_HIDPP_LONG ||
290 response->report_id == REPORT_ID_HIDPP_VERY_LONG) &&
291 response->fap.feature_index == HIDPP20_ERROR) {
292 ret = response->fap.params[1];
293 dbg_hid("%s:got hidpp 2.0 error %02X\n", __func__, ret);
294 goto exit;
295 }
296
297 exit:
298 mutex_unlock(&hidpp->send_mutex);
299 return ret;
300
301 }
302
303 static int hidpp_send_fap_command_sync(struct hidpp_device *hidpp,
304 u8 feat_index, u8 funcindex_clientid, u8 *params, int param_count,
305 struct hidpp_report *response)
306 {
307 struct hidpp_report *message;
308 int ret;
309
310 if (param_count > sizeof(message->fap.params))
311 return -EINVAL;
312
313 message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
314 if (!message)
315 return -ENOMEM;
316
317 if (param_count > (HIDPP_REPORT_LONG_LENGTH - 4))
318 message->report_id = REPORT_ID_HIDPP_VERY_LONG;
319 else
320 message->report_id = REPORT_ID_HIDPP_LONG;
321 message->fap.feature_index = feat_index;
322 message->fap.funcindex_clientid = funcindex_clientid;
323 memcpy(&message->fap.params, params, param_count);
324
325 ret = hidpp_send_message_sync(hidpp, message, response);
326 kfree(message);
327 return ret;
328 }
329
330 static int hidpp_send_rap_command_sync(struct hidpp_device *hidpp_dev,
331 u8 report_id, u8 sub_id, u8 reg_address, u8 *params, int param_count,
332 struct hidpp_report *response)
333 {
334 struct hidpp_report *message;
335 int ret, max_count;
336
337 switch (report_id) {
338 case REPORT_ID_HIDPP_SHORT:
339 max_count = HIDPP_REPORT_SHORT_LENGTH - 4;
340 break;
341 case REPORT_ID_HIDPP_LONG:
342 max_count = HIDPP_REPORT_LONG_LENGTH - 4;
343 break;
344 case REPORT_ID_HIDPP_VERY_LONG:
345 max_count = HIDPP_REPORT_VERY_LONG_LENGTH - 4;
346 break;
347 default:
348 return -EINVAL;
349 }
350
351 if (param_count > max_count)
352 return -EINVAL;
353
354 message = kzalloc(sizeof(struct hidpp_report), GFP_KERNEL);
355 if (!message)
356 return -ENOMEM;
357 message->report_id = report_id;
358 message->rap.sub_id = sub_id;
359 message->rap.reg_address = reg_address;
360 memcpy(&message->rap.params, params, param_count);
361
362 ret = hidpp_send_message_sync(hidpp_dev, message, response);
363 kfree(message);
364 return ret;
365 }
366
367 static void delayed_work_cb(struct work_struct *work)
368 {
369 struct hidpp_device *hidpp = container_of(work, struct hidpp_device,
370 work);
371 hidpp_connect_event(hidpp);
372 }
373
374 static inline bool hidpp_match_answer(struct hidpp_report *question,
375 struct hidpp_report *answer)
376 {
377 return (answer->fap.feature_index == question->fap.feature_index) &&
378 (answer->fap.funcindex_clientid == question->fap.funcindex_clientid);
379 }
380
381 static inline bool hidpp_match_error(struct hidpp_report *question,
382 struct hidpp_report *answer)
383 {
384 return ((answer->rap.sub_id == HIDPP_ERROR) ||
385 (answer->fap.feature_index == HIDPP20_ERROR)) &&
386 (answer->fap.funcindex_clientid == question->fap.feature_index) &&
387 (answer->fap.params[0] == question->fap.funcindex_clientid);
388 }
389
390 static inline bool hidpp_report_is_connect_event(struct hidpp_report *report)
391 {
392 return (report->report_id == REPORT_ID_HIDPP_SHORT) &&
393 (report->rap.sub_id == 0x41);
394 }
395
396 /**
397 * hidpp_prefix_name() prefixes the current given name with "Logitech ".
398 */
399 static void hidpp_prefix_name(char **name, int name_length)
400 {
401 #define PREFIX_LENGTH 9 /* "Logitech " */
402
403 int new_length;
404 char *new_name;
405
406 if (name_length > PREFIX_LENGTH &&
407 strncmp(*name, "Logitech ", PREFIX_LENGTH) == 0)
408 /* The prefix has is already in the name */
409 return;
410
411 new_length = PREFIX_LENGTH + name_length;
412 new_name = kzalloc(new_length, GFP_KERNEL);
413 if (!new_name)
414 return;
415
416 snprintf(new_name, new_length, "Logitech %s", *name);
417
418 kfree(*name);
419
420 *name = new_name;
421 }
422
423 /**
424 * hidpp_scroll_counter_handle_scroll() - Send high- and low-resolution scroll
425 * events given a high-resolution wheel
426 * movement.
427 * @counter: a hid_scroll_counter struct describing the wheel.
428 * @hi_res_value: the movement of the wheel, in the mouse's high-resolution
429 * units.
430 *
431 * Given a high-resolution movement, this function converts the movement into
432 * fractions of 120 and emits high-resolution scroll events for the input
433 * device. It also uses the multiplier from &struct hid_scroll_counter to
434 * emit low-resolution scroll events when appropriate for
435 * backwards-compatibility with userspace input libraries.
436 */
437 static void hidpp_scroll_counter_handle_scroll(struct hidpp_scroll_counter *counter,
438 int hi_res_value)
439 {
440 int low_res_value, remainder, direction;
441 unsigned long long now, previous;
442
443 hi_res_value = hi_res_value * 120/counter->wheel_multiplier;
444 input_report_rel(counter->dev, REL_WHEEL_HI_RES, hi_res_value);
445
446 remainder = counter->remainder;
447 direction = hi_res_value > 0 ? 1 : -1;
448
449 now = sched_clock();
450 previous = counter->last_time;
451 counter->last_time = now;
452 /*
453 * Reset the remainder after a period of inactivity or when the
454 * direction changes. This prevents the REL_WHEEL emulation point
455 * from sliding for devices that don't always provide the same
456 * number of movements per detent.
457 */
458 if (now - previous > 1000000000 || direction != counter->direction)
459 remainder = 0;
460
461 counter->direction = direction;
462 remainder += hi_res_value;
463
464 /* Some wheels will rest 7/8ths of a detent from the previous detent
465 * after slow movement, so we want the threshold for low-res events to
466 * be in the middle between two detents (e.g. after 4/8ths) as
467 * opposed to on the detents themselves (8/8ths).
468 */
469 if (abs(remainder) >= 60) {
470 /* Add (or subtract) 1 because we want to trigger when the wheel
471 * is half-way to the next detent (i.e. scroll 1 detent after a
472 * 1/2 detent movement, 2 detents after a 1 1/2 detent movement,
473 * etc.).
474 */
475 low_res_value = remainder / 120;
476 if (low_res_value == 0)
477 low_res_value = (hi_res_value > 0 ? 1 : -1);
478 input_report_rel(counter->dev, REL_WHEEL, low_res_value);
479 remainder -= low_res_value * 120;
480 }
481 counter->remainder = remainder;
482 }
483
484 /* -------------------------------------------------------------------------- */
485 /* HIDP++ 1.0 commands */
486 /* -------------------------------------------------------------------------- */
487
488 #define HIDPP_SET_REGISTER 0x80
489 #define HIDPP_GET_REGISTER 0x81
490 #define HIDPP_SET_LONG_REGISTER 0x82
491 #define HIDPP_GET_LONG_REGISTER 0x83
492
493 /**
494 * hidpp10_set_register_bit() - Sets a single bit in a HID++ 1.0 register.
495 * @hidpp_dev: the device to set the register on.
496 * @register_address: the address of the register to modify.
497 * @byte: the byte of the register to modify. Should be less than 3.
498 * Return: 0 if successful, otherwise a negative error code.
499 */
500 static int hidpp10_set_register_bit(struct hidpp_device *hidpp_dev,
501 u8 register_address, u8 byte, u8 bit)
502 {
503 struct hidpp_report response;
504 int ret;
505 u8 params[3] = { 0 };
506
507 ret = hidpp_send_rap_command_sync(hidpp_dev,
508 REPORT_ID_HIDPP_SHORT,
509 HIDPP_GET_REGISTER,
510 register_address,
511 NULL, 0, &response);
512 if (ret)
513 return ret;
514
515 memcpy(params, response.rap.params, 3);
516
517 params[byte] |= BIT(bit);
518
519 return hidpp_send_rap_command_sync(hidpp_dev,
520 REPORT_ID_HIDPP_SHORT,
521 HIDPP_SET_REGISTER,
522 register_address,
523 params, 3, &response);
524 }
525
526
527 #define HIDPP_REG_GENERAL 0x00
528
529 static int hidpp10_enable_battery_reporting(struct hidpp_device *hidpp_dev)
530 {
531 return hidpp10_set_register_bit(hidpp_dev, HIDPP_REG_GENERAL, 0, 4);
532 }
533
534 #define HIDPP_REG_FEATURES 0x01
535
536 /* On HID++ 1.0 devices, high-res scroll was called "scrolling acceleration". */
537 static int hidpp10_enable_scrolling_acceleration(struct hidpp_device *hidpp_dev)
538 {
539 return hidpp10_set_register_bit(hidpp_dev, HIDPP_REG_FEATURES, 0, 6);
540 }
541
542 #define HIDPP_REG_BATTERY_STATUS 0x07
543
544 static int hidpp10_battery_status_map_level(u8 param)
545 {
546 int level;
547
548 switch (param) {
549 case 1 ... 2:
550 level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
551 break;
552 case 3 ... 4:
553 level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
554 break;
555 case 5 ... 6:
556 level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
557 break;
558 case 7:
559 level = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
560 break;
561 default:
562 level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
563 }
564
565 return level;
566 }
567
568 static int hidpp10_battery_status_map_status(u8 param)
569 {
570 int status;
571
572 switch (param) {
573 case 0x00:
574 /* discharging (in use) */
575 status = POWER_SUPPLY_STATUS_DISCHARGING;
576 break;
577 case 0x21: /* (standard) charging */
578 case 0x24: /* fast charging */
579 case 0x25: /* slow charging */
580 status = POWER_SUPPLY_STATUS_CHARGING;
581 break;
582 case 0x26: /* topping charge */
583 case 0x22: /* charge complete */
584 status = POWER_SUPPLY_STATUS_FULL;
585 break;
586 case 0x20: /* unknown */
587 status = POWER_SUPPLY_STATUS_UNKNOWN;
588 break;
589 /*
590 * 0x01...0x1F = reserved (not charging)
591 * 0x23 = charging error
592 * 0x27..0xff = reserved
593 */
594 default:
595 status = POWER_SUPPLY_STATUS_NOT_CHARGING;
596 break;
597 }
598
599 return status;
600 }
601
602 static int hidpp10_query_battery_status(struct hidpp_device *hidpp)
603 {
604 struct hidpp_report response;
605 int ret, status;
606
607 ret = hidpp_send_rap_command_sync(hidpp,
608 REPORT_ID_HIDPP_SHORT,
609 HIDPP_GET_REGISTER,
610 HIDPP_REG_BATTERY_STATUS,
611 NULL, 0, &response);
612 if (ret)
613 return ret;
614
615 hidpp->battery.level =
616 hidpp10_battery_status_map_level(response.rap.params[0]);
617 status = hidpp10_battery_status_map_status(response.rap.params[1]);
618 hidpp->battery.status = status;
619 /* the capacity is only available when discharging or full */
620 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
621 status == POWER_SUPPLY_STATUS_FULL;
622
623 return 0;
624 }
625
626 #define HIDPP_REG_BATTERY_MILEAGE 0x0D
627
628 static int hidpp10_battery_mileage_map_status(u8 param)
629 {
630 int status;
631
632 switch (param >> 6) {
633 case 0x00:
634 /* discharging (in use) */
635 status = POWER_SUPPLY_STATUS_DISCHARGING;
636 break;
637 case 0x01: /* charging */
638 status = POWER_SUPPLY_STATUS_CHARGING;
639 break;
640 case 0x02: /* charge complete */
641 status = POWER_SUPPLY_STATUS_FULL;
642 break;
643 /*
644 * 0x03 = charging error
645 */
646 default:
647 status = POWER_SUPPLY_STATUS_NOT_CHARGING;
648 break;
649 }
650
651 return status;
652 }
653
654 static int hidpp10_query_battery_mileage(struct hidpp_device *hidpp)
655 {
656 struct hidpp_report response;
657 int ret, status;
658
659 ret = hidpp_send_rap_command_sync(hidpp,
660 REPORT_ID_HIDPP_SHORT,
661 HIDPP_GET_REGISTER,
662 HIDPP_REG_BATTERY_MILEAGE,
663 NULL, 0, &response);
664 if (ret)
665 return ret;
666
667 hidpp->battery.capacity = response.rap.params[0];
668 status = hidpp10_battery_mileage_map_status(response.rap.params[2]);
669 hidpp->battery.status = status;
670 /* the capacity is only available when discharging or full */
671 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
672 status == POWER_SUPPLY_STATUS_FULL;
673
674 return 0;
675 }
676
677 static int hidpp10_battery_event(struct hidpp_device *hidpp, u8 *data, int size)
678 {
679 struct hidpp_report *report = (struct hidpp_report *)data;
680 int status, capacity, level;
681 bool changed;
682
683 if (report->report_id != REPORT_ID_HIDPP_SHORT)
684 return 0;
685
686 switch (report->rap.sub_id) {
687 case HIDPP_REG_BATTERY_STATUS:
688 capacity = hidpp->battery.capacity;
689 level = hidpp10_battery_status_map_level(report->rawbytes[1]);
690 status = hidpp10_battery_status_map_status(report->rawbytes[2]);
691 break;
692 case HIDPP_REG_BATTERY_MILEAGE:
693 capacity = report->rap.params[0];
694 level = hidpp->battery.level;
695 status = hidpp10_battery_mileage_map_status(report->rawbytes[3]);
696 break;
697 default:
698 return 0;
699 }
700
701 changed = capacity != hidpp->battery.capacity ||
702 level != hidpp->battery.level ||
703 status != hidpp->battery.status;
704
705 /* the capacity is only available when discharging or full */
706 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
707 status == POWER_SUPPLY_STATUS_FULL;
708
709 if (changed) {
710 hidpp->battery.level = level;
711 hidpp->battery.status = status;
712 if (hidpp->battery.ps)
713 power_supply_changed(hidpp->battery.ps);
714 }
715
716 return 0;
717 }
718
719 #define HIDPP_REG_PAIRING_INFORMATION 0xB5
720 #define HIDPP_EXTENDED_PAIRING 0x30
721 #define HIDPP_DEVICE_NAME 0x40
722
723 static char *hidpp_unifying_get_name(struct hidpp_device *hidpp_dev)
724 {
725 struct hidpp_report response;
726 int ret;
727 u8 params[1] = { HIDPP_DEVICE_NAME };
728 char *name;
729 int len;
730
731 ret = hidpp_send_rap_command_sync(hidpp_dev,
732 REPORT_ID_HIDPP_SHORT,
733 HIDPP_GET_LONG_REGISTER,
734 HIDPP_REG_PAIRING_INFORMATION,
735 params, 1, &response);
736 if (ret)
737 return NULL;
738
739 len = response.rap.params[1];
740
741 if (2 + len > sizeof(response.rap.params))
742 return NULL;
743
744 name = kzalloc(len + 1, GFP_KERNEL);
745 if (!name)
746 return NULL;
747
748 memcpy(name, &response.rap.params[2], len);
749
750 /* include the terminating '\0' */
751 hidpp_prefix_name(&name, len + 1);
752
753 return name;
754 }
755
756 static int hidpp_unifying_get_serial(struct hidpp_device *hidpp, u32 *serial)
757 {
758 struct hidpp_report response;
759 int ret;
760 u8 params[1] = { HIDPP_EXTENDED_PAIRING };
761
762 ret = hidpp_send_rap_command_sync(hidpp,
763 REPORT_ID_HIDPP_SHORT,
764 HIDPP_GET_LONG_REGISTER,
765 HIDPP_REG_PAIRING_INFORMATION,
766 params, 1, &response);
767 if (ret)
768 return ret;
769
770 /*
771 * We don't care about LE or BE, we will output it as a string
772 * with %4phD, so we need to keep the order.
