]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/scsi/aic7xxx/aic7xxx_osm.c
scsi: aic7xxx: fix EISA support
[thirdparty/linux.git] / drivers / scsi / aic7xxx / aic7xxx_osm.c
1 /*
2 * Adaptec AIC7xxx device driver for Linux.
3 *
4 * $Id: //depot/aic7xxx/linux/drivers/scsi/aic7xxx/aic7xxx_osm.c#235 $
5 *
6 * Copyright (c) 1994 John Aycock
7 * The University of Calgary Department of Computer Science.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2, or (at your option)
12 * any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; see the file COPYING. If not, write to
21 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22 *
23 * Sources include the Adaptec 1740 driver (aha1740.c), the Ultrastor 24F
24 * driver (ultrastor.c), various Linux kernel source, the Adaptec EISA
25 * config file (!adp7771.cfg), the Adaptec AHA-2740A Series User's Guide,
26 * the Linux Kernel Hacker's Guide, Writing a SCSI Device Driver for Linux,
27 * the Adaptec 1542 driver (aha1542.c), the Adaptec EISA overlay file
28 * (adp7770.ovl), the Adaptec AHA-2740 Series Technical Reference Manual,
29 * the Adaptec AIC-7770 Data Book, the ANSI SCSI specification, the
30 * ANSI SCSI-2 specification (draft 10c), ...
31 *
32 * --------------------------------------------------------------------------
33 *
34 * Modifications by Daniel M. Eischen (deischen@iworks.InterWorks.org):
35 *
36 * Substantially modified to include support for wide and twin bus
37 * adapters, DMAing of SCBs, tagged queueing, IRQ sharing, bug fixes,
38 * SCB paging, and other rework of the code.
39 *
40 * --------------------------------------------------------------------------
41 * Copyright (c) 1994-2000 Justin T. Gibbs.
42 * Copyright (c) 2000-2001 Adaptec Inc.
43 * All rights reserved.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions, and the following disclaimer,
50 * without modification.
51 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
52 * substantially similar to the "NO WARRANTY" disclaimer below
53 * ("Disclaimer") and any redistribution must be conditioned upon
54 * including a substantially similar Disclaimer requirement for further
55 * binary redistribution.
56 * 3. Neither the names of the above-listed copyright holders nor the names
57 * of any contributors may be used to endorse or promote products derived
58 * from this software without specific prior written permission.
59 *
60 * Alternatively, this software may be distributed under the terms of the
61 * GNU General Public License ("GPL") version 2 as published by the Free
62 * Software Foundation.
63 *
64 * NO WARRANTY
65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
66 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
67 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
68 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
69 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
70 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
71 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
72 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
73 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
74 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
75 * POSSIBILITY OF SUCH DAMAGES.
76 *
77 *---------------------------------------------------------------------------
78 *
79 * Thanks also go to (in alphabetical order) the following:
80 *
81 * Rory Bolt - Sequencer bug fixes
82 * Jay Estabrook - Initial DEC Alpha support
83 * Doug Ledford - Much needed abort/reset bug fixes
84 * Kai Makisara - DMAing of SCBs
85 *
86 * A Boot time option was also added for not resetting the scsi bus.
87 *
88 * Form: aic7xxx=extended
89 * aic7xxx=no_reset
90 * aic7xxx=verbose
91 *
92 * Daniel M. Eischen, deischen@iworks.InterWorks.org, 1/23/97
93 *
94 * Id: aic7xxx.c,v 4.1 1997/06/12 08:23:42 deang Exp
95 */
96
97 /*
98 * Further driver modifications made by Doug Ledford <dledford@redhat.com>
99 *
100 * Copyright (c) 1997-1999 Doug Ledford
101 *
102 * These changes are released under the same licensing terms as the FreeBSD
103 * driver written by Justin Gibbs. Please see his Copyright notice above
104 * for the exact terms and conditions covering my changes as well as the
105 * warranty statement.
106 *
107 * Modifications made to the aic7xxx.c,v 4.1 driver from Dan Eischen include
108 * but are not limited to:
109 *
110 * 1: Import of the latest FreeBSD sequencer code for this driver
111 * 2: Modification of kernel code to accommodate different sequencer semantics
112 * 3: Extensive changes throughout kernel portion of driver to improve
113 * abort/reset processing and error hanndling
114 * 4: Other work contributed by various people on the Internet
115 * 5: Changes to printk information and verbosity selection code
116 * 6: General reliability related changes, especially in IRQ management
117 * 7: Modifications to the default probe/attach order for supported cards
118 * 8: SMP friendliness has been improved
119 *
120 */
121
122 #include "aic7xxx_osm.h"
123 #include "aic7xxx_inline.h"
124 #include <scsi/scsicam.h>
125
126 static struct scsi_transport_template *ahc_linux_transport_template = NULL;
127
128 #include <linux/init.h> /* __setup */
129 #include <linux/mm.h> /* For fetching system memory size */
130 #include <linux/blkdev.h> /* For block_size() */
131 #include <linux/delay.h> /* For ssleep/msleep */
132 #include <linux/slab.h>
133
134
135 /*
136 * Set this to the delay in seconds after SCSI bus reset.
137 * Note, we honor this only for the initial bus reset.
138 * The scsi error recovery code performs its own bus settle
139 * delay handling for error recovery actions.
140 */
141 #ifdef CONFIG_AIC7XXX_RESET_DELAY_MS
142 #define AIC7XXX_RESET_DELAY CONFIG_AIC7XXX_RESET_DELAY_MS
143 #else
144 #define AIC7XXX_RESET_DELAY 5000
145 #endif
146
147 /*
148 * To change the default number of tagged transactions allowed per-device,
149 * add a line to the lilo.conf file like:
150 * append="aic7xxx=verbose,tag_info:{{32,32,32,32},{32,32,32,32}}"
151 * which will result in the first four devices on the first two
152 * controllers being set to a tagged queue depth of 32.
153 *
154 * The tag_commands is an array of 16 to allow for wide and twin adapters.
155 * Twin adapters will use indexes 0-7 for channel 0, and indexes 8-15
156 * for channel 1.
157 */
158 typedef struct {
159 uint8_t tag_commands[16]; /* Allow for wide/twin adapters. */
160 } adapter_tag_info_t;
161
162 /*
163 * Modify this as you see fit for your system.
164 *
165 * 0 tagged queuing disabled
166 * 1 <= n <= 253 n == max tags ever dispatched.
167 *
168 * The driver will throttle the number of commands dispatched to a
169 * device if it returns queue full. For devices with a fixed maximum
170 * queue depth, the driver will eventually determine this depth and
171 * lock it in (a console message is printed to indicate that a lock
172 * has occurred). On some devices, queue full is returned for a temporary
173 * resource shortage. These devices will return queue full at varying
174 * depths. The driver will throttle back when the queue fulls occur and
175 * attempt to slowly increase the depth over time as the device recovers
176 * from the resource shortage.
177 *
178 * In this example, the first line will disable tagged queueing for all
179 * the devices on the first probed aic7xxx adapter.
180 *
181 * The second line enables tagged queueing with 4 commands/LUN for IDs
182 * (0, 2-11, 13-15), disables tagged queueing for ID 12, and tells the
183 * driver to attempt to use up to 64 tags for ID 1.
184 *
185 * The third line is the same as the first line.
186 *
187 * The fourth line disables tagged queueing for devices 0 and 3. It
188 * enables tagged queueing for the other IDs, with 16 commands/LUN
189 * for IDs 1 and 4, 127 commands/LUN for ID 8, and 4 commands/LUN for
190 * IDs 2, 5-7, and 9-15.
191 */
192
193 /*
194 * NOTE: The below structure is for reference only, the actual structure
195 * to modify in order to change things is just below this comment block.
196 adapter_tag_info_t aic7xxx_tag_info[] =
197 {
198 {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
199 {{4, 64, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4, 4, 4}},
200 {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}},
201 {{0, 16, 4, 0, 16, 4, 4, 4, 127, 4, 4, 4, 4, 4, 4, 4}}
202 };
203 */
204
205 #ifdef CONFIG_AIC7XXX_CMDS_PER_DEVICE
206 #define AIC7XXX_CMDS_PER_DEVICE CONFIG_AIC7XXX_CMDS_PER_DEVICE
207 #else
208 #define AIC7XXX_CMDS_PER_DEVICE AHC_MAX_QUEUE
209 #endif
210
211 #define AIC7XXX_CONFIGED_TAG_COMMANDS { \
212 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
213 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
214 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
215 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
216 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
217 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
218 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE, \
219 AIC7XXX_CMDS_PER_DEVICE, AIC7XXX_CMDS_PER_DEVICE \
220 }
221
222 /*
223 * By default, use the number of commands specified by
224 * the users kernel configuration.
225 */
226 static adapter_tag_info_t aic7xxx_tag_info[] =
227 {
228 {AIC7XXX_CONFIGED_TAG_COMMANDS},
229 {AIC7XXX_CONFIGED_TAG_COMMANDS},
230 {AIC7XXX_CONFIGED_TAG_COMMANDS},
231 {AIC7XXX_CONFIGED_TAG_COMMANDS},
232 {AIC7XXX_CONFIGED_TAG_COMMANDS},
233 {AIC7XXX_CONFIGED_TAG_COMMANDS},
234 {AIC7XXX_CONFIGED_TAG_COMMANDS},
235 {AIC7XXX_CONFIGED_TAG_COMMANDS},
236 {AIC7XXX_CONFIGED_TAG_COMMANDS},
237 {AIC7XXX_CONFIGED_TAG_COMMANDS},
238 {AIC7XXX_CONFIGED_TAG_COMMANDS},
239 {AIC7XXX_CONFIGED_TAG_COMMANDS},
240 {AIC7XXX_CONFIGED_TAG_COMMANDS},
241 {AIC7XXX_CONFIGED_TAG_COMMANDS},
242 {AIC7XXX_CONFIGED_TAG_COMMANDS},
243 {AIC7XXX_CONFIGED_TAG_COMMANDS}
244 };
245
246 /*
247 * There should be a specific return value for this in scsi.h, but
248 * it seems that most drivers ignore it.
249 */
250 #define DID_UNDERFLOW DID_ERROR
251
252 void
253 ahc_print_path(struct ahc_softc *ahc, struct scb *scb)
254 {
255 printk("(scsi%d:%c:%d:%d): ",
256 ahc->platform_data->host->host_no,
257 scb != NULL ? SCB_GET_CHANNEL(ahc, scb) : 'X',
258 scb != NULL ? SCB_GET_TARGET(ahc, scb) : -1,
259 scb != NULL ? SCB_GET_LUN(scb) : -1);
260 }
261
262 /*
263 * XXX - these options apply unilaterally to _all_ 274x/284x/294x
264 * cards in the system. This should be fixed. Exceptions to this
265 * rule are noted in the comments.
266 */
267
268 /*
269 * Skip the scsi bus reset. Non 0 make us skip the reset at startup. This
270 * has no effect on any later resets that might occur due to things like
271 * SCSI bus timeouts.
272 */
273 static uint32_t aic7xxx_no_reset;
274
275 /*
276 * Should we force EXTENDED translation on a controller.
277 * 0 == Use whatever is in the SEEPROM or default to off
278 * 1 == Use whatever is in the SEEPROM or default to on
279 */
280 static uint32_t aic7xxx_extended;
281
282 /*
283 * PCI bus parity checking of the Adaptec controllers. This is somewhat
284 * dubious at best. To my knowledge, this option has never actually
285 * solved a PCI parity problem, but on certain machines with broken PCI
286 * chipset configurations where stray PCI transactions with bad parity are
287 * the norm rather than the exception, the error messages can be overwhelming.
288 * It's included in the driver for completeness.
289 * 0 = Shut off PCI parity check
290 * non-0 = reverse polarity pci parity checking
291 */
292 static uint32_t aic7xxx_pci_parity = ~0;
293
294 /*
295 * There are lots of broken chipsets in the world. Some of them will
296 * violate the PCI spec when we issue byte sized memory writes to our
297 * controller. I/O mapped register access, if allowed by the given
298 * platform, will work in almost all cases.
299 */
300 uint32_t aic7xxx_allow_memio = ~0;
301
302 /*
303 * So that we can set how long each device is given as a selection timeout.
304 * The table of values goes like this:
305 * 0 - 256ms
306 * 1 - 128ms
307 * 2 - 64ms
308 * 3 - 32ms
309 * We default to 256ms because some older devices need a longer time
310 * to respond to initial selection.
