]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/net/ethernet/neterion/vxge/vxge-config.c
locking/atomics: Don't assume that scripts are executable
[thirdparty/linux.git] / drivers / net / ethernet / neterion / vxge / vxge-config.c
1 /******************************************************************************
2 * This software may be used and distributed according to the terms of
3 * the GNU General Public License (GPL), incorporated herein by reference.
4 * Drivers based on or derived from this code fall under the GPL and must
5 * retain the authorship, copyright and license notice. This file is not
6 * a complete program and may only be used when the entire operating
7 * system is licensed under the GPL.
8 * See the file COPYING in this distribution for more information.
9 *
10 * vxge-config.c: Driver for Exar Corp's X3100 Series 10GbE PCIe I/O
11 * Virtualized Server Adapter.
12 * Copyright(c) 2002-2010 Exar Corp.
13 ******************************************************************************/
14 #include <linux/vmalloc.h>
15 #include <linux/etherdevice.h>
16 #include <linux/io-64-nonatomic-lo-hi.h>
17 #include <linux/pci.h>
18 #include <linux/slab.h>
19
20 #include "vxge-traffic.h"
21 #include "vxge-config.h"
22 #include "vxge-main.h"
23
24 #define VXGE_HW_VPATH_STATS_PIO_READ(offset) { \
25 status = __vxge_hw_vpath_stats_access(vpath, \
26 VXGE_HW_STATS_OP_READ, \
27 offset, \
28 &val64); \
29 if (status != VXGE_HW_OK) \
30 return status; \
31 }
32
33 static void
34 vxge_hw_vpath_set_zero_rx_frm_len(struct vxge_hw_vpath_reg __iomem *vp_reg)
35 {
36 u64 val64;
37
38 val64 = readq(&vp_reg->rxmac_vcfg0);
39 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
40 writeq(val64, &vp_reg->rxmac_vcfg0);
41 val64 = readq(&vp_reg->rxmac_vcfg0);
42 }
43
44 /*
45 * vxge_hw_vpath_wait_receive_idle - Wait for Rx to become idle
46 */
47 int vxge_hw_vpath_wait_receive_idle(struct __vxge_hw_device *hldev, u32 vp_id)
48 {
49 struct vxge_hw_vpath_reg __iomem *vp_reg;
50 struct __vxge_hw_virtualpath *vpath;
51 u64 val64, rxd_count, rxd_spat;
52 int count = 0, total_count = 0;
53
54 vpath = &hldev->virtual_paths[vp_id];
55 vp_reg = vpath->vp_reg;
56
57 vxge_hw_vpath_set_zero_rx_frm_len(vp_reg);
58
59 /* Check that the ring controller for this vpath has enough free RxDs
60 * to send frames to the host. This is done by reading the
61 * PRC_RXD_DOORBELL_VPn register and comparing the read value to the
62 * RXD_SPAT value for the vpath.
63 */
64 val64 = readq(&vp_reg->prc_cfg6);
65 rxd_spat = VXGE_HW_PRC_CFG6_GET_RXD_SPAT(val64) + 1;
66 /* Use a factor of 2 when comparing rxd_count against rxd_spat for some
67 * leg room.
68 */
69 rxd_spat *= 2;
70
71 do {
72 mdelay(1);
73
74 rxd_count = readq(&vp_reg->prc_rxd_doorbell);
75
76 /* Check that the ring controller for this vpath does
77 * not have any frame in its pipeline.
78 */
79 val64 = readq(&vp_reg->frm_in_progress_cnt);
80 if ((rxd_count <= rxd_spat) || (val64 > 0))
81 count = 0;
82 else
83 count++;
84 total_count++;
85 } while ((count < VXGE_HW_MIN_SUCCESSIVE_IDLE_COUNT) &&
86 (total_count < VXGE_HW_MAX_POLLING_COUNT));
87
88 if (total_count >= VXGE_HW_MAX_POLLING_COUNT)
89 printk(KERN_ALERT "%s: Still Receiving traffic. Abort wait\n",
90 __func__);
91
92 return total_count;
93 }
94
95 /* vxge_hw_device_wait_receive_idle - This function waits until all frames
96 * stored in the frame buffer for each vpath assigned to the given
97 * function (hldev) have been sent to the host.
98 */
99 void vxge_hw_device_wait_receive_idle(struct __vxge_hw_device *hldev)
100 {
101 int i, total_count = 0;
102
103 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
104 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
105 continue;
106
107 total_count += vxge_hw_vpath_wait_receive_idle(hldev, i);
108 if (total_count >= VXGE_HW_MAX_POLLING_COUNT)
109 break;
110 }
111 }
112
113 /*
114 * __vxge_hw_device_register_poll
115 * Will poll certain register for specified amount of time.
116 * Will poll until masked bit is not cleared.
117 */
118 static enum vxge_hw_status
119 __vxge_hw_device_register_poll(void __iomem *reg, u64 mask, u32 max_millis)
120 {
121 u64 val64;
122 u32 i = 0;
123
124 udelay(10);
125
126 do {
127 val64 = readq(reg);
128 if (!(val64 & mask))
129 return VXGE_HW_OK;
130 udelay(100);
131 } while (++i <= 9);
132
133 i = 0;
134 do {
135 val64 = readq(reg);
136 if (!(val64 & mask))
137 return VXGE_HW_OK;
138 mdelay(1);
139 } while (++i <= max_millis);
140
141 return VXGE_HW_FAIL;
142 }
143
144 static inline enum vxge_hw_status
145 __vxge_hw_pio_mem_write64(u64 val64, void __iomem *addr,
146 u64 mask, u32 max_millis)
147 {
148 __vxge_hw_pio_mem_write32_lower((u32)vxge_bVALn(val64, 32, 32), addr);
149 wmb();
150 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32), addr);
151 wmb();
152
153 return __vxge_hw_device_register_poll(addr, mask, max_millis);
154 }
155
156 static enum vxge_hw_status
157 vxge_hw_vpath_fw_api(struct __vxge_hw_virtualpath *vpath, u32 action,
158 u32 fw_memo, u32 offset, u64 *data0, u64 *data1,
159 u64 *steer_ctrl)
160 {
161 struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
162 enum vxge_hw_status status;
163 u64 val64;
164 u32 retry = 0, max_retry = 3;
165
166 spin_lock(&vpath->lock);
167 if (!vpath->vp_open) {
168 spin_unlock(&vpath->lock);
169 max_retry = 100;
170 }
171
172 writeq(*data0, &vp_reg->rts_access_steer_data0);
173 writeq(*data1, &vp_reg->rts_access_steer_data1);
174 wmb();
175
176 val64 = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION(action) |
177 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL(fw_memo) |
178 VXGE_HW_RTS_ACCESS_STEER_CTRL_OFFSET(offset) |
179 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE |
180 *steer_ctrl;
181
182 status = __vxge_hw_pio_mem_write64(val64,
183 &vp_reg->rts_access_steer_ctrl,
184 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
185 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
186
187 /* The __vxge_hw_device_register_poll can udelay for a significant
188 * amount of time, blocking other process from the CPU. If it delays
189 * for ~5secs, a NMI error can occur. A way around this is to give up
190 * the processor via msleep, but this is not allowed is under lock.
191 * So, only allow it to sleep for ~4secs if open. Otherwise, delay for
192 * 1sec and sleep for 10ms until the firmware operation has completed
193 * or timed-out.
194 */
195 while ((status != VXGE_HW_OK) && retry++ < max_retry) {
196 if (!vpath->vp_open)
197 msleep(20);
198 status = __vxge_hw_device_register_poll(
199 &vp_reg->rts_access_steer_ctrl,
200 VXGE_HW_RTS_ACCESS_STEER_CTRL_STROBE,
201 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
202 }
203
204 if (status != VXGE_HW_OK)
205 goto out;
206
207 val64 = readq(&vp_reg->rts_access_steer_ctrl);
208 if (val64 & VXGE_HW_RTS_ACCESS_STEER_CTRL_RMACJ_STATUS) {
209 *data0 = readq(&vp_reg->rts_access_steer_data0);
210 *data1 = readq(&vp_reg->rts_access_steer_data1);
211 *steer_ctrl = val64;
212 } else
213 status = VXGE_HW_FAIL;
214
215 out:
216 if (vpath->vp_open)
217 spin_unlock(&vpath->lock);
218 return status;
219 }
220
221 enum vxge_hw_status
222 vxge_hw_upgrade_read_version(struct __vxge_hw_device *hldev, u32 *major,
223 u32 *minor, u32 *build)
224 {
225 u64 data0 = 0, data1 = 0, steer_ctrl = 0;
226 struct __vxge_hw_virtualpath *vpath;
227 enum vxge_hw_status status;
228
229 vpath = &hldev->virtual_paths[hldev->first_vp_id];
230
231 status = vxge_hw_vpath_fw_api(vpath,
232 VXGE_HW_FW_UPGRADE_ACTION,
233 VXGE_HW_FW_UPGRADE_MEMO,
234 VXGE_HW_FW_UPGRADE_OFFSET_READ,
235 &data0, &data1, &steer_ctrl);
236 if (status != VXGE_HW_OK)
237 return status;
238
239 *major = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0);
240 *minor = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0);
241 *build = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0);
242
243 return status;
244 }
245
246 enum vxge_hw_status vxge_hw_flash_fw(struct __vxge_hw_device *hldev)
247 {
248 u64 data0 = 0, data1 = 0, steer_ctrl = 0;
249 struct __vxge_hw_virtualpath *vpath;
250 enum vxge_hw_status status;
251 u32 ret;
252
253 vpath = &hldev->virtual_paths[hldev->first_vp_id];
254
255 status = vxge_hw_vpath_fw_api(vpath,
256 VXGE_HW_FW_UPGRADE_ACTION,
257 VXGE_HW_FW_UPGRADE_MEMO,
258 VXGE_HW_FW_UPGRADE_OFFSET_COMMIT,
259 &data0, &data1, &steer_ctrl);
260 if (status != VXGE_HW_OK) {
261 vxge_debug_init(VXGE_ERR, "%s: FW upgrade failed", __func__);
262 goto exit;
263 }
264
265 ret = VXGE_HW_RTS_ACCESS_STEER_CTRL_GET_ACTION(steer_ctrl) & 0x7F;
266 if (ret != 1) {
267 vxge_debug_init(VXGE_ERR, "%s: FW commit failed with error %d",
268 __func__, ret);
269 status = VXGE_HW_FAIL;
270 }
271
272 exit:
273 return status;
274 }
275
276 enum vxge_hw_status
277 vxge_update_fw_image(struct __vxge_hw_device *hldev, const u8 *fwdata, int size)
278 {
279 u64 data0 = 0, data1 = 0, steer_ctrl = 0;
280 struct __vxge_hw_virtualpath *vpath;
281 enum vxge_hw_status status;
282 int ret_code, sec_code;
283
284 vpath = &hldev->virtual_paths[hldev->first_vp_id];
285
286 /* send upgrade start command */
287 status = vxge_hw_vpath_fw_api(vpath,
288 VXGE_HW_FW_UPGRADE_ACTION,
289 VXGE_HW_FW_UPGRADE_MEMO,
290 VXGE_HW_FW_UPGRADE_OFFSET_START,
291 &data0, &data1, &steer_ctrl);
292 if (status != VXGE_HW_OK) {
293 vxge_debug_init(VXGE_ERR, " %s: Upgrade start cmd failed",
294 __func__);
295 return status;
296 }
297
298 /* Transfer fw image to adapter 16 bytes at a time */
299 for (; size > 0; size -= VXGE_HW_FW_UPGRADE_BLK_SIZE) {
300 steer_ctrl = 0;
301
302 /* The next 128bits of fwdata to be loaded onto the adapter */
303 data0 = *((u64 *)fwdata);
304 data1 = *((u64 *)fwdata + 1);
305
306 status = vxge_hw_vpath_fw_api(vpath,
307 VXGE_HW_FW_UPGRADE_ACTION,
308 VXGE_HW_FW_UPGRADE_MEMO,
309 VXGE_HW_FW_UPGRADE_OFFSET_SEND,
310 &data0, &data1, &steer_ctrl);
311 if (status != VXGE_HW_OK) {
312 vxge_debug_init(VXGE_ERR, "%s: Upgrade send failed",
313 __func__);
314 goto out;
315 }
316
317 ret_code = VXGE_HW_UPGRADE_GET_RET_ERR_CODE(data0);
318 switch (ret_code) {
319 case VXGE_HW_FW_UPGRADE_OK:
320 /* All OK, send next 16 bytes. */
321 break;
322 case VXGE_FW_UPGRADE_BYTES2SKIP:
323 /* skip bytes in the stream */
324 fwdata += (data0 >> 8) & 0xFFFFFFFF;
325 break;
326 case VXGE_HW_FW_UPGRADE_DONE:
327 goto out;
328 case VXGE_HW_FW_UPGRADE_ERR:
329 sec_code = VXGE_HW_UPGRADE_GET_SEC_ERR_CODE(data0);
330 switch (sec_code) {
331 case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_1:
332 case VXGE_HW_FW_UPGRADE_ERR_CORRUPT_DATA_7:
333 printk(KERN_ERR
334 "corrupted data from .ncf file\n");
335 break;
336 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_3:
337 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_4:
338 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_5:
339 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_6:
340 case VXGE_HW_FW_UPGRADE_ERR_INV_NCF_FILE_8:
341 printk(KERN_ERR "invalid .ncf file\n");
342 break;
343 case VXGE_HW_FW_UPGRADE_ERR_BUFFER_OVERFLOW:
344 printk(KERN_ERR "buffer overflow\n");
345 break;
346 case VXGE_HW_FW_UPGRADE_ERR_FAILED_TO_FLASH:
347 printk(KERN_ERR "failed to flash the image\n");
348 break;
349 case VXGE_HW_FW_UPGRADE_ERR_GENERIC_ERROR_UNKNOWN:
350 printk(KERN_ERR
351 "generic error. Unknown error type\n");
352 break;
353 default:
354 printk(KERN_ERR "Unknown error of type %d\n",
355 sec_code);
356 break;
357 }
358 status = VXGE_HW_FAIL;
359 goto out;
360 default:
361 printk(KERN_ERR "Unknown FW error: %d\n", ret_code);
362 status = VXGE_HW_FAIL;
363 goto out;
364 }
365 /* point to next 16 bytes */
366 fwdata += VXGE_HW_FW_UPGRADE_BLK_SIZE;
367 }
368 out:
369 return status;
370 }
371
372 enum vxge_hw_status
373 vxge_hw_vpath_eprom_img_ver_get(struct __vxge_hw_device *hldev,
374 struct eprom_image *img)
375 {
376 u64 data0 = 0, data1 = 0, steer_ctrl = 0;
377 struct __vxge_hw_virtualpath *vpath;
378 enum vxge_hw_status status;
379 int i;
380
381 vpath = &hldev->virtual_paths[hldev->first_vp_id];
382
383 for (i = 0; i < VXGE_HW_MAX_ROM_IMAGES; i++) {
384 data0 = VXGE_HW_RTS_ACCESS_STEER_ROM_IMAGE_INDEX(i);
385 data1 = steer_ctrl = 0;
386
387 status = vxge_hw_vpath_fw_api(vpath,
388 VXGE_HW_FW_API_GET_EPROM_REV,
389 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
390 0, &data0, &data1, &steer_ctrl);
391 if (status != VXGE_HW_OK)
392 break;
393
394 img[i].is_valid = VXGE_HW_GET_EPROM_IMAGE_VALID(data0);
395 img[i].index = VXGE_HW_GET_EPROM_IMAGE_INDEX(data0);
396 img[i].type = VXGE_HW_GET_EPROM_IMAGE_TYPE(data0);
397 img[i].version = VXGE_HW_GET_EPROM_IMAGE_REV(data0);
398 }
399
400 return status;
401 }
402
403 /*
404 * __vxge_hw_channel_free - Free memory allocated for channel
405 * This function deallocates memory from the channel and various arrays
406 * in the channel
407 */
408 static void __vxge_hw_channel_free(struct __vxge_hw_channel *channel)
409 {
410 kfree(channel->work_arr);
411 kfree(channel->free_arr);
412 kfree(channel->reserve_arr);
413 kfree(channel->orig_arr);
414 kfree(channel);
415 }
416
417 /*
418 * __vxge_hw_channel_initialize - Initialize a channel
419 * This function initializes a channel by properly setting the
420 * various references
421 */
422 static enum vxge_hw_status
423 __vxge_hw_channel_initialize(struct __vxge_hw_channel *channel)
424 {
425 u32 i;
426 struct __vxge_hw_virtualpath *vpath;
427
428 vpath = channel->vph->vpath;
429
430 if ((channel->reserve_arr != NULL) && (channel->orig_arr != NULL)) {
431 for (i = 0; i < channel->length; i++)
432 channel->orig_arr[i] = channel->reserve_arr[i];
433 }
434
435 switch (channel->type) {
436 case VXGE_HW_CHANNEL_TYPE_FIFO:
437 vpath->fifoh = (struct __vxge_hw_fifo *)channel;
438 channel->stats = &((struct __vxge_hw_fifo *)
439 channel)->stats->common_stats;
440 break;
441 case VXGE_HW_CHANNEL_TYPE_RING:
442 vpath->ringh = (struct __vxge_hw_ring *)channel;
443 channel->stats = &((struct __vxge_hw_ring *)
444 channel)->stats->common_stats;
445 break;
446 default:
447 break;
448 }
449
450 return VXGE_HW_OK;
451 }
452
453 /*
454 * __vxge_hw_channel_reset - Resets a channel
455 * This function resets a channel by properly setting the various references
456 */
457 static enum vxge_hw_status
458 __vxge_hw_channel_reset(struct __vxge_hw_channel *channel)
459 {
460 u32 i;
461
462 for (i = 0; i < channel->length; i++) {
463 if (channel->reserve_arr != NULL)
464 channel->reserve_arr[i] = channel->orig_arr[i];
465 if (channel->free_arr != NULL)
466 channel->free_arr[i] = NULL;
467 if (channel->work_arr != NULL)
468 channel->work_arr[i] = NULL;
469 }
470 channel->free_ptr = channel->length;
471 channel->reserve_ptr = channel->length;
472 channel->reserve_top = 0;
473 channel->post_index = 0;
474 channel->compl_index = 0;
475
476 return VXGE_HW_OK;
477 }
478
479 /*
480 * __vxge_hw_device_pci_e_init
481 * Initialize certain PCI/PCI-X configuration registers
482 * with recommended values. Save config space for future hw resets.
483 */
484 static void __vxge_hw_device_pci_e_init(struct __vxge_hw_device *hldev)
485 {
486 u16 cmd = 0;
487
488 /* Set the PErr Repconse bit and SERR in PCI command register. */
489 pci_read_config_word(hldev->pdev, PCI_COMMAND, &cmd);
490 cmd |= 0x140;
491 pci_write_config_word(hldev->pdev, PCI_COMMAND, cmd);
492
493 pci_save_state(hldev->pdev);
494 }
495
496 /* __vxge_hw_device_vpath_reset_in_prog_check - Check if vpath reset
497 * in progress
498 * This routine checks the vpath reset in progress register is turned zero
499 */
500 static enum vxge_hw_status
501 __vxge_hw_device_vpath_reset_in_prog_check(u64 __iomem *vpath_rst_in_prog)
502 {
503 enum vxge_hw_status status;
504 status = __vxge_hw_device_register_poll(vpath_rst_in_prog,
505 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(0x1ffff),
506 VXGE_HW_DEF_DEVICE_POLL_MILLIS);
507 return status;
508 }
509
510 /*
511 * _hw_legacy_swapper_set - Set the swapper bits for the legacy secion.
512 * Set the swapper bits appropriately for the lagacy section.
513 */
514 static enum vxge_hw_status
515 __vxge_hw_legacy_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg)
516 {
517 u64 val64;
518 enum vxge_hw_status status = VXGE_HW_OK;
519
520 val64 = readq(&legacy_reg->toc_swapper_fb);
521
522 wmb();
523
524 switch (val64) {
525 case VXGE_HW_SWAPPER_INITIAL_VALUE:
526 return status;
527
528 case VXGE_HW_SWAPPER_BYTE_SWAPPED_BIT_FLIPPED:
529 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
530 &legacy_reg->pifm_rd_swap_en);
531 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
532 &legacy_reg->pifm_rd_flip_en);
533 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
534 &legacy_reg->pifm_wr_swap_en);
535 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
536 &legacy_reg->pifm_wr_flip_en);
537 break;
538
539 case VXGE_HW_SWAPPER_BYTE_SWAPPED:
540 writeq(VXGE_HW_SWAPPER_READ_BYTE_SWAP_ENABLE,
541 &legacy_reg->pifm_rd_swap_en);
542 writeq(VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE,
543 &legacy_reg->pifm_wr_swap_en);
544 break;
545
546 case VXGE_HW_SWAPPER_BIT_FLIPPED:
547 writeq(VXGE_HW_SWAPPER_READ_BIT_FLAP_ENABLE,
548 &legacy_reg->pifm_rd_flip_en);
549 writeq(VXGE_HW_SWAPPER_WRITE_BIT_FLAP_ENABLE,
550 &legacy_reg->pifm_wr_flip_en);
551 break;
552 }
553
554 wmb();
555
556 val64 = readq(&legacy_reg->toc_swapper_fb);
557
558 if (val64 != VXGE_HW_SWAPPER_INITIAL_VALUE)
559 status = VXGE_HW_ERR_SWAPPER_CTRL;
560
561 return status;
562 }
563
564 /*
565 * __vxge_hw_device_toc_get
566 * This routine sets the swapper and reads the toc pointer and returns the
567 * memory mapped address of the toc
568 */
569 static struct vxge_hw_toc_reg __iomem *
570 __vxge_hw_device_toc_get(void __iomem *bar0)
571 {
572 u64 val64;
573 struct vxge_hw_toc_reg __iomem *toc = NULL;
574 enum vxge_hw_status status;
575
576 struct vxge_hw_legacy_reg __iomem *legacy_reg =
577 (struct vxge_hw_legacy_reg __iomem *)bar0;
578
579 status = __vxge_hw_legacy_swapper_set(legacy_reg);
580 if (status != VXGE_HW_OK)
581 goto exit;
582
583 val64 = readq(&legacy_reg->toc_first_pointer);
584 toc = bar0 + val64;
585 exit:
586 return toc;
587 }
588
589 /*
590 * __vxge_hw_device_reg_addr_get
591 * This routine sets the swapper and reads the toc pointer and initializes the
592 * register location pointers in the device object. It waits until the ric is
593 * completed initializing registers.
