]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/misc/habanalabs/goya/goya.c
MAINTAINERS: Fix Hyperv vIOMMU driver file name
[thirdparty/linux.git] / drivers / misc / habanalabs / goya / goya.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 /*
4 * Copyright 2016-2019 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8 #include "goyaP.h"
9 #include "include/hw_ip/mmu/mmu_general.h"
10 #include "include/hw_ip/mmu/mmu_v1_0.h"
11 #include "include/goya/asic_reg/goya_masks.h"
12
13 #include <linux/pci.h>
14 #include <linux/genalloc.h>
15 #include <linux/hwmon.h>
16 #include <linux/io-64-nonatomic-lo-hi.h>
17 #include <linux/iommu.h>
18 #include <linux/seq_file.h>
19
20 /*
21 * GOYA security scheme:
22 *
23 * 1. Host is protected by:
24 * - Range registers (When MMU is enabled, DMA RR does NOT protect host)
25 * - MMU
26 *
27 * 2. DRAM is protected by:
28 * - Range registers (protect the first 512MB)
29 * - MMU (isolation between users)
30 *
31 * 3. Configuration is protected by:
32 * - Range registers
33 * - Protection bits
34 *
35 * When MMU is disabled:
36 *
37 * QMAN DMA: PQ, CQ, CP, DMA are secured.
38 * PQ, CB and the data are on the host.
39 *
40 * QMAN TPC/MME:
41 * PQ, CQ and CP are not secured.
42 * PQ, CB and the data are on the SRAM/DRAM.
43 *
44 * Since QMAN DMA is secured, KMD is parsing the DMA CB:
45 * - KMD checks DMA pointer
46 * - WREG, MSG_PROT are not allowed.
47 * - MSG_LONG/SHORT are allowed.
48 *
49 * A read/write transaction by the QMAN to a protected area will succeed if
50 * and only if the QMAN's CP is secured and MSG_PROT is used
51 *
52 *
53 * When MMU is enabled:
54 *
55 * QMAN DMA: PQ, CQ and CP are secured.
56 * MMU is set to bypass on the Secure props register of the QMAN.
57 * The reasons we don't enable MMU for PQ, CQ and CP are:
58 * - PQ entry is in kernel address space and KMD doesn't map it.
59 * - CP writes to MSIX register and to kernel address space (completion
60 * queue).
61 *
62 * DMA is not secured but because CP is secured, KMD still needs to parse the
63 * CB, but doesn't need to check the DMA addresses.
64 *
65 * For QMAN DMA 0, DMA is also secured because only KMD uses this DMA and KMD
66 * doesn't map memory in MMU.
67 *
68 * QMAN TPC/MME: PQ, CQ and CP aren't secured (no change from MMU disabled mode)
69 *
70 * DMA RR does NOT protect host because DMA is not secured
71 *
72 */
73
74 #define GOYA_MMU_REGS_NUM 63
75
76 #define GOYA_DMA_POOL_BLK_SIZE 0x100 /* 256 bytes */
77
78 #define GOYA_RESET_TIMEOUT_MSEC 500 /* 500ms */
79 #define GOYA_PLDM_RESET_TIMEOUT_MSEC 20000 /* 20s */
80 #define GOYA_RESET_WAIT_MSEC 1 /* 1ms */
81 #define GOYA_CPU_RESET_WAIT_MSEC 100 /* 100ms */
82 #define GOYA_PLDM_RESET_WAIT_MSEC 1000 /* 1s */
83 #define GOYA_TEST_QUEUE_WAIT_USEC 100000 /* 100ms */
84 #define GOYA_PLDM_MMU_TIMEOUT_USEC (MMU_CONFIG_TIMEOUT_USEC * 100)
85 #define GOYA_PLDM_QMAN0_TIMEOUT_USEC (HL_DEVICE_TIMEOUT_USEC * 30)
86
87 #define GOYA_QMAN0_FENCE_VAL 0xD169B243
88
89 #define GOYA_MAX_STRING_LEN 20
90
91 #define GOYA_CB_POOL_CB_CNT 512
92 #define GOYA_CB_POOL_CB_SIZE 0x20000 /* 128KB */
93
94 #define IS_QM_IDLE(engine, qm_glbl_sts0) \
95 (((qm_glbl_sts0) & engine##_QM_IDLE_MASK) == engine##_QM_IDLE_MASK)
96 #define IS_DMA_QM_IDLE(qm_glbl_sts0) IS_QM_IDLE(DMA, qm_glbl_sts0)
97 #define IS_TPC_QM_IDLE(qm_glbl_sts0) IS_QM_IDLE(TPC, qm_glbl_sts0)
98 #define IS_MME_QM_IDLE(qm_glbl_sts0) IS_QM_IDLE(MME, qm_glbl_sts0)
99
100 #define IS_CMDQ_IDLE(engine, cmdq_glbl_sts0) \
101 (((cmdq_glbl_sts0) & engine##_CMDQ_IDLE_MASK) == \
102 engine##_CMDQ_IDLE_MASK)
103 #define IS_TPC_CMDQ_IDLE(cmdq_glbl_sts0) \
104 IS_CMDQ_IDLE(TPC, cmdq_glbl_sts0)
105 #define IS_MME_CMDQ_IDLE(cmdq_glbl_sts0) \
106 IS_CMDQ_IDLE(MME, cmdq_glbl_sts0)
107
108 #define IS_DMA_IDLE(dma_core_sts0) \
109 !((dma_core_sts0) & DMA_CH_0_STS0_DMA_BUSY_MASK)
110
111 #define IS_TPC_IDLE(tpc_cfg_sts) \
112 (((tpc_cfg_sts) & TPC_CFG_IDLE_MASK) == TPC_CFG_IDLE_MASK)
113
114 #define IS_MME_IDLE(mme_arch_sts) \
115 (((mme_arch_sts) & MME_ARCH_IDLE_MASK) == MME_ARCH_IDLE_MASK)
116
117
118 static const char goya_irq_name[GOYA_MSIX_ENTRIES][GOYA_MAX_STRING_LEN] = {
119 "goya cq 0", "goya cq 1", "goya cq 2", "goya cq 3",
120 "goya cq 4", "goya cpu eq"
121 };
122
123 static u16 goya_packet_sizes[MAX_PACKET_ID] = {
124 [PACKET_WREG_32] = sizeof(struct packet_wreg32),
125 [PACKET_WREG_BULK] = sizeof(struct packet_wreg_bulk),
126 [PACKET_MSG_LONG] = sizeof(struct packet_msg_long),
127 [PACKET_MSG_SHORT] = sizeof(struct packet_msg_short),
128 [PACKET_CP_DMA] = sizeof(struct packet_cp_dma),
129 [PACKET_MSG_PROT] = sizeof(struct packet_msg_prot),
130 [PACKET_FENCE] = sizeof(struct packet_fence),
131 [PACKET_LIN_DMA] = sizeof(struct packet_lin_dma),
132 [PACKET_NOP] = sizeof(struct packet_nop),
133 [PACKET_STOP] = sizeof(struct packet_stop)
134 };
135
136 static u64 goya_mmu_regs[GOYA_MMU_REGS_NUM] = {
137 mmDMA_QM_0_GLBL_NON_SECURE_PROPS,
138 mmDMA_QM_1_GLBL_NON_SECURE_PROPS,
139 mmDMA_QM_2_GLBL_NON_SECURE_PROPS,
140 mmDMA_QM_3_GLBL_NON_SECURE_PROPS,
141 mmDMA_QM_4_GLBL_NON_SECURE_PROPS,
142 mmTPC0_QM_GLBL_SECURE_PROPS,
143 mmTPC0_QM_GLBL_NON_SECURE_PROPS,
144 mmTPC0_CMDQ_GLBL_SECURE_PROPS,
145 mmTPC0_CMDQ_GLBL_NON_SECURE_PROPS,
146 mmTPC0_CFG_ARUSER,
147 mmTPC0_CFG_AWUSER,
148 mmTPC1_QM_GLBL_SECURE_PROPS,
149 mmTPC1_QM_GLBL_NON_SECURE_PROPS,
150 mmTPC1_CMDQ_GLBL_SECURE_PROPS,
151 mmTPC1_CMDQ_GLBL_NON_SECURE_PROPS,
152 mmTPC1_CFG_ARUSER,
153 mmTPC1_CFG_AWUSER,
154 mmTPC2_QM_GLBL_SECURE_PROPS,
155 mmTPC2_QM_GLBL_NON_SECURE_PROPS,
156 mmTPC2_CMDQ_GLBL_SECURE_PROPS,
157 mmTPC2_CMDQ_GLBL_NON_SECURE_PROPS,
158 mmTPC2_CFG_ARUSER,
159 mmTPC2_CFG_AWUSER,
160 mmTPC3_QM_GLBL_SECURE_PROPS,
161 mmTPC3_QM_GLBL_NON_SECURE_PROPS,
162 mmTPC3_CMDQ_GLBL_SECURE_PROPS,
163 mmTPC3_CMDQ_GLBL_NON_SECURE_PROPS,
164 mmTPC3_CFG_ARUSER,
165 mmTPC3_CFG_AWUSER,
166 mmTPC4_QM_GLBL_SECURE_PROPS,
167 mmTPC4_QM_GLBL_NON_SECURE_PROPS,
168 mmTPC4_CMDQ_GLBL_SECURE_PROPS,
169 mmTPC4_CMDQ_GLBL_NON_SECURE_PROPS,
170 mmTPC4_CFG_ARUSER,
171 mmTPC4_CFG_AWUSER,
172 mmTPC5_QM_GLBL_SECURE_PROPS,
173 mmTPC5_QM_GLBL_NON_SECURE_PROPS,
174 mmTPC5_CMDQ_GLBL_SECURE_PROPS,
175 mmTPC5_CMDQ_GLBL_NON_SECURE_PROPS,
176 mmTPC5_CFG_ARUSER,
177 mmTPC5_CFG_AWUSER,
178 mmTPC6_QM_GLBL_SECURE_PROPS,
179 mmTPC6_QM_GLBL_NON_SECURE_PROPS,
180 mmTPC6_CMDQ_GLBL_SECURE_PROPS,
181 mmTPC6_CMDQ_GLBL_NON_SECURE_PROPS,
182 mmTPC6_CFG_ARUSER,
183 mmTPC6_CFG_AWUSER,
184 mmTPC7_QM_GLBL_SECURE_PROPS,
185 mmTPC7_QM_GLBL_NON_SECURE_PROPS,
186 mmTPC7_CMDQ_GLBL_SECURE_PROPS,
187 mmTPC7_CMDQ_GLBL_NON_SECURE_PROPS,
188 mmTPC7_CFG_ARUSER,
189 mmTPC7_CFG_AWUSER,
190 mmMME_QM_GLBL_SECURE_PROPS,
191 mmMME_QM_GLBL_NON_SECURE_PROPS,
192 mmMME_CMDQ_GLBL_SECURE_PROPS,
193 mmMME_CMDQ_GLBL_NON_SECURE_PROPS,
194 mmMME_SBA_CONTROL_DATA,
195 mmMME_SBB_CONTROL_DATA,
196 mmMME_SBC_CONTROL_DATA,
197 mmMME_WBC_CONTROL_DATA,
198 mmPCIE_WRAP_PSOC_ARUSER,
199 mmPCIE_WRAP_PSOC_AWUSER
200 };
201
202 static u32 goya_all_events[] = {
203 GOYA_ASYNC_EVENT_ID_PCIE_IF,
204 GOYA_ASYNC_EVENT_ID_TPC0_ECC,
205 GOYA_ASYNC_EVENT_ID_TPC1_ECC,
206 GOYA_ASYNC_EVENT_ID_TPC2_ECC,
207 GOYA_ASYNC_EVENT_ID_TPC3_ECC,
208 GOYA_ASYNC_EVENT_ID_TPC4_ECC,
209 GOYA_ASYNC_EVENT_ID_TPC5_ECC,
210 GOYA_ASYNC_EVENT_ID_TPC6_ECC,
211 GOYA_ASYNC_EVENT_ID_TPC7_ECC,
212 GOYA_ASYNC_EVENT_ID_MME_ECC,
213 GOYA_ASYNC_EVENT_ID_MME_ECC_EXT,
214 GOYA_ASYNC_EVENT_ID_MMU_ECC,
215 GOYA_ASYNC_EVENT_ID_DMA_MACRO,
216 GOYA_ASYNC_EVENT_ID_DMA_ECC,
217 GOYA_ASYNC_EVENT_ID_CPU_IF_ECC,
218 GOYA_ASYNC_EVENT_ID_PSOC_MEM,
219 GOYA_ASYNC_EVENT_ID_PSOC_CORESIGHT,
220 GOYA_ASYNC_EVENT_ID_SRAM0,
221 GOYA_ASYNC_EVENT_ID_SRAM1,
222 GOYA_ASYNC_EVENT_ID_SRAM2,
223 GOYA_ASYNC_EVENT_ID_SRAM3,
224 GOYA_ASYNC_EVENT_ID_SRAM4,
225 GOYA_ASYNC_EVENT_ID_SRAM5,
226 GOYA_ASYNC_EVENT_ID_SRAM6,
227 GOYA_ASYNC_EVENT_ID_SRAM7,
228 GOYA_ASYNC_EVENT_ID_SRAM8,
229 GOYA_ASYNC_EVENT_ID_SRAM9,
230 GOYA_ASYNC_EVENT_ID_SRAM10,
231 GOYA_ASYNC_EVENT_ID_SRAM11,
232 GOYA_ASYNC_EVENT_ID_SRAM12,
233 GOYA_ASYNC_EVENT_ID_SRAM13,
234 GOYA_ASYNC_EVENT_ID_SRAM14,
235 GOYA_ASYNC_EVENT_ID_SRAM15,
236 GOYA_ASYNC_EVENT_ID_SRAM16,
237 GOYA_ASYNC_EVENT_ID_SRAM17,
238 GOYA_ASYNC_EVENT_ID_SRAM18,
239 GOYA_ASYNC_EVENT_ID_SRAM19,
240 GOYA_ASYNC_EVENT_ID_SRAM20,
241 GOYA_ASYNC_EVENT_ID_SRAM21,
242 GOYA_ASYNC_EVENT_ID_SRAM22,
243 GOYA_ASYNC_EVENT_ID_SRAM23,
244 GOYA_ASYNC_EVENT_ID_SRAM24,
245 GOYA_ASYNC_EVENT_ID_SRAM25,
246 GOYA_ASYNC_EVENT_ID_SRAM26,
247 GOYA_ASYNC_EVENT_ID_SRAM27,
248 GOYA_ASYNC_EVENT_ID_SRAM28,
249 GOYA_ASYNC_EVENT_ID_SRAM29,
250 GOYA_ASYNC_EVENT_ID_GIC500,
251 GOYA_ASYNC_EVENT_ID_PLL0,
252 GOYA_ASYNC_EVENT_ID_PLL1,
253 GOYA_ASYNC_EVENT_ID_PLL3,
254 GOYA_ASYNC_EVENT_ID_PLL4,
255 GOYA_ASYNC_EVENT_ID_PLL5,
256 GOYA_ASYNC_EVENT_ID_PLL6,
257 GOYA_ASYNC_EVENT_ID_AXI_ECC,
258 GOYA_ASYNC_EVENT_ID_L2_RAM_ECC,
259 GOYA_ASYNC_EVENT_ID_PSOC_GPIO_05_SW_RESET,
260 GOYA_ASYNC_EVENT_ID_PSOC_GPIO_10_VRHOT_ICRIT,
261 GOYA_ASYNC_EVENT_ID_PCIE_DEC,
262 GOYA_ASYNC_EVENT_ID_TPC0_DEC,
263 GOYA_ASYNC_EVENT_ID_TPC1_DEC,
264 GOYA_ASYNC_EVENT_ID_TPC2_DEC,
265 GOYA_ASYNC_EVENT_ID_TPC3_DEC,
266 GOYA_ASYNC_EVENT_ID_TPC4_DEC,
267 GOYA_ASYNC_EVENT_ID_TPC5_DEC,
268 GOYA_ASYNC_EVENT_ID_TPC6_DEC,
269 GOYA_ASYNC_EVENT_ID_TPC7_DEC,
270 GOYA_ASYNC_EVENT_ID_MME_WACS,
271 GOYA_ASYNC_EVENT_ID_MME_WACSD,
272 GOYA_ASYNC_EVENT_ID_CPU_AXI_SPLITTER,
273 GOYA_ASYNC_EVENT_ID_PSOC_AXI_DEC,
274 GOYA_ASYNC_EVENT_ID_PSOC,
275 GOYA_ASYNC_EVENT_ID_TPC0_KRN_ERR,
276 GOYA_ASYNC_EVENT_ID_TPC1_KRN_ERR,
277 GOYA_ASYNC_EVENT_ID_TPC2_KRN_ERR,
278 GOYA_ASYNC_EVENT_ID_TPC3_KRN_ERR,
279 GOYA_ASYNC_EVENT_ID_TPC4_KRN_ERR,
280 GOYA_ASYNC_EVENT_ID_TPC5_KRN_ERR,
281 GOYA_ASYNC_EVENT_ID_TPC6_KRN_ERR,
282 GOYA_ASYNC_EVENT_ID_TPC7_KRN_ERR,
283 GOYA_ASYNC_EVENT_ID_TPC0_CMDQ,
284 GOYA_ASYNC_EVENT_ID_TPC1_CMDQ,
285 GOYA_ASYNC_EVENT_ID_TPC2_CMDQ,
286 GOYA_ASYNC_EVENT_ID_TPC3_CMDQ,
287 GOYA_ASYNC_EVENT_ID_TPC4_CMDQ,
288 GOYA_ASYNC_EVENT_ID_TPC5_CMDQ,
289 GOYA_ASYNC_EVENT_ID_TPC6_CMDQ,
290 GOYA_ASYNC_EVENT_ID_TPC7_CMDQ,
291 GOYA_ASYNC_EVENT_ID_TPC0_QM,
292 GOYA_ASYNC_EVENT_ID_TPC1_QM,
293 GOYA_ASYNC_EVENT_ID_TPC2_QM,
294 GOYA_ASYNC_EVENT_ID_TPC3_QM,
295 GOYA_ASYNC_EVENT_ID_TPC4_QM,
296 GOYA_ASYNC_EVENT_ID_TPC5_QM,
297 GOYA_ASYNC_EVENT_ID_TPC6_QM,
298 GOYA_ASYNC_EVENT_ID_TPC7_QM,
299 GOYA_ASYNC_EVENT_ID_MME_QM,
300 GOYA_ASYNC_EVENT_ID_MME_CMDQ,
301 GOYA_ASYNC_EVENT_ID_DMA0_QM,
302 GOYA_ASYNC_EVENT_ID_DMA1_QM,
303 GOYA_ASYNC_EVENT_ID_DMA2_QM,
304 GOYA_ASYNC_EVENT_ID_DMA3_QM,
305 GOYA_ASYNC_EVENT_ID_DMA4_QM,
306 GOYA_ASYNC_EVENT_ID_DMA0_CH,
307 GOYA_ASYNC_EVENT_ID_DMA1_CH,
308 GOYA_ASYNC_EVENT_ID_DMA2_CH,
309 GOYA_ASYNC_EVENT_ID_DMA3_CH,
310 GOYA_ASYNC_EVENT_ID_DMA4_CH,
311 GOYA_ASYNC_EVENT_ID_TPC0_BMON_SPMU,
312 GOYA_ASYNC_EVENT_ID_TPC1_BMON_SPMU,
313 GOYA_ASYNC_EVENT_ID_TPC2_BMON_SPMU,
314 GOYA_ASYNC_EVENT_ID_TPC3_BMON_SPMU,
315 GOYA_ASYNC_EVENT_ID_TPC4_BMON_SPMU,
316 GOYA_ASYNC_EVENT_ID_TPC5_BMON_SPMU,
317 GOYA_ASYNC_EVENT_ID_TPC6_BMON_SPMU,
318 GOYA_ASYNC_EVENT_ID_TPC7_BMON_SPMU,
319 GOYA_ASYNC_EVENT_ID_DMA_BM_CH0,
320 GOYA_ASYNC_EVENT_ID_DMA_BM_CH1,
321 GOYA_ASYNC_EVENT_ID_DMA_BM_CH2,
322 GOYA_ASYNC_EVENT_ID_DMA_BM_CH3,
323 GOYA_ASYNC_EVENT_ID_DMA_BM_CH4
324 };
325
326 static int goya_mmu_clear_pgt_range(struct hl_device *hdev);
327 static int goya_mmu_set_dram_default_page(struct hl_device *hdev);
328 static int goya_mmu_add_mappings_for_device_cpu(struct hl_device *hdev);
329 static void goya_mmu_prepare(struct hl_device *hdev, u32 asid);
330
331 void goya_get_fixed_properties(struct hl_device *hdev)
332 {
333 struct asic_fixed_properties *prop = &hdev->asic_prop;
334 int i;
335
336 for (i = 0 ; i < NUMBER_OF_EXT_HW_QUEUES ; i++) {
337 prop->hw_queues_props[i].type = QUEUE_TYPE_EXT;
338 prop->hw_queues_props[i].kmd_only = 0;
339 }
340
341 for (; i < NUMBER_OF_EXT_HW_QUEUES + NUMBER_OF_CPU_HW_QUEUES ; i++) {
342 prop->hw_queues_props[i].type = QUEUE_TYPE_CPU;
343 prop->hw_queues_props[i].kmd_only = 1;
344 }
345
346 for (; i < NUMBER_OF_EXT_HW_QUEUES + NUMBER_OF_CPU_HW_QUEUES +
347 NUMBER_OF_INT_HW_QUEUES; i++) {
348 prop->hw_queues_props[i].type = QUEUE_TYPE_INT;
349 prop->hw_queues_props[i].kmd_only = 0;
350 }
351
352 for (; i < HL_MAX_QUEUES; i++)
353 prop->hw_queues_props[i].type = QUEUE_TYPE_NA;
354
355 prop->completion_queues_count = NUMBER_OF_CMPLT_QUEUES;
356
357 prop->dram_base_address = DRAM_PHYS_BASE;
358 prop->dram_size = DRAM_PHYS_DEFAULT_SIZE;
359 prop->dram_end_address = prop->dram_base_address + prop->dram_size;
360 prop->dram_user_base_address = DRAM_BASE_ADDR_USER;
361
362 prop->sram_base_address = SRAM_BASE_ADDR;
363 prop->sram_size = SRAM_SIZE;
364 prop->sram_end_address = prop->sram_base_address + prop->sram_size;
365 prop->sram_user_base_address = prop->sram_base_address +
366 SRAM_USER_BASE_OFFSET;
367
368 prop->mmu_pgt_addr = MMU_PAGE_TABLES_ADDR;
369 prop->mmu_dram_default_page_addr = MMU_DRAM_DEFAULT_PAGE_ADDR;
370 if (hdev->pldm)
371 prop->mmu_pgt_size = 0x800000; /* 8MB */
372 else
373 prop->mmu_pgt_size = MMU_PAGE_TABLES_SIZE;
374 prop->mmu_pte_size = HL_PTE_SIZE;
375 prop->mmu_hop_table_size = HOP_TABLE_SIZE;
376 prop->mmu_hop0_tables_total_size = HOP0_TABLES_TOTAL_SIZE;
377 prop->dram_page_size = PAGE_SIZE_2MB;
378
379 prop->va_space_host_start_address = VA_HOST_SPACE_START;
380 prop->va_space_host_end_address = VA_HOST_SPACE_END;
381 prop->va_space_dram_start_address = VA_DDR_SPACE_START;
382 prop->va_space_dram_end_address = VA_DDR_SPACE_END;
383 prop->dram_size_for_default_page_mapping =
384 prop->va_space_dram_end_address;
385 prop->cfg_size = CFG_SIZE;
386 prop->max_asid = MAX_ASID;
387 prop->num_of_events = GOYA_ASYNC_EVENT_ID_SIZE;
388 prop->high_pll = PLL_HIGH_DEFAULT;
389 prop->cb_pool_cb_cnt = GOYA_CB_POOL_CB_CNT;
390 prop->cb_pool_cb_size = GOYA_CB_POOL_CB_SIZE;
391 prop->max_power_default = MAX_POWER_DEFAULT;
392 prop->tpc_enabled_mask = TPC_ENABLED_MASK;
393 prop->pcie_dbi_base_address = mmPCIE_DBI_BASE;
394 prop->pcie_aux_dbi_reg_addr = CFG_BASE + mmPCIE_AUX_DBI;
395 }
396
397 /*
398 * goya_pci_bars_map - Map PCI BARS of Goya device
399 *
400 * @hdev: pointer to hl_device structure
401 *
402 * Request PCI regions and map them to kernel virtual addresses.
