]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/thunderbolt/switch.c
Merge tag 'usb-6.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[thirdparty/linux.git] / drivers / thunderbolt / switch.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Thunderbolt driver - switch/port utility functions
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2018, Intel Corporation
7 */
8
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/module.h>
12 #include <linux/nvmem-provider.h>
13 #include <linux/pm_runtime.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sizes.h>
16 #include <linux/slab.h>
17 #include <linux/string_helpers.h>
18
19 #include "tb.h"
20
21 /* Switch NVM support */
22
23 struct nvm_auth_status {
24 struct list_head list;
25 uuid_t uuid;
26 u32 status;
27 };
28
29 /*
30 * Hold NVM authentication failure status per switch This information
31 * needs to stay around even when the switch gets power cycled so we
32 * keep it separately.
33 */
34 static LIST_HEAD(nvm_auth_status_cache);
35 static DEFINE_MUTEX(nvm_auth_status_lock);
36
37 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
38 {
39 struct nvm_auth_status *st;
40
41 list_for_each_entry(st, &nvm_auth_status_cache, list) {
42 if (uuid_equal(&st->uuid, sw->uuid))
43 return st;
44 }
45
46 return NULL;
47 }
48
49 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
50 {
51 struct nvm_auth_status *st;
52
53 mutex_lock(&nvm_auth_status_lock);
54 st = __nvm_get_auth_status(sw);
55 mutex_unlock(&nvm_auth_status_lock);
56
57 *status = st ? st->status : 0;
58 }
59
60 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
61 {
62 struct nvm_auth_status *st;
63
64 if (WARN_ON(!sw->uuid))
65 return;
66
67 mutex_lock(&nvm_auth_status_lock);
68 st = __nvm_get_auth_status(sw);
69
70 if (!st) {
71 st = kzalloc(sizeof(*st), GFP_KERNEL);
72 if (!st)
73 goto unlock;
74
75 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
76 INIT_LIST_HEAD(&st->list);
77 list_add_tail(&st->list, &nvm_auth_status_cache);
78 }
79
80 st->status = status;
81 unlock:
82 mutex_unlock(&nvm_auth_status_lock);
83 }
84
85 static void nvm_clear_auth_status(const struct tb_switch *sw)
86 {
87 struct nvm_auth_status *st;
88
89 mutex_lock(&nvm_auth_status_lock);
90 st = __nvm_get_auth_status(sw);
91 if (st) {
92 list_del(&st->list);
93 kfree(st);
94 }
95 mutex_unlock(&nvm_auth_status_lock);
96 }
97
98 static int nvm_validate_and_write(struct tb_switch *sw)
99 {
100 unsigned int image_size;
101 const u8 *buf;
102 int ret;
103
104 ret = tb_nvm_validate(sw->nvm);
105 if (ret)
106 return ret;
107
108 ret = tb_nvm_write_headers(sw->nvm);
109 if (ret)
110 return ret;
111
112 buf = sw->nvm->buf_data_start;
113 image_size = sw->nvm->buf_data_size;
114
115 if (tb_switch_is_usb4(sw))
116 ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
117 else
118 ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
119 if (ret)
120 return ret;
121
122 sw->nvm->flushed = true;
123 return 0;
124 }
125
126 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
127 {
128 int ret = 0;
129
130 /*
131 * Root switch NVM upgrade requires that we disconnect the
132 * existing paths first (in case it is not in safe mode
133 * already).
134 */
135 if (!sw->safe_mode) {
136 u32 status;
137
138 ret = tb_domain_disconnect_all_paths(sw->tb);
139 if (ret)
140 return ret;
141 /*
142 * The host controller goes away pretty soon after this if
143 * everything goes well so getting timeout is expected.
144 */
145 ret = dma_port_flash_update_auth(sw->dma_port);
146 if (!ret || ret == -ETIMEDOUT)
147 return 0;
148
149 /*
150 * Any error from update auth operation requires power
151 * cycling of the host router.
152 */
153 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
154 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
155 nvm_set_auth_status(sw, status);
156 }
157
158 /*
159 * From safe mode we can get out by just power cycling the
160 * switch.
161 */
162 dma_port_power_cycle(sw->dma_port);
163 return ret;
164 }
165
166 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
167 {
168 int ret, retries = 10;
169
170 ret = dma_port_flash_update_auth(sw->dma_port);
171 switch (ret) {
172 case 0:
173 case -ETIMEDOUT:
174 case -EACCES:
175 case -EINVAL:
176 /* Power cycle is required */
177 break;
178 default:
179 return ret;
180 }
181
182 /*
183 * Poll here for the authentication status. It takes some time
184 * for the device to respond (we get timeout for a while). Once
185 * we get response the device needs to be power cycled in order
186 * to the new NVM to be taken into use.
187 */
188 do {
189 u32 status;
190
191 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
192 if (ret < 0 && ret != -ETIMEDOUT)
193 return ret;
194 if (ret > 0) {
195 if (status) {
196 tb_sw_warn(sw, "failed to authenticate NVM\n");
197 nvm_set_auth_status(sw, status);
198 }
199
200 tb_sw_info(sw, "power cycling the switch now\n");
201 dma_port_power_cycle(sw->dma_port);
202 return 0;
203 }
204
205 msleep(500);
206 } while (--retries);
207
208 return -ETIMEDOUT;
209 }
210
211 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
212 {
213 struct pci_dev *root_port;
214
215 /*
216 * During host router NVM upgrade we should not allow root port to
217 * go into D3cold because some root ports cannot trigger PME
218 * itself. To be on the safe side keep the root port in D0 during
219 * the whole upgrade process.
220 */
221 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
222 if (root_port)
223 pm_runtime_get_noresume(&root_port->dev);
224 }
225
226 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
227 {
228 struct pci_dev *root_port;
229
230 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
231 if (root_port)
232 pm_runtime_put(&root_port->dev);
233 }
234
235 static inline bool nvm_readable(struct tb_switch *sw)
236 {
237 if (tb_switch_is_usb4(sw)) {
238 /*
239 * USB4 devices must support NVM operations but it is
240 * optional for hosts. Therefore we query the NVM sector
241 * size here and if it is supported assume NVM
242 * operations are implemented.
243 */
244 return usb4_switch_nvm_sector_size(sw) > 0;
245 }
246
247 /* Thunderbolt 2 and 3 devices support NVM through DMA port */
248 return !!sw->dma_port;
249 }
250
251 static inline bool nvm_upgradeable(struct tb_switch *sw)
252 {
253 if (sw->no_nvm_upgrade)
254 return false;
255 return nvm_readable(sw);
256 }
257
258 static int nvm_authenticate(struct tb_switch *sw, bool auth_only)
259 {
260 int ret;
261
262 if (tb_switch_is_usb4(sw)) {
263 if (auth_only) {
264 ret = usb4_switch_nvm_set_offset(sw, 0);
265 if (ret)
266 return ret;
267 }
268 sw->nvm->authenticating = true;
269 return usb4_switch_nvm_authenticate(sw);
270 }
271 if (auth_only)
272 return -EOPNOTSUPP;
273
274 sw->nvm->authenticating = true;
275 if (!tb_route(sw)) {
276 nvm_authenticate_start_dma_port(sw);
277 ret = nvm_authenticate_host_dma_port(sw);
278 } else {
279 ret = nvm_authenticate_device_dma_port(sw);
280 }
281
282 return ret;
283 }
284
285 /**
286 * tb_switch_nvm_read() - Read router NVM
287 * @sw: Router whose NVM to read
288 * @address: Start address on the NVM
289 * @buf: Buffer where the read data is copied
290 * @size: Size of the buffer in bytes
291 *
292 * Reads from router NVM and returns the requested data in @buf. Locking
293 * is up to the caller. Returns %0 in success and negative errno in case
294 * of failure.
295 */
296 int tb_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
297 size_t size)
298 {
299 if (tb_switch_is_usb4(sw))
300 return usb4_switch_nvm_read(sw, address, buf, size);
301 return dma_port_flash_read(sw->dma_port, address, buf, size);
302 }
303
304 static int nvm_read(void *priv, unsigned int offset, void *val, size_t bytes)
305 {
306 struct tb_nvm *nvm = priv;
307 struct tb_switch *sw = tb_to_switch(nvm->dev);
308 int ret;
309
310 pm_runtime_get_sync(&sw->dev);
311
312 if (!mutex_trylock(&sw->tb->lock)) {
313 ret = restart_syscall();
314 goto out;
315 }
316
317 ret = tb_switch_nvm_read(sw, offset, val, bytes);
318 mutex_unlock(&sw->tb->lock);
319
320 out:
321 pm_runtime_mark_last_busy(&sw->dev);
322 pm_runtime_put_autosuspend(&sw->dev);
323
324 return ret;
325 }
326
327 static int nvm_write(void *priv, unsigned int offset, void *val, size_t bytes)
328 {
329 struct tb_nvm *nvm = priv;
330 struct tb_switch *sw = tb_to_switch(nvm->dev);
331 int ret;
332
333 if (!mutex_trylock(&sw->tb->lock))
334 return restart_syscall();
335
336 /*
337 * Since writing the NVM image might require some special steps,
338 * for example when CSS headers are written, we cache the image
339 * locally here and handle the special cases when the user asks
340 * us to authenticate the image.
341 */
342 ret = tb_nvm_write_buf(nvm, offset, val, bytes);
343 mutex_unlock(&sw->tb->lock);
344
345 return ret;
346 }
347
348 static int tb_switch_nvm_add(struct tb_switch *sw)
349 {
350 struct tb_nvm *nvm;
351 int ret;
352
353 if (!nvm_readable(sw))
354 return 0;
355
356 nvm = tb_nvm_alloc(&sw->dev);
357 if (IS_ERR(nvm)) {
358 ret = PTR_ERR(nvm) == -EOPNOTSUPP ? 0 : PTR_ERR(nvm);
359 goto err_nvm;
360 }
361
362 ret = tb_nvm_read_version(nvm);
363 if (ret)
364 goto err_nvm;
365
366 /*
367 * If the switch is in safe-mode the only accessible portion of
368 * the NVM is the non-active one where userspace is expected to
369 * write new functional NVM.