594 */
595 static enum vxge_hw_status
596 __vxge_hw_device_reg_addr_get(struct __vxge_hw_device *hldev)
597 {
598 u64 val64;
599 u32 i;
600 enum vxge_hw_status status = VXGE_HW_OK;
601
602 hldev->legacy_reg = hldev->bar0;
603
604 hldev->toc_reg = __vxge_hw_device_toc_get(hldev->bar0);
605 if (hldev->toc_reg == NULL) {
606 status = VXGE_HW_FAIL;
607 goto exit;
608 }
609
610 val64 = readq(&hldev->toc_reg->toc_common_pointer);
611 hldev->common_reg = hldev->bar0 + val64;
612
613 val64 = readq(&hldev->toc_reg->toc_mrpcim_pointer);
614 hldev->mrpcim_reg = hldev->bar0 + val64;
615
616 for (i = 0; i < VXGE_HW_TITAN_SRPCIM_REG_SPACES; i++) {
617 val64 = readq(&hldev->toc_reg->toc_srpcim_pointer[i]);
618 hldev->srpcim_reg[i] = hldev->bar0 + val64;
619 }
620
621 for (i = 0; i < VXGE_HW_TITAN_VPMGMT_REG_SPACES; i++) {
622 val64 = readq(&hldev->toc_reg->toc_vpmgmt_pointer[i]);
623 hldev->vpmgmt_reg[i] = hldev->bar0 + val64;
624 }
625
626 for (i = 0; i < VXGE_HW_TITAN_VPATH_REG_SPACES; i++) {
627 val64 = readq(&hldev->toc_reg->toc_vpath_pointer[i]);
628 hldev->vpath_reg[i] = hldev->bar0 + val64;
629 }
630
631 val64 = readq(&hldev->toc_reg->toc_kdfc);
632
633 switch (VXGE_HW_TOC_GET_KDFC_INITIAL_BIR(val64)) {
634 case 0:
635 hldev->kdfc = hldev->bar0 + VXGE_HW_TOC_GET_KDFC_INITIAL_OFFSET(val64) ;
636 break;
637 default:
638 break;
639 }
640
641 status = __vxge_hw_device_vpath_reset_in_prog_check(
642 (u64 __iomem *)&hldev->common_reg->vpath_rst_in_prog);
643 exit:
644 return status;
645 }
646
647 /*
648 * __vxge_hw_device_access_rights_get: Get Access Rights of the driver
649 * This routine returns the Access Rights of the driver
650 */
651 static u32
652 __vxge_hw_device_access_rights_get(u32 host_type, u32 func_id)
653 {
654 u32 access_rights = VXGE_HW_DEVICE_ACCESS_RIGHT_VPATH;
655
656 switch (host_type) {
657 case VXGE_HW_NO_MR_NO_SR_NORMAL_FUNCTION:
658 if (func_id == 0) {
659 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
660 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
661 }
662 break;
663 case VXGE_HW_MR_NO_SR_VH0_BASE_FUNCTION:
664 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
665 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
666 break;
667 case VXGE_HW_NO_MR_SR_VH0_FUNCTION0:
668 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM |
669 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
670 break;
671 case VXGE_HW_NO_MR_SR_VH0_VIRTUAL_FUNCTION:
672 case VXGE_HW_SR_VH_VIRTUAL_FUNCTION:
673 case VXGE_HW_MR_SR_VH0_INVALID_CONFIG:
674 break;
675 case VXGE_HW_SR_VH_FUNCTION0:
676 case VXGE_HW_VH_NORMAL_FUNCTION:
677 access_rights |= VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM;
678 break;
679 }
680
681 return access_rights;
682 }
683 /*
684 * __vxge_hw_device_is_privilaged
685 * This routine checks if the device function is privilaged or not
686 */
687
688 enum vxge_hw_status
689 __vxge_hw_device_is_privilaged(u32 host_type, u32 func_id)
690 {
691 if (__vxge_hw_device_access_rights_get(host_type,
692 func_id) &
693 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)
694 return VXGE_HW_OK;
695 else
696 return VXGE_HW_ERR_PRIVILEGED_OPERATION;
697 }
698
699 /*
700 * __vxge_hw_vpath_func_id_get - Get the function id of the vpath.
701 * Returns the function number of the vpath.
702 */
703 static u32
704 __vxge_hw_vpath_func_id_get(struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg)
705 {
706 u64 val64;
707
708 val64 = readq(&vpmgmt_reg->vpath_to_func_map_cfg1);
709
710 return
711 (u32)VXGE_HW_VPATH_TO_FUNC_MAP_CFG1_GET_VPATH_TO_FUNC_MAP_CFG1(val64);
712 }
713
714 /*
715 * __vxge_hw_device_host_info_get
716 * This routine returns the host type assignments
717 */
718 static void __vxge_hw_device_host_info_get(struct __vxge_hw_device *hldev)
719 {
720 u64 val64;
721 u32 i;
722
723 val64 = readq(&hldev->common_reg->host_type_assignments);
724
725 hldev->host_type =
726 (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
727
728 hldev->vpath_assignments = readq(&hldev->common_reg->vpath_assignments);
729
730 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
731 if (!(hldev->vpath_assignments & vxge_mBIT(i)))
732 continue;
733
734 hldev->func_id =
735 __vxge_hw_vpath_func_id_get(hldev->vpmgmt_reg[i]);
736
737 hldev->access_rights = __vxge_hw_device_access_rights_get(
738 hldev->host_type, hldev->func_id);
739
740 hldev->virtual_paths[i].vp_open = VXGE_HW_VP_NOT_OPEN;
741 hldev->virtual_paths[i].vp_reg = hldev->vpath_reg[i];
742
743 hldev->first_vp_id = i;
744 break;
745 }
746 }
747
748 /*
749 * __vxge_hw_verify_pci_e_info - Validate the pci-e link parameters such as
750 * link width and signalling rate.
751 */
752 static enum vxge_hw_status
753 __vxge_hw_verify_pci_e_info(struct __vxge_hw_device *hldev)
754 {
755 struct pci_dev *dev = hldev->pdev;
756 u16 lnk;
757
758 /* Get the negotiated link width and speed from PCI config space */
759 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnk);
760
761 if ((lnk & PCI_EXP_LNKSTA_CLS) != 1)
762 return VXGE_HW_ERR_INVALID_PCI_INFO;
763
764 switch ((lnk & PCI_EXP_LNKSTA_NLW) >> 4) {
765 case PCIE_LNK_WIDTH_RESRV:
766 case PCIE_LNK_X1:
767 case PCIE_LNK_X2:
768 case PCIE_LNK_X4:
769 case PCIE_LNK_X8:
770 break;
771 default:
772 return VXGE_HW_ERR_INVALID_PCI_INFO;
773 }
774
775 return VXGE_HW_OK;
776 }
777
778 /*
779 * __vxge_hw_device_initialize
780 * Initialize Titan-V hardware.
781 */
782 static enum vxge_hw_status
783 __vxge_hw_device_initialize(struct __vxge_hw_device *hldev)
784 {
785 enum vxge_hw_status status = VXGE_HW_OK;
786
787 if (VXGE_HW_OK == __vxge_hw_device_is_privilaged(hldev->host_type,
788 hldev->func_id)) {
789 /* Validate the pci-e link width and speed */
790 status = __vxge_hw_verify_pci_e_info(hldev);
791 if (status != VXGE_HW_OK)
792 goto exit;
793 }
794
795 exit:
796 return status;
797 }
798
799 /*
800 * __vxge_hw_vpath_fw_ver_get - Get the fw version
801 * Returns FW Version
802 */
803 static enum vxge_hw_status
804 __vxge_hw_vpath_fw_ver_get(struct __vxge_hw_virtualpath *vpath,
805 struct vxge_hw_device_hw_info *hw_info)
806 {
807 struct vxge_hw_device_version *fw_version = &hw_info->fw_version;
808 struct vxge_hw_device_date *fw_date = &hw_info->fw_date;
809 struct vxge_hw_device_version *flash_version = &hw_info->flash_version;
810 struct vxge_hw_device_date *flash_date = &hw_info->flash_date;
811 u64 data0 = 0, data1 = 0, steer_ctrl = 0;
812 enum vxge_hw_status status;
813
814 status = vxge_hw_vpath_fw_api(vpath,
815 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
816 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
817 0, &data0, &data1, &steer_ctrl);
818 if (status != VXGE_HW_OK)
819 goto exit;
820
821 fw_date->day =
822 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_DAY(data0);
823 fw_date->month =
824 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MONTH(data0);
825 fw_date->year =
826 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_YEAR(data0);
827
828 snprintf(fw_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
829 fw_date->month, fw_date->day, fw_date->year);
830
831 fw_version->major =
832 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MAJOR(data0);
833 fw_version->minor =
834 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_MINOR(data0);
835 fw_version->build =
836 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_FW_VER_BUILD(data0);
837
838 snprintf(fw_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
839 fw_version->major, fw_version->minor, fw_version->build);
840
841 flash_date->day =
842 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_DAY(data1);
843 flash_date->month =
844 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MONTH(data1);
845 flash_date->year =
846 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_YEAR(data1);
847
848 snprintf(flash_date->date, VXGE_HW_FW_STRLEN, "%2.2d/%2.2d/%4.4d",
849 flash_date->month, flash_date->day, flash_date->year);
850
851 flash_version->major =
852 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MAJOR(data1);
853 flash_version->minor =
854 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_MINOR(data1);
855 flash_version->build =
856 (u32) VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_FLASH_VER_BUILD(data1);
857
858 snprintf(flash_version->version, VXGE_HW_FW_STRLEN, "%d.%d.%d",
859 flash_version->major, flash_version->minor,
860 flash_version->build);
861
862 exit:
863 return status;
864 }
865
866 /*
867 * __vxge_hw_vpath_card_info_get - Get the serial numbers,
868 * part number and product description.
869 */
870 static enum vxge_hw_status
871 __vxge_hw_vpath_card_info_get(struct __vxge_hw_virtualpath *vpath,
872 struct vxge_hw_device_hw_info *hw_info)
873 {
874 enum vxge_hw_status status;
875 u64 data0, data1 = 0, steer_ctrl = 0;
876 u8 *serial_number = hw_info->serial_number;
877 u8 *part_number = hw_info->part_number;
878 u8 *product_desc = hw_info->product_desc;
879 u32 i, j = 0;
880
881 data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_SERIAL_NUMBER;
882
883 status = vxge_hw_vpath_fw_api(vpath,
884 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
885 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
886 0, &data0, &data1, &steer_ctrl);
887 if (status != VXGE_HW_OK)
888 return status;
889
890 ((u64 *)serial_number)[0] = be64_to_cpu(data0);
891 ((u64 *)serial_number)[1] = be64_to_cpu(data1);
892
893 data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_PART_NUMBER;
894 data1 = steer_ctrl = 0;
895
896 status = vxge_hw_vpath_fw_api(vpath,
897 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
898 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
899 0, &data0, &data1, &steer_ctrl);
900 if (status != VXGE_HW_OK)
901 return status;
902
903 ((u64 *)part_number)[0] = be64_to_cpu(data0);
904 ((u64 *)part_number)[1] = be64_to_cpu(data1);
905
906 for (i = VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_0;
907 i <= VXGE_HW_RTS_ACCESS_STEER_DATA0_MEMO_ITEM_DESC_3; i++) {
908 data0 = i;
909 data1 = steer_ctrl = 0;
910
911 status = vxge_hw_vpath_fw_api(vpath,
912 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_MEMO_ENTRY,
913 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
914 0, &data0, &data1, &steer_ctrl);
915 if (status != VXGE_HW_OK)
916 return status;
917
918 ((u64 *)product_desc)[j++] = be64_to_cpu(data0);
919 ((u64 *)product_desc)[j++] = be64_to_cpu(data1);
920 }
921
922 return status;
923 }
924
925 /*
926 * __vxge_hw_vpath_pci_func_mode_get - Get the pci mode
927 * Returns pci function mode
928 */
929 static enum vxge_hw_status
930 __vxge_hw_vpath_pci_func_mode_get(struct __vxge_hw_virtualpath *vpath,
931 struct vxge_hw_device_hw_info *hw_info)
932 {
933 u64 data0, data1 = 0, steer_ctrl = 0;
934 enum vxge_hw_status status;
935
936 data0 = 0;
937
938 status = vxge_hw_vpath_fw_api(vpath,
939 VXGE_HW_FW_API_GET_FUNC_MODE,
940 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
941 0, &data0, &data1, &steer_ctrl);
942 if (status != VXGE_HW_OK)
943 return status;
944
945 hw_info->function_mode = VXGE_HW_GET_FUNC_MODE_VAL(data0);
946 return status;
947 }
948
949 /*
950 * __vxge_hw_vpath_addr_get - Get the hw address entry for this vpath
951 * from MAC address table.
952 */
953 static enum vxge_hw_status
954 __vxge_hw_vpath_addr_get(struct __vxge_hw_virtualpath *vpath,
955 u8 *macaddr, u8 *macaddr_mask)
956 {
957 u64 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_FIRST_ENTRY,
958 data0 = 0, data1 = 0, steer_ctrl = 0;
959 enum vxge_hw_status status;
960 int i;
961
962 do {
963 status = vxge_hw_vpath_fw_api(vpath, action,
964 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA,
965 0, &data0, &data1, &steer_ctrl);
966 if (status != VXGE_HW_OK)
967 goto exit;
968
969 data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_DA_MAC_ADDR(data0);
970 data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_GET_DA_MAC_ADDR_MASK(
971 data1);
972
973 for (i = ETH_ALEN; i > 0; i--) {
974 macaddr[i - 1] = (u8) (data0 & 0xFF);
975 data0 >>= 8;
976
977 macaddr_mask[i - 1] = (u8) (data1 & 0xFF);
978 data1 >>= 8;
979 }
980
981 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LIST_NEXT_ENTRY;
982 data0 = 0, data1 = 0, steer_ctrl = 0;
983
984 } while (!is_valid_ether_addr(macaddr));
985 exit:
986 return status;
987 }
988
989 /**
990 * vxge_hw_device_hw_info_get - Get the hw information
991 * Returns the vpath mask that has the bits set for each vpath allocated
992 * for the driver, FW version information, and the first mac address for
993 * each vpath
994 */
995 enum vxge_hw_status
996 vxge_hw_device_hw_info_get(void __iomem *bar0,
997 struct vxge_hw_device_hw_info *hw_info)
998 {
999 u32 i;
1000 u64 val64;
1001 struct vxge_hw_toc_reg __iomem *toc;
1002 struct vxge_hw_mrpcim_reg __iomem *mrpcim_reg;
1003 struct vxge_hw_common_reg __iomem *common_reg;
1004 struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
1005 enum vxge_hw_status status;
1006 struct __vxge_hw_virtualpath vpath;
1007
1008 memset(hw_info, 0, sizeof(struct vxge_hw_device_hw_info));
1009
1010 toc = __vxge_hw_device_toc_get(bar0);
1011 if (toc == NULL) {
1012 status = VXGE_HW_ERR_CRITICAL;
1013 goto exit;
1014 }
1015
1016 val64 = readq(&toc->toc_common_pointer);
1017 common_reg = bar0 + val64;
1018
1019 status = __vxge_hw_device_vpath_reset_in_prog_check(
1020 (u64 __iomem *)&common_reg->vpath_rst_in_prog);
1021 if (status != VXGE_HW_OK)
1022 goto exit;
1023
1024 hw_info->vpath_mask = readq(&common_reg->vpath_assignments);
1025
1026 val64 = readq(&common_reg->host_type_assignments);
1027
1028 hw_info->host_type =
1029 (u32)VXGE_HW_HOST_TYPE_ASSIGNMENTS_GET_HOST_TYPE_ASSIGNMENTS(val64);
1030
1031 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1032 if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
1033 continue;
1034
1035 val64 = readq(&toc->toc_vpmgmt_pointer[i]);
1036
1037 vpmgmt_reg = bar0 + val64;
1038
1039 hw_info->func_id = __vxge_hw_vpath_func_id_get(vpmgmt_reg);
1040 if (__vxge_hw_device_access_rights_get(hw_info->host_type,
1041 hw_info->func_id) &
1042 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM) {
1043
1044 val64 = readq(&toc->toc_mrpcim_pointer);
1045
1046 mrpcim_reg = bar0 + val64;
1047
1048 writeq(0, &mrpcim_reg->xgmac_gen_fw_memo_mask);
1049 wmb();
1050 }
1051
1052 val64 = readq(&toc->toc_vpath_pointer[i]);
1053
1054 spin_lock_init(&vpath.lock);
1055 vpath.vp_reg = bar0 + val64;
1056 vpath.vp_open = VXGE_HW_VP_NOT_OPEN;
1057
1058 status = __vxge_hw_vpath_pci_func_mode_get(&vpath, hw_info);
1059 if (status != VXGE_HW_OK)
1060 goto exit;
1061
1062 status = __vxge_hw_vpath_fw_ver_get(&vpath, hw_info);
1063 if (status != VXGE_HW_OK)
1064 goto exit;
1065
1066 status = __vxge_hw_vpath_card_info_get(&vpath, hw_info);
1067 if (status != VXGE_HW_OK)
1068 goto exit;
1069
1070 break;
1071 }
1072
1073 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1074 if (!((hw_info->vpath_mask) & vxge_mBIT(i)))
1075 continue;
1076
1077 val64 = readq(&toc->toc_vpath_pointer[i]);
1078 vpath.vp_reg = bar0 + val64;
1079 vpath.vp_open = VXGE_HW_VP_NOT_OPEN;
1080
1081 status = __vxge_hw_vpath_addr_get(&vpath,
1082 hw_info->mac_addrs[i],
1083 hw_info->mac_addr_masks[i]);
1084 if (status != VXGE_HW_OK)
1085 goto exit;
1086 }
1087 exit:
1088 return status;
1089 }
1090
1091 /*
1092 * __vxge_hw_blockpool_destroy - Deallocates the block pool
1093 */
1094 static void __vxge_hw_blockpool_destroy(struct __vxge_hw_blockpool *blockpool)
1095 {
1096 struct __vxge_hw_device *hldev;
1097 struct list_head *p, *n;
1098
1099 if (!blockpool)
1100 return;
1101
1102 hldev = blockpool->hldev;
1103
1104 list_for_each_safe(p, n, &blockpool->free_block_list) {
1105 pci_unmap_single(hldev->pdev,
1106 ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
1107 ((struct __vxge_hw_blockpool_entry *)p)->length,
1108 PCI_DMA_BIDIRECTIONAL);
1109
1110 vxge_os_dma_free(hldev->pdev,
1111 ((struct __vxge_hw_blockpool_entry *)p)->memblock,
1112 &((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
1113
1114 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
1115 kfree(p);
1116 blockpool->pool_size--;
1117 }
1118
1119 list_for_each_safe(p, n, &blockpool->free_entry_list) {
1120 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
1121 kfree((void *)p);
1122 }
1123
1124 return;
1125 }
1126
1127 /*
1128 * __vxge_hw_blockpool_create - Create block pool
1129 */
1130 static enum vxge_hw_status
1131 __vxge_hw_blockpool_create(struct __vxge_hw_device *hldev,
1132 struct __vxge_hw_blockpool *blockpool,
1133 u32 pool_size,
1134 u32 pool_max)
1135 {
1136 u32 i;
1137 struct __vxge_hw_blockpool_entry *entry = NULL;
1138 void *memblock;
1139 dma_addr_t dma_addr;
1140 struct pci_dev *dma_handle;
1141 struct pci_dev *acc_handle;
1142 enum vxge_hw_status status = VXGE_HW_OK;
1143
1144 if (blockpool == NULL) {
1145 status = VXGE_HW_FAIL;
1146 goto blockpool_create_exit;
1147 }
1148
1149 blockpool->hldev = hldev;
1150 blockpool->block_size = VXGE_HW_BLOCK_SIZE;
1151 blockpool->pool_size = 0;
1152 blockpool->pool_max = pool_max;
1153 blockpool->req_out = 0;
1154
1155 INIT_LIST_HEAD(&blockpool->free_block_list);
1156 INIT_LIST_HEAD(&blockpool->free_entry_list);
1157
1158 for (i = 0; i < pool_size + pool_max; i++) {
1159 entry = kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
1160 GFP_KERNEL);
1161 if (entry == NULL) {
1162 __vxge_hw_blockpool_destroy(blockpool);
1163 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1164 goto blockpool_create_exit;
1165 }
1166 list_add(&entry->item, &blockpool->free_entry_list);
1167 }
1168
1169 for (i = 0; i < pool_size; i++) {
1170 memblock = vxge_os_dma_malloc(
1171 hldev->pdev,
1172 VXGE_HW_BLOCK_SIZE,
1173 &dma_handle,
1174 &acc_handle);
1175 if (memblock == NULL) {
1176 __vxge_hw_blockpool_destroy(blockpool);
1177 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1178 goto blockpool_create_exit;
1179 }
1180
1181 dma_addr = pci_map_single(hldev->pdev, memblock,
1182 VXGE_HW_BLOCK_SIZE, PCI_DMA_BIDIRECTIONAL);
1183 if (unlikely(pci_dma_mapping_error(hldev->pdev,
1184 dma_addr))) {
1185 vxge_os_dma_free(hldev->pdev, memblock, &acc_handle);
1186 __vxge_hw_blockpool_destroy(blockpool);
1187 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1188 goto blockpool_create_exit;
1189 }
1190
1191 if (!list_empty(&blockpool->free_entry_list))
1192 entry = (struct __vxge_hw_blockpool_entry *)
1193 list_first_entry(&blockpool->free_entry_list,
1194 struct __vxge_hw_blockpool_entry,
1195 item);
1196
1197 if (entry == NULL)
1198 entry =
1199 kzalloc(sizeof(struct __vxge_hw_blockpool_entry),
1200 GFP_KERNEL);
1201 if (entry != NULL) {
1202 list_del(&entry->item);
1203 entry->length = VXGE_HW_BLOCK_SIZE;
1204 entry->memblock = memblock;
1205 entry->dma_addr = dma_addr;
1206 entry->acc_handle = acc_handle;
1207 entry->dma_handle = dma_handle;
1208 list_add(&entry->item,
1209 &blockpool->free_block_list);
1210 blockpool->pool_size++;
1211 } else {
1212 __vxge_hw_blockpool_destroy(blockpool);
1213 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1214 goto blockpool_create_exit;
1215 }
1216 }
1217
1218 blockpool_create_exit:
1219 return status;
1220 }
1221
1222 /*
1223 * __vxge_hw_device_fifo_config_check - Check fifo configuration.
1224 * Check the fifo configuration
1225 */
1226 static enum vxge_hw_status
1227 __vxge_hw_device_fifo_config_check(struct vxge_hw_fifo_config *fifo_config)
1228 {
1229 if ((fifo_config->fifo_blocks < VXGE_HW_MIN_FIFO_BLOCKS) ||
1230 (fifo_config->fifo_blocks > VXGE_HW_MAX_FIFO_BLOCKS))
1231 return VXGE_HW_BADCFG_FIFO_BLOCKS;
1232
1233 return VXGE_HW_OK;
1234 }
1235
1236 /*
1237 * __vxge_hw_device_vpath_config_check - Check vpath configuration.
1238 * Check the vpath configuration
1239 */
1240 static enum vxge_hw_status
1241 __vxge_hw_device_vpath_config_check(struct vxge_hw_vp_config *vp_config)
1242 {
1243 enum vxge_hw_status status;
1244
1245 if ((vp_config->min_bandwidth < VXGE_HW_VPATH_BANDWIDTH_MIN) ||
1246 (vp_config->min_bandwidth > VXGE_HW_VPATH_BANDWIDTH_MAX))
1247 return VXGE_HW_BADCFG_VPATH_MIN_BANDWIDTH;
1248
1249 status = __vxge_hw_device_fifo_config_check(&vp_config->fifo);
1250 if (status != VXGE_HW_OK)
1251 return status;
1252
1253 if ((vp_config->mtu != VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) &&
1254 ((vp_config->mtu < VXGE_HW_VPATH_MIN_INITIAL_MTU) ||
1255 (vp_config->mtu > VXGE_HW_VPATH_MAX_INITIAL_MTU)))
1256 return VXGE_HW_BADCFG_VPATH_MTU;
1257
1258 if ((vp_config->rpa_strip_vlan_tag !=
1259 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) &&
1260 (vp_config->rpa_strip_vlan_tag !=
1261 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE) &&
1262 (vp_config->rpa_strip_vlan_tag !=
1263 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_DISABLE))
1264 return VXGE_HW_BADCFG_VPATH_RPA_STRIP_VLAN_TAG;
1265
1266 return VXGE_HW_OK;
1267 }
1268
1269 /*
1270 * __vxge_hw_device_config_check - Check device configuration.
1271 * Check the device configuration
1272 */
1273 static enum vxge_hw_status
1274 __vxge_hw_device_config_check(struct vxge_hw_device_config *new_config)
1275 {
1276 u32 i;
1277 enum vxge_hw_status status;
1278
1279 if ((new_config->intr_mode != VXGE_HW_INTR_MODE_IRQLINE) &&
1280 (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX) &&
1281 (new_config->intr_mode != VXGE_HW_INTR_MODE_MSIX_ONE_SHOT) &&
1282 (new_config->intr_mode != VXGE_HW_INTR_MODE_DEF))
1283 return VXGE_HW_BADCFG_INTR_MODE;
1284
1285 if ((new_config->rts_mac_en != VXGE_HW_RTS_MAC_DISABLE) &&
1286 (new_config->rts_mac_en != VXGE_HW_RTS_MAC_ENABLE))
1287 return VXGE_HW_BADCFG_RTS_MAC_EN;
1288
1289 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1290 status = __vxge_hw_device_vpath_config_check(
1291 &new_config->vp_config[i]);
1292 if (status != VXGE_HW_OK)
1293 return status;
1294 }
1295
1296 return VXGE_HW_OK;
1297 }
1298
1299 /*
1300 * vxge_hw_device_initialize - Initialize Titan device.