403 * Returns 0 on success
404 *
405 */
406 static int goya_pci_bars_map(struct hl_device *hdev)
407 {
408 static const char * const name[] = {"SRAM_CFG", "MSIX", "DDR"};
409 bool is_wc[3] = {false, false, true};
410 int rc;
411
412 rc = hl_pci_bars_map(hdev, name, is_wc);
413 if (rc)
414 return rc;
415
416 hdev->rmmio = hdev->pcie_bar[SRAM_CFG_BAR_ID] +
417 (CFG_BASE - SRAM_BASE_ADDR);
418
419 return 0;
420 }
421
422 static u64 goya_set_ddr_bar_base(struct hl_device *hdev, u64 addr)
423 {
424 struct goya_device *goya = hdev->asic_specific;
425 u64 old_addr = addr;
426 int rc;
427
428 if ((goya) && (goya->ddr_bar_cur_addr == addr))
429 return old_addr;
430
431 /* Inbound Region 1 - Bar 4 - Point to DDR */
432 rc = hl_pci_set_dram_bar_base(hdev, 1, 4, addr);
433 if (rc)
434 return U64_MAX;
435
436 if (goya) {
437 old_addr = goya->ddr_bar_cur_addr;
438 goya->ddr_bar_cur_addr = addr;
439 }
440
441 return old_addr;
442 }
443
444 /*
445 * goya_init_iatu - Initialize the iATU unit inside the PCI controller
446 *
447 * @hdev: pointer to hl_device structure
448 *
449 * This is needed in case the firmware doesn't initialize the iATU
450 *
451 */
452 static int goya_init_iatu(struct hl_device *hdev)
453 {
454 return hl_pci_init_iatu(hdev, SRAM_BASE_ADDR, DRAM_PHYS_BASE,
455 HOST_PHYS_BASE, HOST_PHYS_SIZE);
456 }
457
458 /*
459 * goya_early_init - GOYA early initialization code
460 *
461 * @hdev: pointer to hl_device structure
462 *
463 * Verify PCI bars
464 * Set DMA masks
465 * PCI controller initialization
466 * Map PCI bars
467 *
468 */
469 static int goya_early_init(struct hl_device *hdev)
470 {
471 struct asic_fixed_properties *prop = &hdev->asic_prop;
472 struct pci_dev *pdev = hdev->pdev;
473 u32 val;
474 int rc;
475
476 goya_get_fixed_properties(hdev);
477
478 /* Check BAR sizes */
479 if (pci_resource_len(pdev, SRAM_CFG_BAR_ID) != CFG_BAR_SIZE) {
480 dev_err(hdev->dev,
481 "Not " HL_NAME "? BAR %d size %llu, expecting %llu\n",
482 SRAM_CFG_BAR_ID,
483 (unsigned long long) pci_resource_len(pdev,
484 SRAM_CFG_BAR_ID),
485 CFG_BAR_SIZE);
486 return -ENODEV;
487 }
488
489 if (pci_resource_len(pdev, MSIX_BAR_ID) != MSIX_BAR_SIZE) {
490 dev_err(hdev->dev,
491 "Not " HL_NAME "? BAR %d size %llu, expecting %llu\n",
492 MSIX_BAR_ID,
493 (unsigned long long) pci_resource_len(pdev,
494 MSIX_BAR_ID),
495 MSIX_BAR_SIZE);
496 return -ENODEV;
497 }
498
499 prop->dram_pci_bar_size = pci_resource_len(pdev, DDR_BAR_ID);
500
501 rc = hl_pci_init(hdev, 48);
502 if (rc)
503 return rc;
504
505 if (!hdev->pldm) {
506 val = RREG32(mmPSOC_GLOBAL_CONF_BOOT_STRAP_PINS);
507 if (val & PSOC_GLOBAL_CONF_BOOT_STRAP_PINS_SRIOV_EN_MASK)
508 dev_warn(hdev->dev,
509 "PCI strap is not configured correctly, PCI bus errors may occur\n");
510 }
511
512 return 0;
513 }
514
515 /*
516 * goya_early_fini - GOYA early finalization code
517 *
518 * @hdev: pointer to hl_device structure
519 *
520 * Unmap PCI bars
521 *
522 */
523 static int goya_early_fini(struct hl_device *hdev)
524 {
525 hl_pci_fini(hdev);
526
527 return 0;
528 }
529
530 static void goya_mmu_prepare_reg(struct hl_device *hdev, u64 reg, u32 asid)
531 {
532 /* mask to zero the MMBP and ASID bits */
533 WREG32_AND(reg, ~0x7FF);
534 WREG32_OR(reg, asid);
535 }
536
537 static void goya_qman0_set_security(struct hl_device *hdev, bool secure)
538 {
539 struct goya_device *goya = hdev->asic_specific;
540
541 if (!(goya->hw_cap_initialized & HW_CAP_MMU))
542 return;
543
544 if (secure)
545 WREG32(mmDMA_QM_0_GLBL_PROT, QMAN_DMA_FULLY_TRUSTED);
546 else
547 WREG32(mmDMA_QM_0_GLBL_PROT, QMAN_DMA_PARTLY_TRUSTED);
548
549 RREG32(mmDMA_QM_0_GLBL_PROT);
550 }
551
552 /*
553 * goya_fetch_psoc_frequency - Fetch PSOC frequency values
554 *
555 * @hdev: pointer to hl_device structure
556 *
557 */
558 static void goya_fetch_psoc_frequency(struct hl_device *hdev)
559 {
560 struct asic_fixed_properties *prop = &hdev->asic_prop;
561
562 prop->psoc_pci_pll_nr = RREG32(mmPSOC_PCI_PLL_NR);
563 prop->psoc_pci_pll_nf = RREG32(mmPSOC_PCI_PLL_NF);
564 prop->psoc_pci_pll_od = RREG32(mmPSOC_PCI_PLL_OD);
565 prop->psoc_pci_pll_div_factor = RREG32(mmPSOC_PCI_PLL_DIV_FACTOR_1);
566 }
567
568 int goya_late_init(struct hl_device *hdev)
569 {
570 struct asic_fixed_properties *prop = &hdev->asic_prop;
571 int rc;
572
573 goya_fetch_psoc_frequency(hdev);
574
575 rc = goya_mmu_clear_pgt_range(hdev);
576 if (rc) {
577 dev_err(hdev->dev,
578 "Failed to clear MMU page tables range %d\n", rc);
579 return rc;
580 }
581
582 rc = goya_mmu_set_dram_default_page(hdev);
583 if (rc) {
584 dev_err(hdev->dev, "Failed to set DRAM default page %d\n", rc);
585 return rc;
586 }
587
588 rc = goya_mmu_add_mappings_for_device_cpu(hdev);
589 if (rc)
590 return rc;
591
592 rc = goya_init_cpu_queues(hdev);
593 if (rc)
594 return rc;
595
596 rc = goya_test_cpu_queue(hdev);
597 if (rc)
598 return rc;
599
600 rc = goya_armcp_info_get(hdev);
601 if (rc) {
602 dev_err(hdev->dev, "Failed to get armcp info %d\n", rc);
603 return rc;
604 }
605
606 /* Now that we have the DRAM size in ASIC prop, we need to check
607 * its size and configure the DMA_IF DDR wrap protection (which is in
608 * the MMU block) accordingly. The value is the log2 of the DRAM size
609 */
610 WREG32(mmMMU_LOG2_DDR_SIZE, ilog2(prop->dram_size));
611
612 rc = hl_fw_send_pci_access_msg(hdev, ARMCP_PACKET_ENABLE_PCI_ACCESS);
613 if (rc) {
614 dev_err(hdev->dev,
615 "Failed to enable PCI access from CPU %d\n", rc);
616 return rc;
617 }
618
619 WREG32(mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR,
620 GOYA_ASYNC_EVENT_ID_INTS_REGISTER);
621
622 return 0;
623 }
624
625 /*
626 * goya_late_fini - GOYA late tear-down code
627 *
628 * @hdev: pointer to hl_device structure
629 *
630 * Free sensors allocated structures
631 */
632 void goya_late_fini(struct hl_device *hdev)
633 {
634 const struct hwmon_channel_info **channel_info_arr;
635 int i = 0;
636
637 if (!hdev->hl_chip_info->info)
638 return;
639
640 channel_info_arr = hdev->hl_chip_info->info;
641
642 while (channel_info_arr[i]) {
643 kfree(channel_info_arr[i]->config);
644 kfree(channel_info_arr[i]);
645 i++;
646 }
647
648 kfree(channel_info_arr);
649
650 hdev->hl_chip_info->info = NULL;
651 }
652
653 /*
654 * goya_sw_init - Goya software initialization code
655 *
656 * @hdev: pointer to hl_device structure
657 *
658 */
659 static int goya_sw_init(struct hl_device *hdev)
660 {
661 struct goya_device *goya;
662 int rc;
663
664 /* Allocate device structure */
665 goya = kzalloc(sizeof(*goya), GFP_KERNEL);
666 if (!goya)
667 return -ENOMEM;
668
669 /* according to goya_init_iatu */
670 goya->ddr_bar_cur_addr = DRAM_PHYS_BASE;
671
672 goya->mme_clk = GOYA_PLL_FREQ_LOW;
673 goya->tpc_clk = GOYA_PLL_FREQ_LOW;
674 goya->ic_clk = GOYA_PLL_FREQ_LOW;
675
676 hdev->asic_specific = goya;
677
678 /* Create DMA pool for small allocations */
679 hdev->dma_pool = dma_pool_create(dev_name(hdev->dev),
680 &hdev->pdev->dev, GOYA_DMA_POOL_BLK_SIZE, 8, 0);
681 if (!hdev->dma_pool) {
682 dev_err(hdev->dev, "failed to create DMA pool\n");
683 rc = -ENOMEM;
684 goto free_goya_device;
685 }
686
687 hdev->cpu_accessible_dma_mem =
688 hdev->asic_funcs->asic_dma_alloc_coherent(hdev,
689 HL_CPU_ACCESSIBLE_MEM_SIZE,
690 &hdev->cpu_accessible_dma_address,
691 GFP_KERNEL | __GFP_ZERO);
692
693 if (!hdev->cpu_accessible_dma_mem) {
694 rc = -ENOMEM;
695 goto free_dma_pool;
696 }
697
698 dev_dbg(hdev->dev, "cpu accessible memory at bus address 0x%llx\n",
699 hdev->cpu_accessible_dma_address);
700
701 hdev->cpu_accessible_dma_pool = gen_pool_create(ilog2(32), -1);
702 if (!hdev->cpu_accessible_dma_pool) {
703 dev_err(hdev->dev,
704 "Failed to create CPU accessible DMA pool\n");
705 rc = -ENOMEM;
706 goto free_cpu_dma_mem;
707 }
708
709 rc = gen_pool_add(hdev->cpu_accessible_dma_pool,
710 (uintptr_t) hdev->cpu_accessible_dma_mem,
711 HL_CPU_ACCESSIBLE_MEM_SIZE, -1);
712 if (rc) {
713 dev_err(hdev->dev,
714 "Failed to add memory to CPU accessible DMA pool\n");
715 rc = -EFAULT;
716 goto free_cpu_accessible_dma_pool;
717 }
718
719 spin_lock_init(&goya->hw_queues_lock);
720
721 return 0;
722
723 free_cpu_accessible_dma_pool:
724 gen_pool_destroy(hdev->cpu_accessible_dma_pool);
725 free_cpu_dma_mem:
726 hdev->asic_funcs->asic_dma_free_coherent(hdev,
727 HL_CPU_ACCESSIBLE_MEM_SIZE,
728 hdev->cpu_accessible_dma_mem,
729 hdev->cpu_accessible_dma_address);
730 free_dma_pool:
731 dma_pool_destroy(hdev->dma_pool);
732 free_goya_device:
733 kfree(goya);
734
735 return rc;
736 }
737
738 /*
739 * goya_sw_fini - Goya software tear-down code
740 *
741 * @hdev: pointer to hl_device structure
742 *
743 */
744 static int goya_sw_fini(struct hl_device *hdev)
745 {
746 struct goya_device *goya = hdev->asic_specific;
747
748 gen_pool_destroy(hdev->cpu_accessible_dma_pool);
749
750 hdev->asic_funcs->asic_dma_free_coherent(hdev,
751 HL_CPU_ACCESSIBLE_MEM_SIZE,
752 hdev->cpu_accessible_dma_mem,
753 hdev->cpu_accessible_dma_address);
754
755 dma_pool_destroy(hdev->dma_pool);
756
757 kfree(goya);
758
759 return 0;
760 }
761
762 static void goya_init_dma_qman(struct hl_device *hdev, int dma_id,
763 dma_addr_t bus_address)
764 {
765 struct goya_device *goya = hdev->asic_specific;
766 u32 mtr_base_lo, mtr_base_hi;
767 u32 so_base_lo, so_base_hi;
768 u32 gic_base_lo, gic_base_hi;
769 u32 reg_off = dma_id * (mmDMA_QM_1_PQ_PI - mmDMA_QM_0_PQ_PI);
770
771 mtr_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
772 mtr_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
773 so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
774 so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
775
776 gic_base_lo =
777 lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
778 gic_base_hi =
779 upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
780
781 WREG32(mmDMA_QM_0_PQ_BASE_LO + reg_off, lower_32_bits(bus_address));
782 WREG32(mmDMA_QM_0_PQ_BASE_HI + reg_off, upper_32_bits(bus_address));
783
784 WREG32(mmDMA_QM_0_PQ_SIZE + reg_off, ilog2(HL_QUEUE_LENGTH));
785 WREG32(mmDMA_QM_0_PQ_PI + reg_off, 0);
786 WREG32(mmDMA_QM_0_PQ_CI + reg_off, 0);
787
788 WREG32(mmDMA_QM_0_CP_MSG_BASE0_ADDR_LO + reg_off, mtr_base_lo);
789 WREG32(mmDMA_QM_0_CP_MSG_BASE0_ADDR_HI + reg_off, mtr_base_hi);
790 WREG32(mmDMA_QM_0_CP_MSG_BASE1_ADDR_LO + reg_off, so_base_lo);
791 WREG32(mmDMA_QM_0_CP_MSG_BASE1_ADDR_HI + reg_off, so_base_hi);
792 WREG32(mmDMA_QM_0_GLBL_ERR_ADDR_LO + reg_off, gic_base_lo);
793 WREG32(mmDMA_QM_0_GLBL_ERR_ADDR_HI + reg_off, gic_base_hi);
794 WREG32(mmDMA_QM_0_GLBL_ERR_WDATA + reg_off,
795 GOYA_ASYNC_EVENT_ID_DMA0_QM + dma_id);
796
797 /* PQ has buffer of 2 cache lines, while CQ has 8 lines */
798 WREG32(mmDMA_QM_0_PQ_CFG1 + reg_off, 0x00020002);
799 WREG32(mmDMA_QM_0_CQ_CFG1 + reg_off, 0x00080008);
800
801 if (goya->hw_cap_initialized & HW_CAP_MMU)
802 WREG32(mmDMA_QM_0_GLBL_PROT + reg_off, QMAN_DMA_PARTLY_TRUSTED);
803 else
804 WREG32(mmDMA_QM_0_GLBL_PROT + reg_off, QMAN_DMA_FULLY_TRUSTED);
805
806 WREG32(mmDMA_QM_0_GLBL_ERR_CFG + reg_off, QMAN_DMA_ERR_MSG_EN);
807 WREG32(mmDMA_QM_0_GLBL_CFG0 + reg_off, QMAN_DMA_ENABLE);
808 }
809
810 static void goya_init_dma_ch(struct hl_device *hdev, int dma_id)
811 {
812 u32 gic_base_lo, gic_base_hi;
813 u64 sob_addr;
814 u32 reg_off = dma_id * (mmDMA_CH_1_CFG1 - mmDMA_CH_0_CFG1);
815
816 gic_base_lo =
817 lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
818 gic_base_hi =
819 upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
820
821 WREG32(mmDMA_CH_0_ERRMSG_ADDR_LO + reg_off, gic_base_lo);
822 WREG32(mmDMA_CH_0_ERRMSG_ADDR_HI + reg_off, gic_base_hi);
823 WREG32(mmDMA_CH_0_ERRMSG_WDATA + reg_off,
824 GOYA_ASYNC_EVENT_ID_DMA0_CH + dma_id);
825
826 if (dma_id)
827 sob_addr = CFG_BASE + mmSYNC_MNGR_SOB_OBJ_1000 +
828 (dma_id - 1) * 4;
829 else
830 sob_addr = CFG_BASE + mmSYNC_MNGR_SOB_OBJ_1007;
831
832 WREG32(mmDMA_CH_0_WR_COMP_ADDR_HI + reg_off, upper_32_bits(sob_addr));
833 WREG32(mmDMA_CH_0_WR_COMP_WDATA + reg_off, 0x80000001);
834 }
835
836 /*
837 * goya_init_dma_qmans - Initialize QMAN DMA registers
838 *
839 * @hdev: pointer to hl_device structure
840 *
841 * Initialize the H/W registers of the QMAN DMA channels
842 *
843 */
844 void goya_init_dma_qmans(struct hl_device *hdev)
845 {
846 struct goya_device *goya = hdev->asic_specific;
847 struct hl_hw_queue *q;
848 int i;
849
850 if (goya->hw_cap_initialized & HW_CAP_DMA)
851 return;
852
853 q = &hdev->kernel_queues[0];
854
855 for (i = 0 ; i < NUMBER_OF_EXT_HW_QUEUES ; i++, q++) {
856 goya_init_dma_qman(hdev, i, q->bus_address);
857 goya_init_dma_ch(hdev, i);
858 }
859
860 goya->hw_cap_initialized |= HW_CAP_DMA;
861 }
862
863 /*
864 * goya_disable_external_queues - Disable external queues
865 *
866 * @hdev: pointer to hl_device structure
867 *
868 */
869 static void goya_disable_external_queues(struct hl_device *hdev)
870 {
871 WREG32(mmDMA_QM_0_GLBL_CFG0, 0);
872 WREG32(mmDMA_QM_1_GLBL_CFG0, 0);
873 WREG32(mmDMA_QM_2_GLBL_CFG0, 0);
874 WREG32(mmDMA_QM_3_GLBL_CFG0, 0);
875 WREG32(mmDMA_QM_4_GLBL_CFG0, 0);
876 }
877
878 static int goya_stop_queue(struct hl_device *hdev, u32 cfg_reg,
879 u32 cp_sts_reg, u32 glbl_sts0_reg)
880 {
881 int rc;
882 u32 status;
883
884 /* use the values of TPC0 as they are all the same*/
885
886 WREG32(cfg_reg, 1 << TPC0_QM_GLBL_CFG1_CP_STOP_SHIFT);
887
888 status = RREG32(cp_sts_reg);
889 if (status & TPC0_QM_CP_STS_FENCE_IN_PROGRESS_MASK) {
890 rc = hl_poll_timeout(
891 hdev,
892 cp_sts_reg,
893 status,
894 !(status & TPC0_QM_CP_STS_FENCE_IN_PROGRESS_MASK),
895 1000,
896 QMAN_FENCE_TIMEOUT_USEC);
897
898 /* if QMAN is stuck in fence no need to check for stop */
899 if (rc)
900 return 0;
901 }
902
903 rc = hl_poll_timeout(
904 hdev,
905 glbl_sts0_reg,
906 status,
907 (status & TPC0_QM_GLBL_STS0_CP_IS_STOP_MASK),
908 1000,
909 QMAN_STOP_TIMEOUT_USEC);
910
911 if (rc) {
912 dev_err(hdev->dev,
913 "Timeout while waiting for QMAN to stop\n");
914 return -EINVAL;
915 }
916
917 return 0;
918 }
919
920 /*
921 * goya_stop_external_queues - Stop external queues
922 *
923 * @hdev: pointer to hl_device structure
924 *
925 * Returns 0 on success
926 *
927 */
928 static int goya_stop_external_queues(struct hl_device *hdev)
929 {
930 int rc, retval = 0;
931
932 rc = goya_stop_queue(hdev,
933 mmDMA_QM_0_GLBL_CFG1,
934 mmDMA_QM_0_CP_STS,
935 mmDMA_QM_0_GLBL_STS0);
936
937 if (rc) {
938 dev_err(hdev->dev, "failed to stop DMA QMAN 0\n");
939 retval = -EIO;
940 }
941
942 rc = goya_stop_queue(hdev,
943 mmDMA_QM_1_GLBL_CFG1,
944 mmDMA_QM_1_CP_STS,
945 mmDMA_QM_1_GLBL_STS0);
946
947 if (rc) {
948 dev_err(hdev->dev, "failed to stop DMA QMAN 1\n");
949 retval = -EIO;
950 }
951
952 rc = goya_stop_queue(hdev,
953 mmDMA_QM_2_GLBL_CFG1,
954 mmDMA_QM_2_CP_STS,
955 mmDMA_QM_2_GLBL_STS0);
956
957 if (rc) {
958 dev_err(hdev->dev, "failed to stop DMA QMAN 2\n");
959 retval = -EIO;
960 }
961
962 rc = goya_stop_queue(hdev,
963 mmDMA_QM_3_GLBL_CFG1,
964 mmDMA_QM_3_CP_STS,
965 mmDMA_QM_3_GLBL_STS0);
966
967 if (rc) {
968 dev_err(hdev->dev, "failed to stop DMA QMAN 3\n");
969 retval = -EIO;
970 }
971
972 rc = goya_stop_queue(hdev,
973 mmDMA_QM_4_GLBL_CFG1,
974 mmDMA_QM_4_CP_STS,
975 mmDMA_QM_4_GLBL_STS0);
976
977 if (rc) {
978 dev_err(hdev->dev, "failed to stop DMA QMAN 4\n");
979 retval = -EIO;
980 }
981
982 return retval;
983 }
984
985 /*
986 * goya_init_cpu_queues - Initialize PQ/CQ/EQ of CPU
987 *
988 * @hdev: pointer to hl_device structure
989 *
990 * Returns 0 on success
991 *
992 */
993 int goya_init_cpu_queues(struct hl_device *hdev)
994 {
995 struct goya_device *goya = hdev->asic_specific;
996 struct hl_eq *eq;
997 u32 status;
998 struct hl_hw_queue *cpu_pq = &hdev->kernel_queues[GOYA_QUEUE_ID_CPU_PQ];
999 int err;
1000
1001 if (!hdev->cpu_queues_enable)
1002 return 0;
1003
1004 if (goya->hw_cap_initialized & HW_CAP_CPU_Q)
1005 return 0;
1006
1007 eq = &hdev->event_queue;
1008
1009 WREG32(mmPSOC_GLOBAL_CONF_SCRATCHPAD_0,
1010 lower_32_bits(cpu_pq->bus_address));
1011 WREG32(mmPSOC_GLOBAL_CONF_SCRATCHPAD_1,
1012 upper_32_bits(cpu_pq->bus_address));
1013
1014 WREG32(mmPSOC_GLOBAL_CONF_SCRATCHPAD_2, lower_32_bits(eq->bus_address));
1015 WREG32(mmPSOC_GLOBAL_CONF_SCRATCHPAD_3, upper_32_bits(eq->bus_address));
1016
1017 WREG32(mmPSOC_GLOBAL_CONF_SCRATCHPAD_8,
1018 lower_32_bits(VA_CPU_ACCESSIBLE_MEM_ADDR));
1019 WREG32(mmPSOC_GLOBAL_CONF_SCRATCHPAD_9,
1020 upper_32_bits(VA_CPU_ACCESSIBLE_MEM_ADDR));
1021
1022 WREG32(mmPSOC_GLOBAL_CONF_SCRATCHPAD_5, HL_QUEUE_SIZE_IN_BYTES);
1023 WREG32(mmPSOC_GLOBAL_CONF_SCRATCHPAD_4, HL_EQ_SIZE_IN_BYTES);
1024 WREG32(mmPSOC_GLOBAL_CONF_SCRATCHPAD_10, HL_CPU_ACCESSIBLE_MEM_SIZE);
1025
1026 /* Used for EQ CI */
1027 WREG32(mmPSOC_GLOBAL_CONF_SCRATCHPAD_6, 0);
1028
1029 WREG32(mmCPU_IF_PF_PQ_PI, 0);
1030
1031 WREG32(mmPSOC_GLOBAL_CONF_SCRATCHPAD_7, PQ_INIT_STATUS_READY_FOR_CP);
1032
1033 WREG32(mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR,
1034 GOYA_ASYNC_EVENT_ID_PI_UPDATE);
1035
1036 err = hl_poll_timeout(
1037 hdev,
1038 mmPSOC_GLOBAL_CONF_SCRATCHPAD_7,
1039 status,
1040 (status == PQ_INIT_STATUS_READY_FOR_HOST),
1041 1000,
1042 GOYA_CPU_TIMEOUT_USEC);
1043
1044 if (err) {
1045 dev_err(hdev->dev,
1046 "Failed to setup communication with device CPU\n");
1047 return -EIO;
1048 }
1049
1050 goya->hw_cap_initialized |= HW_CAP_CPU_Q;
1051 return 0;
1052 }
1053
1054 static void goya_set_pll_refclk(struct hl_device *hdev)
1055 {
1056 WREG32(mmCPU_PLL_DIV_SEL_0, 0x0);
1057 WREG32(mmCPU_PLL_DIV_SEL_1, 0x0);
1058 WREG32(mmCPU_PLL_DIV_SEL_2, 0x0);
1059 WREG32(mmCPU_PLL_DIV_SEL_3, 0x0);
1060
1061 WREG32(mmIC_PLL_DIV_SEL_0, 0x0);
1062 WREG32(mmIC_PLL_DIV_SEL_1, 0x0);
1063 WREG32(mmIC_PLL_DIV_SEL_2, 0x0);
1064 WREG32(mmIC_PLL_DIV_SEL_3, 0x0);
1065
1066 WREG32(mmMC_PLL_DIV_SEL_0, 0x0);
1067 WREG32(mmMC_PLL_DIV_SEL_1, 0x0);
1068 WREG32(mmMC_PLL_DIV_SEL_2, 0x0);
1069 WREG32(mmMC_PLL_DIV_SEL_3, 0x0);
1070
1071 WREG32(mmPSOC_MME_PLL_DIV_SEL_0, 0x0);
1072 WREG32(mmPSOC_MME_PLL_DIV_SEL_1, 0x0);
1073 WREG32(mmPSOC_MME_PLL_DIV_SEL_2, 0x0);
1074 WREG32(mmPSOC_MME_PLL_DIV_SEL_3, 0x0);
1075
1076 WREG32(mmPSOC_PCI_PLL_DIV_SEL_0, 0x0);
1077 WREG32(mmPSOC_PCI_PLL_DIV_SEL_1, 0x0);
1078 WREG32(mmPSOC_PCI_PLL_DIV_SEL_2, 0x0);
1079 WREG32(mmPSOC_PCI_PLL_DIV_SEL_3, 0x0);
1080
1081 WREG32(mmPSOC_EMMC_PLL_DIV_SEL_0, 0x0);
1082 WREG32(mmPSOC_EMMC_PLL_DIV_SEL_1, 0x0);
1083 WREG32(mmPSOC_EMMC_PLL_DIV_SEL_2, 0x0);
1084 WREG32(mmPSOC_EMMC_PLL_DIV_SEL_3, 0x0);
1085
1086 WREG32(mmTPC_PLL_DIV_SEL_0, 0x0);
1087 WREG32(mmTPC_PLL_DIV_SEL_1, 0x0);
1088 WREG32(mmTPC_PLL_DIV_SEL_2, 0x0);
1089 WREG32(mmTPC_PLL_DIV_SEL_3, 0x0);
1090 }
1091
1092 static void goya_disable_clk_rlx(struct hl_device *hdev)
1093 {
1094 WREG32(mmPSOC_MME_PLL_CLK_RLX_0, 0x100010);
1095 WREG32(mmIC_PLL_CLK_RLX_0, 0x100010);
1096 }
1097
1098 static void _goya_tpc_mbist_workaround(struct hl_device *hdev, u8 tpc_id)
1099 {
1100 u64 tpc_eml_address;
1101 u32 val, tpc_offset, tpc_eml_offset, tpc_slm_offset;
1102 int err, slm_index;
1103
1104 tpc_offset = tpc_id * 0x40000;
1105 tpc_eml_offset = tpc_id * 0x200000;
1106 tpc_eml_address = (mmTPC0_EML_CFG_BASE + tpc_eml_offset - CFG_BASE);
1107 tpc_slm_offset = tpc_eml_address + 0x100000;
1108
1109 /*
1110 * Workaround for Bug H2 #2443 :
1111 * "TPC SB is not initialized on chip reset"