370 */
371 if (!sw->safe_mode) {
372 ret = tb_nvm_add_active(nvm, nvm_read);
373 if (ret)
374 goto err_nvm;
375 tb_sw_dbg(sw, "NVM version %x.%x\n", nvm->major, nvm->minor);
376 }
377
378 if (!sw->no_nvm_upgrade) {
379 ret = tb_nvm_add_non_active(nvm, nvm_write);
380 if (ret)
381 goto err_nvm;
382 }
383
384 sw->nvm = nvm;
385 return 0;
386
387 err_nvm:
388 tb_sw_dbg(sw, "NVM upgrade disabled\n");
389 sw->no_nvm_upgrade = true;
390 if (!IS_ERR(nvm))
391 tb_nvm_free(nvm);
392
393 return ret;
394 }
395
396 static void tb_switch_nvm_remove(struct tb_switch *sw)
397 {
398 struct tb_nvm *nvm;
399
400 nvm = sw->nvm;
401 sw->nvm = NULL;
402
403 if (!nvm)
404 return;
405
406 /* Remove authentication status in case the switch is unplugged */
407 if (!nvm->authenticating)
408 nvm_clear_auth_status(sw);
409
410 tb_nvm_free(nvm);
411 }
412
413 /* port utility functions */
414
415 static const char *tb_port_type(const struct tb_regs_port_header *port)
416 {
417 switch (port->type >> 16) {
418 case 0:
419 switch ((u8) port->type) {
420 case 0:
421 return "Inactive";
422 case 1:
423 return "Port";
424 case 2:
425 return "NHI";
426 default:
427 return "unknown";
428 }
429 case 0x2:
430 return "Ethernet";
431 case 0x8:
432 return "SATA";
433 case 0xe:
434 return "DP/HDMI";
435 case 0x10:
436 return "PCIe";
437 case 0x20:
438 return "USB";
439 default:
440 return "unknown";
441 }
442 }
443
444 static void tb_dump_port(struct tb *tb, const struct tb_port *port)
445 {
446 const struct tb_regs_port_header *regs = &port->config;
447
448 tb_dbg(tb,
449 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
450 regs->port_number, regs->vendor_id, regs->device_id,
451 regs->revision, regs->thunderbolt_version, tb_port_type(regs),
452 regs->type);
453 tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
454 regs->max_in_hop_id, regs->max_out_hop_id);
455 tb_dbg(tb, " Max counters: %d\n", regs->max_counters);
456 tb_dbg(tb, " NFC Credits: %#x\n", regs->nfc_credits);
457 tb_dbg(tb, " Credits (total/control): %u/%u\n", port->total_credits,
458 port->ctl_credits);
459 }
460
461 /**
462 * tb_port_state() - get connectedness state of a port
463 * @port: the port to check
464 *
465 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
466 *
467 * Return: Returns an enum tb_port_state on success or an error code on failure.
468 */
469 int tb_port_state(struct tb_port *port)
470 {
471 struct tb_cap_phy phy;
472 int res;
473 if (port->cap_phy == 0) {
474 tb_port_WARN(port, "does not have a PHY\n");
475 return -EINVAL;
476 }
477 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
478 if (res)
479 return res;
480 return phy.state;
481 }
482
483 /**
484 * tb_wait_for_port() - wait for a port to become ready
485 * @port: Port to wait
486 * @wait_if_unplugged: Wait also when port is unplugged
487 *
488 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
489 * wait_if_unplugged is set then we also wait if the port is in state
490 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
491 * switch resume). Otherwise we only wait if a device is registered but the link
492 * has not yet been established.
493 *
494 * Return: Returns an error code on failure. Returns 0 if the port is not
495 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
496 * if the port is connected and in state TB_PORT_UP.
497 */
498 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
499 {
500 int retries = 10;
501 int state;
502 if (!port->cap_phy) {
503 tb_port_WARN(port, "does not have PHY\n");
504 return -EINVAL;
505 }
506 if (tb_is_upstream_port(port)) {
507 tb_port_WARN(port, "is the upstream port\n");
508 return -EINVAL;
509 }
510
511 while (retries--) {
512 state = tb_port_state(port);
513 switch (state) {
514 case TB_PORT_DISABLED:
515 tb_port_dbg(port, "is disabled (state: 0)\n");
516 return 0;
517
518 case TB_PORT_UNPLUGGED:
519 if (wait_if_unplugged) {
520 /* used during resume */
521 tb_port_dbg(port,
522 "is unplugged (state: 7), retrying...\n");
523 msleep(100);
524 break;
525 }
526 tb_port_dbg(port, "is unplugged (state: 7)\n");
527 return 0;
528
529 case TB_PORT_UP:
530 case TB_PORT_TX_CL0S:
531 case TB_PORT_RX_CL0S:
532 case TB_PORT_CL1:
533 case TB_PORT_CL2:
534 tb_port_dbg(port, "is connected, link is up (state: %d)\n", state);
535 return 1;
536
537 default:
538 if (state < 0)
539 return state;
540
541 /*
542 * After plug-in the state is TB_PORT_CONNECTING. Give it some
543 * time.
544 */
545 tb_port_dbg(port,
546 "is connected, link is not up (state: %d), retrying...\n",
547 state);
548 msleep(100);
549 }
550
551 }
552 tb_port_warn(port,
553 "failed to reach state TB_PORT_UP. Ignoring port...\n");
554 return 0;
555 }
556
557 /**
558 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
559 * @port: Port to add/remove NFC credits
560 * @credits: Credits to add/remove
561 *
562 * Change the number of NFC credits allocated to @port by @credits. To remove
563 * NFC credits pass a negative amount of credits.
564 *
565 * Return: Returns 0 on success or an error code on failure.
566 */
567 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
568 {
569 u32 nfc_credits;
570
571 if (credits == 0 || port->sw->is_unplugged)
572 return 0;
573
574 /*
575 * USB4 restricts programming NFC buffers to lane adapters only
576 * so skip other ports.
577 */
578 if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
579 return 0;
580
581 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
582 if (credits < 0)
583 credits = max_t(int, -nfc_credits, credits);
584
585 nfc_credits += credits;
586
587 tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
588 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
589
590 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
591 port->config.nfc_credits |= nfc_credits;
592
593 return tb_port_write(port, &port->config.nfc_credits,
594 TB_CFG_PORT, ADP_CS_4, 1);
595 }
596
597 /**
598 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
599 * @port: Port whose counters to clear
600 * @counter: Counter index to clear
601 *
602 * Return: Returns 0 on success or an error code on failure.
603 */
604 int tb_port_clear_counter(struct tb_port *port, int counter)
605 {
606 u32 zero[3] = { 0, 0, 0 };
607 tb_port_dbg(port, "clearing counter %d\n", counter);
608 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
609 }
610
611 /**
612 * tb_port_unlock() - Unlock downstream port
613 * @port: Port to unlock
614 *
615 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
616 * downstream router accessible for CM.
617 */
618 int tb_port_unlock(struct tb_port *port)
619 {
620 if (tb_switch_is_icm(port->sw))
621 return 0;
622 if (!tb_port_is_null(port))
623 return -EINVAL;
624 if (tb_switch_is_usb4(port->sw))
625 return usb4_port_unlock(port);
626 return 0;
627 }
628
629 static int __tb_port_enable(struct tb_port *port, bool enable)
630 {
631 int ret;
632 u32 phy;
633
634 if (!tb_port_is_null(port))
635 return -EINVAL;
636
637 ret = tb_port_read(port, &phy, TB_CFG_PORT,
638 port->cap_phy + LANE_ADP_CS_1, 1);
639 if (ret)
640 return ret;
641
642 if (enable)
643 phy &= ~LANE_ADP_CS_1_LD;
644 else
645 phy |= LANE_ADP_CS_1_LD;
646
647
648 ret = tb_port_write(port, &phy, TB_CFG_PORT,
649 port->cap_phy + LANE_ADP_CS_1, 1);
650 if (ret)
651 return ret;
652
653 tb_port_dbg(port, "lane %s\n", str_enabled_disabled(enable));
654 return 0;
655 }
656
657 /**
658 * tb_port_enable() - Enable lane adapter
659 * @port: Port to enable (can be %NULL)
660 *
661 * This is used for lane 0 and 1 adapters to enable it.
662 */
663 int tb_port_enable(struct tb_port *port)
664 {
665 return __tb_port_enable(port, true);
666 }
667
668 /**
669 * tb_port_disable() - Disable lane adapter
670 * @port: Port to disable (can be %NULL)
671 *
672 * This is used for lane 0 and 1 adapters to disable it.
673 */
674 int tb_port_disable(struct tb_port *port)
675 {
676 return __tb_port_enable(port, false);
677 }
678
679 static int tb_port_reset(struct tb_port *port)
680 {
681 if (tb_switch_is_usb4(port->sw))
682 return port->cap_usb4 ? usb4_port_reset(port) : 0;
683 return tb_lc_reset_port(port);
684 }
685
686 /*
687 * tb_init_port() - initialize a port
688 *
689 * This is a helper method for tb_switch_alloc. Does not check or initialize
690 * any downstream switches.
691 *
692 * Return: Returns 0 on success or an error code on failure.
693 */
694 static int tb_init_port(struct tb_port *port)
695 {
696 int res;
697 int cap;
698
699 INIT_LIST_HEAD(&port->list);
700
701 /* Control adapter does not have configuration space */
702 if (!port->port)
703 return 0;
704
705 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
706 if (res) {
707 if (res == -ENODEV) {
708 tb_dbg(port->sw->tb, " Port %d: not implemented\n",
709 port->port);
710 port->disabled = true;
711 return 0;
712 }
713 return res;
714 }
715
716 /* Port 0 is the switch itself and has no PHY. */
717 if (port->config.type == TB_TYPE_PORT) {
718 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
719
720 if (cap > 0)
721 port->cap_phy = cap;
722 else
723 tb_port_WARN(port, "non switch port without a PHY\n");
724
725 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
726 if (cap > 0)
727 port->cap_usb4 = cap;
728
729 /*
730 * USB4 ports the buffers allocated for the control path
731 * can be read from the path config space. Legacy
732 * devices we use hard-coded value.
733 */
734 if (port->cap_usb4) {
735 struct tb_regs_hop hop;
736
737 if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2))
738 port->ctl_credits = hop.initial_credits;
739 }
740 if (!port->ctl_credits)
741 port->ctl_credits = 2;
742
743 } else {
744 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
745 if (cap > 0)
746 port->cap_adap = cap;
747 }
748
749 port->total_credits =
750 (port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
751 ADP_CS_4_TOTAL_BUFFERS_SHIFT;
752
753 tb_dump_port(port->sw->tb, port);
754 return 0;
755 }
756
757 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
758 int max_hopid)
759 {
760 int port_max_hopid;
761 struct ida *ida;
762
763 if (in) {
764 port_max_hopid = port->config.max_in_hop_id;
765 ida = &port->in_hopids;
766 } else {
767 port_max_hopid = port->config.max_out_hop_id;
768 ida = &port->out_hopids;
769 }
770
771 /*
772 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
773 * reserved.
