]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/net/ethernet/renesas/ravb_main.c
ravb: Fix use-after-free ravb_tstamp_skb
[thirdparty/linux.git] / drivers / net / ethernet / renesas / ravb_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Renesas Ethernet AVB device driver
3 *
4 * Copyright (C) 2014-2019 Renesas Electronics Corporation
5 * Copyright (C) 2015 Renesas Solutions Corp.
6 * Copyright (C) 2015-2016 Cogent Embedded, Inc. <source@cogentembedded.com>
7 *
8 * Based on the SuperH Ethernet driver
9 */
10
11 #include <linux/cache.h>
12 #include <linux/clk.h>
13 #include <linux/delay.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/err.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ethtool.h>
18 #include <linux/if_vlan.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/net_tstamp.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_mdio.h>
27 #include <linux/of_net.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/sys_soc.h>
32
33 #include <asm/div64.h>
34
35 #include "ravb.h"
36
37 #define RAVB_DEF_MSG_ENABLE \
38 (NETIF_MSG_LINK | \
39 NETIF_MSG_TIMER | \
40 NETIF_MSG_RX_ERR | \
41 NETIF_MSG_TX_ERR)
42
43 static const char *ravb_rx_irqs[NUM_RX_QUEUE] = {
44 "ch0", /* RAVB_BE */
45 "ch1", /* RAVB_NC */
46 };
47
48 static const char *ravb_tx_irqs[NUM_TX_QUEUE] = {
49 "ch18", /* RAVB_BE */
50 "ch19", /* RAVB_NC */
51 };
52
53 void ravb_modify(struct net_device *ndev, enum ravb_reg reg, u32 clear,
54 u32 set)
55 {
56 ravb_write(ndev, (ravb_read(ndev, reg) & ~clear) | set, reg);
57 }
58
59 int ravb_wait(struct net_device *ndev, enum ravb_reg reg, u32 mask, u32 value)
60 {
61 int i;
62
63 for (i = 0; i < 10000; i++) {
64 if ((ravb_read(ndev, reg) & mask) == value)
65 return 0;
66 udelay(10);
67 }
68 return -ETIMEDOUT;
69 }
70
71 static int ravb_config(struct net_device *ndev)
72 {
73 int error;
74
75 /* Set config mode */
76 ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
77 /* Check if the operating mode is changed to the config mode */
78 error = ravb_wait(ndev, CSR, CSR_OPS, CSR_OPS_CONFIG);
79 if (error)
80 netdev_err(ndev, "failed to switch device to config mode\n");
81
82 return error;
83 }
84
85 static void ravb_set_rate(struct net_device *ndev)
86 {
87 struct ravb_private *priv = netdev_priv(ndev);
88
89 switch (priv->speed) {
90 case 100: /* 100BASE */
91 ravb_write(ndev, GECMR_SPEED_100, GECMR);
92 break;
93 case 1000: /* 1000BASE */
94 ravb_write(ndev, GECMR_SPEED_1000, GECMR);
95 break;
96 }
97 }
98
99 static void ravb_set_buffer_align(struct sk_buff *skb)
100 {
101 u32 reserve = (unsigned long)skb->data & (RAVB_ALIGN - 1);
102
103 if (reserve)
104 skb_reserve(skb, RAVB_ALIGN - reserve);
105 }
106
107 /* Get MAC address from the MAC address registers
108 *
109 * Ethernet AVB device doesn't have ROM for MAC address.
110 * This function gets the MAC address that was used by a bootloader.
111 */
112 static void ravb_read_mac_address(struct net_device *ndev, const u8 *mac)
113 {
114 if (!IS_ERR(mac)) {
115 ether_addr_copy(ndev->dev_addr, mac);
116 } else {
117 u32 mahr = ravb_read(ndev, MAHR);
118 u32 malr = ravb_read(ndev, MALR);
119
120 ndev->dev_addr[0] = (mahr >> 24) & 0xFF;
121 ndev->dev_addr[1] = (mahr >> 16) & 0xFF;
122 ndev->dev_addr[2] = (mahr >> 8) & 0xFF;
123 ndev->dev_addr[3] = (mahr >> 0) & 0xFF;
124 ndev->dev_addr[4] = (malr >> 8) & 0xFF;
125 ndev->dev_addr[5] = (malr >> 0) & 0xFF;
126 }
127 }
128
129 static void ravb_mdio_ctrl(struct mdiobb_ctrl *ctrl, u32 mask, int set)
130 {
131 struct ravb_private *priv = container_of(ctrl, struct ravb_private,
132 mdiobb);
133
134 ravb_modify(priv->ndev, PIR, mask, set ? mask : 0);
135 }
136
137 /* MDC pin control */
138 static void ravb_set_mdc(struct mdiobb_ctrl *ctrl, int level)
139 {
140 ravb_mdio_ctrl(ctrl, PIR_MDC, level);
141 }
142
143 /* Data I/O pin control */
144 static void ravb_set_mdio_dir(struct mdiobb_ctrl *ctrl, int output)
145 {
146 ravb_mdio_ctrl(ctrl, PIR_MMD, output);
147 }
148
149 /* Set data bit */
150 static void ravb_set_mdio_data(struct mdiobb_ctrl *ctrl, int value)
151 {
152 ravb_mdio_ctrl(ctrl, PIR_MDO, value);
153 }
154
155 /* Get data bit */
156 static int ravb_get_mdio_data(struct mdiobb_ctrl *ctrl)
157 {
158 struct ravb_private *priv = container_of(ctrl, struct ravb_private,
159 mdiobb);
160
161 return (ravb_read(priv->ndev, PIR) & PIR_MDI) != 0;
162 }
163
164 /* MDIO bus control struct */
165 static struct mdiobb_ops bb_ops = {
166 .owner = THIS_MODULE,
167 .set_mdc = ravb_set_mdc,
168 .set_mdio_dir = ravb_set_mdio_dir,
169 .set_mdio_data = ravb_set_mdio_data,
170 .get_mdio_data = ravb_get_mdio_data,
171 };
172
173 /* Free TX skb function for AVB-IP */
174 static int ravb_tx_free(struct net_device *ndev, int q, bool free_txed_only)
175 {
176 struct ravb_private *priv = netdev_priv(ndev);
177 struct net_device_stats *stats = &priv->stats[q];
178 int num_tx_desc = priv->num_tx_desc;
179 struct ravb_tx_desc *desc;
180 int free_num = 0;
181 int entry;
182 u32 size;
183
184 for (; priv->cur_tx[q] - priv->dirty_tx[q] > 0; priv->dirty_tx[q]++) {
185 bool txed;
186
187 entry = priv->dirty_tx[q] % (priv->num_tx_ring[q] *
188 num_tx_desc);
189 desc = &priv->tx_ring[q][entry];
190 txed = desc->die_dt == DT_FEMPTY;
191 if (free_txed_only && !txed)
192 break;
193 /* Descriptor type must be checked before all other reads */
194 dma_rmb();
195 size = le16_to_cpu(desc->ds_tagl) & TX_DS;
196 /* Free the original skb. */
197 if (priv->tx_skb[q][entry / num_tx_desc]) {
198 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
199 size, DMA_TO_DEVICE);
200 /* Last packet descriptor? */
201 if (entry % num_tx_desc == num_tx_desc - 1) {
202 entry /= num_tx_desc;
203 dev_kfree_skb_any(priv->tx_skb[q][entry]);
204 priv->tx_skb[q][entry] = NULL;
205 if (txed)
206 stats->tx_packets++;
207 }
208 free_num++;
209 }
210 if (txed)
211 stats->tx_bytes += size;
212 desc->die_dt = DT_EEMPTY;
213 }
214 return free_num;
215 }
216
217 /* Free skb's and DMA buffers for Ethernet AVB */
218 static void ravb_ring_free(struct net_device *ndev, int q)
219 {
220 struct ravb_private *priv = netdev_priv(ndev);
221 int num_tx_desc = priv->num_tx_desc;
222 int ring_size;
223 int i;
224
225 if (priv->rx_ring[q]) {
226 for (i = 0; i < priv->num_rx_ring[q]; i++) {
227 struct ravb_ex_rx_desc *desc = &priv->rx_ring[q][i];
228
229 if (!dma_mapping_error(ndev->dev.parent,
230 le32_to_cpu(desc->dptr)))
231 dma_unmap_single(ndev->dev.parent,
232 le32_to_cpu(desc->dptr),
233 priv->rx_buf_sz,
234 DMA_FROM_DEVICE);
235 }
236 ring_size = sizeof(struct ravb_ex_rx_desc) *
237 (priv->num_rx_ring[q] + 1);
238 dma_free_coherent(ndev->dev.parent, ring_size, priv->rx_ring[q],
239 priv->rx_desc_dma[q]);
240 priv->rx_ring[q] = NULL;
241 }
242
243 if (priv->tx_ring[q]) {
244 ravb_tx_free(ndev, q, false);
245
246 ring_size = sizeof(struct ravb_tx_desc) *
247 (priv->num_tx_ring[q] * num_tx_desc + 1);
248 dma_free_coherent(ndev->dev.parent, ring_size, priv->tx_ring[q],
249 priv->tx_desc_dma[q]);
250 priv->tx_ring[q] = NULL;
251 }
252
253 /* Free RX skb ringbuffer */
254 if (priv->rx_skb[q]) {
255 for (i = 0; i < priv->num_rx_ring[q]; i++)
256 dev_kfree_skb(priv->rx_skb[q][i]);
257 }
258 kfree(priv->rx_skb[q]);
259 priv->rx_skb[q] = NULL;
260
261 /* Free aligned TX buffers */
262 kfree(priv->tx_align[q]);
263 priv->tx_align[q] = NULL;
264
265 /* Free TX skb ringbuffer.
266 * SKBs are freed by ravb_tx_free() call above.
267 */
268 kfree(priv->tx_skb[q]);
269 priv->tx_skb[q] = NULL;
270 }
271
272 /* Format skb and descriptor buffer for Ethernet AVB */
273 static void ravb_ring_format(struct net_device *ndev, int q)
274 {
275 struct ravb_private *priv = netdev_priv(ndev);
276 int num_tx_desc = priv->num_tx_desc;
277 struct ravb_ex_rx_desc *rx_desc;
278 struct ravb_tx_desc *tx_desc;
279 struct ravb_desc *desc;
280 int rx_ring_size = sizeof(*rx_desc) * priv->num_rx_ring[q];
281 int tx_ring_size = sizeof(*tx_desc) * priv->num_tx_ring[q] *
282 num_tx_desc;
283 dma_addr_t dma_addr;
284 int i;
285
286 priv->cur_rx[q] = 0;
287 priv->cur_tx[q] = 0;
288 priv->dirty_rx[q] = 0;
289 priv->dirty_tx[q] = 0;
290
291 memset(priv->rx_ring[q], 0, rx_ring_size);
292 /* Build RX ring buffer */
293 for (i = 0; i < priv->num_rx_ring[q]; i++) {
294 /* RX descriptor */
295 rx_desc = &priv->rx_ring[q][i];
296 rx_desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
297 dma_addr = dma_map_single(ndev->dev.parent, priv->rx_skb[q][i]->data,
298 priv->rx_buf_sz,
299 DMA_FROM_DEVICE);
300 /* We just set the data size to 0 for a failed mapping which
301 * should prevent DMA from happening...