773 */
774 *serial = *((u32 *)&response.rap.params[1]);
775 return 0;
776 }
777
778 static int hidpp_unifying_init(struct hidpp_device *hidpp)
779 {
780 struct hid_device *hdev = hidpp->hid_dev;
781 const char *name;
782 u32 serial;
783 int ret;
784
785 ret = hidpp_unifying_get_serial(hidpp, &serial);
786 if (ret)
787 return ret;
788
789 snprintf(hdev->uniq, sizeof(hdev->uniq), "%04x-%4phD",
790 hdev->product, &serial);
791 dbg_hid("HID++ Unifying: Got serial: %s\n", hdev->uniq);
792
793 name = hidpp_unifying_get_name(hidpp);
794 if (!name)
795 return -EIO;
796
797 snprintf(hdev->name, sizeof(hdev->name), "%s", name);
798 dbg_hid("HID++ Unifying: Got name: %s\n", name);
799
800 kfree(name);
801 return 0;
802 }
803
804 /* -------------------------------------------------------------------------- */
805 /* 0x0000: Root */
806 /* -------------------------------------------------------------------------- */
807
808 #define HIDPP_PAGE_ROOT 0x0000
809 #define HIDPP_PAGE_ROOT_IDX 0x00
810
811 #define CMD_ROOT_GET_FEATURE 0x01
812 #define CMD_ROOT_GET_PROTOCOL_VERSION 0x11
813
814 static int hidpp_root_get_feature(struct hidpp_device *hidpp, u16 feature,
815 u8 *feature_index, u8 *feature_type)
816 {
817 struct hidpp_report response;
818 int ret;
819 u8 params[2] = { feature >> 8, feature & 0x00FF };
820
821 ret = hidpp_send_fap_command_sync(hidpp,
822 HIDPP_PAGE_ROOT_IDX,
823 CMD_ROOT_GET_FEATURE,
824 params, 2, &response);
825 if (ret)
826 return ret;
827
828 if (response.fap.params[0] == 0)
829 return -ENOENT;
830
831 *feature_index = response.fap.params[0];
832 *feature_type = response.fap.params[1];
833
834 return ret;
835 }
836
837 static int hidpp_root_get_protocol_version(struct hidpp_device *hidpp)
838 {
839 struct hidpp_report response;
840 int ret;
841
842 ret = hidpp_send_fap_command_sync(hidpp,
843 HIDPP_PAGE_ROOT_IDX,
844 CMD_ROOT_GET_PROTOCOL_VERSION,
845 NULL, 0, &response);
846
847 if (ret == HIDPP_ERROR_INVALID_SUBID) {
848 hidpp->protocol_major = 1;
849 hidpp->protocol_minor = 0;
850 return 0;
851 }
852
853 /* the device might not be connected */
854 if (ret == HIDPP_ERROR_RESOURCE_ERROR)
855 return -EIO;
856
857 if (ret > 0) {
858 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
859 __func__, ret);
860 return -EPROTO;
861 }
862 if (ret)
863 return ret;
864
865 hidpp->protocol_major = response.fap.params[0];
866 hidpp->protocol_minor = response.fap.params[1];
867
868 return ret;
869 }
870
871 static bool hidpp_is_connected(struct hidpp_device *hidpp)
872 {
873 int ret;
874
875 ret = hidpp_root_get_protocol_version(hidpp);
876 if (!ret)
877 hid_dbg(hidpp->hid_dev, "HID++ %u.%u device connected.\n",
878 hidpp->protocol_major, hidpp->protocol_minor);
879 return ret == 0;
880 }
881
882 /* -------------------------------------------------------------------------- */
883 /* 0x0005: GetDeviceNameType */
884 /* -------------------------------------------------------------------------- */
885
886 #define HIDPP_PAGE_GET_DEVICE_NAME_TYPE 0x0005
887
888 #define CMD_GET_DEVICE_NAME_TYPE_GET_COUNT 0x01
889 #define CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME 0x11
890 #define CMD_GET_DEVICE_NAME_TYPE_GET_TYPE 0x21
891
892 static int hidpp_devicenametype_get_count(struct hidpp_device *hidpp,
893 u8 feature_index, u8 *nameLength)
894 {
895 struct hidpp_report response;
896 int ret;
897
898 ret = hidpp_send_fap_command_sync(hidpp, feature_index,
899 CMD_GET_DEVICE_NAME_TYPE_GET_COUNT, NULL, 0, &response);
900
901 if (ret > 0) {
902 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
903 __func__, ret);
904 return -EPROTO;
905 }
906 if (ret)
907 return ret;
908
909 *nameLength = response.fap.params[0];
910
911 return ret;
912 }
913
914 static int hidpp_devicenametype_get_device_name(struct hidpp_device *hidpp,
915 u8 feature_index, u8 char_index, char *device_name, int len_buf)
916 {
917 struct hidpp_report response;
918 int ret, i;
919 int count;
920
921 ret = hidpp_send_fap_command_sync(hidpp, feature_index,
922 CMD_GET_DEVICE_NAME_TYPE_GET_DEVICE_NAME, &char_index, 1,
923 &response);
924
925 if (ret > 0) {
926 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
927 __func__, ret);
928 return -EPROTO;
929 }
930 if (ret)
931 return ret;
932
933 switch (response.report_id) {
934 case REPORT_ID_HIDPP_VERY_LONG:
935 count = HIDPP_REPORT_VERY_LONG_LENGTH - 4;
936 break;
937 case REPORT_ID_HIDPP_LONG:
938 count = HIDPP_REPORT_LONG_LENGTH - 4;
939 break;
940 case REPORT_ID_HIDPP_SHORT:
941 count = HIDPP_REPORT_SHORT_LENGTH - 4;
942 break;
943 default:
944 return -EPROTO;
945 }
946
947 if (len_buf < count)
948 count = len_buf;
949
950 for (i = 0; i < count; i++)
951 device_name[i] = response.fap.params[i];
952
953 return count;
954 }
955
956 static char *hidpp_get_device_name(struct hidpp_device *hidpp)
957 {
958 u8 feature_type;
959 u8 feature_index;
960 u8 __name_length;
961 char *name;
962 unsigned index = 0;
963 int ret;
964
965 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_GET_DEVICE_NAME_TYPE,
966 &feature_index, &feature_type);
967 if (ret)
968 return NULL;
969
970 ret = hidpp_devicenametype_get_count(hidpp, feature_index,
971 &__name_length);
972 if (ret)
973 return NULL;
974
975 name = kzalloc(__name_length + 1, GFP_KERNEL);
976 if (!name)
977 return NULL;
978
979 while (index < __name_length) {
980 ret = hidpp_devicenametype_get_device_name(hidpp,
981 feature_index, index, name + index,
982 __name_length - index);
983 if (ret <= 0) {
984 kfree(name);
985 return NULL;
986 }
987 index += ret;
988 }
989
990 /* include the terminating '\0' */
991 hidpp_prefix_name(&name, __name_length + 1);
992
993 return name;
994 }
995
996 /* -------------------------------------------------------------------------- */
997 /* 0x1000: Battery level status */
998 /* -------------------------------------------------------------------------- */
999
1000 #define HIDPP_PAGE_BATTERY_LEVEL_STATUS 0x1000
1001
1002 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS 0x00
1003 #define CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY 0x10
1004
1005 #define EVENT_BATTERY_LEVEL_STATUS_BROADCAST 0x00
1006
1007 #define FLAG_BATTERY_LEVEL_DISABLE_OSD BIT(0)
1008 #define FLAG_BATTERY_LEVEL_MILEAGE BIT(1)
1009 #define FLAG_BATTERY_LEVEL_RECHARGEABLE BIT(2)
1010
1011 static int hidpp_map_battery_level(int capacity)
1012 {
1013 if (capacity < 11)
1014 return POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1015 else if (capacity < 31)
1016 return POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1017 else if (capacity < 81)
1018 return POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1019 return POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1020 }
1021
1022 static int hidpp20_batterylevel_map_status_capacity(u8 data[3], int *capacity,
1023 int *next_capacity,
1024 int *level)
1025 {
1026 int status;
1027
1028 *capacity = data[0];
1029 *next_capacity = data[1];
1030 *level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
1031
1032 /* When discharging, we can rely on the device reported capacity.
1033 * For all other states the device reports 0 (unknown).
1034 */
1035 switch (data[2]) {
1036 case 0: /* discharging (in use) */
1037 status = POWER_SUPPLY_STATUS_DISCHARGING;
1038 *level = hidpp_map_battery_level(*capacity);
1039 break;
1040 case 1: /* recharging */
1041 status = POWER_SUPPLY_STATUS_CHARGING;
1042 break;
1043 case 2: /* charge in final stage */
1044 status = POWER_SUPPLY_STATUS_CHARGING;
1045 break;
1046 case 3: /* charge complete */
1047 status = POWER_SUPPLY_STATUS_FULL;
1048 *level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1049 *capacity = 100;
1050 break;
1051 case 4: /* recharging below optimal speed */
1052 status = POWER_SUPPLY_STATUS_CHARGING;
1053 break;
1054 /* 5 = invalid battery type
1055 6 = thermal error
1056 7 = other charging error */
1057 default:
1058 status = POWER_SUPPLY_STATUS_NOT_CHARGING;
1059 break;
1060 }
1061
1062 return status;
1063 }
1064
1065 static int hidpp20_batterylevel_get_battery_capacity(struct hidpp_device *hidpp,
1066 u8 feature_index,
1067 int *status,
1068 int *capacity,
1069 int *next_capacity,
1070 int *level)
1071 {
1072 struct hidpp_report response;
1073 int ret;
1074 u8 *params = (u8 *)response.fap.params;
1075
1076 ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1077 CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_LEVEL_STATUS,
1078 NULL, 0, &response);
1079 if (ret > 0) {
1080 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1081 __func__, ret);
1082 return -EPROTO;
1083 }
1084 if (ret)
1085 return ret;
1086
1087 *status = hidpp20_batterylevel_map_status_capacity(params, capacity,
1088 next_capacity,
1089 level);
1090
1091 return 0;
1092 }
1093
1094 static int hidpp20_batterylevel_get_battery_info(struct hidpp_device *hidpp,
1095 u8 feature_index)
1096 {
1097 struct hidpp_report response;
1098 int ret;
1099 u8 *params = (u8 *)response.fap.params;
1100 unsigned int level_count, flags;
1101
1102 ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1103 CMD_BATTERY_LEVEL_STATUS_GET_BATTERY_CAPABILITY,
1104 NULL, 0, &response);
1105 if (ret > 0) {
1106 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1107 __func__, ret);
1108 return -EPROTO;
1109 }
1110 if (ret)
1111 return ret;
1112
1113 level_count = params[0];
1114 flags = params[1];
1115
1116 if (level_count < 10 || !(flags & FLAG_BATTERY_LEVEL_MILEAGE))
1117 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
1118 else
1119 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1120
1121 return 0;
1122 }
1123
1124 static int hidpp20_query_battery_info(struct hidpp_device *hidpp)
1125 {
1126 u8 feature_type;
1127 int ret;
1128 int status, capacity, next_capacity, level;
1129
1130 if (hidpp->battery.feature_index == 0xff) {
1131 ret = hidpp_root_get_feature(hidpp,
1132 HIDPP_PAGE_BATTERY_LEVEL_STATUS,
1133 &hidpp->battery.feature_index,
1134 &feature_type);
1135 if (ret)
1136 return ret;
1137 }
1138
1139 ret = hidpp20_batterylevel_get_battery_capacity(hidpp,
1140 hidpp->battery.feature_index,
1141 &status, &capacity,
1142 &next_capacity, &level);
1143 if (ret)
1144 return ret;
1145
1146 ret = hidpp20_batterylevel_get_battery_info(hidpp,
1147 hidpp->battery.feature_index);
1148 if (ret)
1149 return ret;
1150
1151 hidpp->battery.status = status;
1152 hidpp->battery.capacity = capacity;
1153 hidpp->battery.level = level;
1154 /* the capacity is only available when discharging or full */
1155 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1156 status == POWER_SUPPLY_STATUS_FULL;
1157
1158 return 0;
1159 }
1160
1161 static int hidpp20_battery_event(struct hidpp_device *hidpp,
1162 u8 *data, int size)
1163 {
1164 struct hidpp_report *report = (struct hidpp_report *)data;
1165 int status, capacity, next_capacity, level;
1166 bool changed;
1167
1168 if (report->fap.feature_index != hidpp->battery.feature_index ||
1169 report->fap.funcindex_clientid != EVENT_BATTERY_LEVEL_STATUS_BROADCAST)
1170 return 0;
1171
1172 status = hidpp20_batterylevel_map_status_capacity(report->fap.params,
1173 &capacity,
1174 &next_capacity,
1175 &level);
1176
1177 /* the capacity is only available when discharging or full */
1178 hidpp->battery.online = status == POWER_SUPPLY_STATUS_DISCHARGING ||
1179 status == POWER_SUPPLY_STATUS_FULL;
1180
1181 changed = capacity != hidpp->battery.capacity ||
1182 level != hidpp->battery.level ||
1183 status != hidpp->battery.status;
1184
1185 if (changed) {
1186 hidpp->battery.level = level;
1187 hidpp->battery.capacity = capacity;
1188 hidpp->battery.status = status;
1189 if (hidpp->battery.ps)
1190 power_supply_changed(hidpp->battery.ps);
1191 }
1192
1193 return 0;
1194 }
