]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/nvme/host/pci.c
Merge tag 'for-linus-2019-08-17' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / drivers / nvme / host / pci.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7 #include <linux/aer.h>
8 #include <linux/async.h>
9 #include <linux/blkdev.h>
10 #include <linux/blk-mq.h>
11 #include <linux/blk-mq-pci.h>
12 #include <linux/dmi.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/once.h>
20 #include <linux/pci.h>
21 #include <linux/suspend.h>
22 #include <linux/t10-pi.h>
23 #include <linux/types.h>
24 #include <linux/io-64-nonatomic-lo-hi.h>
25 #include <linux/sed-opal.h>
26 #include <linux/pci-p2pdma.h>
27
28 #include "trace.h"
29 #include "nvme.h"
30
31 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
32 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
33
34 #define SGES_PER_PAGE (PAGE_SIZE / sizeof(struct nvme_sgl_desc))
35
36 /*
37 * These can be higher, but we need to ensure that any command doesn't
38 * require an sg allocation that needs more than a page of data.
39 */
40 #define NVME_MAX_KB_SZ 4096
41 #define NVME_MAX_SEGS 127
42
43 static int use_threaded_interrupts;
44 module_param(use_threaded_interrupts, int, 0);
45
46 static bool use_cmb_sqes = true;
47 module_param(use_cmb_sqes, bool, 0444);
48 MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
49
50 static unsigned int max_host_mem_size_mb = 128;
51 module_param(max_host_mem_size_mb, uint, 0444);
52 MODULE_PARM_DESC(max_host_mem_size_mb,
53 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
54
55 static unsigned int sgl_threshold = SZ_32K;
56 module_param(sgl_threshold, uint, 0644);
57 MODULE_PARM_DESC(sgl_threshold,
58 "Use SGLs when average request segment size is larger or equal to "
59 "this size. Use 0 to disable SGLs.");
60
61 static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
62 static const struct kernel_param_ops io_queue_depth_ops = {
63 .set = io_queue_depth_set,
64 .get = param_get_int,
65 };
66
67 static int io_queue_depth = 1024;
68 module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
69 MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2");
70
71 static int write_queues;
72 module_param(write_queues, int, 0644);
73 MODULE_PARM_DESC(write_queues,
74 "Number of queues to use for writes. If not set, reads and writes "
75 "will share a queue set.");
76
77 static int poll_queues;
78 module_param(poll_queues, int, 0644);
79 MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
80
81 struct nvme_dev;
82 struct nvme_queue;
83
84 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
85 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode);
86
87 /*
88 * Represents an NVM Express device. Each nvme_dev is a PCI function.
89 */
90 struct nvme_dev {
91 struct nvme_queue *queues;
92 struct blk_mq_tag_set tagset;
93 struct blk_mq_tag_set admin_tagset;
94 u32 __iomem *dbs;
95 struct device *dev;
96 struct dma_pool *prp_page_pool;
97 struct dma_pool *prp_small_pool;
98 unsigned online_queues;
99 unsigned max_qid;
100 unsigned io_queues[HCTX_MAX_TYPES];
101 unsigned int num_vecs;
102 int q_depth;
103 u32 db_stride;
104 void __iomem *bar;
105 unsigned long bar_mapped_size;
106 struct work_struct remove_work;
107 struct mutex shutdown_lock;
108 bool subsystem;
109 u64 cmb_size;
110 bool cmb_use_sqes;
111 u32 cmbsz;
112 u32 cmbloc;
113 struct nvme_ctrl ctrl;
114 u32 last_ps;
115
116 mempool_t *iod_mempool;
117
118 /* shadow doorbell buffer support: */
119 u32 *dbbuf_dbs;
120 dma_addr_t dbbuf_dbs_dma_addr;
121 u32 *dbbuf_eis;
122 dma_addr_t dbbuf_eis_dma_addr;
123
124 /* host memory buffer support: */
125 u64 host_mem_size;
126 u32 nr_host_mem_descs;
127 dma_addr_t host_mem_descs_dma;
128 struct nvme_host_mem_buf_desc *host_mem_descs;
129 void **host_mem_desc_bufs;
130 };
131
132 static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
133 {
134 int n = 0, ret;
135
136 ret = kstrtoint(val, 10, &n);
137 if (ret != 0 || n < 2)
138 return -EINVAL;
139
140 return param_set_int(val, kp);
141 }
142
143 static inline unsigned int sq_idx(unsigned int qid, u32 stride)
144 {
145 return qid * 2 * stride;
146 }
147
148 static inline unsigned int cq_idx(unsigned int qid, u32 stride)
149 {
150 return (qid * 2 + 1) * stride;
151 }
152
153 static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
154 {
155 return container_of(ctrl, struct nvme_dev, ctrl);
156 }
157
158 /*
159 * An NVM Express queue. Each device has at least two (one for admin
160 * commands and one for I/O commands).
161 */
162 struct nvme_queue {
163 struct nvme_dev *dev;
164 spinlock_t sq_lock;
165 struct nvme_command *sq_cmds;
166 /* only used for poll queues: */
167 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
168 volatile struct nvme_completion *cqes;
169 struct blk_mq_tags **tags;
170 dma_addr_t sq_dma_addr;
171 dma_addr_t cq_dma_addr;
172 u32 __iomem *q_db;
173 u16 q_depth;
174 u16 cq_vector;
175 u16 sq_tail;
176 u16 last_sq_tail;
177 u16 cq_head;
178 u16 last_cq_head;
179 u16 qid;
180 u8 cq_phase;
181 unsigned long flags;
182 #define NVMEQ_ENABLED 0
183 #define NVMEQ_SQ_CMB 1
184 #define NVMEQ_DELETE_ERROR 2
185 #define NVMEQ_POLLED 3
186 u32 *dbbuf_sq_db;
187 u32 *dbbuf_cq_db;
188 u32 *dbbuf_sq_ei;
189 u32 *dbbuf_cq_ei;
190 struct completion delete_done;
191 };
192
193 /*
194 * The nvme_iod describes the data in an I/O.
195 *
196 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
197 * to the actual struct scatterlist.
198 */
199 struct nvme_iod {
200 struct nvme_request req;
201 struct nvme_queue *nvmeq;
202 bool use_sgl;
203 int aborted;
204 int npages; /* In the PRP list. 0 means small pool in use */
205 int nents; /* Used in scatterlist */
206 dma_addr_t first_dma;
207 unsigned int dma_len; /* length of single DMA segment mapping */
208 dma_addr_t meta_dma;
209 struct scatterlist *sg;
210 };
211
212 static unsigned int max_io_queues(void)
213 {
214 return num_possible_cpus() + write_queues + poll_queues;
215 }
216
217 static unsigned int max_queue_count(void)
218 {
219 /* IO queues + admin queue */
220 return 1 + max_io_queues();
221 }
222
223 static inline unsigned int nvme_dbbuf_size(u32 stride)
224 {
225 return (max_queue_count() * 8 * stride);
226 }
227
228 static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
229 {
230 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
231
232 if (dev->dbbuf_dbs)
233 return 0;
234
235 dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size,
236 &dev->dbbuf_dbs_dma_addr,
237 GFP_KERNEL);
238 if (!dev->dbbuf_dbs)
239 return -ENOMEM;
240 dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size,
241 &dev->dbbuf_eis_dma_addr,
242 GFP_KERNEL);
243 if (!dev->dbbuf_eis) {
244 dma_free_coherent(dev->dev, mem_size,
245 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
246 dev->dbbuf_dbs = NULL;
247 return -ENOMEM;
248 }
249
250 return 0;
251 }
252
253 static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
254 {
255 unsigned int mem_size = nvme_dbbuf_size(dev->db_stride);
256
257 if (dev->dbbuf_dbs) {
258 dma_free_coherent(dev->dev, mem_size,
259 dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr);
260 dev->dbbuf_dbs = NULL;
261 }
262 if (dev->dbbuf_eis) {
263 dma_free_coherent(dev->dev, mem_size,
264 dev->dbbuf_eis, dev->dbbuf_eis_dma_addr);
265 dev->dbbuf_eis = NULL;
266 }
267 }
268
269 static void nvme_dbbuf_init(struct nvme_dev *dev,
270 struct nvme_queue *nvmeq, int qid)
271 {
272 if (!dev->dbbuf_dbs || !qid)
273 return;
274
275 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)];
276 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)];
277 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)];
278 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)];
279 }
280
281 static void nvme_dbbuf_set(struct nvme_dev *dev)
282 {
283 struct nvme_command c;
284
285 if (!dev->dbbuf_dbs)
286 return;
287
288 memset(&c, 0, sizeof(c));
289 c.dbbuf.opcode = nvme_admin_dbbuf;
290 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
291 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
292
293 if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) {
294 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
295 /* Free memory and continue on */
296 nvme_dbbuf_dma_free(dev);
297 }
298 }
299
300 static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
301 {
302 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
303 }
304
305 /* Update dbbuf and return true if an MMIO is required */
306 static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db,
307 volatile u32 *dbbuf_ei)
308 {
309 if (dbbuf_db) {
310 u16 old_value;
311
312 /*
313 * Ensure that the queue is written before updating
314 * the doorbell in memory
315 */
316 wmb();
317
318 old_value = *dbbuf_db;
319 *dbbuf_db = value;
320
321 /*
322 * Ensure that the doorbell is updated before reading the event
323 * index from memory. The controller needs to provide similar
324 * ordering to ensure the envent index is updated before reading
325 * the doorbell.
326 */
327 mb();
328
329 if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value))
330 return false;
331 }
332
333 return true;
334 }
335
336 /*
337 * Will slightly overestimate the number of pages needed. This is OK
338 * as it only leads to a small amount of wasted memory for the lifetime of
339 * the I/O.
340 */
341 static int nvme_npages(unsigned size, struct nvme_dev *dev)
342 {
343 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
344 dev->ctrl.page_size);
345 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
346 }
347
348 /*
349 * Calculates the number of pages needed for the SGL segments. For example a 4k
350 * page can accommodate 256 SGL descriptors.
351 */
352 static int nvme_pci_npages_sgl(unsigned int num_seg)
353 {
354 return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE);
355 }
356
357 static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev,
358 unsigned int size, unsigned int nseg, bool use_sgl)
359 {
360 size_t alloc_size;
361
362 if (use_sgl)
363 alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg);
364 else
365 alloc_size = sizeof(__le64 *) * nvme_npages(size, dev);
366
367 return alloc_size + sizeof(struct scatterlist) * nseg;
368 }
369
370 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
371 unsigned int hctx_idx)
372 {
373 struct nvme_dev *dev = data;
374 struct nvme_queue *nvmeq = &dev->queues[0];
375
376 WARN_ON(hctx_idx != 0);
377 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
378 WARN_ON(nvmeq->tags);
379
380 hctx->driver_data = nvmeq;
381 nvmeq->tags = &dev->admin_tagset.tags[0];
382 return 0;
383 }
384
385 static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
386 {
387 struct nvme_queue *nvmeq = hctx->driver_data;
388
389 nvmeq->tags = NULL;
390 }
391
392 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
393 unsigned int hctx_idx)
394 {
395 struct nvme_dev *dev = data;
396 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
397
398 if (!nvmeq->tags)
399 nvmeq->tags = &dev->tagset.tags[hctx_idx];
400
401 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
402 hctx->driver_data = nvmeq;
403 return 0;
404 }
405
406 static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req,
407 unsigned int hctx_idx, unsigned int numa_node)
408 {
409 struct nvme_dev *dev = set->driver_data;
410 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
411 int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0;
412 struct nvme_queue *nvmeq = &dev->queues[queue_idx];
413
414 BUG_ON(!nvmeq);
415 iod->nvmeq = nvmeq;
416
417 nvme_req(req)->ctrl = &dev->ctrl;
418 return 0;
419 }
420
421 static int queue_irq_offset(struct nvme_dev *dev)
422 {
423 /* if we have more than 1 vec, admin queue offsets us by 1 */
424 if (dev->num_vecs > 1)
425 return 1;
426
427 return 0;
428 }
429
430 static int nvme_pci_map_queues(struct blk_mq_tag_set *set)
431 {
432 struct nvme_dev *dev = set->driver_data;
433 int i, qoff, offset;
434
435 offset = queue_irq_offset(dev);
436 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
437 struct blk_mq_queue_map *map = &set->map[i];
438
439 map->nr_queues = dev->io_queues[i];
440 if (!map->nr_queues) {
441 BUG_ON(i == HCTX_TYPE_DEFAULT);
442 continue;
443 }
444
445 /*
446 * The poll queue(s) doesn't have an IRQ (and hence IRQ
447 * affinity), so use the regular blk-mq cpu mapping
448 */
449 map->queue_offset = qoff;
450 if (i != HCTX_TYPE_POLL && offset)
451 blk_mq_pci_map_queues(map, to_pci_dev(dev->dev), offset);
452 else
453 blk_mq_map_queues(map);
454 qoff += map->nr_queues;
455 offset += map->nr_queues;
456 }
457
458 return 0;
459 }
460
461 /*
462 * Write sq tail if we are asked to, or if the next command would wrap.