302 */
303 if (dma_mapping_error(ndev->dev.parent, dma_addr))
304 rx_desc->ds_cc = cpu_to_le16(0);
305 rx_desc->dptr = cpu_to_le32(dma_addr);
306 rx_desc->die_dt = DT_FEMPTY;
307 }
308 rx_desc = &priv->rx_ring[q][i];
309 rx_desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
310 rx_desc->die_dt = DT_LINKFIX; /* type */
311
312 memset(priv->tx_ring[q], 0, tx_ring_size);
313 /* Build TX ring buffer */
314 for (i = 0, tx_desc = priv->tx_ring[q]; i < priv->num_tx_ring[q];
315 i++, tx_desc++) {
316 tx_desc->die_dt = DT_EEMPTY;
317 if (num_tx_desc > 1) {
318 tx_desc++;
319 tx_desc->die_dt = DT_EEMPTY;
320 }
321 }
322 tx_desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
323 tx_desc->die_dt = DT_LINKFIX; /* type */
324
325 /* RX descriptor base address for best effort */
326 desc = &priv->desc_bat[RX_QUEUE_OFFSET + q];
327 desc->die_dt = DT_LINKFIX; /* type */
328 desc->dptr = cpu_to_le32((u32)priv->rx_desc_dma[q]);
329
330 /* TX descriptor base address for best effort */
331 desc = &priv->desc_bat[q];
332 desc->die_dt = DT_LINKFIX; /* type */
333 desc->dptr = cpu_to_le32((u32)priv->tx_desc_dma[q]);
334 }
335
336 /* Init skb and descriptor buffer for Ethernet AVB */
337 static int ravb_ring_init(struct net_device *ndev, int q)
338 {
339 struct ravb_private *priv = netdev_priv(ndev);
340 int num_tx_desc = priv->num_tx_desc;
341 struct sk_buff *skb;
342 int ring_size;
343 int i;
344
345 priv->rx_buf_sz = (ndev->mtu <= 1492 ? PKT_BUF_SZ : ndev->mtu) +
346 ETH_HLEN + VLAN_HLEN + sizeof(__sum16);
347
348 /* Allocate RX and TX skb rings */
349 priv->rx_skb[q] = kcalloc(priv->num_rx_ring[q],
350 sizeof(*priv->rx_skb[q]), GFP_KERNEL);
351 priv->tx_skb[q] = kcalloc(priv->num_tx_ring[q],
352 sizeof(*priv->tx_skb[q]), GFP_KERNEL);
353 if (!priv->rx_skb[q] || !priv->tx_skb[q])
354 goto error;
355
356 for (i = 0; i < priv->num_rx_ring[q]; i++) {
357 skb = netdev_alloc_skb(ndev, priv->rx_buf_sz + RAVB_ALIGN - 1);
358 if (!skb)
359 goto error;
360 ravb_set_buffer_align(skb);
361 priv->rx_skb[q][i] = skb;
362 }
363
364 if (num_tx_desc > 1) {
365 /* Allocate rings for the aligned buffers */
366 priv->tx_align[q] = kmalloc(DPTR_ALIGN * priv->num_tx_ring[q] +
367 DPTR_ALIGN - 1, GFP_KERNEL);
368 if (!priv->tx_align[q])
369 goto error;
370 }
371
372 /* Allocate all RX descriptors. */
373 ring_size = sizeof(struct ravb_ex_rx_desc) * (priv->num_rx_ring[q] + 1);
374 priv->rx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
375 &priv->rx_desc_dma[q],
376 GFP_KERNEL);
377 if (!priv->rx_ring[q])
378 goto error;
379
380 priv->dirty_rx[q] = 0;
381
382 /* Allocate all TX descriptors. */
383 ring_size = sizeof(struct ravb_tx_desc) *
384 (priv->num_tx_ring[q] * num_tx_desc + 1);
385 priv->tx_ring[q] = dma_alloc_coherent(ndev->dev.parent, ring_size,
386 &priv->tx_desc_dma[q],
387 GFP_KERNEL);
388 if (!priv->tx_ring[q])
389 goto error;
390
391 return 0;
392
393 error:
394 ravb_ring_free(ndev, q);
395
396 return -ENOMEM;
397 }
398
399 /* E-MAC init function */
400 static void ravb_emac_init(struct net_device *ndev)
401 {
402 /* Receive frame limit set register */
403 ravb_write(ndev, ndev->mtu + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN, RFLR);
404
405 /* EMAC Mode: PAUSE prohibition; Duplex; RX Checksum; TX; RX */
406 ravb_write(ndev, ECMR_ZPF | ECMR_DM |
407 (ndev->features & NETIF_F_RXCSUM ? ECMR_RCSC : 0) |
408 ECMR_TE | ECMR_RE, ECMR);
409
410 ravb_set_rate(ndev);
411
412 /* Set MAC address */
413 ravb_write(ndev,
414 (ndev->dev_addr[0] << 24) | (ndev->dev_addr[1] << 16) |
415 (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]), MAHR);
416 ravb_write(ndev,
417 (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]), MALR);
418
419 /* E-MAC status register clear */
420 ravb_write(ndev, ECSR_ICD | ECSR_MPD, ECSR);
421
422 /* E-MAC interrupt enable register */
423 ravb_write(ndev, ECSIPR_ICDIP | ECSIPR_MPDIP | ECSIPR_LCHNGIP, ECSIPR);
424 }
425
426 /* Device init function for Ethernet AVB */
427 static int ravb_dmac_init(struct net_device *ndev)
428 {
429 struct ravb_private *priv = netdev_priv(ndev);
430 int error;
431
432 /* Set CONFIG mode */
433 error = ravb_config(ndev);
434 if (error)
435 return error;
436
437 error = ravb_ring_init(ndev, RAVB_BE);
438 if (error)
439 return error;
440 error = ravb_ring_init(ndev, RAVB_NC);
441 if (error) {
442 ravb_ring_free(ndev, RAVB_BE);
443 return error;
444 }
445
446 /* Descriptor format */
447 ravb_ring_format(ndev, RAVB_BE);
448 ravb_ring_format(ndev, RAVB_NC);
449
450 #if defined(__LITTLE_ENDIAN)
451 ravb_modify(ndev, CCC, CCC_BOC, 0);
452 #else
453 ravb_modify(ndev, CCC, CCC_BOC, CCC_BOC);
454 #endif
455
456 /* Set AVB RX */
457 ravb_write(ndev,
458 RCR_EFFS | RCR_ENCF | RCR_ETS0 | RCR_ESF | 0x18000000, RCR);
459
460 /* Set FIFO size */
461 ravb_write(ndev, TGC_TQP_AVBMODE1 | 0x00112200, TGC);
462
463 /* Timestamp enable */
464 ravb_write(ndev, TCCR_TFEN, TCCR);
465
466 /* Interrupt init: */
467 if (priv->chip_id == RCAR_GEN3) {
468 /* Clear DIL.DPLx */
469 ravb_write(ndev, 0, DIL);
470 /* Set queue specific interrupt */
471 ravb_write(ndev, CIE_CRIE | CIE_CTIE | CIE_CL0M, CIE);
472 }
473 /* Frame receive */
474 ravb_write(ndev, RIC0_FRE0 | RIC0_FRE1, RIC0);
475 /* Disable FIFO full warning */
476 ravb_write(ndev, 0, RIC1);
477 /* Receive FIFO full error, descriptor empty */
478 ravb_write(ndev, RIC2_QFE0 | RIC2_QFE1 | RIC2_RFFE, RIC2);
479 /* Frame transmitted, timestamp FIFO updated */
480 ravb_write(ndev, TIC_FTE0 | TIC_FTE1 | TIC_TFUE, TIC);
481
482 /* Setting the control will start the AVB-DMAC process. */
483 ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_OPERATION);
484
485 return 0;
486 }
487
488 static void ravb_get_tx_tstamp(struct net_device *ndev)
489 {
490 struct ravb_private *priv = netdev_priv(ndev);
491 struct ravb_tstamp_skb *ts_skb, *ts_skb2;
492 struct skb_shared_hwtstamps shhwtstamps;
493 struct sk_buff *skb;
494 struct timespec64 ts;
495 u16 tag, tfa_tag;
496 int count;
497 u32 tfa2;
498
499 count = (ravb_read(ndev, TSR) & TSR_TFFL) >> 8;
500 while (count--) {
501 tfa2 = ravb_read(ndev, TFA2);
502 tfa_tag = (tfa2 & TFA2_TST) >> 16;
503 ts.tv_nsec = (u64)ravb_read(ndev, TFA0);
504 ts.tv_sec = ((u64)(tfa2 & TFA2_TSV) << 32) |
505 ravb_read(ndev, TFA1);
506 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
507 shhwtstamps.hwtstamp = timespec64_to_ktime(ts);
508 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list,
509 list) {
510 skb = ts_skb->skb;
511 tag = ts_skb->tag;
512 list_del(&ts_skb->list);
513 kfree(ts_skb);
514 if (tag == tfa_tag) {
515 skb_tstamp_tx(skb, &shhwtstamps);
516 dev_consume_skb_any(skb);
517 break;
518 } else {
519 dev_kfree_skb_any(skb);
520 }
521 }
522 ravb_modify(ndev, TCCR, TCCR_TFR, TCCR_TFR);
523 }
524 }
525
526 static void ravb_rx_csum(struct sk_buff *skb)
527 {
528 u8 *hw_csum;
529
530 /* The hardware checksum is contained in sizeof(__sum16) (2) bytes
531 * appended to packet data
532 */
533 if (unlikely(skb->len < sizeof(__sum16)))
534 return;
535 hw_csum = skb_tail_pointer(skb) - sizeof(__sum16);
536 skb->csum = csum_unfold((__force __sum16)get_unaligned_le16(hw_csum));
537 skb->ip_summed = CHECKSUM_COMPLETE;
538 skb_trim(skb, skb->len - sizeof(__sum16));
539 }
540
541 /* Packet receive function for Ethernet AVB */
542 static bool ravb_rx(struct net_device *ndev, int *quota, int q)
543 {
544 struct ravb_private *priv = netdev_priv(ndev);
545 int entry = priv->cur_rx[q] % priv->num_rx_ring[q];
546 int boguscnt = (priv->dirty_rx[q] + priv->num_rx_ring[q]) -
547 priv->cur_rx[q];
548 struct net_device_stats *stats = &priv->stats[q];
549 struct ravb_ex_rx_desc *desc;
550 struct sk_buff *skb;
551 dma_addr_t dma_addr;
552 struct timespec64 ts;
553 u8 desc_status;
554 u16 pkt_len;
555 int limit;
556
557 boguscnt = min(boguscnt, *quota);
558 limit = boguscnt;
559 desc = &priv->rx_ring[q][entry];
560 while (desc->die_dt != DT_FEMPTY) {
561 /* Descriptor type must be checked before all other reads */
562 dma_rmb();
563 desc_status = desc->msc;
564 pkt_len = le16_to_cpu(desc->ds_cc) & RX_DS;
565
566 if (--boguscnt < 0)
567 break;
568
569 /* We use 0-byte descriptors to mark the DMA mapping errors */
570 if (!pkt_len)
571 continue;
572
573 if (desc_status & MSC_MC)
574 stats->multicast++;
575
576 if (desc_status & (MSC_CRC | MSC_RFE | MSC_RTSF | MSC_RTLF |
577 MSC_CEEF)) {
578 stats->rx_errors++;
579 if (desc_status & MSC_CRC)
580 stats->rx_crc_errors++;
581 if (desc_status & MSC_RFE)
582 stats->rx_frame_errors++;
583 if (desc_status & (MSC_RTLF | MSC_RTSF))
584 stats->rx_length_errors++;
585 if (desc_status & MSC_CEEF)
586 stats->rx_missed_errors++;
587 } else {
588 u32 get_ts = priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE;
589
590 skb = priv->rx_skb[q][entry];
591 priv->rx_skb[q][entry] = NULL;
592 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
593 priv->rx_buf_sz,
594 DMA_FROM_DEVICE);
595 get_ts &= (q == RAVB_NC) ?