311 */
312 static uint32_t aic7xxx_seltime;
313
314 /*
315 * Certain devices do not perform any aging on commands. Should the
316 * device be saturated by commands in one portion of the disk, it is
317 * possible for transactions on far away sectors to never be serviced.
318 * To handle these devices, we can periodically send an ordered tag to
319 * force all outstanding transactions to be serviced prior to a new
320 * transaction.
321 */
322 static uint32_t aic7xxx_periodic_otag;
323
324 /*
325 * Module information and settable options.
326 */
327 static char *aic7xxx = NULL;
328
329 MODULE_AUTHOR("Maintainer: Hannes Reinecke <hare@suse.de>");
330 MODULE_DESCRIPTION("Adaptec AIC77XX/78XX SCSI Host Bus Adapter driver");
331 MODULE_LICENSE("Dual BSD/GPL");
332 MODULE_VERSION(AIC7XXX_DRIVER_VERSION);
333 module_param(aic7xxx, charp, 0444);
334 MODULE_PARM_DESC(aic7xxx,
335 "period-delimited options string:\n"
336 " verbose Enable verbose/diagnostic logging\n"
337 " allow_memio Allow device registers to be memory mapped\n"
338 " debug Bitmask of debug values to enable\n"
339 " no_probe Toggle EISA/VLB controller probing\n"
340 " probe_eisa_vl Toggle EISA/VLB controller probing\n"
341 " no_reset Suppress initial bus resets\n"
342 " extended Enable extended geometry on all controllers\n"
343 " periodic_otag Send an ordered tagged transaction\n"
344 " periodically to prevent tag starvation.\n"
345 " This may be required by some older disk\n"
346 " drives or RAID arrays.\n"
347 " tag_info:<tag_str> Set per-target tag depth\n"
348 " global_tag_depth:<int> Global tag depth for every target\n"
349 " on every bus\n"
350 " seltime:<int> Selection Timeout\n"
351 " (0/256ms,1/128ms,2/64ms,3/32ms)\n"
352 "\n"
353 " Sample modprobe configuration file:\n"
354 " # Toggle EISA/VLB probing\n"
355 " # Set tag depth on Controller 1/Target 1 to 10 tags\n"
356 " # Shorten the selection timeout to 128ms\n"
357 "\n"
358 " options aic7xxx 'aic7xxx=probe_eisa_vl.tag_info:{{}.{.10}}.seltime:1'\n"
359 );
360
361 static void ahc_linux_handle_scsi_status(struct ahc_softc *,
362 struct scsi_device *,
363 struct scb *);
364 static void ahc_linux_queue_cmd_complete(struct ahc_softc *ahc,
365 struct scsi_cmnd *cmd);
366 static void ahc_linux_freeze_simq(struct ahc_softc *ahc);
367 static void ahc_linux_release_simq(struct ahc_softc *ahc);
368 static int ahc_linux_queue_recovery_cmd(struct scsi_cmnd *cmd, scb_flag flag);
369 static void ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc);
370 static u_int ahc_linux_user_tagdepth(struct ahc_softc *ahc,
371 struct ahc_devinfo *devinfo);
372 static void ahc_linux_device_queue_depth(struct scsi_device *);
373 static int ahc_linux_run_command(struct ahc_softc*,
374 struct ahc_linux_device *,
375 struct scsi_cmnd *);
376 static void ahc_linux_setup_tag_info_global(char *p);
377 static int aic7xxx_setup(char *s);
378
379 static int ahc_linux_unit;
380
381
382 /************************** OS Utility Wrappers *******************************/
383 void
384 ahc_delay(long usec)
385 {
386 /*
387 * udelay on Linux can have problems for
388 * multi-millisecond waits. Wait at most
389 * 1024us per call.
390 */
391 while (usec > 0) {
392 udelay(usec % 1024);
393 usec -= 1024;
394 }
395 }
396
397 /***************************** Low Level I/O **********************************/
398 uint8_t
399 ahc_inb(struct ahc_softc * ahc, long port)
400 {
401 uint8_t x;
402
403 if (ahc->tag == BUS_SPACE_MEMIO) {
404 x = readb(ahc->bsh.maddr + port);
405 } else {
406 x = inb(ahc->bsh.ioport + port);
407 }
408 mb();
409 return (x);
410 }
411
412 void
413 ahc_outb(struct ahc_softc * ahc, long port, uint8_t val)
414 {
415 if (ahc->tag == BUS_SPACE_MEMIO) {
416 writeb(val, ahc->bsh.maddr + port);
417 } else {
418 outb(val, ahc->bsh.ioport + port);
419 }
420 mb();
421 }
422
423 void
424 ahc_outsb(struct ahc_softc * ahc, long port, uint8_t *array, int count)
425 {
426 int i;
427
428 /*
429 * There is probably a more efficient way to do this on Linux
430 * but we don't use this for anything speed critical and this
431 * should work.
432 */
433 for (i = 0; i < count; i++)
434 ahc_outb(ahc, port, *array++);
435 }
436
437 void
438 ahc_insb(struct ahc_softc * ahc, long port, uint8_t *array, int count)
439 {
440 int i;
441
442 /*
443 * There is probably a more efficient way to do this on Linux
444 * but we don't use this for anything speed critical and this
445 * should work.
446 */
447 for (i = 0; i < count; i++)
448 *array++ = ahc_inb(ahc, port);
449 }
450
451 /********************************* Inlines ************************************/
452 static void ahc_linux_unmap_scb(struct ahc_softc*, struct scb*);
453
454 static int ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb,
455 struct ahc_dma_seg *sg,
456 dma_addr_t addr, bus_size_t len);
457
458 static void
459 ahc_linux_unmap_scb(struct ahc_softc *ahc, struct scb *scb)
460 {
461 struct scsi_cmnd *cmd;
462
463 cmd = scb->io_ctx;
464 ahc_sync_sglist(ahc, scb, BUS_DMASYNC_POSTWRITE);
465
466 scsi_dma_unmap(cmd);
467 }
468
469 static int
470 ahc_linux_map_seg(struct ahc_softc *ahc, struct scb *scb,
471 struct ahc_dma_seg *sg, dma_addr_t addr, bus_size_t len)
472 {
473 int consumed;
474
475 if ((scb->sg_count + 1) > AHC_NSEG)
476 panic("Too few segs for dma mapping. "
477 "Increase AHC_NSEG\n");
478
479 consumed = 1;
480 sg->addr = ahc_htole32(addr & 0xFFFFFFFF);
481 scb->platform_data->xfer_len += len;
482
483 if (sizeof(dma_addr_t) > 4
484 && (ahc->flags & AHC_39BIT_ADDRESSING) != 0)
485 len |= (addr >> 8) & AHC_SG_HIGH_ADDR_MASK;
486
487 sg->len = ahc_htole32(len);
488 return (consumed);
489 }
490
491 /*
492 * Return a string describing the driver.
493 */
494 static const char *
495 ahc_linux_info(struct Scsi_Host *host)
496 {
497 static char buffer[512];
498 char ahc_info[256];
499 char *bp;
500 struct ahc_softc *ahc;
501
502 bp = &buffer[0];
503 ahc = *(struct ahc_softc **)host->hostdata;
504 memset(bp, 0, sizeof(buffer));
505 strcpy(bp, "Adaptec AIC7XXX EISA/VLB/PCI SCSI HBA DRIVER, Rev " AIC7XXX_DRIVER_VERSION "\n"
506 " <");
507 strcat(bp, ahc->description);
508 strcat(bp, ">\n"
509 " ");
510 ahc_controller_info(ahc, ahc_info);
511 strcat(bp, ahc_info);
512 strcat(bp, "\n");
513
514 return (bp);
515 }
516
517 /*
518 * Queue an SCB to the controller.
519 */
520 static int
521 ahc_linux_queue_lck(struct scsi_cmnd * cmd, void (*scsi_done) (struct scsi_cmnd *))
522 {
523 struct ahc_softc *ahc;
524 struct ahc_linux_device *dev = scsi_transport_device_data(cmd->device);
525 int rtn = SCSI_MLQUEUE_HOST_BUSY;
526 unsigned long flags;
527
528 ahc = *(struct ahc_softc **)cmd->device->host->hostdata;
529
530 ahc_lock(ahc, &flags);
531 if (ahc->platform_data->qfrozen == 0) {
532 cmd->scsi_done = scsi_done;
533 cmd->result = CAM_REQ_INPROG << 16;
534 rtn = ahc_linux_run_command(ahc, dev, cmd);
535 }
536 ahc_unlock(ahc, &flags);
537
538 return rtn;
539 }
540
541 static DEF_SCSI_QCMD(ahc_linux_queue)
542
543 static inline struct scsi_target **
544 ahc_linux_target_in_softc(struct scsi_target *starget)
545 {
546 struct ahc_softc *ahc =
547 *((struct ahc_softc **)dev_to_shost(&starget->dev)->hostdata);
548 unsigned int target_offset;
549
550 target_offset = starget->id;
551 if (starget->channel != 0)
552 target_offset += 8;
553
554 return &ahc->platform_data->starget[target_offset];
555 }
556
557 static int
558 ahc_linux_target_alloc(struct scsi_target *starget)
559 {
560 struct ahc_softc *ahc =
561 *((struct ahc_softc **)dev_to_shost(&starget->dev)->hostdata);
562 struct seeprom_config *sc = ahc->seep_config;
563 unsigned long flags;
564 struct scsi_target **ahc_targp = ahc_linux_target_in_softc(starget);
565 unsigned short scsirate;
566 struct ahc_devinfo devinfo;
567 struct ahc_initiator_tinfo *tinfo;
568 struct ahc_tmode_tstate *tstate;
569 char channel = starget->channel + 'A';
570 unsigned int our_id = ahc->our_id;
571 unsigned int target_offset;
572
573 target_offset = starget->id;
574 if (starget->channel != 0)
575 target_offset += 8;
576
577 if (starget->channel)
578 our_id = ahc->our_id_b;
579
580 ahc_lock(ahc, &flags);
581
582 BUG_ON(*ahc_targp != NULL);
583
584 *ahc_targp = starget;
585
586 if (sc) {
587 int maxsync = AHC_SYNCRATE_DT;
588 int ultra = 0;
589 int flags = sc->device_flags[target_offset];
590
591 if (ahc->flags & AHC_NEWEEPROM_FMT) {
592 if (flags & CFSYNCHISULTRA)
593 ultra = 1;
594 } else if (flags & CFULTRAEN)
595 ultra = 1;
596 /* AIC nutcase; 10MHz appears as ultra = 1, CFXFER = 0x04
597 * change it to ultra=0, CFXFER = 0 */
598 if(ultra && (flags & CFXFER) == 0x04) {
599 ultra = 0;
600 flags &= ~CFXFER;
601 }
602
603 if ((ahc->features & AHC_ULTRA2) != 0) {
604 scsirate = (flags & CFXFER) | (ultra ? 0x8 : 0);
605 } else {
606 scsirate = (flags & CFXFER) << 4;
607 maxsync = ultra ? AHC_SYNCRATE_ULTRA :
608 AHC_SYNCRATE_FAST;
609 }
610 spi_max_width(starget) = (flags & CFWIDEB) ? 1 : 0;
611 if (!(flags & CFSYNCH))
612 spi_max_offset(starget) = 0;
613 spi_min_period(starget) =
614 ahc_find_period(ahc, scsirate, maxsync);
615
616 tinfo = ahc_fetch_transinfo(ahc, channel, ahc->our_id,
617 starget->id, &tstate);
618 }
619 ahc_compile_devinfo(&devinfo, our_id, starget->id,
620 CAM_LUN_WILDCARD, channel,
621 ROLE_INITIATOR);
622 ahc_set_syncrate(ahc, &devinfo, NULL, 0, 0, 0,
623 AHC_TRANS_GOAL, /*paused*/FALSE);
624 ahc_set_width(ahc, &devinfo, MSG_EXT_WDTR_BUS_8_BIT,
625 AHC_TRANS_GOAL, /*paused*/FALSE);
626 ahc_unlock(ahc, &flags);
627
628 return 0;
629 }
630
631 static void
632 ahc_linux_target_destroy(struct scsi_target *starget)
633 {
634 struct scsi_target **ahc_targp = ahc_linux_target_in_softc(starget);
635
636 *ahc_targp = NULL;
637 }
638
639 static int
640 ahc_linux_slave_alloc(struct scsi_device *sdev)
641 {
642 struct ahc_softc *ahc =
643 *((struct ahc_softc **)sdev->host->hostdata);
644 struct scsi_target *starget = sdev->sdev_target;
645 struct ahc_linux_device *dev;
646
647 if (bootverbose)
648 printk("%s: Slave Alloc %d\n", ahc_name(ahc), sdev->id);
649
650 dev = scsi_transport_device_data(sdev);
651 memset(dev, 0, sizeof(*dev));
652
653 /*
654 * We start out life using untagged
655 * transactions of which we allow one.