1301 * Initialize Titan device. Note that all the arguments of this public API
1302 * are 'IN', including @hldev. Driver cooperates with
1303 * OS to find new Titan device, locate its PCI and memory spaces.
1304 *
1305 * When done, the driver allocates sizeof(struct __vxge_hw_device) bytes for HW
1306 * to enable the latter to perform Titan hardware initialization.
1307 */
1308 enum vxge_hw_status
1309 vxge_hw_device_initialize(
1310 struct __vxge_hw_device **devh,
1311 struct vxge_hw_device_attr *attr,
1312 struct vxge_hw_device_config *device_config)
1313 {
1314 u32 i;
1315 u32 nblocks = 0;
1316 struct __vxge_hw_device *hldev = NULL;
1317 enum vxge_hw_status status = VXGE_HW_OK;
1318
1319 status = __vxge_hw_device_config_check(device_config);
1320 if (status != VXGE_HW_OK)
1321 goto exit;
1322
1323 hldev = vzalloc(sizeof(struct __vxge_hw_device));
1324 if (hldev == NULL) {
1325 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1326 goto exit;
1327 }
1328
1329 hldev->magic = VXGE_HW_DEVICE_MAGIC;
1330
1331 vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_ALL);
1332
1333 /* apply config */
1334 memcpy(&hldev->config, device_config,
1335 sizeof(struct vxge_hw_device_config));
1336
1337 hldev->bar0 = attr->bar0;
1338 hldev->pdev = attr->pdev;
1339
1340 hldev->uld_callbacks = attr->uld_callbacks;
1341
1342 __vxge_hw_device_pci_e_init(hldev);
1343
1344 status = __vxge_hw_device_reg_addr_get(hldev);
1345 if (status != VXGE_HW_OK) {
1346 vfree(hldev);
1347 goto exit;
1348 }
1349
1350 __vxge_hw_device_host_info_get(hldev);
1351
1352 /* Incrementing for stats blocks */
1353 nblocks++;
1354
1355 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1356 if (!(hldev->vpath_assignments & vxge_mBIT(i)))
1357 continue;
1358
1359 if (device_config->vp_config[i].ring.enable ==
1360 VXGE_HW_RING_ENABLE)
1361 nblocks += device_config->vp_config[i].ring.ring_blocks;
1362
1363 if (device_config->vp_config[i].fifo.enable ==
1364 VXGE_HW_FIFO_ENABLE)
1365 nblocks += device_config->vp_config[i].fifo.fifo_blocks;
1366 nblocks++;
1367 }
1368
1369 if (__vxge_hw_blockpool_create(hldev,
1370 &hldev->block_pool,
1371 device_config->dma_blockpool_initial + nblocks,
1372 device_config->dma_blockpool_max + nblocks) != VXGE_HW_OK) {
1373
1374 vxge_hw_device_terminate(hldev);
1375 status = VXGE_HW_ERR_OUT_OF_MEMORY;
1376 goto exit;
1377 }
1378
1379 status = __vxge_hw_device_initialize(hldev);
1380 if (status != VXGE_HW_OK) {
1381 vxge_hw_device_terminate(hldev);
1382 goto exit;
1383 }
1384
1385 *devh = hldev;
1386 exit:
1387 return status;
1388 }
1389
1390 /*
1391 * vxge_hw_device_terminate - Terminate Titan device.
1392 * Terminate HW device.
1393 */
1394 void
1395 vxge_hw_device_terminate(struct __vxge_hw_device *hldev)
1396 {
1397 vxge_assert(hldev->magic == VXGE_HW_DEVICE_MAGIC);
1398
1399 hldev->magic = VXGE_HW_DEVICE_DEAD;
1400 __vxge_hw_blockpool_destroy(&hldev->block_pool);
1401 vfree(hldev);
1402 }
1403
1404 /*
1405 * __vxge_hw_vpath_stats_access - Get the statistics from the given location
1406 * and offset and perform an operation
1407 */
1408 static enum vxge_hw_status
1409 __vxge_hw_vpath_stats_access(struct __vxge_hw_virtualpath *vpath,
1410 u32 operation, u32 offset, u64 *stat)
1411 {
1412 u64 val64;
1413 enum vxge_hw_status status = VXGE_HW_OK;
1414 struct vxge_hw_vpath_reg __iomem *vp_reg;
1415
1416 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1417 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1418 goto vpath_stats_access_exit;
1419 }
1420
1421 vp_reg = vpath->vp_reg;
1422
1423 val64 = VXGE_HW_XMAC_STATS_ACCESS_CMD_OP(operation) |
1424 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE |
1425 VXGE_HW_XMAC_STATS_ACCESS_CMD_OFFSET_SEL(offset);
1426
1427 status = __vxge_hw_pio_mem_write64(val64,
1428 &vp_reg->xmac_stats_access_cmd,
1429 VXGE_HW_XMAC_STATS_ACCESS_CMD_STROBE,
1430 vpath->hldev->config.device_poll_millis);
1431 if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
1432 *stat = readq(&vp_reg->xmac_stats_access_data);
1433 else
1434 *stat = 0;
1435
1436 vpath_stats_access_exit:
1437 return status;
1438 }
1439
1440 /*
1441 * __vxge_hw_vpath_xmac_tx_stats_get - Get the TX Statistics of a vpath
1442 */
1443 static enum vxge_hw_status
1444 __vxge_hw_vpath_xmac_tx_stats_get(struct __vxge_hw_virtualpath *vpath,
1445 struct vxge_hw_xmac_vpath_tx_stats *vpath_tx_stats)
1446 {
1447 u64 *val64;
1448 int i;
1449 u32 offset = VXGE_HW_STATS_VPATH_TX_OFFSET;
1450 enum vxge_hw_status status = VXGE_HW_OK;
1451
1452 val64 = (u64 *)vpath_tx_stats;
1453
1454 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1455 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1456 goto exit;
1457 }
1458
1459 for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_tx_stats) / 8; i++) {
1460 status = __vxge_hw_vpath_stats_access(vpath,
1461 VXGE_HW_STATS_OP_READ,
1462 offset, val64);
1463 if (status != VXGE_HW_OK)
1464 goto exit;
1465 offset++;
1466 val64++;
1467 }
1468 exit:
1469 return status;
1470 }
1471
1472 /*
1473 * __vxge_hw_vpath_xmac_rx_stats_get - Get the RX Statistics of a vpath
1474 */
1475 static enum vxge_hw_status
1476 __vxge_hw_vpath_xmac_rx_stats_get(struct __vxge_hw_virtualpath *vpath,
1477 struct vxge_hw_xmac_vpath_rx_stats *vpath_rx_stats)
1478 {
1479 u64 *val64;
1480 enum vxge_hw_status status = VXGE_HW_OK;
1481 int i;
1482 u32 offset = VXGE_HW_STATS_VPATH_RX_OFFSET;
1483 val64 = (u64 *) vpath_rx_stats;
1484
1485 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1486 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1487 goto exit;
1488 }
1489 for (i = 0; i < sizeof(struct vxge_hw_xmac_vpath_rx_stats) / 8; i++) {
1490 status = __vxge_hw_vpath_stats_access(vpath,
1491 VXGE_HW_STATS_OP_READ,
1492 offset >> 3, val64);
1493 if (status != VXGE_HW_OK)
1494 goto exit;
1495
1496 offset += 8;
1497 val64++;
1498 }
1499 exit:
1500 return status;
1501 }
1502
1503 /*
1504 * __vxge_hw_vpath_stats_get - Get the vpath hw statistics.
1505 */
1506 static enum vxge_hw_status
1507 __vxge_hw_vpath_stats_get(struct __vxge_hw_virtualpath *vpath,
1508 struct vxge_hw_vpath_stats_hw_info *hw_stats)
1509 {
1510 u64 val64;
1511 enum vxge_hw_status status = VXGE_HW_OK;
1512 struct vxge_hw_vpath_reg __iomem *vp_reg;
1513
1514 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
1515 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
1516 goto exit;
1517 }
1518 vp_reg = vpath->vp_reg;
1519
1520 val64 = readq(&vp_reg->vpath_debug_stats0);
1521 hw_stats->ini_num_mwr_sent =
1522 (u32)VXGE_HW_VPATH_DEBUG_STATS0_GET_INI_NUM_MWR_SENT(val64);
1523
1524 val64 = readq(&vp_reg->vpath_debug_stats1);
1525 hw_stats->ini_num_mrd_sent =
1526 (u32)VXGE_HW_VPATH_DEBUG_STATS1_GET_INI_NUM_MRD_SENT(val64);
1527
1528 val64 = readq(&vp_reg->vpath_debug_stats2);
1529 hw_stats->ini_num_cpl_rcvd =
1530 (u32)VXGE_HW_VPATH_DEBUG_STATS2_GET_INI_NUM_CPL_RCVD(val64);
1531
1532 val64 = readq(&vp_reg->vpath_debug_stats3);
1533 hw_stats->ini_num_mwr_byte_sent =
1534 VXGE_HW_VPATH_DEBUG_STATS3_GET_INI_NUM_MWR_BYTE_SENT(val64);
1535
1536 val64 = readq(&vp_reg->vpath_debug_stats4);
1537 hw_stats->ini_num_cpl_byte_rcvd =
1538 VXGE_HW_VPATH_DEBUG_STATS4_GET_INI_NUM_CPL_BYTE_RCVD(val64);
1539
1540 val64 = readq(&vp_reg->vpath_debug_stats5);
1541 hw_stats->wrcrdtarb_xoff =
1542 (u32)VXGE_HW_VPATH_DEBUG_STATS5_GET_WRCRDTARB_XOFF(val64);
1543
1544 val64 = readq(&vp_reg->vpath_debug_stats6);
1545 hw_stats->rdcrdtarb_xoff =
1546 (u32)VXGE_HW_VPATH_DEBUG_STATS6_GET_RDCRDTARB_XOFF(val64);
1547
1548 val64 = readq(&vp_reg->vpath_genstats_count01);
1549 hw_stats->vpath_genstats_count0 =
1550 (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT0(
1551 val64);
1552
1553 val64 = readq(&vp_reg->vpath_genstats_count01);
1554 hw_stats->vpath_genstats_count1 =
1555 (u32)VXGE_HW_VPATH_GENSTATS_COUNT01_GET_PPIF_VPATH_GENSTATS_COUNT1(
1556 val64);
1557
1558 val64 = readq(&vp_reg->vpath_genstats_count23);
1559 hw_stats->vpath_genstats_count2 =
1560 (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT2(
1561 val64);
1562
1563 val64 = readq(&vp_reg->vpath_genstats_count01);
1564 hw_stats->vpath_genstats_count3 =
1565 (u32)VXGE_HW_VPATH_GENSTATS_COUNT23_GET_PPIF_VPATH_GENSTATS_COUNT3(
1566 val64);
1567
1568 val64 = readq(&vp_reg->vpath_genstats_count4);
1569 hw_stats->vpath_genstats_count4 =
1570 (u32)VXGE_HW_VPATH_GENSTATS_COUNT4_GET_PPIF_VPATH_GENSTATS_COUNT4(
1571 val64);
1572
1573 val64 = readq(&vp_reg->vpath_genstats_count5);
1574 hw_stats->vpath_genstats_count5 =
1575 (u32)VXGE_HW_VPATH_GENSTATS_COUNT5_GET_PPIF_VPATH_GENSTATS_COUNT5(
1576 val64);
1577
1578 status = __vxge_hw_vpath_xmac_tx_stats_get(vpath, &hw_stats->tx_stats);
1579 if (status != VXGE_HW_OK)
1580 goto exit;
1581
1582 status = __vxge_hw_vpath_xmac_rx_stats_get(vpath, &hw_stats->rx_stats);
1583 if (status != VXGE_HW_OK)
1584 goto exit;
1585
1586 VXGE_HW_VPATH_STATS_PIO_READ(
1587 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM0_OFFSET);
1588
1589 hw_stats->prog_event_vnum0 =
1590 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM0(val64);
1591
1592 hw_stats->prog_event_vnum1 =
1593 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM1(val64);
1594
1595 VXGE_HW_VPATH_STATS_PIO_READ(
1596 VXGE_HW_STATS_VPATH_PROG_EVENT_VNUM2_OFFSET);
1597
1598 hw_stats->prog_event_vnum2 =
1599 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM2(val64);
1600
1601 hw_stats->prog_event_vnum3 =
1602 (u32)VXGE_HW_STATS_GET_VPATH_PROG_EVENT_VNUM3(val64);
1603
1604 val64 = readq(&vp_reg->rx_multi_cast_stats);
1605 hw_stats->rx_multi_cast_frame_discard =
1606 (u16)VXGE_HW_RX_MULTI_CAST_STATS_GET_FRAME_DISCARD(val64);
1607
1608 val64 = readq(&vp_reg->rx_frm_transferred);
1609 hw_stats->rx_frm_transferred =
1610 (u32)VXGE_HW_RX_FRM_TRANSFERRED_GET_RX_FRM_TRANSFERRED(val64);
1611
1612 val64 = readq(&vp_reg->rxd_returned);
1613 hw_stats->rxd_returned =
1614 (u16)VXGE_HW_RXD_RETURNED_GET_RXD_RETURNED(val64);
1615
1616 val64 = readq(&vp_reg->dbg_stats_rx_mpa);
1617 hw_stats->rx_mpa_len_fail_frms =
1618 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_LEN_FAIL_FRMS(val64);
1619 hw_stats->rx_mpa_mrk_fail_frms =
1620 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_MRK_FAIL_FRMS(val64);
1621 hw_stats->rx_mpa_crc_fail_frms =
1622 (u16)VXGE_HW_DBG_STATS_GET_RX_MPA_CRC_FAIL_FRMS(val64);
1623
1624 val64 = readq(&vp_reg->dbg_stats_rx_fau);
1625 hw_stats->rx_permitted_frms =
1626 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_PERMITTED_FRMS(val64);
1627 hw_stats->rx_vp_reset_discarded_frms =
1628 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_VP_RESET_DISCARDED_FRMS(val64);
1629 hw_stats->rx_wol_frms =
1630 (u16)VXGE_HW_DBG_STATS_GET_RX_FAU_RX_WOL_FRMS(val64);
1631
1632 val64 = readq(&vp_reg->tx_vp_reset_discarded_frms);
1633 hw_stats->tx_vp_reset_discarded_frms =
1634 (u16)VXGE_HW_TX_VP_RESET_DISCARDED_FRMS_GET_TX_VP_RESET_DISCARDED_FRMS(
1635 val64);
1636 exit:
1637 return status;
1638 }
1639
1640 /*
1641 * vxge_hw_device_stats_get - Get the device hw statistics.
1642 * Returns the vpath h/w stats for the device.
1643 */
1644 enum vxge_hw_status
1645 vxge_hw_device_stats_get(struct __vxge_hw_device *hldev,
1646 struct vxge_hw_device_stats_hw_info *hw_stats)
1647 {
1648 u32 i;
1649 enum vxge_hw_status status = VXGE_HW_OK;
1650
1651 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1652 if (!(hldev->vpaths_deployed & vxge_mBIT(i)) ||
1653 (hldev->virtual_paths[i].vp_open ==
1654 VXGE_HW_VP_NOT_OPEN))
1655 continue;
1656
1657 memcpy(hldev->virtual_paths[i].hw_stats_sav,
1658 hldev->virtual_paths[i].hw_stats,
1659 sizeof(struct vxge_hw_vpath_stats_hw_info));
1660
1661 status = __vxge_hw_vpath_stats_get(
1662 &hldev->virtual_paths[i],
1663 hldev->virtual_paths[i].hw_stats);
1664 }
1665
1666 memcpy(hw_stats, &hldev->stats.hw_dev_info_stats,
1667 sizeof(struct vxge_hw_device_stats_hw_info));
1668
1669 return status;
1670 }
1671
1672 /*
1673 * vxge_hw_driver_stats_get - Get the device sw statistics.
1674 * Returns the vpath s/w stats for the device.
1675 */
1676 enum vxge_hw_status vxge_hw_driver_stats_get(
1677 struct __vxge_hw_device *hldev,
1678 struct vxge_hw_device_stats_sw_info *sw_stats)
1679 {
1680 memcpy(sw_stats, &hldev->stats.sw_dev_info_stats,
1681 sizeof(struct vxge_hw_device_stats_sw_info));
1682
1683 return VXGE_HW_OK;
1684 }
1685
1686 /*
1687 * vxge_hw_mrpcim_stats_access - Access the statistics from the given location
1688 * and offset and perform an operation
1689 * Get the statistics from the given location and offset.
1690 */
1691 enum vxge_hw_status
1692 vxge_hw_mrpcim_stats_access(struct __vxge_hw_device *hldev,
1693 u32 operation, u32 location, u32 offset, u64 *stat)
1694 {
1695 u64 val64;
1696 enum vxge_hw_status status = VXGE_HW_OK;
1697
1698 status = __vxge_hw_device_is_privilaged(hldev->host_type,
1699 hldev->func_id);
1700 if (status != VXGE_HW_OK)
1701 goto exit;
1702
1703 val64 = VXGE_HW_XMAC_STATS_SYS_CMD_OP(operation) |
1704 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE |
1705 VXGE_HW_XMAC_STATS_SYS_CMD_LOC_SEL(location) |
1706 VXGE_HW_XMAC_STATS_SYS_CMD_OFFSET_SEL(offset);
1707
1708 status = __vxge_hw_pio_mem_write64(val64,
1709 &hldev->mrpcim_reg->xmac_stats_sys_cmd,
1710 VXGE_HW_XMAC_STATS_SYS_CMD_STROBE,
1711 hldev->config.device_poll_millis);
1712
1713 if ((status == VXGE_HW_OK) && (operation == VXGE_HW_STATS_OP_READ))
1714 *stat = readq(&hldev->mrpcim_reg->xmac_stats_sys_data);
1715 else
1716 *stat = 0;
1717 exit:
1718 return status;
1719 }
1720
1721 /*
1722 * vxge_hw_device_xmac_aggr_stats_get - Get the Statistics on aggregate port
1723 * Get the Statistics on aggregate port
1724 */
1725 static enum vxge_hw_status
1726 vxge_hw_device_xmac_aggr_stats_get(struct __vxge_hw_device *hldev, u32 port,
1727 struct vxge_hw_xmac_aggr_stats *aggr_stats)
1728 {
1729 u64 *val64;
1730 int i;
1731 u32 offset = VXGE_HW_STATS_AGGRn_OFFSET;
1732 enum vxge_hw_status status = VXGE_HW_OK;
1733
1734 val64 = (u64 *)aggr_stats;
1735
1736 status = __vxge_hw_device_is_privilaged(hldev->host_type,
1737 hldev->func_id);
1738 if (status != VXGE_HW_OK)
1739 goto exit;
1740
1741 for (i = 0; i < sizeof(struct vxge_hw_xmac_aggr_stats) / 8; i++) {
1742 status = vxge_hw_mrpcim_stats_access(hldev,
1743 VXGE_HW_STATS_OP_READ,
1744 VXGE_HW_STATS_LOC_AGGR,
1745 ((offset + (104 * port)) >> 3), val64);
1746 if (status != VXGE_HW_OK)
1747 goto exit;
1748
1749 offset += 8;
1750 val64++;
1751 }
1752 exit:
1753 return status;
1754 }
1755
1756 /*
1757 * vxge_hw_device_xmac_port_stats_get - Get the Statistics on a port
1758 * Get the Statistics on port
1759 */
1760 static enum vxge_hw_status
1761 vxge_hw_device_xmac_port_stats_get(struct __vxge_hw_device *hldev, u32 port,
1762 struct vxge_hw_xmac_port_stats *port_stats)
1763 {
1764 u64 *val64;
1765 enum vxge_hw_status status = VXGE_HW_OK;
1766 int i;
1767 u32 offset = 0x0;
1768 val64 = (u64 *) port_stats;
1769
1770 status = __vxge_hw_device_is_privilaged(hldev->host_type,
1771 hldev->func_id);
1772 if (status != VXGE_HW_OK)
1773 goto exit;
1774
1775 for (i = 0; i < sizeof(struct vxge_hw_xmac_port_stats) / 8; i++) {
1776 status = vxge_hw_mrpcim_stats_access(hldev,
1777 VXGE_HW_STATS_OP_READ,
1778 VXGE_HW_STATS_LOC_AGGR,
1779 ((offset + (608 * port)) >> 3), val64);
1780 if (status != VXGE_HW_OK)
1781 goto exit;
1782
1783 offset += 8;
1784 val64++;
1785 }
1786
1787 exit:
1788 return status;
1789 }
1790
1791 /*
1792 * vxge_hw_device_xmac_stats_get - Get the XMAC Statistics
1793 * Get the XMAC Statistics
1794 */
1795 enum vxge_hw_status
1796 vxge_hw_device_xmac_stats_get(struct __vxge_hw_device *hldev,
1797 struct vxge_hw_xmac_stats *xmac_stats)
1798 {
1799 enum vxge_hw_status status = VXGE_HW_OK;
1800 u32 i;
1801
1802 status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1803 0, &xmac_stats->aggr_stats[0]);
1804 if (status != VXGE_HW_OK)
1805 goto exit;
1806
1807 status = vxge_hw_device_xmac_aggr_stats_get(hldev,
1808 1, &xmac_stats->aggr_stats[1]);
1809 if (status != VXGE_HW_OK)
1810 goto exit;
1811
1812 for (i = 0; i <= VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
1813
1814 status = vxge_hw_device_xmac_port_stats_get(hldev,
1815 i, &xmac_stats->port_stats[i]);
1816 if (status != VXGE_HW_OK)
1817 goto exit;
1818 }
1819
1820 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
1821
1822 if (!(hldev->vpaths_deployed & vxge_mBIT(i)))
1823 continue;
1824
1825 status = __vxge_hw_vpath_xmac_tx_stats_get(
1826 &hldev->virtual_paths[i],
1827 &xmac_stats->vpath_tx_stats[i]);
1828 if (status != VXGE_HW_OK)
1829 goto exit;
1830
1831 status = __vxge_hw_vpath_xmac_rx_stats_get(
1832 &hldev->virtual_paths[i],
1833 &xmac_stats->vpath_rx_stats[i]);
1834 if (status != VXGE_HW_OK)
1835 goto exit;
1836 }
1837 exit:
1838 return status;
1839 }
1840
1841 /*
1842 * vxge_hw_device_debug_set - Set the debug module, level and timestamp
1843 * This routine is used to dynamically change the debug output
1844 */
1845 void vxge_hw_device_debug_set(struct __vxge_hw_device *hldev,
1846 enum vxge_debug_level level, u32 mask)
1847 {
1848 if (hldev == NULL)
1849 return;
1850
1851 #if defined(VXGE_DEBUG_TRACE_MASK) || \
1852 defined(VXGE_DEBUG_ERR_MASK)
1853 hldev->debug_module_mask = mask;
1854 hldev->debug_level = level;
1855 #endif
1856
1857 #if defined(VXGE_DEBUG_ERR_MASK)
1858 hldev->level_err = level & VXGE_ERR;
1859 #endif
1860
1861 #if defined(VXGE_DEBUG_TRACE_MASK)
1862 hldev->level_trace = level & VXGE_TRACE;
1863 #endif
1864 }
1865
1866 /*
1867 * vxge_hw_device_error_level_get - Get the error level
1868 * This routine returns the current error level set
1869 */
1870 u32 vxge_hw_device_error_level_get(struct __vxge_hw_device *hldev)
1871 {
1872 #if defined(VXGE_DEBUG_ERR_MASK)
1873 if (hldev == NULL)
1874 return VXGE_ERR;
1875 else
1876 return hldev->level_err;
1877 #else
1878 return 0;
1879 #endif
1880 }
1881
1882 /*
1883 * vxge_hw_device_trace_level_get - Get the trace level
1884 * This routine returns the current trace level set
1885 */
1886 u32 vxge_hw_device_trace_level_get(struct __vxge_hw_device *hldev)
1887 {
1888 #if defined(VXGE_DEBUG_TRACE_MASK)
1889 if (hldev == NULL)
1890 return VXGE_TRACE;
1891 else
1892 return hldev->level_trace;
1893 #else
1894 return 0;
1895 #endif
1896 }
1897
1898 /*
1899 * vxge_hw_getpause_data -Pause frame frame generation and reception.