1112 */
1113
1114 val = RREG32(mmTPC0_CFG_FUNC_MBIST_CNTRL + tpc_offset);
1115 if (val & TPC0_CFG_FUNC_MBIST_CNTRL_MBIST_ACTIVE_MASK)
1116 dev_warn(hdev->dev, "TPC%d MBIST ACTIVE is not cleared\n",
1117 tpc_id);
1118
1119 WREG32(mmTPC0_CFG_FUNC_MBIST_PAT + tpc_offset, val & 0xFFFFF000);
1120
1121 WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_0 + tpc_offset, 0x37FF);
1122 WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_1 + tpc_offset, 0x303F);
1123 WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_2 + tpc_offset, 0x71FF);
1124 WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_3 + tpc_offset, 0x71FF);
1125 WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_4 + tpc_offset, 0x70FF);
1126 WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_5 + tpc_offset, 0x70FF);
1127 WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_6 + tpc_offset, 0x70FF);
1128 WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_7 + tpc_offset, 0x70FF);
1129 WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_8 + tpc_offset, 0x70FF);
1130 WREG32(mmTPC0_CFG_FUNC_MBIST_MEM_9 + tpc_offset, 0x70FF);
1131
1132 WREG32_OR(mmTPC0_CFG_FUNC_MBIST_CNTRL + tpc_offset,
1133 1 << TPC0_CFG_FUNC_MBIST_CNTRL_MBIST_START_SHIFT);
1134
1135 err = hl_poll_timeout(
1136 hdev,
1137 mmTPC0_CFG_FUNC_MBIST_CNTRL + tpc_offset,
1138 val,
1139 (val & TPC0_CFG_FUNC_MBIST_CNTRL_MBIST_DONE_MASK),
1140 1000,
1141 HL_DEVICE_TIMEOUT_USEC);
1142
1143 if (err)
1144 dev_err(hdev->dev,
1145 "Timeout while waiting for TPC%d MBIST DONE\n", tpc_id);
1146
1147 WREG32_OR(mmTPC0_EML_CFG_DBG_CNT + tpc_eml_offset,
1148 1 << TPC0_EML_CFG_DBG_CNT_CORE_RST_SHIFT);
1149
1150 msleep(GOYA_RESET_WAIT_MSEC);
1151
1152 WREG32_AND(mmTPC0_EML_CFG_DBG_CNT + tpc_eml_offset,
1153 ~(1 << TPC0_EML_CFG_DBG_CNT_CORE_RST_SHIFT));
1154
1155 msleep(GOYA_RESET_WAIT_MSEC);
1156
1157 for (slm_index = 0 ; slm_index < 256 ; slm_index++)
1158 WREG32(tpc_slm_offset + (slm_index << 2), 0);
1159
1160 val = RREG32(tpc_slm_offset);
1161 }
1162
1163 static void goya_tpc_mbist_workaround(struct hl_device *hdev)
1164 {
1165 struct goya_device *goya = hdev->asic_specific;
1166 int i;
1167
1168 if (hdev->pldm)
1169 return;
1170
1171 if (goya->hw_cap_initialized & HW_CAP_TPC_MBIST)
1172 return;
1173
1174 /* Workaround for H2 #2443 */
1175
1176 for (i = 0 ; i < TPC_MAX_NUM ; i++)
1177 _goya_tpc_mbist_workaround(hdev, i);
1178
1179 goya->hw_cap_initialized |= HW_CAP_TPC_MBIST;
1180 }
1181
1182 /*
1183 * goya_init_golden_registers - Initialize golden registers
1184 *
1185 * @hdev: pointer to hl_device structure
1186 *
1187 * Initialize the H/W registers of the device
1188 *
1189 */
1190 static void goya_init_golden_registers(struct hl_device *hdev)
1191 {
1192 struct goya_device *goya = hdev->asic_specific;
1193 u32 polynom[10], tpc_intr_mask, offset;
1194 int i;
1195
1196 if (goya->hw_cap_initialized & HW_CAP_GOLDEN)
1197 return;
1198
1199 polynom[0] = 0x00020080;
1200 polynom[1] = 0x00401000;
1201 polynom[2] = 0x00200800;
1202 polynom[3] = 0x00002000;
1203 polynom[4] = 0x00080200;
1204 polynom[5] = 0x00040100;
1205 polynom[6] = 0x00100400;
1206 polynom[7] = 0x00004000;
1207 polynom[8] = 0x00010000;
1208 polynom[9] = 0x00008000;
1209
1210 /* Mask all arithmetic interrupts from TPC */
1211 tpc_intr_mask = 0x7FFF;
1212
1213 for (i = 0, offset = 0 ; i < 6 ; i++, offset += 0x20000) {
1214 WREG32(mmSRAM_Y0_X0_RTR_HBW_RD_RQ_L_ARB + offset, 0x302);
1215 WREG32(mmSRAM_Y0_X1_RTR_HBW_RD_RQ_L_ARB + offset, 0x302);
1216 WREG32(mmSRAM_Y0_X2_RTR_HBW_RD_RQ_L_ARB + offset, 0x302);
1217 WREG32(mmSRAM_Y0_X3_RTR_HBW_RD_RQ_L_ARB + offset, 0x302);
1218 WREG32(mmSRAM_Y0_X4_RTR_HBW_RD_RQ_L_ARB + offset, 0x302);
1219
1220 WREG32(mmSRAM_Y0_X0_RTR_HBW_DATA_L_ARB + offset, 0x204);
1221 WREG32(mmSRAM_Y0_X1_RTR_HBW_DATA_L_ARB + offset, 0x204);
1222 WREG32(mmSRAM_Y0_X2_RTR_HBW_DATA_L_ARB + offset, 0x204);
1223 WREG32(mmSRAM_Y0_X3_RTR_HBW_DATA_L_ARB + offset, 0x204);
1224 WREG32(mmSRAM_Y0_X4_RTR_HBW_DATA_L_ARB + offset, 0x204);
1225
1226
1227 WREG32(mmSRAM_Y0_X0_RTR_HBW_DATA_E_ARB + offset, 0x206);
1228 WREG32(mmSRAM_Y0_X1_RTR_HBW_DATA_E_ARB + offset, 0x206);
1229 WREG32(mmSRAM_Y0_X2_RTR_HBW_DATA_E_ARB + offset, 0x206);
1230 WREG32(mmSRAM_Y0_X3_RTR_HBW_DATA_E_ARB + offset, 0x207);
1231 WREG32(mmSRAM_Y0_X4_RTR_HBW_DATA_E_ARB + offset, 0x207);
1232
1233 WREG32(mmSRAM_Y0_X0_RTR_HBW_DATA_W_ARB + offset, 0x207);
1234 WREG32(mmSRAM_Y0_X1_RTR_HBW_DATA_W_ARB + offset, 0x207);
1235 WREG32(mmSRAM_Y0_X2_RTR_HBW_DATA_W_ARB + offset, 0x206);
1236 WREG32(mmSRAM_Y0_X3_RTR_HBW_DATA_W_ARB + offset, 0x206);
1237 WREG32(mmSRAM_Y0_X4_RTR_HBW_DATA_W_ARB + offset, 0x206);
1238
1239 WREG32(mmSRAM_Y0_X0_RTR_HBW_WR_RS_E_ARB + offset, 0x101);
1240 WREG32(mmSRAM_Y0_X1_RTR_HBW_WR_RS_E_ARB + offset, 0x102);
1241 WREG32(mmSRAM_Y0_X2_RTR_HBW_WR_RS_E_ARB + offset, 0x103);
1242 WREG32(mmSRAM_Y0_X3_RTR_HBW_WR_RS_E_ARB + offset, 0x104);
1243 WREG32(mmSRAM_Y0_X4_RTR_HBW_WR_RS_E_ARB + offset, 0x105);
1244
1245 WREG32(mmSRAM_Y0_X0_RTR_HBW_WR_RS_W_ARB + offset, 0x105);
1246 WREG32(mmSRAM_Y0_X1_RTR_HBW_WR_RS_W_ARB + offset, 0x104);
1247 WREG32(mmSRAM_Y0_X2_RTR_HBW_WR_RS_W_ARB + offset, 0x103);
1248 WREG32(mmSRAM_Y0_X3_RTR_HBW_WR_RS_W_ARB + offset, 0x102);
1249 WREG32(mmSRAM_Y0_X4_RTR_HBW_WR_RS_W_ARB + offset, 0x101);
1250 }
1251
1252 WREG32(mmMME_STORE_MAX_CREDIT, 0x21);
1253 WREG32(mmMME_AGU, 0x0f0f0f10);
1254 WREG32(mmMME_SEI_MASK, ~0x0);
1255
1256 WREG32(mmMME6_RTR_HBW_RD_RQ_N_ARB, 0x01010101);
1257 WREG32(mmMME5_RTR_HBW_RD_RQ_N_ARB, 0x01040101);
1258 WREG32(mmMME4_RTR_HBW_RD_RQ_N_ARB, 0x01030101);
1259 WREG32(mmMME3_RTR_HBW_RD_RQ_N_ARB, 0x01020101);
1260 WREG32(mmMME2_RTR_HBW_RD_RQ_N_ARB, 0x01010101);
1261 WREG32(mmMME1_RTR_HBW_RD_RQ_N_ARB, 0x07010701);
1262 WREG32(mmMME6_RTR_HBW_RD_RQ_S_ARB, 0x04010401);
1263 WREG32(mmMME5_RTR_HBW_RD_RQ_S_ARB, 0x04050401);
1264 WREG32(mmMME4_RTR_HBW_RD_RQ_S_ARB, 0x03070301);
1265 WREG32(mmMME3_RTR_HBW_RD_RQ_S_ARB, 0x01030101);
1266 WREG32(mmMME2_RTR_HBW_RD_RQ_S_ARB, 0x01040101);
1267 WREG32(mmMME1_RTR_HBW_RD_RQ_S_ARB, 0x01050105);
1268 WREG32(mmMME6_RTR_HBW_RD_RQ_W_ARB, 0x01010501);
1269 WREG32(mmMME5_RTR_HBW_RD_RQ_W_ARB, 0x01010501);
1270 WREG32(mmMME4_RTR_HBW_RD_RQ_W_ARB, 0x01040301);
1271 WREG32(mmMME3_RTR_HBW_RD_RQ_W_ARB, 0x01030401);
1272 WREG32(mmMME2_RTR_HBW_RD_RQ_W_ARB, 0x01040101);
1273 WREG32(mmMME1_RTR_HBW_RD_RQ_W_ARB, 0x01050101);
1274 WREG32(mmMME6_RTR_HBW_WR_RQ_N_ARB, 0x02020202);
1275 WREG32(mmMME5_RTR_HBW_WR_RQ_N_ARB, 0x01070101);
1276 WREG32(mmMME4_RTR_HBW_WR_RQ_N_ARB, 0x02020201);
1277 WREG32(mmMME3_RTR_HBW_WR_RQ_N_ARB, 0x07020701);
1278 WREG32(mmMME2_RTR_HBW_WR_RQ_N_ARB, 0x01020101);
1279 WREG32(mmMME1_RTR_HBW_WR_RQ_S_ARB, 0x01010101);
1280 WREG32(mmMME6_RTR_HBW_WR_RQ_S_ARB, 0x01070101);
1281 WREG32(mmMME5_RTR_HBW_WR_RQ_S_ARB, 0x01070101);
1282 WREG32(mmMME4_RTR_HBW_WR_RQ_S_ARB, 0x07020701);
1283 WREG32(mmMME3_RTR_HBW_WR_RQ_S_ARB, 0x02020201);
1284 WREG32(mmMME2_RTR_HBW_WR_RQ_S_ARB, 0x01070101);
1285 WREG32(mmMME1_RTR_HBW_WR_RQ_S_ARB, 0x01020102);
1286 WREG32(mmMME6_RTR_HBW_WR_RQ_W_ARB, 0x01020701);
1287 WREG32(mmMME5_RTR_HBW_WR_RQ_W_ARB, 0x01020701);
1288 WREG32(mmMME4_RTR_HBW_WR_RQ_W_ARB, 0x07020707);
1289 WREG32(mmMME3_RTR_HBW_WR_RQ_W_ARB, 0x01020201);
1290 WREG32(mmMME2_RTR_HBW_WR_RQ_W_ARB, 0x01070201);
1291 WREG32(mmMME1_RTR_HBW_WR_RQ_W_ARB, 0x01070201);
1292 WREG32(mmMME6_RTR_HBW_RD_RS_N_ARB, 0x01070102);
1293 WREG32(mmMME5_RTR_HBW_RD_RS_N_ARB, 0x01070102);
1294 WREG32(mmMME4_RTR_HBW_RD_RS_N_ARB, 0x01060102);
1295 WREG32(mmMME3_RTR_HBW_RD_RS_N_ARB, 0x01040102);
1296 WREG32(mmMME2_RTR_HBW_RD_RS_N_ARB, 0x01020102);
1297 WREG32(mmMME1_RTR_HBW_RD_RS_N_ARB, 0x01020107);
1298 WREG32(mmMME6_RTR_HBW_RD_RS_S_ARB, 0x01020106);
1299 WREG32(mmMME5_RTR_HBW_RD_RS_S_ARB, 0x01020102);
1300 WREG32(mmMME4_RTR_HBW_RD_RS_S_ARB, 0x01040102);
1301 WREG32(mmMME3_RTR_HBW_RD_RS_S_ARB, 0x01060102);
1302 WREG32(mmMME2_RTR_HBW_RD_RS_S_ARB, 0x01070102);
1303 WREG32(mmMME1_RTR_HBW_RD_RS_S_ARB, 0x01070102);
1304 WREG32(mmMME6_RTR_HBW_RD_RS_E_ARB, 0x01020702);
1305 WREG32(mmMME5_RTR_HBW_RD_RS_E_ARB, 0x01020702);
1306 WREG32(mmMME4_RTR_HBW_RD_RS_E_ARB, 0x01040602);
1307 WREG32(mmMME3_RTR_HBW_RD_RS_E_ARB, 0x01060402);
1308 WREG32(mmMME2_RTR_HBW_RD_RS_E_ARB, 0x01070202);
1309 WREG32(mmMME1_RTR_HBW_RD_RS_E_ARB, 0x01070102);
1310 WREG32(mmMME6_RTR_HBW_RD_RS_W_ARB, 0x01060401);
1311 WREG32(mmMME5_RTR_HBW_RD_RS_W_ARB, 0x01060401);
1312 WREG32(mmMME4_RTR_HBW_RD_RS_W_ARB, 0x01060401);
1313 WREG32(mmMME3_RTR_HBW_RD_RS_W_ARB, 0x01060401);
1314 WREG32(mmMME2_RTR_HBW_RD_RS_W_ARB, 0x01060401);
1315 WREG32(mmMME1_RTR_HBW_RD_RS_W_ARB, 0x01060401);
1316 WREG32(mmMME6_RTR_HBW_WR_RS_N_ARB, 0x01050101);
1317 WREG32(mmMME5_RTR_HBW_WR_RS_N_ARB, 0x01040101);
1318 WREG32(mmMME4_RTR_HBW_WR_RS_N_ARB, 0x01030101);
1319 WREG32(mmMME3_RTR_HBW_WR_RS_N_ARB, 0x01020101);
1320 WREG32(mmMME2_RTR_HBW_WR_RS_N_ARB, 0x01010101);
1321 WREG32(mmMME1_RTR_HBW_WR_RS_N_ARB, 0x01010107);
1322 WREG32(mmMME6_RTR_HBW_WR_RS_S_ARB, 0x01010107);
1323 WREG32(mmMME5_RTR_HBW_WR_RS_S_ARB, 0x01010101);
1324 WREG32(mmMME4_RTR_HBW_WR_RS_S_ARB, 0x01020101);
1325 WREG32(mmMME3_RTR_HBW_WR_RS_S_ARB, 0x01030101);
1326 WREG32(mmMME2_RTR_HBW_WR_RS_S_ARB, 0x01040101);
1327 WREG32(mmMME1_RTR_HBW_WR_RS_S_ARB, 0x01050101);
1328 WREG32(mmMME6_RTR_HBW_WR_RS_E_ARB, 0x01010501);
1329 WREG32(mmMME5_RTR_HBW_WR_RS_E_ARB, 0x01010501);
1330 WREG32(mmMME4_RTR_HBW_WR_RS_E_ARB, 0x01040301);
1331 WREG32(mmMME3_RTR_HBW_WR_RS_E_ARB, 0x01030401);
1332 WREG32(mmMME2_RTR_HBW_WR_RS_E_ARB, 0x01040101);
1333 WREG32(mmMME1_RTR_HBW_WR_RS_E_ARB, 0x01050101);
1334 WREG32(mmMME6_RTR_HBW_WR_RS_W_ARB, 0x01010101);
1335 WREG32(mmMME5_RTR_HBW_WR_RS_W_ARB, 0x01010101);
1336 WREG32(mmMME4_RTR_HBW_WR_RS_W_ARB, 0x01010101);
1337 WREG32(mmMME3_RTR_HBW_WR_RS_W_ARB, 0x01010101);
1338 WREG32(mmMME2_RTR_HBW_WR_RS_W_ARB, 0x01010101);
1339 WREG32(mmMME1_RTR_HBW_WR_RS_W_ARB, 0x01010101);
1340
1341 WREG32(mmTPC1_RTR_HBW_RD_RQ_N_ARB, 0x01010101);
1342 WREG32(mmTPC1_RTR_HBW_RD_RQ_S_ARB, 0x01010101);
1343 WREG32(mmTPC1_RTR_HBW_RD_RQ_E_ARB, 0x01060101);
1344 WREG32(mmTPC1_RTR_HBW_WR_RQ_N_ARB, 0x02020102);
1345 WREG32(mmTPC1_RTR_HBW_WR_RQ_S_ARB, 0x01010101);
1346 WREG32(mmTPC1_RTR_HBW_WR_RQ_E_ARB, 0x02070202);
1347 WREG32(mmTPC1_RTR_HBW_RD_RS_N_ARB, 0x01020201);
1348 WREG32(mmTPC1_RTR_HBW_RD_RS_S_ARB, 0x01070201);
1349 WREG32(mmTPC1_RTR_HBW_RD_RS_W_ARB, 0x01070202);
1350 WREG32(mmTPC1_RTR_HBW_WR_RS_N_ARB, 0x01010101);
1351 WREG32(mmTPC1_RTR_HBW_WR_RS_S_ARB, 0x01050101);
1352 WREG32(mmTPC1_RTR_HBW_WR_RS_W_ARB, 0x01050101);
1353
1354 WREG32(mmTPC2_RTR_HBW_RD_RQ_N_ARB, 0x01020101);
1355 WREG32(mmTPC2_RTR_HBW_RD_RQ_S_ARB, 0x01050101);
1356 WREG32(mmTPC2_RTR_HBW_RD_RQ_E_ARB, 0x01010201);
1357 WREG32(mmTPC2_RTR_HBW_WR_RQ_N_ARB, 0x02040102);
1358 WREG32(mmTPC2_RTR_HBW_WR_RQ_S_ARB, 0x01050101);
1359 WREG32(mmTPC2_RTR_HBW_WR_RQ_E_ARB, 0x02060202);
1360 WREG32(mmTPC2_RTR_HBW_RD_RS_N_ARB, 0x01020201);
1361 WREG32(mmTPC2_RTR_HBW_RD_RS_S_ARB, 0x01070201);
1362 WREG32(mmTPC2_RTR_HBW_RD_RS_W_ARB, 0x01070202);
1363 WREG32(mmTPC2_RTR_HBW_WR_RS_N_ARB, 0x01010101);
1364 WREG32(mmTPC2_RTR_HBW_WR_RS_S_ARB, 0x01040101);
1365 WREG32(mmTPC2_RTR_HBW_WR_RS_W_ARB, 0x01040101);
1366
1367 WREG32(mmTPC3_RTR_HBW_RD_RQ_N_ARB, 0x01030101);
1368 WREG32(mmTPC3_RTR_HBW_RD_RQ_S_ARB, 0x01040101);
1369 WREG32(mmTPC3_RTR_HBW_RD_RQ_E_ARB, 0x01040301);
1370 WREG32(mmTPC3_RTR_HBW_WR_RQ_N_ARB, 0x02060102);
1371 WREG32(mmTPC3_RTR_HBW_WR_RQ_S_ARB, 0x01040101);
1372 WREG32(mmTPC3_RTR_HBW_WR_RQ_E_ARB, 0x01040301);
1373 WREG32(mmTPC3_RTR_HBW_RD_RS_N_ARB, 0x01040201);
1374 WREG32(mmTPC3_RTR_HBW_RD_RS_S_ARB, 0x01060201);
1375 WREG32(mmTPC3_RTR_HBW_RD_RS_W_ARB, 0x01060402);
1376 WREG32(mmTPC3_RTR_HBW_WR_RS_N_ARB, 0x01020101);
1377 WREG32(mmTPC3_RTR_HBW_WR_RS_S_ARB, 0x01030101);
1378 WREG32(mmTPC3_RTR_HBW_WR_RS_W_ARB, 0x01030401);
1379
1380 WREG32(mmTPC4_RTR_HBW_RD_RQ_N_ARB, 0x01040101);
1381 WREG32(mmTPC4_RTR_HBW_RD_RQ_S_ARB, 0x01030101);
1382 WREG32(mmTPC4_RTR_HBW_RD_RQ_E_ARB, 0x01030401);
1383 WREG32(mmTPC4_RTR_HBW_WR_RQ_N_ARB, 0x02070102);
1384 WREG32(mmTPC4_RTR_HBW_WR_RQ_S_ARB, 0x01030101);
1385 WREG32(mmTPC4_RTR_HBW_WR_RQ_E_ARB, 0x02060702);
1386 WREG32(mmTPC4_RTR_HBW_RD_RS_N_ARB, 0x01060201);
1387 WREG32(mmTPC4_RTR_HBW_RD_RS_S_ARB, 0x01040201);
1388 WREG32(mmTPC4_RTR_HBW_RD_RS_W_ARB, 0x01040602);
1389 WREG32(mmTPC4_RTR_HBW_WR_RS_N_ARB, 0x01030101);
1390 WREG32(mmTPC4_RTR_HBW_WR_RS_S_ARB, 0x01020101);
1391 WREG32(mmTPC4_RTR_HBW_WR_RS_W_ARB, 0x01040301);
1392
1393 WREG32(mmTPC5_RTR_HBW_RD_RQ_N_ARB, 0x01050101);
1394 WREG32(mmTPC5_RTR_HBW_RD_RQ_S_ARB, 0x01020101);
1395 WREG32(mmTPC5_RTR_HBW_RD_RQ_E_ARB, 0x01200501);
1396 WREG32(mmTPC5_RTR_HBW_WR_RQ_N_ARB, 0x02070102);
1397 WREG32(mmTPC5_RTR_HBW_WR_RQ_S_ARB, 0x01020101);
1398 WREG32(mmTPC5_RTR_HBW_WR_RQ_E_ARB, 0x02020602);
1399 WREG32(mmTPC5_RTR_HBW_RD_RS_N_ARB, 0x01070201);
1400 WREG32(mmTPC5_RTR_HBW_RD_RS_S_ARB, 0x01020201);
1401 WREG32(mmTPC5_RTR_HBW_RD_RS_W_ARB, 0x01020702);
1402 WREG32(mmTPC5_RTR_HBW_WR_RS_N_ARB, 0x01040101);
1403 WREG32(mmTPC5_RTR_HBW_WR_RS_S_ARB, 0x01010101);
1404 WREG32(mmTPC5_RTR_HBW_WR_RS_W_ARB, 0x01010501);
1405
1406 WREG32(mmTPC6_RTR_HBW_RD_RQ_N_ARB, 0x01010101);
1407 WREG32(mmTPC6_RTR_HBW_RD_RQ_S_ARB, 0x01010101);
1408 WREG32(mmTPC6_RTR_HBW_RD_RQ_E_ARB, 0x01010601);
1409 WREG32(mmTPC6_RTR_HBW_WR_RQ_N_ARB, 0x01010101);
1410 WREG32(mmTPC6_RTR_HBW_WR_RQ_S_ARB, 0x01010101);
1411 WREG32(mmTPC6_RTR_HBW_WR_RQ_E_ARB, 0x02020702);
1412 WREG32(mmTPC6_RTR_HBW_RD_RS_N_ARB, 0x01010101);
1413 WREG32(mmTPC6_RTR_HBW_RD_RS_S_ARB, 0x01010101);
1414 WREG32(mmTPC6_RTR_HBW_RD_RS_W_ARB, 0x01020702);
1415 WREG32(mmTPC6_RTR_HBW_WR_RS_N_ARB, 0x01050101);
1416 WREG32(mmTPC6_RTR_HBW_WR_RS_S_ARB, 0x01010101);
1417 WREG32(mmTPC6_RTR_HBW_WR_RS_W_ARB, 0x01010501);
1418
1419 for (i = 0, offset = 0 ; i < 10 ; i++, offset += 4) {
1420 WREG32(mmMME1_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
1421 WREG32(mmMME2_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
1422 WREG32(mmMME3_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
1423 WREG32(mmMME4_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
1424 WREG32(mmMME5_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
1425 WREG32(mmMME6_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
1426
1427 WREG32(mmTPC0_NRTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
1428 WREG32(mmTPC1_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
1429 WREG32(mmTPC2_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
1430 WREG32(mmTPC3_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
1431 WREG32(mmTPC4_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
1432 WREG32(mmTPC5_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
1433 WREG32(mmTPC6_RTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
1434 WREG32(mmTPC7_NRTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
1435
1436 WREG32(mmPCI_NRTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
1437 WREG32(mmDMA_NRTR_SPLIT_COEF_0 + offset, polynom[i] >> 7);
1438 }
1439
1440 for (i = 0, offset = 0 ; i < 6 ; i++, offset += 0x40000) {
1441 WREG32(mmMME1_RTR_SCRAMB_EN + offset,
1442 1 << MME1_RTR_SCRAMB_EN_VAL_SHIFT);
1443 WREG32(mmMME1_RTR_NON_LIN_SCRAMB + offset,
1444 1 << MME1_RTR_NON_LIN_SCRAMB_EN_SHIFT);
1445 }
1446
1447 for (i = 0, offset = 0 ; i < 8 ; i++, offset += 0x40000) {
1448 /*
1449 * Workaround for Bug H2 #2441 :
1450 * "ST.NOP set trace event illegal opcode"
1451 */
1452 WREG32(mmTPC0_CFG_TPC_INTR_MASK + offset, tpc_intr_mask);
1453
1454 WREG32(mmTPC0_NRTR_SCRAMB_EN + offset,
1455 1 << TPC0_NRTR_SCRAMB_EN_VAL_SHIFT);
1456 WREG32(mmTPC0_NRTR_NON_LIN_SCRAMB + offset,
1457 1 << TPC0_NRTR_NON_LIN_SCRAMB_EN_SHIFT);
1458 }
1459
1460 WREG32(mmDMA_NRTR_SCRAMB_EN, 1 << DMA_NRTR_SCRAMB_EN_VAL_SHIFT);
1461 WREG32(mmDMA_NRTR_NON_LIN_SCRAMB,
1462 1 << DMA_NRTR_NON_LIN_SCRAMB_EN_SHIFT);
1463
1464 WREG32(mmPCI_NRTR_SCRAMB_EN, 1 << PCI_NRTR_SCRAMB_EN_VAL_SHIFT);
1465 WREG32(mmPCI_NRTR_NON_LIN_SCRAMB,
1466 1 << PCI_NRTR_NON_LIN_SCRAMB_EN_SHIFT);
1467
1468 /*
1469 * Workaround for H2 #HW-23 bug
1470 * Set DMA max outstanding read requests to 240 on DMA CH 1.
1471 * This limitation is still large enough to not affect Gen4 bandwidth.
1472 * We need to only limit that DMA channel because the user can only read
1473 * from Host using DMA CH 1
1474 */
1475 WREG32(mmDMA_CH_1_CFG0, 0x0fff00F0);
1476
1477 WREG32(mmTPC_PLL_CLK_RLX_0, 0x200020);
1478
1479 goya->hw_cap_initialized |= HW_CAP_GOLDEN;
1480 }
1481
1482 static void goya_init_mme_qman(struct hl_device *hdev)
1483 {
1484 u32 mtr_base_lo, mtr_base_hi;
1485 u32 so_base_lo, so_base_hi;
1486 u32 gic_base_lo, gic_base_hi;
1487 u64 qman_base_addr;
1488
1489 mtr_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
1490 mtr_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
1491 so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
1492 so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
1493
1494 gic_base_lo =
1495 lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
1496 gic_base_hi =
1497 upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
1498
1499 qman_base_addr = hdev->asic_prop.sram_base_address +
1500 MME_QMAN_BASE_OFFSET;
1501
1502 WREG32(mmMME_QM_PQ_BASE_LO, lower_32_bits(qman_base_addr));
1503 WREG32(mmMME_QM_PQ_BASE_HI, upper_32_bits(qman_base_addr));
1504 WREG32(mmMME_QM_PQ_SIZE, ilog2(MME_QMAN_LENGTH));
1505 WREG32(mmMME_QM_PQ_PI, 0);
1506 WREG32(mmMME_QM_PQ_CI, 0);
1507 WREG32(mmMME_QM_CP_LDMA_SRC_BASE_LO_OFFSET, 0x10C0);
1508 WREG32(mmMME_QM_CP_LDMA_SRC_BASE_HI_OFFSET, 0x10C4);
1509 WREG32(mmMME_QM_CP_LDMA_TSIZE_OFFSET, 0x10C8);
1510 WREG32(mmMME_QM_CP_LDMA_COMMIT_OFFSET, 0x10CC);
1511
1512 WREG32(mmMME_QM_CP_MSG_BASE0_ADDR_LO, mtr_base_lo);
1513 WREG32(mmMME_QM_CP_MSG_BASE0_ADDR_HI, mtr_base_hi);
1514 WREG32(mmMME_QM_CP_MSG_BASE1_ADDR_LO, so_base_lo);
1515 WREG32(mmMME_QM_CP_MSG_BASE1_ADDR_HI, so_base_hi);
1516
1517 /* QMAN CQ has 8 cache lines */
1518 WREG32(mmMME_QM_CQ_CFG1, 0x00080008);
1519
1520 WREG32(mmMME_QM_GLBL_ERR_ADDR_LO, gic_base_lo);
1521 WREG32(mmMME_QM_GLBL_ERR_ADDR_HI, gic_base_hi);
1522
1523 WREG32(mmMME_QM_GLBL_ERR_WDATA, GOYA_ASYNC_EVENT_ID_MME_QM);
1524
1525 WREG32(mmMME_QM_GLBL_ERR_CFG, QMAN_MME_ERR_MSG_EN);
1526
1527 WREG32(mmMME_QM_GLBL_PROT, QMAN_MME_ERR_PROT);
1528
1529 WREG32(mmMME_QM_GLBL_CFG0, QMAN_MME_ENABLE);
1530 }
1531
1532 static void goya_init_mme_cmdq(struct hl_device *hdev)
1533 {
1534 u32 mtr_base_lo, mtr_base_hi;
1535 u32 so_base_lo, so_base_hi;
1536 u32 gic_base_lo, gic_base_hi;
1537 u64 qman_base_addr;
1538
1539 mtr_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
1540 mtr_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
1541 so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
1542 so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
1543
1544 gic_base_lo =
1545 lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
1546 gic_base_hi =
1547 upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
1548
1549 qman_base_addr = hdev->asic_prop.sram_base_address +
1550 MME_QMAN_BASE_OFFSET;
1551
1552 WREG32(mmMME_CMDQ_CP_MSG_BASE0_ADDR_LO, mtr_base_lo);
1553 WREG32(mmMME_CMDQ_CP_MSG_BASE0_ADDR_HI, mtr_base_hi);
1554 WREG32(mmMME_CMDQ_CP_MSG_BASE1_ADDR_LO, so_base_lo);