656 */
657 dev->openings = 1;
658
659 /*
660 * Set maxtags to 0. This will be changed if we
661 * later determine that we are dealing with
662 * a tagged queuing capable device.
663 */
664 dev->maxtags = 0;
665
666 spi_period(starget) = 0;
667
668 return 0;
669 }
670
671 static int
672 ahc_linux_slave_configure(struct scsi_device *sdev)
673 {
674 struct ahc_softc *ahc;
675
676 ahc = *((struct ahc_softc **)sdev->host->hostdata);
677
678 if (bootverbose)
679 sdev_printk(KERN_INFO, sdev, "Slave Configure\n");
680
681 ahc_linux_device_queue_depth(sdev);
682
683 /* Initial Domain Validation */
684 if (!spi_initial_dv(sdev->sdev_target))
685 spi_dv_device(sdev);
686
687 return 0;
688 }
689
690 #if defined(__i386__)
691 /*
692 * Return the disk geometry for the given SCSI device.
693 */
694 static int
695 ahc_linux_biosparam(struct scsi_device *sdev, struct block_device *bdev,
696 sector_t capacity, int geom[])
697 {
698 uint8_t *bh;
699 int heads;
700 int sectors;
701 int cylinders;
702 int ret;
703 int extended;
704 struct ahc_softc *ahc;
705 u_int channel;
706
707 ahc = *((struct ahc_softc **)sdev->host->hostdata);
708 channel = sdev_channel(sdev);
709
710 bh = scsi_bios_ptable(bdev);
711 if (bh) {
712 ret = scsi_partsize(bh, capacity,
713 &geom[2], &geom[0], &geom[1]);
714 kfree(bh);
715 if (ret != -1)
716 return (ret);
717 }
718 heads = 64;
719 sectors = 32;
720 cylinders = aic_sector_div(capacity, heads, sectors);
721
722 if (aic7xxx_extended != 0)
723 extended = 1;
724 else if (channel == 0)
725 extended = (ahc->flags & AHC_EXTENDED_TRANS_A) != 0;
726 else
727 extended = (ahc->flags & AHC_EXTENDED_TRANS_B) != 0;
728 if (extended && cylinders >= 1024) {
729 heads = 255;
730 sectors = 63;
731 cylinders = aic_sector_div(capacity, heads, sectors);
732 }
733 geom[0] = heads;
734 geom[1] = sectors;
735 geom[2] = cylinders;
736 return (0);
737 }
738 #endif
739
740 /*
741 * Abort the current SCSI command(s).
742 */
743 static int
744 ahc_linux_abort(struct scsi_cmnd *cmd)
745 {
746 int error;
747
748 error = ahc_linux_queue_recovery_cmd(cmd, SCB_ABORT);
749 if (error != 0)
750 printk("aic7xxx_abort returns 0x%x\n", error);
751 return (error);
752 }
753
754 /*
755 * Attempt to send a target reset message to the device that timed out.
756 */
757 static int
758 ahc_linux_dev_reset(struct scsi_cmnd *cmd)
759 {
760 int error;
761
762 error = ahc_linux_queue_recovery_cmd(cmd, SCB_DEVICE_RESET);
763 if (error != 0)
764 printk("aic7xxx_dev_reset returns 0x%x\n", error);
765 return (error);
766 }
767
768 /*
769 * Reset the SCSI bus.
770 */
771 static int
772 ahc_linux_bus_reset(struct scsi_cmnd *cmd)
773 {
774 struct ahc_softc *ahc;
775 int found;
776 unsigned long flags;
777
778 ahc = *(struct ahc_softc **)cmd->device->host->hostdata;
779
780 ahc_lock(ahc, &flags);
781 found = ahc_reset_channel(ahc, scmd_channel(cmd) + 'A',
782 /*initiate reset*/TRUE);
783 ahc_unlock(ahc, &flags);
784
785 if (bootverbose)
786 printk("%s: SCSI bus reset delivered. "
787 "%d SCBs aborted.\n", ahc_name(ahc), found);
788
789 return SUCCESS;
790 }
791
792 struct scsi_host_template aic7xxx_driver_template = {
793 .module = THIS_MODULE,
794 .name = "aic7xxx",
795 .proc_name = "aic7xxx",
796 .show_info = ahc_linux_show_info,
797 .write_info = ahc_proc_write_seeprom,
798 .info = ahc_linux_info,
799 .queuecommand = ahc_linux_queue,
800 .eh_abort_handler = ahc_linux_abort,
801 .eh_device_reset_handler = ahc_linux_dev_reset,
802 .eh_bus_reset_handler = ahc_linux_bus_reset,
803 #if defined(__i386__)
804 .bios_param = ahc_linux_biosparam,
805 #endif
806 .can_queue = AHC_MAX_QUEUE,
807 .this_id = -1,
808 .max_sectors = 8192,
809 .cmd_per_lun = 2,
810 .slave_alloc = ahc_linux_slave_alloc,
811 .slave_configure = ahc_linux_slave_configure,
812 .target_alloc = ahc_linux_target_alloc,
813 .target_destroy = ahc_linux_target_destroy,
814 };
815
816 /**************************** Tasklet Handler *********************************/
817
818 /******************************** Macros **************************************/
819 #define BUILD_SCSIID(ahc, cmd) \
820 ((((cmd)->device->id << TID_SHIFT) & TID) \
821 | (((cmd)->device->channel == 0) ? (ahc)->our_id : (ahc)->our_id_b) \
822 | (((cmd)->device->channel == 0) ? 0 : TWIN_CHNLB))
823
824 /******************************** Bus DMA *************************************/
825 int
826 ahc_dma_tag_create(struct ahc_softc *ahc, bus_dma_tag_t parent,
827 bus_size_t alignment, bus_size_t boundary,
828 dma_addr_t lowaddr, dma_addr_t highaddr,
829 bus_dma_filter_t *filter, void *filterarg,
830 bus_size_t maxsize, int nsegments,
831 bus_size_t maxsegsz, int flags, bus_dma_tag_t *ret_tag)
832 {
833 bus_dma_tag_t dmat;
834
835 dmat = kmalloc(sizeof(*dmat), GFP_ATOMIC);
836 if (dmat == NULL)
837 return (ENOMEM);
838
839 /*
840 * Linux is very simplistic about DMA memory. For now don't
841 * maintain all specification information. Once Linux supplies
842 * better facilities for doing these operations, or the
843 * needs of this particular driver change, we might need to do
844 * more here.
845 */
846 dmat->alignment = alignment;
847 dmat->boundary = boundary;
848 dmat->maxsize = maxsize;
849 *ret_tag = dmat;
850 return (0);
851 }
852
853 void
854 ahc_dma_tag_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat)
855 {
856 kfree(dmat);
857 }
858
859 int
860 ahc_dmamem_alloc(struct ahc_softc *ahc, bus_dma_tag_t dmat, void** vaddr,
861 int flags, bus_dmamap_t *mapp)
862 {
863 /* XXX: check if we really need the GFP_ATOMIC and unwind this mess! */
864 *vaddr = dma_alloc_coherent(ahc->dev, dmat->maxsize, mapp, GFP_ATOMIC);
865 if (*vaddr == NULL)
866 return ENOMEM;
867 return 0;
868 }
869
870 void
871 ahc_dmamem_free(struct ahc_softc *ahc, bus_dma_tag_t dmat,
872 void* vaddr, bus_dmamap_t map)
873 {
874 dma_free_coherent(ahc->dev, dmat->maxsize, vaddr, map);
875 }
876
877 int
878 ahc_dmamap_load(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map,
879 void *buf, bus_size_t buflen, bus_dmamap_callback_t *cb,
880 void *cb_arg, int flags)
881 {
882 /*
883 * Assume for now that this will only be used during
884 * initialization and not for per-transaction buffer mapping.
885 */
886 bus_dma_segment_t stack_sg;
887
888 stack_sg.ds_addr = map;
889 stack_sg.ds_len = dmat->maxsize;
890 cb(cb_arg, &stack_sg, /*nseg*/1, /*error*/0);
891 return (0);
892 }
893
894 void
895 ahc_dmamap_destroy(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map)
896 {
897 }
898
899 int
900 ahc_dmamap_unload(struct ahc_softc *ahc, bus_dma_tag_t dmat, bus_dmamap_t map)
901 {
902 /* Nothing to do */
903 return (0);
904 }
905
906 static void
907 ahc_linux_setup_tag_info_global(char *p)
908 {
909 int tags, i, j;
910
911 tags = simple_strtoul(p + 1, NULL, 0) & 0xff;
912 printk("Setting Global Tags= %d\n", tags);
913
914 for (i = 0; i < ARRAY_SIZE(aic7xxx_tag_info); i++) {
915 for (j = 0; j < AHC_NUM_TARGETS; j++) {
916 aic7xxx_tag_info[i].tag_commands[j] = tags;
917 }
918 }
919 }
920
921 static void
922 ahc_linux_setup_tag_info(u_long arg, int instance, int targ, int32_t value)
923 {
924
925 if ((instance >= 0) && (targ >= 0)
926 && (instance < ARRAY_SIZE(aic7xxx_tag_info))
927 && (targ < AHC_NUM_TARGETS)) {
928 aic7xxx_tag_info[instance].tag_commands[targ] = value & 0xff;
929 if (bootverbose)
930 printk("tag_info[%d:%d] = %d\n", instance, targ, value);
931 }
932 }
933
934 static char *
935 ahc_parse_brace_option(char *opt_name, char *opt_arg, char *end, int depth,
936 void (*callback)(u_long, int, int, int32_t),
937 u_long callback_arg)
938 {
939 char *tok_end;
940 char *tok_end2;
941 int i;
942 int instance;
943 int targ;
944 int done;
945 char tok_list[] = {'.', ',', '{', '}', '\0'};
946
947 /* All options use a ':' name/arg separator */
948 if (*opt_arg != ':')
949 return (opt_arg);
950 opt_arg++;
951 instance = -1;
952 targ = -1;
953 done = FALSE;
954 /*
955 * Restore separator that may be in
956 * the middle of our option argument.
957 */
958 tok_end = strchr(opt_arg, '\0');
959 if (tok_end < end)
960 *tok_end = ',';
961 while (!done) {
962 switch (*opt_arg) {
963 case '{':
964 if (instance == -1) {
965 instance = 0;
966 } else {
967 if (depth > 1) {
968 if (targ == -1)
969 targ = 0;
970 } else {
971 printk("Malformed Option %s\n",
972 opt_name);
973 done = TRUE;
974 }
975 }
976 opt_arg++;
977 break;
978 case '}':
979 if (targ != -1)
980 targ = -1;
981 else if (instance != -1)
982 instance = -1;
983 opt_arg++;
984 break;
985 case ',':
986 case '.':
987 if (instance == -1)
988 done = TRUE;
989 else if (targ >= 0)
990 targ++;
991 else if (instance >= 0)
992 instance++;
993 opt_arg++;
994 break;
995 case '\0':
996 done = TRUE;
997 break;
998 default:
999 tok_end = end;
1000 for (i = 0; tok_list[i]; i++) {
1001 tok_end2 = strchr(opt_arg, tok_list[i]);
1002 if ((tok_end2) && (tok_end2 < tok_end))
1003 tok_end = tok_end2;
1004 }
1005 callback(callback_arg, instance, targ,
1006 simple_strtol(opt_arg, NULL, 0));
1007 opt_arg = tok_end;
1008 break;
1009 }
1010 }
1011 return (opt_arg);
1012 }
1013
1014 /*
1015 * Handle Linux boot parameters. This routine allows for assigning a value
1016 * to a parameter with a ':' between the parameter and the value.