463 */
464 static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
465 {
466 if (!write_sq) {
467 u16 next_tail = nvmeq->sq_tail + 1;
468
469 if (next_tail == nvmeq->q_depth)
470 next_tail = 0;
471 if (next_tail != nvmeq->last_sq_tail)
472 return;
473 }
474
475 if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail,
476 nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei))
477 writel(nvmeq->sq_tail, nvmeq->q_db);
478 nvmeq->last_sq_tail = nvmeq->sq_tail;
479 }
480
481 /**
482 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
483 * @nvmeq: The queue to use
484 * @cmd: The command to send
485 * @write_sq: whether to write to the SQ doorbell
486 */
487 static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
488 bool write_sq)
489 {
490 spin_lock(&nvmeq->sq_lock);
491 memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd));
492 if (++nvmeq->sq_tail == nvmeq->q_depth)
493 nvmeq->sq_tail = 0;
494 nvme_write_sq_db(nvmeq, write_sq);
495 spin_unlock(&nvmeq->sq_lock);
496 }
497
498 static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
499 {
500 struct nvme_queue *nvmeq = hctx->driver_data;
501
502 spin_lock(&nvmeq->sq_lock);
503 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
504 nvme_write_sq_db(nvmeq, true);
505 spin_unlock(&nvmeq->sq_lock);
506 }
507
508 static void **nvme_pci_iod_list(struct request *req)
509 {
510 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
511 return (void **)(iod->sg + blk_rq_nr_phys_segments(req));
512 }
513
514 static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req)
515 {
516 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
517 int nseg = blk_rq_nr_phys_segments(req);
518 unsigned int avg_seg_size;
519
520 if (nseg == 0)
521 return false;
522
523 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
524
525 if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1))))
526 return false;
527 if (!iod->nvmeq->qid)
528 return false;
529 if (!sgl_threshold || avg_seg_size < sgl_threshold)
530 return false;
531 return true;
532 }
533
534 static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
535 {
536 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
537 enum dma_data_direction dma_dir = rq_data_dir(req) ?
538 DMA_TO_DEVICE : DMA_FROM_DEVICE;
539 const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1;
540 dma_addr_t dma_addr = iod->first_dma, next_dma_addr;
541 int i;
542
543 if (iod->dma_len) {
544 dma_unmap_page(dev->dev, dma_addr, iod->dma_len, dma_dir);
545 return;
546 }
547
548 WARN_ON_ONCE(!iod->nents);
549
550 /* P2PDMA requests do not need to be unmapped */
551 if (!is_pci_p2pdma_page(sg_page(iod->sg)))
552 dma_unmap_sg(dev->dev, iod->sg, iod->nents, rq_dma_dir(req));
553
554
555 if (iod->npages == 0)
556 dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0],
557 dma_addr);
558
559 for (i = 0; i < iod->npages; i++) {
560 void *addr = nvme_pci_iod_list(req)[i];
561
562 if (iod->use_sgl) {
563 struct nvme_sgl_desc *sg_list = addr;
564
565 next_dma_addr =
566 le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr);
567 } else {
568 __le64 *prp_list = addr;
569
570 next_dma_addr = le64_to_cpu(prp_list[last_prp]);
571 }
572
573 dma_pool_free(dev->prp_page_pool, addr, dma_addr);
574 dma_addr = next_dma_addr;
575 }
576
577 mempool_free(iod->sg, dev->iod_mempool);
578 }
579
580 static void nvme_print_sgl(struct scatterlist *sgl, int nents)
581 {
582 int i;
583 struct scatterlist *sg;
584
585 for_each_sg(sgl, sg, nents, i) {
586 dma_addr_t phys = sg_phys(sg);
587 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
588 "dma_address:%pad dma_length:%d\n",
589 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
590 sg_dma_len(sg));
591 }
592 }
593
594 static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
595 struct request *req, struct nvme_rw_command *cmnd)
596 {
597 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
598 struct dma_pool *pool;
599 int length = blk_rq_payload_bytes(req);
600 struct scatterlist *sg = iod->sg;
601 int dma_len = sg_dma_len(sg);
602 u64 dma_addr = sg_dma_address(sg);
603 u32 page_size = dev->ctrl.page_size;
604 int offset = dma_addr & (page_size - 1);
605 __le64 *prp_list;
606 void **list = nvme_pci_iod_list(req);
607 dma_addr_t prp_dma;
608 int nprps, i;
609
610 length -= (page_size - offset);
611 if (length <= 0) {
612 iod->first_dma = 0;
613 goto done;
614 }
615
616 dma_len -= (page_size - offset);
617 if (dma_len) {
618 dma_addr += (page_size - offset);
619 } else {
620 sg = sg_next(sg);
621 dma_addr = sg_dma_address(sg);
622 dma_len = sg_dma_len(sg);
623 }
624
625 if (length <= page_size) {
626 iod->first_dma = dma_addr;
627 goto done;
628 }
629
630 nprps = DIV_ROUND_UP(length, page_size);
631 if (nprps <= (256 / 8)) {
632 pool = dev->prp_small_pool;
633 iod->npages = 0;
634 } else {
635 pool = dev->prp_page_pool;
636 iod->npages = 1;
637 }
638
639 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
640 if (!prp_list) {
641 iod->first_dma = dma_addr;
642 iod->npages = -1;
643 return BLK_STS_RESOURCE;
644 }
645 list[0] = prp_list;
646 iod->first_dma = prp_dma;
647 i = 0;
648 for (;;) {
649 if (i == page_size >> 3) {
650 __le64 *old_prp_list = prp_list;
651 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
652 if (!prp_list)
653 return BLK_STS_RESOURCE;
654 list[iod->npages++] = prp_list;
655 prp_list[0] = old_prp_list[i - 1];
656 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
657 i = 1;
658 }
659 prp_list[i++] = cpu_to_le64(dma_addr);
660 dma_len -= page_size;
661 dma_addr += page_size;
662 length -= page_size;
663 if (length <= 0)
664 break;
665 if (dma_len > 0)
666 continue;
667 if (unlikely(dma_len < 0))
668 goto bad_sgl;
669 sg = sg_next(sg);
670 dma_addr = sg_dma_address(sg);
671 dma_len = sg_dma_len(sg);
672 }
673
674 done:
675 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
676 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
677
678 return BLK_STS_OK;
679
680 bad_sgl:
681 WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents),
682 "Invalid SGL for payload:%d nents:%d\n",
683 blk_rq_payload_bytes(req), iod->nents);
684 return BLK_STS_IOERR;
685 }
686
687 static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
688 struct scatterlist *sg)
689 {
690 sge->addr = cpu_to_le64(sg_dma_address(sg));
691 sge->length = cpu_to_le32(sg_dma_len(sg));
692 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
693 }
694
695 static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
696 dma_addr_t dma_addr, int entries)
697 {
698 sge->addr = cpu_to_le64(dma_addr);
699 if (entries < SGES_PER_PAGE) {
700 sge->length = cpu_to_le32(entries * sizeof(*sge));
701 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
702 } else {
703 sge->length = cpu_to_le32(PAGE_SIZE);
704 sge->type = NVME_SGL_FMT_SEG_DESC << 4;
705 }
706 }
707
708 static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
709 struct request *req, struct nvme_rw_command *cmd, int entries)
710 {
711 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
712 struct dma_pool *pool;
713 struct nvme_sgl_desc *sg_list;
714 struct scatterlist *sg = iod->sg;
715 dma_addr_t sgl_dma;
716 int i = 0;
717
718 /* setting the transfer type as SGL */
719 cmd->flags = NVME_CMD_SGL_METABUF;
720
721 if (entries == 1) {
722 nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg);
723 return BLK_STS_OK;
724 }
725
726 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
727 pool = dev->prp_small_pool;
728 iod->npages = 0;
729 } else {
730 pool = dev->prp_page_pool;
731 iod->npages = 1;
732 }
733
734 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
735 if (!sg_list) {
736 iod->npages = -1;
737 return BLK_STS_RESOURCE;
738 }
739
740 nvme_pci_iod_list(req)[0] = sg_list;
741 iod->first_dma = sgl_dma;
742
743 nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries);
744
745 do {
746 if (i == SGES_PER_PAGE) {
747 struct nvme_sgl_desc *old_sg_desc = sg_list;
748 struct nvme_sgl_desc *link = &old_sg_desc[i - 1];
749
750 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma);
751 if (!sg_list)
752 return BLK_STS_RESOURCE;
753
754 i = 0;
755 nvme_pci_iod_list(req)[iod->npages++] = sg_list;
756 sg_list[i++] = *link;
757 nvme_pci_sgl_set_seg(link, sgl_dma, entries);
758 }
759
760 nvme_pci_sgl_set_data(&sg_list[i++], sg);
761 sg = sg_next(sg);
762 } while (--entries > 0);
763
764 return BLK_STS_OK;
765 }
766
767 static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
768 struct request *req, struct nvme_rw_command *cmnd,
769 struct bio_vec *bv)
770 {
771 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
772 unsigned int first_prp_len = dev->ctrl.page_size - bv->bv_offset;
773
774 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
775 if (dma_mapping_error(dev->dev, iod->first_dma))
776 return BLK_STS_RESOURCE;
777 iod->dma_len = bv->bv_len;
778
779 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
780 if (bv->bv_len > first_prp_len)
781 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
782 return 0;
783 }
784
785 static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
786 struct request *req, struct nvme_rw_command *cmnd,
787 struct bio_vec *bv)
788 {
789 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
790
791 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
792 if (dma_mapping_error(dev->dev, iod->first_dma))
793 return BLK_STS_RESOURCE;
794 iod->dma_len = bv->bv_len;
795
796 cmnd->flags = NVME_CMD_SGL_METABUF;
797 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
798 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
799 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
800 return 0;
801 }
802
803 static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
804 struct nvme_command *cmnd)
805 {
806 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
807 blk_status_t ret = BLK_STS_RESOURCE;
808 int nr_mapped;
809
810 if (blk_rq_nr_phys_segments(req) == 1) {
811 struct bio_vec bv = req_bvec(req);
812
813 if (!is_pci_p2pdma_page(bv.bv_page)) {
814 if (bv.bv_offset + bv.bv_len <= dev->ctrl.page_size * 2)
815 return nvme_setup_prp_simple(dev, req,
816 &cmnd->rw, &bv);
817
818 if (iod->nvmeq->qid &&
819 dev->ctrl.sgls & ((1 << 0) | (1 << 1)))
820 return nvme_setup_sgl_simple(dev, req,
821 &cmnd->rw, &bv);
822 }
823 }
824
825 iod->dma_len = 0;
826 iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC);
827 if (!iod->sg)
828 return BLK_STS_RESOURCE;
829 sg_init_table(iod->sg, blk_rq_nr_phys_segments(req));
830 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
831 if (!iod->nents)
832 goto out;
833
834 if (is_pci_p2pdma_page(sg_page(iod->sg)))
835 nr_mapped = pci_p2pdma_map_sg(dev->dev, iod->sg, iod->nents,
836 rq_dma_dir(req));
837 else
838 nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents,
839 rq_dma_dir(req), DMA_ATTR_NO_WARN);
840 if (!nr_mapped)
841 goto out;
842
843 iod->use_sgl = nvme_pci_use_sgls(dev, req);
844 if (iod->use_sgl)
845 ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped);
846 else
847 ret = nvme_pci_setup_prps(dev, req, &cmnd->rw);
848 out:
849 if (ret != BLK_STS_OK)
850 nvme_unmap_data(dev, req);
851 return ret;
852 }
853
854 static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
855 struct nvme_command *cmnd)
856 {
857 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
858
859 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
860 rq_dma_dir(req), 0);
861 if (dma_mapping_error(dev->dev, iod->meta_dma))
862 return BLK_STS_IOERR;
863 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
864 return 0;
865 }
866
867 /*
868 * NOTE: ns is NULL when called on the admin queue.