1195
1196 static enum power_supply_property hidpp_battery_props[] = {
1197 POWER_SUPPLY_PROP_ONLINE,
1198 POWER_SUPPLY_PROP_STATUS,
1199 POWER_SUPPLY_PROP_SCOPE,
1200 POWER_SUPPLY_PROP_MODEL_NAME,
1201 POWER_SUPPLY_PROP_MANUFACTURER,
1202 POWER_SUPPLY_PROP_SERIAL_NUMBER,
1203 0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY, */
1204 0, /* placeholder for POWER_SUPPLY_PROP_CAPACITY_LEVEL, */
1205 };
1206
1207 static int hidpp_battery_get_property(struct power_supply *psy,
1208 enum power_supply_property psp,
1209 union power_supply_propval *val)
1210 {
1211 struct hidpp_device *hidpp = power_supply_get_drvdata(psy);
1212 int ret = 0;
1213
1214 switch(psp) {
1215 case POWER_SUPPLY_PROP_STATUS:
1216 val->intval = hidpp->battery.status;
1217 break;
1218 case POWER_SUPPLY_PROP_CAPACITY:
1219 val->intval = hidpp->battery.capacity;
1220 break;
1221 case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
1222 val->intval = hidpp->battery.level;
1223 break;
1224 case POWER_SUPPLY_PROP_SCOPE:
1225 val->intval = POWER_SUPPLY_SCOPE_DEVICE;
1226 break;
1227 case POWER_SUPPLY_PROP_ONLINE:
1228 val->intval = hidpp->battery.online;
1229 break;
1230 case POWER_SUPPLY_PROP_MODEL_NAME:
1231 if (!strncmp(hidpp->name, "Logitech ", 9))
1232 val->strval = hidpp->name + 9;
1233 else
1234 val->strval = hidpp->name;
1235 break;
1236 case POWER_SUPPLY_PROP_MANUFACTURER:
1237 val->strval = "Logitech";
1238 break;
1239 case POWER_SUPPLY_PROP_SERIAL_NUMBER:
1240 val->strval = hidpp->hid_dev->uniq;
1241 break;
1242 default:
1243 ret = -EINVAL;
1244 break;
1245 }
1246
1247 return ret;
1248 }
1249
1250 /* -------------------------------------------------------------------------- */
1251 /* 0x2120: Hi-resolution scrolling */
1252 /* -------------------------------------------------------------------------- */
1253
1254 #define HIDPP_PAGE_HI_RESOLUTION_SCROLLING 0x2120
1255
1256 #define CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE 0x10
1257
1258 static int hidpp_hrs_set_highres_scrolling_mode(struct hidpp_device *hidpp,
1259 bool enabled, u8 *multiplier)
1260 {
1261 u8 feature_index;
1262 u8 feature_type;
1263 int ret;
1264 u8 params[1];
1265 struct hidpp_report response;
1266
1267 ret = hidpp_root_get_feature(hidpp,
1268 HIDPP_PAGE_HI_RESOLUTION_SCROLLING,
1269 &feature_index,
1270 &feature_type);
1271 if (ret)
1272 return ret;
1273
1274 params[0] = enabled ? BIT(0) : 0;
1275 ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1276 CMD_HI_RESOLUTION_SCROLLING_SET_HIGHRES_SCROLLING_MODE,
1277 params, sizeof(params), &response);
1278 if (ret)
1279 return ret;
1280 *multiplier = response.fap.params[1];
1281 return 0;
1282 }
1283
1284 /* -------------------------------------------------------------------------- */
1285 /* 0x2121: HiRes Wheel */
1286 /* -------------------------------------------------------------------------- */
1287
1288 #define HIDPP_PAGE_HIRES_WHEEL 0x2121
1289
1290 #define CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY 0x00
1291 #define CMD_HIRES_WHEEL_SET_WHEEL_MODE 0x20
1292
1293 static int hidpp_hrw_get_wheel_capability(struct hidpp_device *hidpp,
1294 u8 *multiplier)
1295 {
1296 u8 feature_index;
1297 u8 feature_type;
1298 int ret;
1299 struct hidpp_report response;
1300
1301 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1302 &feature_index, &feature_type);
1303 if (ret)
1304 goto return_default;
1305
1306 ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1307 CMD_HIRES_WHEEL_GET_WHEEL_CAPABILITY,
1308 NULL, 0, &response);
1309 if (ret)
1310 goto return_default;
1311
1312 *multiplier = response.fap.params[0];
1313 return 0;
1314 return_default:
1315 hid_warn(hidpp->hid_dev,
1316 "Couldn't get wheel multiplier (error %d)\n", ret);
1317 return ret;
1318 }
1319
1320 static int hidpp_hrw_set_wheel_mode(struct hidpp_device *hidpp, bool invert,
1321 bool high_resolution, bool use_hidpp)
1322 {
1323 u8 feature_index;
1324 u8 feature_type;
1325 int ret;
1326 u8 params[1];
1327 struct hidpp_report response;
1328
1329 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_HIRES_WHEEL,
1330 &feature_index, &feature_type);
1331 if (ret)
1332 return ret;
1333
1334 params[0] = (invert ? BIT(2) : 0) |
1335 (high_resolution ? BIT(1) : 0) |
1336 (use_hidpp ? BIT(0) : 0);
1337
1338 return hidpp_send_fap_command_sync(hidpp, feature_index,
1339 CMD_HIRES_WHEEL_SET_WHEEL_MODE,
1340 params, sizeof(params), &response);
1341 }
1342
1343 /* -------------------------------------------------------------------------- */
1344 /* 0x4301: Solar Keyboard */
1345 /* -------------------------------------------------------------------------- */
1346
1347 #define HIDPP_PAGE_SOLAR_KEYBOARD 0x4301
1348
1349 #define CMD_SOLAR_SET_LIGHT_MEASURE 0x00
1350
1351 #define EVENT_SOLAR_BATTERY_BROADCAST 0x00
1352 #define EVENT_SOLAR_BATTERY_LIGHT_MEASURE 0x10
1353 #define EVENT_SOLAR_CHECK_LIGHT_BUTTON 0x20
1354
1355 static int hidpp_solar_request_battery_event(struct hidpp_device *hidpp)
1356 {
1357 struct hidpp_report response;
1358 u8 params[2] = { 1, 1 };
1359 u8 feature_type;
1360 int ret;
1361
1362 if (hidpp->battery.feature_index == 0xff) {
1363 ret = hidpp_root_get_feature(hidpp,
1364 HIDPP_PAGE_SOLAR_KEYBOARD,
1365 &hidpp->battery.solar_feature_index,
1366 &feature_type);
1367 if (ret)
1368 return ret;
1369 }
1370
1371 ret = hidpp_send_fap_command_sync(hidpp,
1372 hidpp->battery.solar_feature_index,
1373 CMD_SOLAR_SET_LIGHT_MEASURE,
1374 params, 2, &response);
1375 if (ret > 0) {
1376 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1377 __func__, ret);
1378 return -EPROTO;
1379 }
1380 if (ret)
1381 return ret;
1382
1383 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
1384
1385 return 0;
1386 }
1387
1388 static int hidpp_solar_battery_event(struct hidpp_device *hidpp,
1389 u8 *data, int size)
1390 {
1391 struct hidpp_report *report = (struct hidpp_report *)data;
1392 int capacity, lux, status;
1393 u8 function;
1394
1395 function = report->fap.funcindex_clientid;
1396
1397
1398 if (report->fap.feature_index != hidpp->battery.solar_feature_index ||
1399 !(function == EVENT_SOLAR_BATTERY_BROADCAST ||
1400 function == EVENT_SOLAR_BATTERY_LIGHT_MEASURE ||
1401 function == EVENT_SOLAR_CHECK_LIGHT_BUTTON))
1402 return 0;
1403
1404 capacity = report->fap.params[0];
1405
1406 switch (function) {
1407 case EVENT_SOLAR_BATTERY_LIGHT_MEASURE:
1408 lux = (report->fap.params[1] << 8) | report->fap.params[2];
1409 if (lux > 200)
1410 status = POWER_SUPPLY_STATUS_CHARGING;
1411 else
1412 status = POWER_SUPPLY_STATUS_DISCHARGING;
1413 break;
1414 case EVENT_SOLAR_CHECK_LIGHT_BUTTON:
1415 default:
1416 if (capacity < hidpp->battery.capacity)
1417 status = POWER_SUPPLY_STATUS_DISCHARGING;
1418 else
1419 status = POWER_SUPPLY_STATUS_CHARGING;
1420
1421 }
1422
1423 if (capacity == 100)
1424 status = POWER_SUPPLY_STATUS_FULL;
1425
1426 hidpp->battery.online = true;
1427 if (capacity != hidpp->battery.capacity ||
1428 status != hidpp->battery.status) {
1429 hidpp->battery.capacity = capacity;
1430 hidpp->battery.status = status;
1431 if (hidpp->battery.ps)
1432 power_supply_changed(hidpp->battery.ps);
1433 }
1434
1435 return 0;
1436 }
1437
1438 /* -------------------------------------------------------------------------- */
1439 /* 0x6010: Touchpad FW items */
1440 /* -------------------------------------------------------------------------- */
1441
1442 #define HIDPP_PAGE_TOUCHPAD_FW_ITEMS 0x6010
1443
1444 #define CMD_TOUCHPAD_FW_ITEMS_SET 0x10
1445
1446 struct hidpp_touchpad_fw_items {
1447 uint8_t presence;
1448 uint8_t desired_state;
1449 uint8_t state;
1450 uint8_t persistent;
1451 };
1452
1453 /**
1454 * send a set state command to the device by reading the current items->state
1455 * field. items is then filled with the current state.
1456 */
1457 static int hidpp_touchpad_fw_items_set(struct hidpp_device *hidpp,
1458 u8 feature_index,
1459 struct hidpp_touchpad_fw_items *items)
1460 {
1461 struct hidpp_report response;
1462 int ret;
1463 u8 *params = (u8 *)response.fap.params;
1464
1465 ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1466 CMD_TOUCHPAD_FW_ITEMS_SET, &items->state, 1, &response);
1467
1468 if (ret > 0) {
1469 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1470 __func__, ret);
1471 return -EPROTO;
1472 }
1473 if (ret)
1474 return ret;
1475
1476 items->presence = params[0];
1477 items->desired_state = params[1];
1478 items->state = params[2];
1479 items->persistent = params[3];
1480
1481 return 0;
1482 }
1483
1484 /* -------------------------------------------------------------------------- */
1485 /* 0x6100: TouchPadRawXY */
1486 /* -------------------------------------------------------------------------- */
1487
1488 #define HIDPP_PAGE_TOUCHPAD_RAW_XY 0x6100
1489
1490 #define CMD_TOUCHPAD_GET_RAW_INFO 0x01
1491 #define CMD_TOUCHPAD_SET_RAW_REPORT_STATE 0x21
1492
1493 #define EVENT_TOUCHPAD_RAW_XY 0x00
1494
1495 #define TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT 0x01
1496 #define TOUCHPAD_RAW_XY_ORIGIN_UPPER_LEFT 0x03
1497
1498 struct hidpp_touchpad_raw_info {
1499 u16 x_size;
1500 u16 y_size;
1501 u8 z_range;
1502 u8 area_range;
1503 u8 timestamp_unit;
1504 u8 maxcontacts;
1505 u8 origin;
1506 u16 res;
1507 };
1508
1509 struct hidpp_touchpad_raw_xy_finger {
1510 u8 contact_type;
1511 u8 contact_status;
1512 u16 x;
1513 u16 y;
1514 u8 z;
1515 u8 area;
1516 u8 finger_id;
1517 };
1518
1519 struct hidpp_touchpad_raw_xy {
1520 u16 timestamp;
1521 struct hidpp_touchpad_raw_xy_finger fingers[2];
1522 u8 spurious_flag;
1523 u8 end_of_frame;
1524 u8 finger_count;
1525 u8 button;
1526 };
1527
1528 static int hidpp_touchpad_get_raw_info(struct hidpp_device *hidpp,
1529 u8 feature_index, struct hidpp_touchpad_raw_info *raw_info)
1530 {
1531 struct hidpp_report response;
1532 int ret;
1533 u8 *params = (u8 *)response.fap.params;
1534
1535 ret = hidpp_send_fap_command_sync(hidpp, feature_index,
1536 CMD_TOUCHPAD_GET_RAW_INFO, NULL, 0, &response);
1537
1538 if (ret > 0) {
1539 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
1540 __func__, ret);
1541 return -EPROTO;
1542 }
1543 if (ret)
1544 return ret;
1545
1546 raw_info->x_size = get_unaligned_be16(&params[0]);
1547 raw_info->y_size = get_unaligned_be16(&params[2]);
1548 raw_info->z_range = params[4];
1549 raw_info->area_range = params[5];
1550 raw_info->maxcontacts = params[7];
1551 raw_info->origin = params[8];
1552 /* res is given in unit per inch */
1553 raw_info->res = get_unaligned_be16(&params[13]) * 2 / 51;
1554
1555 return ret;
1556 }
1557
1558 static int hidpp_touchpad_set_raw_report_state(struct hidpp_device *hidpp_dev,
1559 u8 feature_index, bool send_raw_reports,
1560 bool sensor_enhanced_settings)
1561 {
1562 struct hidpp_report response;
1563
1564 /*
1565 * Params:
1566 * bit 0 - enable raw
1567 * bit 1 - 16bit Z, no area
1568 * bit 2 - enhanced sensitivity
1569 * bit 3 - width, height (4 bits each) instead of area
1570 * bit 4 - send raw + gestures (degrades smoothness)
1571 * remaining bits - reserved
1572 */
1573 u8 params = send_raw_reports | (sensor_enhanced_settings << 2);
1574
1575 return hidpp_send_fap_command_sync(hidpp_dev, feature_index,
1576 CMD_TOUCHPAD_SET_RAW_REPORT_STATE, &params, 1, &response);
1577 }
1578
1579 static void hidpp_touchpad_touch_event(u8 *data,
1580 struct hidpp_touchpad_raw_xy_finger *finger)
1581 {
1582 u8 x_m = data[0] << 2;
1583 u8 y_m = data[2] << 2;
1584
1585 finger->x = x_m << 6 | data[1];
1586 finger->y = y_m << 6 | data[3];
1587
1588 finger->contact_type = data[0] >> 6;
1589 finger->contact_status = data[2] >> 6;
1590
1591 finger->z = data[4];
1592 finger->area = data[5];
1593 finger->finger_id = data[6] >> 4;
1594 }
1595