774 */
775 if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
776 min_hopid = TB_PATH_MIN_HOPID;
777
778 if (max_hopid < 0 || max_hopid > port_max_hopid)
779 max_hopid = port_max_hopid;
780
781 return ida_alloc_range(ida, min_hopid, max_hopid, GFP_KERNEL);
782 }
783
784 /**
785 * tb_port_alloc_in_hopid() - Allocate input HopID from port
786 * @port: Port to allocate HopID for
787 * @min_hopid: Minimum acceptable input HopID
788 * @max_hopid: Maximum acceptable input HopID
789 *
790 * Return: HopID between @min_hopid and @max_hopid or negative errno in
791 * case of error.
792 */
793 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
794 {
795 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
796 }
797
798 /**
799 * tb_port_alloc_out_hopid() - Allocate output HopID from port
800 * @port: Port to allocate HopID for
801 * @min_hopid: Minimum acceptable output HopID
802 * @max_hopid: Maximum acceptable output HopID
803 *
804 * Return: HopID between @min_hopid and @max_hopid or negative errno in
805 * case of error.
806 */
807 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
808 {
809 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
810 }
811
812 /**
813 * tb_port_release_in_hopid() - Release allocated input HopID from port
814 * @port: Port whose HopID to release
815 * @hopid: HopID to release
816 */
817 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
818 {
819 ida_free(&port->in_hopids, hopid);
820 }
821
822 /**
823 * tb_port_release_out_hopid() - Release allocated output HopID from port
824 * @port: Port whose HopID to release
825 * @hopid: HopID to release
826 */
827 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
828 {
829 ida_free(&port->out_hopids, hopid);
830 }
831
832 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
833 const struct tb_switch *sw)
834 {
835 u64 mask = (1ULL << parent->config.depth * 8) - 1;
836 return (tb_route(parent) & mask) == (tb_route(sw) & mask);
837 }
838
839 /**
840 * tb_next_port_on_path() - Return next port for given port on a path
841 * @start: Start port of the walk
842 * @end: End port of the walk
843 * @prev: Previous port (%NULL if this is the first)
844 *
845 * This function can be used to walk from one port to another if they
846 * are connected through zero or more switches. If the @prev is dual
847 * link port, the function follows that link and returns another end on
848 * that same link.
849 *
850 * If the @end port has been reached, return %NULL.
851 *
852 * Domain tb->lock must be held when this function is called.
853 */
854 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
855 struct tb_port *prev)
856 {
857 struct tb_port *next;
858
859 if (!prev)
860 return start;
861
862 if (prev->sw == end->sw) {
863 if (prev == end)
864 return NULL;
865 return end;
866 }
867
868 if (tb_switch_is_reachable(prev->sw, end->sw)) {
869 next = tb_port_at(tb_route(end->sw), prev->sw);
870 /* Walk down the topology if next == prev */
871 if (prev->remote &&
872 (next == prev || next->dual_link_port == prev))
873 next = prev->remote;
874 } else {
875 if (tb_is_upstream_port(prev)) {
876 next = prev->remote;
877 } else {
878 next = tb_upstream_port(prev->sw);
879 /*
880 * Keep the same link if prev and next are both
881 * dual link ports.
882 */
883 if (next->dual_link_port &&
884 next->link_nr != prev->link_nr) {
885 next = next->dual_link_port;
886 }
887 }
888 }
889
890 return next != prev ? next : NULL;
891 }
892
893 /**
894 * tb_port_get_link_speed() - Get current link speed
895 * @port: Port to check (USB4 or CIO)
896 *
897 * Returns link speed in Gb/s or negative errno in case of failure.
898 */
899 int tb_port_get_link_speed(struct tb_port *port)
900 {
901 u32 val, speed;
902 int ret;
903
904 if (!port->cap_phy)
905 return -EINVAL;
906
907 ret = tb_port_read(port, &val, TB_CFG_PORT,
908 port->cap_phy + LANE_ADP_CS_1, 1);
909 if (ret)
910 return ret;
911
912 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
913 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
914
915 switch (speed) {
916 case LANE_ADP_CS_1_CURRENT_SPEED_GEN4:
917 return 40;
918 case LANE_ADP_CS_1_CURRENT_SPEED_GEN3:
919 return 20;
920 default:
921 return 10;
922 }
923 }
924
925 /**
926 * tb_port_get_link_generation() - Returns link generation
927 * @port: Lane adapter
928 *
929 * Returns link generation as number or negative errno in case of
930 * failure. Does not distinguish between Thunderbolt 1 and Thunderbolt 2
931 * links so for those always returns 2.
932 */
933 int tb_port_get_link_generation(struct tb_port *port)
934 {
935 int ret;
936
937 ret = tb_port_get_link_speed(port);
938 if (ret < 0)
939 return ret;
940
941 switch (ret) {
942 case 40:
943 return 4;
944 case 20:
945 return 3;
946 default:
947 return 2;
948 }
949 }
950
951 /**
952 * tb_port_get_link_width() - Get current link width
953 * @port: Port to check (USB4 or CIO)
954 *
955 * Returns link width. Return the link width as encoded in &enum
956 * tb_link_width or negative errno in case of failure.
957 */
958 int tb_port_get_link_width(struct tb_port *port)
959 {
960 u32 val;
961 int ret;
962
963 if (!port->cap_phy)
964 return -EINVAL;
965
966 ret = tb_port_read(port, &val, TB_CFG_PORT,
967 port->cap_phy + LANE_ADP_CS_1, 1);
968 if (ret)
969 return ret;
970
971 /* Matches the values in enum tb_link_width */
972 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
973 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
974 }
975
976 /**
977 * tb_port_width_supported() - Is the given link width supported
978 * @port: Port to check
979 * @width: Widths to check (bitmask)
980 *
981 * Can be called to any lane adapter. Checks if given @width is
982 * supported by the hardware and returns %true if it is.
983 */
984 bool tb_port_width_supported(struct tb_port *port, unsigned int width)
985 {
986 u32 phy, widths;
987 int ret;
988
989 if (!port->cap_phy)
990 return false;
991
992 if (width & (TB_LINK_WIDTH_ASYM_TX | TB_LINK_WIDTH_ASYM_RX)) {
993 if (tb_port_get_link_generation(port) < 4 ||
994 !usb4_port_asym_supported(port))
995 return false;
996 }
997
998 ret = tb_port_read(port, &phy, TB_CFG_PORT,
999 port->cap_phy + LANE_ADP_CS_0, 1);
1000 if (ret)
1001 return false;
1002
1003 /*
1004 * The field encoding is the same as &enum tb_link_width (which is
1005 * passed to @width).
1006 */
1007 widths = FIELD_GET(LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK, phy);
1008 return widths & width;
1009 }
1010
1011 /**
1012 * tb_port_set_link_width() - Set target link width of the lane adapter
1013 * @port: Lane adapter
1014 * @width: Target link width
1015 *
1016 * Sets the target link width of the lane adapter to @width. Does not
1017 * enable/disable lane bonding. For that call tb_port_set_lane_bonding().
1018 *
1019 * Return: %0 in case of success and negative errno in case of error
1020 */
1021 int tb_port_set_link_width(struct tb_port *port, enum tb_link_width width)
1022 {
1023 u32 val;
1024 int ret;
1025
1026 if (!port->cap_phy)
1027 return -EINVAL;
1028
1029 ret = tb_port_read(port, &val, TB_CFG_PORT,
1030 port->cap_phy + LANE_ADP_CS_1, 1);
1031 if (ret)
1032 return ret;
1033
1034 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
1035 switch (width) {
1036 case TB_LINK_WIDTH_SINGLE:
1037 /* Gen 4 link cannot be single */
1038 if (tb_port_get_link_generation(port) >= 4)
1039 return -EOPNOTSUPP;
1040 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
1041 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1042 break;
1043
1044 case TB_LINK_WIDTH_DUAL:
1045 if (tb_port_get_link_generation(port) >= 4)
1046 return usb4_port_asym_set_link_width(port, width);
1047 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
1048 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1049 break;
1050
1051 case TB_LINK_WIDTH_ASYM_TX:
1052 case TB_LINK_WIDTH_ASYM_RX:
1053 return usb4_port_asym_set_link_width(port, width);
1054
1055 default:
1056 return -EINVAL;
1057 }
1058
1059 return tb_port_write(port, &val, TB_CFG_PORT,
1060 port->cap_phy + LANE_ADP_CS_1, 1);
1061 }
1062
1063 /**
1064 * tb_port_set_lane_bonding() - Enable/disable lane bonding
1065 * @port: Lane adapter
1066 * @bonding: enable/disable bonding
1067 *
1068 * Enables or disables lane bonding. This should be called after target
1069 * link width has been set (tb_port_set_link_width()). Note in most
1070 * cases one should use tb_port_lane_bonding_enable() instead to enable
1071 * lane bonding.
1072 *
1073 * Return: %0 in case of success and negative errno in case of error
1074 */
1075 static int tb_port_set_lane_bonding(struct tb_port *port, bool bonding)
1076 {
1077 u32 val;
1078 int ret;
1079
1080 if (!port->cap_phy)
1081 return -EINVAL;
1082
1083 ret = tb_port_read(port, &val, TB_CFG_PORT,
1084 port->cap_phy + LANE_ADP_CS_1, 1);
1085 if (ret)
1086 return ret;
1087
1088 if (bonding)
1089 val |= LANE_ADP_CS_1_LB;
1090 else
1091 val &= ~LANE_ADP_CS_1_LB;
1092
1093 return tb_port_write(port, &val, TB_CFG_PORT,
1094 port->cap_phy + LANE_ADP_CS_1, 1);
1095 }
1096
1097 /**
1098 * tb_port_lane_bonding_enable() - Enable bonding on port
1099 * @port: port to enable
1100 *
1101 * Enable bonding by setting the link width of the port and the other
1102 * port in case of dual link port. Does not wait for the link to
1103 * actually reach the bonded state so caller needs to call
1104 * tb_port_wait_for_link_width() before enabling any paths through the
1105 * link to make sure the link is in expected state.
1106 *
1107 * Return: %0 in case of success and negative errno in case of error
1108 */
1109 int tb_port_lane_bonding_enable(struct tb_port *port)
1110 {
1111 enum tb_link_width width;
1112 int ret;
1113
1114 /*
1115 * Enable lane bonding for both links if not already enabled by
1116 * for example the boot firmware.