1017 * ie. aic7xxx=stpwlev:1,extended
1018 */
1019 static int
1020 aic7xxx_setup(char *s)
1021 {
1022 int i, n;
1023 char *p;
1024 char *end;
1025
1026 static const struct {
1027 const char *name;
1028 uint32_t *flag;
1029 } options[] = {
1030 { "extended", &aic7xxx_extended },
1031 { "no_reset", &aic7xxx_no_reset },
1032 { "verbose", &aic7xxx_verbose },
1033 { "allow_memio", &aic7xxx_allow_memio},
1034 #ifdef AHC_DEBUG
1035 { "debug", &ahc_debug },
1036 #endif
1037 { "periodic_otag", &aic7xxx_periodic_otag },
1038 { "pci_parity", &aic7xxx_pci_parity },
1039 { "seltime", &aic7xxx_seltime },
1040 { "tag_info", NULL },
1041 { "global_tag_depth", NULL },
1042 { "dv", NULL }
1043 };
1044
1045 end = strchr(s, '\0');
1046
1047 /*
1048 * XXX ia64 gcc isn't smart enough to know that ARRAY_SIZE
1049 * will never be 0 in this case.
1050 */
1051 n = 0;
1052
1053 while ((p = strsep(&s, ",.")) != NULL) {
1054 if (*p == '\0')
1055 continue;
1056 for (i = 0; i < ARRAY_SIZE(options); i++) {
1057
1058 n = strlen(options[i].name);
1059 if (strncmp(options[i].name, p, n) == 0)
1060 break;
1061 }
1062 if (i == ARRAY_SIZE(options))
1063 continue;
1064
1065 if (strncmp(p, "global_tag_depth", n) == 0) {
1066 ahc_linux_setup_tag_info_global(p + n);
1067 } else if (strncmp(p, "tag_info", n) == 0) {
1068 s = ahc_parse_brace_option("tag_info", p + n, end,
1069 2, ahc_linux_setup_tag_info, 0);
1070 } else if (p[n] == ':') {
1071 *(options[i].flag) = simple_strtoul(p + n + 1, NULL, 0);
1072 } else if (strncmp(p, "verbose", n) == 0) {
1073 *(options[i].flag) = 1;
1074 } else {
1075 *(options[i].flag) ^= 0xFFFFFFFF;
1076 }
1077 }
1078 return 1;
1079 }
1080
1081 __setup("aic7xxx=", aic7xxx_setup);
1082
1083 uint32_t aic7xxx_verbose;
1084
1085 int
1086 ahc_linux_register_host(struct ahc_softc *ahc, struct scsi_host_template *template)
1087 {
1088 char buf[80];
1089 struct Scsi_Host *host;
1090 char *new_name;
1091 u_long s;
1092 int retval;
1093
1094 template->name = ahc->description;
1095 host = scsi_host_alloc(template, sizeof(struct ahc_softc *));
1096 if (host == NULL)
1097 return (ENOMEM);
1098
1099 *((struct ahc_softc **)host->hostdata) = ahc;
1100 ahc->platform_data->host = host;
1101 host->can_queue = AHC_MAX_QUEUE;
1102 host->cmd_per_lun = 2;
1103 /* XXX No way to communicate the ID for multiple channels */
1104 host->this_id = ahc->our_id;
1105 host->irq = ahc->platform_data->irq;
1106 host->max_id = (ahc->features & AHC_WIDE) ? 16 : 8;
1107 host->max_lun = AHC_NUM_LUNS;
1108 host->max_channel = (ahc->features & AHC_TWIN) ? 1 : 0;
1109 host->sg_tablesize = AHC_NSEG;
1110 ahc_lock(ahc, &s);
1111 ahc_set_unit(ahc, ahc_linux_unit++);
1112 ahc_unlock(ahc, &s);
1113 sprintf(buf, "scsi%d", host->host_no);
1114 new_name = kmalloc(strlen(buf) + 1, GFP_ATOMIC);
1115 if (new_name != NULL) {
1116 strcpy(new_name, buf);
1117 ahc_set_name(ahc, new_name);
1118 }
1119 host->unique_id = ahc->unit;
1120 ahc_linux_initialize_scsi_bus(ahc);
1121 ahc_intr_enable(ahc, TRUE);
1122
1123 host->transportt = ahc_linux_transport_template;
1124
1125 retval = scsi_add_host(host, ahc->dev);
1126 if (retval) {
1127 printk(KERN_WARNING "aic7xxx: scsi_add_host failed\n");
1128 scsi_host_put(host);
1129 return retval;
1130 }
1131
1132 scsi_scan_host(host);
1133 return 0;
1134 }
1135
1136 /*
1137 * Place the SCSI bus into a known state by either resetting it,
1138 * or forcing transfer negotiations on the next command to any
1139 * target.
1140 */
1141 static void
1142 ahc_linux_initialize_scsi_bus(struct ahc_softc *ahc)
1143 {
1144 int i;
1145 int numtarg;
1146 unsigned long s;
1147
1148 i = 0;
1149 numtarg = 0;
1150
1151 ahc_lock(ahc, &s);
1152
1153 if (aic7xxx_no_reset != 0)
1154 ahc->flags &= ~(AHC_RESET_BUS_A|AHC_RESET_BUS_B);
1155
1156 if ((ahc->flags & AHC_RESET_BUS_A) != 0)
1157 ahc_reset_channel(ahc, 'A', /*initiate_reset*/TRUE);
1158 else
1159 numtarg = (ahc->features & AHC_WIDE) ? 16 : 8;
1160
1161 if ((ahc->features & AHC_TWIN) != 0) {
1162
1163 if ((ahc->flags & AHC_RESET_BUS_B) != 0) {
1164 ahc_reset_channel(ahc, 'B', /*initiate_reset*/TRUE);
1165 } else {
1166 if (numtarg == 0)
1167 i = 8;
1168 numtarg += 8;
1169 }
1170 }
1171
1172 /*
1173 * Force negotiation to async for all targets that
1174 * will not see an initial bus reset.
1175 */
1176 for (; i < numtarg; i++) {
1177 struct ahc_devinfo devinfo;
1178 struct ahc_initiator_tinfo *tinfo;
1179 struct ahc_tmode_tstate *tstate;
1180 u_int our_id;
1181 u_int target_id;
1182 char channel;
1183
1184 channel = 'A';
1185 our_id = ahc->our_id;
1186 target_id = i;
1187 if (i > 7 && (ahc->features & AHC_TWIN) != 0) {
1188 channel = 'B';
1189 our_id = ahc->our_id_b;
1190 target_id = i % 8;
1191 }
1192 tinfo = ahc_fetch_transinfo(ahc, channel, our_id,
1193 target_id, &tstate);
1194 ahc_compile_devinfo(&devinfo, our_id, target_id,
1195 CAM_LUN_WILDCARD, channel, ROLE_INITIATOR);
1196 ahc_update_neg_request(ahc, &devinfo, tstate,
1197 tinfo, AHC_NEG_ALWAYS);
1198 }
1199 ahc_unlock(ahc, &s);
1200 /* Give the bus some time to recover */
1201 if ((ahc->flags & (AHC_RESET_BUS_A|AHC_RESET_BUS_B)) != 0) {
1202 ahc_linux_freeze_simq(ahc);
1203 msleep(AIC7XXX_RESET_DELAY);
1204 ahc_linux_release_simq(ahc);
1205 }
1206 }
1207
1208 int
1209 ahc_platform_alloc(struct ahc_softc *ahc, void *platform_arg)
1210 {
1211
1212 ahc->platform_data =
1213 kzalloc(sizeof(struct ahc_platform_data), GFP_ATOMIC);
1214 if (ahc->platform_data == NULL)
1215 return (ENOMEM);
1216 ahc->platform_data->irq = AHC_LINUX_NOIRQ;
1217 ahc_lockinit(ahc);
1218 ahc->seltime = (aic7xxx_seltime & 0x3) << 4;
1219 ahc->seltime_b = (aic7xxx_seltime & 0x3) << 4;
1220 if (aic7xxx_pci_parity == 0)
1221 ahc->flags |= AHC_DISABLE_PCI_PERR;
1222
1223 return (0);
1224 }
1225
1226 void
1227 ahc_platform_free(struct ahc_softc *ahc)
1228 {
1229 struct scsi_target *starget;
1230 int i;
1231
1232 if (ahc->platform_data != NULL) {
1233 /* destroy all of the device and target objects */
1234 for (i = 0; i < AHC_NUM_TARGETS; i++) {
1235 starget = ahc->platform_data->starget[i];
1236 if (starget != NULL) {
1237 ahc->platform_data->starget[i] = NULL;
1238 }
1239 }
1240
1241 if (ahc->platform_data->irq != AHC_LINUX_NOIRQ)
1242 free_irq(ahc->platform_data->irq, ahc);
1243 if (ahc->tag == BUS_SPACE_PIO
1244 && ahc->bsh.ioport != 0)
1245 release_region(ahc->bsh.ioport, 256);
1246 if (ahc->tag == BUS_SPACE_MEMIO
1247 && ahc->bsh.maddr != NULL) {
1248 iounmap(ahc->bsh.maddr);
1249 release_mem_region(ahc->platform_data->mem_busaddr,
1250 0x1000);
1251 }
1252
1253 if (ahc->platform_data->host)
1254 scsi_host_put(ahc->platform_data->host);
1255
1256 kfree(ahc->platform_data);
1257 }
1258 }
1259
1260 void
1261 ahc_platform_freeze_devq(struct ahc_softc *ahc, struct scb *scb)
1262 {
1263 ahc_platform_abort_scbs(ahc, SCB_GET_TARGET(ahc, scb),
1264 SCB_GET_CHANNEL(ahc, scb),
1265 SCB_GET_LUN(scb), SCB_LIST_NULL,
1266 ROLE_UNKNOWN, CAM_REQUEUE_REQ);
1267 }
1268
1269 void
1270 ahc_platform_set_tags(struct ahc_softc *ahc, struct scsi_device *sdev,
1271 struct ahc_devinfo *devinfo, ahc_queue_alg alg)
1272 {
1273 struct ahc_linux_device *dev;
1274 int was_queuing;
1275 int now_queuing;
1276
1277 if (sdev == NULL)
1278 return;
1279 dev = scsi_transport_device_data(sdev);
1280
1281 was_queuing = dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED);
1282 switch (alg) {
1283 default:
1284 case AHC_QUEUE_NONE:
1285 now_queuing = 0;
1286 break;
1287 case AHC_QUEUE_BASIC:
1288 now_queuing = AHC_DEV_Q_BASIC;
1289 break;
1290 case AHC_QUEUE_TAGGED:
1291 now_queuing = AHC_DEV_Q_TAGGED;
1292 break;
1293 }
1294 if ((dev->flags & AHC_DEV_FREEZE_TIL_EMPTY) == 0
1295 && (was_queuing != now_queuing)
1296 && (dev->active != 0)) {
1297 dev->flags |= AHC_DEV_FREEZE_TIL_EMPTY;
1298 dev->qfrozen++;
1299 }
1300
1301 dev->flags &= ~(AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED|AHC_DEV_PERIODIC_OTAG);
1302 if (now_queuing) {
1303 u_int usertags;
1304
1305 usertags = ahc_linux_user_tagdepth(ahc, devinfo);
1306 if (!was_queuing) {
1307 /*
1308 * Start out aggressively and allow our
1309 * dynamic queue depth algorithm to take
1310 * care of the rest.
1311 */
1312 dev->maxtags = usertags;
1313 dev->openings = dev->maxtags - dev->active;
1314 }
1315 if (dev->maxtags == 0) {
1316 /*
1317 * Queueing is disabled by the user.
1318 */
1319 dev->openings = 1;
1320 } else if (alg == AHC_QUEUE_TAGGED) {
1321 dev->flags |= AHC_DEV_Q_TAGGED;
1322 if (aic7xxx_periodic_otag != 0)
1323 dev->flags |= AHC_DEV_PERIODIC_OTAG;
1324 } else
1325 dev->flags |= AHC_DEV_Q_BASIC;
1326 } else {
1327 /* We can only have one opening. */
1328 dev->maxtags = 0;
1329 dev->openings = 1 - dev->active;
1330 }
1331 switch ((dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED))) {
1332 case AHC_DEV_Q_BASIC:
1333 case AHC_DEV_Q_TAGGED:
1334 scsi_change_queue_depth(sdev,
1335 dev->openings + dev->active);
1336 break;
1337 default:
1338 /*
1339 * We allow the OS to queue 2 untagged transactions to
1340 * us at any time even though we can only execute them
1341 * serially on the controller/device. This should
1342 * remove some latency.