869 */
870 static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
871 const struct blk_mq_queue_data *bd)
872 {
873 struct nvme_ns *ns = hctx->queue->queuedata;
874 struct nvme_queue *nvmeq = hctx->driver_data;
875 struct nvme_dev *dev = nvmeq->dev;
876 struct request *req = bd->rq;
877 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
878 struct nvme_command cmnd;
879 blk_status_t ret;
880
881 iod->aborted = 0;
882 iod->npages = -1;
883 iod->nents = 0;
884
885 /*
886 * We should not need to do this, but we're still using this to
887 * ensure we can drain requests on a dying queue.
888 */
889 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
890 return BLK_STS_IOERR;
891
892 ret = nvme_setup_cmd(ns, req, &cmnd);
893 if (ret)
894 return ret;
895
896 if (blk_rq_nr_phys_segments(req)) {
897 ret = nvme_map_data(dev, req, &cmnd);
898 if (ret)
899 goto out_free_cmd;
900 }
901
902 if (blk_integrity_rq(req)) {
903 ret = nvme_map_metadata(dev, req, &cmnd);
904 if (ret)
905 goto out_unmap_data;
906 }
907
908 blk_mq_start_request(req);
909 nvme_submit_cmd(nvmeq, &cmnd, bd->last);
910 return BLK_STS_OK;
911 out_unmap_data:
912 nvme_unmap_data(dev, req);
913 out_free_cmd:
914 nvme_cleanup_cmd(req);
915 return ret;
916 }
917
918 static void nvme_pci_complete_rq(struct request *req)
919 {
920 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
921 struct nvme_dev *dev = iod->nvmeq->dev;
922
923 nvme_cleanup_cmd(req);
924 if (blk_integrity_rq(req))
925 dma_unmap_page(dev->dev, iod->meta_dma,
926 rq_integrity_vec(req)->bv_len, rq_data_dir(req));
927 if (blk_rq_nr_phys_segments(req))
928 nvme_unmap_data(dev, req);
929 nvme_complete_rq(req);
930 }
931
932 /* We read the CQE phase first to check if the rest of the entry is valid */
933 static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
934 {
935 return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
936 nvmeq->cq_phase;
937 }
938
939 static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
940 {
941 u16 head = nvmeq->cq_head;
942
943 if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db,
944 nvmeq->dbbuf_cq_ei))
945 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
946 }
947
948 static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx)
949 {
950 volatile struct nvme_completion *cqe = &nvmeq->cqes[idx];
951 struct request *req;
952
953 if (unlikely(cqe->command_id >= nvmeq->q_depth)) {
954 dev_warn(nvmeq->dev->ctrl.device,
955 "invalid id %d completed on queue %d\n",
956 cqe->command_id, le16_to_cpu(cqe->sq_id));
957 return;
958 }
959
960 /*
961 * AEN requests are special as they don't time out and can
962 * survive any kind of queue freeze and often don't respond to
963 * aborts. We don't even bother to allocate a struct request
964 * for them but rather special case them here.
965 */
966 if (unlikely(nvmeq->qid == 0 &&
967 cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) {
968 nvme_complete_async_event(&nvmeq->dev->ctrl,
969 cqe->status, &cqe->result);
970 return;
971 }
972
973 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id);
974 trace_nvme_sq(req, cqe->sq_head, nvmeq->sq_tail);
975 nvme_end_request(req, cqe->status, cqe->result);
976 }
977
978 static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end)
979 {
980 while (start != end) {
981 nvme_handle_cqe(nvmeq, start);
982 if (++start == nvmeq->q_depth)
983 start = 0;
984 }
985 }
986
987 static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
988 {
989 if (nvmeq->cq_head == nvmeq->q_depth - 1) {
990 nvmeq->cq_head = 0;
991 nvmeq->cq_phase = !nvmeq->cq_phase;
992 } else {
993 nvmeq->cq_head++;
994 }
995 }
996
997 static inline int nvme_process_cq(struct nvme_queue *nvmeq, u16 *start,
998 u16 *end, unsigned int tag)
999 {
1000 int found = 0;
1001
1002 *start = nvmeq->cq_head;
1003 while (nvme_cqe_pending(nvmeq)) {
1004 if (tag == -1U || nvmeq->cqes[nvmeq->cq_head].command_id == tag)
1005 found++;
1006 nvme_update_cq_head(nvmeq);
1007 }
1008 *end = nvmeq->cq_head;
1009
1010 if (*start != *end)
1011 nvme_ring_cq_doorbell(nvmeq);
1012 return found;
1013 }
1014
1015 static irqreturn_t nvme_irq(int irq, void *data)
1016 {
1017 struct nvme_queue *nvmeq = data;
1018 irqreturn_t ret = IRQ_NONE;
1019 u16 start, end;
1020
1021 /*
1022 * The rmb/wmb pair ensures we see all updates from a previous run of
1023 * the irq handler, even if that was on another CPU.
1024 */
1025 rmb();
1026 if (nvmeq->cq_head != nvmeq->last_cq_head)
1027 ret = IRQ_HANDLED;
1028 nvme_process_cq(nvmeq, &start, &end, -1);
1029 nvmeq->last_cq_head = nvmeq->cq_head;
1030 wmb();
1031
1032 if (start != end) {
1033 nvme_complete_cqes(nvmeq, start, end);
1034 return IRQ_HANDLED;
1035 }
1036
1037 return ret;
1038 }
1039
1040 static irqreturn_t nvme_irq_check(int irq, void *data)
1041 {
1042 struct nvme_queue *nvmeq = data;
1043 if (nvme_cqe_pending(nvmeq))
1044 return IRQ_WAKE_THREAD;
1045 return IRQ_NONE;
1046 }
1047
1048 /*
1049 * Poll for completions any queue, including those not dedicated to polling.
1050 * Can be called from any context.
1051 */
1052 static int nvme_poll_irqdisable(struct nvme_queue *nvmeq, unsigned int tag)
1053 {
1054 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1055 u16 start, end;
1056 int found;
1057
1058 /*
1059 * For a poll queue we need to protect against the polling thread
1060 * using the CQ lock. For normal interrupt driven threads we have
1061 * to disable the interrupt to avoid racing with it.
1062 */
1063 if (test_bit(NVMEQ_POLLED, &nvmeq->flags)) {
1064 spin_lock(&nvmeq->cq_poll_lock);
1065 found = nvme_process_cq(nvmeq, &start, &end, tag);
1066 spin_unlock(&nvmeq->cq_poll_lock);
1067 } else {
1068 disable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1069 found = nvme_process_cq(nvmeq, &start, &end, tag);
1070 enable_irq(pci_irq_vector(pdev, nvmeq->cq_vector));
1071 }
1072
1073 nvme_complete_cqes(nvmeq, start, end);
1074 return found;
1075 }
1076
1077 static int nvme_poll(struct blk_mq_hw_ctx *hctx)
1078 {
1079 struct nvme_queue *nvmeq = hctx->driver_data;
1080 u16 start, end;
1081 bool found;
1082
1083 if (!nvme_cqe_pending(nvmeq))
1084 return 0;
1085
1086 spin_lock(&nvmeq->cq_poll_lock);
1087 found = nvme_process_cq(nvmeq, &start, &end, -1);
1088 spin_unlock(&nvmeq->cq_poll_lock);
1089
1090 nvme_complete_cqes(nvmeq, start, end);
1091 return found;
1092 }
1093
1094 static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1095 {
1096 struct nvme_dev *dev = to_nvme_dev(ctrl);
1097 struct nvme_queue *nvmeq = &dev->queues[0];
1098 struct nvme_command c;
1099
1100 memset(&c, 0, sizeof(c));
1101 c.common.opcode = nvme_admin_async_event;
1102 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1103 nvme_submit_cmd(nvmeq, &c, true);
1104 }
1105
1106 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1107 {
1108 struct nvme_command c;
1109
1110 memset(&c, 0, sizeof(c));
1111 c.delete_queue.opcode = opcode;
1112 c.delete_queue.qid = cpu_to_le16(id);
1113
1114 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1115 }
1116
1117 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1118 struct nvme_queue *nvmeq, s16 vector)
1119 {
1120 struct nvme_command c;
1121 int flags = NVME_QUEUE_PHYS_CONTIG;
1122
1123 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1124 flags |= NVME_CQ_IRQ_ENABLED;
1125
1126 /*
1127 * Note: we (ab)use the fact that the prp fields survive if no data
1128 * is attached to the request.
1129 */
1130 memset(&c, 0, sizeof(c));
1131 c.create_cq.opcode = nvme_admin_create_cq;
1132 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1133 c.create_cq.cqid = cpu_to_le16(qid);
1134 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1135 c.create_cq.cq_flags = cpu_to_le16(flags);
1136 c.create_cq.irq_vector = cpu_to_le16(vector);
1137
1138 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1139 }
1140
1141 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1142 struct nvme_queue *nvmeq)
1143 {
1144 struct nvme_ctrl *ctrl = &dev->ctrl;
1145 struct nvme_command c;
1146 int flags = NVME_QUEUE_PHYS_CONTIG;
1147
1148 /*
1149 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1150 * set. Since URGENT priority is zeroes, it makes all queues
1151 * URGENT.
1152 */
1153 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1154 flags |= NVME_SQ_PRIO_MEDIUM;
1155
1156 /*
1157 * Note: we (ab)use the fact that the prp fields survive if no data
1158 * is attached to the request.
1159 */
1160 memset(&c, 0, sizeof(c));
1161 c.create_sq.opcode = nvme_admin_create_sq;
1162 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1163 c.create_sq.sqid = cpu_to_le16(qid);
1164 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1165 c.create_sq.sq_flags = cpu_to_le16(flags);
1166 c.create_sq.cqid = cpu_to_le16(qid);
1167
1168 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1169 }
1170
1171 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1172 {
1173 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1174 }
1175
1176 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1177 {
1178 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1179 }
1180
1181 static void abort_endio(struct request *req, blk_status_t error)
1182 {
1183 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1184 struct nvme_queue *nvmeq = iod->nvmeq;
1185
1186 dev_warn(nvmeq->dev->ctrl.device,
1187 "Abort status: 0x%x", nvme_req(req)->status);
1188 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
1189 blk_mq_free_request(req);
1190 }
1191
1192 static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1193 {
1194
1195 /* If true, indicates loss of adapter communication, possibly by a
1196 * NVMe Subsystem reset.
1197 */
1198 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1199
1200 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1201 switch (dev->ctrl.state) {
1202 case NVME_CTRL_RESETTING:
1203 case NVME_CTRL_CONNECTING:
1204 return false;
1205 default:
1206 break;
1207 }
1208
1209 /* We shouldn't reset unless the controller is on fatal error state
1210 * _or_ if we lost the communication with it.