596 RAVB_RXTSTAMP_TYPE_V2_L2_EVENT :
597 ~RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
598 if (get_ts) {
599 struct skb_shared_hwtstamps *shhwtstamps;
600
601 shhwtstamps = skb_hwtstamps(skb);
602 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
603 ts.tv_sec = ((u64) le16_to_cpu(desc->ts_sh) <<
604 32) | le32_to_cpu(desc->ts_sl);
605 ts.tv_nsec = le32_to_cpu(desc->ts_n);
606 shhwtstamps->hwtstamp = timespec64_to_ktime(ts);
607 }
608
609 skb_put(skb, pkt_len);
610 skb->protocol = eth_type_trans(skb, ndev);
611 if (ndev->features & NETIF_F_RXCSUM)
612 ravb_rx_csum(skb);
613 napi_gro_receive(&priv->napi[q], skb);
614 stats->rx_packets++;
615 stats->rx_bytes += pkt_len;
616 }
617
618 entry = (++priv->cur_rx[q]) % priv->num_rx_ring[q];
619 desc = &priv->rx_ring[q][entry];
620 }
621
622 /* Refill the RX ring buffers. */
623 for (; priv->cur_rx[q] - priv->dirty_rx[q] > 0; priv->dirty_rx[q]++) {
624 entry = priv->dirty_rx[q] % priv->num_rx_ring[q];
625 desc = &priv->rx_ring[q][entry];
626 desc->ds_cc = cpu_to_le16(priv->rx_buf_sz);
627
628 if (!priv->rx_skb[q][entry]) {
629 skb = netdev_alloc_skb(ndev,
630 priv->rx_buf_sz +
631 RAVB_ALIGN - 1);
632 if (!skb)
633 break; /* Better luck next round. */
634 ravb_set_buffer_align(skb);
635 dma_addr = dma_map_single(ndev->dev.parent, skb->data,
636 le16_to_cpu(desc->ds_cc),
637 DMA_FROM_DEVICE);
638 skb_checksum_none_assert(skb);
639 /* We just set the data size to 0 for a failed mapping
640 * which should prevent DMA from happening...
641 */
642 if (dma_mapping_error(ndev->dev.parent, dma_addr))
643 desc->ds_cc = cpu_to_le16(0);
644 desc->dptr = cpu_to_le32(dma_addr);
645 priv->rx_skb[q][entry] = skb;
646 }
647 /* Descriptor type must be set after all the above writes */
648 dma_wmb();
649 desc->die_dt = DT_FEMPTY;
650 }
651
652 *quota -= limit - (++boguscnt);
653
654 return boguscnt <= 0;
655 }
656
657 static void ravb_rcv_snd_disable(struct net_device *ndev)
658 {
659 /* Disable TX and RX */
660 ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, 0);
661 }
662
663 static void ravb_rcv_snd_enable(struct net_device *ndev)
664 {
665 /* Enable TX and RX */
666 ravb_modify(ndev, ECMR, ECMR_RE | ECMR_TE, ECMR_RE | ECMR_TE);
667 }
668
669 /* function for waiting dma process finished */
670 static int ravb_stop_dma(struct net_device *ndev)
671 {
672 int error;
673
674 /* Wait for stopping the hardware TX process */
675 error = ravb_wait(ndev, TCCR,
676 TCCR_TSRQ0 | TCCR_TSRQ1 | TCCR_TSRQ2 | TCCR_TSRQ3, 0);
677 if (error)
678 return error;
679
680 error = ravb_wait(ndev, CSR, CSR_TPO0 | CSR_TPO1 | CSR_TPO2 | CSR_TPO3,
681 0);
682 if (error)
683 return error;
684
685 /* Stop the E-MAC's RX/TX processes. */
686 ravb_rcv_snd_disable(ndev);
687
688 /* Wait for stopping the RX DMA process */
689 error = ravb_wait(ndev, CSR, CSR_RPO, 0);
690 if (error)
691 return error;
692
693 /* Stop AVB-DMAC process */
694 return ravb_config(ndev);
695 }
696
697 /* E-MAC interrupt handler */
698 static void ravb_emac_interrupt_unlocked(struct net_device *ndev)
699 {
700 struct ravb_private *priv = netdev_priv(ndev);
701 u32 ecsr, psr;
702
703 ecsr = ravb_read(ndev, ECSR);
704 ravb_write(ndev, ecsr, ECSR); /* clear interrupt */
705
706 if (ecsr & ECSR_MPD)
707 pm_wakeup_event(&priv->pdev->dev, 0);
708 if (ecsr & ECSR_ICD)
709 ndev->stats.tx_carrier_errors++;
710 if (ecsr & ECSR_LCHNG) {
711 /* Link changed */
712 if (priv->no_avb_link)
713 return;
714 psr = ravb_read(ndev, PSR);
715 if (priv->avb_link_active_low)
716 psr ^= PSR_LMON;
717 if (!(psr & PSR_LMON)) {
718 /* DIsable RX and TX */
719 ravb_rcv_snd_disable(ndev);
720 } else {
721 /* Enable RX and TX */
722 ravb_rcv_snd_enable(ndev);
723 }
724 }
725 }
726
727 static irqreturn_t ravb_emac_interrupt(int irq, void *dev_id)
728 {
729 struct net_device *ndev = dev_id;
730 struct ravb_private *priv = netdev_priv(ndev);
731
732 spin_lock(&priv->lock);
733 ravb_emac_interrupt_unlocked(ndev);
734 spin_unlock(&priv->lock);
735 return IRQ_HANDLED;
736 }
737
738 /* Error interrupt handler */
739 static void ravb_error_interrupt(struct net_device *ndev)
740 {
741 struct ravb_private *priv = netdev_priv(ndev);
742 u32 eis, ris2;
743
744 eis = ravb_read(ndev, EIS);
745 ravb_write(ndev, ~(EIS_QFS | EIS_RESERVED), EIS);
746 if (eis & EIS_QFS) {
747 ris2 = ravb_read(ndev, RIS2);
748 ravb_write(ndev, ~(RIS2_QFF0 | RIS2_RFFF | RIS2_RESERVED),
749 RIS2);
750
751 /* Receive Descriptor Empty int */
752 if (ris2 & RIS2_QFF0)
753 priv->stats[RAVB_BE].rx_over_errors++;
754
755 /* Receive Descriptor Empty int */
756 if (ris2 & RIS2_QFF1)
757 priv->stats[RAVB_NC].rx_over_errors++;
758
759 /* Receive FIFO Overflow int */
760 if (ris2 & RIS2_RFFF)
761 priv->rx_fifo_errors++;
762 }
763 }
764
765 static bool ravb_queue_interrupt(struct net_device *ndev, int q)
766 {
767 struct ravb_private *priv = netdev_priv(ndev);
768 u32 ris0 = ravb_read(ndev, RIS0);
769 u32 ric0 = ravb_read(ndev, RIC0);
770 u32 tis = ravb_read(ndev, TIS);
771 u32 tic = ravb_read(ndev, TIC);
772
773 if (((ris0 & ric0) & BIT(q)) || ((tis & tic) & BIT(q))) {
774 if (napi_schedule_prep(&priv->napi[q])) {
775 /* Mask RX and TX interrupts */
776 if (priv->chip_id == RCAR_GEN2) {
777 ravb_write(ndev, ric0 & ~BIT(q), RIC0);
778 ravb_write(ndev, tic & ~BIT(q), TIC);
779 } else {
780 ravb_write(ndev, BIT(q), RID0);
781 ravb_write(ndev, BIT(q), TID);
782 }
783 __napi_schedule(&priv->napi[q]);
784 } else {
785 netdev_warn(ndev,
786 "ignoring interrupt, rx status 0x%08x, rx mask 0x%08x,\n",
787 ris0, ric0);
788 netdev_warn(ndev,
789 " tx status 0x%08x, tx mask 0x%08x.\n",
790 tis, tic);
791 }
792 return true;
793 }
794 return false;
795 }
796
797 static bool ravb_timestamp_interrupt(struct net_device *ndev)
798 {
799 u32 tis = ravb_read(ndev, TIS);
800
801 if (tis & TIS_TFUF) {
802 ravb_write(ndev, ~(TIS_TFUF | TIS_RESERVED), TIS);
803 ravb_get_tx_tstamp(ndev);
804 return true;
805 }
806 return false;
807 }
808
809 static irqreturn_t ravb_interrupt(int irq, void *dev_id)
810 {
811 struct net_device *ndev = dev_id;
812 struct ravb_private *priv = netdev_priv(ndev);
813 irqreturn_t result = IRQ_NONE;
814 u32 iss;
815
816 spin_lock(&priv->lock);
817 /* Get interrupt status */
818 iss = ravb_read(ndev, ISS);
819
820 /* Received and transmitted interrupts */
821 if (iss & (ISS_FRS | ISS_FTS | ISS_TFUS)) {
822 int q;
823
824 /* Timestamp updated */
825 if (ravb_timestamp_interrupt(ndev))
826 result = IRQ_HANDLED;
827
828 /* Network control and best effort queue RX/TX */
829 for (q = RAVB_NC; q >= RAVB_BE; q--) {
830 if (ravb_queue_interrupt(ndev, q))
831 result = IRQ_HANDLED;
832 }
833 }
834
835 /* E-MAC status summary */
836 if (iss & ISS_MS) {
837 ravb_emac_interrupt_unlocked(ndev);
838 result = IRQ_HANDLED;
839 }
840
841 /* Error status summary */
842 if (iss & ISS_ES) {
843 ravb_error_interrupt(ndev);
844 result = IRQ_HANDLED;
845 }
846
847 /* gPTP interrupt status summary */
848 if (iss & ISS_CGIS) {
849 ravb_ptp_interrupt(ndev);
850 result = IRQ_HANDLED;
851 }
852
853 spin_unlock(&priv->lock);
854 return result;
855 }
856
857 /* Timestamp/Error/gPTP interrupt handler */
858 static irqreturn_t ravb_multi_interrupt(int irq, void *dev_id)
859 {
860 struct net_device *ndev = dev_id;
861 struct ravb_private *priv = netdev_priv(ndev);
862 irqreturn_t result = IRQ_NONE;
863 u32 iss;
864
865 spin_lock(&priv->lock);
866 /* Get interrupt status */
867 iss = ravb_read(ndev, ISS);
868
869 /* Timestamp updated */
870 if ((iss & ISS_TFUS) && ravb_timestamp_interrupt(ndev))
871 result = IRQ_HANDLED;
872
873 /* Error status summary */
874 if (iss & ISS_ES) {
875 ravb_error_interrupt(ndev);
876 result = IRQ_HANDLED;
877 }
878
879 /* gPTP interrupt status summary */
880 if (iss & ISS_CGIS) {
881 ravb_ptp_interrupt(ndev);
882 result = IRQ_HANDLED;
883 }
884
885 spin_unlock(&priv->lock);
886 return result;
887 }
888
889 static irqreturn_t ravb_dma_interrupt(int irq, void *dev_id, int q)
890 {
891 struct net_device *ndev = dev_id;
892 struct ravb_private *priv = netdev_priv(ndev);
893 irqreturn_t result = IRQ_NONE;
894
895 spin_lock(&priv->lock);
896
897 /* Network control/Best effort queue RX/TX */
898 if (ravb_queue_interrupt(ndev, q))
899 result = IRQ_HANDLED;
900
901 spin_unlock(&priv->lock);
902 return result;
903 }
904
905 static irqreturn_t ravb_be_interrupt(int irq, void *dev_id)
906 {
907 return ravb_dma_interrupt(irq, dev_id, RAVB_BE);
908 }
909
910 static irqreturn_t ravb_nc_interrupt(int irq, void *dev_id)
911 {
912 return ravb_dma_interrupt(irq, dev_id, RAVB_NC);
913 }
914
915 static int ravb_poll(struct napi_struct *napi, int budget)
916 {
917 struct net_device *ndev = napi->dev;
918 struct ravb_private *priv = netdev_priv(ndev);