1555 WREG32(mmMME_CMDQ_CP_MSG_BASE1_ADDR_HI, so_base_hi);
1556
1557 /* CMDQ CQ has 20 cache lines */
1558 WREG32(mmMME_CMDQ_CQ_CFG1, 0x00140014);
1559
1560 WREG32(mmMME_CMDQ_GLBL_ERR_ADDR_LO, gic_base_lo);
1561 WREG32(mmMME_CMDQ_GLBL_ERR_ADDR_HI, gic_base_hi);
1562
1563 WREG32(mmMME_CMDQ_GLBL_ERR_WDATA, GOYA_ASYNC_EVENT_ID_MME_CMDQ);
1564
1565 WREG32(mmMME_CMDQ_GLBL_ERR_CFG, CMDQ_MME_ERR_MSG_EN);
1566
1567 WREG32(mmMME_CMDQ_GLBL_PROT, CMDQ_MME_ERR_PROT);
1568
1569 WREG32(mmMME_CMDQ_GLBL_CFG0, CMDQ_MME_ENABLE);
1570 }
1571
1572 void goya_init_mme_qmans(struct hl_device *hdev)
1573 {
1574 struct goya_device *goya = hdev->asic_specific;
1575 u32 so_base_lo, so_base_hi;
1576
1577 if (goya->hw_cap_initialized & HW_CAP_MME)
1578 return;
1579
1580 so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
1581 so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
1582
1583 WREG32(mmMME_SM_BASE_ADDRESS_LOW, so_base_lo);
1584 WREG32(mmMME_SM_BASE_ADDRESS_HIGH, so_base_hi);
1585
1586 goya_init_mme_qman(hdev);
1587 goya_init_mme_cmdq(hdev);
1588
1589 goya->hw_cap_initialized |= HW_CAP_MME;
1590 }
1591
1592 static void goya_init_tpc_qman(struct hl_device *hdev, u32 base_off, int tpc_id)
1593 {
1594 u32 mtr_base_lo, mtr_base_hi;
1595 u32 so_base_lo, so_base_hi;
1596 u32 gic_base_lo, gic_base_hi;
1597 u64 qman_base_addr;
1598 u32 reg_off = tpc_id * (mmTPC1_QM_PQ_PI - mmTPC0_QM_PQ_PI);
1599
1600 mtr_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
1601 mtr_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
1602 so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
1603 so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
1604
1605 gic_base_lo =
1606 lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
1607 gic_base_hi =
1608 upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
1609
1610 qman_base_addr = hdev->asic_prop.sram_base_address + base_off;
1611
1612 WREG32(mmTPC0_QM_PQ_BASE_LO + reg_off, lower_32_bits(qman_base_addr));
1613 WREG32(mmTPC0_QM_PQ_BASE_HI + reg_off, upper_32_bits(qman_base_addr));
1614 WREG32(mmTPC0_QM_PQ_SIZE + reg_off, ilog2(TPC_QMAN_LENGTH));
1615 WREG32(mmTPC0_QM_PQ_PI + reg_off, 0);
1616 WREG32(mmTPC0_QM_PQ_CI + reg_off, 0);
1617 WREG32(mmTPC0_QM_CP_LDMA_SRC_BASE_LO_OFFSET + reg_off, 0x10C0);
1618 WREG32(mmTPC0_QM_CP_LDMA_SRC_BASE_HI_OFFSET + reg_off, 0x10C4);
1619 WREG32(mmTPC0_QM_CP_LDMA_TSIZE_OFFSET + reg_off, 0x10C8);
1620 WREG32(mmTPC0_QM_CP_LDMA_COMMIT_OFFSET + reg_off, 0x10CC);
1621
1622 WREG32(mmTPC0_QM_CP_MSG_BASE0_ADDR_LO + reg_off, mtr_base_lo);
1623 WREG32(mmTPC0_QM_CP_MSG_BASE0_ADDR_HI + reg_off, mtr_base_hi);
1624 WREG32(mmTPC0_QM_CP_MSG_BASE1_ADDR_LO + reg_off, so_base_lo);
1625 WREG32(mmTPC0_QM_CP_MSG_BASE1_ADDR_HI + reg_off, so_base_hi);
1626
1627 WREG32(mmTPC0_QM_CQ_CFG1 + reg_off, 0x00080008);
1628
1629 WREG32(mmTPC0_QM_GLBL_ERR_ADDR_LO + reg_off, gic_base_lo);
1630 WREG32(mmTPC0_QM_GLBL_ERR_ADDR_HI + reg_off, gic_base_hi);
1631
1632 WREG32(mmTPC0_QM_GLBL_ERR_WDATA + reg_off,
1633 GOYA_ASYNC_EVENT_ID_TPC0_QM + tpc_id);
1634
1635 WREG32(mmTPC0_QM_GLBL_ERR_CFG + reg_off, QMAN_TPC_ERR_MSG_EN);
1636
1637 WREG32(mmTPC0_QM_GLBL_PROT + reg_off, QMAN_TPC_ERR_PROT);
1638
1639 WREG32(mmTPC0_QM_GLBL_CFG0 + reg_off, QMAN_TPC_ENABLE);
1640 }
1641
1642 static void goya_init_tpc_cmdq(struct hl_device *hdev, int tpc_id)
1643 {
1644 u32 mtr_base_lo, mtr_base_hi;
1645 u32 so_base_lo, so_base_hi;
1646 u32 gic_base_lo, gic_base_hi;
1647 u32 reg_off = tpc_id * (mmTPC1_CMDQ_CQ_CFG1 - mmTPC0_CMDQ_CQ_CFG1);
1648
1649 mtr_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
1650 mtr_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_MON_PAY_ADDRL_0);
1651 so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
1652 so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
1653
1654 gic_base_lo =
1655 lower_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
1656 gic_base_hi =
1657 upper_32_bits(CFG_BASE + mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR);
1658
1659 WREG32(mmTPC0_CMDQ_CP_MSG_BASE0_ADDR_LO + reg_off, mtr_base_lo);
1660 WREG32(mmTPC0_CMDQ_CP_MSG_BASE0_ADDR_HI + reg_off, mtr_base_hi);
1661 WREG32(mmTPC0_CMDQ_CP_MSG_BASE1_ADDR_LO + reg_off, so_base_lo);
1662 WREG32(mmTPC0_CMDQ_CP_MSG_BASE1_ADDR_HI + reg_off, so_base_hi);
1663
1664 WREG32(mmTPC0_CMDQ_CQ_CFG1 + reg_off, 0x00140014);
1665
1666 WREG32(mmTPC0_CMDQ_GLBL_ERR_ADDR_LO + reg_off, gic_base_lo);
1667 WREG32(mmTPC0_CMDQ_GLBL_ERR_ADDR_HI + reg_off, gic_base_hi);
1668
1669 WREG32(mmTPC0_CMDQ_GLBL_ERR_WDATA + reg_off,
1670 GOYA_ASYNC_EVENT_ID_TPC0_CMDQ + tpc_id);
1671
1672 WREG32(mmTPC0_CMDQ_GLBL_ERR_CFG + reg_off, CMDQ_TPC_ERR_MSG_EN);
1673
1674 WREG32(mmTPC0_CMDQ_GLBL_PROT + reg_off, CMDQ_TPC_ERR_PROT);
1675
1676 WREG32(mmTPC0_CMDQ_GLBL_CFG0 + reg_off, CMDQ_TPC_ENABLE);
1677 }
1678
1679 void goya_init_tpc_qmans(struct hl_device *hdev)
1680 {
1681 struct goya_device *goya = hdev->asic_specific;
1682 u32 so_base_lo, so_base_hi;
1683 u32 cfg_off = mmTPC1_CFG_SM_BASE_ADDRESS_LOW -
1684 mmTPC0_CFG_SM_BASE_ADDRESS_LOW;
1685 int i;
1686
1687 if (goya->hw_cap_initialized & HW_CAP_TPC)
1688 return;
1689
1690 so_base_lo = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
1691 so_base_hi = upper_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
1692
1693 for (i = 0 ; i < TPC_MAX_NUM ; i++) {
1694 WREG32(mmTPC0_CFG_SM_BASE_ADDRESS_LOW + i * cfg_off,
1695 so_base_lo);
1696 WREG32(mmTPC0_CFG_SM_BASE_ADDRESS_HIGH + i * cfg_off,
1697 so_base_hi);
1698 }
1699
1700 goya_init_tpc_qman(hdev, TPC0_QMAN_BASE_OFFSET, 0);
1701 goya_init_tpc_qman(hdev, TPC1_QMAN_BASE_OFFSET, 1);
1702 goya_init_tpc_qman(hdev, TPC2_QMAN_BASE_OFFSET, 2);
1703 goya_init_tpc_qman(hdev, TPC3_QMAN_BASE_OFFSET, 3);
1704 goya_init_tpc_qman(hdev, TPC4_QMAN_BASE_OFFSET, 4);
1705 goya_init_tpc_qman(hdev, TPC5_QMAN_BASE_OFFSET, 5);
1706 goya_init_tpc_qman(hdev, TPC6_QMAN_BASE_OFFSET, 6);
1707 goya_init_tpc_qman(hdev, TPC7_QMAN_BASE_OFFSET, 7);
1708
1709 for (i = 0 ; i < TPC_MAX_NUM ; i++)
1710 goya_init_tpc_cmdq(hdev, i);
1711
1712 goya->hw_cap_initialized |= HW_CAP_TPC;
1713 }
1714
1715 /*
1716 * goya_disable_internal_queues - Disable internal queues
1717 *
1718 * @hdev: pointer to hl_device structure
1719 *
1720 */
1721 static void goya_disable_internal_queues(struct hl_device *hdev)
1722 {
1723 WREG32(mmMME_QM_GLBL_CFG0, 0);
1724 WREG32(mmMME_CMDQ_GLBL_CFG0, 0);
1725
1726 WREG32(mmTPC0_QM_GLBL_CFG0, 0);
1727 WREG32(mmTPC0_CMDQ_GLBL_CFG0, 0);
1728
1729 WREG32(mmTPC1_QM_GLBL_CFG0, 0);
1730 WREG32(mmTPC1_CMDQ_GLBL_CFG0, 0);
1731
1732 WREG32(mmTPC2_QM_GLBL_CFG0, 0);
1733 WREG32(mmTPC2_CMDQ_GLBL_CFG0, 0);
1734
1735 WREG32(mmTPC3_QM_GLBL_CFG0, 0);
1736 WREG32(mmTPC3_CMDQ_GLBL_CFG0, 0);
1737
1738 WREG32(mmTPC4_QM_GLBL_CFG0, 0);
1739 WREG32(mmTPC4_CMDQ_GLBL_CFG0, 0);
1740
1741 WREG32(mmTPC5_QM_GLBL_CFG0, 0);
1742 WREG32(mmTPC5_CMDQ_GLBL_CFG0, 0);
1743
1744 WREG32(mmTPC6_QM_GLBL_CFG0, 0);
1745 WREG32(mmTPC6_CMDQ_GLBL_CFG0, 0);
1746
1747 WREG32(mmTPC7_QM_GLBL_CFG0, 0);
1748 WREG32(mmTPC7_CMDQ_GLBL_CFG0, 0);
1749 }
1750
1751 /*
1752 * goya_stop_internal_queues - Stop internal queues
1753 *
1754 * @hdev: pointer to hl_device structure
1755 *
1756 * Returns 0 on success
1757 *
1758 */
1759 static int goya_stop_internal_queues(struct hl_device *hdev)
1760 {
1761 int rc, retval = 0;
1762
1763 /*
1764 * Each queue (QMAN) is a separate H/W logic. That means that each
1765 * QMAN can be stopped independently and failure to stop one does NOT
1766 * mandate we should not try to stop other QMANs
1767 */
1768
1769 rc = goya_stop_queue(hdev,
1770 mmMME_QM_GLBL_CFG1,
1771 mmMME_QM_CP_STS,
1772 mmMME_QM_GLBL_STS0);
1773
1774 if (rc) {
1775 dev_err(hdev->dev, "failed to stop MME QMAN\n");
1776 retval = -EIO;
1777 }
1778
1779 rc = goya_stop_queue(hdev,
1780 mmMME_CMDQ_GLBL_CFG1,
1781 mmMME_CMDQ_CP_STS,
1782 mmMME_CMDQ_GLBL_STS0);
1783
1784 if (rc) {
1785 dev_err(hdev->dev, "failed to stop MME CMDQ\n");
1786 retval = -EIO;
1787 }
1788
1789 rc = goya_stop_queue(hdev,
1790 mmTPC0_QM_GLBL_CFG1,
1791 mmTPC0_QM_CP_STS,
1792 mmTPC0_QM_GLBL_STS0);
1793
1794 if (rc) {
1795 dev_err(hdev->dev, "failed to stop TPC 0 QMAN\n");
1796 retval = -EIO;
1797 }
1798
1799 rc = goya_stop_queue(hdev,
1800 mmTPC0_CMDQ_GLBL_CFG1,
1801 mmTPC0_CMDQ_CP_STS,
1802 mmTPC0_CMDQ_GLBL_STS0);
1803
1804 if (rc) {
1805 dev_err(hdev->dev, "failed to stop TPC 0 CMDQ\n");
1806 retval = -EIO;
1807 }
1808
1809 rc = goya_stop_queue(hdev,
1810 mmTPC1_QM_GLBL_CFG1,
1811 mmTPC1_QM_CP_STS,
1812 mmTPC1_QM_GLBL_STS0);
1813
1814 if (rc) {
1815 dev_err(hdev->dev, "failed to stop TPC 1 QMAN\n");
1816 retval = -EIO;
1817 }
1818
1819 rc = goya_stop_queue(hdev,
1820 mmTPC1_CMDQ_GLBL_CFG1,
1821 mmTPC1_CMDQ_CP_STS,
1822 mmTPC1_CMDQ_GLBL_STS0);
1823
1824 if (rc) {
1825 dev_err(hdev->dev, "failed to stop TPC 1 CMDQ\n");
1826 retval = -EIO;
1827 }
1828
1829 rc = goya_stop_queue(hdev,
1830 mmTPC2_QM_GLBL_CFG1,
1831 mmTPC2_QM_CP_STS,
1832 mmTPC2_QM_GLBL_STS0);
1833
1834 if (rc) {
1835 dev_err(hdev->dev, "failed to stop TPC 2 QMAN\n");
1836 retval = -EIO;
1837 }
1838
1839 rc = goya_stop_queue(hdev,
1840 mmTPC2_CMDQ_GLBL_CFG1,
1841 mmTPC2_CMDQ_CP_STS,
1842 mmTPC2_CMDQ_GLBL_STS0);
1843
1844 if (rc) {
1845 dev_err(hdev->dev, "failed to stop TPC 2 CMDQ\n");
1846 retval = -EIO;
1847 }
1848
1849 rc = goya_stop_queue(hdev,
1850 mmTPC3_QM_GLBL_CFG1,
1851 mmTPC3_QM_CP_STS,
1852 mmTPC3_QM_GLBL_STS0);
1853
1854 if (rc) {
1855 dev_err(hdev->dev, "failed to stop TPC 3 QMAN\n");
1856 retval = -EIO;
1857 }
1858
1859 rc = goya_stop_queue(hdev,
1860 mmTPC3_CMDQ_GLBL_CFG1,
1861 mmTPC3_CMDQ_CP_STS,
1862 mmTPC3_CMDQ_GLBL_STS0);
1863
1864 if (rc) {
1865 dev_err(hdev->dev, "failed to stop TPC 3 CMDQ\n");
1866 retval = -EIO;
1867 }
1868
1869 rc = goya_stop_queue(hdev,
1870 mmTPC4_QM_GLBL_CFG1,
1871 mmTPC4_QM_CP_STS,
1872 mmTPC4_QM_GLBL_STS0);
1873
1874 if (rc) {
1875 dev_err(hdev->dev, "failed to stop TPC 4 QMAN\n");
1876 retval = -EIO;
1877 }
1878
1879 rc = goya_stop_queue(hdev,
1880 mmTPC4_CMDQ_GLBL_CFG1,
1881 mmTPC4_CMDQ_CP_STS,
1882 mmTPC4_CMDQ_GLBL_STS0);
1883
1884 if (rc) {
1885 dev_err(hdev->dev, "failed to stop TPC 4 CMDQ\n");
1886 retval = -EIO;
1887 }
1888
1889 rc = goya_stop_queue(hdev,
1890 mmTPC5_QM_GLBL_CFG1,
1891 mmTPC5_QM_CP_STS,
1892 mmTPC5_QM_GLBL_STS0);
1893
1894 if (rc) {
1895 dev_err(hdev->dev, "failed to stop TPC 5 QMAN\n");
1896 retval = -EIO;
1897 }
1898
1899 rc = goya_stop_queue(hdev,
1900 mmTPC5_CMDQ_GLBL_CFG1,
1901 mmTPC5_CMDQ_CP_STS,
1902 mmTPC5_CMDQ_GLBL_STS0);
1903
1904 if (rc) {
1905 dev_err(hdev->dev, "failed to stop TPC 5 CMDQ\n");
1906 retval = -EIO;
1907 }
1908
1909 rc = goya_stop_queue(hdev,
1910 mmTPC6_QM_GLBL_CFG1,
1911 mmTPC6_QM_CP_STS,
1912 mmTPC6_QM_GLBL_STS0);
1913
1914 if (rc) {
1915 dev_err(hdev->dev, "failed to stop TPC 6 QMAN\n");
1916 retval = -EIO;
1917 }
1918
1919 rc = goya_stop_queue(hdev,
1920 mmTPC6_CMDQ_GLBL_CFG1,
1921 mmTPC6_CMDQ_CP_STS,
1922 mmTPC6_CMDQ_GLBL_STS0);
1923
1924 if (rc) {
1925 dev_err(hdev->dev, "failed to stop TPC 6 CMDQ\n");
1926 retval = -EIO;
1927 }
1928
1929 rc = goya_stop_queue(hdev,
1930 mmTPC7_QM_GLBL_CFG1,
1931 mmTPC7_QM_CP_STS,
1932 mmTPC7_QM_GLBL_STS0);
1933
1934 if (rc) {
1935 dev_err(hdev->dev, "failed to stop TPC 7 QMAN\n");
1936 retval = -EIO;
1937 }
1938
1939 rc = goya_stop_queue(hdev,
1940 mmTPC7_CMDQ_GLBL_CFG1,
1941 mmTPC7_CMDQ_CP_STS,
1942 mmTPC7_CMDQ_GLBL_STS0);
1943
1944 if (rc) {
1945 dev_err(hdev->dev, "failed to stop TPC 7 CMDQ\n");
1946 retval = -EIO;
1947 }
1948
1949 return retval;
1950 }
1951
1952 static void goya_dma_stall(struct hl_device *hdev)
1953 {
1954 WREG32(mmDMA_QM_0_GLBL_CFG1, 1 << DMA_QM_0_GLBL_CFG1_DMA_STOP_SHIFT);
1955 WREG32(mmDMA_QM_1_GLBL_CFG1, 1 << DMA_QM_1_GLBL_CFG1_DMA_STOP_SHIFT);
1956 WREG32(mmDMA_QM_2_GLBL_CFG1, 1 << DMA_QM_2_GLBL_CFG1_DMA_STOP_SHIFT);
1957 WREG32(mmDMA_QM_3_GLBL_CFG1, 1 << DMA_QM_3_GLBL_CFG1_DMA_STOP_SHIFT);
1958 WREG32(mmDMA_QM_4_GLBL_CFG1, 1 << DMA_QM_4_GLBL_CFG1_DMA_STOP_SHIFT);
1959 }
1960
1961 static void goya_tpc_stall(struct hl_device *hdev)
1962 {
1963 WREG32(mmTPC0_CFG_TPC_STALL, 1 << TPC0_CFG_TPC_STALL_V_SHIFT);
1964 WREG32(mmTPC1_CFG_TPC_STALL, 1 << TPC1_CFG_TPC_STALL_V_SHIFT);
1965 WREG32(mmTPC2_CFG_TPC_STALL, 1 << TPC2_CFG_TPC_STALL_V_SHIFT);
1966 WREG32(mmTPC3_CFG_TPC_STALL, 1 << TPC3_CFG_TPC_STALL_V_SHIFT);
1967 WREG32(mmTPC4_CFG_TPC_STALL, 1 << TPC4_CFG_TPC_STALL_V_SHIFT);
1968 WREG32(mmTPC5_CFG_TPC_STALL, 1 << TPC5_CFG_TPC_STALL_V_SHIFT);
1969 WREG32(mmTPC6_CFG_TPC_STALL, 1 << TPC6_CFG_TPC_STALL_V_SHIFT);
1970 WREG32(mmTPC7_CFG_TPC_STALL, 1 << TPC7_CFG_TPC_STALL_V_SHIFT);
1971 }
1972
1973 static void goya_mme_stall(struct hl_device *hdev)
1974 {
1975 WREG32(mmMME_STALL, 0xFFFFFFFF);
1976 }
1977
1978 static int goya_enable_msix(struct hl_device *hdev)
1979 {
1980 struct goya_device *goya = hdev->asic_specific;
1981 int cq_cnt = hdev->asic_prop.completion_queues_count;
1982 int rc, i, irq_cnt_init, irq;
1983
1984 if (goya->hw_cap_initialized & HW_CAP_MSIX)
1985 return 0;
1986
1987 rc = pci_alloc_irq_vectors(hdev->pdev, GOYA_MSIX_ENTRIES,
1988 GOYA_MSIX_ENTRIES, PCI_IRQ_MSIX);
1989 if (rc < 0) {
1990 dev_err(hdev->dev,
1991 "MSI-X: Failed to enable support -- %d/%d\n",
1992 GOYA_MSIX_ENTRIES, rc);
1993 return rc;
1994 }
1995
1996 for (i = 0, irq_cnt_init = 0 ; i < cq_cnt ; i++, irq_cnt_init++) {
1997 irq = pci_irq_vector(hdev->pdev, i);
1998 rc = request_irq(irq, hl_irq_handler_cq, 0, goya_irq_name[i],
1999 &hdev->completion_queue[i]);
2000 if (rc) {
2001 dev_err(hdev->dev, "Failed to request IRQ %d", irq);
2002 goto free_irqs;
2003 }
2004 }
2005
2006 irq = pci_irq_vector(hdev->pdev, GOYA_EVENT_QUEUE_MSIX_IDX);
2007
2008 rc = request_irq(irq, hl_irq_handler_eq, 0,
2009 goya_irq_name[GOYA_EVENT_QUEUE_MSIX_IDX],
2010 &hdev->event_queue);
2011 if (rc) {
2012 dev_err(hdev->dev, "Failed to request IRQ %d", irq);
2013 goto free_irqs;
2014 }
2015
2016 goya->hw_cap_initialized |= HW_CAP_MSIX;
2017 return 0;
2018
2019 free_irqs:
2020 for (i = 0 ; i < irq_cnt_init ; i++)
2021 free_irq(pci_irq_vector(hdev->pdev, i),
2022 &hdev->completion_queue[i]);
2023
2024 pci_free_irq_vectors(hdev->pdev);
2025 return rc;
2026 }
2027
2028 static void goya_sync_irqs(struct hl_device *hdev)
2029 {
2030 struct goya_device *goya = hdev->asic_specific;
2031 int i;
2032
2033 if (!(goya->hw_cap_initialized & HW_CAP_MSIX))
2034 return;
2035
2036 /* Wait for all pending IRQs to be finished */
2037 for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
2038 synchronize_irq(pci_irq_vector(hdev->pdev, i));
2039
2040 synchronize_irq(pci_irq_vector(hdev->pdev, GOYA_EVENT_QUEUE_MSIX_IDX));
2041 }
2042
2043 static void goya_disable_msix(struct hl_device *hdev)
2044 {
2045 struct goya_device *goya = hdev->asic_specific;
2046 int i, irq;
2047
2048 if (!(goya->hw_cap_initialized & HW_CAP_MSIX))
2049 return;
2050
2051 goya_sync_irqs(hdev);
2052
2053 irq = pci_irq_vector(hdev->pdev, GOYA_EVENT_QUEUE_MSIX_IDX);
2054 free_irq(irq, &hdev->event_queue);
2055
2056 for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) {
2057 irq = pci_irq_vector(hdev->pdev, i);
2058 free_irq(irq, &hdev->completion_queue[i]);
2059 }
2060
2061 pci_free_irq_vectors(hdev->pdev);
2062
2063 goya->hw_cap_initialized &= ~HW_CAP_MSIX;
2064 }
2065
2066 static void goya_halt_engines(struct hl_device *hdev, bool hard_reset)
2067 {
2068 u32 wait_timeout_ms, cpu_timeout_ms;
2069
2070 dev_info(hdev->dev,
2071 "Halting compute engines and disabling interrupts\n");
2072
2073 if (hdev->pldm) {
2074 wait_timeout_ms = GOYA_PLDM_RESET_WAIT_MSEC;
2075 cpu_timeout_ms = GOYA_PLDM_RESET_WAIT_MSEC;
2076 } else {
2077 wait_timeout_ms = GOYA_RESET_WAIT_MSEC;
2078 cpu_timeout_ms = GOYA_CPU_RESET_WAIT_MSEC;
2079 }
2080
2081 if (hard_reset) {
2082 /*
2083 * I don't know what is the state of the CPU so make sure it is
2084 * stopped in any means necessary
2085 */
2086 WREG32(mmPSOC_GLOBAL_CONF_UBOOT_MAGIC, KMD_MSG_GOTO_WFE);
2087 WREG32(mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR,
2088 GOYA_ASYNC_EVENT_ID_HALT_MACHINE);
2089 msleep(cpu_timeout_ms);
2090 }
2091
2092 goya_stop_external_queues(hdev);
2093 goya_stop_internal_queues(hdev);
2094
2095 msleep(wait_timeout_ms);
2096
2097 goya_dma_stall(hdev);
2098 goya_tpc_stall(hdev);
2099 goya_mme_stall(hdev);
2100
2101 msleep(wait_timeout_ms);
2102
2103 goya_disable_external_queues(hdev);
2104 goya_disable_internal_queues(hdev);
2105
2106 if (hard_reset) {
2107 goya_disable_msix(hdev);
2108 goya_mmu_remove_device_cpu_mappings(hdev);
2109 } else {
2110 goya_sync_irqs(hdev);
2111 }
2112 }
2113
2114 /*
2115 * goya_push_uboot_to_device() - Push u-boot FW code to device.
2116 * @hdev: Pointer to hl_device structure.
2117 *
2118 * Copy u-boot fw code from firmware file to SRAM BAR.
2119 *
2120 * Return: 0 on success, non-zero for failure.
2121 */
2122 static int goya_push_uboot_to_device(struct hl_device *hdev)
2123 {
2124 char fw_name[200];
2125 void __iomem *dst;
2126
2127 snprintf(fw_name, sizeof(fw_name), "habanalabs/goya/goya-u-boot.bin");
2128 dst = hdev->pcie_bar[SRAM_CFG_BAR_ID] + UBOOT_FW_OFFSET;
2129
2130 return hl_fw_push_fw_to_device(hdev, fw_name, dst);
2131 }
2132
2133 /*
2134 * goya_push_linux_to_device() - Push LINUX FW code to device.
2135 * @hdev: Pointer to hl_device structure.
2136 *
2137 * Copy LINUX fw code from firmware file to HBM BAR.
2138 *
2139 * Return: 0 on success, non-zero for failure.
2140 */
2141 static int goya_push_linux_to_device(struct hl_device *hdev)
2142 {
2143 char fw_name[200];
2144 void __iomem *dst;
2145
2146 snprintf(fw_name, sizeof(fw_name), "habanalabs/goya/goya-fit.itb");
2147 dst = hdev->pcie_bar[DDR_BAR_ID] + LINUX_FW_OFFSET;
2148
2149 return hl_fw_push_fw_to_device(hdev, fw_name, dst);
2150 }
2151
2152 static int goya_pldm_init_cpu(struct hl_device *hdev)
2153 {
2154 u32 val, unit_rst_val;
2155 int rc;
2156
2157 /* Must initialize SRAM scrambler before pushing u-boot to SRAM */
2158 goya_init_golden_registers(hdev);
2159
2160 /* Put ARM cores into reset */
2161 WREG32(mmCPU_CA53_CFG_ARM_RST_CONTROL, CPU_RESET_ASSERT);
2162 val = RREG32(mmCPU_CA53_CFG_ARM_RST_CONTROL);
2163
2164 /* Reset the CA53 MACRO */
2165 unit_rst_val = RREG32(mmPSOC_GLOBAL_CONF_UNIT_RST_N);
2166 WREG32(mmPSOC_GLOBAL_CONF_UNIT_RST_N, CA53_RESET);
2167 val = RREG32(mmPSOC_GLOBAL_CONF_UNIT_RST_N);
2168 WREG32(mmPSOC_GLOBAL_CONF_UNIT_RST_N, unit_rst_val);
2169 val = RREG32(mmPSOC_GLOBAL_CONF_UNIT_RST_N);
2170
2171 rc = goya_push_uboot_to_device(hdev);
2172 if (rc)
2173 return rc;
2174
2175 rc = goya_push_linux_to_device(hdev);
2176 if (rc)
2177 return rc;
2178
2179 WREG32(mmPSOC_GLOBAL_CONF_UBOOT_MAGIC, KMD_MSG_FIT_RDY);
2180 WREG32(mmPSOC_GLOBAL_CONF_WARM_REBOOT, CPU_BOOT_STATUS_NA);
2181
2182 WREG32(mmCPU_CA53_CFG_RST_ADDR_LSB_0,
2183 lower_32_bits(SRAM_BASE_ADDR + UBOOT_FW_OFFSET));
2184 WREG32(mmCPU_CA53_CFG_RST_ADDR_MSB_0,
2185 upper_32_bits(SRAM_BASE_ADDR + UBOOT_FW_OFFSET));
2186
2187 /* Release ARM core 0 from reset */
2188 WREG32(mmCPU_CA53_CFG_ARM_RST_CONTROL,
2189 CPU_RESET_CORE0_DEASSERT);
2190 val = RREG32(mmCPU_CA53_CFG_ARM_RST_CONTROL);
2191
2192 return 0;
2193 }
2194
2195 /*
2196 * FW component passes an offset from SRAM_BASE_ADDR in SCRATCHPAD_xx.
2197 * The version string should be located by that offset.