1211 */
1212 if (!(csts & NVME_CSTS_CFS) && !nssro)
1213 return false;
1214
1215 return true;
1216 }
1217
1218 static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1219 {
1220 /* Read a config register to help see what died. */
1221 u16 pci_status;
1222 int result;
1223
1224 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1225 &pci_status);
1226 if (result == PCIBIOS_SUCCESSFUL)
1227 dev_warn(dev->ctrl.device,
1228 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1229 csts, pci_status);
1230 else
1231 dev_warn(dev->ctrl.device,
1232 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1233 csts, result);
1234 }
1235
1236 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1237 {
1238 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
1239 struct nvme_queue *nvmeq = iod->nvmeq;
1240 struct nvme_dev *dev = nvmeq->dev;
1241 struct request *abort_req;
1242 struct nvme_command cmd;
1243 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1244
1245 /* If PCI error recovery process is happening, we cannot reset or
1246 * the recovery mechanism will surely fail.
1247 */
1248 mb();
1249 if (pci_channel_offline(to_pci_dev(dev->dev)))
1250 return BLK_EH_RESET_TIMER;
1251
1252 /*
1253 * Reset immediately if the controller is failed
1254 */
1255 if (nvme_should_reset(dev, csts)) {
1256 nvme_warn_reset(dev, csts);
1257 nvme_dev_disable(dev, false);
1258 nvme_reset_ctrl(&dev->ctrl);
1259 return BLK_EH_DONE;
1260 }
1261
1262 /*
1263 * Did we miss an interrupt?
1264 */
1265 if (nvme_poll_irqdisable(nvmeq, req->tag)) {
1266 dev_warn(dev->ctrl.device,
1267 "I/O %d QID %d timeout, completion polled\n",
1268 req->tag, nvmeq->qid);
1269 return BLK_EH_DONE;
1270 }
1271
1272 /*
1273 * Shutdown immediately if controller times out while starting. The
1274 * reset work will see the pci device disabled when it gets the forced
1275 * cancellation error. All outstanding requests are completed on
1276 * shutdown, so we return BLK_EH_DONE.
1277 */
1278 switch (dev->ctrl.state) {
1279 case NVME_CTRL_CONNECTING:
1280 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
1281 /* fall through */
1282 case NVME_CTRL_DELETING:
1283 dev_warn_ratelimited(dev->ctrl.device,
1284 "I/O %d QID %d timeout, disable controller\n",
1285 req->tag, nvmeq->qid);
1286 nvme_dev_disable(dev, true);
1287 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1288 return BLK_EH_DONE;
1289 case NVME_CTRL_RESETTING:
1290 return BLK_EH_RESET_TIMER;
1291 default:
1292 break;
1293 }
1294
1295 /*
1296 * Shutdown the controller immediately and schedule a reset if the
1297 * command was already aborted once before and still hasn't been
1298 * returned to the driver, or if this is the admin queue.
1299 */
1300 if (!nvmeq->qid || iod->aborted) {
1301 dev_warn(dev->ctrl.device,
1302 "I/O %d QID %d timeout, reset controller\n",
1303 req->tag, nvmeq->qid);
1304 nvme_dev_disable(dev, false);
1305 nvme_reset_ctrl(&dev->ctrl);
1306
1307 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1308 return BLK_EH_DONE;
1309 }
1310
1311 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
1312 atomic_inc(&dev->ctrl.abort_limit);
1313 return BLK_EH_RESET_TIMER;
1314 }
1315 iod->aborted = 1;
1316
1317 memset(&cmd, 0, sizeof(cmd));
1318 cmd.abort.opcode = nvme_admin_abort_cmd;
1319 cmd.abort.cid = req->tag;
1320 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1321
1322 dev_warn(nvmeq->dev->ctrl.device,
1323 "I/O %d QID %d timeout, aborting\n",
1324 req->tag, nvmeq->qid);
1325
1326 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
1327 BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
1328 if (IS_ERR(abort_req)) {
1329 atomic_inc(&dev->ctrl.abort_limit);
1330 return BLK_EH_RESET_TIMER;
1331 }
1332
1333 abort_req->timeout = ADMIN_TIMEOUT;
1334 abort_req->end_io_data = NULL;
1335 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
1336
1337 /*
1338 * The aborted req will be completed on receiving the abort req.
1339 * We enable the timer again. If hit twice, it'll cause a device reset,
1340 * as the device then is in a faulty state.
1341 */
1342 return BLK_EH_RESET_TIMER;
1343 }
1344
1345 static void nvme_free_queue(struct nvme_queue *nvmeq)
1346 {
1347 dma_free_coherent(nvmeq->dev->dev, CQ_SIZE(nvmeq->q_depth),
1348 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1349 if (!nvmeq->sq_cmds)
1350 return;
1351
1352 if (test_and_clear_bit(NVMEQ_SQ_CMB, &nvmeq->flags)) {
1353 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1354 nvmeq->sq_cmds, SQ_SIZE(nvmeq->q_depth));
1355 } else {
1356 dma_free_coherent(nvmeq->dev->dev, SQ_SIZE(nvmeq->q_depth),
1357 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1358 }
1359 }
1360
1361 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1362 {
1363 int i;
1364
1365 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1366 dev->ctrl.queue_count--;
1367 nvme_free_queue(&dev->queues[i]);
1368 }
1369 }
1370
1371 /**
1372 * nvme_suspend_queue - put queue into suspended state
1373 * @nvmeq: queue to suspend
1374 */
1375 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1376 {
1377 if (!test_and_clear_bit(NVMEQ_ENABLED, &nvmeq->flags))
1378 return 1;
1379
1380 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1381 mb();
1382
1383 nvmeq->dev->online_queues--;
1384 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1385 blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q);
1386 if (!test_and_clear_bit(NVMEQ_POLLED, &nvmeq->flags))
1387 pci_free_irq(to_pci_dev(nvmeq->dev->dev), nvmeq->cq_vector, nvmeq);
1388 return 0;
1389 }
1390
1391 static void nvme_suspend_io_queues(struct nvme_dev *dev)
1392 {
1393 int i;
1394
1395 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1396 nvme_suspend_queue(&dev->queues[i]);
1397 }
1398
1399 static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
1400 {
1401 struct nvme_queue *nvmeq = &dev->queues[0];
1402
1403 if (shutdown)
1404 nvme_shutdown_ctrl(&dev->ctrl);
1405 else
1406 nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1407
1408 nvme_poll_irqdisable(nvmeq, -1);
1409 }
1410
1411 static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1412 int entry_size)
1413 {
1414 int q_depth = dev->q_depth;
1415 unsigned q_size_aligned = roundup(q_depth * entry_size,
1416 dev->ctrl.page_size);
1417
1418 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1419 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1420 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
1421 q_depth = div_u64(mem_per_q, entry_size);
1422
1423 /*
1424 * Ensure the reduced q_depth is above some threshold where it
1425 * would be better to map queues in system memory with the
1426 * original depth
1427 */
1428 if (q_depth < 64)
1429 return -ENOMEM;
1430 }
1431
1432 return q_depth;
1433 }
1434
1435 static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1436 int qid, int depth)
1437 {
1438 struct pci_dev *pdev = to_pci_dev(dev->dev);
1439
1440 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1441 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(depth));
1442 if (nvmeq->sq_cmds) {
1443 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1444 nvmeq->sq_cmds);
1445 if (nvmeq->sq_dma_addr) {
1446 set_bit(NVMEQ_SQ_CMB, &nvmeq->flags);
1447 return 0;
1448 }
1449
1450 pci_free_p2pmem(pdev, nvmeq->sq_cmds, SQ_SIZE(depth));
1451 }
1452 }
1453
1454 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1455 &nvmeq->sq_dma_addr, GFP_KERNEL);
1456 if (!nvmeq->sq_cmds)
1457 return -ENOMEM;
1458 return 0;
1459 }
1460
1461 static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1462 {
1463 struct nvme_queue *nvmeq = &dev->queues[qid];
1464
1465 if (dev->ctrl.queue_count > qid)
1466 return 0;
1467
1468 nvmeq->cqes = dma_alloc_coherent(dev->dev, CQ_SIZE(depth),
1469 &nvmeq->cq_dma_addr, GFP_KERNEL);
1470 if (!nvmeq->cqes)
1471 goto free_nvmeq;
1472
1473 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
1474 goto free_cqdma;
1475
1476 nvmeq->dev = dev;
1477 spin_lock_init(&nvmeq->sq_lock);
1478 spin_lock_init(&nvmeq->cq_poll_lock);
1479 nvmeq->cq_head = 0;
1480 nvmeq->cq_phase = 1;
1481 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1482 nvmeq->q_depth = depth;
1483 nvmeq->qid = qid;
1484 dev->ctrl.queue_count++;
1485
1486 return 0;
1487
1488 free_cqdma:
1489 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1490 nvmeq->cq_dma_addr);
1491 free_nvmeq:
1492 return -ENOMEM;
1493 }
1494
1495 static int queue_request_irq(struct nvme_queue *nvmeq)
1496 {
1497 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1498 int nr = nvmeq->dev->ctrl.instance;
1499
1500 if (use_threaded_interrupts) {
1501 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check,
1502 nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1503 } else {
1504 return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq,
1505 NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid);
1506 }
1507 }
1508
1509 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1510 {
1511 struct nvme_dev *dev = nvmeq->dev;
1512
1513 nvmeq->sq_tail = 0;
1514 nvmeq->last_sq_tail = 0;
1515 nvmeq->cq_head = 0;
1516 nvmeq->cq_phase = 1;
1517 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1518 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1519 nvme_dbbuf_init(dev, nvmeq, qid);
1520 dev->online_queues++;
1521 wmb(); /* ensure the first interrupt sees the initialization */
1522 }
1523
1524 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1525 {
1526 struct nvme_dev *dev = nvmeq->dev;
1527 int result;
1528 u16 vector = 0;
1529
1530 clear_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
1531
1532 /*
1533 * A queue's vector matches the queue identifier unless the controller
1534 * has only one vector available.
1535 */
1536 if (!polled)
1537 vector = dev->num_vecs == 1 ? 0 : qid;
1538 else
1539 set_bit(NVMEQ_POLLED, &nvmeq->flags);
1540
1541 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1542 if (result)
1543 return result;
1544
1545 result = adapter_alloc_sq(dev, qid, nvmeq);
1546 if (result < 0)
1547 return result;
1548 else if (result)
1549 goto release_cq;
1550
1551 nvmeq->cq_vector = vector;
1552 nvme_init_queue(nvmeq, qid);
1553
1554 if (!polled) {
1555 nvmeq->cq_vector = vector;
1556 result = queue_request_irq(nvmeq);
1557 if (result < 0)
1558 goto release_sq;
1559 }
1560
1561 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1562 return result;
1563
1564 release_sq:
1565 dev->online_queues--;
1566 adapter_delete_sq(dev, qid);
1567 release_cq:
1568 adapter_delete_cq(dev, qid);
1569 return result;
1570 }
1571
1572 static const struct blk_mq_ops nvme_mq_admin_ops = {
1573 .queue_rq = nvme_queue_rq,
1574 .complete = nvme_pci_complete_rq,
1575 .init_hctx = nvme_admin_init_hctx,
1576 .exit_hctx = nvme_admin_exit_hctx,
1577 .init_request = nvme_init_request,
1578 .timeout = nvme_timeout,
1579 };
1580
1581 static const struct blk_mq_ops nvme_mq_ops = {
1582 .queue_rq = nvme_queue_rq,
1583 .complete = nvme_pci_complete_rq,
1584 .commit_rqs = nvme_commit_rqs,
1585 .init_hctx = nvme_init_hctx,
1586 .init_request = nvme_init_request,
1587 .map_queues = nvme_pci_map_queues,
1588 .timeout = nvme_timeout,
1589 .poll = nvme_poll,
1590 };
1591
1592 static void nvme_dev_remove_admin(struct nvme_dev *dev)
1593 {
1594 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1595 /*
1596 * If the controller was reset during removal, it's possible
1597 * user requests may be waiting on a stopped queue. Start the
1598 * queue to flush these to completion.