1117 */
1118 width = tb_port_get_link_width(port);
1119 if (width == TB_LINK_WIDTH_SINGLE) {
1120 ret = tb_port_set_link_width(port, TB_LINK_WIDTH_DUAL);
1121 if (ret)
1122 goto err_lane0;
1123 }
1124
1125 width = tb_port_get_link_width(port->dual_link_port);
1126 if (width == TB_LINK_WIDTH_SINGLE) {
1127 ret = tb_port_set_link_width(port->dual_link_port,
1128 TB_LINK_WIDTH_DUAL);
1129 if (ret)
1130 goto err_lane1;
1131 }
1132
1133 /*
1134 * Only set bonding if the link was not already bonded. This
1135 * avoids the lane adapter to re-enter bonding state.
1136 */
1137 if (width == TB_LINK_WIDTH_SINGLE && !tb_is_upstream_port(port)) {
1138 ret = tb_port_set_lane_bonding(port, true);
1139 if (ret)
1140 goto err_lane1;
1141 }
1142
1143 /*
1144 * When lane 0 bonding is set it will affect lane 1 too so
1145 * update both.
1146 */
1147 port->bonded = true;
1148 port->dual_link_port->bonded = true;
1149
1150 return 0;
1151
1152 err_lane1:
1153 tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1154 err_lane0:
1155 tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1156
1157 return ret;
1158 }
1159
1160 /**
1161 * tb_port_lane_bonding_disable() - Disable bonding on port
1162 * @port: port to disable
1163 *
1164 * Disable bonding by setting the link width of the port and the
1165 * other port in case of dual link port.
1166 */
1167 void tb_port_lane_bonding_disable(struct tb_port *port)
1168 {
1169 tb_port_set_lane_bonding(port, false);
1170 tb_port_set_link_width(port->dual_link_port, TB_LINK_WIDTH_SINGLE);
1171 tb_port_set_link_width(port, TB_LINK_WIDTH_SINGLE);
1172 port->dual_link_port->bonded = false;
1173 port->bonded = false;
1174 }
1175
1176 /**
1177 * tb_port_wait_for_link_width() - Wait until link reaches specific width
1178 * @port: Port to wait for
1179 * @width: Expected link width (bitmask)
1180 * @timeout_msec: Timeout in ms how long to wait
1181 *
1182 * Should be used after both ends of the link have been bonded (or
1183 * bonding has been disabled) to wait until the link actually reaches
1184 * the expected state. Returns %-ETIMEDOUT if the width was not reached
1185 * within the given timeout, %0 if it did. Can be passed a mask of
1186 * expected widths and succeeds if any of the widths is reached.
1187 */
1188 int tb_port_wait_for_link_width(struct tb_port *port, unsigned int width,
1189 int timeout_msec)
1190 {
1191 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1192 int ret;
1193
1194 /* Gen 4 link does not support single lane */
1195 if ((width & TB_LINK_WIDTH_SINGLE) &&
1196 tb_port_get_link_generation(port) >= 4)
1197 return -EOPNOTSUPP;
1198
1199 do {
1200 ret = tb_port_get_link_width(port);
1201 if (ret < 0) {
1202 /*
1203 * Sometimes we get port locked error when
1204 * polling the lanes so we can ignore it and
1205 * retry.
1206 */
1207 if (ret != -EACCES)
1208 return ret;
1209 } else if (ret & width) {
1210 return 0;
1211 }
1212
1213 usleep_range(1000, 2000);
1214 } while (ktime_before(ktime_get(), timeout));
1215
1216 return -ETIMEDOUT;
1217 }
1218
1219 static int tb_port_do_update_credits(struct tb_port *port)
1220 {
1221 u32 nfc_credits;
1222 int ret;
1223
1224 ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1);
1225 if (ret)
1226 return ret;
1227
1228 if (nfc_credits != port->config.nfc_credits) {
1229 u32 total;
1230
1231 total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
1232 ADP_CS_4_TOTAL_BUFFERS_SHIFT;
1233
1234 tb_port_dbg(port, "total credits changed %u -> %u\n",
1235 port->total_credits, total);
1236
1237 port->config.nfc_credits = nfc_credits;
1238 port->total_credits = total;
1239 }
1240
1241 return 0;
1242 }
1243
1244 /**
1245 * tb_port_update_credits() - Re-read port total credits
1246 * @port: Port to update
1247 *
1248 * After the link is bonded (or bonding was disabled) the port total
1249 * credits may change, so this function needs to be called to re-read
1250 * the credits. Updates also the second lane adapter.
1251 */
1252 int tb_port_update_credits(struct tb_port *port)
1253 {
1254 int ret;
1255
1256 ret = tb_port_do_update_credits(port);
1257 if (ret)
1258 return ret;
1259
1260 if (!port->dual_link_port)
1261 return 0;
1262 return tb_port_do_update_credits(port->dual_link_port);
1263 }
1264
1265 static int tb_port_start_lane_initialization(struct tb_port *port)
1266 {
1267 int ret;
1268
1269 if (tb_switch_is_usb4(port->sw))
1270 return 0;
1271
1272 ret = tb_lc_start_lane_initialization(port);
1273 return ret == -EINVAL ? 0 : ret;
1274 }
1275
1276 /*
1277 * Returns true if the port had something (router, XDomain) connected
1278 * before suspend.
1279 */
1280 static bool tb_port_resume(struct tb_port *port)
1281 {
1282 bool has_remote = tb_port_has_remote(port);
1283
1284 if (port->usb4) {
1285 usb4_port_device_resume(port->usb4);
1286 } else if (!has_remote) {
1287 /*
1288 * For disconnected downstream lane adapters start lane
1289 * initialization now so we detect future connects.
1290 *
1291 * For XDomain start the lane initialzation now so the
1292 * link gets re-established.
1293 *
1294 * This is only needed for non-USB4 ports.
1295 */
1296 if (!tb_is_upstream_port(port) || port->xdomain)
1297 tb_port_start_lane_initialization(port);
1298 }
1299
1300 return has_remote || port->xdomain;
1301 }
1302
1303 /**
1304 * tb_port_is_enabled() - Is the adapter port enabled
1305 * @port: Port to check
1306 */
1307 bool tb_port_is_enabled(struct tb_port *port)
1308 {
1309 switch (port->config.type) {
1310 case TB_TYPE_PCIE_UP:
1311 case TB_TYPE_PCIE_DOWN:
1312 return tb_pci_port_is_enabled(port);
1313
1314 case TB_TYPE_DP_HDMI_IN:
1315 case TB_TYPE_DP_HDMI_OUT:
1316 return tb_dp_port_is_enabled(port);
1317
1318 case TB_TYPE_USB3_UP:
1319 case TB_TYPE_USB3_DOWN:
1320 return tb_usb3_port_is_enabled(port);
1321
1322 default:
1323 return false;
1324 }
1325 }
1326
1327 /**
1328 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1329 * @port: USB3 adapter port to check
1330 */
1331 bool tb_usb3_port_is_enabled(struct tb_port *port)
1332 {
1333 u32 data;
1334
1335 if (tb_port_read(port, &data, TB_CFG_PORT,
1336 port->cap_adap + ADP_USB3_CS_0, 1))
1337 return false;
1338
1339 return !!(data & ADP_USB3_CS_0_PE);
1340 }
1341
1342 /**
1343 * tb_usb3_port_enable() - Enable USB3 adapter port
1344 * @port: USB3 adapter port to enable
1345 * @enable: Enable/disable the USB3 adapter
1346 */
1347 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1348 {
1349 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1350 : ADP_USB3_CS_0_V;
1351
1352 if (!port->cap_adap)
1353 return -ENXIO;
1354 return tb_port_write(port, &word, TB_CFG_PORT,
1355 port->cap_adap + ADP_USB3_CS_0, 1);
1356 }
1357
1358 /**
1359 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1360 * @port: PCIe port to check
1361 */
1362 bool tb_pci_port_is_enabled(struct tb_port *port)
1363 {
1364 u32 data;
1365
1366 if (tb_port_read(port, &data, TB_CFG_PORT,
1367 port->cap_adap + ADP_PCIE_CS_0, 1))
1368 return false;
1369
1370 return !!(data & ADP_PCIE_CS_0_PE);
1371 }
1372
1373 /**
1374 * tb_pci_port_enable() - Enable PCIe adapter port
1375 * @port: PCIe port to enable
1376 * @enable: Enable/disable the PCIe adapter
1377 */
1378 int tb_pci_port_enable(struct tb_port *port, bool enable)
1379 {
1380 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1381 if (!port->cap_adap)
1382 return -ENXIO;
1383 return tb_port_write(port, &word, TB_CFG_PORT,
1384 port->cap_adap + ADP_PCIE_CS_0, 1);
1385 }
1386
1387 /**
1388 * tb_dp_port_hpd_is_active() - Is HPD already active
1389 * @port: DP out port to check
1390 *
1391 * Checks if the DP OUT adapter port has HPD bit already set.
1392 */
1393 int tb_dp_port_hpd_is_active(struct tb_port *port)
1394 {
1395 u32 data;
1396 int ret;
1397
1398 ret = tb_port_read(port, &data, TB_CFG_PORT,
1399 port->cap_adap + ADP_DP_CS_2, 1);
1400 if (ret)
1401 return ret;
1402
1403 return !!(data & ADP_DP_CS_2_HPD);
1404 }
1405
1406 /**
1407 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1408 * @port: Port to clear HPD
1409 *
1410 * If the DP IN port has HPD set, this function can be used to clear it.
1411 */
1412 int tb_dp_port_hpd_clear(struct tb_port *port)
1413 {
1414 u32 data;
1415 int ret;
1416
1417 ret = tb_port_read(port, &data, TB_CFG_PORT,
1418 port->cap_adap + ADP_DP_CS_3, 1);
1419 if (ret)
1420 return ret;
1421
1422 data |= ADP_DP_CS_3_HPDC;
1423 return tb_port_write(port, &data, TB_CFG_PORT,
1424 port->cap_adap + ADP_DP_CS_3, 1);
1425 }
1426
1427 /**
1428 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1429 * @port: DP IN/OUT port to set hops
1430 * @video: Video Hop ID
1431 * @aux_tx: AUX TX Hop ID
1432 * @aux_rx: AUX RX Hop ID
1433 *
1434 * Programs specified Hop IDs for DP IN/OUT port. Can be called for USB4
1435 * router DP adapters too but does not program the values as the fields
1436 * are read-only.