2198 */
2199 static void goya_read_device_fw_version(struct hl_device *hdev,
2200 enum goya_fw_component fwc)
2201 {
2202 const char *name;
2203 u32 ver_off;
2204 char *dest;
2205
2206 switch (fwc) {
2207 case FW_COMP_UBOOT:
2208 ver_off = RREG32(mmPSOC_GLOBAL_CONF_SCRATCHPAD_29);
2209 dest = hdev->asic_prop.uboot_ver;
2210 name = "U-Boot";
2211 break;
2212 case FW_COMP_PREBOOT:
2213 ver_off = RREG32(mmPSOC_GLOBAL_CONF_SCRATCHPAD_28);
2214 dest = hdev->asic_prop.preboot_ver;
2215 name = "Preboot";
2216 break;
2217 default:
2218 dev_warn(hdev->dev, "Undefined FW component: %d\n", fwc);
2219 return;
2220 }
2221
2222 ver_off &= ~((u32)SRAM_BASE_ADDR);
2223
2224 if (ver_off < SRAM_SIZE - VERSION_MAX_LEN) {
2225 memcpy_fromio(dest, hdev->pcie_bar[SRAM_CFG_BAR_ID] + ver_off,
2226 VERSION_MAX_LEN);
2227 } else {
2228 dev_err(hdev->dev, "%s version offset (0x%x) is above SRAM\n",
2229 name, ver_off);
2230 strcpy(dest, "unavailable");
2231 }
2232 }
2233
2234 static int goya_init_cpu(struct hl_device *hdev, u32 cpu_timeout)
2235 {
2236 struct goya_device *goya = hdev->asic_specific;
2237 u32 status;
2238 int rc;
2239
2240 if (!hdev->cpu_enable)
2241 return 0;
2242
2243 if (goya->hw_cap_initialized & HW_CAP_CPU)
2244 return 0;
2245
2246 /*
2247 * Before pushing u-boot/linux to device, need to set the ddr bar to
2248 * base address of dram
2249 */
2250 if (goya_set_ddr_bar_base(hdev, DRAM_PHYS_BASE) == U64_MAX) {
2251 dev_err(hdev->dev,
2252 "failed to map DDR bar to DRAM base address\n");
2253 return -EIO;
2254 }
2255
2256 if (hdev->pldm) {
2257 rc = goya_pldm_init_cpu(hdev);
2258 if (rc)
2259 return rc;
2260
2261 goto out;
2262 }
2263
2264 /* Make sure CPU boot-loader is running */
2265 rc = hl_poll_timeout(
2266 hdev,
2267 mmPSOC_GLOBAL_CONF_WARM_REBOOT,
2268 status,
2269 (status == CPU_BOOT_STATUS_DRAM_RDY) ||
2270 (status == CPU_BOOT_STATUS_SRAM_AVAIL),
2271 10000,
2272 cpu_timeout);
2273
2274 if (rc) {
2275 dev_err(hdev->dev, "Error in ARM u-boot!");
2276 switch (status) {
2277 case CPU_BOOT_STATUS_NA:
2278 dev_err(hdev->dev,
2279 "ARM status %d - BTL did NOT run\n", status);
2280 break;
2281 case CPU_BOOT_STATUS_IN_WFE:
2282 dev_err(hdev->dev,
2283 "ARM status %d - Inside WFE loop\n", status);
2284 break;
2285 case CPU_BOOT_STATUS_IN_BTL:
2286 dev_err(hdev->dev,
2287 "ARM status %d - Stuck in BTL\n", status);
2288 break;
2289 case CPU_BOOT_STATUS_IN_PREBOOT:
2290 dev_err(hdev->dev,
2291 "ARM status %d - Stuck in Preboot\n", status);
2292 break;
2293 case CPU_BOOT_STATUS_IN_SPL:
2294 dev_err(hdev->dev,
2295 "ARM status %d - Stuck in SPL\n", status);
2296 break;
2297 case CPU_BOOT_STATUS_IN_UBOOT:
2298 dev_err(hdev->dev,
2299 "ARM status %d - Stuck in u-boot\n", status);
2300 break;
2301 case CPU_BOOT_STATUS_DRAM_INIT_FAIL:
2302 dev_err(hdev->dev,
2303 "ARM status %d - DDR initialization failed\n",
2304 status);
2305 break;
2306 case CPU_BOOT_STATUS_UBOOT_NOT_READY:
2307 dev_err(hdev->dev,
2308 "ARM status %d - u-boot stopped by user\n",
2309 status);
2310 break;
2311 default:
2312 dev_err(hdev->dev,
2313 "ARM status %d - Invalid status code\n",
2314 status);
2315 break;
2316 }
2317 return -EIO;
2318 }
2319
2320 /* Read U-Boot version now in case we will later fail */
2321 goya_read_device_fw_version(hdev, FW_COMP_UBOOT);
2322 goya_read_device_fw_version(hdev, FW_COMP_PREBOOT);
2323
2324 if (!hdev->fw_loading) {
2325 dev_info(hdev->dev, "Skip loading FW\n");
2326 goto out;
2327 }
2328
2329 if (status == CPU_BOOT_STATUS_SRAM_AVAIL)
2330 goto out;
2331
2332 rc = goya_push_linux_to_device(hdev);
2333 if (rc)
2334 return rc;
2335
2336 WREG32(mmPSOC_GLOBAL_CONF_UBOOT_MAGIC, KMD_MSG_FIT_RDY);
2337
2338 rc = hl_poll_timeout(
2339 hdev,
2340 mmPSOC_GLOBAL_CONF_WARM_REBOOT,
2341 status,
2342 (status == CPU_BOOT_STATUS_SRAM_AVAIL),
2343 10000,
2344 cpu_timeout);
2345
2346 if (rc) {
2347 if (status == CPU_BOOT_STATUS_FIT_CORRUPTED)
2348 dev_err(hdev->dev,
2349 "ARM u-boot reports FIT image is corrupted\n");
2350 else
2351 dev_err(hdev->dev,
2352 "ARM Linux failed to load, %d\n", status);
2353 WREG32(mmPSOC_GLOBAL_CONF_UBOOT_MAGIC, KMD_MSG_NA);
2354 return -EIO;
2355 }
2356
2357 dev_info(hdev->dev, "Successfully loaded firmware to device\n");
2358
2359 out:
2360 goya->hw_cap_initialized |= HW_CAP_CPU;
2361
2362 return 0;
2363 }
2364
2365 static int goya_mmu_update_asid_hop0_addr(struct hl_device *hdev, u32 asid,
2366 u64 phys_addr)
2367 {
2368 u32 status, timeout_usec;
2369 int rc;
2370
2371 if (hdev->pldm)
2372 timeout_usec = GOYA_PLDM_MMU_TIMEOUT_USEC;
2373 else
2374 timeout_usec = MMU_CONFIG_TIMEOUT_USEC;
2375
2376 WREG32(MMU_HOP0_PA43_12, phys_addr >> MMU_HOP0_PA43_12_SHIFT);
2377 WREG32(MMU_HOP0_PA49_44, phys_addr >> MMU_HOP0_PA49_44_SHIFT);
2378 WREG32(MMU_ASID_BUSY, 0x80000000 | asid);
2379
2380 rc = hl_poll_timeout(
2381 hdev,
2382 MMU_ASID_BUSY,
2383 status,
2384 !(status & 0x80000000),
2385 1000,
2386 timeout_usec);
2387
2388 if (rc) {
2389 dev_err(hdev->dev,
2390 "Timeout during MMU hop0 config of asid %d\n", asid);
2391 return rc;
2392 }
2393
2394 return 0;
2395 }
2396
2397 int goya_mmu_init(struct hl_device *hdev)
2398 {
2399 struct asic_fixed_properties *prop = &hdev->asic_prop;
2400 struct goya_device *goya = hdev->asic_specific;
2401 u64 hop0_addr;
2402 int rc, i;
2403
2404 if (!hdev->mmu_enable)
2405 return 0;
2406
2407 if (goya->hw_cap_initialized & HW_CAP_MMU)
2408 return 0;
2409
2410 hdev->dram_supports_virtual_memory = true;
2411 hdev->dram_default_page_mapping = true;
2412
2413 for (i = 0 ; i < prop->max_asid ; i++) {
2414 hop0_addr = prop->mmu_pgt_addr +
2415 (i * prop->mmu_hop_table_size);
2416
2417 rc = goya_mmu_update_asid_hop0_addr(hdev, i, hop0_addr);
2418 if (rc) {
2419 dev_err(hdev->dev,
2420 "failed to set hop0 addr for asid %d\n", i);
2421 goto err;
2422 }
2423 }
2424
2425 goya->hw_cap_initialized |= HW_CAP_MMU;
2426
2427 /* init MMU cache manage page */
2428 WREG32(mmSTLB_CACHE_INV_BASE_39_8,
2429 lower_32_bits(MMU_CACHE_MNG_ADDR >> 8));
2430 WREG32(mmSTLB_CACHE_INV_BASE_49_40, MMU_CACHE_MNG_ADDR >> 40);
2431
2432 /* Remove follower feature due to performance bug */
2433 WREG32_AND(mmSTLB_STLB_FEATURE_EN,
2434 (~STLB_STLB_FEATURE_EN_FOLLOWER_EN_MASK));
2435
2436 hdev->asic_funcs->mmu_invalidate_cache(hdev, true);
2437
2438 WREG32(mmMMU_MMU_ENABLE, 1);
2439 WREG32(mmMMU_SPI_MASK, 0xF);
2440
2441 return 0;
2442
2443 err:
2444 return rc;
2445 }
2446
2447 /*
2448 * goya_hw_init - Goya hardware initialization code
2449 *
2450 * @hdev: pointer to hl_device structure
2451 *
2452 * Returns 0 on success
2453 *
2454 */
2455 static int goya_hw_init(struct hl_device *hdev)
2456 {
2457 struct asic_fixed_properties *prop = &hdev->asic_prop;
2458 u32 val;
2459 int rc;
2460
2461 dev_info(hdev->dev, "Starting initialization of H/W\n");
2462
2463 /* Perform read from the device to make sure device is up */
2464 val = RREG32(mmPCIE_DBI_DEVICE_ID_VENDOR_ID_REG);
2465
2466 /*
2467 * Let's mark in the H/W that we have reached this point. We check
2468 * this value in the reset_before_init function to understand whether
2469 * we need to reset the chip before doing H/W init. This register is
2470 * cleared by the H/W upon H/W reset
2471 */
2472 WREG32(mmPSOC_GLOBAL_CONF_APP_STATUS, HL_DEVICE_HW_STATE_DIRTY);
2473
2474 rc = goya_init_cpu(hdev, GOYA_CPU_TIMEOUT_USEC);
2475 if (rc) {
2476 dev_err(hdev->dev, "failed to initialize CPU\n");
2477 return rc;
2478 }
2479
2480 goya_tpc_mbist_workaround(hdev);
2481
2482 goya_init_golden_registers(hdev);
2483
2484 /*
2485 * After CPU initialization is finished, change DDR bar mapping inside
2486 * iATU to point to the start address of the MMU page tables
2487 */
2488 if (goya_set_ddr_bar_base(hdev, DRAM_PHYS_BASE +
2489 (MMU_PAGE_TABLES_ADDR &
2490 ~(prop->dram_pci_bar_size - 0x1ull))) == U64_MAX) {
2491 dev_err(hdev->dev,
2492 "failed to map DDR bar to MMU page tables\n");
2493 return -EIO;
2494 }
2495
2496 rc = goya_mmu_init(hdev);
2497 if (rc)
2498 return rc;
2499
2500 goya_init_security(hdev);
2501
2502 goya_init_dma_qmans(hdev);
2503
2504 goya_init_mme_qmans(hdev);
2505
2506 goya_init_tpc_qmans(hdev);
2507
2508 /* MSI-X must be enabled before CPU queues are initialized */
2509 rc = goya_enable_msix(hdev);
2510 if (rc)
2511 goto disable_queues;
2512
2513 /* Perform read from the device to flush all MSI-X configuration */
2514 val = RREG32(mmPCIE_DBI_DEVICE_ID_VENDOR_ID_REG);
2515
2516 return 0;
2517
2518 disable_queues:
2519 goya_disable_internal_queues(hdev);
2520 goya_disable_external_queues(hdev);
2521
2522 return rc;
2523 }
2524
2525 /*
2526 * goya_hw_fini - Goya hardware tear-down code
2527 *
2528 * @hdev: pointer to hl_device structure
2529 * @hard_reset: should we do hard reset to all engines or just reset the
2530 * compute/dma engines
2531 */
2532 static void goya_hw_fini(struct hl_device *hdev, bool hard_reset)
2533 {
2534 struct goya_device *goya = hdev->asic_specific;
2535 u32 reset_timeout_ms, status;
2536
2537 if (hdev->pldm)
2538 reset_timeout_ms = GOYA_PLDM_RESET_TIMEOUT_MSEC;
2539 else
2540 reset_timeout_ms = GOYA_RESET_TIMEOUT_MSEC;
2541
2542 if (hard_reset) {
2543 goya_set_ddr_bar_base(hdev, DRAM_PHYS_BASE);
2544 goya_disable_clk_rlx(hdev);
2545 goya_set_pll_refclk(hdev);
2546
2547 WREG32(mmPSOC_GLOBAL_CONF_SW_ALL_RST_CFG, RESET_ALL);
2548 dev_info(hdev->dev,
2549 "Issued HARD reset command, going to wait %dms\n",
2550 reset_timeout_ms);
2551 } else {
2552 WREG32(mmPSOC_GLOBAL_CONF_SW_ALL_RST_CFG, DMA_MME_TPC_RESET);
2553 dev_info(hdev->dev,
2554 "Issued SOFT reset command, going to wait %dms\n",
2555 reset_timeout_ms);
2556 }
2557
2558 /*
2559 * After hard reset, we can't poll the BTM_FSM register because the PSOC
2560 * itself is in reset. In either reset we need to wait until the reset
2561 * is deasserted
2562 */
2563 msleep(reset_timeout_ms);
2564
2565 status = RREG32(mmPSOC_GLOBAL_CONF_BTM_FSM);
2566 if (status & PSOC_GLOBAL_CONF_BTM_FSM_STATE_MASK)
2567 dev_err(hdev->dev,
2568 "Timeout while waiting for device to reset 0x%x\n",
2569 status);
2570
2571 if (!hard_reset) {
2572 goya->hw_cap_initialized &= ~(HW_CAP_DMA | HW_CAP_MME |
2573 HW_CAP_GOLDEN | HW_CAP_TPC);
2574 WREG32(mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR,
2575 GOYA_ASYNC_EVENT_ID_SOFT_RESET);
2576 return;
2577 }
2578
2579 /* Chicken bit to re-initiate boot sequencer flow */
2580 WREG32(mmPSOC_GLOBAL_CONF_BOOT_SEQ_RE_START,
2581 1 << PSOC_GLOBAL_CONF_BOOT_SEQ_RE_START_IND_SHIFT);
2582 /* Move boot manager FSM to pre boot sequencer init state */
2583 WREG32(mmPSOC_GLOBAL_CONF_SW_BTM_FSM,
2584 0xA << PSOC_GLOBAL_CONF_SW_BTM_FSM_CTRL_SHIFT);
2585
2586 goya->hw_cap_initialized &= ~(HW_CAP_CPU | HW_CAP_CPU_Q |
2587 HW_CAP_DDR_0 | HW_CAP_DDR_1 |
2588 HW_CAP_DMA | HW_CAP_MME |
2589 HW_CAP_MMU | HW_CAP_TPC_MBIST |
2590 HW_CAP_GOLDEN | HW_CAP_TPC);
2591 memset(goya->events_stat, 0, sizeof(goya->events_stat));
2592
2593 if (!hdev->pldm) {
2594 int rc;
2595 /* In case we are running inside VM and the VM is
2596 * shutting down, we need to make sure CPU boot-loader
2597 * is running before we can continue the VM shutdown.
2598 * That is because the VM will send an FLR signal that
2599 * we must answer
2600 */
2601 dev_info(hdev->dev,
2602 "Going to wait up to %ds for CPU boot loader\n",
2603 GOYA_CPU_TIMEOUT_USEC / 1000 / 1000);
2604
2605 rc = hl_poll_timeout(
2606 hdev,
2607 mmPSOC_GLOBAL_CONF_WARM_REBOOT,
2608 status,
2609 (status == CPU_BOOT_STATUS_DRAM_RDY),
2610 10000,
2611 GOYA_CPU_TIMEOUT_USEC);
2612 if (rc)
2613 dev_err(hdev->dev,
2614 "failed to wait for CPU boot loader\n");
2615 }
2616 }
2617
2618 int goya_suspend(struct hl_device *hdev)
2619 {
2620 int rc;
2621
2622 rc = hl_fw_send_pci_access_msg(hdev, ARMCP_PACKET_DISABLE_PCI_ACCESS);
2623 if (rc)
2624 dev_err(hdev->dev, "Failed to disable PCI access from CPU\n");
2625
2626 return rc;
2627 }
2628
2629 int goya_resume(struct hl_device *hdev)
2630 {
2631 return goya_init_iatu(hdev);
2632 }
2633
2634 static int goya_cb_mmap(struct hl_device *hdev, struct vm_area_struct *vma,
2635 u64 kaddress, phys_addr_t paddress, u32 size)
2636 {
2637 int rc;
2638
2639 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP |
2640 VM_DONTCOPY | VM_NORESERVE;
2641
2642 rc = remap_pfn_range(vma, vma->vm_start, paddress >> PAGE_SHIFT,
2643 size, vma->vm_page_prot);
2644 if (rc)
2645 dev_err(hdev->dev, "remap_pfn_range error %d", rc);
2646
2647 return rc;
2648 }
2649
2650 void goya_ring_doorbell(struct hl_device *hdev, u32 hw_queue_id, u32 pi)
2651 {
2652 u32 db_reg_offset, db_value;
2653
2654 switch (hw_queue_id) {
2655 case GOYA_QUEUE_ID_DMA_0:
2656 db_reg_offset = mmDMA_QM_0_PQ_PI;
2657 break;
2658
2659 case GOYA_QUEUE_ID_DMA_1:
2660 db_reg_offset = mmDMA_QM_1_PQ_PI;
2661 break;
2662
2663 case GOYA_QUEUE_ID_DMA_2:
2664 db_reg_offset = mmDMA_QM_2_PQ_PI;
2665 break;
2666
2667 case GOYA_QUEUE_ID_DMA_3:
2668 db_reg_offset = mmDMA_QM_3_PQ_PI;
2669 break;
2670
2671 case GOYA_QUEUE_ID_DMA_4:
2672 db_reg_offset = mmDMA_QM_4_PQ_PI;
2673 break;
2674
2675 case GOYA_QUEUE_ID_CPU_PQ:
2676 db_reg_offset = mmCPU_IF_PF_PQ_PI;
2677 break;
2678
2679 case GOYA_QUEUE_ID_MME:
2680 db_reg_offset = mmMME_QM_PQ_PI;
2681 break;
2682
2683 case GOYA_QUEUE_ID_TPC0:
2684 db_reg_offset = mmTPC0_QM_PQ_PI;
2685 break;
2686
2687 case GOYA_QUEUE_ID_TPC1:
2688 db_reg_offset = mmTPC1_QM_PQ_PI;
2689 break;
2690
2691 case GOYA_QUEUE_ID_TPC2:
2692 db_reg_offset = mmTPC2_QM_PQ_PI;
2693 break;
2694
2695 case GOYA_QUEUE_ID_TPC3:
2696 db_reg_offset = mmTPC3_QM_PQ_PI;
2697 break;
2698
2699 case GOYA_QUEUE_ID_TPC4:
2700 db_reg_offset = mmTPC4_QM_PQ_PI;
2701 break;
2702
2703 case GOYA_QUEUE_ID_TPC5:
2704 db_reg_offset = mmTPC5_QM_PQ_PI;
2705 break;
2706
2707 case GOYA_QUEUE_ID_TPC6:
2708 db_reg_offset = mmTPC6_QM_PQ_PI;
2709 break;
2710
2711 case GOYA_QUEUE_ID_TPC7:
2712 db_reg_offset = mmTPC7_QM_PQ_PI;
2713 break;
2714
2715 default:
2716 /* Should never get here */
2717 dev_err(hdev->dev, "H/W queue %d is invalid. Can't set pi\n",
2718 hw_queue_id);
2719 return;
2720 }
2721
2722 db_value = pi;
2723
2724 /* ring the doorbell */
2725 WREG32(db_reg_offset, db_value);
2726
2727 if (hw_queue_id == GOYA_QUEUE_ID_CPU_PQ)
2728 WREG32(mmGIC_DISTRIBUTOR__5_GICD_SETSPI_NSR,
2729 GOYA_ASYNC_EVENT_ID_PI_UPDATE);
2730 }
2731
2732 void goya_flush_pq_write(struct hl_device *hdev, u64 *pq, u64 exp_val)
2733 {
2734 /* Not needed in Goya */
2735 }
2736
2737 static void *goya_dma_alloc_coherent(struct hl_device *hdev, size_t size,
2738 dma_addr_t *dma_handle, gfp_t flags)
2739 {
2740 void *kernel_addr = dma_alloc_coherent(&hdev->pdev->dev, size,
2741 dma_handle, flags);
2742
2743 /* Shift to the device's base physical address of host memory */
2744 if (kernel_addr)
2745 *dma_handle += HOST_PHYS_BASE;
2746
2747 return kernel_addr;
2748 }
2749
2750 static void goya_dma_free_coherent(struct hl_device *hdev, size_t size,
2751 void *cpu_addr, dma_addr_t dma_handle)
2752 {
2753 /* Cancel the device's base physical address of host memory */
2754 dma_addr_t fixed_dma_handle = dma_handle - HOST_PHYS_BASE;
2755
2756 dma_free_coherent(&hdev->pdev->dev, size, cpu_addr, fixed_dma_handle);
2757 }
2758
2759 void *goya_get_int_queue_base(struct hl_device *hdev, u32 queue_id,
2760 dma_addr_t *dma_handle, u16 *queue_len)
2761 {
2762 void *base;
2763 u32 offset;
2764
2765 *dma_handle = hdev->asic_prop.sram_base_address;
2766
2767 base = (void *) hdev->pcie_bar[SRAM_CFG_BAR_ID];
2768
2769 switch (queue_id) {
2770 case GOYA_QUEUE_ID_MME:
2771 offset = MME_QMAN_BASE_OFFSET;
2772 *queue_len = MME_QMAN_LENGTH;
2773 break;
2774 case GOYA_QUEUE_ID_TPC0:
2775 offset = TPC0_QMAN_BASE_OFFSET;
2776 *queue_len = TPC_QMAN_LENGTH;
2777 break;
2778 case GOYA_QUEUE_ID_TPC1:
2779 offset = TPC1_QMAN_BASE_OFFSET;
2780 *queue_len = TPC_QMAN_LENGTH;
2781 break;
2782 case GOYA_QUEUE_ID_TPC2:
2783 offset = TPC2_QMAN_BASE_OFFSET;
2784 *queue_len = TPC_QMAN_LENGTH;
2785 break;
2786 case GOYA_QUEUE_ID_TPC3:
2787 offset = TPC3_QMAN_BASE_OFFSET;
2788 *queue_len = TPC_QMAN_LENGTH;
2789 break;
2790 case GOYA_QUEUE_ID_TPC4:
2791 offset = TPC4_QMAN_BASE_OFFSET;
2792 *queue_len = TPC_QMAN_LENGTH;
2793 break;
2794 case GOYA_QUEUE_ID_TPC5:
2795 offset = TPC5_QMAN_BASE_OFFSET;
2796 *queue_len = TPC_QMAN_LENGTH;
2797 break;
2798 case GOYA_QUEUE_ID_TPC6:
2799 offset = TPC6_QMAN_BASE_OFFSET;
2800 *queue_len = TPC_QMAN_LENGTH;
2801 break;
2802 case GOYA_QUEUE_ID_TPC7:
2803 offset = TPC7_QMAN_BASE_OFFSET;
2804 *queue_len = TPC_QMAN_LENGTH;
2805 break;
2806 default:
2807 dev_err(hdev->dev, "Got invalid queue id %d\n", queue_id);
2808 return NULL;
2809 }
2810
2811 base += offset;
2812 *dma_handle += offset;
2813
2814 return base;
2815 }
2816
2817 static int goya_send_job_on_qman0(struct hl_device *hdev, struct hl_cs_job *job)
2818 {
2819 struct packet_msg_prot *fence_pkt;
2820 u32 *fence_ptr;
2821 dma_addr_t fence_dma_addr;
2822 struct hl_cb *cb;
2823 u32 tmp, timeout;
2824 int rc;
2825
2826 if (hdev->pldm)
2827 timeout = GOYA_PLDM_QMAN0_TIMEOUT_USEC;
2828 else
2829 timeout = HL_DEVICE_TIMEOUT_USEC;
2830
2831 if (!hdev->asic_funcs->is_device_idle(hdev, NULL, NULL)) {
2832 dev_err_ratelimited(hdev->dev,
2833 "Can't send KMD job on QMAN0 because the device is not idle\n");
2834 return -EBUSY;
2835 }
2836
2837 fence_ptr = hdev->asic_funcs->asic_dma_pool_zalloc(hdev, 4, GFP_KERNEL,
2838 &fence_dma_addr);
2839 if (!fence_ptr) {
2840 dev_err(hdev->dev,
2841 "Failed to allocate fence memory for QMAN0\n");
2842 return -ENOMEM;
2843 }
2844
2845 goya_qman0_set_security(hdev, true);
2846
2847 cb = job->patched_cb;
2848
2849 fence_pkt = (struct packet_msg_prot *) (uintptr_t) (cb->kernel_address +
2850 job->job_cb_size - sizeof(struct packet_msg_prot));
2851
2852 tmp = (PACKET_MSG_PROT << GOYA_PKT_CTL_OPCODE_SHIFT) |
2853 (1 << GOYA_PKT_CTL_EB_SHIFT) |
2854 (1 << GOYA_PKT_CTL_MB_SHIFT);
2855 fence_pkt->ctl = cpu_to_le32(tmp);
2856 fence_pkt->value = cpu_to_le32(GOYA_QMAN0_FENCE_VAL);
2857 fence_pkt->addr = cpu_to_le64(fence_dma_addr);
2858
2859 rc = hl_hw_queue_send_cb_no_cmpl(hdev, GOYA_QUEUE_ID_DMA_0,
2860 job->job_cb_size, cb->bus_address);
2861 if (rc) {
2862 dev_err(hdev->dev, "Failed to send CB on QMAN0, %d\n", rc);
2863 goto free_fence_ptr;
2864 }
2865
2866 rc = hl_poll_timeout_memory(hdev, fence_ptr, tmp,
2867 (tmp == GOYA_QMAN0_FENCE_VAL), 1000, timeout);
2868
2869 hl_hw_queue_inc_ci_kernel(hdev, GOYA_QUEUE_ID_DMA_0);
2870
2871 if (rc == -ETIMEDOUT) {
2872 dev_err(hdev->dev, "QMAN0 Job timeout (0x%x)\n", tmp);
2873 goto free_fence_ptr;
2874 }
2875
2876 free_fence_ptr:
2877 hdev->asic_funcs->asic_dma_pool_free(hdev, (void *) fence_ptr,
2878 fence_dma_addr);
2879
2880 goya_qman0_set_security(hdev, false);
2881
2882 return rc;
2883 }
2884
2885 int goya_send_cpu_message(struct hl_device *hdev, u32 *msg, u16 len,
2886 u32 timeout, long *result)
2887 {
2888 struct goya_device *goya = hdev->asic_specific;
2889
2890 if (!(goya->hw_cap_initialized & HW_CAP_CPU_Q)) {
2891 if (result)
2892 *result = 0;
2893 return 0;
2894 }
2895
2896 return hl_fw_send_cpu_message(hdev, GOYA_QUEUE_ID_CPU_PQ, msg, len,
2897 timeout, result);
2898 }
2899
2900 int goya_test_queue(struct hl_device *hdev, u32 hw_queue_id)
2901 {
2902 struct packet_msg_prot *fence_pkt;
2903 dma_addr_t pkt_dma_addr;
2904 u32 fence_val, tmp;
2905 dma_addr_t fence_dma_addr;
2906 u32 *fence_ptr;
2907 int rc;
2908
2909 fence_val = GOYA_QMAN0_FENCE_VAL;
2910
2911 fence_ptr = hdev->asic_funcs->asic_dma_pool_zalloc(hdev, 4, GFP_KERNEL,
2912 &fence_dma_addr);
2913 if (!fence_ptr) {
2914 dev_err(hdev->dev,
2915 "Failed to allocate memory for queue testing\n");
2916 return -ENOMEM;
2917 }
2918
2919 *fence_ptr = 0;
2920
2921 fence_pkt = hdev->asic_funcs->asic_dma_pool_zalloc(hdev,
2922 sizeof(struct packet_msg_prot),
2923 GFP_KERNEL, &pkt_dma_addr);
2924 if (!fence_pkt) {
2925 dev_err(hdev->dev,
2926 "Failed to allocate packet for queue testing\n");
2927 rc = -ENOMEM;
2928 goto free_fence_ptr;
2929 }
2930
2931 tmp = (PACKET_MSG_PROT << GOYA_PKT_CTL_OPCODE_SHIFT) |
2932 (1 << GOYA_PKT_CTL_EB_SHIFT) |
2933 (1 << GOYA_PKT_CTL_MB_SHIFT);
2934 fence_pkt->ctl = cpu_to_le32(tmp);
2935 fence_pkt->value = cpu_to_le32(fence_val);
2936 fence_pkt->addr = cpu_to_le64(fence_dma_addr);
2937
2938 rc = hl_hw_queue_send_cb_no_cmpl(hdev, hw_queue_id,
2939 sizeof(struct packet_msg_prot),
2940 pkt_dma_addr);
2941 if (rc) {
2942 dev_err(hdev->dev,
2943 "Failed to send fence packet\n");
2944 goto free_pkt;
2945 }
2946
2947 rc = hl_poll_timeout_memory(hdev, fence_ptr, tmp, (tmp == fence_val),
2948 1000, GOYA_TEST_QUEUE_WAIT_USEC);
2949
2950 hl_hw_queue_inc_ci_kernel(hdev, hw_queue_id);
2951
2952 if (rc == -ETIMEDOUT) {
2953 dev_err(hdev->dev,
2954 "H/W queue %d test failed (scratch(0x%08llX) == 0x%08X)\n",
2955 hw_queue_id, (unsigned long long) fence_dma_addr, tmp);
2956 rc = -EIO;
2957 } else {
2958 dev_info(hdev->dev, "queue test on H/W queue %d succeeded\n",
2959 hw_queue_id);
2960 }
2961
2962 free_pkt:
2963 hdev->asic_funcs->asic_dma_pool_free(hdev, (void *) fence_pkt,
2964 pkt_dma_addr);
2965 free_fence_ptr:
2966 hdev->asic_funcs->asic_dma_pool_free(hdev, (void *) fence_ptr,
2967 fence_dma_addr);
2968 return rc;
2969 }
2970
2971 int goya_test_cpu_queue(struct hl_device *hdev)
2972 {
2973 struct goya_device *goya = hdev->asic_specific;
2974
2975 /*
2976 * check capability here as send_cpu_message() won't update the result
2977 * value if no capability
2978 */
2979 if (!(goya->hw_cap_initialized & HW_CAP_CPU_Q))
2980 return 0;
2981
2982 return hl_fw_test_cpu_queue(hdev);
2983 }
2984
2985 int goya_test_queues(struct hl_device *hdev)
2986 {
2987 int i, rc, ret_val = 0;
2988
2989 for (i = 0 ; i < NUMBER_OF_EXT_HW_QUEUES ; i++) {
2990 rc = goya_test_queue(hdev, i);
2991 if (rc)
2992 ret_val = -EINVAL;
2993 }
2994
2995 return ret_val;
2996 }
2997
2998 static void *goya_dma_pool_zalloc(struct hl_device *hdev, size_t size,
2999 gfp_t mem_flags, dma_addr_t *dma_handle)
3000 {
3001 void *kernel_addr;
3002
3003 if (size > GOYA_DMA_POOL_BLK_SIZE)
3004 return NULL;
3005
3006 kernel_addr = dma_pool_zalloc(hdev->dma_pool, mem_flags, dma_handle);
3007
3008 /* Shift to the device's base physical address of host memory */
3009 if (kernel_addr)
3010 *dma_handle += HOST_PHYS_BASE;
3011
3012 return kernel_addr;
3013 }
3014
3015 static void goya_dma_pool_free(struct hl_device *hdev, void *vaddr,
3016 dma_addr_t dma_addr)
3017 {
3018 /* Cancel the device's base physical address of host memory */
3019 dma_addr_t fixed_dma_addr = dma_addr - HOST_PHYS_BASE;
3020
3021 dma_pool_free(hdev->dma_pool, vaddr, fixed_dma_addr);
3022 }
3023
3024 void *goya_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
3025 dma_addr_t *dma_handle)
3026 {
3027 void *vaddr;
3028
3029 vaddr = hl_fw_cpu_accessible_dma_pool_alloc(hdev, size, dma_handle);
3030 *dma_handle = (*dma_handle) - hdev->cpu_accessible_dma_address +
3031 VA_CPU_ACCESSIBLE_MEM_ADDR;
3032
3033 return vaddr;
3034 }
3035
3036 void goya_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
3037 void *vaddr)
3038 {
3039 hl_fw_cpu_accessible_dma_pool_free(hdev, size, vaddr);
3040 }
3041
3042 static int goya_dma_map_sg(struct hl_device *hdev, struct scatterlist *sgl,
3043 int nents, enum dma_data_direction dir)
3044 {
3045 struct scatterlist *sg;
3046 int i;
3047
3048 if (!dma_map_sg(&hdev->pdev->dev, sgl, nents, dir))
3049 return -ENOMEM;
3050
3051 /* Shift to the device's base physical address of host memory */
3052 for_each_sg(sgl, sg, nents, i)
3053 sg->dma_address += HOST_PHYS_BASE;
3054
3055 return 0;
3056 }
3057
3058 static void goya_dma_unmap_sg(struct hl_device *hdev, struct scatterlist *sgl,
3059 int nents, enum dma_data_direction dir)
3060 {
3061 struct scatterlist *sg;
3062 int i;
3063
3064 /* Cancel the device's base physical address of host memory */
3065 for_each_sg(sgl, sg, nents, i)
3066 sg->dma_address -= HOST_PHYS_BASE;
3067
3068 dma_unmap_sg(&hdev->pdev->dev, sgl, nents, dir);
3069 }
3070
3071 u32 goya_get_dma_desc_list_size(struct hl_device *hdev, struct sg_table *sgt)
3072 {
3073 struct scatterlist *sg, *sg_next_iter;
3074 u32 count, dma_desc_cnt;
3075 u64 len, len_next;
3076 dma_addr_t addr, addr_next;
3077
3078 dma_desc_cnt = 0;
3079
3080 for_each_sg(sgt->sgl, sg, sgt->nents, count) {
3081
3082 len = sg_dma_len(sg);
3083 addr = sg_dma_address(sg);
3084
3085 if (len == 0)
3086 break;
3087
3088 while ((count + 1) < sgt->nents) {
3089 sg_next_iter = sg_next(sg);
3090 len_next = sg_dma_len(sg_next_iter);
3091 addr_next = sg_dma_address(sg_next_iter);
3092
3093 if (len_next == 0)
3094 break;
3095
3096 if ((addr + len == addr_next) &&
3097 (len + len_next <= DMA_MAX_TRANSFER_SIZE)) {
3098 len += len_next;
3099 count++;
3100 sg = sg_next_iter;
3101 } else {
3102 break;
3103 }
3104 }
3105
3106 dma_desc_cnt++;
3107 }
3108
3109 return dma_desc_cnt * sizeof(struct packet_lin_dma);
3110 }
3111
3112 static int goya_pin_memory_before_cs(struct hl_device *hdev,
3113 struct hl_cs_parser *parser,
3114 struct packet_lin_dma *user_dma_pkt,
3115 u64 addr, enum dma_data_direction dir)
3116 {
3117 struct hl_userptr *userptr;
3118 int rc;
3119
3120 if (hl_userptr_is_pinned(hdev, addr, le32_to_cpu(user_dma_pkt->tsize),
3121 parser->job_userptr_list, &userptr))
3122 goto already_pinned;
3123
3124 userptr = kzalloc(sizeof(*userptr), GFP_ATOMIC);
3125 if (!userptr)
3126 return -ENOMEM;
3127
3128 rc = hl_pin_host_memory(hdev, addr, le32_to_cpu(user_dma_pkt->tsize),
3129 userptr);
3130 if (rc)
3131 goto free_userptr;
3132
3133 list_add_tail(&userptr->job_node, parser->job_userptr_list);
3134
3135 rc = hdev->asic_funcs->asic_dma_map_sg(hdev, userptr->sgt->sgl,
3136 userptr->sgt->nents, dir);
3137 if (rc) {
3138 dev_err(hdev->dev, "failed to map sgt with DMA region\n");
3139 goto unpin_memory;
3140 }
3141
3142 userptr->dma_mapped = true;
3143 userptr->dir = dir;
3144
3145 already_pinned:
3146 parser->patched_cb_size +=
3147 goya_get_dma_desc_list_size(hdev, userptr->sgt);
3148
3149 return 0;
3150
3151 unpin_memory:
3152 hl_unpin_host_memory(hdev, userptr);
3153 free_userptr:
3154 kfree(userptr);
3155 return rc;
3156 }
3157
3158 static int goya_validate_dma_pkt_host(struct hl_device *hdev,
3159 struct hl_cs_parser *parser,
3160 struct packet_lin_dma *user_dma_pkt)
3161 {
3162 u64 device_memory_addr, addr;
3163 enum dma_data_direction dir;
3164 enum goya_dma_direction user_dir;
3165 bool sram_addr = true;
3166 bool skip_host_mem_pin = false;
3167 bool user_memset;
3168 u32 ctl;
3169 int rc = 0;
3170
3171 ctl = le32_to_cpu(user_dma_pkt->ctl);
3172
3173 user_dir = (ctl & GOYA_PKT_LIN_DMA_CTL_DMA_DIR_MASK) >>
3174 GOYA_PKT_LIN_DMA_CTL_DMA_DIR_SHIFT;
3175
3176 user_memset = (ctl & GOYA_PKT_LIN_DMA_CTL_MEMSET_MASK) >>
3177 GOYA_PKT_LIN_DMA_CTL_MEMSET_SHIFT;
3178
3179 switch (user_dir) {
3180 case DMA_HOST_TO_DRAM:
3181 dev_dbg(hdev->dev, "DMA direction is HOST --> DRAM\n");
3182 dir = DMA_TO_DEVICE;
3183 sram_addr = false;
3184 addr = le64_to_cpu(user_dma_pkt->src_addr);
3185 device_memory_addr = le64_to_cpu(user_dma_pkt->dst_addr);
3186 if (user_memset)
3187 skip_host_mem_pin = true;
3188 break;
3189
3190 case DMA_DRAM_TO_HOST:
3191 dev_dbg(hdev->dev, "DMA direction is DRAM --> HOST\n");
3192 dir = DMA_FROM_DEVICE;
3193 sram_addr = false;
3194 addr = le64_to_cpu(user_dma_pkt->dst_addr);
3195 device_memory_addr = le64_to_cpu(user_dma_pkt->src_addr);
3196 break;
3197
3198 case DMA_HOST_TO_SRAM:
3199 dev_dbg(hdev->dev, "DMA direction is HOST --> SRAM\n");
3200 dir = DMA_TO_DEVICE;
3201 addr = le64_to_cpu(user_dma_pkt->src_addr);
3202 device_memory_addr = le64_to_cpu(user_dma_pkt->dst_addr);
3203 if (user_memset)
3204 skip_host_mem_pin = true;
3205 break;
3206
3207 case DMA_SRAM_TO_HOST:
3208 dev_dbg(hdev->dev, "DMA direction is SRAM --> HOST\n");
3209 dir = DMA_FROM_DEVICE;
3210 addr = le64_to_cpu(user_dma_pkt->dst_addr);
3211 device_memory_addr = le64_to_cpu(user_dma_pkt->src_addr);
3212 break;
3213 default:
3214 dev_err(hdev->dev, "DMA direction is undefined\n");
3215 return -EFAULT;
3216 }
3217
3218 if (sram_addr) {
3219 if (!hl_mem_area_inside_range(device_memory_addr,
3220 le32_to_cpu(user_dma_pkt->tsize),
3221 hdev->asic_prop.sram_user_base_address,
3222 hdev->asic_prop.sram_end_address)) {
3223
3224 dev_err(hdev->dev,
3225 "SRAM address 0x%llx + 0x%x is invalid\n",
3226 device_memory_addr,
3227 user_dma_pkt->tsize);
3228 return -EFAULT;
3229 }
3230 } else {
3231 if (!hl_mem_area_inside_range(device_memory_addr,
3232 le32_to_cpu(user_dma_pkt->tsize),
3233 hdev->asic_prop.dram_user_base_address,
3234 hdev->asic_prop.dram_end_address)) {
3235
3236 dev_err(hdev->dev,
3237 "DRAM address 0x%llx + 0x%x is invalid\n",
3238 device_memory_addr,
3239 user_dma_pkt->tsize);
3240 return -EFAULT;
3241 }
3242 }
3243
3244 if (skip_host_mem_pin)
3245 parser->patched_cb_size += sizeof(*user_dma_pkt);
3246 else {
3247 if ((dir == DMA_TO_DEVICE) &&
3248 (parser->hw_queue_id > GOYA_QUEUE_ID_DMA_1)) {
3249 dev_err(hdev->dev,
3250 "Can't DMA from host on queue other then 1\n");
3251 return -EFAULT;
3252 }
3253
3254 rc = goya_pin_memory_before_cs(hdev, parser, user_dma_pkt,
3255 addr, dir);
3256 }
3257
3258 return rc;
3259 }
3260
3261 static int goya_validate_dma_pkt_no_host(struct hl_device *hdev,
3262 struct hl_cs_parser *parser,
3263 struct packet_lin_dma *user_dma_pkt)
3264 {
3265 u64 sram_memory_addr, dram_memory_addr;
3266 enum goya_dma_direction user_dir;
3267 u32 ctl;
3268
3269 ctl = le32_to_cpu(user_dma_pkt->ctl);
3270 user_dir = (ctl & GOYA_PKT_LIN_DMA_CTL_DMA_DIR_MASK) >>
3271 GOYA_PKT_LIN_DMA_CTL_DMA_DIR_SHIFT;
3272
3273 if (user_dir == DMA_DRAM_TO_SRAM) {
3274 dev_dbg(hdev->dev, "DMA direction is DRAM --> SRAM\n");
3275 dram_memory_addr = le64_to_cpu(user_dma_pkt->src_addr);
3276 sram_memory_addr = le64_to_cpu(user_dma_pkt->dst_addr);
3277 } else {
3278 dev_dbg(hdev->dev, "DMA direction is SRAM --> DRAM\n");
3279 sram_memory_addr = le64_to_cpu(user_dma_pkt->src_addr);
3280 dram_memory_addr = le64_to_cpu(user_dma_pkt->dst_addr);
3281 }
3282
3283 if (!hl_mem_area_inside_range(sram_memory_addr,
3284 le32_to_cpu(user_dma_pkt->tsize),
3285 hdev->asic_prop.sram_user_base_address,
3286 hdev->asic_prop.sram_end_address)) {
3287 dev_err(hdev->dev, "SRAM address 0x%llx + 0x%x is invalid\n",
3288 sram_memory_addr, user_dma_pkt->tsize);
3289 return -EFAULT;
3290 }
3291
3292 if (!hl_mem_area_inside_range(dram_memory_addr,
3293 le32_to_cpu(user_dma_pkt->tsize),
3294 hdev->asic_prop.dram_user_base_address,
3295 hdev->asic_prop.dram_end_address)) {
3296 dev_err(hdev->dev, "DRAM address 0x%llx + 0x%x is invalid\n",
3297 dram_memory_addr, user_dma_pkt->tsize);
3298 return -EFAULT;
3299 }
3300
3301 parser->patched_cb_size += sizeof(*user_dma_pkt);
3302
3303 return 0;
3304 }
3305
3306 static int goya_validate_dma_pkt_no_mmu(struct hl_device *hdev,
3307 struct hl_cs_parser *parser,
3308 struct packet_lin_dma *user_dma_pkt)
3309 {
3310 enum goya_dma_direction user_dir;
3311 u32 ctl;
3312 int rc;
3313
3314 dev_dbg(hdev->dev, "DMA packet details:\n");
3315 dev_dbg(hdev->dev, "source == 0x%llx\n", user_dma_pkt->src_addr);
3316 dev_dbg(hdev->dev, "destination == 0x%llx\n", user_dma_pkt->dst_addr);
3317 dev_dbg(hdev->dev, "size == %u\n", user_dma_pkt->tsize);
3318
3319 ctl = le32_to_cpu(user_dma_pkt->ctl);
3320 user_dir = (ctl & GOYA_PKT_LIN_DMA_CTL_DMA_DIR_MASK) >>
3321 GOYA_PKT_LIN_DMA_CTL_DMA_DIR_SHIFT;
3322
3323 /*
3324 * Special handling for DMA with size 0. The H/W has a bug where
3325 * this can cause the QMAN DMA to get stuck, so block it here.