1599 */
1600 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1601 blk_cleanup_queue(dev->ctrl.admin_q);
1602 blk_mq_free_tag_set(&dev->admin_tagset);
1603 }
1604 }
1605
1606 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1607 {
1608 if (!dev->ctrl.admin_q) {
1609 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1610 dev->admin_tagset.nr_hw_queues = 1;
1611
1612 dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1613 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1614 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
1615 dev->admin_tagset.cmd_size = sizeof(struct nvme_iod);
1616 dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED;
1617 dev->admin_tagset.driver_data = dev;
1618
1619 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1620 return -ENOMEM;
1621 dev->ctrl.admin_tagset = &dev->admin_tagset;
1622
1623 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1624 if (IS_ERR(dev->ctrl.admin_q)) {
1625 blk_mq_free_tag_set(&dev->admin_tagset);
1626 return -ENOMEM;
1627 }
1628 if (!blk_get_queue(dev->ctrl.admin_q)) {
1629 nvme_dev_remove_admin(dev);
1630 dev->ctrl.admin_q = NULL;
1631 return -ENODEV;
1632 }
1633 } else
1634 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
1635
1636 return 0;
1637 }
1638
1639 static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1640 {
1641 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1642 }
1643
1644 static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1645 {
1646 struct pci_dev *pdev = to_pci_dev(dev->dev);
1647
1648 if (size <= dev->bar_mapped_size)
1649 return 0;
1650 if (size > pci_resource_len(pdev, 0))
1651 return -ENOMEM;
1652 if (dev->bar)
1653 iounmap(dev->bar);
1654 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1655 if (!dev->bar) {
1656 dev->bar_mapped_size = 0;
1657 return -ENOMEM;
1658 }
1659 dev->bar_mapped_size = size;
1660 dev->dbs = dev->bar + NVME_REG_DBS;
1661
1662 return 0;
1663 }
1664
1665 static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1666 {
1667 int result;
1668 u32 aqa;
1669 struct nvme_queue *nvmeq;
1670
1671 result = nvme_remap_bar(dev, db_bar_size(dev, 0));
1672 if (result < 0)
1673 return result;
1674
1675 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1676 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1677
1678 if (dev->subsystem &&
1679 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1680 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
1681
1682 result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap);
1683 if (result < 0)
1684 return result;
1685
1686 result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1687 if (result)
1688 return result;
1689
1690 nvmeq = &dev->queues[0];
1691 aqa = nvmeq->q_depth - 1;
1692 aqa |= aqa << 16;
1693
1694 writel(aqa, dev->bar + NVME_REG_AQA);
1695 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1696 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
1697
1698 result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap);
1699 if (result)
1700 return result;
1701
1702 nvmeq->cq_vector = 0;
1703 nvme_init_queue(nvmeq, 0);
1704 result = queue_request_irq(nvmeq);
1705 if (result) {
1706 dev->online_queues--;
1707 return result;
1708 }
1709
1710 set_bit(NVMEQ_ENABLED, &nvmeq->flags);
1711 return result;
1712 }
1713
1714 static int nvme_create_io_queues(struct nvme_dev *dev)
1715 {
1716 unsigned i, max, rw_queues;
1717 int ret = 0;
1718
1719 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1720 if (nvme_alloc_queue(dev, i, dev->q_depth)) {
1721 ret = -ENOMEM;
1722 break;
1723 }
1724 }
1725
1726 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1727 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1728 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1729 dev->io_queues[HCTX_TYPE_READ];
1730 } else {
1731 rw_queues = max;
1732 }
1733
1734 for (i = dev->online_queues; i <= max; i++) {
1735 bool polled = i > rw_queues;
1736
1737 ret = nvme_create_queue(&dev->queues[i], i, polled);
1738 if (ret)
1739 break;
1740 }
1741
1742 /*
1743 * Ignore failing Create SQ/CQ commands, we can continue with less
1744 * than the desired amount of queues, and even a controller without
1745 * I/O queues can still be used to issue admin commands. This might
1746 * be useful to upgrade a buggy firmware for example.
1747 */
1748 return ret >= 0 ? 0 : ret;
1749 }
1750
1751 static ssize_t nvme_cmb_show(struct device *dev,
1752 struct device_attribute *attr,
1753 char *buf)
1754 {
1755 struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev));
1756
1757 return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz : x%08x\n",
1758 ndev->cmbloc, ndev->cmbsz);
1759 }
1760 static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL);
1761
1762 static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1763 {
1764 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1765
1766 return 1ULL << (12 + 4 * szu);
1767 }
1768
1769 static u32 nvme_cmb_size(struct nvme_dev *dev)
1770 {
1771 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1772 }
1773
1774 static void nvme_map_cmb(struct nvme_dev *dev)
1775 {
1776 u64 size, offset;
1777 resource_size_t bar_size;
1778 struct pci_dev *pdev = to_pci_dev(dev->dev);
1779 int bar;
1780
1781 if (dev->cmb_size)
1782 return;
1783
1784 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
1785 if (!dev->cmbsz)
1786 return;
1787 dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
1788
1789 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1790 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1791 bar = NVME_CMB_BIR(dev->cmbloc);
1792 bar_size = pci_resource_len(pdev, bar);
1793
1794 if (offset > bar_size)
1795 return;
1796
1797 /*
1798 * Controllers may support a CMB size larger than their BAR,
1799 * for example, due to being behind a bridge. Reduce the CMB to
1800 * the reported size of the BAR
1801 */
1802 if (size > bar_size - offset)
1803 size = bar_size - offset;
1804
1805 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1806 dev_warn(dev->ctrl.device,
1807 "failed to register the CMB\n");
1808 return;
1809 }
1810
1811 dev->cmb_size = size;
1812 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1813
1814 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1815 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1816 pci_p2pmem_publish(pdev, true);
1817
1818 if (sysfs_add_file_to_group(&dev->ctrl.device->kobj,
1819 &dev_attr_cmb.attr, NULL))
1820 dev_warn(dev->ctrl.device,
1821 "failed to add sysfs attribute for CMB\n");
1822 }
1823
1824 static inline void nvme_release_cmb(struct nvme_dev *dev)
1825 {
1826 if (dev->cmb_size) {
1827 sysfs_remove_file_from_group(&dev->ctrl.device->kobj,
1828 &dev_attr_cmb.attr, NULL);
1829 dev->cmb_size = 0;
1830 }
1831 }
1832
1833 static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1834 {
1835 u64 dma_addr = dev->host_mem_descs_dma;
1836 struct nvme_command c;
1837 int ret;
1838
1839 memset(&c, 0, sizeof(c));
1840 c.features.opcode = nvme_admin_set_features;
1841 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1842 c.features.dword11 = cpu_to_le32(bits);
1843 c.features.dword12 = cpu_to_le32(dev->host_mem_size >>
1844 ilog2(dev->ctrl.page_size));
1845 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1846 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1847 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1848
1849 ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
1850 if (ret) {
1851 dev_warn(dev->ctrl.device,
1852 "failed to set host mem (err %d, flags %#x).\n",
1853 ret, bits);
1854 }
1855 return ret;
1856 }
1857
1858 static void nvme_free_host_mem(struct nvme_dev *dev)
1859 {
1860 int i;
1861
1862 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1863 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1864 size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size;
1865
1866 dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i],
1867 le64_to_cpu(desc->addr),
1868 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1869 }
1870
1871 kfree(dev->host_mem_desc_bufs);
1872 dev->host_mem_desc_bufs = NULL;
1873 dma_free_coherent(dev->dev,
1874 dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1875 dev->host_mem_descs, dev->host_mem_descs_dma);
1876 dev->host_mem_descs = NULL;
1877 dev->nr_host_mem_descs = 0;
1878 }
1879
1880 static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1881 u32 chunk_size)
1882 {
1883 struct nvme_host_mem_buf_desc *descs;
1884 u32 max_entries, len;
1885 dma_addr_t descs_dma;
1886 int i = 0;
1887 void **bufs;
1888 u64 size, tmp;
1889
1890 tmp = (preferred + chunk_size - 1);
1891 do_div(tmp, chunk_size);
1892 max_entries = tmp;
1893
1894 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1895 max_entries = dev->ctrl.hmmaxd;
1896
1897 descs = dma_alloc_coherent(dev->dev, max_entries * sizeof(*descs),
1898 &descs_dma, GFP_KERNEL);
1899 if (!descs)
1900 goto out;
1901
1902 bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL);
1903 if (!bufs)
1904 goto out_free_descs;
1905
1906 for (size = 0; size < preferred && i < max_entries; size += len) {
1907 dma_addr_t dma_addr;
1908
1909 len = min_t(u64, chunk_size, preferred - size);
1910 bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL,
1911 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1912 if (!bufs[i])
1913 break;
1914
1915 descs[i].addr = cpu_to_le64(dma_addr);
1916 descs[i].size = cpu_to_le32(len / dev->ctrl.page_size);
1917 i++;
1918 }
1919
1920 if (!size)
1921 goto out_free_bufs;
1922
1923 dev->nr_host_mem_descs = i;
1924 dev->host_mem_size = size;
1925 dev->host_mem_descs = descs;
1926 dev->host_mem_descs_dma = descs_dma;
1927 dev->host_mem_desc_bufs = bufs;
1928 return 0;
1929
1930 out_free_bufs:
1931 while (--i >= 0) {
1932 size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size;
1933
1934 dma_free_attrs(dev->dev, size, bufs[i],
1935 le64_to_cpu(descs[i].addr),
1936 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1937 }
1938
1939 kfree(bufs);
1940 out_free_descs:
1941 dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs,
1942 descs_dma);
1943 out:
1944 dev->host_mem_descs = NULL;
1945 return -ENOMEM;
1946 }
1947
1948 static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
1949 {
1950 u32 chunk_size;
1951
1952 /* start big and work our way down */
1953 for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
1954 chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
1955 chunk_size /= 2) {
1956 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
1957 if (!min || dev->host_mem_size >= min)
1958 return 0;
1959 nvme_free_host_mem(dev);
1960 }
1961 }
1962
1963 return -ENOMEM;
1964 }
1965
1966 static int nvme_setup_host_mem(struct nvme_dev *dev)
1967 {
1968 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
1969 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
1970 u64 min = (u64)dev->ctrl.hmmin * 4096;
1971 u32 enable_bits = NVME_HOST_MEM_ENABLE;
1972 int ret;
1973
1974 preferred = min(preferred, max);
1975 if (min > max) {
1976 dev_warn(dev->ctrl.device,
1977 "min host memory (%lld MiB) above limit (%d MiB).\n",
1978 min >> ilog2(SZ_1M), max_host_mem_size_mb);
1979 nvme_free_host_mem(dev);
1980 return 0;
1981 }
1982
1983 /*
1984 * If we already have a buffer allocated check if we can reuse it.
1985 */
1986 if (dev->host_mem_descs) {
1987 if (dev->host_mem_size >= min)
1988 enable_bits |= NVME_HOST_MEM_RETURN;
1989 else
1990 nvme_free_host_mem(dev);
1991 }
1992
1993 if (!dev->host_mem_descs) {
1994 if (nvme_alloc_host_mem(dev, min, preferred)) {
1995 dev_warn(dev->ctrl.device,
1996 "failed to allocate host memory buffer.\n");
1997 return 0; /* controller must work without HMB */
1998 }
1999
2000 dev_info(dev->ctrl.device,
2001 "allocated %lld MiB host memory buffer.\n",
2002 dev->host_mem_size >> ilog2(SZ_1M));
2003 }
2004
2005 ret = nvme_set_host_mem(dev, enable_bits);
2006 if (ret)
2007 nvme_free_host_mem(dev);
2008 return ret;
2009 }
2010
2011 /*
2012 * nirqs is the number of interrupts available for write and read
2013 * queues. The core already reserved an interrupt for the admin queue.