1900 * Returns the Pause frame generation and reception capability of the NIC.
1901 */
1902 enum vxge_hw_status vxge_hw_device_getpause_data(struct __vxge_hw_device *hldev,
1903 u32 port, u32 *tx, u32 *rx)
1904 {
1905 u64 val64;
1906 enum vxge_hw_status status = VXGE_HW_OK;
1907
1908 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1909 status = VXGE_HW_ERR_INVALID_DEVICE;
1910 goto exit;
1911 }
1912
1913 if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1914 status = VXGE_HW_ERR_INVALID_PORT;
1915 goto exit;
1916 }
1917
1918 if (!(hldev->access_rights & VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
1919 status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
1920 goto exit;
1921 }
1922
1923 val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1924 if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN)
1925 *tx = 1;
1926 if (val64 & VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN)
1927 *rx = 1;
1928 exit:
1929 return status;
1930 }
1931
1932 /*
1933 * vxge_hw_device_setpause_data - set/reset pause frame generation.
1934 * It can be used to set or reset Pause frame generation or reception
1935 * support of the NIC.
1936 */
1937 enum vxge_hw_status vxge_hw_device_setpause_data(struct __vxge_hw_device *hldev,
1938 u32 port, u32 tx, u32 rx)
1939 {
1940 u64 val64;
1941 enum vxge_hw_status status = VXGE_HW_OK;
1942
1943 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
1944 status = VXGE_HW_ERR_INVALID_DEVICE;
1945 goto exit;
1946 }
1947
1948 if (port > VXGE_HW_MAC_MAX_MAC_PORT_ID) {
1949 status = VXGE_HW_ERR_INVALID_PORT;
1950 goto exit;
1951 }
1952
1953 status = __vxge_hw_device_is_privilaged(hldev->host_type,
1954 hldev->func_id);
1955 if (status != VXGE_HW_OK)
1956 goto exit;
1957
1958 val64 = readq(&hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1959 if (tx)
1960 val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1961 else
1962 val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_GEN_EN;
1963 if (rx)
1964 val64 |= VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1965 else
1966 val64 &= ~VXGE_HW_RXMAC_PAUSE_CFG_PORT_RCV_EN;
1967
1968 writeq(val64, &hldev->mrpcim_reg->rxmac_pause_cfg_port[port]);
1969 exit:
1970 return status;
1971 }
1972
1973 u16 vxge_hw_device_link_width_get(struct __vxge_hw_device *hldev)
1974 {
1975 struct pci_dev *dev = hldev->pdev;
1976 u16 lnk;
1977
1978 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnk);
1979 return (lnk & VXGE_HW_PCI_EXP_LNKCAP_LNK_WIDTH) >> 4;
1980 }
1981
1982 /*
1983 * __vxge_hw_ring_block_memblock_idx - Return the memblock index
1984 * This function returns the index of memory block
1985 */
1986 static inline u32
1987 __vxge_hw_ring_block_memblock_idx(u8 *block)
1988 {
1989 return (u32)*((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET));
1990 }
1991
1992 /*
1993 * __vxge_hw_ring_block_memblock_idx_set - Sets the memblock index
1994 * This function sets index to a memory block
1995 */
1996 static inline void
1997 __vxge_hw_ring_block_memblock_idx_set(u8 *block, u32 memblock_idx)
1998 {
1999 *((u64 *)(block + VXGE_HW_RING_MEMBLOCK_IDX_OFFSET)) = memblock_idx;
2000 }
2001
2002 /*
2003 * __vxge_hw_ring_block_next_pointer_set - Sets the next block pointer
2004 * in RxD block
2005 * Sets the next block pointer in RxD block
2006 */
2007 static inline void
2008 __vxge_hw_ring_block_next_pointer_set(u8 *block, dma_addr_t dma_next)
2009 {
2010 *((u64 *)(block + VXGE_HW_RING_NEXT_BLOCK_POINTER_OFFSET)) = dma_next;
2011 }
2012
2013 /*
2014 * __vxge_hw_ring_first_block_address_get - Returns the dma address of the
2015 * first block
2016 * Returns the dma address of the first RxD block
2017 */
2018 static u64 __vxge_hw_ring_first_block_address_get(struct __vxge_hw_ring *ring)
2019 {
2020 struct vxge_hw_mempool_dma *dma_object;
2021
2022 dma_object = ring->mempool->memblocks_dma_arr;
2023 vxge_assert(dma_object != NULL);
2024
2025 return dma_object->addr;
2026 }
2027
2028 /*
2029 * __vxge_hw_ring_item_dma_addr - Return the dma address of an item
2030 * This function returns the dma address of a given item
2031 */
2032 static dma_addr_t __vxge_hw_ring_item_dma_addr(struct vxge_hw_mempool *mempoolh,
2033 void *item)
2034 {
2035 u32 memblock_idx;
2036 void *memblock;
2037 struct vxge_hw_mempool_dma *memblock_dma_object;
2038 ptrdiff_t dma_item_offset;
2039
2040 /* get owner memblock index */
2041 memblock_idx = __vxge_hw_ring_block_memblock_idx(item);
2042
2043 /* get owner memblock by memblock index */
2044 memblock = mempoolh->memblocks_arr[memblock_idx];
2045
2046 /* get memblock DMA object by memblock index */
2047 memblock_dma_object = mempoolh->memblocks_dma_arr + memblock_idx;
2048
2049 /* calculate offset in the memblock of this item */
2050 dma_item_offset = (u8 *)item - (u8 *)memblock;
2051
2052 return memblock_dma_object->addr + dma_item_offset;
2053 }
2054
2055 /*
2056 * __vxge_hw_ring_rxdblock_link - Link the RxD blocks
2057 * This function returns the dma address of a given item
2058 */
2059 static void __vxge_hw_ring_rxdblock_link(struct vxge_hw_mempool *mempoolh,
2060 struct __vxge_hw_ring *ring, u32 from,
2061 u32 to)
2062 {
2063 u8 *to_item , *from_item;
2064 dma_addr_t to_dma;
2065
2066 /* get "from" RxD block */
2067 from_item = mempoolh->items_arr[from];
2068 vxge_assert(from_item);
2069
2070 /* get "to" RxD block */
2071 to_item = mempoolh->items_arr[to];
2072 vxge_assert(to_item);
2073
2074 /* return address of the beginning of previous RxD block */
2075 to_dma = __vxge_hw_ring_item_dma_addr(mempoolh, to_item);
2076
2077 /* set next pointer for this RxD block to point on
2078 * previous item's DMA start address */
2079 __vxge_hw_ring_block_next_pointer_set(from_item, to_dma);
2080 }
2081
2082 /*
2083 * __vxge_hw_ring_mempool_item_alloc - Allocate List blocks for RxD
2084 * block callback
2085 * This function is callback passed to __vxge_hw_mempool_create to create memory
2086 * pool for RxD block
2087 */
2088 static void
2089 __vxge_hw_ring_mempool_item_alloc(struct vxge_hw_mempool *mempoolh,
2090 u32 memblock_index,
2091 struct vxge_hw_mempool_dma *dma_object,
2092 u32 index, u32 is_last)
2093 {
2094 u32 i;
2095 void *item = mempoolh->items_arr[index];
2096 struct __vxge_hw_ring *ring =
2097 (struct __vxge_hw_ring *)mempoolh->userdata;
2098
2099 /* format rxds array */
2100 for (i = 0; i < ring->rxds_per_block; i++) {
2101 void *rxdblock_priv;
2102 void *uld_priv;
2103 struct vxge_hw_ring_rxd_1 *rxdp;
2104
2105 u32 reserve_index = ring->channel.reserve_ptr -
2106 (index * ring->rxds_per_block + i + 1);
2107 u32 memblock_item_idx;
2108
2109 ring->channel.reserve_arr[reserve_index] = ((u8 *)item) +
2110 i * ring->rxd_size;
2111
2112 /* Note: memblock_item_idx is index of the item within
2113 * the memblock. For instance, in case of three RxD-blocks
2114 * per memblock this value can be 0, 1 or 2. */
2115 rxdblock_priv = __vxge_hw_mempool_item_priv(mempoolh,
2116 memblock_index, item,
2117 &memblock_item_idx);
2118
2119 rxdp = ring->channel.reserve_arr[reserve_index];
2120
2121 uld_priv = ((u8 *)rxdblock_priv + ring->rxd_priv_size * i);
2122
2123 /* pre-format Host_Control */
2124 rxdp->host_control = (u64)(size_t)uld_priv;
2125 }
2126
2127 __vxge_hw_ring_block_memblock_idx_set(item, memblock_index);
2128
2129 if (is_last) {
2130 /* link last one with first one */
2131 __vxge_hw_ring_rxdblock_link(mempoolh, ring, index, 0);
2132 }
2133
2134 if (index > 0) {
2135 /* link this RxD block with previous one */
2136 __vxge_hw_ring_rxdblock_link(mempoolh, ring, index - 1, index);
2137 }
2138 }
2139
2140 /*
2141 * __vxge_hw_ring_replenish - Initial replenish of RxDs
2142 * This function replenishes the RxDs from reserve array to work array
2143 */
2144 static enum vxge_hw_status
2145 vxge_hw_ring_replenish(struct __vxge_hw_ring *ring)
2146 {
2147 void *rxd;
2148 struct __vxge_hw_channel *channel;
2149 enum vxge_hw_status status = VXGE_HW_OK;
2150
2151 channel = &ring->channel;
2152
2153 while (vxge_hw_channel_dtr_count(channel) > 0) {
2154
2155 status = vxge_hw_ring_rxd_reserve(ring, &rxd);
2156
2157 vxge_assert(status == VXGE_HW_OK);
2158
2159 if (ring->rxd_init) {
2160 status = ring->rxd_init(rxd, channel->userdata);
2161 if (status != VXGE_HW_OK) {
2162 vxge_hw_ring_rxd_free(ring, rxd);
2163 goto exit;
2164 }
2165 }
2166
2167 vxge_hw_ring_rxd_post(ring, rxd);
2168 }
2169 status = VXGE_HW_OK;
2170 exit:
2171 return status;
2172 }
2173
2174 /*
2175 * __vxge_hw_channel_allocate - Allocate memory for channel
2176 * This function allocates required memory for the channel and various arrays
2177 * in the channel
2178 */
2179 static struct __vxge_hw_channel *
2180 __vxge_hw_channel_allocate(struct __vxge_hw_vpath_handle *vph,
2181 enum __vxge_hw_channel_type type,
2182 u32 length, u32 per_dtr_space,
2183 void *userdata)
2184 {
2185 struct __vxge_hw_channel *channel;
2186 struct __vxge_hw_device *hldev;
2187 int size = 0;
2188 u32 vp_id;
2189
2190 hldev = vph->vpath->hldev;
2191 vp_id = vph->vpath->vp_id;
2192
2193 switch (type) {
2194 case VXGE_HW_CHANNEL_TYPE_FIFO:
2195 size = sizeof(struct __vxge_hw_fifo);
2196 break;
2197 case VXGE_HW_CHANNEL_TYPE_RING:
2198 size = sizeof(struct __vxge_hw_ring);
2199 break;
2200 default:
2201 break;
2202 }
2203
2204 channel = kzalloc(size, GFP_KERNEL);
2205 if (channel == NULL)
2206 goto exit0;
2207 INIT_LIST_HEAD(&channel->item);
2208
2209 channel->common_reg = hldev->common_reg;
2210 channel->first_vp_id = hldev->first_vp_id;
2211 channel->type = type;
2212 channel->devh = hldev;
2213 channel->vph = vph;
2214 channel->userdata = userdata;
2215 channel->per_dtr_space = per_dtr_space;
2216 channel->length = length;
2217 channel->vp_id = vp_id;
2218
2219 channel->work_arr = kcalloc(length, sizeof(void *), GFP_KERNEL);
2220 if (channel->work_arr == NULL)
2221 goto exit1;
2222
2223 channel->free_arr = kcalloc(length, sizeof(void *), GFP_KERNEL);
2224 if (channel->free_arr == NULL)
2225 goto exit1;
2226 channel->free_ptr = length;
2227
2228 channel->reserve_arr = kcalloc(length, sizeof(void *), GFP_KERNEL);
2229 if (channel->reserve_arr == NULL)
2230 goto exit1;
2231 channel->reserve_ptr = length;
2232 channel->reserve_top = 0;
2233
2234 channel->orig_arr = kcalloc(length, sizeof(void *), GFP_KERNEL);
2235 if (channel->orig_arr == NULL)
2236 goto exit1;
2237
2238 return channel;
2239 exit1:
2240 __vxge_hw_channel_free(channel);
2241
2242 exit0:
2243 return NULL;
2244 }
2245
2246 /*
2247 * vxge_hw_blockpool_block_add - callback for vxge_os_dma_malloc_async
2248 * Adds a block to block pool
2249 */
2250 static void vxge_hw_blockpool_block_add(struct __vxge_hw_device *devh,
2251 void *block_addr,
2252 u32 length,
2253 struct pci_dev *dma_h,
2254 struct pci_dev *acc_handle)
2255 {
2256 struct __vxge_hw_blockpool *blockpool;
2257 struct __vxge_hw_blockpool_entry *entry = NULL;
2258 dma_addr_t dma_addr;
2259
2260 blockpool = &devh->block_pool;
2261
2262 if (block_addr == NULL) {
2263 blockpool->req_out--;
2264 goto exit;
2265 }
2266
2267 dma_addr = pci_map_single(devh->pdev, block_addr, length,
2268 PCI_DMA_BIDIRECTIONAL);
2269
2270 if (unlikely(pci_dma_mapping_error(devh->pdev, dma_addr))) {
2271 vxge_os_dma_free(devh->pdev, block_addr, &acc_handle);
2272 blockpool->req_out--;
2273 goto exit;
2274 }
2275
2276 if (!list_empty(&blockpool->free_entry_list))
2277 entry = (struct __vxge_hw_blockpool_entry *)
2278 list_first_entry(&blockpool->free_entry_list,
2279 struct __vxge_hw_blockpool_entry,
2280 item);
2281
2282 if (entry == NULL)
2283 entry = vmalloc(sizeof(struct __vxge_hw_blockpool_entry));
2284 else
2285 list_del(&entry->item);
2286
2287 if (entry) {
2288 entry->length = length;
2289 entry->memblock = block_addr;
2290 entry->dma_addr = dma_addr;
2291 entry->acc_handle = acc_handle;
2292 entry->dma_handle = dma_h;
2293 list_add(&entry->item, &blockpool->free_block_list);
2294 blockpool->pool_size++;
2295 }
2296
2297 blockpool->req_out--;
2298
2299 exit:
2300 return;
2301 }
2302
2303 static inline void
2304 vxge_os_dma_malloc_async(struct pci_dev *pdev, void *devh, unsigned long size)
2305 {
2306 gfp_t flags;
2307 void *vaddr;
2308
2309 if (in_interrupt())
2310 flags = GFP_ATOMIC | GFP_DMA;
2311 else
2312 flags = GFP_KERNEL | GFP_DMA;
2313
2314 vaddr = kmalloc((size), flags);
2315
2316 vxge_hw_blockpool_block_add(devh, vaddr, size, pdev, pdev);
2317 }
2318
2319 /*
2320 * __vxge_hw_blockpool_blocks_add - Request additional blocks
2321 */
2322 static
2323 void __vxge_hw_blockpool_blocks_add(struct __vxge_hw_blockpool *blockpool)
2324 {
2325 u32 nreq = 0, i;
2326
2327 if ((blockpool->pool_size + blockpool->req_out) <
2328 VXGE_HW_MIN_DMA_BLOCK_POOL_SIZE) {
2329 nreq = VXGE_HW_INCR_DMA_BLOCK_POOL_SIZE;
2330 blockpool->req_out += nreq;
2331 }
2332
2333 for (i = 0; i < nreq; i++)
2334 vxge_os_dma_malloc_async(
2335 (blockpool->hldev)->pdev,
2336 blockpool->hldev, VXGE_HW_BLOCK_SIZE);
2337 }
2338
2339 /*
2340 * __vxge_hw_blockpool_malloc - Allocate a memory block from pool
2341 * Allocates a block of memory of given size, either from block pool
2342 * or by calling vxge_os_dma_malloc()
2343 */
2344 static void *__vxge_hw_blockpool_malloc(struct __vxge_hw_device *devh, u32 size,
2345 struct vxge_hw_mempool_dma *dma_object)
2346 {
2347 struct __vxge_hw_blockpool_entry *entry = NULL;
2348 struct __vxge_hw_blockpool *blockpool;
2349 void *memblock = NULL;
2350
2351 blockpool = &devh->block_pool;
2352
2353 if (size != blockpool->block_size) {
2354
2355 memblock = vxge_os_dma_malloc(devh->pdev, size,
2356 &dma_object->handle,
2357 &dma_object->acc_handle);
2358
2359 if (!memblock)
2360 goto exit;
2361
2362 dma_object->addr = pci_map_single(devh->pdev, memblock, size,
2363 PCI_DMA_BIDIRECTIONAL);
2364
2365 if (unlikely(pci_dma_mapping_error(devh->pdev,
2366 dma_object->addr))) {
2367 vxge_os_dma_free(devh->pdev, memblock,
2368 &dma_object->acc_handle);
2369 goto exit;
2370 }
2371
2372 } else {
2373
2374 if (!list_empty(&blockpool->free_block_list))
2375 entry = (struct __vxge_hw_blockpool_entry *)
2376 list_first_entry(&blockpool->free_block_list,
2377 struct __vxge_hw_blockpool_entry,
2378 item);
2379
2380 if (entry != NULL) {
2381 list_del(&entry->item);
2382 dma_object->addr = entry->dma_addr;
2383 dma_object->handle = entry->dma_handle;
2384 dma_object->acc_handle = entry->acc_handle;
2385 memblock = entry->memblock;
2386
2387 list_add(&entry->item,
2388 &blockpool->free_entry_list);
2389 blockpool->pool_size--;
2390 }
2391
2392 if (memblock != NULL)
2393 __vxge_hw_blockpool_blocks_add(blockpool);
2394 }
2395 exit:
2396 return memblock;
2397 }
2398
2399 /*
2400 * __vxge_hw_blockpool_blocks_remove - Free additional blocks
2401 */
2402 static void
2403 __vxge_hw_blockpool_blocks_remove(struct __vxge_hw_blockpool *blockpool)
2404 {
2405 struct list_head *p, *n;
2406
2407 list_for_each_safe(p, n, &blockpool->free_block_list) {
2408
2409 if (blockpool->pool_size < blockpool->pool_max)
2410 break;
2411
2412 pci_unmap_single(
2413 (blockpool->hldev)->pdev,
2414 ((struct __vxge_hw_blockpool_entry *)p)->dma_addr,
2415 ((struct __vxge_hw_blockpool_entry *)p)->length,
2416 PCI_DMA_BIDIRECTIONAL);
2417
2418 vxge_os_dma_free(
2419 (blockpool->hldev)->pdev,
2420 ((struct __vxge_hw_blockpool_entry *)p)->memblock,
2421 &((struct __vxge_hw_blockpool_entry *)p)->acc_handle);
2422
2423 list_del(&((struct __vxge_hw_blockpool_entry *)p)->item);
2424
2425 list_add(p, &blockpool->free_entry_list);
2426
2427 blockpool->pool_size--;
2428
2429 }
2430 }
2431
2432 /*
2433 * __vxge_hw_blockpool_free - Frees the memory allcoated with
2434 * __vxge_hw_blockpool_malloc
2435 */
2436 static void __vxge_hw_blockpool_free(struct __vxge_hw_device *devh,
2437 void *memblock, u32 size,
2438 struct vxge_hw_mempool_dma *dma_object)
2439 {
2440 struct __vxge_hw_blockpool_entry *entry = NULL;
2441 struct __vxge_hw_blockpool *blockpool;
2442 enum vxge_hw_status status = VXGE_HW_OK;
2443
2444 blockpool = &devh->block_pool;
2445
2446 if (size != blockpool->block_size) {
2447 pci_unmap_single(devh->pdev, dma_object->addr, size,
2448 PCI_DMA_BIDIRECTIONAL);
2449 vxge_os_dma_free(devh->pdev, memblock, &dma_object->acc_handle);
2450 } else {
2451
2452 if (!list_empty(&blockpool->free_entry_list))
2453 entry = (struct __vxge_hw_blockpool_entry *)
2454 list_first_entry(&blockpool->free_entry_list,
2455 struct __vxge_hw_blockpool_entry,
2456 item);
2457
2458 if (entry == NULL)
2459 entry = vmalloc(sizeof(
2460 struct __vxge_hw_blockpool_entry));
2461 else
2462 list_del(&entry->item);
2463
2464 if (entry != NULL) {
2465 entry->length = size;
2466 entry->memblock = memblock;
2467 entry->dma_addr = dma_object->addr;
2468 entry->acc_handle = dma_object->acc_handle;
2469 entry->dma_handle = dma_object->handle;
2470 list_add(&entry->item,
2471 &blockpool->free_block_list);
2472 blockpool->pool_size++;
2473 status = VXGE_HW_OK;
2474 } else
2475 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2476
2477 if (status == VXGE_HW_OK)
2478 __vxge_hw_blockpool_blocks_remove(blockpool);
2479 }
2480 }
2481
2482 /*
2483 * vxge_hw_mempool_destroy
2484 */
2485 static void __vxge_hw_mempool_destroy(struct vxge_hw_mempool *mempool)
2486 {
2487 u32 i, j;
2488 struct __vxge_hw_device *devh = mempool->devh;
2489
2490 for (i = 0; i < mempool->memblocks_allocated; i++) {
2491 struct vxge_hw_mempool_dma *dma_object;
2492
2493 vxge_assert(mempool->memblocks_arr[i]);
2494 vxge_assert(mempool->memblocks_dma_arr + i);
2495
2496 dma_object = mempool->memblocks_dma_arr + i;
2497
2498 for (j = 0; j < mempool->items_per_memblock; j++) {
2499 u32 index = i * mempool->items_per_memblock + j;
2500
2501 /* to skip last partially filled(if any) memblock */
2502 if (index >= mempool->items_current)
2503 break;
2504 }
2505
2506 vfree(mempool->memblocks_priv_arr[i]);
2507
2508 __vxge_hw_blockpool_free(devh, mempool->memblocks_arr[i],
2509 mempool->memblock_size, dma_object);
2510 }
2511
2512 vfree(mempool->items_arr);
2513 vfree(mempool->memblocks_dma_arr);
2514 vfree(mempool->memblocks_priv_arr);
2515 vfree(mempool->memblocks_arr);
2516 vfree(mempool);
2517 }
2518
2519 /*
2520 * __vxge_hw_mempool_grow
2521 * Will resize mempool up to %num_allocate value.
2522 */
2523 static enum vxge_hw_status
2524 __vxge_hw_mempool_grow(struct vxge_hw_mempool *mempool, u32 num_allocate,
2525 u32 *num_allocated)
2526 {
2527 u32 i, first_time = mempool->memblocks_allocated == 0 ? 1 : 0;
2528 u32 n_items = mempool->items_per_memblock;
2529 u32 start_block_idx = mempool->memblocks_allocated;
2530 u32 end_block_idx = mempool->memblocks_allocated + num_allocate;
2531 enum vxge_hw_status status = VXGE_HW_OK;
2532
2533 *num_allocated = 0;
2534
2535 if (end_block_idx > mempool->memblocks_max) {
2536 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2537 goto exit;
2538 }
2539
2540 for (i = start_block_idx; i < end_block_idx; i++) {
2541 u32 j;
2542 u32 is_last = ((end_block_idx - 1) == i);
2543 struct vxge_hw_mempool_dma *dma_object =
2544 mempool->memblocks_dma_arr + i;
2545 void *the_memblock;
2546
2547 /* allocate memblock's private part. Each DMA memblock
2548 * has a space allocated for item's private usage upon
2549 * mempool's user request. Each time mempool grows, it will
2550 * allocate new memblock and its private part at once.