1343 */
1344 scsi_change_queue_depth(sdev, 2);
1345 break;
1346 }
1347 }
1348
1349 int
1350 ahc_platform_abort_scbs(struct ahc_softc *ahc, int target, char channel,
1351 int lun, u_int tag, role_t role, uint32_t status)
1352 {
1353 return 0;
1354 }
1355
1356 static u_int
1357 ahc_linux_user_tagdepth(struct ahc_softc *ahc, struct ahc_devinfo *devinfo)
1358 {
1359 static int warned_user;
1360 u_int tags;
1361
1362 tags = 0;
1363 if ((ahc->user_discenable & devinfo->target_mask) != 0) {
1364 if (ahc->unit >= ARRAY_SIZE(aic7xxx_tag_info)) {
1365 if (warned_user == 0) {
1366
1367 printk(KERN_WARNING
1368 "aic7xxx: WARNING: Insufficient tag_info instances\n"
1369 "aic7xxx: for installed controllers. Using defaults\n"
1370 "aic7xxx: Please update the aic7xxx_tag_info array in\n"
1371 "aic7xxx: the aic7xxx_osm..c source file.\n");
1372 warned_user++;
1373 }
1374 tags = AHC_MAX_QUEUE;
1375 } else {
1376 adapter_tag_info_t *tag_info;
1377
1378 tag_info = &aic7xxx_tag_info[ahc->unit];
1379 tags = tag_info->tag_commands[devinfo->target_offset];
1380 if (tags > AHC_MAX_QUEUE)
1381 tags = AHC_MAX_QUEUE;
1382 }
1383 }
1384 return (tags);
1385 }
1386
1387 /*
1388 * Determines the queue depth for a given device.
1389 */
1390 static void
1391 ahc_linux_device_queue_depth(struct scsi_device *sdev)
1392 {
1393 struct ahc_devinfo devinfo;
1394 u_int tags;
1395 struct ahc_softc *ahc = *((struct ahc_softc **)sdev->host->hostdata);
1396
1397 ahc_compile_devinfo(&devinfo,
1398 sdev->sdev_target->channel == 0
1399 ? ahc->our_id : ahc->our_id_b,
1400 sdev->sdev_target->id, sdev->lun,
1401 sdev->sdev_target->channel == 0 ? 'A' : 'B',
1402 ROLE_INITIATOR);
1403 tags = ahc_linux_user_tagdepth(ahc, &devinfo);
1404 if (tags != 0 && sdev->tagged_supported != 0) {
1405
1406 ahc_platform_set_tags(ahc, sdev, &devinfo, AHC_QUEUE_TAGGED);
1407 ahc_send_async(ahc, devinfo.channel, devinfo.target,
1408 devinfo.lun, AC_TRANSFER_NEG);
1409 ahc_print_devinfo(ahc, &devinfo);
1410 printk("Tagged Queuing enabled. Depth %d\n", tags);
1411 } else {
1412 ahc_platform_set_tags(ahc, sdev, &devinfo, AHC_QUEUE_NONE);
1413 ahc_send_async(ahc, devinfo.channel, devinfo.target,
1414 devinfo.lun, AC_TRANSFER_NEG);
1415 }
1416 }
1417
1418 static int
1419 ahc_linux_run_command(struct ahc_softc *ahc, struct ahc_linux_device *dev,
1420 struct scsi_cmnd *cmd)
1421 {
1422 struct scb *scb;
1423 struct hardware_scb *hscb;
1424 struct ahc_initiator_tinfo *tinfo;
1425 struct ahc_tmode_tstate *tstate;
1426 uint16_t mask;
1427 struct scb_tailq *untagged_q = NULL;
1428 int nseg;
1429
1430 /*
1431 * Schedule us to run later. The only reason we are not
1432 * running is because the whole controller Q is frozen.
1433 */
1434 if (ahc->platform_data->qfrozen != 0)
1435 return SCSI_MLQUEUE_HOST_BUSY;
1436
1437 /*
1438 * We only allow one untagged transaction
1439 * per target in the initiator role unless
1440 * we are storing a full busy target *lun*
1441 * table in SCB space.
1442 */
1443 if (!(cmd->flags & SCMD_TAGGED)
1444 && (ahc->features & AHC_SCB_BTT) == 0) {
1445 int target_offset;
1446
1447 target_offset = cmd->device->id + cmd->device->channel * 8;
1448 untagged_q = &(ahc->untagged_queues[target_offset]);
1449 if (!TAILQ_EMPTY(untagged_q))
1450 /* if we're already executing an untagged command
1451 * we're busy to another */
1452 return SCSI_MLQUEUE_DEVICE_BUSY;
1453 }
1454
1455 nseg = scsi_dma_map(cmd);
1456 if (nseg < 0)
1457 return SCSI_MLQUEUE_HOST_BUSY;
1458
1459 /*
1460 * Get an scb to use.
1461 */
1462 scb = ahc_get_scb(ahc);
1463 if (!scb) {
1464 scsi_dma_unmap(cmd);
1465 return SCSI_MLQUEUE_HOST_BUSY;
1466 }
1467
1468 scb->io_ctx = cmd;
1469 scb->platform_data->dev = dev;
1470 hscb = scb->hscb;
1471 cmd->host_scribble = (char *)scb;
1472
1473 /*
1474 * Fill out basics of the HSCB.
1475 */
1476 hscb->control = 0;
1477 hscb->scsiid = BUILD_SCSIID(ahc, cmd);
1478 hscb->lun = cmd->device->lun;
1479 mask = SCB_GET_TARGET_MASK(ahc, scb);
1480 tinfo = ahc_fetch_transinfo(ahc, SCB_GET_CHANNEL(ahc, scb),
1481 SCB_GET_OUR_ID(scb),
1482 SCB_GET_TARGET(ahc, scb), &tstate);
1483 hscb->scsirate = tinfo->scsirate;
1484 hscb->scsioffset = tinfo->curr.offset;
1485 if ((tstate->ultraenb & mask) != 0)
1486 hscb->control |= ULTRAENB;
1487
1488 if ((ahc->user_discenable & mask) != 0)
1489 hscb->control |= DISCENB;
1490
1491 if ((tstate->auto_negotiate & mask) != 0) {
1492 scb->flags |= SCB_AUTO_NEGOTIATE;
1493 scb->hscb->control |= MK_MESSAGE;
1494 }
1495
1496 if ((dev->flags & (AHC_DEV_Q_TAGGED|AHC_DEV_Q_BASIC)) != 0) {
1497 if (dev->commands_since_idle_or_otag == AHC_OTAG_THRESH
1498 && (dev->flags & AHC_DEV_Q_TAGGED) != 0) {
1499 hscb->control |= MSG_ORDERED_TASK;
1500 dev->commands_since_idle_or_otag = 0;
1501 } else {
1502 hscb->control |= MSG_SIMPLE_TASK;
1503 }
1504 }
1505
1506 hscb->cdb_len = cmd->cmd_len;
1507 if (hscb->cdb_len <= 12) {
1508 memcpy(hscb->shared_data.cdb, cmd->cmnd, hscb->cdb_len);
1509 } else {
1510 memcpy(hscb->cdb32, cmd->cmnd, hscb->cdb_len);
1511 scb->flags |= SCB_CDB32_PTR;
1512 }
1513
1514 scb->platform_data->xfer_len = 0;
1515 ahc_set_residual(scb, 0);
1516 ahc_set_sense_residual(scb, 0);
1517 scb->sg_count = 0;
1518
1519 if (nseg > 0) {
1520 struct ahc_dma_seg *sg;
1521 struct scatterlist *cur_seg;
1522 int i;
1523
1524 /* Copy the segments into the SG list. */
1525 sg = scb->sg_list;
1526 /*
1527 * The sg_count may be larger than nseg if
1528 * a transfer crosses a 32bit page.
1529 */
1530 scsi_for_each_sg(cmd, cur_seg, nseg, i) {
1531 dma_addr_t addr;
1532 bus_size_t len;
1533 int consumed;
1534
1535 addr = sg_dma_address(cur_seg);
1536 len = sg_dma_len(cur_seg);
1537 consumed = ahc_linux_map_seg(ahc, scb,
1538 sg, addr, len);
1539 sg += consumed;
1540 scb->sg_count += consumed;
1541 }
1542 sg--;
1543 sg->len |= ahc_htole32(AHC_DMA_LAST_SEG);
1544
1545 /*
1546 * Reset the sg list pointer.
1547 */
1548 scb->hscb->sgptr =
1549 ahc_htole32(scb->sg_list_phys | SG_FULL_RESID);
1550
1551 /*
1552 * Copy the first SG into the "current"
1553 * data pointer area.
1554 */
1555 scb->hscb->dataptr = scb->sg_list->addr;
1556 scb->hscb->datacnt = scb->sg_list->len;
1557 } else {
1558 scb->hscb->sgptr = ahc_htole32(SG_LIST_NULL);
1559 scb->hscb->dataptr = 0;
1560 scb->hscb->datacnt = 0;
1561 scb->sg_count = 0;
1562 }
1563
1564 LIST_INSERT_HEAD(&ahc->pending_scbs, scb, pending_links);
1565 dev->openings--;
1566 dev->active++;
1567 dev->commands_issued++;
1568 if ((dev->flags & AHC_DEV_PERIODIC_OTAG) != 0)
1569 dev->commands_since_idle_or_otag++;
1570
1571 scb->flags |= SCB_ACTIVE;
1572 if (untagged_q) {
1573 TAILQ_INSERT_TAIL(untagged_q, scb, links.tqe);
1574 scb->flags |= SCB_UNTAGGEDQ;
1575 }
1576 ahc_queue_scb(ahc, scb);
1577 return 0;
1578 }
1579
1580 /*
1581 * SCSI controller interrupt handler.
1582 */
1583 irqreturn_t
1584 ahc_linux_isr(int irq, void *dev_id)
1585 {
1586 struct ahc_softc *ahc;
1587 u_long flags;
1588 int ours;
1589
1590 ahc = (struct ahc_softc *) dev_id;
1591 ahc_lock(ahc, &flags);
1592 ours = ahc_intr(ahc);
1593 ahc_unlock(ahc, &flags);
1594 return IRQ_RETVAL(ours);
1595 }
1596
1597 void
1598 ahc_platform_flushwork(struct ahc_softc *ahc)
1599 {
1600
1601 }
1602
1603 void
1604 ahc_send_async(struct ahc_softc *ahc, char channel,
1605 u_int target, u_int lun, ac_code code)
1606 {
1607 switch (code) {
1608 case AC_TRANSFER_NEG:
1609 {
1610 struct scsi_target *starget;
1611 struct ahc_linux_target *targ;
1612 struct ahc_initiator_tinfo *tinfo;
1613 struct ahc_tmode_tstate *tstate;
1614 int target_offset;
1615 unsigned int target_ppr_options;
1616
1617 BUG_ON(target == CAM_TARGET_WILDCARD);
1618
1619 tinfo = ahc_fetch_transinfo(ahc, channel,
1620 channel == 'A' ? ahc->our_id
1621 : ahc->our_id_b,
1622 target, &tstate);
1623
1624 /*
1625 * Don't bother reporting results while
1626 * negotiations are still pending.
1627 */
1628 if (tinfo->curr.period != tinfo->goal.period
1629 || tinfo->curr.width != tinfo->goal.width
1630 || tinfo->curr.offset != tinfo->goal.offset
1631 || tinfo->curr.ppr_options != tinfo->goal.ppr_options)
1632 if (bootverbose == 0)
1633 break;
1634
1635 /*
1636 * Don't bother reporting results that
1637 * are identical to those last reported.