919 unsigned long flags;
920 int q = napi - priv->napi;
921 int mask = BIT(q);
922 int quota = budget;
923 u32 ris0, tis;
924
925 for (;;) {
926 tis = ravb_read(ndev, TIS);
927 ris0 = ravb_read(ndev, RIS0);
928 if (!((ris0 & mask) || (tis & mask)))
929 break;
930
931 /* Processing RX Descriptor Ring */
932 if (ris0 & mask) {
933 /* Clear RX interrupt */
934 ravb_write(ndev, ~(mask | RIS0_RESERVED), RIS0);
935 if (ravb_rx(ndev, &quota, q))
936 goto out;
937 }
938 /* Processing TX Descriptor Ring */
939 if (tis & mask) {
940 spin_lock_irqsave(&priv->lock, flags);
941 /* Clear TX interrupt */
942 ravb_write(ndev, ~(mask | TIS_RESERVED), TIS);
943 ravb_tx_free(ndev, q, true);
944 netif_wake_subqueue(ndev, q);
945 spin_unlock_irqrestore(&priv->lock, flags);
946 }
947 }
948
949 napi_complete(napi);
950
951 /* Re-enable RX/TX interrupts */
952 spin_lock_irqsave(&priv->lock, flags);
953 if (priv->chip_id == RCAR_GEN2) {
954 ravb_modify(ndev, RIC0, mask, mask);
955 ravb_modify(ndev, TIC, mask, mask);
956 } else {
957 ravb_write(ndev, mask, RIE0);
958 ravb_write(ndev, mask, TIE);
959 }
960 spin_unlock_irqrestore(&priv->lock, flags);
961
962 /* Receive error message handling */
963 priv->rx_over_errors = priv->stats[RAVB_BE].rx_over_errors;
964 priv->rx_over_errors += priv->stats[RAVB_NC].rx_over_errors;
965 if (priv->rx_over_errors != ndev->stats.rx_over_errors)
966 ndev->stats.rx_over_errors = priv->rx_over_errors;
967 if (priv->rx_fifo_errors != ndev->stats.rx_fifo_errors)
968 ndev->stats.rx_fifo_errors = priv->rx_fifo_errors;
969 out:
970 return budget - quota;
971 }
972
973 /* PHY state control function */
974 static void ravb_adjust_link(struct net_device *ndev)
975 {
976 struct ravb_private *priv = netdev_priv(ndev);
977 struct phy_device *phydev = ndev->phydev;
978 bool new_state = false;
979 unsigned long flags;
980
981 spin_lock_irqsave(&priv->lock, flags);
982
983 /* Disable TX and RX right over here, if E-MAC change is ignored */
984 if (priv->no_avb_link)
985 ravb_rcv_snd_disable(ndev);
986
987 if (phydev->link) {
988 if (phydev->speed != priv->speed) {
989 new_state = true;
990 priv->speed = phydev->speed;
991 ravb_set_rate(ndev);
992 }
993 if (!priv->link) {
994 ravb_modify(ndev, ECMR, ECMR_TXF, 0);
995 new_state = true;
996 priv->link = phydev->link;
997 }
998 } else if (priv->link) {
999 new_state = true;
1000 priv->link = 0;
1001 priv->speed = 0;
1002 }
1003
1004 /* Enable TX and RX right over here, if E-MAC change is ignored */
1005 if (priv->no_avb_link && phydev->link)
1006 ravb_rcv_snd_enable(ndev);
1007
1008 spin_unlock_irqrestore(&priv->lock, flags);
1009
1010 if (new_state && netif_msg_link(priv))
1011 phy_print_status(phydev);
1012 }
1013
1014 static const struct soc_device_attribute r8a7795es10[] = {
1015 { .soc_id = "r8a7795", .revision = "ES1.0", },
1016 { /* sentinel */ }
1017 };
1018
1019 /* PHY init function */
1020 static int ravb_phy_init(struct net_device *ndev)
1021 {
1022 struct device_node *np = ndev->dev.parent->of_node;
1023 struct ravb_private *priv = netdev_priv(ndev);
1024 struct phy_device *phydev;
1025 struct device_node *pn;
1026 int err;
1027
1028 priv->link = 0;
1029 priv->speed = 0;
1030
1031 /* Try connecting to PHY */
1032 pn = of_parse_phandle(np, "phy-handle", 0);
1033 if (!pn) {
1034 /* In the case of a fixed PHY, the DT node associated
1035 * to the PHY is the Ethernet MAC DT node.
1036 */
1037 if (of_phy_is_fixed_link(np)) {
1038 err = of_phy_register_fixed_link(np);
1039 if (err)
1040 return err;
1041 }
1042 pn = of_node_get(np);
1043 }
1044 phydev = of_phy_connect(ndev, pn, ravb_adjust_link, 0,
1045 priv->phy_interface);
1046 of_node_put(pn);
1047 if (!phydev) {
1048 netdev_err(ndev, "failed to connect PHY\n");
1049 err = -ENOENT;
1050 goto err_deregister_fixed_link;
1051 }
1052
1053 /* This driver only support 10/100Mbit speeds on R-Car H3 ES1.0
1054 * at this time.
1055 */
1056 if (soc_device_match(r8a7795es10)) {
1057 err = phy_set_max_speed(phydev, SPEED_100);
1058 if (err) {
1059 netdev_err(ndev, "failed to limit PHY to 100Mbit/s\n");
1060 goto err_phy_disconnect;
1061 }
1062
1063 netdev_info(ndev, "limited PHY to 100Mbit/s\n");
1064 }
1065
1066 /* 10BASE, Pause and Asym Pause is not supported */
1067 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
1068 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
1069 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Pause_BIT);
1070 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_Asym_Pause_BIT);
1071
1072 /* Half Duplex is not supported */
1073 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
1074 phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
1075
1076 phy_attached_info(phydev);
1077
1078 return 0;
1079
1080 err_phy_disconnect:
1081 phy_disconnect(phydev);
1082 err_deregister_fixed_link:
1083 if (of_phy_is_fixed_link(np))
1084 of_phy_deregister_fixed_link(np);
1085
1086 return err;
1087 }
1088
1089 /* PHY control start function */
1090 static int ravb_phy_start(struct net_device *ndev)
1091 {
1092 int error;
1093
1094 error = ravb_phy_init(ndev);
1095 if (error)
1096 return error;
1097
1098 phy_start(ndev->phydev);
1099
1100 return 0;
1101 }
1102
1103 static u32 ravb_get_msglevel(struct net_device *ndev)
1104 {
1105 struct ravb_private *priv = netdev_priv(ndev);
1106
1107 return priv->msg_enable;
1108 }
1109
1110 static void ravb_set_msglevel(struct net_device *ndev, u32 value)
1111 {
1112 struct ravb_private *priv = netdev_priv(ndev);
1113
1114 priv->msg_enable = value;
1115 }
1116
1117 static const char ravb_gstrings_stats[][ETH_GSTRING_LEN] = {
1118 "rx_queue_0_current",
1119 "tx_queue_0_current",
1120 "rx_queue_0_dirty",
1121 "tx_queue_0_dirty",
1122 "rx_queue_0_packets",
1123 "tx_queue_0_packets",
1124 "rx_queue_0_bytes",
1125 "tx_queue_0_bytes",
1126 "rx_queue_0_mcast_packets",
1127 "rx_queue_0_errors",
1128 "rx_queue_0_crc_errors",
1129 "rx_queue_0_frame_errors",
1130 "rx_queue_0_length_errors",
1131 "rx_queue_0_missed_errors",
1132 "rx_queue_0_over_errors",
1133
1134 "rx_queue_1_current",
1135 "tx_queue_1_current",
1136 "rx_queue_1_dirty",
1137 "tx_queue_1_dirty",
1138 "rx_queue_1_packets",
1139 "tx_queue_1_packets",
1140 "rx_queue_1_bytes",
1141 "tx_queue_1_bytes",
1142 "rx_queue_1_mcast_packets",
1143 "rx_queue_1_errors",
1144 "rx_queue_1_crc_errors",
1145 "rx_queue_1_frame_errors",
1146 "rx_queue_1_length_errors",
1147 "rx_queue_1_missed_errors",
1148 "rx_queue_1_over_errors",
1149 };
1150
1151 #define RAVB_STATS_LEN ARRAY_SIZE(ravb_gstrings_stats)
1152
1153 static int ravb_get_sset_count(struct net_device *netdev, int sset)
1154 {
1155 switch (sset) {
1156 case ETH_SS_STATS:
1157 return RAVB_STATS_LEN;
1158 default:
1159 return -EOPNOTSUPP;
1160 }
1161 }
1162
1163 static void ravb_get_ethtool_stats(struct net_device *ndev,
1164 struct ethtool_stats *estats, u64 *data)
1165 {
1166 struct ravb_private *priv = netdev_priv(ndev);
1167 int i = 0;
1168 int q;
1169
1170 /* Device-specific stats */
1171 for (q = RAVB_BE; q < NUM_RX_QUEUE; q++) {
1172 struct net_device_stats *stats = &priv->stats[q];
1173
1174 data[i++] = priv->cur_rx[q];
1175 data[i++] = priv->cur_tx[q];
1176 data[i++] = priv->dirty_rx[q];
1177 data[i++] = priv->dirty_tx[q];
1178 data[i++] = stats->rx_packets;
1179 data[i++] = stats->tx_packets;
1180 data[i++] = stats->rx_bytes;
1181 data[i++] = stats->tx_bytes;
1182 data[i++] = stats->multicast;
1183 data[i++] = stats->rx_errors;
1184 data[i++] = stats->rx_crc_errors;
1185 data[i++] = stats->rx_frame_errors;
1186 data[i++] = stats->rx_length_errors;
1187 data[i++] = stats->rx_missed_errors;
1188 data[i++] = stats->rx_over_errors;
1189 }
1190 }
1191
1192 static void ravb_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
1193 {
1194 switch (stringset) {
1195 case ETH_SS_STATS:
1196 memcpy(data, ravb_gstrings_stats, sizeof(ravb_gstrings_stats));
1197 break;
1198 }
1199 }
1200
1201 static void ravb_get_ringparam(struct net_device *ndev,
1202 struct ethtool_ringparam *ring)
1203 {
1204 struct ravb_private *priv = netdev_priv(ndev);
1205
1206 ring->rx_max_pending = BE_RX_RING_MAX;
1207 ring->tx_max_pending = BE_TX_RING_MAX;
1208 ring->rx_pending = priv->num_rx_ring[RAVB_BE];
1209 ring->tx_pending = priv->num_tx_ring[RAVB_BE];
1210 }
1211
1212 static int ravb_set_ringparam(struct net_device *ndev,
1213 struct ethtool_ringparam *ring)
1214 {
1215 struct ravb_private *priv = netdev_priv(ndev);
1216 int error;
1217
1218 if (ring->tx_pending > BE_TX_RING_MAX ||
1219 ring->rx_pending > BE_RX_RING_MAX ||
1220 ring->tx_pending < BE_TX_RING_MIN ||
1221 ring->rx_pending < BE_RX_RING_MIN)
1222 return -EINVAL;
1223 if (ring->rx_mini_pending || ring->rx_jumbo_pending)
1224 return -EINVAL;