2551 * This helps to minimize memory usage a lot. */
2552 mempool->memblocks_priv_arr[i] =
2553 vzalloc(array_size(mempool->items_priv_size, n_items));
2554 if (mempool->memblocks_priv_arr[i] == NULL) {
2555 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2556 goto exit;
2557 }
2558
2559 /* allocate DMA-capable memblock */
2560 mempool->memblocks_arr[i] =
2561 __vxge_hw_blockpool_malloc(mempool->devh,
2562 mempool->memblock_size, dma_object);
2563 if (mempool->memblocks_arr[i] == NULL) {
2564 vfree(mempool->memblocks_priv_arr[i]);
2565 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2566 goto exit;
2567 }
2568
2569 (*num_allocated)++;
2570 mempool->memblocks_allocated++;
2571
2572 memset(mempool->memblocks_arr[i], 0, mempool->memblock_size);
2573
2574 the_memblock = mempool->memblocks_arr[i];
2575
2576 /* fill the items hash array */
2577 for (j = 0; j < n_items; j++) {
2578 u32 index = i * n_items + j;
2579
2580 if (first_time && index >= mempool->items_initial)
2581 break;
2582
2583 mempool->items_arr[index] =
2584 ((char *)the_memblock + j*mempool->item_size);
2585
2586 /* let caller to do more job on each item */
2587 if (mempool->item_func_alloc != NULL)
2588 mempool->item_func_alloc(mempool, i,
2589 dma_object, index, is_last);
2590
2591 mempool->items_current = index + 1;
2592 }
2593
2594 if (first_time && mempool->items_current ==
2595 mempool->items_initial)
2596 break;
2597 }
2598 exit:
2599 return status;
2600 }
2601
2602 /*
2603 * vxge_hw_mempool_create
2604 * This function will create memory pool object. Pool may grow but will
2605 * never shrink. Pool consists of number of dynamically allocated blocks
2606 * with size enough to hold %items_initial number of items. Memory is
2607 * DMA-able but client must map/unmap before interoperating with the device.
2608 */
2609 static struct vxge_hw_mempool *
2610 __vxge_hw_mempool_create(struct __vxge_hw_device *devh,
2611 u32 memblock_size,
2612 u32 item_size,
2613 u32 items_priv_size,
2614 u32 items_initial,
2615 u32 items_max,
2616 const struct vxge_hw_mempool_cbs *mp_callback,
2617 void *userdata)
2618 {
2619 enum vxge_hw_status status = VXGE_HW_OK;
2620 u32 memblocks_to_allocate;
2621 struct vxge_hw_mempool *mempool = NULL;
2622 u32 allocated;
2623
2624 if (memblock_size < item_size) {
2625 status = VXGE_HW_FAIL;
2626 goto exit;
2627 }
2628
2629 mempool = vzalloc(sizeof(struct vxge_hw_mempool));
2630 if (mempool == NULL) {
2631 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2632 goto exit;
2633 }
2634
2635 mempool->devh = devh;
2636 mempool->memblock_size = memblock_size;
2637 mempool->items_max = items_max;
2638 mempool->items_initial = items_initial;
2639 mempool->item_size = item_size;
2640 mempool->items_priv_size = items_priv_size;
2641 mempool->item_func_alloc = mp_callback->item_func_alloc;
2642 mempool->userdata = userdata;
2643
2644 mempool->memblocks_allocated = 0;
2645
2646 mempool->items_per_memblock = memblock_size / item_size;
2647
2648 mempool->memblocks_max = (items_max + mempool->items_per_memblock - 1) /
2649 mempool->items_per_memblock;
2650
2651 /* allocate array of memblocks */
2652 mempool->memblocks_arr =
2653 vzalloc(array_size(sizeof(void *), mempool->memblocks_max));
2654 if (mempool->memblocks_arr == NULL) {
2655 __vxge_hw_mempool_destroy(mempool);
2656 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2657 mempool = NULL;
2658 goto exit;
2659 }
2660
2661 /* allocate array of private parts of items per memblocks */
2662 mempool->memblocks_priv_arr =
2663 vzalloc(array_size(sizeof(void *), mempool->memblocks_max));
2664 if (mempool->memblocks_priv_arr == NULL) {
2665 __vxge_hw_mempool_destroy(mempool);
2666 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2667 mempool = NULL;
2668 goto exit;
2669 }
2670
2671 /* allocate array of memblocks DMA objects */
2672 mempool->memblocks_dma_arr =
2673 vzalloc(array_size(sizeof(struct vxge_hw_mempool_dma),
2674 mempool->memblocks_max));
2675 if (mempool->memblocks_dma_arr == NULL) {
2676 __vxge_hw_mempool_destroy(mempool);
2677 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2678 mempool = NULL;
2679 goto exit;
2680 }
2681
2682 /* allocate hash array of items */
2683 mempool->items_arr = vzalloc(array_size(sizeof(void *),
2684 mempool->items_max));
2685 if (mempool->items_arr == NULL) {
2686 __vxge_hw_mempool_destroy(mempool);
2687 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2688 mempool = NULL;
2689 goto exit;
2690 }
2691
2692 /* calculate initial number of memblocks */
2693 memblocks_to_allocate = (mempool->items_initial +
2694 mempool->items_per_memblock - 1) /
2695 mempool->items_per_memblock;
2696
2697 /* pre-allocate the mempool */
2698 status = __vxge_hw_mempool_grow(mempool, memblocks_to_allocate,
2699 &allocated);
2700 if (status != VXGE_HW_OK) {
2701 __vxge_hw_mempool_destroy(mempool);
2702 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2703 mempool = NULL;
2704 goto exit;
2705 }
2706
2707 exit:
2708 return mempool;
2709 }
2710
2711 /*
2712 * __vxge_hw_ring_abort - Returns the RxD
2713 * This function terminates the RxDs of ring
2714 */
2715 static enum vxge_hw_status __vxge_hw_ring_abort(struct __vxge_hw_ring *ring)
2716 {
2717 void *rxdh;
2718 struct __vxge_hw_channel *channel;
2719
2720 channel = &ring->channel;
2721
2722 for (;;) {
2723 vxge_hw_channel_dtr_try_complete(channel, &rxdh);
2724
2725 if (rxdh == NULL)
2726 break;
2727
2728 vxge_hw_channel_dtr_complete(channel);
2729
2730 if (ring->rxd_term)
2731 ring->rxd_term(rxdh, VXGE_HW_RXD_STATE_POSTED,
2732 channel->userdata);
2733
2734 vxge_hw_channel_dtr_free(channel, rxdh);
2735 }
2736
2737 return VXGE_HW_OK;
2738 }
2739
2740 /*
2741 * __vxge_hw_ring_reset - Resets the ring
2742 * This function resets the ring during vpath reset operation
2743 */
2744 static enum vxge_hw_status __vxge_hw_ring_reset(struct __vxge_hw_ring *ring)
2745 {
2746 enum vxge_hw_status status = VXGE_HW_OK;
2747 struct __vxge_hw_channel *channel;
2748
2749 channel = &ring->channel;
2750
2751 __vxge_hw_ring_abort(ring);
2752
2753 status = __vxge_hw_channel_reset(channel);
2754
2755 if (status != VXGE_HW_OK)
2756 goto exit;
2757
2758 if (ring->rxd_init) {
2759 status = vxge_hw_ring_replenish(ring);
2760 if (status != VXGE_HW_OK)
2761 goto exit;
2762 }
2763 exit:
2764 return status;
2765 }
2766
2767 /*
2768 * __vxge_hw_ring_delete - Removes the ring
2769 * This function freeup the memory pool and removes the ring
2770 */
2771 static enum vxge_hw_status
2772 __vxge_hw_ring_delete(struct __vxge_hw_vpath_handle *vp)
2773 {
2774 struct __vxge_hw_ring *ring = vp->vpath->ringh;
2775
2776 __vxge_hw_ring_abort(ring);
2777
2778 if (ring->mempool)
2779 __vxge_hw_mempool_destroy(ring->mempool);
2780
2781 vp->vpath->ringh = NULL;
2782 __vxge_hw_channel_free(&ring->channel);
2783
2784 return VXGE_HW_OK;
2785 }
2786
2787 /*
2788 * __vxge_hw_ring_create - Create a Ring
2789 * This function creates Ring and initializes it.
2790 */
2791 static enum vxge_hw_status
2792 __vxge_hw_ring_create(struct __vxge_hw_vpath_handle *vp,
2793 struct vxge_hw_ring_attr *attr)
2794 {
2795 enum vxge_hw_status status = VXGE_HW_OK;
2796 struct __vxge_hw_ring *ring;
2797 u32 ring_length;
2798 struct vxge_hw_ring_config *config;
2799 struct __vxge_hw_device *hldev;
2800 u32 vp_id;
2801 static const struct vxge_hw_mempool_cbs ring_mp_callback = {
2802 .item_func_alloc = __vxge_hw_ring_mempool_item_alloc,
2803 };
2804
2805 if ((vp == NULL) || (attr == NULL)) {
2806 status = VXGE_HW_FAIL;
2807 goto exit;
2808 }
2809
2810 hldev = vp->vpath->hldev;
2811 vp_id = vp->vpath->vp_id;
2812
2813 config = &hldev->config.vp_config[vp_id].ring;
2814
2815 ring_length = config->ring_blocks *
2816 vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
2817
2818 ring = (struct __vxge_hw_ring *)__vxge_hw_channel_allocate(vp,
2819 VXGE_HW_CHANNEL_TYPE_RING,
2820 ring_length,
2821 attr->per_rxd_space,
2822 attr->userdata);
2823 if (ring == NULL) {
2824 status = VXGE_HW_ERR_OUT_OF_MEMORY;
2825 goto exit;
2826 }
2827
2828 vp->vpath->ringh = ring;
2829 ring->vp_id = vp_id;
2830 ring->vp_reg = vp->vpath->vp_reg;
2831 ring->common_reg = hldev->common_reg;
2832 ring->stats = &vp->vpath->sw_stats->ring_stats;
2833 ring->config = config;
2834 ring->callback = attr->callback;
2835 ring->rxd_init = attr->rxd_init;
2836 ring->rxd_term = attr->rxd_term;
2837 ring->buffer_mode = config->buffer_mode;
2838 ring->tim_rti_cfg1_saved = vp->vpath->tim_rti_cfg1_saved;
2839 ring->tim_rti_cfg3_saved = vp->vpath->tim_rti_cfg3_saved;
2840 ring->rxds_limit = config->rxds_limit;
2841
2842 ring->rxd_size = vxge_hw_ring_rxd_size_get(config->buffer_mode);
2843 ring->rxd_priv_size =
2844 sizeof(struct __vxge_hw_ring_rxd_priv) + attr->per_rxd_space;
2845 ring->per_rxd_space = attr->per_rxd_space;
2846
2847 ring->rxd_priv_size =
2848 ((ring->rxd_priv_size + VXGE_CACHE_LINE_SIZE - 1) /
2849 VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
2850
2851 /* how many RxDs can fit into one block. Depends on configured
2852 * buffer_mode. */
2853 ring->rxds_per_block =
2854 vxge_hw_ring_rxds_per_block_get(config->buffer_mode);
2855
2856 /* calculate actual RxD block private size */
2857 ring->rxdblock_priv_size = ring->rxd_priv_size * ring->rxds_per_block;
2858 ring->mempool = __vxge_hw_mempool_create(hldev,
2859 VXGE_HW_BLOCK_SIZE,
2860 VXGE_HW_BLOCK_SIZE,
2861 ring->rxdblock_priv_size,
2862 ring->config->ring_blocks,
2863 ring->config->ring_blocks,
2864 &ring_mp_callback,
2865 ring);
2866 if (ring->mempool == NULL) {
2867 __vxge_hw_ring_delete(vp);
2868 return VXGE_HW_ERR_OUT_OF_MEMORY;
2869 }
2870
2871 status = __vxge_hw_channel_initialize(&ring->channel);
2872 if (status != VXGE_HW_OK) {
2873 __vxge_hw_ring_delete(vp);
2874 goto exit;
2875 }
2876
2877 /* Note:
2878 * Specifying rxd_init callback means two things:
2879 * 1) rxds need to be initialized by driver at channel-open time;
2880 * 2) rxds need to be posted at channel-open time
2881 * (that's what the initial_replenish() below does)
2882 * Currently we don't have a case when the 1) is done without the 2).
2883 */
2884 if (ring->rxd_init) {
2885 status = vxge_hw_ring_replenish(ring);
2886 if (status != VXGE_HW_OK) {
2887 __vxge_hw_ring_delete(vp);
2888 goto exit;
2889 }
2890 }
2891
2892 /* initial replenish will increment the counter in its post() routine,
2893 * we have to reset it */
2894 ring->stats->common_stats.usage_cnt = 0;
2895 exit:
2896 return status;
2897 }
2898
2899 /*
2900 * vxge_hw_device_config_default_get - Initialize device config with defaults.
2901 * Initialize Titan device config with default values.
2902 */
2903 enum vxge_hw_status
2904 vxge_hw_device_config_default_get(struct vxge_hw_device_config *device_config)
2905 {
2906 u32 i;
2907
2908 device_config->dma_blockpool_initial =
2909 VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE;
2910 device_config->dma_blockpool_max = VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE;
2911 device_config->intr_mode = VXGE_HW_INTR_MODE_DEF;
2912 device_config->rth_en = VXGE_HW_RTH_DEFAULT;
2913 device_config->rth_it_type = VXGE_HW_RTH_IT_TYPE_DEFAULT;
2914 device_config->device_poll_millis = VXGE_HW_DEF_DEVICE_POLL_MILLIS;
2915 device_config->rts_mac_en = VXGE_HW_RTS_MAC_DEFAULT;
2916
2917 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
2918 device_config->vp_config[i].vp_id = i;
2919
2920 device_config->vp_config[i].min_bandwidth =
2921 VXGE_HW_VPATH_BANDWIDTH_DEFAULT;
2922
2923 device_config->vp_config[i].ring.enable = VXGE_HW_RING_DEFAULT;
2924
2925 device_config->vp_config[i].ring.ring_blocks =
2926 VXGE_HW_DEF_RING_BLOCKS;
2927
2928 device_config->vp_config[i].ring.buffer_mode =
2929 VXGE_HW_RING_RXD_BUFFER_MODE_DEFAULT;
2930
2931 device_config->vp_config[i].ring.scatter_mode =
2932 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT;
2933
2934 device_config->vp_config[i].ring.rxds_limit =
2935 VXGE_HW_DEF_RING_RXDS_LIMIT;
2936
2937 device_config->vp_config[i].fifo.enable = VXGE_HW_FIFO_ENABLE;
2938
2939 device_config->vp_config[i].fifo.fifo_blocks =
2940 VXGE_HW_MIN_FIFO_BLOCKS;
2941
2942 device_config->vp_config[i].fifo.max_frags =
2943 VXGE_HW_MAX_FIFO_FRAGS;
2944
2945 device_config->vp_config[i].fifo.memblock_size =
2946 VXGE_HW_DEF_FIFO_MEMBLOCK_SIZE;
2947
2948 device_config->vp_config[i].fifo.alignment_size =
2949 VXGE_HW_DEF_FIFO_ALIGNMENT_SIZE;
2950
2951 device_config->vp_config[i].fifo.intr =
2952 VXGE_HW_FIFO_QUEUE_INTR_DEFAULT;
2953
2954 device_config->vp_config[i].fifo.no_snoop_bits =
2955 VXGE_HW_FIFO_NO_SNOOP_DEFAULT;
2956 device_config->vp_config[i].tti.intr_enable =
2957 VXGE_HW_TIM_INTR_DEFAULT;
2958
2959 device_config->vp_config[i].tti.btimer_val =
2960 VXGE_HW_USE_FLASH_DEFAULT;
2961
2962 device_config->vp_config[i].tti.timer_ac_en =
2963 VXGE_HW_USE_FLASH_DEFAULT;
2964
2965 device_config->vp_config[i].tti.timer_ci_en =
2966 VXGE_HW_USE_FLASH_DEFAULT;
2967
2968 device_config->vp_config[i].tti.timer_ri_en =
2969 VXGE_HW_USE_FLASH_DEFAULT;
2970
2971 device_config->vp_config[i].tti.rtimer_val =
2972 VXGE_HW_USE_FLASH_DEFAULT;
2973
2974 device_config->vp_config[i].tti.util_sel =
2975 VXGE_HW_USE_FLASH_DEFAULT;
2976
2977 device_config->vp_config[i].tti.ltimer_val =
2978 VXGE_HW_USE_FLASH_DEFAULT;
2979
2980 device_config->vp_config[i].tti.urange_a =
2981 VXGE_HW_USE_FLASH_DEFAULT;
2982
2983 device_config->vp_config[i].tti.uec_a =
2984 VXGE_HW_USE_FLASH_DEFAULT;
2985
2986 device_config->vp_config[i].tti.urange_b =
2987 VXGE_HW_USE_FLASH_DEFAULT;
2988
2989 device_config->vp_config[i].tti.uec_b =
2990 VXGE_HW_USE_FLASH_DEFAULT;
2991
2992 device_config->vp_config[i].tti.urange_c =
2993 VXGE_HW_USE_FLASH_DEFAULT;
2994
2995 device_config->vp_config[i].tti.uec_c =
2996 VXGE_HW_USE_FLASH_DEFAULT;
2997
2998 device_config->vp_config[i].tti.uec_d =
2999 VXGE_HW_USE_FLASH_DEFAULT;
3000
3001 device_config->vp_config[i].rti.intr_enable =
3002 VXGE_HW_TIM_INTR_DEFAULT;
3003
3004 device_config->vp_config[i].rti.btimer_val =
3005 VXGE_HW_USE_FLASH_DEFAULT;
3006
3007 device_config->vp_config[i].rti.timer_ac_en =
3008 VXGE_HW_USE_FLASH_DEFAULT;
3009
3010 device_config->vp_config[i].rti.timer_ci_en =
3011 VXGE_HW_USE_FLASH_DEFAULT;
3012
3013 device_config->vp_config[i].rti.timer_ri_en =
3014 VXGE_HW_USE_FLASH_DEFAULT;
3015
3016 device_config->vp_config[i].rti.rtimer_val =
3017 VXGE_HW_USE_FLASH_DEFAULT;
3018
3019 device_config->vp_config[i].rti.util_sel =
3020 VXGE_HW_USE_FLASH_DEFAULT;
3021
3022 device_config->vp_config[i].rti.ltimer_val =
3023 VXGE_HW_USE_FLASH_DEFAULT;
3024
3025 device_config->vp_config[i].rti.urange_a =
3026 VXGE_HW_USE_FLASH_DEFAULT;
3027
3028 device_config->vp_config[i].rti.uec_a =
3029 VXGE_HW_USE_FLASH_DEFAULT;
3030
3031 device_config->vp_config[i].rti.urange_b =
3032 VXGE_HW_USE_FLASH_DEFAULT;
3033
3034 device_config->vp_config[i].rti.uec_b =
3035 VXGE_HW_USE_FLASH_DEFAULT;
3036
3037 device_config->vp_config[i].rti.urange_c =
3038 VXGE_HW_USE_FLASH_DEFAULT;
3039
3040 device_config->vp_config[i].rti.uec_c =
3041 VXGE_HW_USE_FLASH_DEFAULT;
3042
3043 device_config->vp_config[i].rti.uec_d =
3044 VXGE_HW_USE_FLASH_DEFAULT;
3045
3046 device_config->vp_config[i].mtu =
3047 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU;
3048
3049 device_config->vp_config[i].rpa_strip_vlan_tag =
3050 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT;
3051 }
3052
3053 return VXGE_HW_OK;
3054 }
3055
3056 /*
3057 * __vxge_hw_vpath_swapper_set - Set the swapper bits for the vpath.
3058 * Set the swapper bits appropriately for the vpath.
3059 */
3060 static enum vxge_hw_status
3061 __vxge_hw_vpath_swapper_set(struct vxge_hw_vpath_reg __iomem *vpath_reg)
3062 {
3063 #ifndef __BIG_ENDIAN
3064 u64 val64;
3065
3066 val64 = readq(&vpath_reg->vpath_general_cfg1);
3067 wmb();
3068 val64 |= VXGE_HW_VPATH_GENERAL_CFG1_CTL_BYTE_SWAPEN;
3069 writeq(val64, &vpath_reg->vpath_general_cfg1);
3070 wmb();
3071 #endif
3072 return VXGE_HW_OK;
3073 }
3074
3075 /*
3076 * __vxge_hw_kdfc_swapper_set - Set the swapper bits for the kdfc.
3077 * Set the swapper bits appropriately for the vpath.
3078 */
3079 static enum vxge_hw_status
3080 __vxge_hw_kdfc_swapper_set(struct vxge_hw_legacy_reg __iomem *legacy_reg,
3081 struct vxge_hw_vpath_reg __iomem *vpath_reg)
3082 {
3083 u64 val64;
3084
3085 val64 = readq(&legacy_reg->pifm_wr_swap_en);
3086
3087 if (val64 == VXGE_HW_SWAPPER_WRITE_BYTE_SWAP_ENABLE) {
3088 val64 = readq(&vpath_reg->kdfcctl_cfg0);
3089 wmb();
3090
3091 val64 |= VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO0 |
3092 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO1 |
3093 VXGE_HW_KDFCCTL_CFG0_BYTE_SWAPEN_FIFO2;
3094
3095 writeq(val64, &vpath_reg->kdfcctl_cfg0);
3096 wmb();
3097 }
3098
3099 return VXGE_HW_OK;
3100 }
3101
3102 /*
3103 * vxge_hw_mgmt_reg_read - Read Titan register.
3104 */
3105 enum vxge_hw_status
3106 vxge_hw_mgmt_reg_read(struct __vxge_hw_device *hldev,
3107 enum vxge_hw_mgmt_reg_type type,
3108 u32 index, u32 offset, u64 *value)
3109 {
3110 enum vxge_hw_status status = VXGE_HW_OK;
3111
3112 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
3113 status = VXGE_HW_ERR_INVALID_DEVICE;
3114 goto exit;
3115 }
3116
3117 switch (type) {
3118 case vxge_hw_mgmt_reg_type_legacy:
3119 if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
3120 status = VXGE_HW_ERR_INVALID_OFFSET;
3121 break;
3122 }
3123 *value = readq((void __iomem *)hldev->legacy_reg + offset);
3124 break;
3125 case vxge_hw_mgmt_reg_type_toc:
3126 if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
3127 status = VXGE_HW_ERR_INVALID_OFFSET;
3128 break;
3129 }
3130 *value = readq((void __iomem *)hldev->toc_reg + offset);
3131 break;
3132 case vxge_hw_mgmt_reg_type_common:
3133 if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
3134 status = VXGE_HW_ERR_INVALID_OFFSET;
3135 break;
3136 }
3137 *value = readq((void __iomem *)hldev->common_reg + offset);
3138 break;
3139 case vxge_hw_mgmt_reg_type_mrpcim:
3140 if (!(hldev->access_rights &
3141 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
3142 status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
3143 break;
3144 }
3145 if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
3146 status = VXGE_HW_ERR_INVALID_OFFSET;
3147 break;
3148 }
3149 *value = readq((void __iomem *)hldev->mrpcim_reg + offset);
3150 break;
3151 case vxge_hw_mgmt_reg_type_srpcim:
3152 if (!(hldev->access_rights &
3153 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
3154 status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
3155 break;
3156 }
3157 if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
3158 status = VXGE_HW_ERR_INVALID_INDEX;
3159 break;
3160 }
3161 if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
3162 status = VXGE_HW_ERR_INVALID_OFFSET;
3163 break;
3164 }
3165 *value = readq((void __iomem *)hldev->srpcim_reg[index] +
3166 offset);
3167 break;
3168 case vxge_hw_mgmt_reg_type_vpmgmt:
3169 if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
3170 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3171 status = VXGE_HW_ERR_INVALID_INDEX;
3172 break;
3173 }
3174 if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
3175 status = VXGE_HW_ERR_INVALID_OFFSET;
3176 break;
3177 }
3178 *value = readq((void __iomem *)hldev->vpmgmt_reg[index] +
3179 offset);
3180 break;
3181 case vxge_hw_mgmt_reg_type_vpath:
3182 if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) ||
3183 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3184 status = VXGE_HW_ERR_INVALID_INDEX;
3185 break;
3186 }
3187 if (index > VXGE_HW_TITAN_VPATH_REG_SPACES - 1) {
3188 status = VXGE_HW_ERR_INVALID_INDEX;
3189 break;
3190 }
3191 if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
3192 status = VXGE_HW_ERR_INVALID_OFFSET;
3193 break;
3194 }
3195 *value = readq((void __iomem *)hldev->vpath_reg[index] +
3196 offset);
3197 break;
3198 default:
3199 status = VXGE_HW_ERR_INVALID_TYPE;
3200 break;
3201 }
3202
3203 exit:
3204 return status;
3205 }
3206
3207 /*
3208 * vxge_hw_vpath_strip_fcs_check - Check for FCS strip.