1596 static void hidpp_touchpad_raw_xy_event(struct hidpp_device *hidpp_dev,
1597 u8 *data, struct hidpp_touchpad_raw_xy *raw_xy)
1598 {
1599 memset(raw_xy, 0, sizeof(struct hidpp_touchpad_raw_xy));
1600 raw_xy->end_of_frame = data[8] & 0x01;
1601 raw_xy->spurious_flag = (data[8] >> 1) & 0x01;
1602 raw_xy->finger_count = data[15] & 0x0f;
1603 raw_xy->button = (data[8] >> 2) & 0x01;
1604
1605 if (raw_xy->finger_count) {
1606 hidpp_touchpad_touch_event(&data[2], &raw_xy->fingers[0]);
1607 hidpp_touchpad_touch_event(&data[9], &raw_xy->fingers[1]);
1608 }
1609 }
1610
1611 /* -------------------------------------------------------------------------- */
1612 /* 0x8123: Force feedback support */
1613 /* -------------------------------------------------------------------------- */
1614
1615 #define HIDPP_FF_GET_INFO 0x01
1616 #define HIDPP_FF_RESET_ALL 0x11
1617 #define HIDPP_FF_DOWNLOAD_EFFECT 0x21
1618 #define HIDPP_FF_SET_EFFECT_STATE 0x31
1619 #define HIDPP_FF_DESTROY_EFFECT 0x41
1620 #define HIDPP_FF_GET_APERTURE 0x51
1621 #define HIDPP_FF_SET_APERTURE 0x61
1622 #define HIDPP_FF_GET_GLOBAL_GAINS 0x71
1623 #define HIDPP_FF_SET_GLOBAL_GAINS 0x81
1624
1625 #define HIDPP_FF_EFFECT_STATE_GET 0x00
1626 #define HIDPP_FF_EFFECT_STATE_STOP 0x01
1627 #define HIDPP_FF_EFFECT_STATE_PLAY 0x02
1628 #define HIDPP_FF_EFFECT_STATE_PAUSE 0x03
1629
1630 #define HIDPP_FF_EFFECT_CONSTANT 0x00
1631 #define HIDPP_FF_EFFECT_PERIODIC_SINE 0x01
1632 #define HIDPP_FF_EFFECT_PERIODIC_SQUARE 0x02
1633 #define HIDPP_FF_EFFECT_PERIODIC_TRIANGLE 0x03
1634 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP 0x04
1635 #define HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN 0x05
1636 #define HIDPP_FF_EFFECT_SPRING 0x06
1637 #define HIDPP_FF_EFFECT_DAMPER 0x07
1638 #define HIDPP_FF_EFFECT_FRICTION 0x08
1639 #define HIDPP_FF_EFFECT_INERTIA 0x09
1640 #define HIDPP_FF_EFFECT_RAMP 0x0A
1641
1642 #define HIDPP_FF_EFFECT_AUTOSTART 0x80
1643
1644 #define HIDPP_FF_EFFECTID_NONE -1
1645 #define HIDPP_FF_EFFECTID_AUTOCENTER -2
1646
1647 #define HIDPP_FF_MAX_PARAMS 20
1648 #define HIDPP_FF_RESERVED_SLOTS 1
1649
1650 struct hidpp_ff_private_data {
1651 struct hidpp_device *hidpp;
1652 u8 feature_index;
1653 u8 version;
1654 u16 gain;
1655 s16 range;
1656 u8 slot_autocenter;
1657 u8 num_effects;
1658 int *effect_ids;
1659 struct workqueue_struct *wq;
1660 atomic_t workqueue_size;
1661 };
1662
1663 struct hidpp_ff_work_data {
1664 struct work_struct work;
1665 struct hidpp_ff_private_data *data;
1666 int effect_id;
1667 u8 command;
1668 u8 params[HIDPP_FF_MAX_PARAMS];
1669 u8 size;
1670 };
1671
1672 static const signed short hidpp_ff_effects[] = {
1673 FF_CONSTANT,
1674 FF_PERIODIC,
1675 FF_SINE,
1676 FF_SQUARE,
1677 FF_SAW_UP,
1678 FF_SAW_DOWN,
1679 FF_TRIANGLE,
1680 FF_SPRING,
1681 FF_DAMPER,
1682 FF_AUTOCENTER,
1683 FF_GAIN,
1684 -1
1685 };
1686
1687 static const signed short hidpp_ff_effects_v2[] = {
1688 FF_RAMP,
1689 FF_FRICTION,
1690 FF_INERTIA,
1691 -1
1692 };
1693
1694 static const u8 HIDPP_FF_CONDITION_CMDS[] = {
1695 HIDPP_FF_EFFECT_SPRING,
1696 HIDPP_FF_EFFECT_FRICTION,
1697 HIDPP_FF_EFFECT_DAMPER,
1698 HIDPP_FF_EFFECT_INERTIA
1699 };
1700
1701 static const char *HIDPP_FF_CONDITION_NAMES[] = {
1702 "spring",
1703 "friction",
1704 "damper",
1705 "inertia"
1706 };
1707
1708
1709 static u8 hidpp_ff_find_effect(struct hidpp_ff_private_data *data, int effect_id)
1710 {
1711 int i;
1712
1713 for (i = 0; i < data->num_effects; i++)
1714 if (data->effect_ids[i] == effect_id)
1715 return i+1;
1716
1717 return 0;
1718 }
1719
1720 static void hidpp_ff_work_handler(struct work_struct *w)
1721 {
1722 struct hidpp_ff_work_data *wd = container_of(w, struct hidpp_ff_work_data, work);
1723 struct hidpp_ff_private_data *data = wd->data;
1724 struct hidpp_report response;
1725 u8 slot;
1726 int ret;
1727
1728 /* add slot number if needed */
1729 switch (wd->effect_id) {
1730 case HIDPP_FF_EFFECTID_AUTOCENTER:
1731 wd->params[0] = data->slot_autocenter;
1732 break;
1733 case HIDPP_FF_EFFECTID_NONE:
1734 /* leave slot as zero */
1735 break;
1736 default:
1737 /* find current slot for effect */
1738 wd->params[0] = hidpp_ff_find_effect(data, wd->effect_id);
1739 break;
1740 }
1741
1742 /* send command and wait for reply */
1743 ret = hidpp_send_fap_command_sync(data->hidpp, data->feature_index,
1744 wd->command, wd->params, wd->size, &response);
1745
1746 if (ret) {
1747 hid_err(data->hidpp->hid_dev, "Failed to send command to device!\n");
1748 goto out;
1749 }
1750
1751 /* parse return data */
1752 switch (wd->command) {
1753 case HIDPP_FF_DOWNLOAD_EFFECT:
1754 slot = response.fap.params[0];
1755 if (slot > 0 && slot <= data->num_effects) {
1756 if (wd->effect_id >= 0)
1757 /* regular effect uploaded */
1758 data->effect_ids[slot-1] = wd->effect_id;
1759 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
1760 /* autocenter spring uploaded */
1761 data->slot_autocenter = slot;
1762 }
1763 break;
1764 case HIDPP_FF_DESTROY_EFFECT:
1765 if (wd->effect_id >= 0)
1766 /* regular effect destroyed */
1767 data->effect_ids[wd->params[0]-1] = -1;
1768 else if (wd->effect_id >= HIDPP_FF_EFFECTID_AUTOCENTER)
1769 /* autocenter spring destoyed */
1770 data->slot_autocenter = 0;
1771 break;
1772 case HIDPP_FF_SET_GLOBAL_GAINS:
1773 data->gain = (wd->params[0] << 8) + wd->params[1];
1774 break;
1775 case HIDPP_FF_SET_APERTURE:
1776 data->range = (wd->params[0] << 8) + wd->params[1];
1777 break;
1778 default:
1779 /* no action needed */
1780 break;
1781 }
1782
1783 out:
1784 atomic_dec(&data->workqueue_size);
1785 kfree(wd);
1786 }
1787
1788 static int hidpp_ff_queue_work(struct hidpp_ff_private_data *data, int effect_id, u8 command, u8 *params, u8 size)
1789 {
1790 struct hidpp_ff_work_data *wd = kzalloc(sizeof(*wd), GFP_KERNEL);
1791 int s;
1792
1793 if (!wd)
1794 return -ENOMEM;
1795
1796 INIT_WORK(&wd->work, hidpp_ff_work_handler);
1797
1798 wd->data = data;
1799 wd->effect_id = effect_id;
1800 wd->command = command;
1801 wd->size = size;
1802 memcpy(wd->params, params, size);
1803
1804 atomic_inc(&data->workqueue_size);
1805 queue_work(data->wq, &wd->work);
1806
1807 /* warn about excessive queue size */
1808 s = atomic_read(&data->workqueue_size);
1809 if (s >= 20 && s % 20 == 0)
1810 hid_warn(data->hidpp->hid_dev, "Force feedback command queue contains %d commands, causing substantial delays!", s);
1811
1812 return 0;
1813 }
1814
1815 static int hidpp_ff_upload_effect(struct input_dev *dev, struct ff_effect *effect, struct ff_effect *old)
1816 {
1817 struct hidpp_ff_private_data *data = dev->ff->private;
1818 u8 params[20];
1819 u8 size;
1820 int force;
1821
1822 /* set common parameters */
1823 params[2] = effect->replay.length >> 8;
1824 params[3] = effect->replay.length & 255;
1825 params[4] = effect->replay.delay >> 8;
1826 params[5] = effect->replay.delay & 255;
1827
1828 switch (effect->type) {
1829 case FF_CONSTANT:
1830 force = (effect->u.constant.level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1831 params[1] = HIDPP_FF_EFFECT_CONSTANT;
1832 params[6] = force >> 8;
1833 params[7] = force & 255;
1834 params[8] = effect->u.constant.envelope.attack_level >> 7;
1835 params[9] = effect->u.constant.envelope.attack_length >> 8;
1836 params[10] = effect->u.constant.envelope.attack_length & 255;
1837 params[11] = effect->u.constant.envelope.fade_level >> 7;
1838 params[12] = effect->u.constant.envelope.fade_length >> 8;
1839 params[13] = effect->u.constant.envelope.fade_length & 255;
1840 size = 14;
1841 dbg_hid("Uploading constant force level=%d in dir %d = %d\n",
1842 effect->u.constant.level,
1843 effect->direction, force);
1844 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
1845 effect->u.constant.envelope.attack_level,
1846 effect->u.constant.envelope.attack_length,
1847 effect->u.constant.envelope.fade_level,
1848 effect->u.constant.envelope.fade_length);
1849 break;
1850 case FF_PERIODIC:
1851 {
1852 switch (effect->u.periodic.waveform) {
1853 case FF_SINE:
1854 params[1] = HIDPP_FF_EFFECT_PERIODIC_SINE;
1855 break;
1856 case FF_SQUARE:
1857 params[1] = HIDPP_FF_EFFECT_PERIODIC_SQUARE;
1858 break;
1859 case FF_SAW_UP:
1860 params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHUP;
1861 break;
1862 case FF_SAW_DOWN:
1863 params[1] = HIDPP_FF_EFFECT_PERIODIC_SAWTOOTHDOWN;
1864 break;
1865 case FF_TRIANGLE:
1866 params[1] = HIDPP_FF_EFFECT_PERIODIC_TRIANGLE;
1867 break;
1868 default:
1869 hid_err(data->hidpp->hid_dev, "Unexpected periodic waveform type %i!\n", effect->u.periodic.waveform);
1870 return -EINVAL;
1871 }
1872 force = (effect->u.periodic.magnitude * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1873 params[6] = effect->u.periodic.magnitude >> 8;
1874 params[7] = effect->u.periodic.magnitude & 255;
1875 params[8] = effect->u.periodic.offset >> 8;
1876 params[9] = effect->u.periodic.offset & 255;
1877 params[10] = effect->u.periodic.period >> 8;
1878 params[11] = effect->u.periodic.period & 255;
1879 params[12] = effect->u.periodic.phase >> 8;
1880 params[13] = effect->u.periodic.phase & 255;
1881 params[14] = effect->u.periodic.envelope.attack_level >> 7;
1882 params[15] = effect->u.periodic.envelope.attack_length >> 8;
1883 params[16] = effect->u.periodic.envelope.attack_length & 255;
1884 params[17] = effect->u.periodic.envelope.fade_level >> 7;
1885 params[18] = effect->u.periodic.envelope.fade_length >> 8;
1886 params[19] = effect->u.periodic.envelope.fade_length & 255;
1887 size = 20;
1888 dbg_hid("Uploading periodic force mag=%d/dir=%d, offset=%d, period=%d ms, phase=%d\n",
1889 effect->u.periodic.magnitude, effect->direction,
1890 effect->u.periodic.offset,
1891 effect->u.periodic.period,
1892 effect->u.periodic.phase);
1893 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
1894 effect->u.periodic.envelope.attack_level,
1895 effect->u.periodic.envelope.attack_length,
1896 effect->u.periodic.envelope.fade_level,
1897 effect->u.periodic.envelope.fade_length);
1898 break;
1899 }
1900 case FF_RAMP:
1901 params[1] = HIDPP_FF_EFFECT_RAMP;
1902 force = (effect->u.ramp.start_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1903 params[6] = force >> 8;
1904 params[7] = force & 255;
1905 force = (effect->u.ramp.end_level * fixp_sin16((effect->direction * 360) >> 16)) >> 15;
1906 params[8] = force >> 8;
1907 params[9] = force & 255;
1908 params[10] = effect->u.ramp.envelope.attack_level >> 7;
1909 params[11] = effect->u.ramp.envelope.attack_length >> 8;
1910 params[12] = effect->u.ramp.envelope.attack_length & 255;
1911 params[13] = effect->u.ramp.envelope.fade_level >> 7;
1912 params[14] = effect->u.ramp.envelope.fade_length >> 8;
1913 params[15] = effect->u.ramp.envelope.fade_length & 255;
1914 size = 16;
1915 dbg_hid("Uploading ramp force level=%d -> %d in dir %d = %d\n",
1916 effect->u.ramp.start_level,
1917 effect->u.ramp.end_level,
1918 effect->direction, force);
1919 dbg_hid(" envelope attack=(%d, %d ms) fade=(%d, %d ms)\n",
1920 effect->u.ramp.envelope.attack_level,
1921 effect->u.ramp.envelope.attack_length,
1922 effect->u.ramp.envelope.fade_level,
1923 effect->u.ramp.envelope.fade_length);
1924 break;
1925 case FF_FRICTION:
1926 case FF_INERTIA:
1927 case FF_SPRING:
1928 case FF_DAMPER:
1929 params[1] = HIDPP_FF_CONDITION_CMDS[effect->type - FF_SPRING];
1930 params[6] = effect->u.condition[0].left_saturation >> 9;
1931 params[7] = (effect->u.condition[0].left_saturation >> 1) & 255;
1932 params[8] = effect->u.condition[0].left_coeff >> 8;
1933 params[9] = effect->u.condition[0].left_coeff & 255;
1934 params[10] = effect->u.condition[0].deadband >> 9;
1935 params[11] = (effect->u.condition[0].deadband >> 1) & 255;
1936 params[12] = effect->u.condition[0].center >> 8;