3326 */
3327 if (user_dma_pkt->tsize == 0) {
3328 dev_err(hdev->dev,
3329 "Got DMA with size 0, might reset the device\n");
3330 return -EINVAL;
3331 }
3332
3333 if ((user_dir == DMA_DRAM_TO_SRAM) || (user_dir == DMA_SRAM_TO_DRAM))
3334 rc = goya_validate_dma_pkt_no_host(hdev, parser, user_dma_pkt);
3335 else
3336 rc = goya_validate_dma_pkt_host(hdev, parser, user_dma_pkt);
3337
3338 return rc;
3339 }
3340
3341 static int goya_validate_dma_pkt_mmu(struct hl_device *hdev,
3342 struct hl_cs_parser *parser,
3343 struct packet_lin_dma *user_dma_pkt)
3344 {
3345 dev_dbg(hdev->dev, "DMA packet details:\n");
3346 dev_dbg(hdev->dev, "source == 0x%llx\n", user_dma_pkt->src_addr);
3347 dev_dbg(hdev->dev, "destination == 0x%llx\n", user_dma_pkt->dst_addr);
3348 dev_dbg(hdev->dev, "size == %u\n", user_dma_pkt->tsize);
3349
3350 /*
3351 * WA for HW-23.
3352 * We can't allow user to read from Host using QMANs other than 1.
3353 */
3354 if (parser->hw_queue_id != GOYA_QUEUE_ID_DMA_1 &&
3355 hl_mem_area_inside_range(le64_to_cpu(user_dma_pkt->src_addr),
3356 le32_to_cpu(user_dma_pkt->tsize),
3357 hdev->asic_prop.va_space_host_start_address,
3358 hdev->asic_prop.va_space_host_end_address)) {
3359 dev_err(hdev->dev,
3360 "Can't DMA from host on queue other then 1\n");
3361 return -EFAULT;
3362 }
3363
3364 if (user_dma_pkt->tsize == 0) {
3365 dev_err(hdev->dev,
3366 "Got DMA with size 0, might reset the device\n");
3367 return -EINVAL;
3368 }
3369
3370 parser->patched_cb_size += sizeof(*user_dma_pkt);
3371
3372 return 0;
3373 }
3374
3375 static int goya_validate_wreg32(struct hl_device *hdev,
3376 struct hl_cs_parser *parser,
3377 struct packet_wreg32 *wreg_pkt)
3378 {
3379 struct goya_device *goya = hdev->asic_specific;
3380 u32 sob_start_addr, sob_end_addr;
3381 u16 reg_offset;
3382
3383 reg_offset = le32_to_cpu(wreg_pkt->ctl) &
3384 GOYA_PKT_WREG32_CTL_REG_OFFSET_MASK;
3385
3386 dev_dbg(hdev->dev, "WREG32 packet details:\n");
3387 dev_dbg(hdev->dev, "reg_offset == 0x%x\n", reg_offset);
3388 dev_dbg(hdev->dev, "value == 0x%x\n", wreg_pkt->value);
3389
3390 if (reg_offset != (mmDMA_CH_0_WR_COMP_ADDR_LO & 0x1FFF)) {
3391 dev_err(hdev->dev, "WREG32 packet with illegal address 0x%x\n",
3392 reg_offset);
3393 return -EPERM;
3394 }
3395
3396 /*
3397 * With MMU, DMA channels are not secured, so it doesn't matter where
3398 * the WR COMP will be written to because it will go out with
3399 * non-secured property
3400 */
3401 if (goya->hw_cap_initialized & HW_CAP_MMU)
3402 return 0;
3403
3404 sob_start_addr = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_0);
3405 sob_end_addr = lower_32_bits(CFG_BASE + mmSYNC_MNGR_SOB_OBJ_1023);
3406
3407 if ((le32_to_cpu(wreg_pkt->value) < sob_start_addr) ||
3408 (le32_to_cpu(wreg_pkt->value) > sob_end_addr)) {
3409
3410 dev_err(hdev->dev, "WREG32 packet with illegal value 0x%x\n",
3411 wreg_pkt->value);
3412 return -EPERM;
3413 }
3414
3415 return 0;
3416 }
3417
3418 static int goya_validate_cb(struct hl_device *hdev,
3419 struct hl_cs_parser *parser, bool is_mmu)
3420 {
3421 u32 cb_parsed_length = 0;
3422 int rc = 0;
3423
3424 parser->patched_cb_size = 0;
3425
3426 /* cb_user_size is more than 0 so loop will always be executed */
3427 while (cb_parsed_length < parser->user_cb_size) {
3428 enum packet_id pkt_id;
3429 u16 pkt_size;
3430 void *user_pkt;
3431
3432 user_pkt = (void *) (uintptr_t)
3433 (parser->user_cb->kernel_address + cb_parsed_length);
3434
3435 pkt_id = (enum packet_id) (((*(u64 *) user_pkt) &
3436 PACKET_HEADER_PACKET_ID_MASK) >>
3437 PACKET_HEADER_PACKET_ID_SHIFT);
3438
3439 pkt_size = goya_packet_sizes[pkt_id];
3440 cb_parsed_length += pkt_size;
3441 if (cb_parsed_length > parser->user_cb_size) {
3442 dev_err(hdev->dev,
3443 "packet 0x%x is out of CB boundary\n", pkt_id);
3444 rc = -EINVAL;
3445 break;
3446 }
3447
3448 switch (pkt_id) {
3449 case PACKET_WREG_32:
3450 /*
3451 * Although it is validated after copy in patch_cb(),
3452 * need to validate here as well because patch_cb() is
3453 * not called in MMU path while this function is called
3454 */
3455 rc = goya_validate_wreg32(hdev, parser, user_pkt);
3456 break;
3457
3458 case PACKET_WREG_BULK:
3459 dev_err(hdev->dev,
3460 "User not allowed to use WREG_BULK\n");
3461 rc = -EPERM;
3462 break;
3463
3464 case PACKET_MSG_PROT:
3465 dev_err(hdev->dev,
3466 "User not allowed to use MSG_PROT\n");
3467 rc = -EPERM;
3468 break;
3469
3470 case PACKET_CP_DMA:
3471 dev_err(hdev->dev, "User not allowed to use CP_DMA\n");
3472 rc = -EPERM;
3473 break;
3474
3475 case PACKET_STOP:
3476 dev_err(hdev->dev, "User not allowed to use STOP\n");
3477 rc = -EPERM;
3478 break;
3479
3480 case PACKET_LIN_DMA:
3481 if (is_mmu)
3482 rc = goya_validate_dma_pkt_mmu(hdev, parser,
3483 user_pkt);
3484 else
3485 rc = goya_validate_dma_pkt_no_mmu(hdev, parser,
3486 user_pkt);
3487 break;
3488
3489 case PACKET_MSG_LONG:
3490 case PACKET_MSG_SHORT:
3491 case PACKET_FENCE:
3492 case PACKET_NOP:
3493 parser->patched_cb_size += pkt_size;
3494 break;
3495
3496 default:
3497 dev_err(hdev->dev, "Invalid packet header 0x%x\n",
3498 pkt_id);
3499 rc = -EINVAL;
3500 break;
3501 }
3502
3503 if (rc)
3504 break;
3505 }
3506
3507 /*
3508 * The new CB should have space at the end for two MSG_PROT packets:
3509 * 1. A packet that will act as a completion packet
3510 * 2. A packet that will generate MSI-X interrupt
3511 */
3512 parser->patched_cb_size += sizeof(struct packet_msg_prot) * 2;
3513
3514 return rc;
3515 }
3516
3517 static int goya_patch_dma_packet(struct hl_device *hdev,
3518 struct hl_cs_parser *parser,
3519 struct packet_lin_dma *user_dma_pkt,
3520 struct packet_lin_dma *new_dma_pkt,
3521 u32 *new_dma_pkt_size)
3522 {
3523 struct hl_userptr *userptr;
3524 struct scatterlist *sg, *sg_next_iter;
3525 u32 count, dma_desc_cnt;
3526 u64 len, len_next;
3527 dma_addr_t dma_addr, dma_addr_next;
3528 enum goya_dma_direction user_dir;
3529 u64 device_memory_addr, addr;
3530 enum dma_data_direction dir;
3531 struct sg_table *sgt;
3532 bool skip_host_mem_pin = false;
3533 bool user_memset;
3534 u32 user_rdcomp_mask, user_wrcomp_mask, ctl;
3535
3536 ctl = le32_to_cpu(user_dma_pkt->ctl);
3537
3538 user_dir = (ctl & GOYA_PKT_LIN_DMA_CTL_DMA_DIR_MASK) >>
3539 GOYA_PKT_LIN_DMA_CTL_DMA_DIR_SHIFT;
3540
3541 user_memset = (ctl & GOYA_PKT_LIN_DMA_CTL_MEMSET_MASK) >>
3542 GOYA_PKT_LIN_DMA_CTL_MEMSET_SHIFT;
3543
3544 if ((user_dir == DMA_DRAM_TO_SRAM) || (user_dir == DMA_SRAM_TO_DRAM) ||
3545 (user_dma_pkt->tsize == 0)) {
3546 memcpy(new_dma_pkt, user_dma_pkt, sizeof(*new_dma_pkt));
3547 *new_dma_pkt_size = sizeof(*new_dma_pkt);
3548 return 0;
3549 }
3550
3551 if ((user_dir == DMA_HOST_TO_DRAM) || (user_dir == DMA_HOST_TO_SRAM)) {
3552 addr = le64_to_cpu(user_dma_pkt->src_addr);
3553 device_memory_addr = le64_to_cpu(user_dma_pkt->dst_addr);
3554 dir = DMA_TO_DEVICE;
3555 if (user_memset)
3556 skip_host_mem_pin = true;
3557 } else {
3558 addr = le64_to_cpu(user_dma_pkt->dst_addr);
3559 device_memory_addr = le64_to_cpu(user_dma_pkt->src_addr);
3560 dir = DMA_FROM_DEVICE;
3561 }
3562
3563 if ((!skip_host_mem_pin) &&
3564 (hl_userptr_is_pinned(hdev, addr,
3565 le32_to_cpu(user_dma_pkt->tsize),
3566 parser->job_userptr_list, &userptr) == false)) {
3567 dev_err(hdev->dev, "Userptr 0x%llx + 0x%x NOT mapped\n",
3568 addr, user_dma_pkt->tsize);
3569 return -EFAULT;
3570 }
3571
3572 if ((user_memset) && (dir == DMA_TO_DEVICE)) {
3573 memcpy(new_dma_pkt, user_dma_pkt, sizeof(*user_dma_pkt));
3574 *new_dma_pkt_size = sizeof(*user_dma_pkt);
3575 return 0;
3576 }
3577
3578 user_rdcomp_mask = ctl & GOYA_PKT_LIN_DMA_CTL_RDCOMP_MASK;
3579
3580 user_wrcomp_mask = ctl & GOYA_PKT_LIN_DMA_CTL_WRCOMP_MASK;
3581
3582 sgt = userptr->sgt;
3583 dma_desc_cnt = 0;
3584
3585 for_each_sg(sgt->sgl, sg, sgt->nents, count) {
3586 len = sg_dma_len(sg);
3587 dma_addr = sg_dma_address(sg);
3588
3589 if (len == 0)
3590 break;
3591
3592 while ((count + 1) < sgt->nents) {
3593 sg_next_iter = sg_next(sg);
3594 len_next = sg_dma_len(sg_next_iter);
3595 dma_addr_next = sg_dma_address(sg_next_iter);
3596
3597 if (len_next == 0)
3598 break;
3599
3600 if ((dma_addr + len == dma_addr_next) &&
3601 (len + len_next <= DMA_MAX_TRANSFER_SIZE)) {
3602 len += len_next;
3603 count++;
3604 sg = sg_next_iter;
3605 } else {
3606 break;
3607 }
3608 }
3609
3610 ctl = le32_to_cpu(user_dma_pkt->ctl);
3611 if (likely(dma_desc_cnt))
3612 ctl &= ~GOYA_PKT_CTL_EB_MASK;
3613 ctl &= ~(GOYA_PKT_LIN_DMA_CTL_RDCOMP_MASK |
3614 GOYA_PKT_LIN_DMA_CTL_WRCOMP_MASK);
3615 new_dma_pkt->ctl = cpu_to_le32(ctl);
3616 new_dma_pkt->tsize = cpu_to_le32((u32) len);
3617
3618 if (dir == DMA_TO_DEVICE) {
3619 new_dma_pkt->src_addr = cpu_to_le64(dma_addr);
3620 new_dma_pkt->dst_addr = cpu_to_le64(device_memory_addr);
3621 } else {
3622 new_dma_pkt->src_addr = cpu_to_le64(device_memory_addr);
3623 new_dma_pkt->dst_addr = cpu_to_le64(dma_addr);
3624 }
3625
3626 if (!user_memset)
3627 device_memory_addr += len;
3628 dma_desc_cnt++;
3629 new_dma_pkt++;
3630 }
3631
3632 if (!dma_desc_cnt) {
3633 dev_err(hdev->dev,
3634 "Error of 0 SG entries when patching DMA packet\n");
3635 return -EFAULT;
3636 }
3637
3638 /* Fix the last dma packet - rdcomp/wrcomp must be as user set them */
3639 new_dma_pkt--;
3640 new_dma_pkt->ctl |= cpu_to_le32(user_rdcomp_mask | user_wrcomp_mask);
3641
3642 *new_dma_pkt_size = dma_desc_cnt * sizeof(struct packet_lin_dma);
3643
3644 return 0;
3645 }
3646
3647 static int goya_patch_cb(struct hl_device *hdev,
3648 struct hl_cs_parser *parser)
3649 {
3650 u32 cb_parsed_length = 0;
3651 u32 cb_patched_cur_length = 0;
3652 int rc = 0;
3653
3654 /* cb_user_size is more than 0 so loop will always be executed */
3655 while (cb_parsed_length < parser->user_cb_size) {
3656 enum packet_id pkt_id;
3657 u16 pkt_size;
3658 u32 new_pkt_size = 0;
3659 void *user_pkt, *kernel_pkt;
3660
3661 user_pkt = (void *) (uintptr_t)
3662 (parser->user_cb->kernel_address + cb_parsed_length);
3663 kernel_pkt = (void *) (uintptr_t)
3664 (parser->patched_cb->kernel_address +
3665 cb_patched_cur_length);
3666
3667 pkt_id = (enum packet_id) (((*(u64 *) user_pkt) &
3668 PACKET_HEADER_PACKET_ID_MASK) >>
3669 PACKET_HEADER_PACKET_ID_SHIFT);
3670
3671 pkt_size = goya_packet_sizes[pkt_id];
3672 cb_parsed_length += pkt_size;
3673 if (cb_parsed_length > parser->user_cb_size) {
3674 dev_err(hdev->dev,
3675 "packet 0x%x is out of CB boundary\n", pkt_id);
3676 rc = -EINVAL;
3677 break;
3678 }
3679
3680 switch (pkt_id) {
3681 case PACKET_LIN_DMA:
3682 rc = goya_patch_dma_packet(hdev, parser, user_pkt,
3683 kernel_pkt, &new_pkt_size);
3684 cb_patched_cur_length += new_pkt_size;
3685 break;
3686
3687 case PACKET_WREG_32:
3688 memcpy(kernel_pkt, user_pkt, pkt_size);
3689 cb_patched_cur_length += pkt_size;
3690 rc = goya_validate_wreg32(hdev, parser, kernel_pkt);
3691 break;
3692
3693 case PACKET_WREG_BULK:
3694 dev_err(hdev->dev,
3695 "User not allowed to use WREG_BULK\n");
3696 rc = -EPERM;
3697 break;
3698
3699 case PACKET_MSG_PROT:
3700 dev_err(hdev->dev,
3701 "User not allowed to use MSG_PROT\n");
3702 rc = -EPERM;
3703 break;
3704
3705 case PACKET_CP_DMA:
3706 dev_err(hdev->dev, "User not allowed to use CP_DMA\n");
3707 rc = -EPERM;
3708 break;
3709
3710 case PACKET_STOP:
3711 dev_err(hdev->dev, "User not allowed to use STOP\n");
3712 rc = -EPERM;
3713 break;
3714
3715 case PACKET_MSG_LONG:
3716 case PACKET_MSG_SHORT:
3717 case PACKET_FENCE:
3718 case PACKET_NOP:
3719 memcpy(kernel_pkt, user_pkt, pkt_size);
3720 cb_patched_cur_length += pkt_size;
3721 break;
3722
3723 default:
3724 dev_err(hdev->dev, "Invalid packet header 0x%x\n",
3725 pkt_id);
3726 rc = -EINVAL;
3727 break;
3728 }
3729
3730 if (rc)
3731 break;
3732 }
3733
3734 return rc;
3735 }
3736
3737 static int goya_parse_cb_mmu(struct hl_device *hdev,
3738 struct hl_cs_parser *parser)
3739 {
3740 u64 patched_cb_handle;
3741 u32 patched_cb_size;
3742 struct hl_cb *user_cb;
3743 int rc;
3744
3745 /*
3746 * The new CB should have space at the end for two MSG_PROT pkt:
3747 * 1. A packet that will act as a completion packet
3748 * 2. A packet that will generate MSI-X interrupt
3749 */
3750 parser->patched_cb_size = parser->user_cb_size +
3751 sizeof(struct packet_msg_prot) * 2;
3752
3753 rc = hl_cb_create(hdev, &hdev->kernel_cb_mgr,
3754 parser->patched_cb_size,
3755 &patched_cb_handle, HL_KERNEL_ASID_ID);
3756
3757 if (rc) {
3758 dev_err(hdev->dev,
3759 "Failed to allocate patched CB for DMA CS %d\n",
3760 rc);
3761 return rc;
3762 }
3763
3764 patched_cb_handle >>= PAGE_SHIFT;
3765 parser->patched_cb = hl_cb_get(hdev, &hdev->kernel_cb_mgr,
3766 (u32) patched_cb_handle);
3767 /* hl_cb_get should never fail here so use kernel WARN */
3768 WARN(!parser->patched_cb, "DMA CB handle invalid 0x%x\n",
3769 (u32) patched_cb_handle);
3770 if (!parser->patched_cb) {
3771 rc = -EFAULT;
3772 goto out;
3773 }
3774
3775 /*
3776 * The check that parser->user_cb_size <= parser->user_cb->size was done
3777 * in validate_queue_index().
3778 */
3779 memcpy((void *) (uintptr_t) parser->patched_cb->kernel_address,
3780 (void *) (uintptr_t) parser->user_cb->kernel_address,
3781 parser->user_cb_size);
3782
3783 patched_cb_size = parser->patched_cb_size;
3784
3785 /* validate patched CB instead of user CB */
3786 user_cb = parser->user_cb;
3787 parser->user_cb = parser->patched_cb;
3788 rc = goya_validate_cb(hdev, parser, true);
3789 parser->user_cb = user_cb;
3790
3791 if (rc) {
3792 hl_cb_put(parser->patched_cb);
3793 goto out;
3794 }
3795
3796 if (patched_cb_size != parser->patched_cb_size) {
3797 dev_err(hdev->dev, "user CB size mismatch\n");
3798 hl_cb_put(parser->patched_cb);
3799 rc = -EINVAL;
3800 goto out;
3801 }
3802
3803 out:
3804 /*
3805 * Always call cb destroy here because we still have 1 reference
3806 * to it by calling cb_get earlier. After the job will be completed,
3807 * cb_put will release it, but here we want to remove it from the
3808 * idr
3809 */
3810 hl_cb_destroy(hdev, &hdev->kernel_cb_mgr,
3811 patched_cb_handle << PAGE_SHIFT);
3812
3813 return rc;
3814 }
3815
3816 static int goya_parse_cb_no_mmu(struct hl_device *hdev,
3817 struct hl_cs_parser *parser)
3818 {
3819 u64 patched_cb_handle;
3820 int rc;
3821
3822 rc = goya_validate_cb(hdev, parser, false);
3823
3824 if (rc)
3825 goto free_userptr;
3826
3827 rc = hl_cb_create(hdev, &hdev->kernel_cb_mgr,
3828 parser->patched_cb_size,
3829 &patched_cb_handle, HL_KERNEL_ASID_ID);
3830 if (rc) {
3831 dev_err(hdev->dev,
3832 "Failed to allocate patched CB for DMA CS %d\n", rc);
3833 goto free_userptr;
3834 }
3835
3836 patched_cb_handle >>= PAGE_SHIFT;
3837 parser->patched_cb = hl_cb_get(hdev, &hdev->kernel_cb_mgr,
3838 (u32) patched_cb_handle);
3839 /* hl_cb_get should never fail here so use kernel WARN */
3840 WARN(!parser->patched_cb, "DMA CB handle invalid 0x%x\n",
3841 (u32) patched_cb_handle);
3842 if (!parser->patched_cb) {
3843 rc = -EFAULT;
3844 goto out;
3845 }
3846
3847 rc = goya_patch_cb(hdev, parser);
3848
3849 if (rc)
3850 hl_cb_put(parser->patched_cb);
3851
3852 out:
3853 /*
3854 * Always call cb destroy here because we still have 1 reference
3855 * to it by calling cb_get earlier. After the job will be completed,
3856 * cb_put will release it, but here we want to remove it from the
3857 * idr
3858 */
3859 hl_cb_destroy(hdev, &hdev->kernel_cb_mgr,
3860 patched_cb_handle << PAGE_SHIFT);
3861
3862 free_userptr:
3863 if (rc)
3864 hl_userptr_delete_list(hdev, parser->job_userptr_list);
3865 return rc;
3866 }
3867
3868 static int goya_parse_cb_no_ext_queue(struct hl_device *hdev,
3869 struct hl_cs_parser *parser)
3870 {
3871 struct asic_fixed_properties *asic_prop = &hdev->asic_prop;
3872 struct goya_device *goya = hdev->asic_specific;
3873
3874 if (goya->hw_cap_initialized & HW_CAP_MMU)
3875 return 0;
3876
3877 /* For internal queue jobs, just check if CB address is valid */
3878 if (hl_mem_area_inside_range(
3879 (u64) (uintptr_t) parser->user_cb,
3880 parser->user_cb_size,
3881 asic_prop->sram_user_base_address,
3882 asic_prop->sram_end_address))
3883 return 0;
3884
3885 if (hl_mem_area_inside_range(
3886 (u64) (uintptr_t) parser->user_cb,
3887 parser->user_cb_size,
3888 asic_prop->dram_user_base_address,
3889 asic_prop->dram_end_address))
3890 return 0;
3891
3892 dev_err(hdev->dev,
3893 "Internal CB address %px + 0x%x is not in SRAM nor in DRAM\n",
3894 parser->user_cb, parser->user_cb_size);
3895
3896 return -EFAULT;
3897 }
3898
3899 int goya_cs_parser(struct hl_device *hdev, struct hl_cs_parser *parser)
3900 {
3901 struct goya_device *goya = hdev->asic_specific;
3902
3903 if (!parser->ext_queue)
3904 return goya_parse_cb_no_ext_queue(hdev, parser);
3905
3906 if (goya->hw_cap_initialized & HW_CAP_MMU)
3907 return goya_parse_cb_mmu(hdev, parser);
3908 else
3909 return goya_parse_cb_no_mmu(hdev, parser);
3910 }
3911
3912 void goya_add_end_of_cb_packets(struct hl_device *hdev, u64 kernel_address,
3913 u32 len, u64 cq_addr, u32 cq_val, u32 msix_vec)
3914 {
3915 struct packet_msg_prot *cq_pkt;
3916 u32 tmp;
3917
3918 cq_pkt = (struct packet_msg_prot *) (uintptr_t)
3919 (kernel_address + len - (sizeof(struct packet_msg_prot) * 2));
3920
3921 tmp = (PACKET_MSG_PROT << GOYA_PKT_CTL_OPCODE_SHIFT) |
3922 (1 << GOYA_PKT_CTL_EB_SHIFT) |
3923 (1 << GOYA_PKT_CTL_MB_SHIFT);
3924 cq_pkt->ctl = cpu_to_le32(tmp);
3925 cq_pkt->value = cpu_to_le32(cq_val);
3926 cq_pkt->addr = cpu_to_le64(cq_addr);
3927
3928 cq_pkt++;
3929
3930 tmp = (PACKET_MSG_PROT << GOYA_PKT_CTL_OPCODE_SHIFT) |
3931 (1 << GOYA_PKT_CTL_MB_SHIFT);
3932 cq_pkt->ctl = cpu_to_le32(tmp);
3933 cq_pkt->value = cpu_to_le32(msix_vec & 0x7FF);
3934 cq_pkt->addr = cpu_to_le64(CFG_BASE + mmPCIE_DBI_MSIX_DOORBELL_OFF);
3935 }
3936
3937 void goya_update_eq_ci(struct hl_device *hdev, u32 val)
3938 {
3939 WREG32(mmPSOC_GLOBAL_CONF_SCRATCHPAD_6, val);
3940 }
3941
3942 void goya_restore_phase_topology(struct hl_device *hdev)
3943 {
3944
3945 }
3946
3947 static void goya_clear_sm_regs(struct hl_device *hdev)
3948 {
3949 int i, num_of_sob_in_longs, num_of_mon_in_longs;
3950
3951 num_of_sob_in_longs =
3952 ((mmSYNC_MNGR_SOB_OBJ_1023 - mmSYNC_MNGR_SOB_OBJ_0) + 4);
3953
3954 num_of_mon_in_longs =
3955 ((mmSYNC_MNGR_MON_STATUS_255 - mmSYNC_MNGR_MON_STATUS_0) + 4);
3956
3957 for (i = 0 ; i < num_of_sob_in_longs ; i += 4)
3958 WREG32(mmSYNC_MNGR_SOB_OBJ_0 + i, 0);
3959
3960 for (i = 0 ; i < num_of_mon_in_longs ; i += 4)
3961 WREG32(mmSYNC_MNGR_MON_STATUS_0 + i, 0);
3962
3963 /* Flush all WREG to prevent race */
3964 i = RREG32(mmSYNC_MNGR_SOB_OBJ_0);
3965 }
3966
3967 /*
3968 * goya_debugfs_read32 - read a 32bit value from a given device or a host mapped
3969 * address.