1437 */
1438 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1439 unsigned int aux_tx, unsigned int aux_rx)
1440 {
1441 u32 data[2];
1442 int ret;
1443
1444 if (tb_switch_is_usb4(port->sw))
1445 return 0;
1446
1447 ret = tb_port_read(port, data, TB_CFG_PORT,
1448 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1449 if (ret)
1450 return ret;
1451
1452 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1453 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1454 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1455
1456 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1457 ADP_DP_CS_0_VIDEO_HOPID_MASK;
1458 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1459 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1460 ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1461
1462 return tb_port_write(port, data, TB_CFG_PORT,
1463 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1464 }
1465
1466 /**
1467 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1468 * @port: DP adapter port to check
1469 */
1470 bool tb_dp_port_is_enabled(struct tb_port *port)
1471 {
1472 u32 data[2];
1473
1474 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1475 ARRAY_SIZE(data)))
1476 return false;
1477
1478 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1479 }
1480
1481 /**
1482 * tb_dp_port_enable() - Enables/disables DP paths of a port
1483 * @port: DP IN/OUT port
1484 * @enable: Enable/disable DP path
1485 *
1486 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1487 * calling this function.
1488 */
1489 int tb_dp_port_enable(struct tb_port *port, bool enable)
1490 {
1491 u32 data[2];
1492 int ret;
1493
1494 ret = tb_port_read(port, data, TB_CFG_PORT,
1495 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1496 if (ret)
1497 return ret;
1498
1499 if (enable)
1500 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1501 else
1502 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1503
1504 return tb_port_write(port, data, TB_CFG_PORT,
1505 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1506 }
1507
1508 /* switch utility functions */
1509
1510 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1511 {
1512 switch (sw->generation) {
1513 case 1:
1514 return "Thunderbolt 1";
1515 case 2:
1516 return "Thunderbolt 2";
1517 case 3:
1518 return "Thunderbolt 3";
1519 case 4:
1520 return "USB4";
1521 default:
1522 return "Unknown";
1523 }
1524 }
1525
1526 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1527 {
1528 const struct tb_regs_switch_header *regs = &sw->config;
1529
1530 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1531 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1532 regs->revision, regs->thunderbolt_version);
1533 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number);
1534 tb_dbg(tb, " Config:\n");
1535 tb_dbg(tb,
1536 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1537 regs->upstream_port_number, regs->depth,
1538 (((u64) regs->route_hi) << 32) | regs->route_lo,
1539 regs->enabled, regs->plug_events_delay);
1540 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
1541 regs->__unknown1, regs->__unknown4);
1542 }
1543
1544 static int tb_switch_reset_host(struct tb_switch *sw)
1545 {
1546 if (sw->generation > 1) {
1547 struct tb_port *port;
1548
1549 tb_switch_for_each_port(sw, port) {
1550 int i, ret;
1551
1552 /*
1553 * For lane adapters we issue downstream port
1554 * reset and clear up path config spaces.
1555 *
1556 * For protocol adapters we disable the path and
1557 * clear path config space one by one (from 8 to
1558 * Max Input HopID of the adapter).
1559 */
1560 if (tb_port_is_null(port) && !tb_is_upstream_port(port)) {
1561 ret = tb_port_reset(port);
1562 if (ret)
1563 return ret;
1564 } else if (tb_port_is_usb3_down(port) ||
1565 tb_port_is_usb3_up(port)) {
1566 tb_usb3_port_enable(port, false);
1567 } else if (tb_port_is_dpin(port) ||
1568 tb_port_is_dpout(port)) {
1569 tb_dp_port_enable(port, false);
1570 } else if (tb_port_is_pcie_down(port) ||
1571 tb_port_is_pcie_up(port)) {
1572 tb_pci_port_enable(port, false);
1573 } else {
1574 continue;
1575 }
1576
1577 /* Cleanup path config space of protocol adapter */
1578 for (i = TB_PATH_MIN_HOPID;
1579 i <= port->config.max_in_hop_id; i++) {
1580 ret = tb_path_deactivate_hop(port, i);
1581 if (ret)
1582 return ret;
1583 }
1584 }
1585 } else {
1586 struct tb_cfg_result res;
1587
1588 /* Thunderbolt 1 uses the "reset" config space packet */
1589 res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1590 TB_CFG_SWITCH, 2, 2);
1591 if (res.err)
1592 return res.err;
1593 res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
1594 if (res.err > 0)
1595 return -EIO;
1596 else if (res.err < 0)
1597 return res.err;
1598 }
1599
1600 return 0;
1601 }
1602
1603 static int tb_switch_reset_device(struct tb_switch *sw)
1604 {
1605 return tb_port_reset(tb_switch_downstream_port(sw));
1606 }
1607
1608 static bool tb_switch_enumerated(struct tb_switch *sw)
1609 {
1610 u32 val;
1611 int ret;
1612
1613 /*
1614 * Read directly from the hardware because we use this also
1615 * during system sleep where sw->config.enabled is already set
1616 * by us.
1617 */
1618 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_3, 1);
1619 if (ret)
1620 return false;
1621
1622 return !!(val & ROUTER_CS_3_V);
1623 }
1624
1625 /**
1626 * tb_switch_reset() - Perform reset to the router
1627 * @sw: Router to reset
1628 *
1629 * Issues reset to the router @sw. Can be used for any router. For host
1630 * routers, resets all the downstream ports and cleans up path config
1631 * spaces accordingly. For device routers issues downstream port reset
1632 * through the parent router, so as side effect there will be unplug
1633 * soon after this is finished.
1634 *
1635 * If the router is not enumerated does nothing.
1636 *
1637 * Returns %0 on success or negative errno in case of failure.
1638 */
1639 int tb_switch_reset(struct tb_switch *sw)
1640 {
1641 int ret;
1642
1643 /*
1644 * We cannot access the port config spaces unless the router is
1645 * already enumerated. If the router is not enumerated it is
1646 * equal to being reset so we can skip that here.
1647 */
1648 if (!tb_switch_enumerated(sw))
1649 return 0;
1650
1651 tb_sw_dbg(sw, "resetting\n");
1652
1653 if (tb_route(sw))
1654 ret = tb_switch_reset_device(sw);
1655 else
1656 ret = tb_switch_reset_host(sw);
1657
1658 if (ret)
1659 tb_sw_warn(sw, "failed to reset\n");
1660
1661 return ret;
1662 }
1663
1664 /**
1665 * tb_switch_wait_for_bit() - Wait for specified value of bits in offset
1666 * @sw: Router to read the offset value from
1667 * @offset: Offset in the router config space to read from
1668 * @bit: Bit mask in the offset to wait for
1669 * @value: Value of the bits to wait for
1670 * @timeout_msec: Timeout in ms how long to wait
1671 *
1672 * Wait till the specified bits in specified offset reach specified value.
1673 * Returns %0 in case of success, %-ETIMEDOUT if the @value was not reached
1674 * within the given timeout or a negative errno in case of failure.
1675 */
1676 int tb_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
1677 u32 value, int timeout_msec)
1678 {
1679 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1680
1681 do {
1682 u32 val;
1683 int ret;
1684
1685 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
1686 if (ret)
1687 return ret;
1688
1689 if ((val & bit) == value)
1690 return 0;
1691
1692 usleep_range(50, 100);
1693 } while (ktime_before(ktime_get(), timeout));
1694
1695 return -ETIMEDOUT;
1696 }
1697
1698 /*
1699 * tb_plug_events_active() - enable/disable plug events on a switch
1700 *
1701 * Also configures a sane plug_events_delay of 255ms.
1702 *
1703 * Return: Returns 0 on success or an error code on failure.
1704 */
1705 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1706 {
1707 u32 data;
1708 int res;
1709
1710 if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1711 return 0;
1712
1713 sw->config.plug_events_delay = 0xff;
1714 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1715 if (res)
1716 return res;
1717
1718 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1719 if (res)
1720 return res;
1721
1722 if (active) {
1723 data = data & 0xFFFFFF83;
1724 switch (sw->config.device_id) {
1725 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1726 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1727 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1728 break;
1729 default:
1730 /*
1731 * Skip Alpine Ridge, it needs to have vendor
1732 * specific USB hotplug event enabled for the
1733 * internal xHCI to work.
1734 */
1735 if (!tb_switch_is_alpine_ridge(sw))
1736 data |= TB_PLUG_EVENTS_USB_DISABLE;
1737 }
1738 } else {
1739 data = data | 0x7c;
1740 }
1741 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1742 sw->cap_plug_events + 1, 1);
1743 }
1744
1745 static ssize_t authorized_show(struct device *dev,
1746 struct device_attribute *attr,
1747 char *buf)
1748 {
1749 struct tb_switch *sw = tb_to_switch(dev);
1750
1751 return sysfs_emit(buf, "%u\n", sw->authorized);
1752 }
1753
1754 static int disapprove_switch(struct device *dev, void *not_used)
1755 {
1756 char *envp[] = { "AUTHORIZED=0", NULL };
1757 struct tb_switch *sw;
1758
1759 sw = tb_to_switch(dev);
1760 if (sw && sw->authorized) {
1761 int ret;
1762
1763 /* First children */
1764 ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1765 if (ret)
1766 return ret;
1767
1768 ret = tb_domain_disapprove_switch(sw->tb, sw);
1769 if (ret)
1770 return ret;
1771
1772 sw->authorized = 0;
1773 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1774 }
1775
1776 return 0;
1777 }
1778
1779 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1780 {
1781 char envp_string[13];
1782 int ret = -EINVAL;
1783 char *envp[] = { envp_string, NULL };
1784
1785 if (!mutex_trylock(&sw->tb->lock))
1786 return restart_syscall();
1787
1788 if (!!sw->authorized == !!val)
1789 goto unlock;
1790
1791 switch (val) {
1792 /* Disapprove switch */
1793 case 0:
1794 if (tb_route(sw)) {
1795 ret = disapprove_switch(&sw->dev, NULL);
1796 goto unlock;
1797 }
1798 break;
1799
1800 /* Approve switch */
1801 case 1:
1802 if (sw->key)
1803 ret = tb_domain_approve_switch_key(sw->tb, sw);
1804 else
1805 ret = tb_domain_approve_switch(sw->tb, sw);
1806 break;
1807
1808 /* Challenge switch */
1809 case 2:
1810 if (sw->key)
1811 ret = tb_domain_challenge_switch_key(sw->tb, sw);
1812 break;
1813
1814 default:
1815 break;
1816 }
1817
1818 if (!ret) {
1819 sw->authorized = val;
1820 /*
1821 * Notify status change to the userspace, informing the new
1822 * value of /sys/bus/thunderbolt/devices/.../authorized.