1638 */
1639 target_offset = target;
1640 if (channel == 'B')
1641 target_offset += 8;
1642 starget = ahc->platform_data->starget[target_offset];
1643 if (starget == NULL)
1644 break;
1645 targ = scsi_transport_target_data(starget);
1646
1647 target_ppr_options =
1648 (spi_dt(starget) ? MSG_EXT_PPR_DT_REQ : 0)
1649 + (spi_qas(starget) ? MSG_EXT_PPR_QAS_REQ : 0)
1650 + (spi_iu(starget) ? MSG_EXT_PPR_IU_REQ : 0);
1651
1652 if (tinfo->curr.period == spi_period(starget)
1653 && tinfo->curr.width == spi_width(starget)
1654 && tinfo->curr.offset == spi_offset(starget)
1655 && tinfo->curr.ppr_options == target_ppr_options)
1656 if (bootverbose == 0)
1657 break;
1658
1659 spi_period(starget) = tinfo->curr.period;
1660 spi_width(starget) = tinfo->curr.width;
1661 spi_offset(starget) = tinfo->curr.offset;
1662 spi_dt(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_DT_REQ ? 1 : 0;
1663 spi_qas(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_QAS_REQ ? 1 : 0;
1664 spi_iu(starget) = tinfo->curr.ppr_options & MSG_EXT_PPR_IU_REQ ? 1 : 0;
1665 spi_display_xfer_agreement(starget);
1666 break;
1667 }
1668 case AC_SENT_BDR:
1669 {
1670 WARN_ON(lun != CAM_LUN_WILDCARD);
1671 scsi_report_device_reset(ahc->platform_data->host,
1672 channel - 'A', target);
1673 break;
1674 }
1675 case AC_BUS_RESET:
1676 if (ahc->platform_data->host != NULL) {
1677 scsi_report_bus_reset(ahc->platform_data->host,
1678 channel - 'A');
1679 }
1680 break;
1681 default:
1682 panic("ahc_send_async: Unexpected async event");
1683 }
1684 }
1685
1686 /*
1687 * Calls the higher level scsi done function and frees the scb.
1688 */
1689 void
1690 ahc_done(struct ahc_softc *ahc, struct scb *scb)
1691 {
1692 struct scsi_cmnd *cmd;
1693 struct ahc_linux_device *dev;
1694
1695 LIST_REMOVE(scb, pending_links);
1696 if ((scb->flags & SCB_UNTAGGEDQ) != 0) {
1697 struct scb_tailq *untagged_q;
1698 int target_offset;
1699
1700 target_offset = SCB_GET_TARGET_OFFSET(ahc, scb);
1701 untagged_q = &(ahc->untagged_queues[target_offset]);
1702 TAILQ_REMOVE(untagged_q, scb, links.tqe);
1703 BUG_ON(!TAILQ_EMPTY(untagged_q));
1704 } else if ((scb->flags & SCB_ACTIVE) == 0) {
1705 /*
1706 * Transactions aborted from the untagged queue may
1707 * not have been dispatched to the controller, so
1708 * only check the SCB_ACTIVE flag for tagged transactions.
1709 */
1710 printk("SCB %d done'd twice\n", scb->hscb->tag);
1711 ahc_dump_card_state(ahc);
1712 panic("Stopping for safety");
1713 }
1714 cmd = scb->io_ctx;
1715 dev = scb->platform_data->dev;
1716 dev->active--;
1717 dev->openings++;
1718 if ((cmd->result & (CAM_DEV_QFRZN << 16)) != 0) {
1719 cmd->result &= ~(CAM_DEV_QFRZN << 16);
1720 dev->qfrozen--;
1721 }
1722 ahc_linux_unmap_scb(ahc, scb);
1723
1724 /*
1725 * Guard against stale sense data.
1726 * The Linux mid-layer assumes that sense
1727 * was retrieved anytime the first byte of
1728 * the sense buffer looks "sane".
1729 */
1730 cmd->sense_buffer[0] = 0;
1731 if (ahc_get_transaction_status(scb) == CAM_REQ_INPROG) {
1732 uint32_t amount_xferred;
1733
1734 amount_xferred =
1735 ahc_get_transfer_length(scb) - ahc_get_residual(scb);
1736 if ((scb->flags & SCB_TRANSMISSION_ERROR) != 0) {
1737 #ifdef AHC_DEBUG
1738 if ((ahc_debug & AHC_SHOW_MISC) != 0) {
1739 ahc_print_path(ahc, scb);
1740 printk("Set CAM_UNCOR_PARITY\n");
1741 }
1742 #endif
1743 ahc_set_transaction_status(scb, CAM_UNCOR_PARITY);
1744 #ifdef AHC_REPORT_UNDERFLOWS
1745 /*
1746 * This code is disabled by default as some
1747 * clients of the SCSI system do not properly
1748 * initialize the underflow parameter. This
1749 * results in spurious termination of commands
1750 * that complete as expected (e.g. underflow is
1751 * allowed as command can return variable amounts
1752 * of data.
1753 */
1754 } else if (amount_xferred < scb->io_ctx->underflow) {
1755 u_int i;
1756
1757 ahc_print_path(ahc, scb);
1758 printk("CDB:");
1759 for (i = 0; i < scb->io_ctx->cmd_len; i++)
1760 printk(" 0x%x", scb->io_ctx->cmnd[i]);
1761 printk("\n");
1762 ahc_print_path(ahc, scb);
1763 printk("Saw underflow (%ld of %ld bytes). "
1764 "Treated as error\n",
1765 ahc_get_residual(scb),
1766 ahc_get_transfer_length(scb));
1767 ahc_set_transaction_status(scb, CAM_DATA_RUN_ERR);
1768 #endif
1769 } else {
1770 ahc_set_transaction_status(scb, CAM_REQ_CMP);
1771 }
1772 } else if (ahc_get_transaction_status(scb) == CAM_SCSI_STATUS_ERROR) {
1773 ahc_linux_handle_scsi_status(ahc, cmd->device, scb);
1774 }
1775
1776 if (dev->openings == 1
1777 && ahc_get_transaction_status(scb) == CAM_REQ_CMP
1778 && ahc_get_scsi_status(scb) != SCSI_STATUS_QUEUE_FULL)
1779 dev->tag_success_count++;
1780 /*
1781 * Some devices deal with temporary internal resource
1782 * shortages by returning queue full. When the queue
1783 * full occurrs, we throttle back. Slowly try to get
1784 * back to our previous queue depth.
1785 */
1786 if ((dev->openings + dev->active) < dev->maxtags
1787 && dev->tag_success_count > AHC_TAG_SUCCESS_INTERVAL) {
1788 dev->tag_success_count = 0;
1789 dev->openings++;
1790 }
1791
1792 if (dev->active == 0)
1793 dev->commands_since_idle_or_otag = 0;
1794
1795 if ((scb->flags & SCB_RECOVERY_SCB) != 0) {
1796 printk("Recovery SCB completes\n");
1797 if (ahc_get_transaction_status(scb) == CAM_BDR_SENT
1798 || ahc_get_transaction_status(scb) == CAM_REQ_ABORTED)
1799 ahc_set_transaction_status(scb, CAM_CMD_TIMEOUT);
1800
1801 if (ahc->platform_data->eh_done)
1802 complete(ahc->platform_data->eh_done);
1803 }
1804
1805 ahc_free_scb(ahc, scb);
1806 ahc_linux_queue_cmd_complete(ahc, cmd);
1807 }
1808
1809 static void
1810 ahc_linux_handle_scsi_status(struct ahc_softc *ahc,
1811 struct scsi_device *sdev, struct scb *scb)
1812 {
1813 struct ahc_devinfo devinfo;
1814 struct ahc_linux_device *dev = scsi_transport_device_data(sdev);
1815
1816 ahc_compile_devinfo(&devinfo,
1817 ahc->our_id,
1818 sdev->sdev_target->id, sdev->lun,
1819 sdev->sdev_target->channel == 0 ? 'A' : 'B',
1820 ROLE_INITIATOR);
1821
1822 /*
1823 * We don't currently trust the mid-layer to
1824 * properly deal with queue full or busy. So,
1825 * when one occurs, we tell the mid-layer to
1826 * unconditionally requeue the command to us
1827 * so that we can retry it ourselves. We also
1828 * implement our own throttling mechanism so
1829 * we don't clobber the device with too many
1830 * commands.
1831 */
1832 switch (ahc_get_scsi_status(scb)) {
1833 default:
1834 break;
1835 case SCSI_STATUS_CHECK_COND:
1836 case SCSI_STATUS_CMD_TERMINATED:
1837 {
1838 struct scsi_cmnd *cmd;
1839
1840 /*
1841 * Copy sense information to the OS's cmd
1842 * structure if it is available.
1843 */
1844 cmd = scb->io_ctx;
1845 if (scb->flags & SCB_SENSE) {
1846 u_int sense_size;
1847
1848 sense_size = min(sizeof(struct scsi_sense_data)
1849 - ahc_get_sense_residual(scb),
1850 (u_long)SCSI_SENSE_BUFFERSIZE);
1851 memcpy(cmd->sense_buffer,
1852 ahc_get_sense_buf(ahc, scb), sense_size);
1853 if (sense_size < SCSI_SENSE_BUFFERSIZE)
1854 memset(&cmd->sense_buffer[sense_size], 0,
1855 SCSI_SENSE_BUFFERSIZE - sense_size);
1856 cmd->result |= (DRIVER_SENSE << 24);
1857 #ifdef AHC_DEBUG
1858 if (ahc_debug & AHC_SHOW_SENSE) {
1859 int i;
1860
1861 printk("Copied %d bytes of sense data:",
1862 sense_size);
1863 for (i = 0; i < sense_size; i++) {
1864 if ((i & 0xF) == 0)
1865 printk("\n");
1866 printk("0x%x ", cmd->sense_buffer[i]);
1867 }
1868 printk("\n");
1869 }
1870 #endif
1871 }
1872 break;
1873 }
1874 case SCSI_STATUS_QUEUE_FULL:
1875 {
1876 /*
1877 * By the time the core driver has returned this
1878 * command, all other commands that were queued
1879 * to us but not the device have been returned.
1880 * This ensures that dev->active is equal to
1881 * the number of commands actually queued to
1882 * the device.
1883 */
1884 dev->tag_success_count = 0;
1885 if (dev->active != 0) {
1886 /*
1887 * Drop our opening count to the number
1888 * of commands currently outstanding.
1889 */
1890 dev->openings = 0;
1891 /*
1892 ahc_print_path(ahc, scb);
1893 printk("Dropping tag count to %d\n", dev->active);
1894 */
1895 if (dev->active == dev->tags_on_last_queuefull) {
1896
1897 dev->last_queuefull_same_count++;
1898 /*
1899 * If we repeatedly see a queue full
1900 * at the same queue depth, this
1901 * device has a fixed number of tag
1902 * slots. Lock in this tag depth
1903 * so we stop seeing queue fulls from
1904 * this device.
1905 */
1906 if (dev->last_queuefull_same_count
1907 == AHC_LOCK_TAGS_COUNT) {
1908 dev->maxtags = dev->active;
1909 ahc_print_path(ahc, scb);
1910 printk("Locking max tag count at %d\n",
1911 dev->active);
1912 }
1913 } else {
1914 dev->tags_on_last_queuefull = dev->active;
1915 dev->last_queuefull_same_count = 0;
1916 }
1917 ahc_set_transaction_status(scb, CAM_REQUEUE_REQ);
1918 ahc_set_scsi_status(scb, SCSI_STATUS_OK);
1919 ahc_platform_set_tags(ahc, sdev, &devinfo,
1920 (dev->flags & AHC_DEV_Q_BASIC)
1921 ? AHC_QUEUE_BASIC : AHC_QUEUE_TAGGED);
1922 break;
1923 }
1924 /*
1925 * Drop down to a single opening, and treat this
1926 * as if the target returned BUSY SCSI status.
1927 */
1928 dev->openings = 1;
1929 ahc_set_scsi_status(scb, SCSI_STATUS_BUSY);
1930 ahc_platform_set_tags(ahc, sdev, &devinfo,
1931 (dev->flags & AHC_DEV_Q_BASIC)
1932 ? AHC_QUEUE_BASIC : AHC_QUEUE_TAGGED);
1933 break;
1934 }
1935 }
1936 }
1937
1938 static void
1939 ahc_linux_queue_cmd_complete(struct ahc_softc *ahc, struct scsi_cmnd *cmd)
1940 {
1941 /*
1942 * Map CAM error codes into Linux Error codes. We
1943 * avoid the conversion so that the DV code has the
1944 * full error information available when making
1945 * state change decisions.