1225
1226 if (netif_running(ndev)) {
1227 netif_device_detach(ndev);
1228 /* Stop PTP Clock driver */
1229 if (priv->chip_id == RCAR_GEN2)
1230 ravb_ptp_stop(ndev);
1231 /* Wait for DMA stopping */
1232 error = ravb_stop_dma(ndev);
1233 if (error) {
1234 netdev_err(ndev,
1235 "cannot set ringparam! Any AVB processes are still running?\n");
1236 return error;
1237 }
1238 synchronize_irq(ndev->irq);
1239
1240 /* Free all the skb's in the RX queue and the DMA buffers. */
1241 ravb_ring_free(ndev, RAVB_BE);
1242 ravb_ring_free(ndev, RAVB_NC);
1243 }
1244
1245 /* Set new parameters */
1246 priv->num_rx_ring[RAVB_BE] = ring->rx_pending;
1247 priv->num_tx_ring[RAVB_BE] = ring->tx_pending;
1248
1249 if (netif_running(ndev)) {
1250 error = ravb_dmac_init(ndev);
1251 if (error) {
1252 netdev_err(ndev,
1253 "%s: ravb_dmac_init() failed, error %d\n",
1254 __func__, error);
1255 return error;
1256 }
1257
1258 ravb_emac_init(ndev);
1259
1260 /* Initialise PTP Clock driver */
1261 if (priv->chip_id == RCAR_GEN2)
1262 ravb_ptp_init(ndev, priv->pdev);
1263
1264 netif_device_attach(ndev);
1265 }
1266
1267 return 0;
1268 }
1269
1270 static int ravb_get_ts_info(struct net_device *ndev,
1271 struct ethtool_ts_info *info)
1272 {
1273 struct ravb_private *priv = netdev_priv(ndev);
1274
1275 info->so_timestamping =
1276 SOF_TIMESTAMPING_TX_SOFTWARE |
1277 SOF_TIMESTAMPING_RX_SOFTWARE |
1278 SOF_TIMESTAMPING_SOFTWARE |
1279 SOF_TIMESTAMPING_TX_HARDWARE |
1280 SOF_TIMESTAMPING_RX_HARDWARE |
1281 SOF_TIMESTAMPING_RAW_HARDWARE;
1282 info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
1283 info->rx_filters =
1284 (1 << HWTSTAMP_FILTER_NONE) |
1285 (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) |
1286 (1 << HWTSTAMP_FILTER_ALL);
1287 info->phc_index = ptp_clock_index(priv->ptp.clock);
1288
1289 return 0;
1290 }
1291
1292 static void ravb_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1293 {
1294 struct ravb_private *priv = netdev_priv(ndev);
1295
1296 wol->supported = WAKE_MAGIC;
1297 wol->wolopts = priv->wol_enabled ? WAKE_MAGIC : 0;
1298 }
1299
1300 static int ravb_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
1301 {
1302 struct ravb_private *priv = netdev_priv(ndev);
1303
1304 if (wol->wolopts & ~WAKE_MAGIC)
1305 return -EOPNOTSUPP;
1306
1307 priv->wol_enabled = !!(wol->wolopts & WAKE_MAGIC);
1308
1309 device_set_wakeup_enable(&priv->pdev->dev, priv->wol_enabled);
1310
1311 return 0;
1312 }
1313
1314 static const struct ethtool_ops ravb_ethtool_ops = {
1315 .nway_reset = phy_ethtool_nway_reset,
1316 .get_msglevel = ravb_get_msglevel,
1317 .set_msglevel = ravb_set_msglevel,
1318 .get_link = ethtool_op_get_link,
1319 .get_strings = ravb_get_strings,
1320 .get_ethtool_stats = ravb_get_ethtool_stats,
1321 .get_sset_count = ravb_get_sset_count,
1322 .get_ringparam = ravb_get_ringparam,
1323 .set_ringparam = ravb_set_ringparam,
1324 .get_ts_info = ravb_get_ts_info,
1325 .get_link_ksettings = phy_ethtool_get_link_ksettings,
1326 .set_link_ksettings = phy_ethtool_set_link_ksettings,
1327 .get_wol = ravb_get_wol,
1328 .set_wol = ravb_set_wol,
1329 };
1330
1331 static inline int ravb_hook_irq(unsigned int irq, irq_handler_t handler,
1332 struct net_device *ndev, struct device *dev,
1333 const char *ch)
1334 {
1335 char *name;
1336 int error;
1337
1338 name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", ndev->name, ch);
1339 if (!name)
1340 return -ENOMEM;
1341 error = request_irq(irq, handler, 0, name, ndev);
1342 if (error)
1343 netdev_err(ndev, "cannot request IRQ %s\n", name);
1344
1345 return error;
1346 }
1347
1348 /* Network device open function for Ethernet AVB */
1349 static int ravb_open(struct net_device *ndev)
1350 {
1351 struct ravb_private *priv = netdev_priv(ndev);
1352 struct platform_device *pdev = priv->pdev;
1353 struct device *dev = &pdev->dev;
1354 int error;
1355
1356 napi_enable(&priv->napi[RAVB_BE]);
1357 napi_enable(&priv->napi[RAVB_NC]);
1358
1359 if (priv->chip_id == RCAR_GEN2) {
1360 error = request_irq(ndev->irq, ravb_interrupt, IRQF_SHARED,
1361 ndev->name, ndev);
1362 if (error) {
1363 netdev_err(ndev, "cannot request IRQ\n");
1364 goto out_napi_off;
1365 }
1366 } else {
1367 error = ravb_hook_irq(ndev->irq, ravb_multi_interrupt, ndev,
1368 dev, "ch22:multi");
1369 if (error)
1370 goto out_napi_off;
1371 error = ravb_hook_irq(priv->emac_irq, ravb_emac_interrupt, ndev,
1372 dev, "ch24:emac");
1373 if (error)
1374 goto out_free_irq;
1375 error = ravb_hook_irq(priv->rx_irqs[RAVB_BE], ravb_be_interrupt,
1376 ndev, dev, "ch0:rx_be");
1377 if (error)
1378 goto out_free_irq_emac;
1379 error = ravb_hook_irq(priv->tx_irqs[RAVB_BE], ravb_be_interrupt,
1380 ndev, dev, "ch18:tx_be");
1381 if (error)
1382 goto out_free_irq_be_rx;
1383 error = ravb_hook_irq(priv->rx_irqs[RAVB_NC], ravb_nc_interrupt,
1384 ndev, dev, "ch1:rx_nc");
1385 if (error)
1386 goto out_free_irq_be_tx;
1387 error = ravb_hook_irq(priv->tx_irqs[RAVB_NC], ravb_nc_interrupt,
1388 ndev, dev, "ch19:tx_nc");
1389 if (error)
1390 goto out_free_irq_nc_rx;
1391 }
1392
1393 /* Device init */
1394 error = ravb_dmac_init(ndev);
1395 if (error)
1396 goto out_free_irq_nc_tx;
1397 ravb_emac_init(ndev);
1398
1399 /* Initialise PTP Clock driver */
1400 if (priv->chip_id == RCAR_GEN2)
1401 ravb_ptp_init(ndev, priv->pdev);
1402
1403 netif_tx_start_all_queues(ndev);
1404
1405 /* PHY control start */
1406 error = ravb_phy_start(ndev);
1407 if (error)
1408 goto out_ptp_stop;
1409
1410 return 0;
1411
1412 out_ptp_stop:
1413 /* Stop PTP Clock driver */
1414 if (priv->chip_id == RCAR_GEN2)
1415 ravb_ptp_stop(ndev);
1416 out_free_irq_nc_tx:
1417 if (priv->chip_id == RCAR_GEN2)
1418 goto out_free_irq;
1419 free_irq(priv->tx_irqs[RAVB_NC], ndev);
1420 out_free_irq_nc_rx:
1421 free_irq(priv->rx_irqs[RAVB_NC], ndev);
1422 out_free_irq_be_tx:
1423 free_irq(priv->tx_irqs[RAVB_BE], ndev);
1424 out_free_irq_be_rx:
1425 free_irq(priv->rx_irqs[RAVB_BE], ndev);
1426 out_free_irq_emac:
1427 free_irq(priv->emac_irq, ndev);
1428 out_free_irq:
1429 free_irq(ndev->irq, ndev);
1430 out_napi_off:
1431 napi_disable(&priv->napi[RAVB_NC]);
1432 napi_disable(&priv->napi[RAVB_BE]);
1433 return error;
1434 }
1435
1436 /* Timeout function for Ethernet AVB */
1437 static void ravb_tx_timeout(struct net_device *ndev)
1438 {
1439 struct ravb_private *priv = netdev_priv(ndev);
1440
1441 netif_err(priv, tx_err, ndev,
1442 "transmit timed out, status %08x, resetting...\n",
1443 ravb_read(ndev, ISS));
1444
1445 /* tx_errors count up */
1446 ndev->stats.tx_errors++;
1447
1448 schedule_work(&priv->work);
1449 }
1450
1451 static void ravb_tx_timeout_work(struct work_struct *work)
1452 {
1453 struct ravb_private *priv = container_of(work, struct ravb_private,
1454 work);
1455 struct net_device *ndev = priv->ndev;
1456
1457 netif_tx_stop_all_queues(ndev);
1458
1459 /* Stop PTP Clock driver */
1460 if (priv->chip_id == RCAR_GEN2)
1461 ravb_ptp_stop(ndev);
1462
1463 /* Wait for DMA stopping */
1464 ravb_stop_dma(ndev);
1465
1466 ravb_ring_free(ndev, RAVB_BE);
1467 ravb_ring_free(ndev, RAVB_NC);
1468
1469 /* Device init */
1470 ravb_dmac_init(ndev);
1471 ravb_emac_init(ndev);
1472
1473 /* Initialise PTP Clock driver */
1474 if (priv->chip_id == RCAR_GEN2)
1475 ravb_ptp_init(ndev, priv->pdev);
1476
1477 netif_tx_start_all_queues(ndev);
1478 }
1479
1480 /* Packet transmit function for Ethernet AVB */
1481 static netdev_tx_t ravb_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1482 {
1483 struct ravb_private *priv = netdev_priv(ndev);
1484 int num_tx_desc = priv->num_tx_desc;
1485 u16 q = skb_get_queue_mapping(skb);
1486 struct ravb_tstamp_skb *ts_skb;
1487 struct ravb_tx_desc *desc;
1488 unsigned long flags;
1489 u32 dma_addr;
1490 void *buffer;
1491 u32 entry;
1492 u32 len;
1493
1494 spin_lock_irqsave(&priv->lock, flags);
1495 if (priv->cur_tx[q] - priv->dirty_tx[q] > (priv->num_tx_ring[q] - 1) *
1496 num_tx_desc) {
1497 netif_err(priv, tx_queued, ndev,
1498 "still transmitting with the full ring!\n");
1499 netif_stop_subqueue(ndev, q);
1500 spin_unlock_irqrestore(&priv->lock, flags);
1501 return NETDEV_TX_BUSY;
1502 }
1503
1504 if (skb_put_padto(skb, ETH_ZLEN))
1505 goto exit;
1506
1507 entry = priv->cur_tx[q] % (priv->num_tx_ring[q] * num_tx_desc);
1508 priv->tx_skb[q][entry / num_tx_desc] = skb;
1509
1510 if (num_tx_desc > 1) {
1511 buffer = PTR_ALIGN(priv->tx_align[q], DPTR_ALIGN) +
1512 entry / num_tx_desc * DPTR_ALIGN;
1513 len = PTR_ALIGN(skb->data, DPTR_ALIGN) - skb->data;
1514
1515 /* Zero length DMA descriptors are problematic as they seem
1516 * to terminate DMA transfers. Avoid them by simply using a
1517 * length of DPTR_ALIGN (4) when skb data is aligned to
1518 * DPTR_ALIGN.