3209 */
3210 enum vxge_hw_status
3211 vxge_hw_vpath_strip_fcs_check(struct __vxge_hw_device *hldev, u64 vpath_mask)
3212 {
3213 struct vxge_hw_vpmgmt_reg __iomem *vpmgmt_reg;
3214 int i = 0, j = 0;
3215
3216 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3217 if (!((vpath_mask) & vxge_mBIT(i)))
3218 continue;
3219 vpmgmt_reg = hldev->vpmgmt_reg[i];
3220 for (j = 0; j < VXGE_HW_MAC_MAX_MAC_PORT_ID; j++) {
3221 if (readq(&vpmgmt_reg->rxmac_cfg0_port_vpmgmt_clone[j])
3222 & VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_STRIP_FCS)
3223 return VXGE_HW_FAIL;
3224 }
3225 }
3226 return VXGE_HW_OK;
3227 }
3228 /*
3229 * vxge_hw_mgmt_reg_Write - Write Titan register.
3230 */
3231 enum vxge_hw_status
3232 vxge_hw_mgmt_reg_write(struct __vxge_hw_device *hldev,
3233 enum vxge_hw_mgmt_reg_type type,
3234 u32 index, u32 offset, u64 value)
3235 {
3236 enum vxge_hw_status status = VXGE_HW_OK;
3237
3238 if ((hldev == NULL) || (hldev->magic != VXGE_HW_DEVICE_MAGIC)) {
3239 status = VXGE_HW_ERR_INVALID_DEVICE;
3240 goto exit;
3241 }
3242
3243 switch (type) {
3244 case vxge_hw_mgmt_reg_type_legacy:
3245 if (offset > sizeof(struct vxge_hw_legacy_reg) - 8) {
3246 status = VXGE_HW_ERR_INVALID_OFFSET;
3247 break;
3248 }
3249 writeq(value, (void __iomem *)hldev->legacy_reg + offset);
3250 break;
3251 case vxge_hw_mgmt_reg_type_toc:
3252 if (offset > sizeof(struct vxge_hw_toc_reg) - 8) {
3253 status = VXGE_HW_ERR_INVALID_OFFSET;
3254 break;
3255 }
3256 writeq(value, (void __iomem *)hldev->toc_reg + offset);
3257 break;
3258 case vxge_hw_mgmt_reg_type_common:
3259 if (offset > sizeof(struct vxge_hw_common_reg) - 8) {
3260 status = VXGE_HW_ERR_INVALID_OFFSET;
3261 break;
3262 }
3263 writeq(value, (void __iomem *)hldev->common_reg + offset);
3264 break;
3265 case vxge_hw_mgmt_reg_type_mrpcim:
3266 if (!(hldev->access_rights &
3267 VXGE_HW_DEVICE_ACCESS_RIGHT_MRPCIM)) {
3268 status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
3269 break;
3270 }
3271 if (offset > sizeof(struct vxge_hw_mrpcim_reg) - 8) {
3272 status = VXGE_HW_ERR_INVALID_OFFSET;
3273 break;
3274 }
3275 writeq(value, (void __iomem *)hldev->mrpcim_reg + offset);
3276 break;
3277 case vxge_hw_mgmt_reg_type_srpcim:
3278 if (!(hldev->access_rights &
3279 VXGE_HW_DEVICE_ACCESS_RIGHT_SRPCIM)) {
3280 status = VXGE_HW_ERR_PRIVILEGED_OPERATION;
3281 break;
3282 }
3283 if (index > VXGE_HW_TITAN_SRPCIM_REG_SPACES - 1) {
3284 status = VXGE_HW_ERR_INVALID_INDEX;
3285 break;
3286 }
3287 if (offset > sizeof(struct vxge_hw_srpcim_reg) - 8) {
3288 status = VXGE_HW_ERR_INVALID_OFFSET;
3289 break;
3290 }
3291 writeq(value, (void __iomem *)hldev->srpcim_reg[index] +
3292 offset);
3293
3294 break;
3295 case vxge_hw_mgmt_reg_type_vpmgmt:
3296 if ((index > VXGE_HW_TITAN_VPMGMT_REG_SPACES - 1) ||
3297 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3298 status = VXGE_HW_ERR_INVALID_INDEX;
3299 break;
3300 }
3301 if (offset > sizeof(struct vxge_hw_vpmgmt_reg) - 8) {
3302 status = VXGE_HW_ERR_INVALID_OFFSET;
3303 break;
3304 }
3305 writeq(value, (void __iomem *)hldev->vpmgmt_reg[index] +
3306 offset);
3307 break;
3308 case vxge_hw_mgmt_reg_type_vpath:
3309 if ((index > VXGE_HW_TITAN_VPATH_REG_SPACES-1) ||
3310 (!(hldev->vpath_assignments & vxge_mBIT(index)))) {
3311 status = VXGE_HW_ERR_INVALID_INDEX;
3312 break;
3313 }
3314 if (offset > sizeof(struct vxge_hw_vpath_reg) - 8) {
3315 status = VXGE_HW_ERR_INVALID_OFFSET;
3316 break;
3317 }
3318 writeq(value, (void __iomem *)hldev->vpath_reg[index] +
3319 offset);
3320 break;
3321 default:
3322 status = VXGE_HW_ERR_INVALID_TYPE;
3323 break;
3324 }
3325 exit:
3326 return status;
3327 }
3328
3329 /*
3330 * __vxge_hw_fifo_abort - Returns the TxD
3331 * This function terminates the TxDs of fifo
3332 */
3333 static enum vxge_hw_status __vxge_hw_fifo_abort(struct __vxge_hw_fifo *fifo)
3334 {
3335 void *txdlh;
3336
3337 for (;;) {
3338 vxge_hw_channel_dtr_try_complete(&fifo->channel, &txdlh);
3339
3340 if (txdlh == NULL)
3341 break;
3342
3343 vxge_hw_channel_dtr_complete(&fifo->channel);
3344
3345 if (fifo->txdl_term) {
3346 fifo->txdl_term(txdlh,
3347 VXGE_HW_TXDL_STATE_POSTED,
3348 fifo->channel.userdata);
3349 }
3350
3351 vxge_hw_channel_dtr_free(&fifo->channel, txdlh);
3352 }
3353
3354 return VXGE_HW_OK;
3355 }
3356
3357 /*
3358 * __vxge_hw_fifo_reset - Resets the fifo
3359 * This function resets the fifo during vpath reset operation
3360 */
3361 static enum vxge_hw_status __vxge_hw_fifo_reset(struct __vxge_hw_fifo *fifo)
3362 {
3363 enum vxge_hw_status status = VXGE_HW_OK;
3364
3365 __vxge_hw_fifo_abort(fifo);
3366 status = __vxge_hw_channel_reset(&fifo->channel);
3367
3368 return status;
3369 }
3370
3371 /*
3372 * __vxge_hw_fifo_delete - Removes the FIFO
3373 * This function freeup the memory pool and removes the FIFO
3374 */
3375 static enum vxge_hw_status
3376 __vxge_hw_fifo_delete(struct __vxge_hw_vpath_handle *vp)
3377 {
3378 struct __vxge_hw_fifo *fifo = vp->vpath->fifoh;
3379
3380 __vxge_hw_fifo_abort(fifo);
3381
3382 if (fifo->mempool)
3383 __vxge_hw_mempool_destroy(fifo->mempool);
3384
3385 vp->vpath->fifoh = NULL;
3386
3387 __vxge_hw_channel_free(&fifo->channel);
3388
3389 return VXGE_HW_OK;
3390 }
3391
3392 /*
3393 * __vxge_hw_fifo_mempool_item_alloc - Allocate List blocks for TxD
3394 * list callback
3395 * This function is callback passed to __vxge_hw_mempool_create to create memory
3396 * pool for TxD list
3397 */
3398 static void
3399 __vxge_hw_fifo_mempool_item_alloc(
3400 struct vxge_hw_mempool *mempoolh,
3401 u32 memblock_index, struct vxge_hw_mempool_dma *dma_object,
3402 u32 index, u32 is_last)
3403 {
3404 u32 memblock_item_idx;
3405 struct __vxge_hw_fifo_txdl_priv *txdl_priv;
3406 struct vxge_hw_fifo_txd *txdp =
3407 (struct vxge_hw_fifo_txd *)mempoolh->items_arr[index];
3408 struct __vxge_hw_fifo *fifo =
3409 (struct __vxge_hw_fifo *)mempoolh->userdata;
3410 void *memblock = mempoolh->memblocks_arr[memblock_index];
3411
3412 vxge_assert(txdp);
3413
3414 txdp->host_control = (u64) (size_t)
3415 __vxge_hw_mempool_item_priv(mempoolh, memblock_index, txdp,
3416 &memblock_item_idx);
3417
3418 txdl_priv = __vxge_hw_fifo_txdl_priv(fifo, txdp);
3419
3420 vxge_assert(txdl_priv);
3421
3422 fifo->channel.reserve_arr[fifo->channel.reserve_ptr - 1 - index] = txdp;
3423
3424 /* pre-format HW's TxDL's private */
3425 txdl_priv->dma_offset = (char *)txdp - (char *)memblock;
3426 txdl_priv->dma_addr = dma_object->addr + txdl_priv->dma_offset;
3427 txdl_priv->dma_handle = dma_object->handle;
3428 txdl_priv->memblock = memblock;
3429 txdl_priv->first_txdp = txdp;
3430 txdl_priv->next_txdl_priv = NULL;
3431 txdl_priv->alloc_frags = 0;
3432 }
3433
3434 /*
3435 * __vxge_hw_fifo_create - Create a FIFO
3436 * This function creates FIFO and initializes it.
3437 */
3438 static enum vxge_hw_status
3439 __vxge_hw_fifo_create(struct __vxge_hw_vpath_handle *vp,
3440 struct vxge_hw_fifo_attr *attr)
3441 {
3442 enum vxge_hw_status status = VXGE_HW_OK;
3443 struct __vxge_hw_fifo *fifo;
3444 struct vxge_hw_fifo_config *config;
3445 u32 txdl_size, txdl_per_memblock;
3446 struct vxge_hw_mempool_cbs fifo_mp_callback;
3447 struct __vxge_hw_virtualpath *vpath;
3448
3449 if ((vp == NULL) || (attr == NULL)) {
3450 status = VXGE_HW_ERR_INVALID_HANDLE;
3451 goto exit;
3452 }
3453 vpath = vp->vpath;
3454 config = &vpath->hldev->config.vp_config[vpath->vp_id].fifo;
3455
3456 txdl_size = config->max_frags * sizeof(struct vxge_hw_fifo_txd);
3457
3458 txdl_per_memblock = config->memblock_size / txdl_size;
3459
3460 fifo = (struct __vxge_hw_fifo *)__vxge_hw_channel_allocate(vp,
3461 VXGE_HW_CHANNEL_TYPE_FIFO,
3462 config->fifo_blocks * txdl_per_memblock,
3463 attr->per_txdl_space, attr->userdata);
3464
3465 if (fifo == NULL) {
3466 status = VXGE_HW_ERR_OUT_OF_MEMORY;
3467 goto exit;
3468 }
3469
3470 vpath->fifoh = fifo;
3471 fifo->nofl_db = vpath->nofl_db;
3472
3473 fifo->vp_id = vpath->vp_id;
3474 fifo->vp_reg = vpath->vp_reg;
3475 fifo->stats = &vpath->sw_stats->fifo_stats;
3476
3477 fifo->config = config;
3478
3479 /* apply "interrupts per txdl" attribute */
3480 fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_UTILZ;
3481 fifo->tim_tti_cfg1_saved = vpath->tim_tti_cfg1_saved;
3482 fifo->tim_tti_cfg3_saved = vpath->tim_tti_cfg3_saved;
3483
3484 if (fifo->config->intr)
3485 fifo->interrupt_type = VXGE_HW_FIFO_TXD_INT_TYPE_PER_LIST;
3486
3487 fifo->no_snoop_bits = config->no_snoop_bits;
3488
3489 /*
3490 * FIFO memory management strategy:
3491 *
3492 * TxDL split into three independent parts:
3493 * - set of TxD's
3494 * - TxD HW private part
3495 * - driver private part
3496 *
3497 * Adaptative memory allocation used. i.e. Memory allocated on
3498 * demand with the size which will fit into one memory block.
3499 * One memory block may contain more than one TxDL.
3500 *
3501 * During "reserve" operations more memory can be allocated on demand
3502 * for example due to FIFO full condition.
3503 *
3504 * Pool of memory memblocks never shrinks except in __vxge_hw_fifo_close
3505 * routine which will essentially stop the channel and free resources.
3506 */
3507
3508 /* TxDL common private size == TxDL private + driver private */
3509 fifo->priv_size =
3510 sizeof(struct __vxge_hw_fifo_txdl_priv) + attr->per_txdl_space;
3511 fifo->priv_size = ((fifo->priv_size + VXGE_CACHE_LINE_SIZE - 1) /
3512 VXGE_CACHE_LINE_SIZE) * VXGE_CACHE_LINE_SIZE;
3513
3514 fifo->per_txdl_space = attr->per_txdl_space;
3515
3516 /* recompute txdl size to be cacheline aligned */
3517 fifo->txdl_size = txdl_size;
3518 fifo->txdl_per_memblock = txdl_per_memblock;
3519
3520 fifo->txdl_term = attr->txdl_term;
3521 fifo->callback = attr->callback;
3522
3523 if (fifo->txdl_per_memblock == 0) {
3524 __vxge_hw_fifo_delete(vp);
3525 status = VXGE_HW_ERR_INVALID_BLOCK_SIZE;
3526 goto exit;
3527 }
3528
3529 fifo_mp_callback.item_func_alloc = __vxge_hw_fifo_mempool_item_alloc;
3530
3531 fifo->mempool =
3532 __vxge_hw_mempool_create(vpath->hldev,
3533 fifo->config->memblock_size,
3534 fifo->txdl_size,
3535 fifo->priv_size,
3536 (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
3537 (fifo->config->fifo_blocks * fifo->txdl_per_memblock),
3538 &fifo_mp_callback,
3539 fifo);
3540
3541 if (fifo->mempool == NULL) {
3542 __vxge_hw_fifo_delete(vp);
3543 status = VXGE_HW_ERR_OUT_OF_MEMORY;
3544 goto exit;
3545 }
3546
3547 status = __vxge_hw_channel_initialize(&fifo->channel);
3548 if (status != VXGE_HW_OK) {
3549 __vxge_hw_fifo_delete(vp);
3550 goto exit;
3551 }
3552
3553 vxge_assert(fifo->channel.reserve_ptr);
3554 exit:
3555 return status;
3556 }
3557
3558 /*
3559 * __vxge_hw_vpath_pci_read - Read the content of given address
3560 * in pci config space.
3561 * Read from the vpath pci config space.
3562 */
3563 static enum vxge_hw_status
3564 __vxge_hw_vpath_pci_read(struct __vxge_hw_virtualpath *vpath,
3565 u32 phy_func_0, u32 offset, u32 *val)
3566 {
3567 u64 val64;
3568 enum vxge_hw_status status = VXGE_HW_OK;
3569 struct vxge_hw_vpath_reg __iomem *vp_reg = vpath->vp_reg;
3570
3571 val64 = VXGE_HW_PCI_CONFIG_ACCESS_CFG1_ADDRESS(offset);
3572
3573 if (phy_func_0)
3574 val64 |= VXGE_HW_PCI_CONFIG_ACCESS_CFG1_SEL_FUNC0;
3575
3576 writeq(val64, &vp_reg->pci_config_access_cfg1);
3577 wmb();
3578 writeq(VXGE_HW_PCI_CONFIG_ACCESS_CFG2_REQ,
3579 &vp_reg->pci_config_access_cfg2);
3580 wmb();
3581
3582 status = __vxge_hw_device_register_poll(
3583 &vp_reg->pci_config_access_cfg2,
3584 VXGE_HW_INTR_MASK_ALL, VXGE_HW_DEF_DEVICE_POLL_MILLIS);
3585
3586 if (status != VXGE_HW_OK)
3587 goto exit;
3588
3589 val64 = readq(&vp_reg->pci_config_access_status);
3590
3591 if (val64 & VXGE_HW_PCI_CONFIG_ACCESS_STATUS_ACCESS_ERR) {
3592 status = VXGE_HW_FAIL;
3593 *val = 0;
3594 } else
3595 *val = (u32)vxge_bVALn(val64, 32, 32);
3596 exit:
3597 return status;
3598 }
3599
3600 /**
3601 * vxge_hw_device_flick_link_led - Flick (blink) link LED.
3602 * @hldev: HW device.
3603 * @on_off: TRUE if flickering to be on, FALSE to be off
3604 *
3605 * Flicker the link LED.
3606 */
3607 enum vxge_hw_status
3608 vxge_hw_device_flick_link_led(struct __vxge_hw_device *hldev, u64 on_off)
3609 {
3610 struct __vxge_hw_virtualpath *vpath;
3611 u64 data0, data1 = 0, steer_ctrl = 0;
3612 enum vxge_hw_status status;
3613
3614 if (hldev == NULL) {
3615 status = VXGE_HW_ERR_INVALID_DEVICE;
3616 goto exit;
3617 }
3618
3619 vpath = &hldev->virtual_paths[hldev->first_vp_id];
3620
3621 data0 = on_off;
3622 status = vxge_hw_vpath_fw_api(vpath,
3623 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_LED_CONTROL,
3624 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_FW_MEMO,
3625 0, &data0, &data1, &steer_ctrl);
3626 exit:
3627 return status;
3628 }
3629
3630 /*
3631 * __vxge_hw_vpath_rts_table_get - Get the entries from RTS access tables
3632 */
3633 enum vxge_hw_status
3634 __vxge_hw_vpath_rts_table_get(struct __vxge_hw_vpath_handle *vp,
3635 u32 action, u32 rts_table, u32 offset,
3636 u64 *data0, u64 *data1)
3637 {
3638 enum vxge_hw_status status;
3639 u64 steer_ctrl = 0;
3640
3641 if (vp == NULL) {
3642 status = VXGE_HW_ERR_INVALID_HANDLE;
3643 goto exit;
3644 }
3645
3646 if ((rts_table ==
3647 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT) ||
3648 (rts_table ==
3649 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT) ||
3650 (rts_table ==
3651 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MASK) ||
3652 (rts_table ==
3653 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_KEY)) {
3654 steer_ctrl = VXGE_HW_RTS_ACCESS_STEER_CTRL_TABLE_SEL;
3655 }
3656
3657 status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset,
3658 data0, data1, &steer_ctrl);
3659 if (status != VXGE_HW_OK)
3660 goto exit;
3661
3662 if ((rts_table != VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) &&
3663 (rts_table !=
3664 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT))
3665 *data1 = 0;
3666 exit:
3667 return status;
3668 }
3669
3670 /*
3671 * __vxge_hw_vpath_rts_table_set - Set the entries of RTS access tables
3672 */
3673 enum vxge_hw_status
3674 __vxge_hw_vpath_rts_table_set(struct __vxge_hw_vpath_handle *vp, u32 action,
3675 u32 rts_table, u32 offset, u64 steer_data0,
3676 u64 steer_data1)
3677 {
3678 u64 data0, data1 = 0, steer_ctrl = 0;
3679 enum vxge_hw_status status;
3680
3681 if (vp == NULL) {
3682 status = VXGE_HW_ERR_INVALID_HANDLE;
3683 goto exit;
3684 }
3685
3686 data0 = steer_data0;
3687
3688 if ((rts_table == VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_DA) ||
3689 (rts_table ==
3690 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT))
3691 data1 = steer_data1;
3692
3693 status = vxge_hw_vpath_fw_api(vp->vpath, action, rts_table, offset,
3694 &data0, &data1, &steer_ctrl);
3695 exit:
3696 return status;
3697 }
3698
3699 /*
3700 * vxge_hw_vpath_rts_rth_set - Set/configure RTS hashing.
3701 */
3702 enum vxge_hw_status vxge_hw_vpath_rts_rth_set(
3703 struct __vxge_hw_vpath_handle *vp,
3704 enum vxge_hw_rth_algoritms algorithm,
3705 struct vxge_hw_rth_hash_types *hash_type,
3706 u16 bucket_size)
3707 {
3708 u64 data0, data1;
3709 enum vxge_hw_status status = VXGE_HW_OK;
3710
3711 if (vp == NULL) {
3712 status = VXGE_HW_ERR_INVALID_HANDLE;
3713 goto exit;
3714 }
3715
3716 status = __vxge_hw_vpath_rts_table_get(vp,
3717 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_READ_ENTRY,
3718 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3719 0, &data0, &data1);
3720 if (status != VXGE_HW_OK)
3721 goto exit;
3722
3723 data0 &= ~(VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(0xf) |
3724 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(0x3));
3725
3726 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_EN |
3727 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_BUCKET_SIZE(bucket_size) |
3728 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ALG_SEL(algorithm);
3729
3730 if (hash_type->hash_type_tcpipv4_en)
3731 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV4_EN;
3732
3733 if (hash_type->hash_type_ipv4_en)
3734 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV4_EN;
3735
3736 if (hash_type->hash_type_tcpipv6_en)
3737 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EN;
3738
3739 if (hash_type->hash_type_ipv6_en)
3740 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EN;
3741
3742 if (hash_type->hash_type_tcpipv6ex_en)
3743 data0 |=
3744 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_TCP_IPV6_EX_EN;
3745
3746 if (hash_type->hash_type_ipv6ex_en)
3747 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_RTH_IPV6_EX_EN;
3748
3749 if (VXGE_HW_RTS_ACCESS_STEER_DATA0_GET_RTH_GEN_ACTIVE_TABLE(data0))
3750 data0 &= ~VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3751 else
3752 data0 |= VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_GEN_ACTIVE_TABLE;
3753
3754 status = __vxge_hw_vpath_rts_table_set(vp,
3755 VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY,
3756 VXGE_HW_RTS_ACCESS_STEER_CTRL_DATA_STRUCT_SEL_RTH_GEN_CFG,
3757 0, data0, 0);
3758 exit:
3759 return status;
3760 }
3761
3762 static void
3763 vxge_hw_rts_rth_data0_data1_get(u32 j, u64 *data0, u64 *data1,
3764 u16 flag, u8 *itable)
3765 {
3766 switch (flag) {
3767 case 1:
3768 *data0 = VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_NUM(j)|
3769 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_ENTRY_EN |
3770 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM0_BUCKET_DATA(
3771 itable[j]);
3772 /* fall through */
3773 case 2:
3774 *data0 |=
3775 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_NUM(j)|
3776 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_ENTRY_EN |
3777 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_ITEM1_BUCKET_DATA(
3778 itable[j]);
3779 /* fall through */
3780 case 3:
3781 *data1 = VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_NUM(j)|
3782 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_ENTRY_EN |
3783 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM0_BUCKET_DATA(
3784 itable[j]);
3785 /* fall through */
3786 case 4:
3787 *data1 |=
3788 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_NUM(j)|
3789 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_ENTRY_EN |
3790 VXGE_HW_RTS_ACCESS_STEER_DATA1_RTH_ITEM1_BUCKET_DATA(
3791 itable[j]);
3792 default:
3793 return;
3794 }
3795 }
3796 /*
3797 * vxge_hw_vpath_rts_rth_itable_set - Set/configure indirection table (IT).