2014 */
2015 static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2016 {
2017 struct nvme_dev *dev = affd->priv;
2018 unsigned int nr_read_queues;
2019
2020 /*
2021 * If there is no interupt available for queues, ensure that
2022 * the default queue is set to 1. The affinity set size is
2023 * also set to one, but the irq core ignores it for this case.
2024 *
2025 * If only one interrupt is available or 'write_queue' == 0, combine
2026 * write and read queues.
2027 *
2028 * If 'write_queues' > 0, ensure it leaves room for at least one read
2029 * queue.
2030 */
2031 if (!nrirqs) {
2032 nrirqs = 1;
2033 nr_read_queues = 0;
2034 } else if (nrirqs == 1 || !write_queues) {
2035 nr_read_queues = 0;
2036 } else if (write_queues >= nrirqs) {
2037 nr_read_queues = 1;
2038 } else {
2039 nr_read_queues = nrirqs - write_queues;
2040 }
2041
2042 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2043 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2044 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2045 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2046 affd->nr_sets = nr_read_queues ? 2 : 1;
2047 }
2048
2049 static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2050 {
2051 struct pci_dev *pdev = to_pci_dev(dev->dev);
2052 struct irq_affinity affd = {
2053 .pre_vectors = 1,
2054 .calc_sets = nvme_calc_irq_sets,
2055 .priv = dev,
2056 };
2057 unsigned int irq_queues, this_p_queues;
2058 unsigned int nr_cpus = num_possible_cpus();
2059
2060 /*
2061 * Poll queues don't need interrupts, but we need at least one IO
2062 * queue left over for non-polled IO.
2063 */
2064 this_p_queues = poll_queues;
2065 if (this_p_queues >= nr_io_queues) {
2066 this_p_queues = nr_io_queues - 1;
2067 irq_queues = 1;
2068 } else {
2069 if (nr_cpus < nr_io_queues - this_p_queues)
2070 irq_queues = nr_cpus + 1;
2071 else
2072 irq_queues = nr_io_queues - this_p_queues + 1;
2073 }
2074 dev->io_queues[HCTX_TYPE_POLL] = this_p_queues;
2075
2076 /* Initialize for the single interrupt case */
2077 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2078 dev->io_queues[HCTX_TYPE_READ] = 0;
2079
2080 return pci_alloc_irq_vectors_affinity(pdev, 1, irq_queues,
2081 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd);
2082 }
2083
2084 static void nvme_disable_io_queues(struct nvme_dev *dev)
2085 {
2086 if (__nvme_disable_io_queues(dev, nvme_admin_delete_sq))
2087 __nvme_disable_io_queues(dev, nvme_admin_delete_cq);
2088 }
2089
2090 static int nvme_setup_io_queues(struct nvme_dev *dev)
2091 {
2092 struct nvme_queue *adminq = &dev->queues[0];
2093 struct pci_dev *pdev = to_pci_dev(dev->dev);
2094 int result, nr_io_queues;
2095 unsigned long size;
2096
2097 nr_io_queues = max_io_queues();
2098 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
2099 if (result < 0)
2100 return result;
2101
2102 if (nr_io_queues == 0)
2103 return 0;
2104
2105 clear_bit(NVMEQ_ENABLED, &adminq->flags);
2106
2107 if (dev->cmb_use_sqes) {
2108 result = nvme_cmb_qdepth(dev, nr_io_queues,
2109 sizeof(struct nvme_command));
2110 if (result > 0)
2111 dev->q_depth = result;
2112 else
2113 dev->cmb_use_sqes = false;
2114 }
2115
2116 do {
2117 size = db_bar_size(dev, nr_io_queues);
2118 result = nvme_remap_bar(dev, size);
2119 if (!result)
2120 break;
2121 if (!--nr_io_queues)
2122 return -ENOMEM;
2123 } while (1);
2124 adminq->q_db = dev->dbs;
2125
2126 retry:
2127 /* Deregister the admin queue's interrupt */
2128 pci_free_irq(pdev, 0, adminq);
2129
2130 /*
2131 * If we enable msix early due to not intx, disable it again before
2132 * setting up the full range we need.
2133 */
2134 pci_free_irq_vectors(pdev);
2135
2136 result = nvme_setup_irqs(dev, nr_io_queues);
2137 if (result <= 0)
2138 return -EIO;
2139
2140 dev->num_vecs = result;
2141 result = max(result - 1, 1);
2142 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2143
2144 /*
2145 * Should investigate if there's a performance win from allocating
2146 * more queues than interrupt vectors; it might allow the submission
2147 * path to scale better, even if the receive path is limited by the
2148 * number of interrupts.
2149 */
2150 result = queue_request_irq(adminq);
2151 if (result)
2152 return result;
2153 set_bit(NVMEQ_ENABLED, &adminq->flags);
2154
2155 result = nvme_create_io_queues(dev);
2156 if (result || dev->online_queues < 2)
2157 return result;
2158
2159 if (dev->online_queues - 1 < dev->max_qid) {
2160 nr_io_queues = dev->online_queues - 1;
2161 nvme_disable_io_queues(dev);
2162 nvme_suspend_io_queues(dev);
2163 goto retry;
2164 }
2165 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2166 dev->io_queues[HCTX_TYPE_DEFAULT],
2167 dev->io_queues[HCTX_TYPE_READ],
2168 dev->io_queues[HCTX_TYPE_POLL]);
2169 return 0;
2170 }
2171
2172 static void nvme_del_queue_end(struct request *req, blk_status_t error)
2173 {
2174 struct nvme_queue *nvmeq = req->end_io_data;
2175
2176 blk_mq_free_request(req);
2177 complete(&nvmeq->delete_done);
2178 }
2179
2180 static void nvme_del_cq_end(struct request *req, blk_status_t error)
2181 {
2182 struct nvme_queue *nvmeq = req->end_io_data;
2183
2184 if (error)
2185 set_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags);
2186
2187 nvme_del_queue_end(req, error);
2188 }
2189
2190 static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2191 {
2192 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2193 struct request *req;
2194 struct nvme_command cmd;
2195
2196 memset(&cmd, 0, sizeof(cmd));
2197 cmd.delete_queue.opcode = opcode;
2198 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2199
2200 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY);
2201 if (IS_ERR(req))
2202 return PTR_ERR(req);
2203
2204 req->timeout = ADMIN_TIMEOUT;
2205 req->end_io_data = nvmeq;
2206
2207 init_completion(&nvmeq->delete_done);
2208 blk_execute_rq_nowait(q, NULL, req, false,
2209 opcode == nvme_admin_delete_cq ?
2210 nvme_del_cq_end : nvme_del_queue_end);
2211 return 0;
2212 }
2213
2214 static bool __nvme_disable_io_queues(struct nvme_dev *dev, u8 opcode)
2215 {
2216 int nr_queues = dev->online_queues - 1, sent = 0;
2217 unsigned long timeout;
2218
2219 retry:
2220 timeout = ADMIN_TIMEOUT;
2221 while (nr_queues > 0) {
2222 if (nvme_delete_queue(&dev->queues[nr_queues], opcode))
2223 break;
2224 nr_queues--;
2225 sent++;
2226 }
2227 while (sent) {
2228 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2229
2230 timeout = wait_for_completion_io_timeout(&nvmeq->delete_done,
2231 timeout);
2232 if (timeout == 0)
2233 return false;
2234
2235 /* handle any remaining CQEs */
2236 if (opcode == nvme_admin_delete_cq &&
2237 !test_bit(NVMEQ_DELETE_ERROR, &nvmeq->flags))
2238 nvme_poll_irqdisable(nvmeq, -1);
2239
2240 sent--;
2241 if (nr_queues)
2242 goto retry;
2243 }
2244 return true;
2245 }
2246
2247 /*
2248 * return error value only when tagset allocation failed
2249 */
2250 static int nvme_dev_add(struct nvme_dev *dev)
2251 {
2252 int ret;
2253
2254 if (!dev->ctrl.tagset) {
2255 dev->tagset.ops = &nvme_mq_ops;
2256 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2257 dev->tagset.nr_maps = 2; /* default + read */
2258 if (dev->io_queues[HCTX_TYPE_POLL])
2259 dev->tagset.nr_maps++;
2260 dev->tagset.timeout = NVME_IO_TIMEOUT;
2261 dev->tagset.numa_node = dev_to_node(dev->dev);
2262 dev->tagset.queue_depth =
2263 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2264 dev->tagset.cmd_size = sizeof(struct nvme_iod);
2265 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2266 dev->tagset.driver_data = dev;
2267
2268 ret = blk_mq_alloc_tag_set(&dev->tagset);
2269 if (ret) {
2270 dev_warn(dev->ctrl.device,
2271 "IO queues tagset allocation failed %d\n", ret);
2272 return ret;
2273 }
2274 dev->ctrl.tagset = &dev->tagset;
2275 } else {
2276 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
2277
2278 /* Free previously allocated queues that are no longer usable */
2279 nvme_free_queues(dev, dev->online_queues);
2280 }
2281
2282 nvme_dbbuf_set(dev);
2283 return 0;
2284 }
2285
2286 static int nvme_pci_enable(struct nvme_dev *dev)
2287 {
2288 int result = -ENOMEM;
2289 struct pci_dev *pdev = to_pci_dev(dev->dev);
2290
2291 if (pci_enable_device_mem(pdev))
2292 return result;
2293
2294 pci_set_master(pdev);
2295
2296 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)))
2297 goto disable;
2298
2299 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
2300 result = -ENODEV;
2301 goto disable;
2302 }
2303
2304 /*
2305 * Some devices and/or platforms don't advertise or work with INTx
2306 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2307 * adjust this later.
2308 */
2309 result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES);
2310 if (result < 0)
2311 return result;
2312
2313 dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2314
2315 dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2316 io_queue_depth);
2317 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2318 dev->dbs = dev->bar + 4096;
2319
2320 /*
2321 * Temporary fix for the Apple controller found in the MacBook8,1 and
2322 * some MacBook7,1 to avoid controller resets and data loss.
2323 */
2324 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2325 dev->q_depth = 2;
2326 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2327 "set queue depth=%u to work around controller resets\n",
2328 dev->q_depth);
2329 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2330 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2331 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2332 dev->q_depth = 64;
2333 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2334 "set queue depth=%u\n", dev->q_depth);
2335 }
2336
2337 nvme_map_cmb(dev);
2338
2339 pci_enable_pcie_error_reporting(pdev);
2340 pci_save_state(pdev);
2341 return 0;
2342
2343 disable:
2344 pci_disable_device(pdev);
2345 return result;
2346 }
2347
2348 static void nvme_dev_unmap(struct nvme_dev *dev)
2349 {
2350 if (dev->bar)
2351 iounmap(dev->bar);
2352 pci_release_mem_regions(to_pci_dev(dev->dev));
2353 }
2354
2355 static void nvme_pci_disable(struct nvme_dev *dev)
2356 {
2357 struct pci_dev *pdev = to_pci_dev(dev->dev);
2358
2359 pci_free_irq_vectors(pdev);
2360
2361 if (pci_is_enabled(pdev)) {
2362 pci_disable_pcie_error_reporting(pdev);
2363 pci_disable_device(pdev);
2364 }
2365 }
2366
2367 static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2368 {
2369 bool dead = true, freeze = false;
2370 struct pci_dev *pdev = to_pci_dev(dev->dev);
2371
2372 mutex_lock(&dev->shutdown_lock);
2373 if (pci_is_enabled(pdev)) {
2374 u32 csts = readl(dev->bar + NVME_REG_CSTS);
2375
2376 if (dev->ctrl.state == NVME_CTRL_LIVE ||
2377 dev->ctrl.state == NVME_CTRL_RESETTING) {
2378 freeze = true;
2379 nvme_start_freeze(&dev->ctrl);
2380 }
2381 dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) ||
2382 pdev->error_state != pci_channel_io_normal);
2383 }
2384
2385 /*
2386 * Give the controller a chance to complete all entered requests if
2387 * doing a safe shutdown.