1937 params[13] = effect->u.condition[0].center & 255;
1938 params[14] = effect->u.condition[0].right_coeff >> 8;
1939 params[15] = effect->u.condition[0].right_coeff & 255;
1940 params[16] = effect->u.condition[0].right_saturation >> 9;
1941 params[17] = (effect->u.condition[0].right_saturation >> 1) & 255;
1942 size = 18;
1943 dbg_hid("Uploading %s force left coeff=%d, left sat=%d, right coeff=%d, right sat=%d\n",
1944 HIDPP_FF_CONDITION_NAMES[effect->type - FF_SPRING],
1945 effect->u.condition[0].left_coeff,
1946 effect->u.condition[0].left_saturation,
1947 effect->u.condition[0].right_coeff,
1948 effect->u.condition[0].right_saturation);
1949 dbg_hid(" deadband=%d, center=%d\n",
1950 effect->u.condition[0].deadband,
1951 effect->u.condition[0].center);
1952 break;
1953 default:
1954 hid_err(data->hidpp->hid_dev, "Unexpected force type %i!\n", effect->type);
1955 return -EINVAL;
1956 }
1957
1958 return hidpp_ff_queue_work(data, effect->id, HIDPP_FF_DOWNLOAD_EFFECT, params, size);
1959 }
1960
1961 static int hidpp_ff_playback(struct input_dev *dev, int effect_id, int value)
1962 {
1963 struct hidpp_ff_private_data *data = dev->ff->private;
1964 u8 params[2];
1965
1966 params[1] = value ? HIDPP_FF_EFFECT_STATE_PLAY : HIDPP_FF_EFFECT_STATE_STOP;
1967
1968 dbg_hid("St%sing playback of effect %d.\n", value?"art":"opp", effect_id);
1969
1970 return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_SET_EFFECT_STATE, params, ARRAY_SIZE(params));
1971 }
1972
1973 static int hidpp_ff_erase_effect(struct input_dev *dev, int effect_id)
1974 {
1975 struct hidpp_ff_private_data *data = dev->ff->private;
1976 u8 slot = 0;
1977
1978 dbg_hid("Erasing effect %d.\n", effect_id);
1979
1980 return hidpp_ff_queue_work(data, effect_id, HIDPP_FF_DESTROY_EFFECT, &slot, 1);
1981 }
1982
1983 static void hidpp_ff_set_autocenter(struct input_dev *dev, u16 magnitude)
1984 {
1985 struct hidpp_ff_private_data *data = dev->ff->private;
1986 u8 params[18];
1987
1988 dbg_hid("Setting autocenter to %d.\n", magnitude);
1989
1990 /* start a standard spring effect */
1991 params[1] = HIDPP_FF_EFFECT_SPRING | HIDPP_FF_EFFECT_AUTOSTART;
1992 /* zero delay and duration */
1993 params[2] = params[3] = params[4] = params[5] = 0;
1994 /* set coeff to 25% of saturation */
1995 params[8] = params[14] = magnitude >> 11;
1996 params[9] = params[15] = (magnitude >> 3) & 255;
1997 params[6] = params[16] = magnitude >> 9;
1998 params[7] = params[17] = (magnitude >> 1) & 255;
1999 /* zero deadband and center */
2000 params[10] = params[11] = params[12] = params[13] = 0;
2001
2002 hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_AUTOCENTER, HIDPP_FF_DOWNLOAD_EFFECT, params, ARRAY_SIZE(params));
2003 }
2004
2005 static void hidpp_ff_set_gain(struct input_dev *dev, u16 gain)
2006 {
2007 struct hidpp_ff_private_data *data = dev->ff->private;
2008 u8 params[4];
2009
2010 dbg_hid("Setting gain to %d.\n", gain);
2011
2012 params[0] = gain >> 8;
2013 params[1] = gain & 255;
2014 params[2] = 0; /* no boost */
2015 params[3] = 0;
2016
2017 hidpp_ff_queue_work(data, HIDPP_FF_EFFECTID_NONE, HIDPP_FF_SET_GLOBAL_GAINS, params, ARRAY_SIZE(params));
2018 }
2019
2020 static ssize_t hidpp_ff_range_show(struct device *dev, struct device_attribute *attr, char *buf)
2021 {
2022 struct hid_device *hid = to_hid_device(dev);
2023 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2024 struct input_dev *idev = hidinput->input;
2025 struct hidpp_ff_private_data *data = idev->ff->private;
2026
2027 return scnprintf(buf, PAGE_SIZE, "%u\n", data->range);
2028 }
2029
2030 static ssize_t hidpp_ff_range_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)
2031 {
2032 struct hid_device *hid = to_hid_device(dev);
2033 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2034 struct input_dev *idev = hidinput->input;
2035 struct hidpp_ff_private_data *data = idev->ff->private;
2036 u8 params[2];
2037 int range = simple_strtoul(buf, NULL, 10);
2038
2039 range = clamp(range, 180, 900);
2040
2041 params[0] = range >> 8;
2042 params[1] = range & 0x00FF;
2043
2044 hidpp_ff_queue_work(data, -1, HIDPP_FF_SET_APERTURE, params, ARRAY_SIZE(params));
2045
2046 return count;
2047 }
2048
2049 static DEVICE_ATTR(range, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH, hidpp_ff_range_show, hidpp_ff_range_store);
2050
2051 static void hidpp_ff_destroy(struct ff_device *ff)
2052 {
2053 struct hidpp_ff_private_data *data = ff->private;
2054
2055 kfree(data->effect_ids);
2056 }
2057
2058 static int hidpp_ff_init(struct hidpp_device *hidpp, u8 feature_index)
2059 {
2060 struct hid_device *hid = hidpp->hid_dev;
2061 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2062 struct input_dev *dev = hidinput->input;
2063 const struct usb_device_descriptor *udesc = &(hid_to_usb_dev(hid)->descriptor);
2064 const u16 bcdDevice = le16_to_cpu(udesc->bcdDevice);
2065 struct ff_device *ff;
2066 struct hidpp_report response;
2067 struct hidpp_ff_private_data *data;
2068 int error, j, num_slots;
2069 u8 version;
2070
2071 if (!dev) {
2072 hid_err(hid, "Struct input_dev not set!\n");
2073 return -EINVAL;
2074 }
2075
2076 /* Get firmware release */
2077 version = bcdDevice & 255;
2078
2079 /* Set supported force feedback capabilities */
2080 for (j = 0; hidpp_ff_effects[j] >= 0; j++)
2081 set_bit(hidpp_ff_effects[j], dev->ffbit);
2082 if (version > 1)
2083 for (j = 0; hidpp_ff_effects_v2[j] >= 0; j++)
2084 set_bit(hidpp_ff_effects_v2[j], dev->ffbit);
2085
2086 /* Read number of slots available in device */
2087 error = hidpp_send_fap_command_sync(hidpp, feature_index,
2088 HIDPP_FF_GET_INFO, NULL, 0, &response);
2089 if (error) {
2090 if (error < 0)
2091 return error;
2092 hid_err(hidpp->hid_dev, "%s: received protocol error 0x%02x\n",
2093 __func__, error);
2094 return -EPROTO;
2095 }
2096
2097 num_slots = response.fap.params[0] - HIDPP_FF_RESERVED_SLOTS;
2098
2099 error = input_ff_create(dev, num_slots);
2100
2101 if (error) {
2102 hid_err(dev, "Failed to create FF device!\n");
2103 return error;
2104 }
2105
2106 data = kzalloc(sizeof(*data), GFP_KERNEL);
2107 if (!data)
2108 return -ENOMEM;
2109 data->effect_ids = kcalloc(num_slots, sizeof(int), GFP_KERNEL);
2110 if (!data->effect_ids) {
2111 kfree(data);
2112 return -ENOMEM;
2113 }
2114 data->hidpp = hidpp;
2115 data->feature_index = feature_index;
2116 data->version = version;
2117 data->slot_autocenter = 0;
2118 data->num_effects = num_slots;
2119 for (j = 0; j < num_slots; j++)
2120 data->effect_ids[j] = -1;
2121
2122 ff = dev->ff;
2123 ff->private = data;
2124
2125 ff->upload = hidpp_ff_upload_effect;
2126 ff->erase = hidpp_ff_erase_effect;
2127 ff->playback = hidpp_ff_playback;
2128 ff->set_gain = hidpp_ff_set_gain;
2129 ff->set_autocenter = hidpp_ff_set_autocenter;
2130 ff->destroy = hidpp_ff_destroy;
2131
2132
2133 /* reset all forces */
2134 error = hidpp_send_fap_command_sync(hidpp, feature_index,
2135 HIDPP_FF_RESET_ALL, NULL, 0, &response);
2136
2137 /* Read current Range */
2138 error = hidpp_send_fap_command_sync(hidpp, feature_index,
2139 HIDPP_FF_GET_APERTURE, NULL, 0, &response);
2140 if (error)
2141 hid_warn(hidpp->hid_dev, "Failed to read range from device!\n");
2142 data->range = error ? 900 : get_unaligned_be16(&response.fap.params[0]);
2143
2144 /* Create sysfs interface */
2145 error = device_create_file(&(hidpp->hid_dev->dev), &dev_attr_range);
2146 if (error)
2147 hid_warn(hidpp->hid_dev, "Unable to create sysfs interface for \"range\", errno %d!\n", error);
2148
2149 /* Read the current gain values */
2150 error = hidpp_send_fap_command_sync(hidpp, feature_index,
2151 HIDPP_FF_GET_GLOBAL_GAINS, NULL, 0, &response);
2152 if (error)
2153 hid_warn(hidpp->hid_dev, "Failed to read gain values from device!\n");
2154 data->gain = error ? 0xffff : get_unaligned_be16(&response.fap.params[0]);
2155 /* ignore boost value at response.fap.params[2] */
2156
2157 /* init the hardware command queue */
2158 data->wq = create_singlethread_workqueue("hidpp-ff-sendqueue");
2159 atomic_set(&data->workqueue_size, 0);
2160
2161 /* initialize with zero autocenter to get wheel in usable state */
2162 hidpp_ff_set_autocenter(dev, 0);
2163
2164 hid_info(hid, "Force feedback support loaded (firmware release %d).\n",
2165 version);
2166
2167 return 0;
2168 }
2169
2170 static int hidpp_ff_deinit(struct hid_device *hid)
2171 {
2172 struct hid_input *hidinput = list_entry(hid->inputs.next, struct hid_input, list);
2173 struct input_dev *dev = hidinput->input;
2174 struct hidpp_ff_private_data *data;
2175
2176 if (!dev) {
2177 hid_err(hid, "Struct input_dev not found!\n");
2178 return -EINVAL;
2179 }
2180
2181 hid_info(hid, "Unloading HID++ force feedback.\n");
2182 data = dev->ff->private;
2183 if (!data) {
2184 hid_err(hid, "Private data not found!\n");
2185 return -EINVAL;
2186 }
2187
2188 destroy_workqueue(data->wq);
2189 device_remove_file(&hid->dev, &dev_attr_range);
2190
2191 return 0;
2192 }
2193
2194
2195 /* ************************************************************************** */
2196 /* */
2197 /* Device Support */
2198 /* */
2199 /* ************************************************************************** */
2200
2201 /* -------------------------------------------------------------------------- */
2202 /* Touchpad HID++ devices */
2203 /* -------------------------------------------------------------------------- */
2204
2205 #define WTP_MANUAL_RESOLUTION 39
2206
2207 struct wtp_data {
2208 struct input_dev *input;
2209 u16 x_size, y_size;
2210 u8 finger_count;
2211 u8 mt_feature_index;
2212 u8 button_feature_index;
2213 u8 maxcontacts;
2214 bool flip_y;
2215 unsigned int resolution;
2216 };
2217
2218 static int wtp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2219 struct hid_field *field, struct hid_usage *usage,
2220 unsigned long **bit, int *max)
2221 {
2222 return -1;
2223 }
2224
2225 static void wtp_populate_input(struct hidpp_device *hidpp,
2226 struct input_dev *input_dev, bool origin_is_hid_core)
2227 {
2228 struct wtp_data *wd = hidpp->private_data;
2229
2230 __set_bit(EV_ABS, input_dev->evbit);
2231 __set_bit(EV_KEY, input_dev->evbit);
2232 __clear_bit(EV_REL, input_dev->evbit);
2233 __clear_bit(EV_LED, input_dev->evbit);
2234
2235 input_set_abs_params(input_dev, ABS_MT_POSITION_X, 0, wd->x_size, 0, 0);
2236 input_abs_set_res(input_dev, ABS_MT_POSITION_X, wd->resolution);
2237 input_set_abs_params(input_dev, ABS_MT_POSITION_Y, 0, wd->y_size, 0, 0);
2238 input_abs_set_res(input_dev, ABS_MT_POSITION_Y, wd->resolution);
2239
2240 /* Max pressure is not given by the devices, pick one */
2241 input_set_abs_params(input_dev, ABS_MT_PRESSURE, 0, 50, 0, 0);
2242
2243 input_set_capability(input_dev, EV_KEY, BTN_LEFT);
2244
2245 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS)
2246 input_set_capability(input_dev, EV_KEY, BTN_RIGHT);
2247 else
2248 __set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit);
2249
2250 input_mt_init_slots(input_dev, wd->maxcontacts, INPUT_MT_POINTER |
2251 INPUT_MT_DROP_UNUSED);
2252
2253 wd->input = input_dev;
2254 }
2255
2256 static void wtp_touch_event(struct wtp_data *wd,
2257 struct hidpp_touchpad_raw_xy_finger *touch_report)
2258 {
2259 int slot;
2260
2261 if (!touch_report->finger_id || touch_report->contact_type)
2262 /* no actual data */
2263 return;
2264
2265 slot = input_mt_get_slot_by_key(wd->input, touch_report->finger_id);
2266
2267 input_mt_slot(wd->input, slot);
2268 input_mt_report_slot_state(wd->input, MT_TOOL_FINGER,
2269 touch_report->contact_status);
2270 if (touch_report->contact_status) {
2271 input_event(wd->input, EV_ABS, ABS_MT_POSITION_X,
2272 touch_report->x);
2273 input_event(wd->input, EV_ABS, ABS_MT_POSITION_Y,