1946 */
1947 {
1948 u_int new_status;
1949
1950 switch (ahc_cmd_get_transaction_status(cmd)) {
1951 case CAM_REQ_INPROG:
1952 case CAM_REQ_CMP:
1953 case CAM_SCSI_STATUS_ERROR:
1954 new_status = DID_OK;
1955 break;
1956 case CAM_REQ_ABORTED:
1957 new_status = DID_ABORT;
1958 break;
1959 case CAM_BUSY:
1960 new_status = DID_BUS_BUSY;
1961 break;
1962 case CAM_REQ_INVALID:
1963 case CAM_PATH_INVALID:
1964 new_status = DID_BAD_TARGET;
1965 break;
1966 case CAM_SEL_TIMEOUT:
1967 new_status = DID_NO_CONNECT;
1968 break;
1969 case CAM_SCSI_BUS_RESET:
1970 case CAM_BDR_SENT:
1971 new_status = DID_RESET;
1972 break;
1973 case CAM_UNCOR_PARITY:
1974 new_status = DID_PARITY;
1975 break;
1976 case CAM_CMD_TIMEOUT:
1977 new_status = DID_TIME_OUT;
1978 break;
1979 case CAM_UA_ABORT:
1980 case CAM_REQ_CMP_ERR:
1981 case CAM_AUTOSENSE_FAIL:
1982 case CAM_NO_HBA:
1983 case CAM_DATA_RUN_ERR:
1984 case CAM_UNEXP_BUSFREE:
1985 case CAM_SEQUENCE_FAIL:
1986 case CAM_CCB_LEN_ERR:
1987 case CAM_PROVIDE_FAIL:
1988 case CAM_REQ_TERMIO:
1989 case CAM_UNREC_HBA_ERROR:
1990 case CAM_REQ_TOO_BIG:
1991 new_status = DID_ERROR;
1992 break;
1993 case CAM_REQUEUE_REQ:
1994 new_status = DID_REQUEUE;
1995 break;
1996 default:
1997 /* We should never get here */
1998 new_status = DID_ERROR;
1999 break;
2000 }
2001
2002 ahc_cmd_set_transaction_status(cmd, new_status);
2003 }
2004
2005 cmd->scsi_done(cmd);
2006 }
2007
2008 static void
2009 ahc_linux_freeze_simq(struct ahc_softc *ahc)
2010 {
2011 unsigned long s;
2012
2013 ahc_lock(ahc, &s);
2014 ahc->platform_data->qfrozen++;
2015 if (ahc->platform_data->qfrozen == 1) {
2016 scsi_block_requests(ahc->platform_data->host);
2017
2018 /* XXX What about Twin channels? */
2019 ahc_platform_abort_scbs(ahc, CAM_TARGET_WILDCARD, ALL_CHANNELS,
2020 CAM_LUN_WILDCARD, SCB_LIST_NULL,
2021 ROLE_INITIATOR, CAM_REQUEUE_REQ);
2022 }
2023 ahc_unlock(ahc, &s);
2024 }
2025
2026 static void
2027 ahc_linux_release_simq(struct ahc_softc *ahc)
2028 {
2029 u_long s;
2030 int unblock_reqs;
2031
2032 unblock_reqs = 0;
2033 ahc_lock(ahc, &s);
2034 if (ahc->platform_data->qfrozen > 0)
2035 ahc->platform_data->qfrozen--;
2036 if (ahc->platform_data->qfrozen == 0)
2037 unblock_reqs = 1;
2038 ahc_unlock(ahc, &s);
2039 /*
2040 * There is still a race here. The mid-layer
2041 * should keep its own freeze count and use
2042 * a bottom half handler to run the queues
2043 * so we can unblock with our own lock held.
2044 */
2045 if (unblock_reqs)
2046 scsi_unblock_requests(ahc->platform_data->host);
2047 }
2048
2049 static int
2050 ahc_linux_queue_recovery_cmd(struct scsi_cmnd *cmd, scb_flag flag)
2051 {
2052 struct ahc_softc *ahc;
2053 struct ahc_linux_device *dev;
2054 struct scb *pending_scb;
2055 u_int saved_scbptr;
2056 u_int active_scb_index;
2057 u_int last_phase;
2058 u_int saved_scsiid;
2059 u_int cdb_byte;
2060 int retval;
2061 int was_paused;
2062 int paused;
2063 int wait;
2064 int disconnected;
2065 unsigned long flags;
2066
2067 pending_scb = NULL;
2068 paused = FALSE;
2069 wait = FALSE;
2070 ahc = *(struct ahc_softc **)cmd->device->host->hostdata;
2071
2072 scmd_printk(KERN_INFO, cmd, "Attempting to queue a%s message\n",
2073 flag == SCB_ABORT ? "n ABORT" : " TARGET RESET");
2074
2075 printk("CDB:");
2076 for (cdb_byte = 0; cdb_byte < cmd->cmd_len; cdb_byte++)
2077 printk(" 0x%x", cmd->cmnd[cdb_byte]);
2078 printk("\n");
2079
2080 ahc_lock(ahc, &flags);
2081
2082 /*
2083 * First determine if we currently own this command.
2084 * Start by searching the device queue. If not found
2085 * there, check the pending_scb list. If not found
2086 * at all, and the system wanted us to just abort the
2087 * command, return success.
2088 */
2089 dev = scsi_transport_device_data(cmd->device);
2090
2091 if (dev == NULL) {
2092 /*
2093 * No target device for this command exists,
2094 * so we must not still own the command.
2095 */
2096 printk("%s:%d:%d:%d: Is not an active device\n",
2097 ahc_name(ahc), cmd->device->channel, cmd->device->id,
2098 (u8)cmd->device->lun);
2099 retval = SUCCESS;
2100 goto no_cmd;
2101 }
2102
2103 if ((dev->flags & (AHC_DEV_Q_BASIC|AHC_DEV_Q_TAGGED)) == 0
2104 && ahc_search_untagged_queues(ahc, cmd, cmd->device->id,
2105 cmd->device->channel + 'A',
2106 (u8)cmd->device->lun,
2107 CAM_REQ_ABORTED, SEARCH_COMPLETE) != 0) {
2108 printk("%s:%d:%d:%d: Command found on untagged queue\n",
2109 ahc_name(ahc), cmd->device->channel, cmd->device->id,
2110 (u8)cmd->device->lun);
2111 retval = SUCCESS;
2112 goto done;
2113 }
2114
2115 /*
2116 * See if we can find a matching cmd in the pending list.
2117 */
2118 LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) {
2119 if (pending_scb->io_ctx == cmd)
2120 break;
2121 }
2122
2123 if (pending_scb == NULL && flag == SCB_DEVICE_RESET) {
2124
2125 /* Any SCB for this device will do for a target reset */
2126 LIST_FOREACH(pending_scb, &ahc->pending_scbs, pending_links) {
2127 if (ahc_match_scb(ahc, pending_scb, scmd_id(cmd),
2128 scmd_channel(cmd) + 'A',
2129 CAM_LUN_WILDCARD,
2130 SCB_LIST_NULL, ROLE_INITIATOR))
2131 break;
2132 }
2133 }
2134
2135 if (pending_scb == NULL) {
2136 scmd_printk(KERN_INFO, cmd, "Command not found\n");
2137 goto no_cmd;
2138 }
2139
2140 if ((pending_scb->flags & SCB_RECOVERY_SCB) != 0) {
2141 /*
2142 * We can't queue two recovery actions using the same SCB
2143 */
2144 retval = FAILED;
2145 goto done;
2146 }
2147
2148 /*
2149 * Ensure that the card doesn't do anything
2150 * behind our back and that we didn't "just" miss
2151 * an interrupt that would affect this cmd.
2152 */
2153 was_paused = ahc_is_paused(ahc);
2154 ahc_pause_and_flushwork(ahc);
2155 paused = TRUE;
2156
2157 if ((pending_scb->flags & SCB_ACTIVE) == 0) {
2158 scmd_printk(KERN_INFO, cmd, "Command already completed\n");
2159 goto no_cmd;
2160 }
2161
2162 printk("%s: At time of recovery, card was %spaused\n",
2163 ahc_name(ahc), was_paused ? "" : "not ");
2164 ahc_dump_card_state(ahc);
2165
2166 disconnected = TRUE;
2167 if (flag == SCB_ABORT) {
2168 if (ahc_search_qinfifo(ahc, cmd->device->id,
2169 cmd->device->channel + 'A',
2170 cmd->device->lun,
2171 pending_scb->hscb->tag,
2172 ROLE_INITIATOR, CAM_REQ_ABORTED,
2173 SEARCH_COMPLETE) > 0) {
2174 printk("%s:%d:%d:%d: Cmd aborted from QINFIFO\n",
2175 ahc_name(ahc), cmd->device->channel,
2176 cmd->device->id, (u8)cmd->device->lun);
2177 retval = SUCCESS;
2178 goto done;
2179 }
2180 } else if (ahc_search_qinfifo(ahc, cmd->device->id,
2181 cmd->device->channel + 'A',
2182 cmd->device->lun,
2183 pending_scb->hscb->tag,
2184 ROLE_INITIATOR, /*status*/0,
2185 SEARCH_COUNT) > 0) {
2186 disconnected = FALSE;
2187 }
2188
2189 if (disconnected && (ahc_inb(ahc, SEQ_FLAGS) & NOT_IDENTIFIED) == 0) {
2190 struct scb *bus_scb;
2191
2192 bus_scb = ahc_lookup_scb(ahc, ahc_inb(ahc, SCB_TAG));
2193 if (bus_scb == pending_scb)
2194 disconnected = FALSE;
2195 else if (flag != SCB_ABORT
2196 && ahc_inb(ahc, SAVED_SCSIID) == pending_scb->hscb->scsiid
2197 && ahc_inb(ahc, SAVED_LUN) == SCB_GET_LUN(pending_scb))
2198 disconnected = FALSE;
2199 }
2200
2201 /*
2202 * At this point, pending_scb is the scb associated with the
2203 * passed in command. That command is currently active on the
2204 * bus, is in the disconnected state, or we're hoping to find
2205 * a command for the same target active on the bus to abuse to
2206 * send a BDR. Queue the appropriate message based on which of
2207 * these states we are in.
2208 */
2209 last_phase = ahc_inb(ahc, LASTPHASE);
2210 saved_scbptr = ahc_inb(ahc, SCBPTR);
2211 active_scb_index = ahc_inb(ahc, SCB_TAG);
2212 saved_scsiid = ahc_inb(ahc, SAVED_SCSIID);
2213 if (last_phase != P_BUSFREE
2214 && (pending_scb->hscb->tag == active_scb_index
2215 || (flag == SCB_DEVICE_RESET
2216 && SCSIID_TARGET(ahc, saved_scsiid) == scmd_id(cmd)))) {
2217
2218 /*
2219 * We're active on the bus, so assert ATN
2220 * and hope that the target responds.
2221 */
2222 pending_scb = ahc_lookup_scb(ahc, active_scb_index);
2223 pending_scb->flags |= SCB_RECOVERY_SCB|flag;
2224 ahc_outb(ahc, MSG_OUT, HOST_MSG);
2225 ahc_outb(ahc, SCSISIGO, last_phase|ATNO);
2226 scmd_printk(KERN_INFO, cmd, "Device is active, asserting ATN\n");
2227 wait = TRUE;
2228 } else if (disconnected) {
2229
2230 /*
2231 * Actually re-queue this SCB in an attempt
2232 * to select the device before it reconnects.
2233 * In either case (selection or reselection),
2234 * we will now issue the approprate message
2235 * to the timed-out device.
2236 *
2237 * Set the MK_MESSAGE control bit indicating
2238 * that we desire to send a message. We
2239 * also set the disconnected flag since
2240 * in the paging case there is no guarantee
2241 * that our SCB control byte matches the
2242 * version on the card. We don't want the
2243 * sequencer to abort the command thinking
2244 * an unsolicited reselection occurred.
2245 */
2246 pending_scb->hscb->control |= MK_MESSAGE|DISCONNECTED;
2247 pending_scb->flags |= SCB_RECOVERY_SCB|flag;
2248
2249 /*
2250 * Remove any cached copy of this SCB in the
2251 * disconnected list in preparation for the
2252 * queuing of our abort SCB. We use the
2253 * same element in the SCB, SCB_NEXT, for
2254 * both the qinfifo and the disconnected list.
2255 */
2256 ahc_search_disc_list(ahc, cmd->device->id,
2257 cmd->device->channel + 'A',
2258 cmd->device->lun, pending_scb->hscb->tag,
2259 /*stop_on_first*/TRUE,
2260 /*remove*/TRUE,
2261 /*save_state*/FALSE);
2262
2263 /*
2264 * In the non-paging case, the sequencer will
2265 * never re-reference the in-core SCB.
2266 * To make sure we are notified during
2267 * reselection, set the MK_MESSAGE flag in
2268 * the card's copy of the SCB.
2269 */
2270 if ((ahc->flags & AHC_PAGESCBS) == 0) {
2271 ahc_outb(ahc, SCBPTR, pending_scb->hscb->tag);
2272 ahc_outb(ahc, SCB_CONTROL,
2273 ahc_inb(ahc, SCB_CONTROL)|MK_MESSAGE);
2274 }
2275
2276 /*
2277 * Clear out any entries in the QINFIFO first
2278 * so we are the next SCB for this target
2279 * to run.