1823 */
1824 sprintf(envp_string, "AUTHORIZED=%u", sw->authorized);
1825 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1826 }
1827
1828 unlock:
1829 mutex_unlock(&sw->tb->lock);
1830 return ret;
1831 }
1832
1833 static ssize_t authorized_store(struct device *dev,
1834 struct device_attribute *attr,
1835 const char *buf, size_t count)
1836 {
1837 struct tb_switch *sw = tb_to_switch(dev);
1838 unsigned int val;
1839 ssize_t ret;
1840
1841 ret = kstrtouint(buf, 0, &val);
1842 if (ret)
1843 return ret;
1844 if (val > 2)
1845 return -EINVAL;
1846
1847 pm_runtime_get_sync(&sw->dev);
1848 ret = tb_switch_set_authorized(sw, val);
1849 pm_runtime_mark_last_busy(&sw->dev);
1850 pm_runtime_put_autosuspend(&sw->dev);
1851
1852 return ret ? ret : count;
1853 }
1854 static DEVICE_ATTR_RW(authorized);
1855
1856 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1857 char *buf)
1858 {
1859 struct tb_switch *sw = tb_to_switch(dev);
1860
1861 return sysfs_emit(buf, "%u\n", sw->boot);
1862 }
1863 static DEVICE_ATTR_RO(boot);
1864
1865 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1866 char *buf)
1867 {
1868 struct tb_switch *sw = tb_to_switch(dev);
1869
1870 return sysfs_emit(buf, "%#x\n", sw->device);
1871 }
1872 static DEVICE_ATTR_RO(device);
1873
1874 static ssize_t
1875 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1876 {
1877 struct tb_switch *sw = tb_to_switch(dev);
1878
1879 return sysfs_emit(buf, "%s\n", sw->device_name ?: "");
1880 }
1881 static DEVICE_ATTR_RO(device_name);
1882
1883 static ssize_t
1884 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1885 {
1886 struct tb_switch *sw = tb_to_switch(dev);
1887
1888 return sysfs_emit(buf, "%u\n", sw->generation);
1889 }
1890 static DEVICE_ATTR_RO(generation);
1891
1892 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1893 char *buf)
1894 {
1895 struct tb_switch *sw = tb_to_switch(dev);
1896 ssize_t ret;
1897
1898 if (!mutex_trylock(&sw->tb->lock))
1899 return restart_syscall();
1900
1901 if (sw->key)
1902 ret = sysfs_emit(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1903 else
1904 ret = sysfs_emit(buf, "\n");
1905
1906 mutex_unlock(&sw->tb->lock);
1907 return ret;
1908 }
1909
1910 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1911 const char *buf, size_t count)
1912 {
1913 struct tb_switch *sw = tb_to_switch(dev);
1914 u8 key[TB_SWITCH_KEY_SIZE];
1915 ssize_t ret = count;
1916 bool clear = false;
1917
1918 if (!strcmp(buf, "\n"))
1919 clear = true;
1920 else if (hex2bin(key, buf, sizeof(key)))
1921 return -EINVAL;
1922
1923 if (!mutex_trylock(&sw->tb->lock))
1924 return restart_syscall();
1925
1926 if (sw->authorized) {
1927 ret = -EBUSY;
1928 } else {
1929 kfree(sw->key);
1930 if (clear) {
1931 sw->key = NULL;
1932 } else {
1933 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1934 if (!sw->key)
1935 ret = -ENOMEM;
1936 }
1937 }
1938
1939 mutex_unlock(&sw->tb->lock);
1940 return ret;
1941 }
1942 static DEVICE_ATTR(key, 0600, key_show, key_store);
1943
1944 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1945 char *buf)
1946 {
1947 struct tb_switch *sw = tb_to_switch(dev);
1948
1949 return sysfs_emit(buf, "%u.0 Gb/s\n", sw->link_speed);
1950 }
1951
1952 /*
1953 * Currently all lanes must run at the same speed but we expose here
1954 * both directions to allow possible asymmetric links in the future.
1955 */
1956 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1957 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1958
1959 static ssize_t rx_lanes_show(struct device *dev, struct device_attribute *attr,
1960 char *buf)
1961 {
1962 struct tb_switch *sw = tb_to_switch(dev);
1963 unsigned int width;
1964
1965 switch (sw->link_width) {
1966 case TB_LINK_WIDTH_SINGLE:
1967 case TB_LINK_WIDTH_ASYM_TX:
1968 width = 1;
1969 break;
1970 case TB_LINK_WIDTH_DUAL:
1971 width = 2;
1972 break;
1973 case TB_LINK_WIDTH_ASYM_RX:
1974 width = 3;
1975 break;
1976 default:
1977 WARN_ON_ONCE(1);
1978 return -EINVAL;
1979 }
1980
1981 return sysfs_emit(buf, "%u\n", width);
1982 }
1983 static DEVICE_ATTR(rx_lanes, 0444, rx_lanes_show, NULL);
1984
1985 static ssize_t tx_lanes_show(struct device *dev, struct device_attribute *attr,
1986 char *buf)
1987 {
1988 struct tb_switch *sw = tb_to_switch(dev);
1989 unsigned int width;
1990
1991 switch (sw->link_width) {
1992 case TB_LINK_WIDTH_SINGLE:
1993 case TB_LINK_WIDTH_ASYM_RX:
1994 width = 1;
1995 break;
1996 case TB_LINK_WIDTH_DUAL:
1997 width = 2;
1998 break;
1999 case TB_LINK_WIDTH_ASYM_TX:
2000 width = 3;
2001 break;
2002 default:
2003 WARN_ON_ONCE(1);
2004 return -EINVAL;
2005 }
2006
2007 return sysfs_emit(buf, "%u\n", width);
2008 }
2009 static DEVICE_ATTR(tx_lanes, 0444, tx_lanes_show, NULL);
2010
2011 static ssize_t nvm_authenticate_show(struct device *dev,
2012 struct device_attribute *attr, char *buf)
2013 {
2014 struct tb_switch *sw = tb_to_switch(dev);
2015 u32 status;
2016
2017 nvm_get_auth_status(sw, &status);
2018 return sysfs_emit(buf, "%#x\n", status);
2019 }
2020
2021 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
2022 bool disconnect)
2023 {
2024 struct tb_switch *sw = tb_to_switch(dev);
2025 int val, ret;
2026
2027 pm_runtime_get_sync(&sw->dev);
2028
2029 if (!mutex_trylock(&sw->tb->lock)) {
2030 ret = restart_syscall();
2031 goto exit_rpm;
2032 }
2033
2034 if (sw->no_nvm_upgrade) {
2035 ret = -EOPNOTSUPP;
2036 goto exit_unlock;
2037 }
2038
2039 /* If NVMem devices are not yet added */
2040 if (!sw->nvm) {
2041 ret = -EAGAIN;
2042 goto exit_unlock;
2043 }
2044
2045 ret = kstrtoint(buf, 10, &val);
2046 if (ret)
2047 goto exit_unlock;
2048
2049 /* Always clear the authentication status */
2050 nvm_clear_auth_status(sw);
2051
2052 if (val > 0) {
2053 if (val == AUTHENTICATE_ONLY) {
2054 if (disconnect)
2055 ret = -EINVAL;
2056 else
2057 ret = nvm_authenticate(sw, true);
2058 } else {
2059 if (!sw->nvm->flushed) {
2060 if (!sw->nvm->buf) {
2061 ret = -EINVAL;
2062 goto exit_unlock;
2063 }
2064
2065 ret = nvm_validate_and_write(sw);
2066 if (ret || val == WRITE_ONLY)
2067 goto exit_unlock;
2068 }
2069 if (val == WRITE_AND_AUTHENTICATE) {
2070 if (disconnect)
2071 ret = tb_lc_force_power(sw);
2072 else
2073 ret = nvm_authenticate(sw, false);
2074 }
2075 }
2076 }
2077
2078 exit_unlock:
2079 mutex_unlock(&sw->tb->lock);
2080 exit_rpm:
2081 pm_runtime_mark_last_busy(&sw->dev);
2082 pm_runtime_put_autosuspend(&sw->dev);
2083
2084 return ret;
2085 }
2086
2087 static ssize_t nvm_authenticate_store(struct device *dev,
2088 struct device_attribute *attr, const char *buf, size_t count)
2089 {
2090 int ret = nvm_authenticate_sysfs(dev, buf, false);
2091 if (ret)
2092 return ret;
2093 return count;
2094 }
2095 static DEVICE_ATTR_RW(nvm_authenticate);
2096
2097 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
2098 struct device_attribute *attr, char *buf)
2099 {
2100 return nvm_authenticate_show(dev, attr, buf);
2101 }
2102
2103 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
2104 struct device_attribute *attr, const char *buf, size_t count)
2105 {
2106 int ret;
2107
2108 ret = nvm_authenticate_sysfs(dev, buf, true);
2109 return ret ? ret : count;
2110 }
2111 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
2112
2113 static ssize_t nvm_version_show(struct device *dev,
2114 struct device_attribute *attr, char *buf)
2115 {
2116 struct tb_switch *sw = tb_to_switch(dev);
2117 int ret;
2118
2119 if (!mutex_trylock(&sw->tb->lock))
2120 return restart_syscall();
2121
2122 if (sw->safe_mode)
2123 ret = -ENODATA;
2124 else if (!sw->nvm)
2125 ret = -EAGAIN;
2126 else
2127 ret = sysfs_emit(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
2128
2129 mutex_unlock(&sw->tb->lock);
2130
2131 return ret;
2132 }
2133 static DEVICE_ATTR_RO(nvm_version);
2134
2135 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
2136 char *buf)
2137 {
2138 struct tb_switch *sw = tb_to_switch(dev);
2139
2140 return sysfs_emit(buf, "%#x\n", sw->vendor);
2141 }
2142 static DEVICE_ATTR_RO(vendor);
2143
2144 static ssize_t
2145 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
2146 {
2147 struct tb_switch *sw = tb_to_switch(dev);
2148
2149 return sysfs_emit(buf, "%s\n", sw->vendor_name ?: "");
2150 }
2151 static DEVICE_ATTR_RO(vendor_name);
2152
2153 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
2154 char *buf)
2155 {
2156 struct tb_switch *sw = tb_to_switch(dev);
2157
2158 return sysfs_emit(buf, "%pUb\n", sw->uuid);
2159 }
2160 static DEVICE_ATTR_RO(unique_id);
2161
2162 static struct attribute *switch_attrs[] = {
2163 &dev_attr_authorized.attr,
2164 &dev_attr_boot.attr,
2165 &dev_attr_device.attr,
2166 &dev_attr_device_name.attr,
2167 &dev_attr_generation.attr,
2168 &dev_attr_key.attr,
2169 &dev_attr_nvm_authenticate.attr,
2170 &dev_attr_nvm_authenticate_on_disconnect.attr,
2171 &dev_attr_nvm_version.attr,
2172 &dev_attr_rx_speed.attr,
2173 &dev_attr_rx_lanes.attr,
2174 &dev_attr_tx_speed.attr,
2175 &dev_attr_tx_lanes.attr,
2176 &dev_attr_vendor.attr,
2177 &dev_attr_vendor_name.attr,
2178 &dev_attr_unique_id.attr,
2179 NULL,
2180 };
2181
2182 static umode_t switch_attr_is_visible(struct kobject *kobj,
2183 struct attribute *attr, int n)
2184 {
2185 struct device *dev = kobj_to_dev(kobj);
2186 struct tb_switch *sw = tb_to_switch(dev);
2187
2188 if (attr == &dev_attr_authorized.attr) {
2189 if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
2190 sw->tb->security_level == TB_SECURITY_DPONLY)
2191 return 0;
2192 } else if (attr == &dev_attr_device.attr) {
2193 if (!sw->device)
2194 return 0;
2195 } else if (attr == &dev_attr_device_name.attr) {
2196 if (!sw->device_name)
2197 return 0;