2274 wd->flip_y ? wd->y_size - touch_report->y :
2275 touch_report->y);
2276 input_event(wd->input, EV_ABS, ABS_MT_PRESSURE,
2277 touch_report->area);
2278 }
2279 }
2280
2281 static void wtp_send_raw_xy_event(struct hidpp_device *hidpp,
2282 struct hidpp_touchpad_raw_xy *raw)
2283 {
2284 struct wtp_data *wd = hidpp->private_data;
2285 int i;
2286
2287 for (i = 0; i < 2; i++)
2288 wtp_touch_event(wd, &(raw->fingers[i]));
2289
2290 if (raw->end_of_frame &&
2291 !(hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS))
2292 input_event(wd->input, EV_KEY, BTN_LEFT, raw->button);
2293
2294 if (raw->end_of_frame || raw->finger_count <= 2) {
2295 input_mt_sync_frame(wd->input);
2296 input_sync(wd->input);
2297 }
2298 }
2299
2300 static int wtp_mouse_raw_xy_event(struct hidpp_device *hidpp, u8 *data)
2301 {
2302 struct wtp_data *wd = hidpp->private_data;
2303 u8 c1_area = ((data[7] & 0xf) * (data[7] & 0xf) +
2304 (data[7] >> 4) * (data[7] >> 4)) / 2;
2305 u8 c2_area = ((data[13] & 0xf) * (data[13] & 0xf) +
2306 (data[13] >> 4) * (data[13] >> 4)) / 2;
2307 struct hidpp_touchpad_raw_xy raw = {
2308 .timestamp = data[1],
2309 .fingers = {
2310 {
2311 .contact_type = 0,
2312 .contact_status = !!data[7],
2313 .x = get_unaligned_le16(&data[3]),
2314 .y = get_unaligned_le16(&data[5]),
2315 .z = c1_area,
2316 .area = c1_area,
2317 .finger_id = data[2],
2318 }, {
2319 .contact_type = 0,
2320 .contact_status = !!data[13],
2321 .x = get_unaligned_le16(&data[9]),
2322 .y = get_unaligned_le16(&data[11]),
2323 .z = c2_area,
2324 .area = c2_area,
2325 .finger_id = data[8],
2326 }
2327 },
2328 .finger_count = wd->maxcontacts,
2329 .spurious_flag = 0,
2330 .end_of_frame = (data[0] >> 7) == 0,
2331 .button = data[0] & 0x01,
2332 };
2333
2334 wtp_send_raw_xy_event(hidpp, &raw);
2335
2336 return 1;
2337 }
2338
2339 static int wtp_raw_event(struct hid_device *hdev, u8 *data, int size)
2340 {
2341 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2342 struct wtp_data *wd = hidpp->private_data;
2343 struct hidpp_report *report = (struct hidpp_report *)data;
2344 struct hidpp_touchpad_raw_xy raw;
2345
2346 if (!wd || !wd->input)
2347 return 1;
2348
2349 switch (data[0]) {
2350 case 0x02:
2351 if (size < 2) {
2352 hid_err(hdev, "Received HID report of bad size (%d)",
2353 size);
2354 return 1;
2355 }
2356 if (hidpp->quirks & HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS) {
2357 input_event(wd->input, EV_KEY, BTN_LEFT,
2358 !!(data[1] & 0x01));
2359 input_event(wd->input, EV_KEY, BTN_RIGHT,
2360 !!(data[1] & 0x02));
2361 input_sync(wd->input);
2362 return 0;
2363 } else {
2364 if (size < 21)
2365 return 1;
2366 return wtp_mouse_raw_xy_event(hidpp, &data[7]);
2367 }
2368 case REPORT_ID_HIDPP_LONG:
2369 /* size is already checked in hidpp_raw_event. */
2370 if ((report->fap.feature_index != wd->mt_feature_index) ||
2371 (report->fap.funcindex_clientid != EVENT_TOUCHPAD_RAW_XY))
2372 return 1;
2373 hidpp_touchpad_raw_xy_event(hidpp, data + 4, &raw);
2374
2375 wtp_send_raw_xy_event(hidpp, &raw);
2376 return 0;
2377 }
2378
2379 return 0;
2380 }
2381
2382 static int wtp_get_config(struct hidpp_device *hidpp)
2383 {
2384 struct wtp_data *wd = hidpp->private_data;
2385 struct hidpp_touchpad_raw_info raw_info = {0};
2386 u8 feature_type;
2387 int ret;
2388
2389 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_TOUCHPAD_RAW_XY,
2390 &wd->mt_feature_index, &feature_type);
2391 if (ret)
2392 /* means that the device is not powered up */
2393 return ret;
2394
2395 ret = hidpp_touchpad_get_raw_info(hidpp, wd->mt_feature_index,
2396 &raw_info);
2397 if (ret)
2398 return ret;
2399
2400 wd->x_size = raw_info.x_size;
2401 wd->y_size = raw_info.y_size;
2402 wd->maxcontacts = raw_info.maxcontacts;
2403 wd->flip_y = raw_info.origin == TOUCHPAD_RAW_XY_ORIGIN_LOWER_LEFT;
2404 wd->resolution = raw_info.res;
2405 if (!wd->resolution)
2406 wd->resolution = WTP_MANUAL_RESOLUTION;
2407
2408 return 0;
2409 }
2410
2411 static int wtp_allocate(struct hid_device *hdev, const struct hid_device_id *id)
2412 {
2413 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2414 struct wtp_data *wd;
2415
2416 wd = devm_kzalloc(&hdev->dev, sizeof(struct wtp_data),
2417 GFP_KERNEL);
2418 if (!wd)
2419 return -ENOMEM;
2420
2421 hidpp->private_data = wd;
2422
2423 return 0;
2424 };
2425
2426 static int wtp_connect(struct hid_device *hdev, bool connected)
2427 {
2428 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2429 struct wtp_data *wd = hidpp->private_data;
2430 int ret;
2431
2432 if (!wd->x_size) {
2433 ret = wtp_get_config(hidpp);
2434 if (ret) {
2435 hid_err(hdev, "Can not get wtp config: %d\n", ret);
2436 return ret;
2437 }
2438 }
2439
2440 return hidpp_touchpad_set_raw_report_state(hidpp, wd->mt_feature_index,
2441 true, true);
2442 }
2443
2444 /* ------------------------------------------------------------------------- */
2445 /* Logitech M560 devices */
2446 /* ------------------------------------------------------------------------- */
2447
2448 /*
2449 * Logitech M560 protocol overview
2450 *
2451 * The Logitech M560 mouse, is designed for windows 8. When the middle and/or
2452 * the sides buttons are pressed, it sends some keyboard keys events
2453 * instead of buttons ones.
2454 * To complicate things further, the middle button keys sequence
2455 * is different from the odd press and the even press.
2456 *
2457 * forward button -> Super_R
2458 * backward button -> Super_L+'d' (press only)
2459 * middle button -> 1st time: Alt_L+SuperL+XF86TouchpadOff (press only)
2460 * 2nd time: left-click (press only)
2461 * NB: press-only means that when the button is pressed, the
2462 * KeyPress/ButtonPress and KeyRelease/ButtonRelease events are generated
2463 * together sequentially; instead when the button is released, no event is
2464 * generated !
2465 *
2466 * With the command
2467 * 10<xx>0a 3500af03 (where <xx> is the mouse id),
2468 * the mouse reacts differently:
2469 * - it never sends a keyboard key event
2470 * - for the three mouse button it sends:
2471 * middle button press 11<xx>0a 3500af00...
2472 * side 1 button (forward) press 11<xx>0a 3500b000...
2473 * side 2 button (backward) press 11<xx>0a 3500ae00...
2474 * middle/side1/side2 button release 11<xx>0a 35000000...
2475 */
2476
2477 static const u8 m560_config_parameter[] = {0x00, 0xaf, 0x03};
2478
2479 struct m560_private_data {
2480 struct input_dev *input;
2481 };
2482
2483 /* how buttons are mapped in the report */
2484 #define M560_MOUSE_BTN_LEFT 0x01
2485 #define M560_MOUSE_BTN_RIGHT 0x02
2486 #define M560_MOUSE_BTN_WHEEL_LEFT 0x08
2487 #define M560_MOUSE_BTN_WHEEL_RIGHT 0x10
2488
2489 #define M560_SUB_ID 0x0a
2490 #define M560_BUTTON_MODE_REGISTER 0x35
2491
2492 static int m560_send_config_command(struct hid_device *hdev, bool connected)
2493 {
2494 struct hidpp_report response;
2495 struct hidpp_device *hidpp_dev;
2496
2497 hidpp_dev = hid_get_drvdata(hdev);
2498
2499 return hidpp_send_rap_command_sync(
2500 hidpp_dev,
2501 REPORT_ID_HIDPP_SHORT,
2502 M560_SUB_ID,
2503 M560_BUTTON_MODE_REGISTER,
2504 (u8 *)m560_config_parameter,
2505 sizeof(m560_config_parameter),
2506 &response
2507 );
2508 }
2509
2510 static int m560_allocate(struct hid_device *hdev)
2511 {
2512 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2513 struct m560_private_data *d;
2514
2515 d = devm_kzalloc(&hdev->dev, sizeof(struct m560_private_data),
2516 GFP_KERNEL);
2517 if (!d)
2518 return -ENOMEM;
2519
2520 hidpp->private_data = d;
2521
2522 return 0;
2523 };
2524
2525 static int m560_raw_event(struct hid_device *hdev, u8 *data, int size)
2526 {
2527 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2528 struct m560_private_data *mydata = hidpp->private_data;
2529
2530 /* sanity check */
2531 if (!mydata || !mydata->input) {
2532 hid_err(hdev, "error in parameter\n");
2533 return -EINVAL;
2534 }
2535
2536 if (size < 7) {
2537 hid_err(hdev, "error in report\n");
2538 return 0;
2539 }
2540
2541 if (data[0] == REPORT_ID_HIDPP_LONG &&
2542 data[2] == M560_SUB_ID && data[6] == 0x00) {
2543 /*
2544 * m560 mouse report for middle, forward and backward button
2545 *
2546 * data[0] = 0x11
2547 * data[1] = device-id
2548 * data[2] = 0x0a
2549 * data[5] = 0xaf -> middle
2550 * 0xb0 -> forward
2551 * 0xae -> backward
2552 * 0x00 -> release all
2553 * data[6] = 0x00
2554 */
2555
2556 switch (data[5]) {
2557 case 0xaf:
2558 input_report_key(mydata->input, BTN_MIDDLE, 1);
2559 break;
2560 case 0xb0:
2561 input_report_key(mydata->input, BTN_FORWARD, 1);
2562 break;
2563 case 0xae:
2564 input_report_key(mydata->input, BTN_BACK, 1);
2565 break;
2566 case 0x00:
2567 input_report_key(mydata->input, BTN_BACK, 0);
2568 input_report_key(mydata->input, BTN_FORWARD, 0);
2569 input_report_key(mydata->input, BTN_MIDDLE, 0);
2570 break;
2571 default:
2572 hid_err(hdev, "error in report\n");
2573 return 0;
2574 }
2575 input_sync(mydata->input);
2576
2577 } else if (data[0] == 0x02) {
2578 /*
2579 * Logitech M560 mouse report
2580 *
2581 * data[0] = type (0x02)
2582 * data[1..2] = buttons
2583 * data[3..5] = xy
2584 * data[6] = wheel
2585 */
2586
2587 int v;
2588
2589 input_report_key(mydata->input, BTN_LEFT,
2590 !!(data[1] & M560_MOUSE_BTN_LEFT));
2591 input_report_key(mydata->input, BTN_RIGHT,
2592 !!(data[1] & M560_MOUSE_BTN_RIGHT));
2593
2594 if (data[1] & M560_MOUSE_BTN_WHEEL_LEFT) {
2595 input_report_rel(mydata->input, REL_HWHEEL, -1);
2596 input_report_rel(mydata->input, REL_HWHEEL_HI_RES,
2597 -120);
2598 } else if (data[1] & M560_MOUSE_BTN_WHEEL_RIGHT) {
2599 input_report_rel(mydata->input, REL_HWHEEL, 1);
2600 input_report_rel(mydata->input, REL_HWHEEL_HI_RES,
2601 120);
2602 }
2603
2604 v = hid_snto32(hid_field_extract(hdev, data+3, 0, 12), 12);
2605 input_report_rel(mydata->input, REL_X, v);
2606
2607 v = hid_snto32(hid_field_extract(hdev, data+3, 12, 12), 12);
2608 input_report_rel(mydata->input, REL_Y, v);
2609
2610 v = hid_snto32(data[6], 8);
2611 hidpp_scroll_counter_handle_scroll(
2612 &hidpp->vertical_wheel_counter, v);
2613
2614 input_sync(mydata->input);
2615 }
2616
2617 return 1;
2618 }
2619
2620 static void m560_populate_input(struct hidpp_device *hidpp,
2621 struct input_dev *input_dev, bool origin_is_hid_core)
2622 {
2623 struct m560_private_data *mydata = hidpp->private_data;
2624
2625 mydata->input = input_dev;
2626
2627 __set_bit(EV_KEY, mydata->input->evbit);
2628 __set_bit(BTN_MIDDLE, mydata->input->keybit);
2629 __set_bit(BTN_RIGHT, mydata->input->keybit);
2630 __set_bit(BTN_LEFT, mydata->input->keybit);
2631 __set_bit(BTN_BACK, mydata->input->keybit);
2632 __set_bit(BTN_FORWARD, mydata->input->keybit);
2633
2634 __set_bit(EV_REL, mydata->input->evbit);
2635 __set_bit(REL_X, mydata->input->relbit);
2636 __set_bit(REL_Y, mydata->input->relbit);
2637 __set_bit(REL_WHEEL, mydata->input->relbit);
2638 __set_bit(REL_HWHEEL, mydata->input->relbit);
2639 __set_bit(REL_WHEEL_HI_RES, mydata->input->relbit);
2640 __set_bit(REL_HWHEEL_HI_RES, mydata->input->relbit);
2641 }
2642
2643 static int m560_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2644 struct hid_field *field, struct hid_usage *usage,
2645 unsigned long **bit, int *max)
2646 {
2647 return -1;
2648 }
2649
2650 /* ------------------------------------------------------------------------- */
2651 /* Logitech K400 devices */
2652 /* ------------------------------------------------------------------------- */
2653
2654 /*
2655 * The Logitech K400 keyboard has an embedded touchpad which is seen
2656 * as a mouse from the OS point of view. There is a hardware shortcut to disable
2657 * tap-to-click but the setting is not remembered accross reset, annoying some
2658 * users.