2388 */
2389 if (!dead && shutdown && freeze)
2390 nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT);
2391
2392 nvme_stop_queues(&dev->ctrl);
2393
2394 if (!dead && dev->ctrl.queue_count > 0) {
2395 nvme_disable_io_queues(dev);
2396 nvme_disable_admin_queue(dev, shutdown);
2397 }
2398 nvme_suspend_io_queues(dev);
2399 nvme_suspend_queue(&dev->queues[0]);
2400 nvme_pci_disable(dev);
2401
2402 blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl);
2403 blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl);
2404
2405 /*
2406 * The driver will not be starting up queues again if shutting down so
2407 * must flush all entered requests to their failed completion to avoid
2408 * deadlocking blk-mq hot-cpu notifier.
2409 */
2410 if (shutdown) {
2411 nvme_start_queues(&dev->ctrl);
2412 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2413 blk_mq_unquiesce_queue(dev->ctrl.admin_q);
2414 }
2415 mutex_unlock(&dev->shutdown_lock);
2416 }
2417
2418 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2419 {
2420 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
2421 PAGE_SIZE, PAGE_SIZE, 0);
2422 if (!dev->prp_page_pool)
2423 return -ENOMEM;
2424
2425 /* Optimisation for I/Os between 4k and 128k */
2426 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
2427 256, 256, 0);
2428 if (!dev->prp_small_pool) {
2429 dma_pool_destroy(dev->prp_page_pool);
2430 return -ENOMEM;
2431 }
2432 return 0;
2433 }
2434
2435 static void nvme_release_prp_pools(struct nvme_dev *dev)
2436 {
2437 dma_pool_destroy(dev->prp_page_pool);
2438 dma_pool_destroy(dev->prp_small_pool);
2439 }
2440
2441 static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2442 {
2443 struct nvme_dev *dev = to_nvme_dev(ctrl);
2444
2445 nvme_dbbuf_dma_free(dev);
2446 put_device(dev->dev);
2447 if (dev->tagset.tags)
2448 blk_mq_free_tag_set(&dev->tagset);
2449 if (dev->ctrl.admin_q)
2450 blk_put_queue(dev->ctrl.admin_q);
2451 kfree(dev->queues);
2452 free_opal_dev(dev->ctrl.opal_dev);
2453 mempool_destroy(dev->iod_mempool);
2454 kfree(dev);
2455 }
2456
2457 static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
2458 {
2459 nvme_get_ctrl(&dev->ctrl);
2460 nvme_dev_disable(dev, false);
2461 nvme_kill_queues(&dev->ctrl);
2462 if (!queue_work(nvme_wq, &dev->remove_work))
2463 nvme_put_ctrl(&dev->ctrl);
2464 }
2465
2466 static void nvme_reset_work(struct work_struct *work)
2467 {
2468 struct nvme_dev *dev =
2469 container_of(work, struct nvme_dev, ctrl.reset_work);
2470 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2471 int result;
2472 enum nvme_ctrl_state new_state = NVME_CTRL_LIVE;
2473
2474 if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) {
2475 result = -ENODEV;
2476 goto out;
2477 }
2478
2479 /*
2480 * If we're called to reset a live controller first shut it down before
2481 * moving on.
2482 */
2483 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2484 nvme_dev_disable(dev, false);
2485 nvme_sync_queues(&dev->ctrl);
2486
2487 mutex_lock(&dev->shutdown_lock);
2488 result = nvme_pci_enable(dev);
2489 if (result)
2490 goto out_unlock;
2491
2492 result = nvme_pci_configure_admin_queue(dev);
2493 if (result)
2494 goto out_unlock;
2495
2496 result = nvme_alloc_admin_tags(dev);
2497 if (result)
2498 goto out_unlock;
2499
2500 /*
2501 * Limit the max command size to prevent iod->sg allocations going
2502 * over a single page.
2503 */
2504 dev->ctrl.max_hw_sectors = min_t(u32,
2505 NVME_MAX_KB_SZ << 1, dma_max_mapping_size(dev->dev) >> 9);
2506 dev->ctrl.max_segments = NVME_MAX_SEGS;
2507
2508 /*
2509 * Don't limit the IOMMU merged segment size.
2510 */
2511 dma_set_max_seg_size(dev->dev, 0xffffffff);
2512
2513 mutex_unlock(&dev->shutdown_lock);
2514
2515 /*
2516 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2517 * initializing procedure here.
2518 */
2519 if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) {
2520 dev_warn(dev->ctrl.device,
2521 "failed to mark controller CONNECTING\n");
2522 result = -EBUSY;
2523 goto out;
2524 }
2525
2526 result = nvme_init_identify(&dev->ctrl);
2527 if (result)
2528 goto out;
2529
2530 if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) {
2531 if (!dev->ctrl.opal_dev)
2532 dev->ctrl.opal_dev =
2533 init_opal_dev(&dev->ctrl, &nvme_sec_submit);
2534 else if (was_suspend)
2535 opal_unlock_from_suspend(dev->ctrl.opal_dev);
2536 } else {
2537 free_opal_dev(dev->ctrl.opal_dev);
2538 dev->ctrl.opal_dev = NULL;
2539 }
2540
2541 if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) {
2542 result = nvme_dbbuf_dma_alloc(dev);
2543 if (result)
2544 dev_warn(dev->dev,
2545 "unable to allocate dma for dbbuf\n");
2546 }
2547
2548 if (dev->ctrl.hmpre) {
2549 result = nvme_setup_host_mem(dev);
2550 if (result < 0)
2551 goto out;
2552 }
2553
2554 result = nvme_setup_io_queues(dev);
2555 if (result)
2556 goto out;
2557
2558 /*
2559 * Keep the controller around but remove all namespaces if we don't have
2560 * any working I/O queue.
2561 */
2562 if (dev->online_queues < 2) {
2563 dev_warn(dev->ctrl.device, "IO queues not created\n");
2564 nvme_kill_queues(&dev->ctrl);
2565 nvme_remove_namespaces(&dev->ctrl);
2566 new_state = NVME_CTRL_ADMIN_ONLY;
2567 } else {
2568 nvme_start_queues(&dev->ctrl);
2569 nvme_wait_freeze(&dev->ctrl);
2570 /* hit this only when allocate tagset fails */
2571 if (nvme_dev_add(dev))
2572 new_state = NVME_CTRL_ADMIN_ONLY;
2573 nvme_unfreeze(&dev->ctrl);
2574 }
2575
2576 /*
2577 * If only admin queue live, keep it to do further investigation or
2578 * recovery.
2579 */
2580 if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) {
2581 dev_warn(dev->ctrl.device,
2582 "failed to mark controller state %d\n", new_state);
2583 result = -ENODEV;
2584 goto out;
2585 }
2586
2587 nvme_start_ctrl(&dev->ctrl);
2588 return;
2589
2590 out_unlock:
2591 mutex_unlock(&dev->shutdown_lock);
2592 out:
2593 if (result)
2594 dev_warn(dev->ctrl.device,
2595 "Removing after probe failure status: %d\n", result);
2596 nvme_remove_dead_ctrl(dev);
2597 }
2598
2599 static void nvme_remove_dead_ctrl_work(struct work_struct *work)
2600 {
2601 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
2602 struct pci_dev *pdev = to_pci_dev(dev->dev);
2603
2604 if (pci_get_drvdata(pdev))
2605 device_release_driver(&pdev->dev);
2606 nvme_put_ctrl(&dev->ctrl);
2607 }
2608
2609 static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2610 {
2611 *val = readl(to_nvme_dev(ctrl)->bar + off);
2612 return 0;
2613 }
2614
2615 static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2616 {
2617 writel(val, to_nvme_dev(ctrl)->bar + off);
2618 return 0;
2619 }
2620
2621 static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2622 {
2623 *val = readq(to_nvme_dev(ctrl)->bar + off);
2624 return 0;
2625 }
2626
2627 static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2628 {
2629 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2630
2631 return snprintf(buf, size, "%s", dev_name(&pdev->dev));
2632 }
2633
2634 static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2635 .name = "pcie",
2636 .module = THIS_MODULE,
2637 .flags = NVME_F_METADATA_SUPPORTED |
2638 NVME_F_PCI_P2PDMA,
2639 .reg_read32 = nvme_pci_reg_read32,
2640 .reg_write32 = nvme_pci_reg_write32,
2641 .reg_read64 = nvme_pci_reg_read64,
2642 .free_ctrl = nvme_pci_free_ctrl,
2643 .submit_async_event = nvme_pci_submit_async_event,
2644 .get_address = nvme_pci_get_address,
2645 };
2646
2647 static int nvme_dev_map(struct nvme_dev *dev)
2648 {
2649 struct pci_dev *pdev = to_pci_dev(dev->dev);
2650
2651 if (pci_request_mem_regions(pdev, "nvme"))
2652 return -ENODEV;
2653
2654 if (nvme_remap_bar(dev, NVME_REG_DBS + 4096))
2655 goto release;
2656
2657 return 0;
2658 release:
2659 pci_release_mem_regions(pdev);
2660 return -ENODEV;
2661 }
2662
2663 static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2664 {
2665 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2666 /*
2667 * Several Samsung devices seem to drop off the PCIe bus
2668 * randomly when APST is on and uses the deepest sleep state.
2669 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2670 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2671 * 950 PRO 256GB", but it seems to be restricted to two Dell
2672 * laptops.
2673 */
2674 if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") &&
2675 (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") ||
2676 dmi_match(DMI_PRODUCT_NAME, "Precision 5510")))
2677 return NVME_QUIRK_NO_DEEPEST_PS;
2678 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2679 /*
2680 * Samsung SSD 960 EVO drops off the PCIe bus after system
2681 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2682 * within few minutes after bootup on a Coffee Lake board -
2683 * ASUS PRIME Z370-A
2684 */
2685 if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") &&
2686 (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") ||
2687 dmi_match(DMI_BOARD_NAME, "PRIME Z370-A")))
2688 return NVME_QUIRK_NO_APST;
2689 }
2690
2691 return 0;
2692 }
2693
2694 static void nvme_async_probe(void *data, async_cookie_t cookie)
2695 {
2696 struct nvme_dev *dev = data;
2697
2698 flush_work(&dev->ctrl.reset_work);
2699 flush_work(&dev->ctrl.scan_work);
2700 nvme_put_ctrl(&dev->ctrl);
2701 }
2702
2703 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2704 {
2705 int node, result = -ENOMEM;
2706 struct nvme_dev *dev;
2707 unsigned long quirks = id->driver_data;
2708 size_t alloc_size;
2709
2710 node = dev_to_node(&pdev->dev);
2711 if (node == NUMA_NO_NODE)
2712 set_dev_node(&pdev->dev, first_memory_node);
2713
2714 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2715 if (!dev)
2716 return -ENOMEM;
2717
2718 dev->queues = kcalloc_node(max_queue_count(), sizeof(struct nvme_queue),
2719 GFP_KERNEL, node);
2720 if (!dev->queues)
2721 goto free;
2722
2723 dev->dev = get_device(&pdev->dev);
2724 pci_set_drvdata(pdev, dev);
2725
2726 result = nvme_dev_map(dev);
2727 if (result)
2728 goto put_pci;
2729
2730 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2731 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
2732 mutex_init(&dev->shutdown_lock);
2733
2734 result = nvme_setup_prp_pools(dev);
2735 if (result)
2736 goto unmap;
2737
2738 quirks |= check_vendor_combination_bug(pdev);
2739
2740 /*
2741 * Double check that our mempool alloc size will cover the biggest
2742 * command we support.