2280 */
2281 ahc_search_qinfifo(ahc, cmd->device->id,
2282 cmd->device->channel + 'A',
2283 cmd->device->lun, SCB_LIST_NULL,
2284 ROLE_INITIATOR, CAM_REQUEUE_REQ,
2285 SEARCH_COMPLETE);
2286 ahc_qinfifo_requeue_tail(ahc, pending_scb);
2287 ahc_outb(ahc, SCBPTR, saved_scbptr);
2288 ahc_print_path(ahc, pending_scb);
2289 printk("Device is disconnected, re-queuing SCB\n");
2290 wait = TRUE;
2291 } else {
2292 scmd_printk(KERN_INFO, cmd, "Unable to deliver message\n");
2293 retval = FAILED;
2294 goto done;
2295 }
2296
2297 no_cmd:
2298 /*
2299 * Our assumption is that if we don't have the command, no
2300 * recovery action was required, so we return success. Again,
2301 * the semantics of the mid-layer recovery engine are not
2302 * well defined, so this may change in time.
2303 */
2304 retval = SUCCESS;
2305 done:
2306 if (paused)
2307 ahc_unpause(ahc);
2308 if (wait) {
2309 DECLARE_COMPLETION_ONSTACK(done);
2310
2311 ahc->platform_data->eh_done = &done;
2312 ahc_unlock(ahc, &flags);
2313
2314 printk("Recovery code sleeping\n");
2315 if (!wait_for_completion_timeout(&done, 5 * HZ)) {
2316 ahc_lock(ahc, &flags);
2317 ahc->platform_data->eh_done = NULL;
2318 ahc_unlock(ahc, &flags);
2319
2320 printk("Timer Expired\n");
2321 retval = FAILED;
2322 }
2323 printk("Recovery code awake\n");
2324 } else
2325 ahc_unlock(ahc, &flags);
2326 return (retval);
2327 }
2328
2329 static void ahc_linux_set_width(struct scsi_target *starget, int width)
2330 {
2331 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2332 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2333 struct ahc_devinfo devinfo;
2334 unsigned long flags;
2335
2336 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2337 starget->channel + 'A', ROLE_INITIATOR);
2338 ahc_lock(ahc, &flags);
2339 ahc_set_width(ahc, &devinfo, width, AHC_TRANS_GOAL, FALSE);
2340 ahc_unlock(ahc, &flags);
2341 }
2342
2343 static void ahc_linux_set_period(struct scsi_target *starget, int period)
2344 {
2345 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2346 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2347 struct ahc_tmode_tstate *tstate;
2348 struct ahc_initiator_tinfo *tinfo
2349 = ahc_fetch_transinfo(ahc,
2350 starget->channel + 'A',
2351 shost->this_id, starget->id, &tstate);
2352 struct ahc_devinfo devinfo;
2353 unsigned int ppr_options = tinfo->goal.ppr_options;
2354 unsigned long flags;
2355 unsigned long offset = tinfo->goal.offset;
2356 const struct ahc_syncrate *syncrate;
2357
2358 if (offset == 0)
2359 offset = MAX_OFFSET;
2360
2361 if (period < 9)
2362 period = 9; /* 12.5ns is our minimum */
2363 if (period == 9) {
2364 if (spi_max_width(starget))
2365 ppr_options |= MSG_EXT_PPR_DT_REQ;
2366 else
2367 /* need wide for DT and need DT for 12.5 ns */
2368 period = 10;
2369 }
2370
2371 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2372 starget->channel + 'A', ROLE_INITIATOR);
2373
2374 /* all PPR requests apart from QAS require wide transfers */
2375 if (ppr_options & ~MSG_EXT_PPR_QAS_REQ) {
2376 if (spi_width(starget) == 0)
2377 ppr_options &= MSG_EXT_PPR_QAS_REQ;
2378 }
2379
2380 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, AHC_SYNCRATE_DT);
2381 ahc_lock(ahc, &flags);
2382 ahc_set_syncrate(ahc, &devinfo, syncrate, period, offset,
2383 ppr_options, AHC_TRANS_GOAL, FALSE);
2384 ahc_unlock(ahc, &flags);
2385 }
2386
2387 static void ahc_linux_set_offset(struct scsi_target *starget, int offset)
2388 {
2389 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2390 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2391 struct ahc_tmode_tstate *tstate;
2392 struct ahc_initiator_tinfo *tinfo
2393 = ahc_fetch_transinfo(ahc,
2394 starget->channel + 'A',
2395 shost->this_id, starget->id, &tstate);
2396 struct ahc_devinfo devinfo;
2397 unsigned int ppr_options = 0;
2398 unsigned int period = 0;
2399 unsigned long flags;
2400 const struct ahc_syncrate *syncrate = NULL;
2401
2402 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2403 starget->channel + 'A', ROLE_INITIATOR);
2404 if (offset != 0) {
2405 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, AHC_SYNCRATE_DT);
2406 period = tinfo->goal.period;
2407 ppr_options = tinfo->goal.ppr_options;
2408 }
2409 ahc_lock(ahc, &flags);
2410 ahc_set_syncrate(ahc, &devinfo, syncrate, period, offset,
2411 ppr_options, AHC_TRANS_GOAL, FALSE);
2412 ahc_unlock(ahc, &flags);
2413 }
2414
2415 static void ahc_linux_set_dt(struct scsi_target *starget, int dt)
2416 {
2417 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2418 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2419 struct ahc_tmode_tstate *tstate;
2420 struct ahc_initiator_tinfo *tinfo
2421 = ahc_fetch_transinfo(ahc,
2422 starget->channel + 'A',
2423 shost->this_id, starget->id, &tstate);
2424 struct ahc_devinfo devinfo;
2425 unsigned int ppr_options = tinfo->goal.ppr_options
2426 & ~MSG_EXT_PPR_DT_REQ;
2427 unsigned int period = tinfo->goal.period;
2428 unsigned int width = tinfo->goal.width;
2429 unsigned long flags;
2430 const struct ahc_syncrate *syncrate;
2431
2432 if (dt && spi_max_width(starget)) {
2433 ppr_options |= MSG_EXT_PPR_DT_REQ;
2434 if (!width)
2435 ahc_linux_set_width(starget, 1);
2436 } else if (period == 9)
2437 period = 10; /* if resetting DT, period must be >= 25ns */
2438
2439 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2440 starget->channel + 'A', ROLE_INITIATOR);
2441 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options,AHC_SYNCRATE_DT);
2442 ahc_lock(ahc, &flags);
2443 ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->goal.offset,
2444 ppr_options, AHC_TRANS_GOAL, FALSE);
2445 ahc_unlock(ahc, &flags);
2446 }
2447
2448 #if 0
2449 /* FIXME: This code claims to support IU and QAS. However, the actual
2450 * sequencer code and aic7xxx_core have no support for these parameters and
2451 * will get into a bad state if they're negotiated. Do not enable this
2452 * unless you know what you're doing */
2453 static void ahc_linux_set_qas(struct scsi_target *starget, int qas)
2454 {
2455 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2456 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2457 struct ahc_tmode_tstate *tstate;
2458 struct ahc_initiator_tinfo *tinfo
2459 = ahc_fetch_transinfo(ahc,
2460 starget->channel + 'A',
2461 shost->this_id, starget->id, &tstate);
2462 struct ahc_devinfo devinfo;
2463 unsigned int ppr_options = tinfo->goal.ppr_options
2464 & ~MSG_EXT_PPR_QAS_REQ;
2465 unsigned int period = tinfo->goal.period;
2466 unsigned long flags;
2467 struct ahc_syncrate *syncrate;
2468
2469 if (qas)
2470 ppr_options |= MSG_EXT_PPR_QAS_REQ;
2471
2472 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2473 starget->channel + 'A', ROLE_INITIATOR);
2474 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, AHC_SYNCRATE_DT);
2475 ahc_lock(ahc, &flags);
2476 ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->goal.offset,
2477 ppr_options, AHC_TRANS_GOAL, FALSE);
2478 ahc_unlock(ahc, &flags);
2479 }
2480
2481 static void ahc_linux_set_iu(struct scsi_target *starget, int iu)
2482 {
2483 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
2484 struct ahc_softc *ahc = *((struct ahc_softc **)shost->hostdata);
2485 struct ahc_tmode_tstate *tstate;
2486 struct ahc_initiator_tinfo *tinfo
2487 = ahc_fetch_transinfo(ahc,
2488 starget->channel + 'A',
2489 shost->this_id, starget->id, &tstate);
2490 struct ahc_devinfo devinfo;
2491 unsigned int ppr_options = tinfo->goal.ppr_options
2492 & ~MSG_EXT_PPR_IU_REQ;
2493 unsigned int period = tinfo->goal.period;
2494 unsigned long flags;
2495 struct ahc_syncrate *syncrate;
2496
2497 if (iu)
2498 ppr_options |= MSG_EXT_PPR_IU_REQ;
2499
2500 ahc_compile_devinfo(&devinfo, shost->this_id, starget->id, 0,
2501 starget->channel + 'A', ROLE_INITIATOR);
2502 syncrate = ahc_find_syncrate(ahc, &period, &ppr_options, AHC_SYNCRATE_DT);
2503 ahc_lock(ahc, &flags);
2504 ahc_set_syncrate(ahc, &devinfo, syncrate, period, tinfo->goal.offset,
2505 ppr_options, AHC_TRANS_GOAL, FALSE);
2506 ahc_unlock(ahc, &flags);
2507 }
2508 #endif
2509
2510 static void ahc_linux_get_signalling(struct Scsi_Host *shost)
2511 {
2512 struct ahc_softc *ahc = *(struct ahc_softc **)shost->hostdata;
2513 unsigned long flags;
2514 u8 mode;
2515
2516 if (!(ahc->features & AHC_ULTRA2)) {
2517 /* non-LVD chipset, may not have SBLKCTL reg */
2518 spi_signalling(shost) =
2519 ahc->features & AHC_HVD ?
2520 SPI_SIGNAL_HVD :
2521 SPI_SIGNAL_SE;
2522 return;
2523 }
2524
2525 ahc_lock(ahc, &flags);
2526 ahc_pause(ahc);
2527 mode = ahc_inb(ahc, SBLKCTL);
2528 ahc_unpause(ahc);
2529 ahc_unlock(ahc, &flags);
2530
2531 if (mode & ENAB40)
2532 spi_signalling(shost) = SPI_SIGNAL_LVD;
2533 else if (mode & ENAB20)
2534 spi_signalling(shost) = SPI_SIGNAL_SE;
2535 else
2536 spi_signalling(shost) = SPI_SIGNAL_UNKNOWN;
2537 }
2538
2539 static struct spi_function_template ahc_linux_transport_functions = {
2540 .set_offset = ahc_linux_set_offset,
2541 .show_offset = 1,
2542 .set_period = ahc_linux_set_period,
2543 .show_period = 1,
2544 .set_width = ahc_linux_set_width,
2545 .show_width = 1,
2546 .set_dt = ahc_linux_set_dt,
2547 .show_dt = 1,
2548 #if 0
2549 .set_iu = ahc_linux_set_iu,
2550 .show_iu = 1,
2551 .set_qas = ahc_linux_set_qas,
2552 .show_qas = 1,
2553 #endif
2554 .get_signalling = ahc_linux_get_signalling,
2555 };
2556
2557
2558
2559 static int __init
2560 ahc_linux_init(void)
2561 {
2562 /*
2563 * If we've been passed any parameters, process them now.
2564 */
2565 if (aic7xxx)
2566 aic7xxx_setup(aic7xxx);
2567
2568 ahc_linux_transport_template =
2569 spi_attach_transport(&ahc_linux_transport_functions);
2570 if (!ahc_linux_transport_template)
2571 return -ENODEV;
2572
2573 scsi_transport_reserve_device(ahc_linux_transport_template,
2574 sizeof(struct ahc_linux_device));
2575
2576 ahc_linux_pci_init();
2577 ahc_linux_eisa_init();
2578 return 0;
2579 }
2580
2581 static void
2582 ahc_linux_exit(void)
2583 {
2584 ahc_linux_pci_exit();
2585 ahc_linux_eisa_exit();
2586 spi_release_transport(ahc_linux_transport_template);
2587 }
2588
2589 module_init(ahc_linux_init);
2590 module_exit(ahc_linux_exit);