2198 } else if (attr == &dev_attr_vendor.attr) {
2199 if (!sw->vendor)
2200 return 0;
2201 } else if (attr == &dev_attr_vendor_name.attr) {
2202 if (!sw->vendor_name)
2203 return 0;
2204 } else if (attr == &dev_attr_key.attr) {
2205 if (tb_route(sw) &&
2206 sw->tb->security_level == TB_SECURITY_SECURE &&
2207 sw->security_level == TB_SECURITY_SECURE)
2208 return attr->mode;
2209 return 0;
2210 } else if (attr == &dev_attr_rx_speed.attr ||
2211 attr == &dev_attr_rx_lanes.attr ||
2212 attr == &dev_attr_tx_speed.attr ||
2213 attr == &dev_attr_tx_lanes.attr) {
2214 if (tb_route(sw))
2215 return attr->mode;
2216 return 0;
2217 } else if (attr == &dev_attr_nvm_authenticate.attr) {
2218 if (nvm_upgradeable(sw))
2219 return attr->mode;
2220 return 0;
2221 } else if (attr == &dev_attr_nvm_version.attr) {
2222 if (nvm_readable(sw))
2223 return attr->mode;
2224 return 0;
2225 } else if (attr == &dev_attr_boot.attr) {
2226 if (tb_route(sw))
2227 return attr->mode;
2228 return 0;
2229 } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
2230 if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
2231 return attr->mode;
2232 return 0;
2233 }
2234
2235 return sw->safe_mode ? 0 : attr->mode;
2236 }
2237
2238 static const struct attribute_group switch_group = {
2239 .is_visible = switch_attr_is_visible,
2240 .attrs = switch_attrs,
2241 };
2242
2243 static const struct attribute_group *switch_groups[] = {
2244 &switch_group,
2245 NULL,
2246 };
2247
2248 static void tb_switch_release(struct device *dev)
2249 {
2250 struct tb_switch *sw = tb_to_switch(dev);
2251 struct tb_port *port;
2252
2253 dma_port_free(sw->dma_port);
2254
2255 tb_switch_for_each_port(sw, port) {
2256 ida_destroy(&port->in_hopids);
2257 ida_destroy(&port->out_hopids);
2258 }
2259
2260 kfree(sw->uuid);
2261 kfree(sw->device_name);
2262 kfree(sw->vendor_name);
2263 kfree(sw->ports);
2264 kfree(sw->drom);
2265 kfree(sw->key);
2266 kfree(sw);
2267 }
2268
2269 static int tb_switch_uevent(const struct device *dev, struct kobj_uevent_env *env)
2270 {
2271 const struct tb_switch *sw = tb_to_switch(dev);
2272 const char *type;
2273
2274 if (tb_switch_is_usb4(sw)) {
2275 if (add_uevent_var(env, "USB4_VERSION=%u.0",
2276 usb4_switch_version(sw)))
2277 return -ENOMEM;
2278 }
2279
2280 if (!tb_route(sw)) {
2281 type = "host";
2282 } else {
2283 const struct tb_port *port;
2284 bool hub = false;
2285
2286 /* Device is hub if it has any downstream ports */
2287 tb_switch_for_each_port(sw, port) {
2288 if (!port->disabled && !tb_is_upstream_port(port) &&
2289 tb_port_is_null(port)) {
2290 hub = true;
2291 break;
2292 }
2293 }
2294
2295 type = hub ? "hub" : "device";
2296 }
2297
2298 if (add_uevent_var(env, "USB4_TYPE=%s", type))
2299 return -ENOMEM;
2300 return 0;
2301 }
2302
2303 /*
2304 * Currently only need to provide the callbacks. Everything else is handled
2305 * in the connection manager.
2306 */
2307 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
2308 {
2309 struct tb_switch *sw = tb_to_switch(dev);
2310 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2311
2312 if (cm_ops->runtime_suspend_switch)
2313 return cm_ops->runtime_suspend_switch(sw);
2314
2315 return 0;
2316 }
2317
2318 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
2319 {
2320 struct tb_switch *sw = tb_to_switch(dev);
2321 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2322
2323 if (cm_ops->runtime_resume_switch)
2324 return cm_ops->runtime_resume_switch(sw);
2325 return 0;
2326 }
2327
2328 static const struct dev_pm_ops tb_switch_pm_ops = {
2329 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
2330 NULL)
2331 };
2332
2333 const struct device_type tb_switch_type = {
2334 .name = "thunderbolt_device",
2335 .release = tb_switch_release,
2336 .uevent = tb_switch_uevent,
2337 .pm = &tb_switch_pm_ops,
2338 };
2339
2340 static int tb_switch_get_generation(struct tb_switch *sw)
2341 {
2342 if (tb_switch_is_usb4(sw))
2343 return 4;
2344
2345 if (sw->config.vendor_id == PCI_VENDOR_ID_INTEL) {
2346 switch (sw->config.device_id) {
2347 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2348 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
2349 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
2350 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
2351 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2352 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
2353 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
2354 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
2355 return 1;
2356
2357 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
2358 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
2359 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
2360 return 2;
2361
2362 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
2363 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
2364 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
2365 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
2366 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
2367 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
2368 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
2369 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
2370 case PCI_DEVICE_ID_INTEL_ICL_NHI0:
2371 case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2372 return 3;
2373 }
2374 }
2375
2376 /*
2377 * For unknown switches assume generation to be 1 to be on the
2378 * safe side.
2379 */
2380 tb_sw_warn(sw, "unsupported switch device id %#x\n",
2381 sw->config.device_id);
2382 return 1;
2383 }
2384
2385 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
2386 {
2387 int max_depth;
2388
2389 if (tb_switch_is_usb4(sw) ||
2390 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
2391 max_depth = USB4_SWITCH_MAX_DEPTH;
2392 else
2393 max_depth = TB_SWITCH_MAX_DEPTH;
2394
2395 return depth > max_depth;
2396 }
2397
2398 /**
2399 * tb_switch_alloc() - allocate a switch
2400 * @tb: Pointer to the owning domain
2401 * @parent: Parent device for this switch
2402 * @route: Route string for this switch
2403 *
2404 * Allocates and initializes a switch. Will not upload configuration to
2405 * the switch. For that you need to call tb_switch_configure()
2406 * separately. The returned switch should be released by calling
2407 * tb_switch_put().
2408 *
2409 * Return: Pointer to the allocated switch or ERR_PTR() in case of
2410 * failure.
2411 */
2412 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
2413 u64 route)
2414 {
2415 struct tb_switch *sw;
2416 int upstream_port;
2417 int i, ret, depth;
2418
2419 /* Unlock the downstream port so we can access the switch below */
2420 if (route) {
2421 struct tb_switch *parent_sw = tb_to_switch(parent);
2422 struct tb_port *down;
2423
2424 down = tb_port_at(route, parent_sw);
2425 tb_port_unlock(down);
2426 }
2427
2428 depth = tb_route_length(route);
2429
2430 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
2431 if (upstream_port < 0)
2432 return ERR_PTR(upstream_port);
2433
2434 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2435 if (!sw)
2436 return ERR_PTR(-ENOMEM);
2437
2438 sw->tb = tb;
2439 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2440 if (ret)
2441 goto err_free_sw_ports;
2442
2443 sw->generation = tb_switch_get_generation(sw);
2444
2445 tb_dbg(tb, "current switch config:\n");
2446 tb_dump_switch(tb, sw);
2447
2448 /* configure switch */
2449 sw->config.upstream_port_number = upstream_port;
2450 sw->config.depth = depth;
2451 sw->config.route_hi = upper_32_bits(route);
2452 sw->config.route_lo = lower_32_bits(route);
2453 sw->config.enabled = 0;
2454
2455 /* Make sure we do not exceed maximum topology limit */
2456 if (tb_switch_exceeds_max_depth(sw, depth)) {
2457 ret = -EADDRNOTAVAIL;
2458 goto err_free_sw_ports;
2459 }
2460
2461 /* initialize ports */
2462 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
2463 GFP_KERNEL);
2464 if (!sw->ports) {
2465 ret = -ENOMEM;
2466 goto err_free_sw_ports;
2467 }
2468
2469 for (i = 0; i <= sw->config.max_port_number; i++) {
2470 /* minimum setup for tb_find_cap and tb_drom_read to work */
2471 sw->ports[i].sw = sw;
2472 sw->ports[i].port = i;
2473
2474 /* Control port does not need HopID allocation */
2475 if (i) {
2476 ida_init(&sw->ports[i].in_hopids);
2477 ida_init(&sw->ports[i].out_hopids);
2478 }
2479 }
2480
2481 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
2482 if (ret > 0)
2483 sw->cap_plug_events = ret;
2484
2485 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_TIME2);
2486 if (ret > 0)
2487 sw->cap_vsec_tmu = ret;
2488
2489 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2490 if (ret > 0)
2491 sw->cap_lc = ret;
2492
2493 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_CP_LP);
2494 if (ret > 0)
2495 sw->cap_lp = ret;
2496
2497 /* Root switch is always authorized */
2498 if (!route)
2499 sw->authorized = true;
2500
2501 device_initialize(&sw->dev);
2502 sw->dev.parent = parent;
2503 sw->dev.bus = &tb_bus_type;
2504 sw->dev.type = &tb_switch_type;
2505 sw->dev.groups = switch_groups;
2506 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2507
2508 return sw;
2509
2510 err_free_sw_ports:
2511 kfree(sw->ports);
2512 kfree(sw);
2513
2514 return ERR_PTR(ret);
2515 }
2516
2517 /**
2518 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2519 * @tb: Pointer to the owning domain
2520 * @parent: Parent device for this switch
2521 * @route: Route string for this switch
2522 *
2523 * This creates a switch in safe mode. This means the switch pretty much
2524 * lacks all capabilities except DMA configuration port before it is
2525 * flashed with a valid NVM firmware.