1519 *
1520 * As skb is guaranteed to have at least ETH_ZLEN (60)
1521 * bytes of data by the call to skb_put_padto() above this
1522 * is safe with respect to both the length of the first DMA
1523 * descriptor (len) overflowing the available data and the
1524 * length of the second DMA descriptor (skb->len - len)
1525 * being negative.
1526 */
1527 if (len == 0)
1528 len = DPTR_ALIGN;
1529
1530 memcpy(buffer, skb->data, len);
1531 dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1532 DMA_TO_DEVICE);
1533 if (dma_mapping_error(ndev->dev.parent, dma_addr))
1534 goto drop;
1535
1536 desc = &priv->tx_ring[q][entry];
1537 desc->ds_tagl = cpu_to_le16(len);
1538 desc->dptr = cpu_to_le32(dma_addr);
1539
1540 buffer = skb->data + len;
1541 len = skb->len - len;
1542 dma_addr = dma_map_single(ndev->dev.parent, buffer, len,
1543 DMA_TO_DEVICE);
1544 if (dma_mapping_error(ndev->dev.parent, dma_addr))
1545 goto unmap;
1546
1547 desc++;
1548 } else {
1549 desc = &priv->tx_ring[q][entry];
1550 len = skb->len;
1551 dma_addr = dma_map_single(ndev->dev.parent, skb->data, skb->len,
1552 DMA_TO_DEVICE);
1553 if (dma_mapping_error(ndev->dev.parent, dma_addr))
1554 goto drop;
1555 }
1556 desc->ds_tagl = cpu_to_le16(len);
1557 desc->dptr = cpu_to_le32(dma_addr);
1558
1559 /* TX timestamp required */
1560 if (q == RAVB_NC) {
1561 ts_skb = kmalloc(sizeof(*ts_skb), GFP_ATOMIC);
1562 if (!ts_skb) {
1563 if (num_tx_desc > 1) {
1564 desc--;
1565 dma_unmap_single(ndev->dev.parent, dma_addr,
1566 len, DMA_TO_DEVICE);
1567 }
1568 goto unmap;
1569 }
1570 ts_skb->skb = skb_get(skb);
1571 ts_skb->tag = priv->ts_skb_tag++;
1572 priv->ts_skb_tag &= 0x3ff;
1573 list_add_tail(&ts_skb->list, &priv->ts_skb_list);
1574
1575 /* TAG and timestamp required flag */
1576 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1577 desc->tagh_tsr = (ts_skb->tag >> 4) | TX_TSR;
1578 desc->ds_tagl |= cpu_to_le16(ts_skb->tag << 12);
1579 }
1580
1581 skb_tx_timestamp(skb);
1582 /* Descriptor type must be set after all the above writes */
1583 dma_wmb();
1584 if (num_tx_desc > 1) {
1585 desc->die_dt = DT_FEND;
1586 desc--;
1587 desc->die_dt = DT_FSTART;
1588 } else {
1589 desc->die_dt = DT_FSINGLE;
1590 }
1591 ravb_modify(ndev, TCCR, TCCR_TSRQ0 << q, TCCR_TSRQ0 << q);
1592
1593 priv->cur_tx[q] += num_tx_desc;
1594 if (priv->cur_tx[q] - priv->dirty_tx[q] >
1595 (priv->num_tx_ring[q] - 1) * num_tx_desc &&
1596 !ravb_tx_free(ndev, q, true))
1597 netif_stop_subqueue(ndev, q);
1598
1599 exit:
1600 spin_unlock_irqrestore(&priv->lock, flags);
1601 return NETDEV_TX_OK;
1602
1603 unmap:
1604 dma_unmap_single(ndev->dev.parent, le32_to_cpu(desc->dptr),
1605 le16_to_cpu(desc->ds_tagl), DMA_TO_DEVICE);
1606 drop:
1607 dev_kfree_skb_any(skb);
1608 priv->tx_skb[q][entry / num_tx_desc] = NULL;
1609 goto exit;
1610 }
1611
1612 static u16 ravb_select_queue(struct net_device *ndev, struct sk_buff *skb,
1613 struct net_device *sb_dev)
1614 {
1615 /* If skb needs TX timestamp, it is handled in network control queue */
1616 return (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) ? RAVB_NC :
1617 RAVB_BE;
1618
1619 }
1620
1621 static struct net_device_stats *ravb_get_stats(struct net_device *ndev)
1622 {
1623 struct ravb_private *priv = netdev_priv(ndev);
1624 struct net_device_stats *nstats, *stats0, *stats1;
1625
1626 nstats = &ndev->stats;
1627 stats0 = &priv->stats[RAVB_BE];
1628 stats1 = &priv->stats[RAVB_NC];
1629
1630 nstats->tx_dropped += ravb_read(ndev, TROCR);
1631 ravb_write(ndev, 0, TROCR); /* (write clear) */
1632 nstats->collisions += ravb_read(ndev, CDCR);
1633 ravb_write(ndev, 0, CDCR); /* (write clear) */
1634 nstats->tx_carrier_errors += ravb_read(ndev, LCCR);
1635 ravb_write(ndev, 0, LCCR); /* (write clear) */
1636
1637 nstats->tx_carrier_errors += ravb_read(ndev, CERCR);
1638 ravb_write(ndev, 0, CERCR); /* (write clear) */
1639 nstats->tx_carrier_errors += ravb_read(ndev, CEECR);
1640 ravb_write(ndev, 0, CEECR); /* (write clear) */
1641
1642 nstats->rx_packets = stats0->rx_packets + stats1->rx_packets;
1643 nstats->tx_packets = stats0->tx_packets + stats1->tx_packets;
1644 nstats->rx_bytes = stats0->rx_bytes + stats1->rx_bytes;
1645 nstats->tx_bytes = stats0->tx_bytes + stats1->tx_bytes;
1646 nstats->multicast = stats0->multicast + stats1->multicast;
1647 nstats->rx_errors = stats0->rx_errors + stats1->rx_errors;
1648 nstats->rx_crc_errors = stats0->rx_crc_errors + stats1->rx_crc_errors;
1649 nstats->rx_frame_errors =
1650 stats0->rx_frame_errors + stats1->rx_frame_errors;
1651 nstats->rx_length_errors =
1652 stats0->rx_length_errors + stats1->rx_length_errors;
1653 nstats->rx_missed_errors =
1654 stats0->rx_missed_errors + stats1->rx_missed_errors;
1655 nstats->rx_over_errors =
1656 stats0->rx_over_errors + stats1->rx_over_errors;
1657
1658 return nstats;
1659 }
1660
1661 /* Update promiscuous bit */
1662 static void ravb_set_rx_mode(struct net_device *ndev)
1663 {
1664 struct ravb_private *priv = netdev_priv(ndev);
1665 unsigned long flags;
1666
1667 spin_lock_irqsave(&priv->lock, flags);
1668 ravb_modify(ndev, ECMR, ECMR_PRM,
1669 ndev->flags & IFF_PROMISC ? ECMR_PRM : 0);
1670 spin_unlock_irqrestore(&priv->lock, flags);
1671 }
1672
1673 /* Device close function for Ethernet AVB */
1674 static int ravb_close(struct net_device *ndev)
1675 {
1676 struct device_node *np = ndev->dev.parent->of_node;
1677 struct ravb_private *priv = netdev_priv(ndev);
1678 struct ravb_tstamp_skb *ts_skb, *ts_skb2;
1679
1680 netif_tx_stop_all_queues(ndev);
1681
1682 /* Disable interrupts by clearing the interrupt masks. */
1683 ravb_write(ndev, 0, RIC0);
1684 ravb_write(ndev, 0, RIC2);
1685 ravb_write(ndev, 0, TIC);
1686
1687 /* Stop PTP Clock driver */
1688 if (priv->chip_id == RCAR_GEN2)
1689 ravb_ptp_stop(ndev);
1690
1691 /* Set the config mode to stop the AVB-DMAC's processes */
1692 if (ravb_stop_dma(ndev) < 0)
1693 netdev_err(ndev,
1694 "device will be stopped after h/w processes are done.\n");
1695
1696 /* Clear the timestamp list */
1697 list_for_each_entry_safe(ts_skb, ts_skb2, &priv->ts_skb_list, list) {
1698 list_del(&ts_skb->list);
1699 kfree_skb(ts_skb->skb);
1700 kfree(ts_skb);
1701 }
1702
1703 /* PHY disconnect */
1704 if (ndev->phydev) {
1705 phy_stop(ndev->phydev);
1706 phy_disconnect(ndev->phydev);
1707 if (of_phy_is_fixed_link(np))
1708 of_phy_deregister_fixed_link(np);
1709 }
1710
1711 if (priv->chip_id != RCAR_GEN2) {
1712 free_irq(priv->tx_irqs[RAVB_NC], ndev);
1713 free_irq(priv->rx_irqs[RAVB_NC], ndev);
1714 free_irq(priv->tx_irqs[RAVB_BE], ndev);
1715 free_irq(priv->rx_irqs[RAVB_BE], ndev);
1716 free_irq(priv->emac_irq, ndev);
1717 }
1718 free_irq(ndev->irq, ndev);
1719
1720 napi_disable(&priv->napi[RAVB_NC]);
1721 napi_disable(&priv->napi[RAVB_BE]);
1722
1723 /* Free all the skb's in the RX queue and the DMA buffers. */
1724 ravb_ring_free(ndev, RAVB_BE);
1725 ravb_ring_free(ndev, RAVB_NC);
1726
1727 return 0;
1728 }
1729
1730 static int ravb_hwtstamp_get(struct net_device *ndev, struct ifreq *req)
1731 {
1732 struct ravb_private *priv = netdev_priv(ndev);
1733 struct hwtstamp_config config;
1734
1735 config.flags = 0;
1736 config.tx_type = priv->tstamp_tx_ctrl ? HWTSTAMP_TX_ON :
1737 HWTSTAMP_TX_OFF;
1738 if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_V2_L2_EVENT)
1739 config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L2_EVENT;
1740 else if (priv->tstamp_rx_ctrl & RAVB_RXTSTAMP_TYPE_ALL)
1741 config.rx_filter = HWTSTAMP_FILTER_ALL;
1742 else
1743 config.rx_filter = HWTSTAMP_FILTER_NONE;
1744
1745 return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1746 -EFAULT : 0;
1747 }
1748
1749 /* Control hardware time stamping */
1750 static int ravb_hwtstamp_set(struct net_device *ndev, struct ifreq *req)
1751 {
1752 struct ravb_private *priv = netdev_priv(ndev);
1753 struct hwtstamp_config config;
1754 u32 tstamp_rx_ctrl = RAVB_RXTSTAMP_ENABLED;
1755 u32 tstamp_tx_ctrl;
1756
1757 if (copy_from_user(&config, req->ifr_data, sizeof(config)))
1758 return -EFAULT;
1759
1760 /* Reserved for future extensions */
1761 if (config.flags)
1762 return -EINVAL;
1763
1764 switch (config.tx_type) {
1765 case HWTSTAMP_TX_OFF:
1766 tstamp_tx_ctrl = 0;
1767 break;
1768 case HWTSTAMP_TX_ON:
1769 tstamp_tx_ctrl = RAVB_TXTSTAMP_ENABLED;
1770 break;
1771 default:
1772 return -ERANGE;
1773 }
1774
1775 switch (config.rx_filter) {
1776 case HWTSTAMP_FILTER_NONE:
1777 tstamp_rx_ctrl = 0;
1778 break;
1779 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1780 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_V2_L2_EVENT;
1781 break;
1782 default:
1783 config.rx_filter = HWTSTAMP_FILTER_ALL;
1784 tstamp_rx_ctrl |= RAVB_RXTSTAMP_TYPE_ALL;
1785 }
1786
1787 priv->tstamp_tx_ctrl = tstamp_tx_ctrl;
1788 priv->tstamp_rx_ctrl = tstamp_rx_ctrl;
1789
1790 return copy_to_user(req->ifr_data, &config, sizeof(config)) ?