2659 *
2660 * We can toggle this feature from the host by using the feature 0x6010:
2661 * Touchpad FW items
2662 */
2663
2664 struct k400_private_data {
2665 u8 feature_index;
2666 };
2667
2668 static int k400_disable_tap_to_click(struct hidpp_device *hidpp)
2669 {
2670 struct k400_private_data *k400 = hidpp->private_data;
2671 struct hidpp_touchpad_fw_items items = {};
2672 int ret;
2673 u8 feature_type;
2674
2675 if (!k400->feature_index) {
2676 ret = hidpp_root_get_feature(hidpp,
2677 HIDPP_PAGE_TOUCHPAD_FW_ITEMS,
2678 &k400->feature_index, &feature_type);
2679 if (ret)
2680 /* means that the device is not powered up */
2681 return ret;
2682 }
2683
2684 ret = hidpp_touchpad_fw_items_set(hidpp, k400->feature_index, &items);
2685 if (ret)
2686 return ret;
2687
2688 return 0;
2689 }
2690
2691 static int k400_allocate(struct hid_device *hdev)
2692 {
2693 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2694 struct k400_private_data *k400;
2695
2696 k400 = devm_kzalloc(&hdev->dev, sizeof(struct k400_private_data),
2697 GFP_KERNEL);
2698 if (!k400)
2699 return -ENOMEM;
2700
2701 hidpp->private_data = k400;
2702
2703 return 0;
2704 };
2705
2706 static int k400_connect(struct hid_device *hdev, bool connected)
2707 {
2708 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2709
2710 if (!disable_tap_to_click)
2711 return 0;
2712
2713 return k400_disable_tap_to_click(hidpp);
2714 }
2715
2716 /* ------------------------------------------------------------------------- */
2717 /* Logitech G920 Driving Force Racing Wheel for Xbox One */
2718 /* ------------------------------------------------------------------------- */
2719
2720 #define HIDPP_PAGE_G920_FORCE_FEEDBACK 0x8123
2721
2722 static int g920_get_config(struct hidpp_device *hidpp)
2723 {
2724 u8 feature_type;
2725 u8 feature_index;
2726 int ret;
2727
2728 /* Find feature and store for later use */
2729 ret = hidpp_root_get_feature(hidpp, HIDPP_PAGE_G920_FORCE_FEEDBACK,
2730 &feature_index, &feature_type);
2731 if (ret)
2732 return ret;
2733
2734 ret = hidpp_ff_init(hidpp, feature_index);
2735 if (ret)
2736 hid_warn(hidpp->hid_dev, "Unable to initialize force feedback support, errno %d\n",
2737 ret);
2738
2739 return 0;
2740 }
2741
2742 /* -------------------------------------------------------------------------- */
2743 /* High-resolution scroll wheels */
2744 /* -------------------------------------------------------------------------- */
2745
2746 static int hi_res_scroll_enable(struct hidpp_device *hidpp)
2747 {
2748 int ret;
2749 u8 multiplier = 1;
2750
2751 if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2121) {
2752 ret = hidpp_hrw_set_wheel_mode(hidpp, false, true, false);
2753 if (ret == 0)
2754 ret = hidpp_hrw_get_wheel_capability(hidpp, &multiplier);
2755 } else if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_X2120) {
2756 ret = hidpp_hrs_set_highres_scrolling_mode(hidpp, true,
2757 &multiplier);
2758 } else /* if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL_1P0) */ {
2759 ret = hidpp10_enable_scrolling_acceleration(hidpp);
2760 multiplier = 8;
2761 }
2762 if (ret)
2763 return ret;
2764
2765 if (multiplier == 0)
2766 multiplier = 1;
2767
2768 hidpp->vertical_wheel_counter.wheel_multiplier = multiplier;
2769 hid_info(hidpp->hid_dev, "multiplier = %d\n", multiplier);
2770 return 0;
2771 }
2772
2773 /* -------------------------------------------------------------------------- */
2774 /* Generic HID++ devices */
2775 /* -------------------------------------------------------------------------- */
2776
2777 static int hidpp_input_mapping(struct hid_device *hdev, struct hid_input *hi,
2778 struct hid_field *field, struct hid_usage *usage,
2779 unsigned long **bit, int *max)
2780 {
2781 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2782
2783 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
2784 return wtp_input_mapping(hdev, hi, field, usage, bit, max);
2785 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560 &&
2786 field->application != HID_GD_MOUSE)
2787 return m560_input_mapping(hdev, hi, field, usage, bit, max);
2788
2789 return 0;
2790 }
2791
2792 static int hidpp_input_mapped(struct hid_device *hdev, struct hid_input *hi,
2793 struct hid_field *field, struct hid_usage *usage,
2794 unsigned long **bit, int *max)
2795 {
2796 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2797
2798 /* Ensure that Logitech G920 is not given a default fuzz/flat value */
2799 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
2800 if (usage->type == EV_ABS && (usage->code == ABS_X ||
2801 usage->code == ABS_Y || usage->code == ABS_Z ||
2802 usage->code == ABS_RZ)) {
2803 field->application = HID_GD_MULTIAXIS;
2804 }
2805 }
2806
2807 return 0;
2808 }
2809
2810
2811 static void hidpp_populate_input(struct hidpp_device *hidpp,
2812 struct input_dev *input, bool origin_is_hid_core)
2813 {
2814 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
2815 wtp_populate_input(hidpp, input, origin_is_hid_core);
2816 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
2817 m560_populate_input(hidpp, input, origin_is_hid_core);
2818
2819 if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL)
2820 hidpp->vertical_wheel_counter.dev = input;
2821 }
2822
2823 static int hidpp_input_configured(struct hid_device *hdev,
2824 struct hid_input *hidinput)
2825 {
2826 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2827 struct input_dev *input = hidinput->input;
2828
2829 hidpp_populate_input(hidpp, input, true);
2830
2831 return 0;
2832 }
2833
2834 static int hidpp_raw_hidpp_event(struct hidpp_device *hidpp, u8 *data,
2835 int size)
2836 {
2837 struct hidpp_report *question = hidpp->send_receive_buf;
2838 struct hidpp_report *answer = hidpp->send_receive_buf;
2839 struct hidpp_report *report = (struct hidpp_report *)data;
2840 int ret;
2841
2842 /*
2843 * If the mutex is locked then we have a pending answer from a
2844 * previously sent command.
2845 */
2846 if (unlikely(mutex_is_locked(&hidpp->send_mutex))) {
2847 /*
2848 * Check for a correct hidpp20 answer or the corresponding
2849 * error
2850 */
2851 if (hidpp_match_answer(question, report) ||
2852 hidpp_match_error(question, report)) {
2853 *answer = *report;
2854 hidpp->answer_available = true;
2855 wake_up(&hidpp->wait);
2856 /*
2857 * This was an answer to a command that this driver sent
2858 * We return 1 to hid-core to avoid forwarding the
2859 * command upstream as it has been treated by the driver
2860 */
2861
2862 return 1;
2863 }
2864 }
2865
2866 if (unlikely(hidpp_report_is_connect_event(report))) {
2867 atomic_set(&hidpp->connected,
2868 !(report->rap.params[0] & (1 << 6)));
2869 if (schedule_work(&hidpp->work) == 0)
2870 dbg_hid("%s: connect event already queued\n", __func__);
2871 return 1;
2872 }
2873
2874 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
2875 ret = hidpp20_battery_event(hidpp, data, size);
2876 if (ret != 0)
2877 return ret;
2878 ret = hidpp_solar_battery_event(hidpp, data, size);
2879 if (ret != 0)
2880 return ret;
2881 }
2882
2883 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
2884 ret = hidpp10_battery_event(hidpp, data, size);
2885 if (ret != 0)
2886 return ret;
2887 }
2888
2889 return 0;
2890 }
2891
2892 static int hidpp_raw_event(struct hid_device *hdev, struct hid_report *report,
2893 u8 *data, int size)
2894 {
2895 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2896 int ret = 0;
2897
2898 /* Generic HID++ processing. */
2899 switch (data[0]) {
2900 case REPORT_ID_HIDPP_VERY_LONG:
2901 if (size != HIDPP_REPORT_VERY_LONG_LENGTH) {
2902 hid_err(hdev, "received hid++ report of bad size (%d)",
2903 size);
2904 return 1;
2905 }
2906 ret = hidpp_raw_hidpp_event(hidpp, data, size);
2907 break;
2908 case REPORT_ID_HIDPP_LONG:
2909 if (size != HIDPP_REPORT_LONG_LENGTH) {
2910 hid_err(hdev, "received hid++ report of bad size (%d)",
2911 size);
2912 return 1;
2913 }
2914 ret = hidpp_raw_hidpp_event(hidpp, data, size);
2915 break;
2916 case REPORT_ID_HIDPP_SHORT:
2917 if (size != HIDPP_REPORT_SHORT_LENGTH) {
2918 hid_err(hdev, "received hid++ report of bad size (%d)",
2919 size);
2920 return 1;
2921 }
2922 ret = hidpp_raw_hidpp_event(hidpp, data, size);
2923 break;
2924 }
2925
2926 /* If no report is available for further processing, skip calling
2927 * raw_event of subclasses. */
2928 if (ret != 0)
2929 return ret;
2930
2931 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)
2932 return wtp_raw_event(hdev, data, size);
2933 else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560)
2934 return m560_raw_event(hdev, data, size);
2935
2936 return 0;
2937 }
2938
2939 static int hidpp_event(struct hid_device *hdev, struct hid_field *field,
2940 struct hid_usage *usage, __s32 value)
2941 {
2942 /* This function will only be called for scroll events, due to the
2943 * restriction imposed in hidpp_usages.
2944 */
2945 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
2946 struct hidpp_scroll_counter *counter = &hidpp->vertical_wheel_counter;
2947 /* A scroll event may occur before the multiplier has been retrieved or
2948 * the input device set, or high-res scroll enabling may fail. In such
2949 * cases we must return early (falling back to default behaviour) to
2950 * avoid a crash in hidpp_scroll_counter_handle_scroll.
2951 */
2952 if (!(hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL) || value == 0
2953 || counter->dev == NULL || counter->wheel_multiplier == 0)
2954 return 0;
2955
2956 hidpp_scroll_counter_handle_scroll(counter, value);
2957 return 1;
2958 }
2959
2960 static int hidpp_initialize_battery(struct hidpp_device *hidpp)
2961 {
2962 static atomic_t battery_no = ATOMIC_INIT(0);
2963 struct power_supply_config cfg = { .drv_data = hidpp };
2964 struct power_supply_desc *desc = &hidpp->battery.desc;
2965 enum power_supply_property *battery_props;
2966 struct hidpp_battery *battery;
2967 unsigned int num_battery_props;
2968 unsigned long n;
2969 int ret;
2970
2971 if (hidpp->battery.ps)
2972 return 0;
2973
2974 hidpp->battery.feature_index = 0xff;
2975 hidpp->battery.solar_feature_index = 0xff;
2976
2977 if (hidpp->protocol_major >= 2) {
2978 if (hidpp->quirks & HIDPP_QUIRK_CLASS_K750)
2979 ret = hidpp_solar_request_battery_event(hidpp);
2980 else
2981 ret = hidpp20_query_battery_info(hidpp);
2982
2983 if (ret)
2984 return ret;
2985 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP20_BATTERY;
2986 } else {
2987 ret = hidpp10_query_battery_status(hidpp);
2988 if (ret) {
2989 ret = hidpp10_query_battery_mileage(hidpp);
2990 if (ret)
2991 return -ENOENT;
2992 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_MILEAGE;
2993 } else {
2994 hidpp->capabilities |= HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS;
2995 }
2996 hidpp->capabilities |= HIDPP_CAPABILITY_HIDPP10_BATTERY;
2997 }
2998
2999 battery_props = devm_kmemdup(&hidpp->hid_dev->dev,
3000 hidpp_battery_props,
3001 sizeof(hidpp_battery_props),
3002 GFP_KERNEL);
3003 if (!battery_props)
3004 return -ENOMEM;
3005
3006 num_battery_props = ARRAY_SIZE(hidpp_battery_props) - 2;
3007
3008 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3009 battery_props[num_battery_props++] =
3010 POWER_SUPPLY_PROP_CAPACITY;
3011
3012 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_LEVEL_STATUS)
3013 battery_props[num_battery_props++] =
3014 POWER_SUPPLY_PROP_CAPACITY_LEVEL;
3015
3016 battery = &hidpp->battery;
3017
3018 n = atomic_inc_return(&battery_no) - 1;
3019 desc->properties = battery_props;
3020 desc->num_properties = num_battery_props;
3021 desc->get_property = hidpp_battery_get_property;
3022 sprintf(battery->name, "hidpp_battery_%ld", n);
3023 desc->name = battery->name;
3024 desc->type = POWER_SUPPLY_TYPE_BATTERY;
3025 desc->use_for_apm = 0;
3026
3027 battery->ps = devm_power_supply_register(&hidpp->hid_dev->dev,
3028 &battery->desc,
3029 &cfg);
3030 if (IS_ERR(battery->ps))
3031 return PTR_ERR(battery->ps);
3032
3033 power_supply_powers(battery->ps, &hidpp->hid_dev->dev);
3034
3035 return ret;
3036 }
3037
3038 static void hidpp_overwrite_name(struct hid_device *hdev)
3039 {
3040 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3041 char *name;
3042
3043 if (hidpp->protocol_major < 2)
3044 return;
3045
3046 name = hidpp_get_device_name(hidpp);
3047
3048 if (!name) {
3049 hid_err(hdev, "unable to retrieve the name of the device");
3050 } else {
3051 dbg_hid("HID++: Got name: %s\n", name);
3052 snprintf(hdev->name, sizeof(hdev->name), "%s", name);