3798 */
3799 enum vxge_hw_status vxge_hw_vpath_rts_rth_itable_set(
3800 struct __vxge_hw_vpath_handle **vpath_handles,
3801 u32 vpath_count,
3802 u8 *mtable,
3803 u8 *itable,
3804 u32 itable_size)
3805 {
3806 u32 i, j, action, rts_table;
3807 u64 data0;
3808 u64 data1;
3809 u32 max_entries;
3810 enum vxge_hw_status status = VXGE_HW_OK;
3811 struct __vxge_hw_vpath_handle *vp = vpath_handles[0];
3812
3813 if (vp == NULL) {
3814 status = VXGE_HW_ERR_INVALID_HANDLE;
3815 goto exit;
3816 }
3817
3818 max_entries = (((u32)1) << itable_size);
3819
3820 if (vp->vpath->hldev->config.rth_it_type
3821 == VXGE_HW_RTH_IT_TYPE_SOLO_IT) {
3822 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3823 rts_table =
3824 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_SOLO_IT;
3825
3826 for (j = 0; j < max_entries; j++) {
3827
3828 data1 = 0;
3829
3830 data0 =
3831 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3832 itable[j]);
3833
3834 status = __vxge_hw_vpath_rts_table_set(vpath_handles[0],
3835 action, rts_table, j, data0, data1);
3836
3837 if (status != VXGE_HW_OK)
3838 goto exit;
3839 }
3840
3841 for (j = 0; j < max_entries; j++) {
3842
3843 data1 = 0;
3844
3845 data0 =
3846 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_ENTRY_EN |
3847 VXGE_HW_RTS_ACCESS_STEER_DATA0_RTH_SOLO_IT_BUCKET_DATA(
3848 itable[j]);
3849
3850 status = __vxge_hw_vpath_rts_table_set(
3851 vpath_handles[mtable[itable[j]]], action,
3852 rts_table, j, data0, data1);
3853
3854 if (status != VXGE_HW_OK)
3855 goto exit;
3856 }
3857 } else {
3858 action = VXGE_HW_RTS_ACCESS_STEER_CTRL_ACTION_WRITE_ENTRY;
3859 rts_table =
3860 VXGE_HW_RTS_ACS_STEER_CTRL_DATA_STRUCT_SEL_RTH_MULTI_IT;
3861 for (i = 0; i < vpath_count; i++) {
3862
3863 for (j = 0; j < max_entries;) {
3864
3865 data0 = 0;
3866 data1 = 0;
3867
3868 while (j < max_entries) {
3869 if (mtable[itable[j]] != i) {
3870 j++;
3871 continue;
3872 }
3873 vxge_hw_rts_rth_data0_data1_get(j,
3874 &data0, &data1, 1, itable);
3875 j++;
3876 break;
3877 }
3878
3879 while (j < max_entries) {
3880 if (mtable[itable[j]] != i) {
3881 j++;
3882 continue;
3883 }
3884 vxge_hw_rts_rth_data0_data1_get(j,
3885 &data0, &data1, 2, itable);
3886 j++;
3887 break;
3888 }
3889
3890 while (j < max_entries) {
3891 if (mtable[itable[j]] != i) {
3892 j++;
3893 continue;
3894 }
3895 vxge_hw_rts_rth_data0_data1_get(j,
3896 &data0, &data1, 3, itable);
3897 j++;
3898 break;
3899 }
3900
3901 while (j < max_entries) {
3902 if (mtable[itable[j]] != i) {
3903 j++;
3904 continue;
3905 }
3906 vxge_hw_rts_rth_data0_data1_get(j,
3907 &data0, &data1, 4, itable);
3908 j++;
3909 break;
3910 }
3911
3912 if (data0 != 0) {
3913 status = __vxge_hw_vpath_rts_table_set(
3914 vpath_handles[i],
3915 action, rts_table,
3916 0, data0, data1);
3917
3918 if (status != VXGE_HW_OK)
3919 goto exit;
3920 }
3921 }
3922 }
3923 }
3924 exit:
3925 return status;
3926 }
3927
3928 /**
3929 * vxge_hw_vpath_check_leak - Check for memory leak
3930 * @ringh: Handle to the ring object used for receive
3931 *
3932 * If PRC_RXD_DOORBELL_VPn.NEW_QW_CNT is larger or equal to
3933 * PRC_CFG6_VPn.RXD_SPAT then a leak has occurred.
3934 * Returns: VXGE_HW_FAIL, if leak has occurred.
3935 *
3936 */
3937 enum vxge_hw_status
3938 vxge_hw_vpath_check_leak(struct __vxge_hw_ring *ring)
3939 {
3940 enum vxge_hw_status status = VXGE_HW_OK;
3941 u64 rxd_new_count, rxd_spat;
3942
3943 if (ring == NULL)
3944 return status;
3945
3946 rxd_new_count = readl(&ring->vp_reg->prc_rxd_doorbell);
3947 rxd_spat = readq(&ring->vp_reg->prc_cfg6);
3948 rxd_spat = VXGE_HW_PRC_CFG6_RXD_SPAT(rxd_spat);
3949
3950 if (rxd_new_count >= rxd_spat)
3951 status = VXGE_HW_FAIL;
3952
3953 return status;
3954 }
3955
3956 /*
3957 * __vxge_hw_vpath_mgmt_read
3958 * This routine reads the vpath_mgmt registers
3959 */
3960 static enum vxge_hw_status
3961 __vxge_hw_vpath_mgmt_read(
3962 struct __vxge_hw_device *hldev,
3963 struct __vxge_hw_virtualpath *vpath)
3964 {
3965 u32 i, mtu = 0, max_pyld = 0;
3966 u64 val64;
3967
3968 for (i = 0; i < VXGE_HW_MAC_MAX_MAC_PORT_ID; i++) {
3969
3970 val64 = readq(&vpath->vpmgmt_reg->
3971 rxmac_cfg0_port_vpmgmt_clone[i]);
3972 max_pyld =
3973 (u32)
3974 VXGE_HW_RXMAC_CFG0_PORT_VPMGMT_CLONE_GET_MAX_PYLD_LEN
3975 (val64);
3976 if (mtu < max_pyld)
3977 mtu = max_pyld;
3978 }
3979
3980 vpath->max_mtu = mtu + VXGE_HW_MAC_HEADER_MAX_SIZE;
3981
3982 val64 = readq(&vpath->vpmgmt_reg->xmac_vsport_choices_vp);
3983
3984 for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
3985 if (val64 & vxge_mBIT(i))
3986 vpath->vsport_number = i;
3987 }
3988
3989 val64 = readq(&vpath->vpmgmt_reg->xgmac_gen_status_vpmgmt_clone);
3990
3991 if (val64 & VXGE_HW_XGMAC_GEN_STATUS_VPMGMT_CLONE_XMACJ_NTWK_OK)
3992 VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_UP);
3993 else
3994 VXGE_HW_DEVICE_LINK_STATE_SET(vpath->hldev, VXGE_HW_LINK_DOWN);
3995
3996 return VXGE_HW_OK;
3997 }
3998
3999 /*
4000 * __vxge_hw_vpath_reset_check - Check if resetting the vpath completed
4001 * This routine checks the vpath_rst_in_prog register to see if
4002 * adapter completed the reset process for the vpath
4003 */
4004 static enum vxge_hw_status
4005 __vxge_hw_vpath_reset_check(struct __vxge_hw_virtualpath *vpath)
4006 {
4007 enum vxge_hw_status status;
4008
4009 status = __vxge_hw_device_register_poll(
4010 &vpath->hldev->common_reg->vpath_rst_in_prog,
4011 VXGE_HW_VPATH_RST_IN_PROG_VPATH_RST_IN_PROG(
4012 1 << (16 - vpath->vp_id)),
4013 vpath->hldev->config.device_poll_millis);
4014
4015 return status;
4016 }
4017
4018 /*
4019 * __vxge_hw_vpath_reset
4020 * This routine resets the vpath on the device
4021 */
4022 static enum vxge_hw_status
4023 __vxge_hw_vpath_reset(struct __vxge_hw_device *hldev, u32 vp_id)
4024 {
4025 u64 val64;
4026
4027 val64 = VXGE_HW_CMN_RSTHDLR_CFG0_SW_RESET_VPATH(1 << (16 - vp_id));
4028
4029 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
4030 &hldev->common_reg->cmn_rsthdlr_cfg0);
4031
4032 return VXGE_HW_OK;
4033 }
4034
4035 /*
4036 * __vxge_hw_vpath_sw_reset
4037 * This routine resets the vpath structures
4038 */
4039 static enum vxge_hw_status
4040 __vxge_hw_vpath_sw_reset(struct __vxge_hw_device *hldev, u32 vp_id)
4041 {
4042 enum vxge_hw_status status = VXGE_HW_OK;
4043 struct __vxge_hw_virtualpath *vpath;
4044
4045 vpath = &hldev->virtual_paths[vp_id];
4046
4047 if (vpath->ringh) {
4048 status = __vxge_hw_ring_reset(vpath->ringh);
4049 if (status != VXGE_HW_OK)
4050 goto exit;
4051 }
4052
4053 if (vpath->fifoh)
4054 status = __vxge_hw_fifo_reset(vpath->fifoh);
4055 exit:
4056 return status;
4057 }
4058
4059 /*
4060 * __vxge_hw_vpath_prc_configure
4061 * This routine configures the prc registers of virtual path using the config
4062 * passed
4063 */
4064 static void
4065 __vxge_hw_vpath_prc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4066 {
4067 u64 val64;
4068 struct __vxge_hw_virtualpath *vpath;
4069 struct vxge_hw_vp_config *vp_config;
4070 struct vxge_hw_vpath_reg __iomem *vp_reg;
4071
4072 vpath = &hldev->virtual_paths[vp_id];
4073 vp_reg = vpath->vp_reg;
4074 vp_config = vpath->vp_config;
4075
4076 if (vp_config->ring.enable == VXGE_HW_RING_DISABLE)
4077 return;
4078
4079 val64 = readq(&vp_reg->prc_cfg1);
4080 val64 |= VXGE_HW_PRC_CFG1_RTI_TINT_DISABLE;
4081 writeq(val64, &vp_reg->prc_cfg1);
4082
4083 val64 = readq(&vpath->vp_reg->prc_cfg6);
4084 val64 |= VXGE_HW_PRC_CFG6_DOORBELL_MODE_EN;
4085 writeq(val64, &vpath->vp_reg->prc_cfg6);
4086
4087 val64 = readq(&vp_reg->prc_cfg7);
4088
4089 if (vpath->vp_config->ring.scatter_mode !=
4090 VXGE_HW_RING_SCATTER_MODE_USE_FLASH_DEFAULT) {
4091
4092 val64 &= ~VXGE_HW_PRC_CFG7_SCATTER_MODE(0x3);
4093
4094 switch (vpath->vp_config->ring.scatter_mode) {
4095 case VXGE_HW_RING_SCATTER_MODE_A:
4096 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4097 VXGE_HW_PRC_CFG7_SCATTER_MODE_A);
4098 break;
4099 case VXGE_HW_RING_SCATTER_MODE_B:
4100 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4101 VXGE_HW_PRC_CFG7_SCATTER_MODE_B);
4102 break;
4103 case VXGE_HW_RING_SCATTER_MODE_C:
4104 val64 |= VXGE_HW_PRC_CFG7_SCATTER_MODE(
4105 VXGE_HW_PRC_CFG7_SCATTER_MODE_C);
4106 break;
4107 }
4108 }
4109
4110 writeq(val64, &vp_reg->prc_cfg7);
4111
4112 writeq(VXGE_HW_PRC_CFG5_RXD0_ADD(
4113 __vxge_hw_ring_first_block_address_get(
4114 vpath->ringh) >> 3), &vp_reg->prc_cfg5);
4115
4116 val64 = readq(&vp_reg->prc_cfg4);
4117 val64 |= VXGE_HW_PRC_CFG4_IN_SVC;
4118 val64 &= ~VXGE_HW_PRC_CFG4_RING_MODE(0x3);
4119
4120 val64 |= VXGE_HW_PRC_CFG4_RING_MODE(
4121 VXGE_HW_PRC_CFG4_RING_MODE_ONE_BUFFER);
4122
4123 if (hldev->config.rth_en == VXGE_HW_RTH_DISABLE)
4124 val64 |= VXGE_HW_PRC_CFG4_RTH_DISABLE;
4125 else
4126 val64 &= ~VXGE_HW_PRC_CFG4_RTH_DISABLE;
4127
4128 writeq(val64, &vp_reg->prc_cfg4);
4129 }
4130
4131 /*
4132 * __vxge_hw_vpath_kdfc_configure
4133 * This routine configures the kdfc registers of virtual path using the
4134 * config passed
4135 */
4136 static enum vxge_hw_status
4137 __vxge_hw_vpath_kdfc_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4138 {
4139 u64 val64;
4140 u64 vpath_stride;
4141 enum vxge_hw_status status = VXGE_HW_OK;
4142 struct __vxge_hw_virtualpath *vpath;
4143 struct vxge_hw_vpath_reg __iomem *vp_reg;
4144
4145 vpath = &hldev->virtual_paths[vp_id];
4146 vp_reg = vpath->vp_reg;
4147 status = __vxge_hw_kdfc_swapper_set(hldev->legacy_reg, vp_reg);
4148
4149 if (status != VXGE_HW_OK)
4150 goto exit;
4151
4152 val64 = readq(&vp_reg->kdfc_drbl_triplet_total);
4153
4154 vpath->max_kdfc_db =
4155 (u32)VXGE_HW_KDFC_DRBL_TRIPLET_TOTAL_GET_KDFC_MAX_SIZE(
4156 val64+1)/2;
4157
4158 if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4159
4160 vpath->max_nofl_db = vpath->max_kdfc_db;
4161
4162 if (vpath->max_nofl_db <
4163 ((vpath->vp_config->fifo.memblock_size /
4164 (vpath->vp_config->fifo.max_frags *
4165 sizeof(struct vxge_hw_fifo_txd))) *
4166 vpath->vp_config->fifo.fifo_blocks)) {
4167
4168 return VXGE_HW_BADCFG_FIFO_BLOCKS;
4169 }
4170 val64 = VXGE_HW_KDFC_FIFO_TRPL_PARTITION_LENGTH_0(
4171 (vpath->max_nofl_db*2)-1);
4172 }
4173
4174 writeq(val64, &vp_reg->kdfc_fifo_trpl_partition);
4175
4176 writeq(VXGE_HW_KDFC_FIFO_TRPL_CTRL_TRIPLET_ENABLE,
4177 &vp_reg->kdfc_fifo_trpl_ctrl);
4178
4179 val64 = readq(&vp_reg->kdfc_trpl_fifo_0_ctrl);
4180
4181 val64 &= ~(VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(0x3) |
4182 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0xFF));
4183
4184 val64 |= VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE(
4185 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_MODE_NON_OFFLOAD_ONLY) |
4186 #ifndef __BIG_ENDIAN
4187 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SWAP_EN |
4188 #endif
4189 VXGE_HW_KDFC_TRPL_FIFO_0_CTRL_SELECT(0);
4190
4191 writeq(val64, &vp_reg->kdfc_trpl_fifo_0_ctrl);
4192 writeq((u64)0, &vp_reg->kdfc_trpl_fifo_0_wb_address);
4193 wmb();
4194 vpath_stride = readq(&hldev->toc_reg->toc_kdfc_vpath_stride);
4195
4196 vpath->nofl_db =
4197 (struct __vxge_hw_non_offload_db_wrapper __iomem *)
4198 (hldev->kdfc + (vp_id *
4199 VXGE_HW_TOC_KDFC_VPATH_STRIDE_GET_TOC_KDFC_VPATH_STRIDE(
4200 vpath_stride)));
4201 exit:
4202 return status;
4203 }
4204
4205 /*
4206 * __vxge_hw_vpath_mac_configure
4207 * This routine configures the mac of virtual path using the config passed
4208 */
4209 static enum vxge_hw_status
4210 __vxge_hw_vpath_mac_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4211 {
4212 u64 val64;
4213 struct __vxge_hw_virtualpath *vpath;
4214 struct vxge_hw_vp_config *vp_config;
4215 struct vxge_hw_vpath_reg __iomem *vp_reg;
4216
4217 vpath = &hldev->virtual_paths[vp_id];
4218 vp_reg = vpath->vp_reg;
4219 vp_config = vpath->vp_config;
4220
4221 writeq(VXGE_HW_XMAC_VSPORT_CHOICE_VSPORT_NUMBER(
4222 vpath->vsport_number), &vp_reg->xmac_vsport_choice);
4223
4224 if (vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4225
4226 val64 = readq(&vp_reg->xmac_rpa_vcfg);
4227
4228 if (vp_config->rpa_strip_vlan_tag !=
4229 VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_USE_FLASH_DEFAULT) {
4230 if (vp_config->rpa_strip_vlan_tag)
4231 val64 |= VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
4232 else
4233 val64 &= ~VXGE_HW_XMAC_RPA_VCFG_STRIP_VLAN_TAG;
4234 }
4235
4236 writeq(val64, &vp_reg->xmac_rpa_vcfg);
4237 val64 = readq(&vp_reg->rxmac_vcfg0);
4238
4239 if (vp_config->mtu !=
4240 VXGE_HW_VPATH_USE_FLASH_DEFAULT_INITIAL_MTU) {
4241 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4242 if ((vp_config->mtu +
4243 VXGE_HW_MAC_HEADER_MAX_SIZE) < vpath->max_mtu)
4244 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4245 vp_config->mtu +
4246 VXGE_HW_MAC_HEADER_MAX_SIZE);
4247 else
4248 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(
4249 vpath->max_mtu);
4250 }
4251
4252 writeq(val64, &vp_reg->rxmac_vcfg0);
4253
4254 val64 = readq(&vp_reg->rxmac_vcfg1);
4255
4256 val64 &= ~(VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(0x3) |
4257 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE);
4258
4259 if (hldev->config.rth_it_type ==
4260 VXGE_HW_RTH_IT_TYPE_MULTI_IT) {
4261 val64 |= VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_BD_MODE(
4262 0x2) |
4263 VXGE_HW_RXMAC_VCFG1_RTS_RTH_MULTI_IT_EN_MODE;
4264 }
4265
4266 writeq(val64, &vp_reg->rxmac_vcfg1);
4267 }
4268 return VXGE_HW_OK;
4269 }
4270
4271 /*
4272 * __vxge_hw_vpath_tim_configure
4273 * This routine configures the tim registers of virtual path using the config
4274 * passed
4275 */
4276 static enum vxge_hw_status
4277 __vxge_hw_vpath_tim_configure(struct __vxge_hw_device *hldev, u32 vp_id)
4278 {
4279 u64 val64;
4280 struct __vxge_hw_virtualpath *vpath;
4281 struct vxge_hw_vpath_reg __iomem *vp_reg;
4282 struct vxge_hw_vp_config *config;
4283
4284 vpath = &hldev->virtual_paths[vp_id];
4285 vp_reg = vpath->vp_reg;
4286 config = vpath->vp_config;
4287
4288 writeq(0, &vp_reg->tim_dest_addr);
4289 writeq(0, &vp_reg->tim_vpath_map);
4290 writeq(0, &vp_reg->tim_bitmap);
4291 writeq(0, &vp_reg->tim_remap);
4292
4293 if (config->ring.enable == VXGE_HW_RING_ENABLE)
4294 writeq(VXGE_HW_TIM_RING_ASSN_INT_NUM(
4295 (vp_id * VXGE_HW_MAX_INTR_PER_VP) +
4296 VXGE_HW_VPATH_INTR_RX), &vp_reg->tim_ring_assn);
4297
4298 val64 = readq(&vp_reg->tim_pci_cfg);
4299 val64 |= VXGE_HW_TIM_PCI_CFG_ADD_PAD;
4300 writeq(val64, &vp_reg->tim_pci_cfg);
4301
4302 if (config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4303
4304 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
4305
4306 if (config->tti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4307 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4308 0x3ffffff);
4309 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4310 config->tti.btimer_val);
4311 }
4312
4313 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
4314
4315 if (config->tti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
4316 if (config->tti.timer_ac_en)
4317 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4318 else
4319 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4320 }
4321
4322 if (config->tti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
4323 if (config->tti.timer_ci_en)
4324 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4325 else
4326 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4327 }
4328
4329 if (config->tti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
4330 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4331 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4332 config->tti.urange_a);
4333 }
4334
4335 if (config->tti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
4336 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4337 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4338 config->tti.urange_b);
4339 }
4340
4341 if (config->tti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
4342 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4343 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4344 config->tti.urange_c);
4345 }
4346
4347 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_TX]);
4348 vpath->tim_tti_cfg1_saved = val64;
4349
4350 val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
4351
4352 if (config->tti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
4353 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4354 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4355 config->tti.uec_a);
4356 }
4357
4358 if (config->tti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
4359 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4360 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4361 config->tti.uec_b);
4362 }
4363
4364 if (config->tti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
4365 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4366 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4367 config->tti.uec_c);
4368 }
4369
4370 if (config->tti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
4371 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4372 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4373 config->tti.uec_d);
4374 }
4375
4376 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_TX]);
4377 val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
4378
4379 if (config->tti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
4380 if (config->tti.timer_ri_en)
4381 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4382 else
4383 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4384 }
4385
4386 if (config->tti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4387 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4388 0x3ffffff);
4389 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4390 config->tti.rtimer_val);
4391 }
4392
4393 if (config->tti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
4394 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4395 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id);
4396 }
4397
4398 if (config->tti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4399 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4400 0x3ffffff);
4401 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4402 config->tti.ltimer_val);
4403 }
4404
4405 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_TX]);
4406 vpath->tim_tti_cfg3_saved = val64;
4407 }
4408
4409 if (config->ring.enable == VXGE_HW_RING_ENABLE) {
4410
4411 val64 = readq(&vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
4412
4413 if (config->rti.btimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4414 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4415 0x3ffffff);
4416 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_BTIMER_VAL(
4417 config->rti.btimer_val);
4418 }
4419
4420 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_BITMP_EN;
4421
4422 if (config->rti.timer_ac_en != VXGE_HW_USE_FLASH_DEFAULT) {
4423 if (config->rti.timer_ac_en)
4424 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4425 else
4426 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_AC;
4427 }
4428
4429 if (config->rti.timer_ci_en != VXGE_HW_USE_FLASH_DEFAULT) {
4430 if (config->rti.timer_ci_en)
4431 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4432 else
4433 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_TIMER_CI;
4434 }
4435
4436 if (config->rti.urange_a != VXGE_HW_USE_FLASH_DEFAULT) {
4437 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(0x3f);
4438 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_A(
4439 config->rti.urange_a);
4440 }
4441
4442 if (config->rti.urange_b != VXGE_HW_USE_FLASH_DEFAULT) {
4443 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(0x3f);
4444 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_B(
4445 config->rti.urange_b);
4446 }
4447
4448 if (config->rti.urange_c != VXGE_HW_USE_FLASH_DEFAULT) {
4449 val64 &= ~VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(0x3f);
4450 val64 |= VXGE_HW_TIM_CFG1_INT_NUM_URNG_C(
4451 config->rti.urange_c);
4452 }
4453
4454 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_RX]);
4455 vpath->tim_rti_cfg1_saved = val64;
4456
4457 val64 = readq(&vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
4458
4459 if (config->rti.uec_a != VXGE_HW_USE_FLASH_DEFAULT) {
4460 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(0xffff);
4461 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_A(
4462 config->rti.uec_a);
4463 }
4464
4465 if (config->rti.uec_b != VXGE_HW_USE_FLASH_DEFAULT) {
4466 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(0xffff);
4467 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_B(
4468 config->rti.uec_b);
4469 }
4470
4471 if (config->rti.uec_c != VXGE_HW_USE_FLASH_DEFAULT) {
4472 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(0xffff);
4473 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_C(
4474 config->rti.uec_c);
4475 }
4476
4477 if (config->rti.uec_d != VXGE_HW_USE_FLASH_DEFAULT) {
4478 val64 &= ~VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(0xffff);
4479 val64 |= VXGE_HW_TIM_CFG2_INT_NUM_UEC_D(
4480 config->rti.uec_d);
4481 }
4482
4483 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_RX]);
4484 val64 = readq(&vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4485
4486 if (config->rti.timer_ri_en != VXGE_HW_USE_FLASH_DEFAULT) {
4487 if (config->rti.timer_ri_en)
4488 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4489 else
4490 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_TIMER_RI;
4491 }
4492
4493 if (config->rti.rtimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4494 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4495 0x3ffffff);
4496 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_RTIMER_VAL(
4497 config->rti.rtimer_val);
4498 }
4499
4500 if (config->rti.util_sel != VXGE_HW_USE_FLASH_DEFAULT) {
4501 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(0x3f);
4502 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_UTIL_SEL(vp_id);
4503 }
4504
4505 if (config->rti.ltimer_val != VXGE_HW_USE_FLASH_DEFAULT) {
4506 val64 &= ~VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4507 0x3ffffff);
4508 val64 |= VXGE_HW_TIM_CFG3_INT_NUM_LTIMER_VAL(
4509 config->rti.ltimer_val);
4510 }
4511
4512 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_RX]);
4513 vpath->tim_rti_cfg3_saved = val64;
4514 }
4515
4516 val64 = 0;
4517 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4518 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4519 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_EINTA]);
4520 writeq(val64, &vp_reg->tim_cfg1_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4521 writeq(val64, &vp_reg->tim_cfg2_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4522 writeq(val64, &vp_reg->tim_cfg3_int_num[VXGE_HW_VPATH_INTR_BMAP]);
4523
4524 val64 = VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_PRD(150);
4525 val64 |= VXGE_HW_TIM_WRKLD_CLC_WRKLD_EVAL_DIV(0);
4526 val64 |= VXGE_HW_TIM_WRKLD_CLC_CNT_RX_TX(3);
4527 writeq(val64, &vp_reg->tim_wrkld_clc);
4528
4529 return VXGE_HW_OK;
4530 }
4531
4532 /*
4533 * __vxge_hw_vpath_initialize
4534 * This routine is the final phase of init which initializes the
4535 * registers of the vpath using the configuration passed.