1791 -EFAULT : 0;
1792 }
1793
1794 /* ioctl to device function */
1795 static int ravb_do_ioctl(struct net_device *ndev, struct ifreq *req, int cmd)
1796 {
1797 struct phy_device *phydev = ndev->phydev;
1798
1799 if (!netif_running(ndev))
1800 return -EINVAL;
1801
1802 if (!phydev)
1803 return -ENODEV;
1804
1805 switch (cmd) {
1806 case SIOCGHWTSTAMP:
1807 return ravb_hwtstamp_get(ndev, req);
1808 case SIOCSHWTSTAMP:
1809 return ravb_hwtstamp_set(ndev, req);
1810 }
1811
1812 return phy_mii_ioctl(phydev, req, cmd);
1813 }
1814
1815 static int ravb_change_mtu(struct net_device *ndev, int new_mtu)
1816 {
1817 if (netif_running(ndev))
1818 return -EBUSY;
1819
1820 ndev->mtu = new_mtu;
1821 netdev_update_features(ndev);
1822
1823 return 0;
1824 }
1825
1826 static void ravb_set_rx_csum(struct net_device *ndev, bool enable)
1827 {
1828 struct ravb_private *priv = netdev_priv(ndev);
1829 unsigned long flags;
1830
1831 spin_lock_irqsave(&priv->lock, flags);
1832
1833 /* Disable TX and RX */
1834 ravb_rcv_snd_disable(ndev);
1835
1836 /* Modify RX Checksum setting */
1837 ravb_modify(ndev, ECMR, ECMR_RCSC, enable ? ECMR_RCSC : 0);
1838
1839 /* Enable TX and RX */
1840 ravb_rcv_snd_enable(ndev);
1841
1842 spin_unlock_irqrestore(&priv->lock, flags);
1843 }
1844
1845 static int ravb_set_features(struct net_device *ndev,
1846 netdev_features_t features)
1847 {
1848 netdev_features_t changed = ndev->features ^ features;
1849
1850 if (changed & NETIF_F_RXCSUM)
1851 ravb_set_rx_csum(ndev, features & NETIF_F_RXCSUM);
1852
1853 ndev->features = features;
1854
1855 return 0;
1856 }
1857
1858 static const struct net_device_ops ravb_netdev_ops = {
1859 .ndo_open = ravb_open,
1860 .ndo_stop = ravb_close,
1861 .ndo_start_xmit = ravb_start_xmit,
1862 .ndo_select_queue = ravb_select_queue,
1863 .ndo_get_stats = ravb_get_stats,
1864 .ndo_set_rx_mode = ravb_set_rx_mode,
1865 .ndo_tx_timeout = ravb_tx_timeout,
1866 .ndo_do_ioctl = ravb_do_ioctl,
1867 .ndo_change_mtu = ravb_change_mtu,
1868 .ndo_validate_addr = eth_validate_addr,
1869 .ndo_set_mac_address = eth_mac_addr,
1870 .ndo_set_features = ravb_set_features,
1871 };
1872
1873 /* MDIO bus init function */
1874 static int ravb_mdio_init(struct ravb_private *priv)
1875 {
1876 struct platform_device *pdev = priv->pdev;
1877 struct device *dev = &pdev->dev;
1878 int error;
1879
1880 /* Bitbang init */
1881 priv->mdiobb.ops = &bb_ops;
1882
1883 /* MII controller setting */
1884 priv->mii_bus = alloc_mdio_bitbang(&priv->mdiobb);
1885 if (!priv->mii_bus)
1886 return -ENOMEM;
1887
1888 /* Hook up MII support for ethtool */
1889 priv->mii_bus->name = "ravb_mii";
1890 priv->mii_bus->parent = dev;
1891 snprintf(priv->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1892 pdev->name, pdev->id);
1893
1894 /* Register MDIO bus */
1895 error = of_mdiobus_register(priv->mii_bus, dev->of_node);
1896 if (error)
1897 goto out_free_bus;
1898
1899 return 0;
1900
1901 out_free_bus:
1902 free_mdio_bitbang(priv->mii_bus);
1903 return error;
1904 }
1905
1906 /* MDIO bus release function */
1907 static int ravb_mdio_release(struct ravb_private *priv)
1908 {
1909 /* Unregister mdio bus */
1910 mdiobus_unregister(priv->mii_bus);
1911
1912 /* Free bitbang info */
1913 free_mdio_bitbang(priv->mii_bus);
1914
1915 return 0;
1916 }
1917
1918 static const struct of_device_id ravb_match_table[] = {
1919 { .compatible = "renesas,etheravb-r8a7790", .data = (void *)RCAR_GEN2 },
1920 { .compatible = "renesas,etheravb-r8a7794", .data = (void *)RCAR_GEN2 },
1921 { .compatible = "renesas,etheravb-rcar-gen2", .data = (void *)RCAR_GEN2 },
1922 { .compatible = "renesas,etheravb-r8a7795", .data = (void *)RCAR_GEN3 },
1923 { .compatible = "renesas,etheravb-rcar-gen3", .data = (void *)RCAR_GEN3 },
1924 { }
1925 };
1926 MODULE_DEVICE_TABLE(of, ravb_match_table);
1927
1928 static int ravb_set_gti(struct net_device *ndev)
1929 {
1930 struct ravb_private *priv = netdev_priv(ndev);
1931 struct device *dev = ndev->dev.parent;
1932 unsigned long rate;
1933 uint64_t inc;
1934
1935 rate = clk_get_rate(priv->clk);
1936 if (!rate)
1937 return -EINVAL;
1938
1939 inc = 1000000000ULL << 20;
1940 do_div(inc, rate);
1941
1942 if (inc < GTI_TIV_MIN || inc > GTI_TIV_MAX) {
1943 dev_err(dev, "gti.tiv increment 0x%llx is outside the range 0x%x - 0x%x\n",
1944 inc, GTI_TIV_MIN, GTI_TIV_MAX);
1945 return -EINVAL;
1946 }
1947
1948 ravb_write(ndev, inc, GTI);
1949
1950 return 0;
1951 }
1952
1953 static void ravb_set_config_mode(struct net_device *ndev)
1954 {
1955 struct ravb_private *priv = netdev_priv(ndev);
1956
1957 if (priv->chip_id == RCAR_GEN2) {
1958 ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG);
1959 /* Set CSEL value */
1960 ravb_modify(ndev, CCC, CCC_CSEL, CCC_CSEL_HPB);
1961 } else {
1962 ravb_modify(ndev, CCC, CCC_OPC, CCC_OPC_CONFIG |
1963 CCC_GAC | CCC_CSEL_HPB);
1964 }
1965 }
1966
1967 static const struct soc_device_attribute ravb_delay_mode_quirk_match[] = {
1968 { .soc_id = "r8a774c0" },
1969 { .soc_id = "r8a77990" },
1970 { .soc_id = "r8a77995" },
1971 { /* sentinel */ }
1972 };
1973
1974 /* Set tx and rx clock internal delay modes */
1975 static void ravb_set_delay_mode(struct net_device *ndev)
1976 {
1977 struct ravb_private *priv = netdev_priv(ndev);
1978 int set = 0;
1979
1980 if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1981 priv->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID)
1982 set |= APSR_DM_RDM;
1983
1984 if (priv->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
1985 priv->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) {
1986 if (!WARN(soc_device_match(ravb_delay_mode_quirk_match),
1987 "phy-mode %s requires TX clock internal delay mode which is not supported by this hardware revision. Please update device tree",
1988 phy_modes(priv->phy_interface)))
1989 set |= APSR_DM_TDM;
1990 }
1991
1992 ravb_modify(ndev, APSR, APSR_DM, set);
1993 }
1994
1995 static int ravb_probe(struct platform_device *pdev)
1996 {
1997 struct device_node *np = pdev->dev.of_node;
1998 struct ravb_private *priv;
1999 enum ravb_chip_id chip_id;
2000 struct net_device *ndev;
2001 int error, irq, q;
2002 struct resource *res;
2003 int i;
2004
2005 if (!np) {
2006 dev_err(&pdev->dev,
2007 "this driver is required to be instantiated from device tree\n");
2008 return -EINVAL;
2009 }
2010
2011 /* Get base address */
2012 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2013 if (!res) {
2014 dev_err(&pdev->dev, "invalid resource\n");
2015 return -EINVAL;
2016 }
2017
2018 ndev = alloc_etherdev_mqs(sizeof(struct ravb_private),
2019 NUM_TX_QUEUE, NUM_RX_QUEUE);
2020 if (!ndev)
2021 return -ENOMEM;
2022
2023 ndev->features = NETIF_F_RXCSUM;
2024 ndev->hw_features = NETIF_F_RXCSUM;
2025
2026 pm_runtime_enable(&pdev->dev);
2027 pm_runtime_get_sync(&pdev->dev);
2028
2029 /* The Ether-specific entries in the device structure. */
2030 ndev->base_addr = res->start;
2031
2032 chip_id = (enum ravb_chip_id)of_device_get_match_data(&pdev->dev);
2033
2034 if (chip_id == RCAR_GEN3)
2035 irq = platform_get_irq_byname(pdev, "ch22");
2036 else
2037 irq = platform_get_irq(pdev, 0);
2038 if (irq < 0) {
2039 error = irq;
2040 goto out_release;
2041 }
2042 ndev->irq = irq;
2043
2044 SET_NETDEV_DEV(ndev, &pdev->dev);
2045
2046 priv = netdev_priv(ndev);
2047 priv->ndev = ndev;
2048 priv->pdev = pdev;
2049 priv->num_tx_ring[RAVB_BE] = BE_TX_RING_SIZE;
2050 priv->num_rx_ring[RAVB_BE] = BE_RX_RING_SIZE;
2051 priv->num_tx_ring[RAVB_NC] = NC_TX_RING_SIZE;
2052 priv->num_rx_ring[RAVB_NC] = NC_RX_RING_SIZE;
2053 priv->addr = devm_ioremap_resource(&pdev->dev, res);
2054 if (IS_ERR(priv->addr)) {
2055 error = PTR_ERR(priv->addr);
2056 goto out_release;
2057 }
2058
2059 spin_lock_init(&priv->lock);
2060 INIT_WORK(&priv->work, ravb_tx_timeout_work);
2061
2062 priv->phy_interface = of_get_phy_mode(np);
2063
2064 priv->no_avb_link = of_property_read_bool(np, "renesas,no-ether-link");
2065 priv->avb_link_active_low =
2066 of_property_read_bool(np, "renesas,ether-link-active-low");
2067
2068 if (chip_id == RCAR_GEN3) {
2069 irq = platform_get_irq_byname(pdev, "ch24");
2070 if (irq < 0) {
2071 error = irq;
2072 goto out_release;
2073 }
2074 priv->emac_irq = irq;
2075 for (i = 0; i < NUM_RX_QUEUE; i++) {
2076 irq = platform_get_irq_byname(pdev, ravb_rx_irqs[i]);
2077 if (irq < 0) {
2078 error = irq;
2079 goto out_release;
2080 }
2081 priv->rx_irqs[i] = irq;
2082 }
2083 for (i = 0; i < NUM_TX_QUEUE; i++) {
2084 irq = platform_get_irq_byname(pdev, ravb_tx_irqs[i]);
2085 if (irq < 0) {
2086 error = irq;
2087 goto out_release;
2088 }
2089 priv->tx_irqs[i] = irq;
2090 }
2091 }
2092
2093 priv->chip_id = chip_id;
2094
2095 priv->clk = devm_clk_get(&pdev->dev, NULL);
2096 if (IS_ERR(priv->clk)) {
2097 error = PTR_ERR(priv->clk);
2098 goto out_release;
2099 }
2100
2101 ndev->max_mtu = 2048 - (ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN);
2102 ndev->min_mtu = ETH_MIN_MTU;
2103
2104 priv->num_tx_desc = chip_id == RCAR_GEN2 ?