3053 }
3054
3055 kfree(name);
3056 }
3057
3058 static int hidpp_input_open(struct input_dev *dev)
3059 {
3060 struct hid_device *hid = input_get_drvdata(dev);
3061
3062 return hid_hw_open(hid);
3063 }
3064
3065 static void hidpp_input_close(struct input_dev *dev)
3066 {
3067 struct hid_device *hid = input_get_drvdata(dev);
3068
3069 hid_hw_close(hid);
3070 }
3071
3072 static struct input_dev *hidpp_allocate_input(struct hid_device *hdev)
3073 {
3074 struct input_dev *input_dev = devm_input_allocate_device(&hdev->dev);
3075 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3076
3077 if (!input_dev)
3078 return NULL;
3079
3080 input_set_drvdata(input_dev, hdev);
3081 input_dev->open = hidpp_input_open;
3082 input_dev->close = hidpp_input_close;
3083
3084 input_dev->name = hidpp->name;
3085 input_dev->phys = hdev->phys;
3086 input_dev->uniq = hdev->uniq;
3087 input_dev->id.bustype = hdev->bus;
3088 input_dev->id.vendor = hdev->vendor;
3089 input_dev->id.product = hdev->product;
3090 input_dev->id.version = hdev->version;
3091 input_dev->dev.parent = &hdev->dev;
3092
3093 return input_dev;
3094 }
3095
3096 static void hidpp_connect_event(struct hidpp_device *hidpp)
3097 {
3098 struct hid_device *hdev = hidpp->hid_dev;
3099 int ret = 0;
3100 bool connected = atomic_read(&hidpp->connected);
3101 struct input_dev *input;
3102 char *name, *devm_name;
3103
3104 if (!connected) {
3105 if (hidpp->battery.ps) {
3106 hidpp->battery.online = false;
3107 hidpp->battery.status = POWER_SUPPLY_STATUS_UNKNOWN;
3108 hidpp->battery.level = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
3109 power_supply_changed(hidpp->battery.ps);
3110 }
3111 return;
3112 }
3113
3114 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3115 ret = wtp_connect(hdev, connected);
3116 if (ret)
3117 return;
3118 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) {
3119 ret = m560_send_config_command(hdev, connected);
3120 if (ret)
3121 return;
3122 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3123 ret = k400_connect(hdev, connected);
3124 if (ret)
3125 return;
3126 }
3127
3128 /* the device is already connected, we can ask for its name and
3129 * protocol */
3130 if (!hidpp->protocol_major) {
3131 ret = !hidpp_is_connected(hidpp);
3132 if (ret) {
3133 hid_err(hdev, "Can not get the protocol version.\n");
3134 return;
3135 }
3136 hid_info(hdev, "HID++ %u.%u device connected.\n",
3137 hidpp->protocol_major, hidpp->protocol_minor);
3138 }
3139
3140 if (hidpp->name == hdev->name && hidpp->protocol_major >= 2) {
3141 name = hidpp_get_device_name(hidpp);
3142 if (!name) {
3143 hid_err(hdev,
3144 "unable to retrieve the name of the device");
3145 return;
3146 }
3147
3148 devm_name = devm_kasprintf(&hdev->dev, GFP_KERNEL, "%s", name);
3149 kfree(name);
3150 if (!devm_name)
3151 return;
3152
3153 hidpp->name = devm_name;
3154 }
3155
3156 hidpp_initialize_battery(hidpp);
3157
3158 /* forward current battery state */
3159 if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP10_BATTERY) {
3160 hidpp10_enable_battery_reporting(hidpp);
3161 if (hidpp->capabilities & HIDPP_CAPABILITY_BATTERY_MILEAGE)
3162 hidpp10_query_battery_mileage(hidpp);
3163 else
3164 hidpp10_query_battery_status(hidpp);
3165 } else if (hidpp->capabilities & HIDPP_CAPABILITY_HIDPP20_BATTERY) {
3166 hidpp20_query_battery_info(hidpp);
3167 }
3168 if (hidpp->battery.ps)
3169 power_supply_changed(hidpp->battery.ps);
3170
3171 if (hidpp->quirks & HIDPP_QUIRK_HI_RES_SCROLL)
3172 hi_res_scroll_enable(hidpp);
3173
3174 if (!(hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT) || hidpp->delayed_input)
3175 /* if the input nodes are already created, we can stop now */
3176 return;
3177
3178 input = hidpp_allocate_input(hdev);
3179 if (!input) {
3180 hid_err(hdev, "cannot allocate new input device: %d\n", ret);
3181 return;
3182 }
3183
3184 hidpp_populate_input(hidpp, input, false);
3185
3186 ret = input_register_device(input);
3187 if (ret)
3188 input_free_device(input);
3189
3190 hidpp->delayed_input = input;
3191 }
3192
3193 static DEVICE_ATTR(builtin_power_supply, 0000, NULL, NULL);
3194
3195 static struct attribute *sysfs_attrs[] = {
3196 &dev_attr_builtin_power_supply.attr,
3197 NULL
3198 };
3199
3200 static const struct attribute_group ps_attribute_group = {
3201 .attrs = sysfs_attrs
3202 };
3203
3204 static int hidpp_probe(struct hid_device *hdev, const struct hid_device_id *id)
3205 {
3206 struct hidpp_device *hidpp;
3207 int ret;
3208 bool connected;
3209 unsigned int connect_mask = HID_CONNECT_DEFAULT;
3210
3211 hidpp = devm_kzalloc(&hdev->dev, sizeof(struct hidpp_device),
3212 GFP_KERNEL);
3213 if (!hidpp)
3214 return -ENOMEM;
3215
3216 hidpp->hid_dev = hdev;
3217 hidpp->name = hdev->name;
3218 hid_set_drvdata(hdev, hidpp);
3219
3220 hidpp->quirks = id->driver_data;
3221
3222 if (id->group == HID_GROUP_LOGITECH_DJ_DEVICE)
3223 hidpp->quirks |= HIDPP_QUIRK_UNIFYING;
3224
3225 if (disable_raw_mode) {
3226 hidpp->quirks &= ~HIDPP_QUIRK_CLASS_WTP;
3227 hidpp->quirks &= ~HIDPP_QUIRK_NO_HIDINPUT;
3228 }
3229
3230 if (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP) {
3231 ret = wtp_allocate(hdev, id);
3232 if (ret)
3233 goto allocate_fail;
3234 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_M560) {
3235 ret = m560_allocate(hdev);
3236 if (ret)
3237 goto allocate_fail;
3238 } else if (hidpp->quirks & HIDPP_QUIRK_CLASS_K400) {
3239 ret = k400_allocate(hdev);
3240 if (ret)
3241 goto allocate_fail;
3242 }
3243
3244 INIT_WORK(&hidpp->work, delayed_work_cb);
3245 mutex_init(&hidpp->send_mutex);
3246 init_waitqueue_head(&hidpp->wait);
3247
3248 /* indicates we are handling the battery properties in the kernel */
3249 ret = sysfs_create_group(&hdev->dev.kobj, &ps_attribute_group);
3250 if (ret)
3251 hid_warn(hdev, "Cannot allocate sysfs group for %s\n",
3252 hdev->name);
3253
3254 ret = hid_parse(hdev);
3255 if (ret) {
3256 hid_err(hdev, "%s:parse failed\n", __func__);
3257 goto hid_parse_fail;
3258 }
3259
3260 if (hidpp->quirks & HIDPP_QUIRK_NO_HIDINPUT)
3261 connect_mask &= ~HID_CONNECT_HIDINPUT;
3262
3263 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3264 ret = hid_hw_start(hdev, connect_mask);
3265 if (ret) {
3266 hid_err(hdev, "hw start failed\n");
3267 goto hid_hw_start_fail;
3268 }
3269 ret = hid_hw_open(hdev);
3270 if (ret < 0) {
3271 dev_err(&hdev->dev, "%s:hid_hw_open returned error:%d\n",
3272 __func__, ret);
3273 hid_hw_stop(hdev);
3274 goto hid_hw_start_fail;
3275 }
3276 }
3277
3278
3279 /* Allow incoming packets */
3280 hid_device_io_start(hdev);
3281
3282 if (hidpp->quirks & HIDPP_QUIRK_UNIFYING)
3283 hidpp_unifying_init(hidpp);
3284
3285 connected = hidpp_is_connected(hidpp);
3286 atomic_set(&hidpp->connected, connected);
3287 if (!(hidpp->quirks & HIDPP_QUIRK_UNIFYING)) {
3288 if (!connected) {
3289 ret = -ENODEV;
3290 hid_err(hdev, "Device not connected");
3291 goto hid_hw_open_failed;
3292 }
3293
3294 hid_info(hdev, "HID++ %u.%u device connected.\n",
3295 hidpp->protocol_major, hidpp->protocol_minor);
3296
3297 hidpp_overwrite_name(hdev);
3298 }
3299
3300 if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_WTP)) {
3301 ret = wtp_get_config(hidpp);
3302 if (ret)
3303 goto hid_hw_open_failed;
3304 } else if (connected && (hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) {
3305 ret = g920_get_config(hidpp);
3306 if (ret)
3307 goto hid_hw_open_failed;
3308 }
3309
3310 /* Block incoming packets */
3311 hid_device_io_stop(hdev);
3312
3313 if (!(hidpp->quirks & HIDPP_QUIRK_CLASS_G920)) {
3314 ret = hid_hw_start(hdev, connect_mask);
3315 if (ret) {
3316 hid_err(hdev, "%s:hid_hw_start returned error\n", __func__);
3317 goto hid_hw_start_fail;
3318 }
3319 }
3320
3321 /* Allow incoming packets */
3322 hid_device_io_start(hdev);
3323
3324 hidpp_connect_event(hidpp);
3325
3326 return ret;
3327
3328 hid_hw_open_failed:
3329 hid_device_io_stop(hdev);
3330 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3331 hid_hw_close(hdev);
3332 hid_hw_stop(hdev);
3333 }
3334 hid_hw_start_fail:
3335 hid_parse_fail:
3336 sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
3337 cancel_work_sync(&hidpp->work);
3338 mutex_destroy(&hidpp->send_mutex);
3339 allocate_fail:
3340 hid_set_drvdata(hdev, NULL);
3341 return ret;
3342 }
3343
3344 static void hidpp_remove(struct hid_device *hdev)
3345 {
3346 struct hidpp_device *hidpp = hid_get_drvdata(hdev);
3347
3348 sysfs_remove_group(&hdev->dev.kobj, &ps_attribute_group);
3349
3350 if (hidpp->quirks & HIDPP_QUIRK_CLASS_G920) {
3351 hidpp_ff_deinit(hdev);
3352 hid_hw_close(hdev);
3353 }
3354 hid_hw_stop(hdev);
3355 cancel_work_sync(&hidpp->work);
3356 mutex_destroy(&hidpp->send_mutex);
3357 }
3358
3359 #define LDJ_DEVICE(product) \
3360 HID_DEVICE(BUS_USB, HID_GROUP_LOGITECH_DJ_DEVICE, \
3361 USB_VENDOR_ID_LOGITECH, (product))
3362
3363 static const struct hid_device_id hidpp_devices[] = {
3364 { /* wireless touchpad */
3365 LDJ_DEVICE(0x4011),
3366 .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT |
3367 HIDPP_QUIRK_WTP_PHYSICAL_BUTTONS },
3368 { /* wireless touchpad T650 */
3369 LDJ_DEVICE(0x4101),
3370 .driver_data = HIDPP_QUIRK_CLASS_WTP | HIDPP_QUIRK_DELAYED_INIT },
3371 { /* wireless touchpad T651 */
3372 HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_LOGITECH,
3373 USB_DEVICE_ID_LOGITECH_T651),
3374 .driver_data = HIDPP_QUIRK_CLASS_WTP },
3375 { /* Mouse Logitech Anywhere MX */
3376 LDJ_DEVICE(0x1017), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3377 { /* Mouse Logitech Cube */
3378 LDJ_DEVICE(0x4010), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3379 { /* Mouse Logitech M335 */
3380 LDJ_DEVICE(0x4050), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3381 { /* Mouse Logitech M515 */
3382 LDJ_DEVICE(0x4007), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3383 { /* Mouse logitech M560 */
3384 LDJ_DEVICE(0x402d),
3385 .driver_data = HIDPP_QUIRK_DELAYED_INIT | HIDPP_QUIRK_CLASS_M560
3386 | HIDPP_QUIRK_HI_RES_SCROLL_X2120 },
3387 { /* Mouse Logitech M705 (firmware RQM17) */
3388 LDJ_DEVICE(0x101b), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3389 { /* Mouse Logitech M705 (firmware RQM67) */
3390 LDJ_DEVICE(0x406d), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3391 { /* Mouse Logitech M720 */
3392 LDJ_DEVICE(0x405e), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3393 { /* Mouse Logitech MX Anywhere 2 */
3394 LDJ_DEVICE(0x404a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3395 { LDJ_DEVICE(0xb013), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3396 { LDJ_DEVICE(0xb018), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3397 { LDJ_DEVICE(0xb01f), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3398 { /* Mouse Logitech MX Anywhere 2S */
3399 LDJ_DEVICE(0x406a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3400 { /* Mouse Logitech MX Master */
3401 LDJ_DEVICE(0x4041), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3402 { LDJ_DEVICE(0x4060), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3403 { LDJ_DEVICE(0x4071), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3404 { /* Mouse Logitech MX Master 2S */
3405 LDJ_DEVICE(0x4069), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_X2121 },
3406 { /* Mouse Logitech Performance MX */
3407 LDJ_DEVICE(0x101a), .driver_data = HIDPP_QUIRK_HI_RES_SCROLL_1P0 },
3408 { /* Keyboard logitech K400 */
3409 LDJ_DEVICE(0x4024),
3410 .driver_data = HIDPP_QUIRK_CLASS_K400 },
3411 { /* Solar Keyboard Logitech K750 */
3412 LDJ_DEVICE(0x4002),
3413 .driver_data = HIDPP_QUIRK_CLASS_K750 },
3414
3415 { LDJ_DEVICE(HID_ANY_ID) },
3416
3417 { HID_USB_DEVICE(USB_VENDOR_ID_LOGITECH, USB_DEVICE_ID_LOGITECH_G920_WHEEL),
3418 .driver_data = HIDPP_QUIRK_CLASS_G920 | HIDPP_QUIRK_FORCE_OUTPUT_REPORTS},
3419 {}
3420 };
3421
3422 MODULE_DEVICE_TABLE(hid, hidpp_devices);
3423
3424 static const struct hid_usage_id hidpp_usages[] = {
3425 { HID_GD_WHEEL, EV_REL, REL_WHEEL_HI_RES },
3426 { HID_ANY_ID - 1, HID_ANY_ID - 1, HID_ANY_ID - 1}
3427 };
3428
3429 static struct hid_driver hidpp_driver = {
3430 .name = "logitech-hidpp-device",
3431 .id_table = hidpp_devices,
3432 .probe = hidpp_probe,
3433 .remove = hidpp_remove,
3434 .raw_event = hidpp_raw_event,
3435 .usage_table = hidpp_usages,
3436 .event = hidpp_event,
3437 .input_configured = hidpp_input_configured,
3438 .input_mapping = hidpp_input_mapping,
3439 .input_mapped = hidpp_input_mapped,
3440 };
3441
3442 module_hid_driver(hidpp_driver);