2743 */
2744 alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ,
2745 NVME_MAX_SEGS, true);
2746 WARN_ON_ONCE(alloc_size > PAGE_SIZE);
2747
2748 dev->iod_mempool = mempool_create_node(1, mempool_kmalloc,
2749 mempool_kfree,
2750 (void *) alloc_size,
2751 GFP_KERNEL, node);
2752 if (!dev->iod_mempool) {
2753 result = -ENOMEM;
2754 goto release_pools;
2755 }
2756
2757 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2758 quirks);
2759 if (result)
2760 goto release_mempool;
2761
2762 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2763
2764 nvme_reset_ctrl(&dev->ctrl);
2765 nvme_get_ctrl(&dev->ctrl);
2766 async_schedule(nvme_async_probe, dev);
2767
2768 return 0;
2769
2770 release_mempool:
2771 mempool_destroy(dev->iod_mempool);
2772 release_pools:
2773 nvme_release_prp_pools(dev);
2774 unmap:
2775 nvme_dev_unmap(dev);
2776 put_pci:
2777 put_device(dev->dev);
2778 free:
2779 kfree(dev->queues);
2780 kfree(dev);
2781 return result;
2782 }
2783
2784 static void nvme_reset_prepare(struct pci_dev *pdev)
2785 {
2786 struct nvme_dev *dev = pci_get_drvdata(pdev);
2787 nvme_dev_disable(dev, false);
2788 }
2789
2790 static void nvme_reset_done(struct pci_dev *pdev)
2791 {
2792 struct nvme_dev *dev = pci_get_drvdata(pdev);
2793 nvme_reset_ctrl_sync(&dev->ctrl);
2794 }
2795
2796 static void nvme_shutdown(struct pci_dev *pdev)
2797 {
2798 struct nvme_dev *dev = pci_get_drvdata(pdev);
2799 nvme_dev_disable(dev, true);
2800 }
2801
2802 /*
2803 * The driver's remove may be called on a device in a partially initialized
2804 * state. This function must not have any dependencies on the device state in
2805 * order to proceed.
2806 */
2807 static void nvme_remove(struct pci_dev *pdev)
2808 {
2809 struct nvme_dev *dev = pci_get_drvdata(pdev);
2810
2811 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING);
2812 pci_set_drvdata(pdev, NULL);
2813
2814 if (!pci_device_is_present(pdev)) {
2815 nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD);
2816 nvme_dev_disable(dev, true);
2817 nvme_dev_remove_admin(dev);
2818 }
2819
2820 flush_work(&dev->ctrl.reset_work);
2821 nvme_stop_ctrl(&dev->ctrl);
2822 nvme_remove_namespaces(&dev->ctrl);
2823 nvme_dev_disable(dev, true);
2824 nvme_release_cmb(dev);
2825 nvme_free_host_mem(dev);
2826 nvme_dev_remove_admin(dev);
2827 nvme_free_queues(dev, 0);
2828 nvme_uninit_ctrl(&dev->ctrl);
2829 nvme_release_prp_pools(dev);
2830 nvme_dev_unmap(dev);
2831 nvme_put_ctrl(&dev->ctrl);
2832 }
2833
2834 #ifdef CONFIG_PM_SLEEP
2835 static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
2836 {
2837 return nvme_get_features(ctrl, NVME_FEAT_POWER_MGMT, 0, NULL, 0, ps);
2838 }
2839
2840 static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
2841 {
2842 return nvme_set_features(ctrl, NVME_FEAT_POWER_MGMT, ps, NULL, 0, NULL);
2843 }
2844
2845 static int nvme_resume(struct device *dev)
2846 {
2847 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2848 struct nvme_ctrl *ctrl = &ndev->ctrl;
2849
2850 if (ndev->last_ps == U32_MAX ||
2851 nvme_set_power_state(ctrl, ndev->last_ps) != 0)
2852 nvme_reset_ctrl(ctrl);
2853 return 0;
2854 }
2855
2856 static int nvme_suspend(struct device *dev)
2857 {
2858 struct pci_dev *pdev = to_pci_dev(dev);
2859 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2860 struct nvme_ctrl *ctrl = &ndev->ctrl;
2861 int ret = -EBUSY;
2862
2863 ndev->last_ps = U32_MAX;
2864
2865 /*
2866 * The platform does not remove power for a kernel managed suspend so
2867 * use host managed nvme power settings for lowest idle power if
2868 * possible. This should have quicker resume latency than a full device
2869 * shutdown. But if the firmware is involved after the suspend or the
2870 * device does not support any non-default power states, shut down the
2871 * device fully.
2872 *
2873 * If ASPM is not enabled for the device, shut down the device and allow
2874 * the PCI bus layer to put it into D3 in order to take the PCIe link
2875 * down, so as to allow the platform to achieve its minimum low-power
2876 * state (which may not be possible if the link is up).
2877 */
2878 if (pm_suspend_via_firmware() || !ctrl->npss ||
2879 !pcie_aspm_enabled(pdev)) {
2880 nvme_dev_disable(ndev, true);
2881 return 0;
2882 }
2883
2884 nvme_start_freeze(ctrl);
2885 nvme_wait_freeze(ctrl);
2886 nvme_sync_queues(ctrl);
2887
2888 if (ctrl->state != NVME_CTRL_LIVE &&
2889 ctrl->state != NVME_CTRL_ADMIN_ONLY)
2890 goto unfreeze;
2891
2892 ret = nvme_get_power_state(ctrl, &ndev->last_ps);
2893 if (ret < 0)
2894 goto unfreeze;
2895
2896 ret = nvme_set_power_state(ctrl, ctrl->npss);
2897 if (ret < 0)
2898 goto unfreeze;
2899
2900 if (ret) {
2901 /*
2902 * Clearing npss forces a controller reset on resume. The
2903 * correct value will be resdicovered then.
2904 */
2905 nvme_dev_disable(ndev, true);
2906 ctrl->npss = 0;
2907 ret = 0;
2908 goto unfreeze;
2909 }
2910 /*
2911 * A saved state prevents pci pm from generically controlling the
2912 * device's power. If we're using protocol specific settings, we don't
2913 * want pci interfering.
2914 */
2915 pci_save_state(pdev);
2916 unfreeze:
2917 nvme_unfreeze(ctrl);
2918 return ret;
2919 }
2920
2921 static int nvme_simple_suspend(struct device *dev)
2922 {
2923 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
2924
2925 nvme_dev_disable(ndev, true);
2926 return 0;
2927 }
2928
2929 static int nvme_simple_resume(struct device *dev)
2930 {
2931 struct pci_dev *pdev = to_pci_dev(dev);
2932 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2933
2934 nvme_reset_ctrl(&ndev->ctrl);
2935 return 0;
2936 }
2937
2938 static const struct dev_pm_ops nvme_dev_pm_ops = {
2939 .suspend = nvme_suspend,
2940 .resume = nvme_resume,
2941 .freeze = nvme_simple_suspend,
2942 .thaw = nvme_simple_resume,
2943 .poweroff = nvme_simple_suspend,
2944 .restore = nvme_simple_resume,
2945 };
2946 #endif /* CONFIG_PM_SLEEP */
2947
2948 static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2949 pci_channel_state_t state)
2950 {
2951 struct nvme_dev *dev = pci_get_drvdata(pdev);
2952
2953 /*
2954 * A frozen channel requires a reset. When detected, this method will
2955 * shutdown the controller to quiesce. The controller will be restarted
2956 * after the slot reset through driver's slot_reset callback.
2957 */
2958 switch (state) {
2959 case pci_channel_io_normal:
2960 return PCI_ERS_RESULT_CAN_RECOVER;
2961 case pci_channel_io_frozen:
2962 dev_warn(dev->ctrl.device,
2963 "frozen state error detected, reset controller\n");
2964 nvme_dev_disable(dev, false);
2965 return PCI_ERS_RESULT_NEED_RESET;
2966 case pci_channel_io_perm_failure:
2967 dev_warn(dev->ctrl.device,
2968 "failure state error detected, request disconnect\n");
2969 return PCI_ERS_RESULT_DISCONNECT;
2970 }
2971 return PCI_ERS_RESULT_NEED_RESET;
2972 }
2973
2974 static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2975 {
2976 struct nvme_dev *dev = pci_get_drvdata(pdev);
2977
2978 dev_info(dev->ctrl.device, "restart after slot reset\n");
2979 pci_restore_state(pdev);
2980 nvme_reset_ctrl(&dev->ctrl);
2981 return PCI_ERS_RESULT_RECOVERED;
2982 }
2983
2984 static void nvme_error_resume(struct pci_dev *pdev)
2985 {
2986 struct nvme_dev *dev = pci_get_drvdata(pdev);
2987
2988 flush_work(&dev->ctrl.reset_work);
2989 }
2990
2991 static const struct pci_error_handlers nvme_err_handler = {
2992 .error_detected = nvme_error_detected,
2993 .slot_reset = nvme_slot_reset,
2994 .resume = nvme_error_resume,
2995 .reset_prepare = nvme_reset_prepare,
2996 .reset_done = nvme_reset_done,
2997 };
2998
2999 static const struct pci_device_id nvme_id_table[] = {
3000 { PCI_VDEVICE(INTEL, 0x0953),
3001 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3002 NVME_QUIRK_DEALLOCATE_ZEROES, },
3003 { PCI_VDEVICE(INTEL, 0x0a53),
3004 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3005 NVME_QUIRK_DEALLOCATE_ZEROES, },
3006 { PCI_VDEVICE(INTEL, 0x0a54),
3007 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3008 NVME_QUIRK_DEALLOCATE_ZEROES, },
3009 { PCI_VDEVICE(INTEL, 0x0a55),
3010 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3011 NVME_QUIRK_DEALLOCATE_ZEROES, },
3012 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3013 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3014 NVME_QUIRK_MEDIUM_PRIO_SQ },
3015 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3016 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3017 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3018 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3019 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3020 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3021 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3022 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3023 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3024 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3025 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3026 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3027 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3028 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3029 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3030 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3031 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3032 { PCI_DEVICE(0x1d1d, 0x1f1f), /* LighNVM qemu device */
3033 .driver_data = NVME_QUIRK_LIGHTNVM, },
3034 { PCI_DEVICE(0x1d1d, 0x2807), /* CNEX WL */
3035 .driver_data = NVME_QUIRK_LIGHTNVM, },
3036 { PCI_DEVICE(0x1d1d, 0x2601), /* CNEX Granby */
3037 .driver_data = NVME_QUIRK_LIGHTNVM, },
3038 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3039 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3040 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3041 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
3042 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3043 { 0, }
3044 };
3045 MODULE_DEVICE_TABLE(pci, nvme_id_table);
3046
3047 static struct pci_driver nvme_driver = {
3048 .name = "nvme",
3049 .id_table = nvme_id_table,
3050 .probe = nvme_probe,
3051 .remove = nvme_remove,
3052 .shutdown = nvme_shutdown,
3053 #ifdef CONFIG_PM_SLEEP
3054 .driver = {
3055 .pm = &nvme_dev_pm_ops,
3056 },
3057 #endif
3058 .sriov_configure = pci_sriov_configure_simple,
3059 .err_handler = &nvme_err_handler,
3060 };
3061
3062 static int __init nvme_init(void)
3063 {
3064 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3065 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3066 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3067 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3068 return pci_register_driver(&nvme_driver);
3069 }
3070
3071 static void __exit nvme_exit(void)
3072 {
3073 pci_unregister_driver(&nvme_driver);
3074 flush_workqueue(nvme_wq);
3075 }
3076
3077 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3078 MODULE_LICENSE("GPL");
3079 MODULE_VERSION("1.0");
3080 module_init(nvme_init);
3081 module_exit(nvme_exit);