2105 NUM_TX_DESC_GEN2 : NUM_TX_DESC_GEN3;
2106
2107 /* Set function */
2108 ndev->netdev_ops = &ravb_netdev_ops;
2109 ndev->ethtool_ops = &ravb_ethtool_ops;
2110
2111 /* Set AVB config mode */
2112 ravb_set_config_mode(ndev);
2113
2114 /* Set GTI value */
2115 error = ravb_set_gti(ndev);
2116 if (error)
2117 goto out_release;
2118
2119 /* Request GTI loading */
2120 ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2121
2122 if (priv->chip_id != RCAR_GEN2)
2123 ravb_set_delay_mode(ndev);
2124
2125 /* Allocate descriptor base address table */
2126 priv->desc_bat_size = sizeof(struct ravb_desc) * DBAT_ENTRY_NUM;
2127 priv->desc_bat = dma_alloc_coherent(ndev->dev.parent, priv->desc_bat_size,
2128 &priv->desc_bat_dma, GFP_KERNEL);
2129 if (!priv->desc_bat) {
2130 dev_err(&pdev->dev,
2131 "Cannot allocate desc base address table (size %d bytes)\n",
2132 priv->desc_bat_size);
2133 error = -ENOMEM;
2134 goto out_release;
2135 }
2136 for (q = RAVB_BE; q < DBAT_ENTRY_NUM; q++)
2137 priv->desc_bat[q].die_dt = DT_EOS;
2138 ravb_write(ndev, priv->desc_bat_dma, DBAT);
2139
2140 /* Initialise HW timestamp list */
2141 INIT_LIST_HEAD(&priv->ts_skb_list);
2142
2143 /* Initialise PTP Clock driver */
2144 if (chip_id != RCAR_GEN2)
2145 ravb_ptp_init(ndev, pdev);
2146
2147 /* Debug message level */
2148 priv->msg_enable = RAVB_DEF_MSG_ENABLE;
2149
2150 /* Read and set MAC address */
2151 ravb_read_mac_address(ndev, of_get_mac_address(np));
2152 if (!is_valid_ether_addr(ndev->dev_addr)) {
2153 dev_warn(&pdev->dev,
2154 "no valid MAC address supplied, using a random one\n");
2155 eth_hw_addr_random(ndev);
2156 }
2157
2158 /* MDIO bus init */
2159 error = ravb_mdio_init(priv);
2160 if (error) {
2161 dev_err(&pdev->dev, "failed to initialize MDIO\n");
2162 goto out_dma_free;
2163 }
2164
2165 netif_napi_add(ndev, &priv->napi[RAVB_BE], ravb_poll, 64);
2166 netif_napi_add(ndev, &priv->napi[RAVB_NC], ravb_poll, 64);
2167
2168 /* Network device register */
2169 error = register_netdev(ndev);
2170 if (error)
2171 goto out_napi_del;
2172
2173 device_set_wakeup_capable(&pdev->dev, 1);
2174
2175 /* Print device information */
2176 netdev_info(ndev, "Base address at %#x, %pM, IRQ %d.\n",
2177 (u32)ndev->base_addr, ndev->dev_addr, ndev->irq);
2178
2179 platform_set_drvdata(pdev, ndev);
2180
2181 return 0;
2182
2183 out_napi_del:
2184 netif_napi_del(&priv->napi[RAVB_NC]);
2185 netif_napi_del(&priv->napi[RAVB_BE]);
2186 ravb_mdio_release(priv);
2187 out_dma_free:
2188 dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2189 priv->desc_bat_dma);
2190
2191 /* Stop PTP Clock driver */
2192 if (chip_id != RCAR_GEN2)
2193 ravb_ptp_stop(ndev);
2194 out_release:
2195 free_netdev(ndev);
2196
2197 pm_runtime_put(&pdev->dev);
2198 pm_runtime_disable(&pdev->dev);
2199 return error;
2200 }
2201
2202 static int ravb_remove(struct platform_device *pdev)
2203 {
2204 struct net_device *ndev = platform_get_drvdata(pdev);
2205 struct ravb_private *priv = netdev_priv(ndev);
2206
2207 /* Stop PTP Clock driver */
2208 if (priv->chip_id != RCAR_GEN2)
2209 ravb_ptp_stop(ndev);
2210
2211 dma_free_coherent(ndev->dev.parent, priv->desc_bat_size, priv->desc_bat,
2212 priv->desc_bat_dma);
2213 /* Set reset mode */
2214 ravb_write(ndev, CCC_OPC_RESET, CCC);
2215 pm_runtime_put_sync(&pdev->dev);
2216 unregister_netdev(ndev);
2217 netif_napi_del(&priv->napi[RAVB_NC]);
2218 netif_napi_del(&priv->napi[RAVB_BE]);
2219 ravb_mdio_release(priv);
2220 pm_runtime_disable(&pdev->dev);
2221 free_netdev(ndev);
2222 platform_set_drvdata(pdev, NULL);
2223
2224 return 0;
2225 }
2226
2227 static int ravb_wol_setup(struct net_device *ndev)
2228 {
2229 struct ravb_private *priv = netdev_priv(ndev);
2230
2231 /* Disable interrupts by clearing the interrupt masks. */
2232 ravb_write(ndev, 0, RIC0);
2233 ravb_write(ndev, 0, RIC2);
2234 ravb_write(ndev, 0, TIC);
2235
2236 /* Only allow ECI interrupts */
2237 synchronize_irq(priv->emac_irq);
2238 napi_disable(&priv->napi[RAVB_NC]);
2239 napi_disable(&priv->napi[RAVB_BE]);
2240 ravb_write(ndev, ECSIPR_MPDIP, ECSIPR);
2241
2242 /* Enable MagicPacket */
2243 ravb_modify(ndev, ECMR, ECMR_MPDE, ECMR_MPDE);
2244
2245 return enable_irq_wake(priv->emac_irq);
2246 }
2247
2248 static int ravb_wol_restore(struct net_device *ndev)
2249 {
2250 struct ravb_private *priv = netdev_priv(ndev);
2251 int ret;
2252
2253 napi_enable(&priv->napi[RAVB_NC]);
2254 napi_enable(&priv->napi[RAVB_BE]);
2255
2256 /* Disable MagicPacket */
2257 ravb_modify(ndev, ECMR, ECMR_MPDE, 0);
2258
2259 ret = ravb_close(ndev);
2260 if (ret < 0)
2261 return ret;
2262
2263 return disable_irq_wake(priv->emac_irq);
2264 }
2265
2266 static int __maybe_unused ravb_suspend(struct device *dev)
2267 {
2268 struct net_device *ndev = dev_get_drvdata(dev);
2269 struct ravb_private *priv = netdev_priv(ndev);
2270 int ret;
2271
2272 if (!netif_running(ndev))
2273 return 0;
2274
2275 netif_device_detach(ndev);
2276
2277 if (priv->wol_enabled)
2278 ret = ravb_wol_setup(ndev);
2279 else
2280 ret = ravb_close(ndev);
2281
2282 return ret;
2283 }
2284
2285 static int __maybe_unused ravb_resume(struct device *dev)
2286 {
2287 struct net_device *ndev = dev_get_drvdata(dev);
2288 struct ravb_private *priv = netdev_priv(ndev);
2289 int ret = 0;
2290
2291 /* If WoL is enabled set reset mode to rearm the WoL logic */
2292 if (priv->wol_enabled)
2293 ravb_write(ndev, CCC_OPC_RESET, CCC);
2294
2295 /* All register have been reset to default values.
2296 * Restore all registers which where setup at probe time and
2297 * reopen device if it was running before system suspended.
2298 */
2299
2300 /* Set AVB config mode */
2301 ravb_set_config_mode(ndev);
2302
2303 /* Set GTI value */
2304 ret = ravb_set_gti(ndev);
2305 if (ret)
2306 return ret;
2307
2308 /* Request GTI loading */
2309 ravb_modify(ndev, GCCR, GCCR_LTI, GCCR_LTI);
2310
2311 if (priv->chip_id != RCAR_GEN2)
2312 ravb_set_delay_mode(ndev);
2313
2314 /* Restore descriptor base address table */
2315 ravb_write(ndev, priv->desc_bat_dma, DBAT);
2316
2317 if (netif_running(ndev)) {
2318 if (priv->wol_enabled) {
2319 ret = ravb_wol_restore(ndev);
2320 if (ret)
2321 return ret;
2322 }
2323 ret = ravb_open(ndev);
2324 if (ret < 0)
2325 return ret;
2326 netif_device_attach(ndev);
2327 }
2328
2329 return ret;
2330 }
2331
2332 static int __maybe_unused ravb_runtime_nop(struct device *dev)
2333 {
2334 /* Runtime PM callback shared between ->runtime_suspend()
2335 * and ->runtime_resume(). Simply returns success.
2336 *
2337 * This driver re-initializes all registers after
2338 * pm_runtime_get_sync() anyway so there is no need
2339 * to save and restore registers here.
2340 */
2341 return 0;
2342 }
2343
2344 static const struct dev_pm_ops ravb_dev_pm_ops = {
2345 SET_SYSTEM_SLEEP_PM_OPS(ravb_suspend, ravb_resume)
2346 SET_RUNTIME_PM_OPS(ravb_runtime_nop, ravb_runtime_nop, NULL)
2347 };
2348
2349 static struct platform_driver ravb_driver = {
2350 .probe = ravb_probe,
2351 .remove = ravb_remove,
2352 .driver = {
2353 .name = "ravb",
2354 .pm = &ravb_dev_pm_ops,
2355 .of_match_table = ravb_match_table,
2356 },
2357 };
2358
2359 module_platform_driver(ravb_driver);
2360
2361 MODULE_AUTHOR("Mitsuhiro Kimura, Masaru Nagai");
2362 MODULE_DESCRIPTION("Renesas Ethernet AVB driver");
2363 MODULE_LICENSE("GPL v2");