4536 */
4537 static enum vxge_hw_status
4538 __vxge_hw_vpath_initialize(struct __vxge_hw_device *hldev, u32 vp_id)
4539 {
4540 u64 val64;
4541 u32 val32;
4542 enum vxge_hw_status status = VXGE_HW_OK;
4543 struct __vxge_hw_virtualpath *vpath;
4544 struct vxge_hw_vpath_reg __iomem *vp_reg;
4545
4546 vpath = &hldev->virtual_paths[vp_id];
4547
4548 if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4549 status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4550 goto exit;
4551 }
4552 vp_reg = vpath->vp_reg;
4553
4554 status = __vxge_hw_vpath_swapper_set(vpath->vp_reg);
4555 if (status != VXGE_HW_OK)
4556 goto exit;
4557
4558 status = __vxge_hw_vpath_mac_configure(hldev, vp_id);
4559 if (status != VXGE_HW_OK)
4560 goto exit;
4561
4562 status = __vxge_hw_vpath_kdfc_configure(hldev, vp_id);
4563 if (status != VXGE_HW_OK)
4564 goto exit;
4565
4566 status = __vxge_hw_vpath_tim_configure(hldev, vp_id);
4567 if (status != VXGE_HW_OK)
4568 goto exit;
4569
4570 val64 = readq(&vp_reg->rtdma_rd_optimization_ctrl);
4571
4572 /* Get MRRS value from device control */
4573 status = __vxge_hw_vpath_pci_read(vpath, 1, 0x78, &val32);
4574 if (status == VXGE_HW_OK) {
4575 val32 = (val32 & VXGE_HW_PCI_EXP_DEVCTL_READRQ) >> 12;
4576 val64 &=
4577 ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(7));
4578 val64 |=
4579 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_FILL_THRESH(val32);
4580
4581 val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_WAIT_FOR_SPACE;
4582 }
4583
4584 val64 &= ~(VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(7));
4585 val64 |=
4586 VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY(
4587 VXGE_HW_MAX_PAYLOAD_SIZE_512);
4588
4589 val64 |= VXGE_HW_RTDMA_RD_OPTIMIZATION_CTRL_FB_ADDR_BDRY_EN;
4590 writeq(val64, &vp_reg->rtdma_rd_optimization_ctrl);
4591
4592 exit:
4593 return status;
4594 }
4595
4596 /*
4597 * __vxge_hw_vp_terminate - Terminate Virtual Path structure
4598 * This routine closes all channels it opened and freeup memory
4599 */
4600 static void __vxge_hw_vp_terminate(struct __vxge_hw_device *hldev, u32 vp_id)
4601 {
4602 struct __vxge_hw_virtualpath *vpath;
4603
4604 vpath = &hldev->virtual_paths[vp_id];
4605
4606 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN)
4607 goto exit;
4608
4609 VXGE_HW_DEVICE_TIM_INT_MASK_RESET(vpath->hldev->tim_int_mask0,
4610 vpath->hldev->tim_int_mask1, vpath->vp_id);
4611 hldev->stats.hw_dev_info_stats.vpath_info[vpath->vp_id] = NULL;
4612
4613 /* If the whole struct __vxge_hw_virtualpath is zeroed, nothing will
4614 * work after the interface is brought down.
4615 */
4616 spin_lock(&vpath->lock);
4617 vpath->vp_open = VXGE_HW_VP_NOT_OPEN;
4618 spin_unlock(&vpath->lock);
4619
4620 vpath->vpmgmt_reg = NULL;
4621 vpath->nofl_db = NULL;
4622 vpath->max_mtu = 0;
4623 vpath->vsport_number = 0;
4624 vpath->max_kdfc_db = 0;
4625 vpath->max_nofl_db = 0;
4626 vpath->ringh = NULL;
4627 vpath->fifoh = NULL;
4628 memset(&vpath->vpath_handles, 0, sizeof(struct list_head));
4629 vpath->stats_block = NULL;
4630 vpath->hw_stats = NULL;
4631 vpath->hw_stats_sav = NULL;
4632 vpath->sw_stats = NULL;
4633
4634 exit:
4635 return;
4636 }
4637
4638 /*
4639 * __vxge_hw_vp_initialize - Initialize Virtual Path structure
4640 * This routine is the initial phase of init which resets the vpath and
4641 * initializes the software support structures.
4642 */
4643 static enum vxge_hw_status
4644 __vxge_hw_vp_initialize(struct __vxge_hw_device *hldev, u32 vp_id,
4645 struct vxge_hw_vp_config *config)
4646 {
4647 struct __vxge_hw_virtualpath *vpath;
4648 enum vxge_hw_status status = VXGE_HW_OK;
4649
4650 if (!(hldev->vpath_assignments & vxge_mBIT(vp_id))) {
4651 status = VXGE_HW_ERR_VPATH_NOT_AVAILABLE;
4652 goto exit;
4653 }
4654
4655 vpath = &hldev->virtual_paths[vp_id];
4656
4657 spin_lock_init(&vpath->lock);
4658 vpath->vp_id = vp_id;
4659 vpath->vp_open = VXGE_HW_VP_OPEN;
4660 vpath->hldev = hldev;
4661 vpath->vp_config = config;
4662 vpath->vp_reg = hldev->vpath_reg[vp_id];
4663 vpath->vpmgmt_reg = hldev->vpmgmt_reg[vp_id];
4664
4665 __vxge_hw_vpath_reset(hldev, vp_id);
4666
4667 status = __vxge_hw_vpath_reset_check(vpath);
4668 if (status != VXGE_HW_OK) {
4669 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4670 goto exit;
4671 }
4672
4673 status = __vxge_hw_vpath_mgmt_read(hldev, vpath);
4674 if (status != VXGE_HW_OK) {
4675 memset(vpath, 0, sizeof(struct __vxge_hw_virtualpath));
4676 goto exit;
4677 }
4678
4679 INIT_LIST_HEAD(&vpath->vpath_handles);
4680
4681 vpath->sw_stats = &hldev->stats.sw_dev_info_stats.vpath_info[vp_id];
4682
4683 VXGE_HW_DEVICE_TIM_INT_MASK_SET(hldev->tim_int_mask0,
4684 hldev->tim_int_mask1, vp_id);
4685
4686 status = __vxge_hw_vpath_initialize(hldev, vp_id);
4687 if (status != VXGE_HW_OK)
4688 __vxge_hw_vp_terminate(hldev, vp_id);
4689 exit:
4690 return status;
4691 }
4692
4693 /*
4694 * vxge_hw_vpath_mtu_set - Set MTU.
4695 * Set new MTU value. Example, to use jumbo frames:
4696 * vxge_hw_vpath_mtu_set(my_device, 9600);
4697 */
4698 enum vxge_hw_status
4699 vxge_hw_vpath_mtu_set(struct __vxge_hw_vpath_handle *vp, u32 new_mtu)
4700 {
4701 u64 val64;
4702 enum vxge_hw_status status = VXGE_HW_OK;
4703 struct __vxge_hw_virtualpath *vpath;
4704
4705 if (vp == NULL) {
4706 status = VXGE_HW_ERR_INVALID_HANDLE;
4707 goto exit;
4708 }
4709 vpath = vp->vpath;
4710
4711 new_mtu += VXGE_HW_MAC_HEADER_MAX_SIZE;
4712
4713 if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > vpath->max_mtu))
4714 status = VXGE_HW_ERR_INVALID_MTU_SIZE;
4715
4716 val64 = readq(&vpath->vp_reg->rxmac_vcfg0);
4717
4718 val64 &= ~VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(0x3fff);
4719 val64 |= VXGE_HW_RXMAC_VCFG0_RTS_MAX_FRM_LEN(new_mtu);
4720
4721 writeq(val64, &vpath->vp_reg->rxmac_vcfg0);
4722
4723 vpath->vp_config->mtu = new_mtu - VXGE_HW_MAC_HEADER_MAX_SIZE;
4724
4725 exit:
4726 return status;
4727 }
4728
4729 /*
4730 * vxge_hw_vpath_stats_enable - Enable vpath h/wstatistics.
4731 * Enable the DMA vpath statistics. The function is to be called to re-enable
4732 * the adapter to update stats into the host memory
4733 */
4734 static enum vxge_hw_status
4735 vxge_hw_vpath_stats_enable(struct __vxge_hw_vpath_handle *vp)
4736 {
4737 enum vxge_hw_status status = VXGE_HW_OK;
4738 struct __vxge_hw_virtualpath *vpath;
4739
4740 vpath = vp->vpath;
4741
4742 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4743 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4744 goto exit;
4745 }
4746
4747 memcpy(vpath->hw_stats_sav, vpath->hw_stats,
4748 sizeof(struct vxge_hw_vpath_stats_hw_info));
4749
4750 status = __vxge_hw_vpath_stats_get(vpath, vpath->hw_stats);
4751 exit:
4752 return status;
4753 }
4754
4755 /*
4756 * __vxge_hw_blockpool_block_allocate - Allocates a block from block pool
4757 * This function allocates a block from block pool or from the system
4758 */
4759 static struct __vxge_hw_blockpool_entry *
4760 __vxge_hw_blockpool_block_allocate(struct __vxge_hw_device *devh, u32 size)
4761 {
4762 struct __vxge_hw_blockpool_entry *entry = NULL;
4763 struct __vxge_hw_blockpool *blockpool;
4764
4765 blockpool = &devh->block_pool;
4766
4767 if (size == blockpool->block_size) {
4768
4769 if (!list_empty(&blockpool->free_block_list))
4770 entry = (struct __vxge_hw_blockpool_entry *)
4771 list_first_entry(&blockpool->free_block_list,
4772 struct __vxge_hw_blockpool_entry,
4773 item);
4774
4775 if (entry != NULL) {
4776 list_del(&entry->item);
4777 blockpool->pool_size--;
4778 }
4779 }
4780
4781 if (entry != NULL)
4782 __vxge_hw_blockpool_blocks_add(blockpool);
4783
4784 return entry;
4785 }
4786
4787 /*
4788 * vxge_hw_vpath_open - Open a virtual path on a given adapter
4789 * This function is used to open access to virtual path of an
4790 * adapter for offload, GRO operations. This function returns
4791 * synchronously.
4792 */
4793 enum vxge_hw_status
4794 vxge_hw_vpath_open(struct __vxge_hw_device *hldev,
4795 struct vxge_hw_vpath_attr *attr,
4796 struct __vxge_hw_vpath_handle **vpath_handle)
4797 {
4798 struct __vxge_hw_virtualpath *vpath;
4799 struct __vxge_hw_vpath_handle *vp;
4800 enum vxge_hw_status status;
4801
4802 vpath = &hldev->virtual_paths[attr->vp_id];
4803
4804 if (vpath->vp_open == VXGE_HW_VP_OPEN) {
4805 status = VXGE_HW_ERR_INVALID_STATE;
4806 goto vpath_open_exit1;
4807 }
4808
4809 status = __vxge_hw_vp_initialize(hldev, attr->vp_id,
4810 &hldev->config.vp_config[attr->vp_id]);
4811 if (status != VXGE_HW_OK)
4812 goto vpath_open_exit1;
4813
4814 vp = vzalloc(sizeof(struct __vxge_hw_vpath_handle));
4815 if (vp == NULL) {
4816 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4817 goto vpath_open_exit2;
4818 }
4819
4820 vp->vpath = vpath;
4821
4822 if (vpath->vp_config->fifo.enable == VXGE_HW_FIFO_ENABLE) {
4823 status = __vxge_hw_fifo_create(vp, &attr->fifo_attr);
4824 if (status != VXGE_HW_OK)
4825 goto vpath_open_exit6;
4826 }
4827
4828 if (vpath->vp_config->ring.enable == VXGE_HW_RING_ENABLE) {
4829 status = __vxge_hw_ring_create(vp, &attr->ring_attr);
4830 if (status != VXGE_HW_OK)
4831 goto vpath_open_exit7;
4832
4833 __vxge_hw_vpath_prc_configure(hldev, attr->vp_id);
4834 }
4835
4836 vpath->fifoh->tx_intr_num =
4837 (attr->vp_id * VXGE_HW_MAX_INTR_PER_VP) +
4838 VXGE_HW_VPATH_INTR_TX;
4839
4840 vpath->stats_block = __vxge_hw_blockpool_block_allocate(hldev,
4841 VXGE_HW_BLOCK_SIZE);
4842 if (vpath->stats_block == NULL) {
4843 status = VXGE_HW_ERR_OUT_OF_MEMORY;
4844 goto vpath_open_exit8;
4845 }
4846
4847 vpath->hw_stats = vpath->stats_block->memblock;
4848 memset(vpath->hw_stats, 0,
4849 sizeof(struct vxge_hw_vpath_stats_hw_info));
4850
4851 hldev->stats.hw_dev_info_stats.vpath_info[attr->vp_id] =
4852 vpath->hw_stats;
4853
4854 vpath->hw_stats_sav =
4855 &hldev->stats.hw_dev_info_stats.vpath_info_sav[attr->vp_id];
4856 memset(vpath->hw_stats_sav, 0,
4857 sizeof(struct vxge_hw_vpath_stats_hw_info));
4858
4859 writeq(vpath->stats_block->dma_addr, &vpath->vp_reg->stats_cfg);
4860
4861 status = vxge_hw_vpath_stats_enable(vp);
4862 if (status != VXGE_HW_OK)
4863 goto vpath_open_exit8;
4864
4865 list_add(&vp->item, &vpath->vpath_handles);
4866
4867 hldev->vpaths_deployed |= vxge_mBIT(vpath->vp_id);
4868
4869 *vpath_handle = vp;
4870
4871 attr->fifo_attr.userdata = vpath->fifoh;
4872 attr->ring_attr.userdata = vpath->ringh;
4873
4874 return VXGE_HW_OK;
4875
4876 vpath_open_exit8:
4877 if (vpath->ringh != NULL)
4878 __vxge_hw_ring_delete(vp);
4879 vpath_open_exit7:
4880 if (vpath->fifoh != NULL)
4881 __vxge_hw_fifo_delete(vp);
4882 vpath_open_exit6:
4883 vfree(vp);
4884 vpath_open_exit2:
4885 __vxge_hw_vp_terminate(hldev, attr->vp_id);
4886 vpath_open_exit1:
4887
4888 return status;
4889 }
4890
4891 /**
4892 * vxge_hw_vpath_rx_doorbell_post - Close the handle got from previous vpath
4893 * (vpath) open
4894 * @vp: Handle got from previous vpath open
4895 *
4896 * This function is used to close access to virtual path opened
4897 * earlier.
4898 */
4899 void vxge_hw_vpath_rx_doorbell_init(struct __vxge_hw_vpath_handle *vp)
4900 {
4901 struct __vxge_hw_virtualpath *vpath = vp->vpath;
4902 struct __vxge_hw_ring *ring = vpath->ringh;
4903 struct vxgedev *vdev = netdev_priv(vpath->hldev->ndev);
4904 u64 new_count, val64, val164;
4905
4906 if (vdev->titan1) {
4907 new_count = readq(&vpath->vp_reg->rxdmem_size);
4908 new_count &= 0x1fff;
4909 } else
4910 new_count = ring->config->ring_blocks * VXGE_HW_BLOCK_SIZE / 8;
4911
4912 val164 = VXGE_HW_RXDMEM_SIZE_PRC_RXDMEM_SIZE(new_count);
4913
4914 writeq(VXGE_HW_PRC_RXD_DOORBELL_NEW_QW_CNT(val164),
4915 &vpath->vp_reg->prc_rxd_doorbell);
4916 readl(&vpath->vp_reg->prc_rxd_doorbell);
4917
4918 val164 /= 2;
4919 val64 = readq(&vpath->vp_reg->prc_cfg6);
4920 val64 = VXGE_HW_PRC_CFG6_RXD_SPAT(val64);
4921 val64 &= 0x1ff;
4922
4923 /*
4924 * Each RxD is of 4 qwords
4925 */
4926 new_count -= (val64 + 1);
4927 val64 = min(val164, new_count) / 4;
4928
4929 ring->rxds_limit = min(ring->rxds_limit, val64);
4930 if (ring->rxds_limit < 4)
4931 ring->rxds_limit = 4;
4932 }
4933
4934 /*
4935 * __vxge_hw_blockpool_block_free - Frees a block from block pool
4936 * @devh: Hal device
4937 * @entry: Entry of block to be freed
4938 *
4939 * This function frees a block from block pool
4940 */
4941 static void
4942 __vxge_hw_blockpool_block_free(struct __vxge_hw_device *devh,
4943 struct __vxge_hw_blockpool_entry *entry)
4944 {
4945 struct __vxge_hw_blockpool *blockpool;
4946
4947 blockpool = &devh->block_pool;
4948
4949 if (entry->length == blockpool->block_size) {
4950 list_add(&entry->item, &blockpool->free_block_list);
4951 blockpool->pool_size++;
4952 }
4953
4954 __vxge_hw_blockpool_blocks_remove(blockpool);
4955 }
4956
4957 /*
4958 * vxge_hw_vpath_close - Close the handle got from previous vpath (vpath) open
4959 * This function is used to close access to virtual path opened
4960 * earlier.
4961 */
4962 enum vxge_hw_status vxge_hw_vpath_close(struct __vxge_hw_vpath_handle *vp)
4963 {
4964 struct __vxge_hw_virtualpath *vpath = NULL;
4965 struct __vxge_hw_device *devh = NULL;
4966 u32 vp_id = vp->vpath->vp_id;
4967 u32 is_empty = TRUE;
4968 enum vxge_hw_status status = VXGE_HW_OK;
4969
4970 vpath = vp->vpath;
4971 devh = vpath->hldev;
4972
4973 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
4974 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
4975 goto vpath_close_exit;
4976 }
4977
4978 list_del(&vp->item);
4979
4980 if (!list_empty(&vpath->vpath_handles)) {
4981 list_add(&vp->item, &vpath->vpath_handles);
4982 is_empty = FALSE;
4983 }
4984
4985 if (!is_empty) {
4986 status = VXGE_HW_FAIL;
4987 goto vpath_close_exit;
4988 }
4989
4990 devh->vpaths_deployed &= ~vxge_mBIT(vp_id);
4991
4992 if (vpath->ringh != NULL)
4993 __vxge_hw_ring_delete(vp);
4994
4995 if (vpath->fifoh != NULL)
4996 __vxge_hw_fifo_delete(vp);
4997
4998 if (vpath->stats_block != NULL)
4999 __vxge_hw_blockpool_block_free(devh, vpath->stats_block);
5000
5001 vfree(vp);
5002
5003 __vxge_hw_vp_terminate(devh, vp_id);
5004
5005 vpath_close_exit:
5006 return status;
5007 }
5008
5009 /*
5010 * vxge_hw_vpath_reset - Resets vpath
5011 * This function is used to request a reset of vpath
5012 */
5013 enum vxge_hw_status vxge_hw_vpath_reset(struct __vxge_hw_vpath_handle *vp)
5014 {
5015 enum vxge_hw_status status;
5016 u32 vp_id;
5017 struct __vxge_hw_virtualpath *vpath = vp->vpath;
5018
5019 vp_id = vpath->vp_id;
5020
5021 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
5022 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
5023 goto exit;
5024 }
5025
5026 status = __vxge_hw_vpath_reset(vpath->hldev, vp_id);
5027 if (status == VXGE_HW_OK)
5028 vpath->sw_stats->soft_reset_cnt++;
5029 exit:
5030 return status;
5031 }
5032
5033 /*
5034 * vxge_hw_vpath_recover_from_reset - Poll for reset complete and re-initialize.
5035 * This function poll's for the vpath reset completion and re initializes
5036 * the vpath.
5037 */
5038 enum vxge_hw_status
5039 vxge_hw_vpath_recover_from_reset(struct __vxge_hw_vpath_handle *vp)
5040 {
5041 struct __vxge_hw_virtualpath *vpath = NULL;
5042 enum vxge_hw_status status;
5043 struct __vxge_hw_device *hldev;
5044 u32 vp_id;
5045
5046 vp_id = vp->vpath->vp_id;
5047 vpath = vp->vpath;
5048 hldev = vpath->hldev;
5049
5050 if (vpath->vp_open == VXGE_HW_VP_NOT_OPEN) {
5051 status = VXGE_HW_ERR_VPATH_NOT_OPEN;
5052 goto exit;
5053 }
5054
5055 status = __vxge_hw_vpath_reset_check(vpath);
5056 if (status != VXGE_HW_OK)
5057 goto exit;
5058
5059 status = __vxge_hw_vpath_sw_reset(hldev, vp_id);
5060 if (status != VXGE_HW_OK)
5061 goto exit;
5062
5063 status = __vxge_hw_vpath_initialize(hldev, vp_id);
5064 if (status != VXGE_HW_OK)
5065 goto exit;
5066
5067 if (vpath->ringh != NULL)
5068 __vxge_hw_vpath_prc_configure(hldev, vp_id);
5069
5070 memset(vpath->hw_stats, 0,
5071 sizeof(struct vxge_hw_vpath_stats_hw_info));
5072
5073 memset(vpath->hw_stats_sav, 0,
5074 sizeof(struct vxge_hw_vpath_stats_hw_info));
5075
5076 writeq(vpath->stats_block->dma_addr,
5077 &vpath->vp_reg->stats_cfg);
5078
5079 status = vxge_hw_vpath_stats_enable(vp);
5080
5081 exit:
5082 return status;
5083 }
5084
5085 /*
5086 * vxge_hw_vpath_enable - Enable vpath.
5087 * This routine clears the vpath reset thereby enabling a vpath
5088 * to start forwarding frames and generating interrupts.
5089 */
5090 void
5091 vxge_hw_vpath_enable(struct __vxge_hw_vpath_handle *vp)
5092 {
5093 struct __vxge_hw_device *hldev;
5094 u64 val64;
5095
5096 hldev = vp->vpath->hldev;
5097
5098 val64 = VXGE_HW_CMN_RSTHDLR_CFG1_CLR_VPATH_RESET(
5099 1 << (16 - vp->vpath->vp_id));
5100
5101 __vxge_hw_pio_mem_write32_upper((u32)vxge_bVALn(val64, 0, 32),
5102 &hldev->common_reg->cmn_rsthdlr_cfg1);
5103 }