3970 *
3971 * @hdev: pointer to hl_device structure
3972 * @addr: device or host mapped address
3973 * @val: returned value
3974 *
3975 * In case of DDR address that is not mapped into the default aperture that
3976 * the DDR bar exposes, the function will configure the iATU so that the DDR
3977 * bar will be positioned at a base address that allows reading from the
3978 * required address. Configuring the iATU during normal operation can
3979 * lead to undefined behavior and therefore, should be done with extreme care
3980 *
3981 */
3982 static int goya_debugfs_read32(struct hl_device *hdev, u64 addr, u32 *val)
3983 {
3984 struct asic_fixed_properties *prop = &hdev->asic_prop;
3985 u64 ddr_bar_addr;
3986 int rc = 0;
3987
3988 if ((addr >= CFG_BASE) && (addr < CFG_BASE + CFG_SIZE)) {
3989 *val = RREG32(addr - CFG_BASE);
3990
3991 } else if ((addr >= SRAM_BASE_ADDR) &&
3992 (addr < SRAM_BASE_ADDR + SRAM_SIZE)) {
3993
3994 *val = readl(hdev->pcie_bar[SRAM_CFG_BAR_ID] +
3995 (addr - SRAM_BASE_ADDR));
3996
3997 } else if ((addr >= DRAM_PHYS_BASE) &&
3998 (addr < DRAM_PHYS_BASE + hdev->asic_prop.dram_size)) {
3999
4000 u64 bar_base_addr = DRAM_PHYS_BASE +
4001 (addr & ~(prop->dram_pci_bar_size - 0x1ull));
4002
4003 ddr_bar_addr = goya_set_ddr_bar_base(hdev, bar_base_addr);
4004 if (ddr_bar_addr != U64_MAX) {
4005 *val = readl(hdev->pcie_bar[DDR_BAR_ID] +
4006 (addr - bar_base_addr));
4007
4008 ddr_bar_addr = goya_set_ddr_bar_base(hdev,
4009 ddr_bar_addr);
4010 }
4011 if (ddr_bar_addr == U64_MAX)
4012 rc = -EIO;
4013
4014 } else if (addr >= HOST_PHYS_BASE && !iommu_present(&pci_bus_type)) {
4015 *val = *(u32 *) phys_to_virt(addr - HOST_PHYS_BASE);
4016
4017 } else {
4018 rc = -EFAULT;
4019 }
4020
4021 return rc;
4022 }
4023
4024 /*
4025 * goya_debugfs_write32 - write a 32bit value to a given device or a host mapped
4026 * address.
4027 *
4028 * @hdev: pointer to hl_device structure
4029 * @addr: device or host mapped address
4030 * @val: returned value
4031 *
4032 * In case of DDR address that is not mapped into the default aperture that
4033 * the DDR bar exposes, the function will configure the iATU so that the DDR
4034 * bar will be positioned at a base address that allows writing to the
4035 * required address. Configuring the iATU during normal operation can
4036 * lead to undefined behavior and therefore, should be done with extreme care
4037 *
4038 */
4039 static int goya_debugfs_write32(struct hl_device *hdev, u64 addr, u32 val)
4040 {
4041 struct asic_fixed_properties *prop = &hdev->asic_prop;
4042 u64 ddr_bar_addr;
4043 int rc = 0;
4044
4045 if ((addr >= CFG_BASE) && (addr < CFG_BASE + CFG_SIZE)) {
4046 WREG32(addr - CFG_BASE, val);
4047
4048 } else if ((addr >= SRAM_BASE_ADDR) &&
4049 (addr < SRAM_BASE_ADDR + SRAM_SIZE)) {
4050
4051 writel(val, hdev->pcie_bar[SRAM_CFG_BAR_ID] +
4052 (addr - SRAM_BASE_ADDR));
4053
4054 } else if ((addr >= DRAM_PHYS_BASE) &&
4055 (addr < DRAM_PHYS_BASE + hdev->asic_prop.dram_size)) {
4056
4057 u64 bar_base_addr = DRAM_PHYS_BASE +
4058 (addr & ~(prop->dram_pci_bar_size - 0x1ull));
4059
4060 ddr_bar_addr = goya_set_ddr_bar_base(hdev, bar_base_addr);
4061 if (ddr_bar_addr != U64_MAX) {
4062 writel(val, hdev->pcie_bar[DDR_BAR_ID] +
4063 (addr - bar_base_addr));
4064
4065 ddr_bar_addr = goya_set_ddr_bar_base(hdev,
4066 ddr_bar_addr);
4067 }
4068 if (ddr_bar_addr == U64_MAX)
4069 rc = -EIO;
4070
4071 } else if (addr >= HOST_PHYS_BASE && !iommu_present(&pci_bus_type)) {
4072 *(u32 *) phys_to_virt(addr - HOST_PHYS_BASE) = val;
4073
4074 } else {
4075 rc = -EFAULT;
4076 }
4077
4078 return rc;
4079 }
4080
4081 static u64 goya_read_pte(struct hl_device *hdev, u64 addr)
4082 {
4083 struct goya_device *goya = hdev->asic_specific;
4084
4085 if (hdev->hard_reset_pending)
4086 return U64_MAX;
4087
4088 return readq(hdev->pcie_bar[DDR_BAR_ID] +
4089 (addr - goya->ddr_bar_cur_addr));
4090 }
4091
4092 static void goya_write_pte(struct hl_device *hdev, u64 addr, u64 val)
4093 {
4094 struct goya_device *goya = hdev->asic_specific;
4095
4096 if (hdev->hard_reset_pending)
4097 return;
4098
4099 writeq(val, hdev->pcie_bar[DDR_BAR_ID] +
4100 (addr - goya->ddr_bar_cur_addr));
4101 }
4102
4103 static const char *_goya_get_event_desc(u16 event_type)
4104 {
4105 switch (event_type) {
4106 case GOYA_ASYNC_EVENT_ID_PCIE_IF:
4107 return "PCIe_if";
4108 case GOYA_ASYNC_EVENT_ID_TPC0_ECC:
4109 case GOYA_ASYNC_EVENT_ID_TPC1_ECC:
4110 case GOYA_ASYNC_EVENT_ID_TPC2_ECC:
4111 case GOYA_ASYNC_EVENT_ID_TPC3_ECC:
4112 case GOYA_ASYNC_EVENT_ID_TPC4_ECC:
4113 case GOYA_ASYNC_EVENT_ID_TPC5_ECC:
4114 case GOYA_ASYNC_EVENT_ID_TPC6_ECC:
4115 case GOYA_ASYNC_EVENT_ID_TPC7_ECC:
4116 return "TPC%d_ecc";
4117 case GOYA_ASYNC_EVENT_ID_MME_ECC:
4118 return "MME_ecc";
4119 case GOYA_ASYNC_EVENT_ID_MME_ECC_EXT:
4120 return "MME_ecc_ext";
4121 case GOYA_ASYNC_EVENT_ID_MMU_ECC:
4122 return "MMU_ecc";
4123 case GOYA_ASYNC_EVENT_ID_DMA_MACRO:
4124 return "DMA_macro";
4125 case GOYA_ASYNC_EVENT_ID_DMA_ECC:
4126 return "DMA_ecc";
4127 case GOYA_ASYNC_EVENT_ID_CPU_IF_ECC:
4128 return "CPU_if_ecc";
4129 case GOYA_ASYNC_EVENT_ID_PSOC_MEM:
4130 return "PSOC_mem";
4131 case GOYA_ASYNC_EVENT_ID_PSOC_CORESIGHT:
4132 return "PSOC_coresight";
4133 case GOYA_ASYNC_EVENT_ID_SRAM0 ... GOYA_ASYNC_EVENT_ID_SRAM29:
4134 return "SRAM%d";
4135 case GOYA_ASYNC_EVENT_ID_GIC500:
4136 return "GIC500";
4137 case GOYA_ASYNC_EVENT_ID_PLL0 ... GOYA_ASYNC_EVENT_ID_PLL6:
4138 return "PLL%d";
4139 case GOYA_ASYNC_EVENT_ID_AXI_ECC:
4140 return "AXI_ecc";
4141 case GOYA_ASYNC_EVENT_ID_L2_RAM_ECC:
4142 return "L2_ram_ecc";
4143 case GOYA_ASYNC_EVENT_ID_PSOC_GPIO_05_SW_RESET:
4144 return "PSOC_gpio_05_sw_reset";
4145 case GOYA_ASYNC_EVENT_ID_PSOC_GPIO_10_VRHOT_ICRIT:
4146 return "PSOC_gpio_10_vrhot_icrit";
4147 case GOYA_ASYNC_EVENT_ID_PCIE_DEC:
4148 return "PCIe_dec";
4149 case GOYA_ASYNC_EVENT_ID_TPC0_DEC:
4150 case GOYA_ASYNC_EVENT_ID_TPC1_DEC:
4151 case GOYA_ASYNC_EVENT_ID_TPC2_DEC:
4152 case GOYA_ASYNC_EVENT_ID_TPC3_DEC:
4153 case GOYA_ASYNC_EVENT_ID_TPC4_DEC:
4154 case GOYA_ASYNC_EVENT_ID_TPC5_DEC:
4155 case GOYA_ASYNC_EVENT_ID_TPC6_DEC:
4156 case GOYA_ASYNC_EVENT_ID_TPC7_DEC:
4157 return "TPC%d_dec";
4158 case GOYA_ASYNC_EVENT_ID_MME_WACS:
4159 return "MME_wacs";
4160 case GOYA_ASYNC_EVENT_ID_MME_WACSD:
4161 return "MME_wacsd";
4162 case GOYA_ASYNC_EVENT_ID_CPU_AXI_SPLITTER:
4163 return "CPU_axi_splitter";
4164 case GOYA_ASYNC_EVENT_ID_PSOC_AXI_DEC:
4165 return "PSOC_axi_dec";
4166 case GOYA_ASYNC_EVENT_ID_PSOC:
4167 return "PSOC";
4168 case GOYA_ASYNC_EVENT_ID_TPC0_KRN_ERR:
4169 case GOYA_ASYNC_EVENT_ID_TPC1_KRN_ERR:
4170 case GOYA_ASYNC_EVENT_ID_TPC2_KRN_ERR:
4171 case GOYA_ASYNC_EVENT_ID_TPC3_KRN_ERR:
4172 case GOYA_ASYNC_EVENT_ID_TPC4_KRN_ERR:
4173 case GOYA_ASYNC_EVENT_ID_TPC5_KRN_ERR:
4174 case GOYA_ASYNC_EVENT_ID_TPC6_KRN_ERR:
4175 case GOYA_ASYNC_EVENT_ID_TPC7_KRN_ERR:
4176 return "TPC%d_krn_err";
4177 case GOYA_ASYNC_EVENT_ID_TPC0_CMDQ ... GOYA_ASYNC_EVENT_ID_TPC7_CMDQ:
4178 return "TPC%d_cq";
4179 case GOYA_ASYNC_EVENT_ID_TPC0_QM ... GOYA_ASYNC_EVENT_ID_TPC7_QM:
4180 return "TPC%d_qm";
4181 case GOYA_ASYNC_EVENT_ID_MME_QM:
4182 return "MME_qm";
4183 case GOYA_ASYNC_EVENT_ID_MME_CMDQ:
4184 return "MME_cq";
4185 case GOYA_ASYNC_EVENT_ID_DMA0_QM ... GOYA_ASYNC_EVENT_ID_DMA4_QM:
4186 return "DMA%d_qm";
4187 case GOYA_ASYNC_EVENT_ID_DMA0_CH ... GOYA_ASYNC_EVENT_ID_DMA4_CH:
4188 return "DMA%d_ch";
4189 case GOYA_ASYNC_EVENT_ID_TPC0_BMON_SPMU:
4190 case GOYA_ASYNC_EVENT_ID_TPC1_BMON_SPMU:
4191 case GOYA_ASYNC_EVENT_ID_TPC2_BMON_SPMU:
4192 case GOYA_ASYNC_EVENT_ID_TPC3_BMON_SPMU:
4193 case GOYA_ASYNC_EVENT_ID_TPC4_BMON_SPMU:
4194 case GOYA_ASYNC_EVENT_ID_TPC5_BMON_SPMU:
4195 case GOYA_ASYNC_EVENT_ID_TPC6_BMON_SPMU:
4196 case GOYA_ASYNC_EVENT_ID_TPC7_BMON_SPMU:
4197 return "TPC%d_bmon_spmu";
4198 case GOYA_ASYNC_EVENT_ID_DMA_BM_CH0 ... GOYA_ASYNC_EVENT_ID_DMA_BM_CH4:
4199 return "DMA_bm_ch%d";
4200 default:
4201 return "N/A";
4202 }
4203 }
4204
4205 static void goya_get_event_desc(u16 event_type, char *desc, size_t size)
4206 {
4207 u8 index;
4208
4209 switch (event_type) {
4210 case GOYA_ASYNC_EVENT_ID_TPC0_ECC:
4211 case GOYA_ASYNC_EVENT_ID_TPC1_ECC:
4212 case GOYA_ASYNC_EVENT_ID_TPC2_ECC:
4213 case GOYA_ASYNC_EVENT_ID_TPC3_ECC:
4214 case GOYA_ASYNC_EVENT_ID_TPC4_ECC:
4215 case GOYA_ASYNC_EVENT_ID_TPC5_ECC:
4216 case GOYA_ASYNC_EVENT_ID_TPC6_ECC:
4217 case GOYA_ASYNC_EVENT_ID_TPC7_ECC:
4218 index = (event_type - GOYA_ASYNC_EVENT_ID_TPC0_ECC) / 3;
4219 snprintf(desc, size, _goya_get_event_desc(event_type), index);
4220 break;
4221 case GOYA_ASYNC_EVENT_ID_SRAM0 ... GOYA_ASYNC_EVENT_ID_SRAM29:
4222 index = event_type - GOYA_ASYNC_EVENT_ID_SRAM0;
4223 snprintf(desc, size, _goya_get_event_desc(event_type), index);
4224 break;
4225 case GOYA_ASYNC_EVENT_ID_PLL0 ... GOYA_ASYNC_EVENT_ID_PLL6:
4226 index = event_type - GOYA_ASYNC_EVENT_ID_PLL0;
4227 snprintf(desc, size, _goya_get_event_desc(event_type), index);
4228 break;
4229 case GOYA_ASYNC_EVENT_ID_TPC0_DEC:
4230 case GOYA_ASYNC_EVENT_ID_TPC1_DEC:
4231 case GOYA_ASYNC_EVENT_ID_TPC2_DEC:
4232 case GOYA_ASYNC_EVENT_ID_TPC3_DEC:
4233 case GOYA_ASYNC_EVENT_ID_TPC4_DEC:
4234 case GOYA_ASYNC_EVENT_ID_TPC5_DEC:
4235 case GOYA_ASYNC_EVENT_ID_TPC6_DEC:
4236 case GOYA_ASYNC_EVENT_ID_TPC7_DEC:
4237 index = (event_type - GOYA_ASYNC_EVENT_ID_TPC0_DEC) / 3;
4238 snprintf(desc, size, _goya_get_event_desc(event_type), index);
4239 break;
4240 case GOYA_ASYNC_EVENT_ID_TPC0_KRN_ERR:
4241 case GOYA_ASYNC_EVENT_ID_TPC1_KRN_ERR:
4242 case GOYA_ASYNC_EVENT_ID_TPC2_KRN_ERR:
4243 case GOYA_ASYNC_EVENT_ID_TPC3_KRN_ERR:
4244 case GOYA_ASYNC_EVENT_ID_TPC4_KRN_ERR:
4245 case GOYA_ASYNC_EVENT_ID_TPC5_KRN_ERR:
4246 case GOYA_ASYNC_EVENT_ID_TPC6_KRN_ERR:
4247 case GOYA_ASYNC_EVENT_ID_TPC7_KRN_ERR:
4248 index = (event_type - GOYA_ASYNC_EVENT_ID_TPC0_KRN_ERR) / 10;
4249 snprintf(desc, size, _goya_get_event_desc(event_type), index);
4250 break;
4251 case GOYA_ASYNC_EVENT_ID_TPC0_CMDQ ... GOYA_ASYNC_EVENT_ID_TPC7_CMDQ:
4252 index = event_type - GOYA_ASYNC_EVENT_ID_TPC0_CMDQ;
4253 snprintf(desc, size, _goya_get_event_desc(event_type), index);
4254 break;
4255 case GOYA_ASYNC_EVENT_ID_TPC0_QM ... GOYA_ASYNC_EVENT_ID_TPC7_QM:
4256 index = event_type - GOYA_ASYNC_EVENT_ID_TPC0_QM;
4257 snprintf(desc, size, _goya_get_event_desc(event_type), index);
4258 break;
4259 case GOYA_ASYNC_EVENT_ID_DMA0_QM ... GOYA_ASYNC_EVENT_ID_DMA4_QM:
4260 index = event_type - GOYA_ASYNC_EVENT_ID_DMA0_QM;
4261 snprintf(desc, size, _goya_get_event_desc(event_type), index);
4262 break;
4263 case GOYA_ASYNC_EVENT_ID_DMA0_CH ... GOYA_ASYNC_EVENT_ID_DMA4_CH:
4264 index = event_type - GOYA_ASYNC_EVENT_ID_DMA0_CH;
4265 snprintf(desc, size, _goya_get_event_desc(event_type), index);
4266 break;
4267 case GOYA_ASYNC_EVENT_ID_TPC0_BMON_SPMU:
4268 case GOYA_ASYNC_EVENT_ID_TPC1_BMON_SPMU:
4269 case GOYA_ASYNC_EVENT_ID_TPC2_BMON_SPMU:
4270 case GOYA_ASYNC_EVENT_ID_TPC3_BMON_SPMU:
4271 case GOYA_ASYNC_EVENT_ID_TPC4_BMON_SPMU:
4272 case GOYA_ASYNC_EVENT_ID_TPC5_BMON_SPMU:
4273 case GOYA_ASYNC_EVENT_ID_TPC6_BMON_SPMU:
4274 case GOYA_ASYNC_EVENT_ID_TPC7_BMON_SPMU:
4275 index = (event_type - GOYA_ASYNC_EVENT_ID_TPC0_BMON_SPMU) / 10;
4276 snprintf(desc, size, _goya_get_event_desc(event_type), index);
4277 break;
4278 case GOYA_ASYNC_EVENT_ID_DMA_BM_CH0 ... GOYA_ASYNC_EVENT_ID_DMA_BM_CH4:
4279 index = event_type - GOYA_ASYNC_EVENT_ID_DMA_BM_CH0;
4280 snprintf(desc, size, _goya_get_event_desc(event_type), index);
4281 break;
4282 default:
4283 snprintf(desc, size, _goya_get_event_desc(event_type));
4284 break;
4285 }
4286 }
4287
4288 static void goya_print_razwi_info(struct hl_device *hdev)
4289 {
4290 if (RREG32(mmDMA_MACRO_RAZWI_LBW_WT_VLD)) {
4291 dev_err(hdev->dev, "Illegal write to LBW\n");
4292 WREG32(mmDMA_MACRO_RAZWI_LBW_WT_VLD, 0);
4293 }
4294
4295 if (RREG32(mmDMA_MACRO_RAZWI_LBW_RD_VLD)) {
4296 dev_err(hdev->dev, "Illegal read from LBW\n");
4297 WREG32(mmDMA_MACRO_RAZWI_LBW_RD_VLD, 0);
4298 }
4299
4300 if (RREG32(mmDMA_MACRO_RAZWI_HBW_WT_VLD)) {
4301 dev_err(hdev->dev, "Illegal write to HBW\n");
4302 WREG32(mmDMA_MACRO_RAZWI_HBW_WT_VLD, 0);
4303 }
4304
4305 if (RREG32(mmDMA_MACRO_RAZWI_HBW_RD_VLD)) {
4306 dev_err(hdev->dev, "Illegal read from HBW\n");
4307 WREG32(mmDMA_MACRO_RAZWI_HBW_RD_VLD, 0);
4308 }
4309 }
4310
4311 static void goya_print_mmu_error_info(struct hl_device *hdev)
4312 {
4313 struct goya_device *goya = hdev->asic_specific;
4314 u64 addr;
4315 u32 val;
4316
4317 if (!(goya->hw_cap_initialized & HW_CAP_MMU))
4318 return;
4319
4320 val = RREG32(mmMMU_PAGE_ERROR_CAPTURE);
4321 if (val & MMU_PAGE_ERROR_CAPTURE_ENTRY_VALID_MASK) {
4322 addr = val & MMU_PAGE_ERROR_CAPTURE_VA_49_32_MASK;
4323 addr <<= 32;
4324 addr |= RREG32(mmMMU_PAGE_ERROR_CAPTURE_VA);
4325
4326 dev_err(hdev->dev, "MMU page fault on va 0x%llx\n", addr);
4327
4328 WREG32(mmMMU_PAGE_ERROR_CAPTURE, 0);
4329 }
4330 }
4331
4332 static void goya_print_irq_info(struct hl_device *hdev, u16 event_type,
4333 bool razwi)
4334 {
4335 char desc[20] = "";
4336
4337 goya_get_event_desc(event_type, desc, sizeof(desc));
4338 dev_err(hdev->dev, "Received H/W interrupt %d [\"%s\"]\n",
4339 event_type, desc);
4340
4341 if (razwi) {
4342 goya_print_razwi_info(hdev);
4343 goya_print_mmu_error_info(hdev);
4344 }
4345 }
4346
4347 static int goya_unmask_irq_arr(struct hl_device *hdev, u32 *irq_arr,
4348 size_t irq_arr_size)
4349 {
4350 struct armcp_unmask_irq_arr_packet *pkt;
4351 size_t total_pkt_size;
4352 long result;
4353 int rc;
4354
4355 total_pkt_size = sizeof(struct armcp_unmask_irq_arr_packet) +
4356 irq_arr_size;
4357
4358 /* data should be aligned to 8 bytes in order to ArmCP to copy it */
4359 total_pkt_size = (total_pkt_size + 0x7) & ~0x7;
4360
4361 /* total_pkt_size is casted to u16 later on */
4362 if (total_pkt_size > USHRT_MAX) {
4363 dev_err(hdev->dev, "too many elements in IRQ array\n");
4364 return -EINVAL;
4365 }
4366
4367 pkt = kzalloc(total_pkt_size, GFP_KERNEL);
4368 if (!pkt)
4369 return -ENOMEM;
4370
4371 pkt->length = cpu_to_le32(irq_arr_size / sizeof(irq_arr[0]));
4372 memcpy(&pkt->irqs, irq_arr, irq_arr_size);
4373
4374 pkt->armcp_pkt.ctl = cpu_to_le32(ARMCP_PACKET_UNMASK_RAZWI_IRQ_ARRAY <<
4375 ARMCP_PKT_CTL_OPCODE_SHIFT);
4376
4377 rc = goya_send_cpu_message(hdev, (u32 *) pkt, total_pkt_size,
4378 HL_DEVICE_TIMEOUT_USEC, &result);
4379
4380 if (rc)
4381 dev_err(hdev->dev, "failed to unmask IRQ array\n");
4382
4383 kfree(pkt);
4384
4385 return rc;
4386 }
4387
4388 static int goya_soft_reset_late_init(struct hl_device *hdev)
4389 {
4390 /*
4391 * Unmask all IRQs since some could have been received
4392 * during the soft reset
4393 */
4394 return goya_unmask_irq_arr(hdev, goya_all_events,
4395 sizeof(goya_all_events));
4396 }
4397
4398 static int goya_unmask_irq(struct hl_device *hdev, u16 event_type)
4399 {
4400 struct armcp_packet pkt;
4401 long result;
4402 int rc;
4403
4404 memset(&pkt, 0, sizeof(pkt));
4405
4406 pkt.ctl = cpu_to_le32(ARMCP_PACKET_UNMASK_RAZWI_IRQ <<
4407 ARMCP_PKT_CTL_OPCODE_SHIFT);
4408 pkt.value = cpu_to_le64(event_type);
4409
4410 rc = goya_send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
4411 HL_DEVICE_TIMEOUT_USEC, &result);
4412
4413 if (rc)
4414 dev_err(hdev->dev, "failed to unmask RAZWI IRQ %d", event_type);
4415
4416 return rc;
4417 }
4418
4419 void goya_handle_eqe(struct hl_device *hdev, struct hl_eq_entry *eq_entry)
4420 {
4421 u32 ctl = le32_to_cpu(eq_entry->hdr.ctl);
4422 u16 event_type = ((ctl & EQ_CTL_EVENT_TYPE_MASK)
4423 >> EQ_CTL_EVENT_TYPE_SHIFT);
4424 struct goya_device *goya = hdev->asic_specific;
4425
4426 goya->events_stat[event_type]++;
4427
4428 switch (event_type) {
4429 case GOYA_ASYNC_EVENT_ID_PCIE_IF:
4430 case GOYA_ASYNC_EVENT_ID_TPC0_ECC:
4431 case GOYA_ASYNC_EVENT_ID_TPC1_ECC:
4432 case GOYA_ASYNC_EVENT_ID_TPC2_ECC:
4433 case GOYA_ASYNC_EVENT_ID_TPC3_ECC:
4434 case GOYA_ASYNC_EVENT_ID_TPC4_ECC:
4435 case GOYA_ASYNC_EVENT_ID_TPC5_ECC:
4436 case GOYA_ASYNC_EVENT_ID_TPC6_ECC:
4437 case GOYA_ASYNC_EVENT_ID_TPC7_ECC:
4438 case GOYA_ASYNC_EVENT_ID_MME_ECC:
4439 case GOYA_ASYNC_EVENT_ID_MME_ECC_EXT:
4440 case GOYA_ASYNC_EVENT_ID_MMU_ECC:
4441 case GOYA_ASYNC_EVENT_ID_DMA_MACRO:
4442 case GOYA_ASYNC_EVENT_ID_DMA_ECC:
4443 case GOYA_ASYNC_EVENT_ID_CPU_IF_ECC:
4444 case GOYA_ASYNC_EVENT_ID_PSOC_MEM:
4445 case GOYA_ASYNC_EVENT_ID_PSOC_CORESIGHT:
4446 case GOYA_ASYNC_EVENT_ID_SRAM0 ... GOYA_ASYNC_EVENT_ID_SRAM29:
4447 case GOYA_ASYNC_EVENT_ID_GIC500:
4448 case GOYA_ASYNC_EVENT_ID_PLL0 ... GOYA_ASYNC_EVENT_ID_PLL6:
4449 case GOYA_ASYNC_EVENT_ID_AXI_ECC:
4450 case GOYA_ASYNC_EVENT_ID_L2_RAM_ECC:
4451 case GOYA_ASYNC_EVENT_ID_PSOC_GPIO_05_SW_RESET:
4452 case GOYA_ASYNC_EVENT_ID_PSOC_GPIO_10_VRHOT_ICRIT:
4453 goya_print_irq_info(hdev, event_type, false);
4454 hl_device_reset(hdev, true, false);
4455 break;
4456
4457 case GOYA_ASYNC_EVENT_ID_PCIE_DEC:
4458 case GOYA_ASYNC_EVENT_ID_TPC0_DEC:
4459 case GOYA_ASYNC_EVENT_ID_TPC1_DEC:
4460 case GOYA_ASYNC_EVENT_ID_TPC2_DEC:
4461 case GOYA_ASYNC_EVENT_ID_TPC3_DEC:
4462 case GOYA_ASYNC_EVENT_ID_TPC4_DEC:
4463 case GOYA_ASYNC_EVENT_ID_TPC5_DEC:
4464 case GOYA_ASYNC_EVENT_ID_TPC6_DEC:
4465 case GOYA_ASYNC_EVENT_ID_TPC7_DEC:
4466 case GOYA_ASYNC_EVENT_ID_MME_WACS:
4467 case GOYA_ASYNC_EVENT_ID_MME_WACSD:
4468 case GOYA_ASYNC_EVENT_ID_CPU_AXI_SPLITTER:
4469 case GOYA_ASYNC_EVENT_ID_PSOC_AXI_DEC:
4470 case GOYA_ASYNC_EVENT_ID_PSOC:
4471 case GOYA_ASYNC_EVENT_ID_TPC0_KRN_ERR:
4472 case GOYA_ASYNC_EVENT_ID_TPC1_KRN_ERR:
4473 case GOYA_ASYNC_EVENT_ID_TPC2_KRN_ERR:
4474 case GOYA_ASYNC_EVENT_ID_TPC3_KRN_ERR:
4475 case GOYA_ASYNC_EVENT_ID_TPC4_KRN_ERR:
4476 case GOYA_ASYNC_EVENT_ID_TPC5_KRN_ERR:
4477 case GOYA_ASYNC_EVENT_ID_TPC6_KRN_ERR:
4478 case GOYA_ASYNC_EVENT_ID_TPC7_KRN_ERR:
4479 case GOYA_ASYNC_EVENT_ID_TPC0_CMDQ ... GOYA_ASYNC_EVENT_ID_TPC7_QM:
4480 case GOYA_ASYNC_EVENT_ID_MME_QM:
4481 case GOYA_ASYNC_EVENT_ID_MME_CMDQ:
4482 case GOYA_ASYNC_EVENT_ID_DMA0_QM ... GOYA_ASYNC_EVENT_ID_DMA4_QM:
4483 case GOYA_ASYNC_EVENT_ID_DMA0_CH ... GOYA_ASYNC_EVENT_ID_DMA4_CH:
4484 goya_print_irq_info(hdev, event_type, true);
4485 goya_unmask_irq(hdev, event_type);
4486 break;
4487
4488 case GOYA_ASYNC_EVENT_ID_TPC0_BMON_SPMU:
4489 case GOYA_ASYNC_EVENT_ID_TPC1_BMON_SPMU:
4490 case GOYA_ASYNC_EVENT_ID_TPC2_BMON_SPMU:
4491 case GOYA_ASYNC_EVENT_ID_TPC3_BMON_SPMU:
4492 case GOYA_ASYNC_EVENT_ID_TPC4_BMON_SPMU:
4493 case GOYA_ASYNC_EVENT_ID_TPC5_BMON_SPMU:
4494 case GOYA_ASYNC_EVENT_ID_TPC6_BMON_SPMU:
4495 case GOYA_ASYNC_EVENT_ID_TPC7_BMON_SPMU:
4496 case GOYA_ASYNC_EVENT_ID_DMA_BM_CH0 ... GOYA_ASYNC_EVENT_ID_DMA_BM_CH4:
4497 goya_print_irq_info(hdev, event_type, false);
4498 goya_unmask_irq(hdev, event_type);
4499 break;
4500
4501 default:
4502 dev_err(hdev->dev, "Received invalid H/W interrupt %d\n",
4503 event_type);
4504 break;
4505 }
4506 }
4507
4508 void *goya_get_events_stat(struct hl_device *hdev, u32 *size)
4509 {
4510 struct goya_device *goya = hdev->asic_specific;
4511
4512 *size = (u32) sizeof(goya->events_stat);
4513
4514 return goya->events_stat;
4515 }
4516
4517 static int goya_memset_device_memory(struct hl_device *hdev, u64 addr, u64 size,
4518 u64 val, bool is_dram)
4519 {
4520 struct packet_lin_dma *lin_dma_pkt;
4521 struct hl_cs_job *job;
4522 u32 cb_size, ctl;
4523 struct hl_cb *cb;
4524 int rc, lin_dma_pkts_cnt;
4525
4526 lin_dma_pkts_cnt = DIV_ROUND_UP_ULL(size, SZ_2G);
4527 cb_size = lin_dma_pkts_cnt * sizeof(struct packet_lin_dma) +
4528 sizeof(struct packet_msg_prot);
4529 cb = hl_cb_kernel_create(hdev, cb_size);
4530 if (!cb)
4531 return -ENOMEM;
4532
4533 lin_dma_pkt = (struct packet_lin_dma *) (uintptr_t) cb->kernel_address;
4534
4535 do {
4536 memset(lin_dma_pkt, 0, sizeof(*lin_dma_pkt));
4537
4538 ctl = ((PACKET_LIN_DMA << GOYA_PKT_CTL_OPCODE_SHIFT) |
4539 (1 << GOYA_PKT_LIN_DMA_CTL_MEMSET_SHIFT) |
4540 (1 << GOYA_PKT_LIN_DMA_CTL_WO_SHIFT) |
4541 (1 << GOYA_PKT_CTL_RB_SHIFT) |
4542 (1 << GOYA_PKT_CTL_MB_SHIFT));
4543 ctl |= (is_dram ? DMA_HOST_TO_DRAM : DMA_HOST_TO_SRAM) <<
4544 GOYA_PKT_LIN_DMA_CTL_DMA_DIR_SHIFT;
4545 lin_dma_pkt->ctl = cpu_to_le32(ctl);
4546
4547 lin_dma_pkt->src_addr = cpu_to_le64(val);
4548 lin_dma_pkt->dst_addr = cpu_to_le64(addr);
4549 if (lin_dma_pkts_cnt > 1)
4550 lin_dma_pkt->tsize = cpu_to_le32(SZ_2G);
4551 else
4552 lin_dma_pkt->tsize = cpu_to_le32(size);
4553
4554 size -= SZ_2G;
4555 addr += SZ_2G;
4556 lin_dma_pkt++;
4557 } while (--lin_dma_pkts_cnt);
4558
4559 job = hl_cs_allocate_job(hdev, true);
4560 if (!job) {
4561 dev_err(hdev->dev, "Failed to allocate a new job\n");
4562 rc = -ENOMEM;
4563 goto release_cb;
4564 }
4565
4566 job->id = 0;
4567 job->user_cb = cb;
4568 job->user_cb->cs_cnt++;
4569 job->user_cb_size = cb_size;
4570 job->hw_queue_id = GOYA_QUEUE_ID_DMA_0;
4571 job->patched_cb = job->user_cb;
4572 job->job_cb_size = job->user_cb_size;
4573
4574 hl_debugfs_add_job(hdev, job);
4575
4576 rc = goya_send_job_on_qman0(hdev, job);
4577
4578 hl_cb_put(job->patched_cb);
4579
4580 hl_debugfs_remove_job(hdev, job);
4581 kfree(job);
4582 cb->cs_cnt--;
4583
4584 release_cb:
4585 hl_cb_put(cb);
4586 hl_cb_destroy(hdev, &hdev->kernel_cb_mgr, cb->id << PAGE_SHIFT);
4587
4588 return rc;
4589 }
4590
4591 int goya_context_switch(struct hl_device *hdev, u32 asid)
4592 {
4593 struct asic_fixed_properties *prop = &hdev->asic_prop;
4594 u64 addr = prop->sram_base_address, sob_addr;
4595 u32 size = hdev->pldm ? 0x10000 : prop->sram_size;
4596 u64 val = 0x7777777777777777ull;
4597 int rc, dma_id;
4598 u32 channel_off = mmDMA_CH_1_WR_COMP_ADDR_LO -
4599 mmDMA_CH_0_WR_COMP_ADDR_LO;
4600
4601 rc = goya_memset_device_memory(hdev, addr, size, val, false);
4602 if (rc) {
4603 dev_err(hdev->dev, "Failed to clear SRAM in context switch\n");
4604 return rc;
4605 }
4606
4607 /* we need to reset registers that the user is allowed to change */
4608 sob_addr = CFG_BASE + mmSYNC_MNGR_SOB_OBJ_1007;
4609 WREG32(mmDMA_CH_0_WR_COMP_ADDR_LO, lower_32_bits(sob_addr));
4610
4611 for (dma_id = 1 ; dma_id < NUMBER_OF_EXT_HW_QUEUES ; dma_id++) {
4612 sob_addr = CFG_BASE + mmSYNC_MNGR_SOB_OBJ_1000 +
4613 (dma_id - 1) * 4;
4614 WREG32(mmDMA_CH_0_WR_COMP_ADDR_LO + channel_off * dma_id,
4615 lower_32_bits(sob_addr));
4616 }
4617
4618 WREG32(mmTPC_PLL_CLK_RLX_0, 0x200020);
4619
4620 goya_mmu_prepare(hdev, asid);
4621
4622 goya_clear_sm_regs(hdev);
4623
4624 return 0;
4625 }
4626
4627 static int goya_mmu_clear_pgt_range(struct hl_device *hdev)
4628 {
4629 struct asic_fixed_properties *prop = &hdev->asic_prop;
4630 struct goya_device *goya = hdev->asic_specific;
4631 u64 addr = prop->mmu_pgt_addr;
4632 u32 size = prop->mmu_pgt_size + MMU_DRAM_DEFAULT_PAGE_SIZE +
4633 MMU_CACHE_MNG_SIZE;
4634
4635 if (!(goya->hw_cap_initialized & HW_CAP_MMU))
4636 return 0;
4637
4638 return goya_memset_device_memory(hdev, addr, size, 0, true);
4639 }
4640
4641 static int goya_mmu_set_dram_default_page(struct hl_device *hdev)
4642 {
4643 struct goya_device *goya = hdev->asic_specific;
4644 u64 addr = hdev->asic_prop.mmu_dram_default_page_addr;
4645 u32 size = MMU_DRAM_DEFAULT_PAGE_SIZE;
4646 u64 val = 0x9999999999999999ull;
4647
4648 if (!(goya->hw_cap_initialized & HW_CAP_MMU))
4649 return 0;
4650
4651 return goya_memset_device_memory(hdev, addr, size, val, true);
4652 }
4653
4654 static int goya_mmu_add_mappings_for_device_cpu(struct hl_device *hdev)
4655 {
4656 struct asic_fixed_properties *prop = &hdev->asic_prop;
4657 struct goya_device *goya = hdev->asic_specific;
4658 s64 off, cpu_off;
4659 int rc;
4660
4661 if (!(goya->hw_cap_initialized & HW_CAP_MMU))
4662 return 0;
4663
4664 for (off = 0 ; off < CPU_FW_IMAGE_SIZE ; off += PAGE_SIZE_2MB) {
4665 rc = hl_mmu_map(hdev->kernel_ctx, prop->dram_base_address + off,
4666 prop->dram_base_address + off, PAGE_SIZE_2MB);
4667 if (rc) {
4668 dev_err(hdev->dev, "Map failed for address 0x%llx\n",
4669 prop->dram_base_address + off);
4670 goto unmap;
4671 }
4672 }
4673
4674 if (!(hdev->cpu_accessible_dma_address & (PAGE_SIZE_2MB - 1))) {
4675 rc = hl_mmu_map(hdev->kernel_ctx, VA_CPU_ACCESSIBLE_MEM_ADDR,
4676 hdev->cpu_accessible_dma_address, PAGE_SIZE_2MB);
4677
4678 if (rc) {
4679 dev_err(hdev->dev,
4680 "Map failed for CPU accessible memory\n");
4681 off -= PAGE_SIZE_2MB;
4682 goto unmap;
4683 }
4684 } else {
4685 for (cpu_off = 0 ; cpu_off < SZ_2M ; cpu_off += PAGE_SIZE_4KB) {
4686 rc = hl_mmu_map(hdev->kernel_ctx,
4687 VA_CPU_ACCESSIBLE_MEM_ADDR + cpu_off,
4688 hdev->cpu_accessible_dma_address + cpu_off,
4689 PAGE_SIZE_4KB);
4690 if (rc) {
4691 dev_err(hdev->dev,
4692 "Map failed for CPU accessible memory\n");
4693 cpu_off -= PAGE_SIZE_4KB;
4694 goto unmap_cpu;
4695 }
4696 }
4697 }
4698
4699 goya_mmu_prepare_reg(hdev, mmCPU_IF_ARUSER_OVR, HL_KERNEL_ASID_ID);
4700 goya_mmu_prepare_reg(hdev, mmCPU_IF_AWUSER_OVR, HL_KERNEL_ASID_ID);
4701 WREG32(mmCPU_IF_ARUSER_OVR_EN, 0x7FF);
4702 WREG32(mmCPU_IF_AWUSER_OVR_EN, 0x7FF);
4703
4704 /* Make sure configuration is flushed to device */
4705 RREG32(mmCPU_IF_AWUSER_OVR_EN);
4706
4707 goya->device_cpu_mmu_mappings_done = true;
4708
4709 return 0;
4710
4711 unmap_cpu:
4712 for (; cpu_off >= 0 ; cpu_off -= PAGE_SIZE_4KB)
4713 if (hl_mmu_unmap(hdev->kernel_ctx,
4714 VA_CPU_ACCESSIBLE_MEM_ADDR + cpu_off,
4715 PAGE_SIZE_4KB))
4716 dev_warn_ratelimited(hdev->dev,
4717 "failed to unmap address 0x%llx\n",
4718 VA_CPU_ACCESSIBLE_MEM_ADDR + cpu_off);
4719 unmap:
4720 for (; off >= 0 ; off -= PAGE_SIZE_2MB)
4721 if (hl_mmu_unmap(hdev->kernel_ctx,
4722 prop->dram_base_address + off, PAGE_SIZE_2MB))
4723 dev_warn_ratelimited(hdev->dev,
4724 "failed to unmap address 0x%llx\n",
4725 prop->dram_base_address + off);
4726
4727 return rc;
4728 }
4729
4730 void goya_mmu_remove_device_cpu_mappings(struct hl_device *hdev)
4731 {
4732 struct asic_fixed_properties *prop = &hdev->asic_prop;
4733 struct goya_device *goya = hdev->asic_specific;
4734 u32 off, cpu_off;
4735
4736 if (!(goya->hw_cap_initialized & HW_CAP_MMU))
4737 return;
4738
4739 if (!goya->device_cpu_mmu_mappings_done)
4740 return;
4741
4742 WREG32(mmCPU_IF_ARUSER_OVR_EN, 0);
4743 WREG32(mmCPU_IF_AWUSER_OVR_EN, 0);
4744
4745 if (!(hdev->cpu_accessible_dma_address & (PAGE_SIZE_2MB - 1))) {
4746 if (hl_mmu_unmap(hdev->kernel_ctx, VA_CPU_ACCESSIBLE_MEM_ADDR,
4747 PAGE_SIZE_2MB))
4748 dev_warn(hdev->dev,
4749 "Failed to unmap CPU accessible memory\n");
4750 } else {
4751 for (cpu_off = 0 ; cpu_off < SZ_2M ; cpu_off += PAGE_SIZE_4KB)
4752 if (hl_mmu_unmap(hdev->kernel_ctx,
4753 VA_CPU_ACCESSIBLE_MEM_ADDR + cpu_off,
4754 PAGE_SIZE_4KB))
4755 dev_warn_ratelimited(hdev->dev,
4756 "failed to unmap address 0x%llx\n",
4757 VA_CPU_ACCESSIBLE_MEM_ADDR + cpu_off);
4758 }
4759
4760 for (off = 0 ; off < CPU_FW_IMAGE_SIZE ; off += PAGE_SIZE_2MB)
4761 if (hl_mmu_unmap(hdev->kernel_ctx,
4762 prop->dram_base_address + off, PAGE_SIZE_2MB))
4763 dev_warn_ratelimited(hdev->dev,
4764 "Failed to unmap address 0x%llx\n",
4765 prop->dram_base_address + off);
4766
4767 goya->device_cpu_mmu_mappings_done = false;
4768 }
4769
4770 static void goya_mmu_prepare(struct hl_device *hdev, u32 asid)
4771 {
4772 struct goya_device *goya = hdev->asic_specific;
4773 int i;
4774
4775 if (!(goya->hw_cap_initialized & HW_CAP_MMU))
4776 return;
4777
4778 if (asid & ~MME_QM_GLBL_SECURE_PROPS_ASID_MASK) {
4779 WARN(1, "asid %u is too big\n", asid);
4780 return;
4781 }
4782
4783 /* zero the MMBP and ASID bits and then set the ASID */
4784 for (i = 0 ; i < GOYA_MMU_REGS_NUM ; i++)
4785 goya_mmu_prepare_reg(hdev, goya_mmu_regs[i], asid);
4786 }
4787
4788 static void goya_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard)
4789 {
4790 struct goya_device *goya = hdev->asic_specific;
4791 u32 status, timeout_usec;
4792 int rc;
4793
4794 if (!(goya->hw_cap_initialized & HW_CAP_MMU))
4795 return;
4796
4797 /* no need in L1 only invalidation in Goya */
4798 if (!is_hard)
4799 return;
4800
4801 if (hdev->pldm)
4802 timeout_usec = GOYA_PLDM_MMU_TIMEOUT_USEC;
4803 else
4804 timeout_usec = MMU_CONFIG_TIMEOUT_USEC;
4805
4806 mutex_lock(&hdev->mmu_cache_lock);
4807
4808 /* L0 & L1 invalidation */
4809 WREG32(mmSTLB_INV_ALL_START, 1);
4810
4811 rc = hl_poll_timeout(
4812 hdev,
4813 mmSTLB_INV_ALL_START,
4814 status,
4815 !status,
4816 1000,
4817 timeout_usec);
4818
4819 mutex_unlock(&hdev->mmu_cache_lock);
4820
4821 if (rc)
4822 dev_notice_ratelimited(hdev->dev,
4823 "Timeout when waiting for MMU cache invalidation\n");
4824 }
4825
4826 static void goya_mmu_invalidate_cache_range(struct hl_device *hdev,
4827 bool is_hard, u32 asid, u64 va, u64 size)
4828 {
4829 struct goya_device *goya = hdev->asic_specific;
4830 u32 status, timeout_usec, inv_data, pi;
4831 int rc;
4832
4833 if (!(goya->hw_cap_initialized & HW_CAP_MMU))
4834 return;
4835
4836 /* no need in L1 only invalidation in Goya */
4837 if (!is_hard)
4838 return;
4839
4840 if (hdev->pldm)
4841 timeout_usec = GOYA_PLDM_MMU_TIMEOUT_USEC;
4842 else
4843 timeout_usec = MMU_CONFIG_TIMEOUT_USEC;
4844
4845 mutex_lock(&hdev->mmu_cache_lock);
4846
4847 /*
4848 * TODO: currently invalidate entire L0 & L1 as in regular hard
4849 * invalidation. Need to apply invalidation of specific cache lines with
4850 * mask of ASID & VA & size.
4851 * Note that L1 with be flushed entirely in any case.
4852 */
4853
4854 /* L0 & L1 invalidation */
4855 inv_data = RREG32(mmSTLB_CACHE_INV);
4856 /* PI is 8 bit */
4857 pi = ((inv_data & STLB_CACHE_INV_PRODUCER_INDEX_MASK) + 1) & 0xFF;
4858 WREG32(mmSTLB_CACHE_INV,
4859 (inv_data & STLB_CACHE_INV_INDEX_MASK_MASK) | pi);
4860
4861 rc = hl_poll_timeout(
4862 hdev,
4863 mmSTLB_INV_CONSUMER_INDEX,
4864 status,
4865 status == pi,
4866 1000,
4867 timeout_usec);
4868
4869 mutex_unlock(&hdev->mmu_cache_lock);
4870
4871 if (rc)
4872 dev_notice_ratelimited(hdev->dev,
4873 "Timeout when waiting for MMU cache invalidation\n");
4874 }
4875
4876 int goya_send_heartbeat(struct hl_device *hdev)
4877 {
4878 struct goya_device *goya = hdev->asic_specific;
4879
4880 if (!(goya->hw_cap_initialized & HW_CAP_CPU_Q))
4881 return 0;
4882
4883 return hl_fw_send_heartbeat(hdev);
4884 }
4885
4886 int goya_armcp_info_get(struct hl_device *hdev)
4887 {
4888 struct goya_device *goya = hdev->asic_specific;
4889 struct asic_fixed_properties *prop = &hdev->asic_prop;
4890 u64 dram_size;
4891 int rc;
4892
4893 if (!(goya->hw_cap_initialized & HW_CAP_CPU_Q))
4894 return 0;
4895
4896 rc = hl_fw_armcp_info_get(hdev);
4897 if (rc)
4898 return rc;
4899
4900 dram_size = le64_to_cpu(prop->armcp_info.dram_size);
4901 if (dram_size) {
4902 if ((!is_power_of_2(dram_size)) ||
4903 (dram_size < DRAM_PHYS_DEFAULT_SIZE)) {
4904 dev_err(hdev->dev,
4905 "F/W reported invalid DRAM size %llu. Trying to use default size\n",
4906 dram_size);
4907 dram_size = DRAM_PHYS_DEFAULT_SIZE;
4908 }
4909
4910 prop->dram_size = dram_size;
4911 prop->dram_end_address = prop->dram_base_address + dram_size;
4912 }
4913
4914 return 0;
4915 }
4916
4917 static bool goya_is_device_idle(struct hl_device *hdev, u32 *mask,
4918 struct seq_file *s)
4919 {
4920 const char *fmt = "%-5d%-9s%#-14x%#-16x%#x\n";
4921 const char *dma_fmt = "%-5d%-9s%#-14x%#x\n";
4922 u32 qm_glbl_sts0, cmdq_glbl_sts0, dma_core_sts0, tpc_cfg_sts,
4923 mme_arch_sts;
4924 bool is_idle = true, is_eng_idle;
4925 u64 offset;
4926 int i;
4927
4928 if (s)
4929 seq_puts(s, "\nDMA is_idle QM_GLBL_STS0 DMA_CORE_STS0\n"
4930 "--- ------- ------------ -------------\n");
4931
4932 offset = mmDMA_QM_1_GLBL_STS0 - mmDMA_QM_0_GLBL_STS0;
4933
4934 for (i = 0 ; i < DMA_MAX_NUM ; i++) {
4935 qm_glbl_sts0 = RREG32(mmDMA_QM_0_GLBL_STS0 + i * offset);
4936 dma_core_sts0 = RREG32(mmDMA_CH_0_STS0 + i * offset);
4937 is_eng_idle = IS_DMA_QM_IDLE(qm_glbl_sts0) &&
4938 IS_DMA_IDLE(dma_core_sts0);
4939 is_idle &= is_eng_idle;
4940
4941 if (mask)
4942 *mask |= !is_eng_idle << (GOYA_ENGINE_ID_DMA_0 + i);
4943 if (s)
4944 seq_printf(s, dma_fmt, i, is_eng_idle ? "Y" : "N",
4945 qm_glbl_sts0, dma_core_sts0);
4946 }
4947
4948 if (s)
4949 seq_puts(s,
4950 "\nTPC is_idle QM_GLBL_STS0 CMDQ_GLBL_STS0 CFG_STATUS\n"
4951 "--- ------- ------------ -------------- ----------\n");
4952
4953 offset = mmTPC1_QM_GLBL_STS0 - mmTPC0_QM_GLBL_STS0;
4954
4955 for (i = 0 ; i < TPC_MAX_NUM ; i++) {
4956 qm_glbl_sts0 = RREG32(mmTPC0_QM_GLBL_STS0 + i * offset);
4957 cmdq_glbl_sts0 = RREG32(mmTPC0_CMDQ_GLBL_STS0 + i * offset);
4958 tpc_cfg_sts = RREG32(mmTPC0_CFG_STATUS + i * offset);
4959 is_eng_idle = IS_TPC_QM_IDLE(qm_glbl_sts0) &&
4960 IS_TPC_CMDQ_IDLE(cmdq_glbl_sts0) &&
4961 IS_TPC_IDLE(tpc_cfg_sts);
4962 is_idle &= is_eng_idle;
4963
4964 if (mask)
4965 *mask |= !is_eng_idle << (GOYA_ENGINE_ID_TPC_0 + i);
4966 if (s)
4967 seq_printf(s, fmt, i, is_eng_idle ? "Y" : "N",
4968 qm_glbl_sts0, cmdq_glbl_sts0, tpc_cfg_sts);
4969 }
4970
4971 if (s)
4972 seq_puts(s,
4973 "\nMME is_idle QM_GLBL_STS0 CMDQ_GLBL_STS0 ARCH_STATUS\n"
4974 "--- ------- ------------ -------------- -----------\n");
4975
4976 qm_glbl_sts0 = RREG32(mmMME_QM_GLBL_STS0);
4977 cmdq_glbl_sts0 = RREG32(mmMME_CMDQ_GLBL_STS0);
4978 mme_arch_sts = RREG32(mmMME_ARCH_STATUS);
4979 is_eng_idle = IS_MME_QM_IDLE(qm_glbl_sts0) &&
4980 IS_MME_CMDQ_IDLE(cmdq_glbl_sts0) &&
4981 IS_MME_IDLE(mme_arch_sts);
4982 is_idle &= is_eng_idle;
4983
4984 if (mask)
4985 *mask |= !is_eng_idle << GOYA_ENGINE_ID_MME_0;
4986 if (s) {
4987 seq_printf(s, fmt, 0, is_eng_idle ? "Y" : "N", qm_glbl_sts0,
4988 cmdq_glbl_sts0, mme_arch_sts);
4989 seq_puts(s, "\n");
4990 }
4991
4992 return is_idle;
4993 }
4994
4995 static void goya_hw_queues_lock(struct hl_device *hdev)
4996 {
4997 struct goya_device *goya = hdev->asic_specific;
4998
4999 spin_lock(&goya->hw_queues_lock);
5000 }
5001
5002 static void goya_hw_queues_unlock(struct hl_device *hdev)
5003 {
5004 struct goya_device *goya = hdev->asic_specific;
5005
5006 spin_unlock(&goya->hw_queues_lock);
5007 }
5008
5009 static u32 goya_get_pci_id(struct hl_device *hdev)
5010 {
5011 return hdev->pdev->device;
5012 }
5013
5014 static int goya_get_eeprom_data(struct hl_device *hdev, void *data,
5015 size_t max_size)
5016 {
5017 struct goya_device *goya = hdev->asic_specific;
5018
5019 if (!(goya->hw_cap_initialized & HW_CAP_CPU_Q))
5020 return 0;
5021
5022 return hl_fw_get_eeprom_data(hdev, data, max_size);
5023 }
5024
5025 static enum hl_device_hw_state goya_get_hw_state(struct hl_device *hdev)
5026 {
5027 return RREG32(mmPSOC_GLOBAL_CONF_APP_STATUS);
5028 }
5029
5030 static const struct hl_asic_funcs goya_funcs = {
5031 .early_init = goya_early_init,
5032 .early_fini = goya_early_fini,
5033 .late_init = goya_late_init,
5034 .late_fini = goya_late_fini,
5035 .sw_init = goya_sw_init,
5036 .sw_fini = goya_sw_fini,
5037 .hw_init = goya_hw_init,
5038 .hw_fini = goya_hw_fini,
5039 .halt_engines = goya_halt_engines,
5040 .suspend = goya_suspend,
5041 .resume = goya_resume,
5042 .cb_mmap = goya_cb_mmap,
5043 .ring_doorbell = goya_ring_doorbell,
5044 .flush_pq_write = goya_flush_pq_write,
5045 .asic_dma_alloc_coherent = goya_dma_alloc_coherent,
5046 .asic_dma_free_coherent = goya_dma_free_coherent,
5047 .get_int_queue_base = goya_get_int_queue_base,
5048 .test_queues = goya_test_queues,
5049 .asic_dma_pool_zalloc = goya_dma_pool_zalloc,
5050 .asic_dma_pool_free = goya_dma_pool_free,
5051 .cpu_accessible_dma_pool_alloc = goya_cpu_accessible_dma_pool_alloc,
5052 .cpu_accessible_dma_pool_free = goya_cpu_accessible_dma_pool_free,
5053 .hl_dma_unmap_sg = goya_dma_unmap_sg,
5054 .cs_parser = goya_cs_parser,
5055 .asic_dma_map_sg = goya_dma_map_sg,
5056 .get_dma_desc_list_size = goya_get_dma_desc_list_size,
5057 .add_end_of_cb_packets = goya_add_end_of_cb_packets,
5058 .update_eq_ci = goya_update_eq_ci,
5059 .context_switch = goya_context_switch,
5060 .restore_phase_topology = goya_restore_phase_topology,
5061 .debugfs_read32 = goya_debugfs_read32,
5062 .debugfs_write32 = goya_debugfs_write32,
5063 .add_device_attr = goya_add_device_attr,
5064 .handle_eqe = goya_handle_eqe,
5065 .set_pll_profile = goya_set_pll_profile,
5066 .get_events_stat = goya_get_events_stat,
5067 .read_pte = goya_read_pte,
5068 .write_pte = goya_write_pte,
5069 .mmu_invalidate_cache = goya_mmu_invalidate_cache,
5070 .mmu_invalidate_cache_range = goya_mmu_invalidate_cache_range,
5071 .send_heartbeat = goya_send_heartbeat,
5072 .debug_coresight = goya_debug_coresight,
5073 .is_device_idle = goya_is_device_idle,
5074 .soft_reset_late_init = goya_soft_reset_late_init,
5075 .hw_queues_lock = goya_hw_queues_lock,
5076 .hw_queues_unlock = goya_hw_queues_unlock,
5077 .get_pci_id = goya_get_pci_id,
5078 .get_eeprom_data = goya_get_eeprom_data,
5079 .send_cpu_message = goya_send_cpu_message,
5080 .get_hw_state = goya_get_hw_state,
5081 .pci_bars_map = goya_pci_bars_map,
5082 .set_dram_bar_base = goya_set_ddr_bar_base,
5083 .init_iatu = goya_init_iatu,
5084 .rreg = hl_rreg,
5085 .wreg = hl_wreg,
5086 .halt_coresight = goya_halt_coresight
5087 };
5088
5089 /*
5090 * goya_set_asic_funcs - set Goya function pointers
5091 *
5092 * @*hdev: pointer to hl_device structure
5093 *
5094 */
5095 void goya_set_asic_funcs(struct hl_device *hdev)
5096 {
5097 hdev->asic_funcs = &goya_funcs;
5098 }