2526 *
2527 * The returned switch must be released by calling tb_switch_put().
2528 *
2529 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2530 */
2531 struct tb_switch *
2532 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2533 {
2534 struct tb_switch *sw;
2535
2536 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2537 if (!sw)
2538 return ERR_PTR(-ENOMEM);
2539
2540 sw->tb = tb;
2541 sw->config.depth = tb_route_length(route);
2542 sw->config.route_hi = upper_32_bits(route);
2543 sw->config.route_lo = lower_32_bits(route);
2544 sw->safe_mode = true;
2545
2546 device_initialize(&sw->dev);
2547 sw->dev.parent = parent;
2548 sw->dev.bus = &tb_bus_type;
2549 sw->dev.type = &tb_switch_type;
2550 sw->dev.groups = switch_groups;
2551 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2552
2553 return sw;
2554 }
2555
2556 /**
2557 * tb_switch_configure() - Uploads configuration to the switch
2558 * @sw: Switch to configure
2559 *
2560 * Call this function before the switch is added to the system. It will
2561 * upload configuration to the switch and makes it available for the
2562 * connection manager to use. Can be called to the switch again after
2563 * resume from low power states to re-initialize it.
2564 *
2565 * Return: %0 in case of success and negative errno in case of failure
2566 */
2567 int tb_switch_configure(struct tb_switch *sw)
2568 {
2569 struct tb *tb = sw->tb;
2570 u64 route;
2571 int ret;
2572
2573 route = tb_route(sw);
2574
2575 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2576 sw->config.enabled ? "restoring" : "initializing", route,
2577 tb_route_length(route), sw->config.upstream_port_number);
2578
2579 sw->config.enabled = 1;
2580
2581 if (tb_switch_is_usb4(sw)) {
2582 /*
2583 * For USB4 devices, we need to program the CM version
2584 * accordingly so that it knows to expose all the
2585 * additional capabilities. Program it according to USB4
2586 * version to avoid changing existing (v1) routers behaviour.
2587 */
2588 if (usb4_switch_version(sw) < 2)
2589 sw->config.cmuv = ROUTER_CS_4_CMUV_V1;
2590 else
2591 sw->config.cmuv = ROUTER_CS_4_CMUV_V2;
2592 sw->config.plug_events_delay = 0xa;
2593
2594 /* Enumerate the switch */
2595 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2596 ROUTER_CS_1, 4);
2597 if (ret)
2598 return ret;
2599
2600 ret = usb4_switch_setup(sw);
2601 } else {
2602 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2603 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2604 sw->config.vendor_id);
2605
2606 if (!sw->cap_plug_events) {
2607 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2608 return -ENODEV;
2609 }
2610
2611 /* Enumerate the switch */
2612 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2613 ROUTER_CS_1, 3);
2614 }
2615 if (ret)
2616 return ret;
2617
2618 return tb_plug_events_active(sw, true);
2619 }
2620
2621 /**
2622 * tb_switch_configuration_valid() - Set the tunneling configuration to be valid
2623 * @sw: Router to configure
2624 *
2625 * Needs to be called before any tunnels can be setup through the
2626 * router. Can be called to any router.
2627 *
2628 * Returns %0 in success and negative errno otherwise.
2629 */
2630 int tb_switch_configuration_valid(struct tb_switch *sw)
2631 {
2632 if (tb_switch_is_usb4(sw))
2633 return usb4_switch_configuration_valid(sw);
2634 return 0;
2635 }
2636
2637 static int tb_switch_set_uuid(struct tb_switch *sw)
2638 {
2639 bool uid = false;
2640 u32 uuid[4];
2641 int ret;
2642
2643 if (sw->uuid)
2644 return 0;
2645
2646 if (tb_switch_is_usb4(sw)) {
2647 ret = usb4_switch_read_uid(sw, &sw->uid);
2648 if (ret)
2649 return ret;
2650 uid = true;
2651 } else {
2652 /*
2653 * The newer controllers include fused UUID as part of
2654 * link controller specific registers
2655 */
2656 ret = tb_lc_read_uuid(sw, uuid);
2657 if (ret) {
2658 if (ret != -EINVAL)
2659 return ret;
2660 uid = true;
2661 }
2662 }
2663
2664 if (uid) {
2665 /*
2666 * ICM generates UUID based on UID and fills the upper
2667 * two words with ones. This is not strictly following
2668 * UUID format but we want to be compatible with it so
2669 * we do the same here.
2670 */
2671 uuid[0] = sw->uid & 0xffffffff;
2672 uuid[1] = (sw->uid >> 32) & 0xffffffff;
2673 uuid[2] = 0xffffffff;
2674 uuid[3] = 0xffffffff;
2675 }
2676
2677 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2678 if (!sw->uuid)
2679 return -ENOMEM;
2680 return 0;
2681 }
2682
2683 static int tb_switch_add_dma_port(struct tb_switch *sw)
2684 {
2685 u32 status;
2686 int ret;
2687
2688 switch (sw->generation) {
2689 case 2:
2690 /* Only root switch can be upgraded */
2691 if (tb_route(sw))
2692 return 0;
2693
2694 fallthrough;
2695 case 3:
2696 case 4:
2697 ret = tb_switch_set_uuid(sw);
2698 if (ret)
2699 return ret;
2700 break;
2701
2702 default:
2703 /*
2704 * DMA port is the only thing available when the switch
2705 * is in safe mode.
2706 */
2707 if (!sw->safe_mode)
2708 return 0;
2709 break;
2710 }
2711
2712 if (sw->no_nvm_upgrade)
2713 return 0;
2714
2715 if (tb_switch_is_usb4(sw)) {
2716 ret = usb4_switch_nvm_authenticate_status(sw, &status);
2717 if (ret)
2718 return ret;
2719
2720 if (status) {
2721 tb_sw_info(sw, "switch flash authentication failed\n");
2722 nvm_set_auth_status(sw, status);
2723 }
2724
2725 return 0;
2726 }
2727
2728 /* Root switch DMA port requires running firmware */
2729 if (!tb_route(sw) && !tb_switch_is_icm(sw))
2730 return 0;
2731
2732 sw->dma_port = dma_port_alloc(sw);
2733 if (!sw->dma_port)
2734 return 0;
2735
2736 /*
2737 * If there is status already set then authentication failed
2738 * when the dma_port_flash_update_auth() returned. Power cycling
2739 * is not needed (it was done already) so only thing we do here
2740 * is to unblock runtime PM of the root port.
2741 */
2742 nvm_get_auth_status(sw, &status);
2743 if (status) {
2744 if (!tb_route(sw))
2745 nvm_authenticate_complete_dma_port(sw);
2746 return 0;
2747 }
2748
2749 /*
2750 * Check status of the previous flash authentication. If there
2751 * is one we need to power cycle the switch in any case to make
2752 * it functional again.
2753 */
2754 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2755 if (ret <= 0)
2756 return ret;
2757
2758 /* Now we can allow root port to suspend again */
2759 if (!tb_route(sw))
2760 nvm_authenticate_complete_dma_port(sw);
2761
2762 if (status) {
2763 tb_sw_info(sw, "switch flash authentication failed\n");
2764 nvm_set_auth_status(sw, status);
2765 }
2766
2767 tb_sw_info(sw, "power cycling the switch now\n");
2768 dma_port_power_cycle(sw->dma_port);
2769
2770 /*
2771 * We return error here which causes the switch adding failure.
2772 * It should appear back after power cycle is complete.
2773 */
2774 return -ESHUTDOWN;
2775 }
2776
2777 static void tb_switch_default_link_ports(struct tb_switch *sw)
2778 {
2779 int i;
2780
2781 for (i = 1; i <= sw->config.max_port_number; i++) {
2782 struct tb_port *port = &sw->ports[i];
2783 struct tb_port *subordinate;
2784
2785 if (!tb_port_is_null(port))
2786 continue;
2787
2788 /* Check for the subordinate port */
2789 if (i == sw->config.max_port_number ||
2790 !tb_port_is_null(&sw->ports[i + 1]))
2791 continue;
2792
2793 /* Link them if not already done so (by DROM) */
2794 subordinate = &sw->ports[i + 1];
2795 if (!port->dual_link_port && !subordinate->dual_link_port) {
2796 port->link_nr = 0;
2797 port->dual_link_port = subordinate;
2798 subordinate->link_nr = 1;
2799 subordinate->dual_link_port = port;
2800
2801 tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2802 port->port, subordinate->port);
2803 }
2804 }
2805 }
2806
2807 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2808 {
2809 const struct tb_port *up = tb_upstream_port(sw);
2810
2811 if (!up->dual_link_port || !up->dual_link_port->remote)
2812 return false;
2813
2814 if (tb_switch_is_usb4(sw))
2815 return usb4_switch_lane_bonding_possible(sw);
2816 return tb_lc_lane_bonding_possible(sw);
2817 }
2818
2819 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2820 {
2821 struct tb_port *up;
2822 bool change = false;
2823 int ret;
2824
2825 if (!tb_route(sw) || tb_switch_is_icm(sw))
2826 return 0;
2827
2828 up = tb_upstream_port(sw);
2829
2830 ret = tb_port_get_link_speed(up);
2831 if (ret < 0)
2832 return ret;
2833 if (sw->link_speed != ret)
2834 change = true;
2835 sw->link_speed = ret;
2836
2837 ret = tb_port_get_link_width(up);
2838 if (ret < 0)
2839 return ret;
2840 if (sw->link_width != ret)
2841 change = true;
2842 sw->link_width = ret;
2843
2844 /* Notify userspace that there is possible link attribute change */
2845 if (device_is_registered(&sw->dev) && change)
2846 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2847
2848 return 0;
2849 }
2850
2851 /* Must be called after tb_switch_update_link_attributes() */
2852 static void tb_switch_link_init(struct tb_switch *sw)
2853 {
2854 struct tb_port *up, *down;
2855 bool bonded;
2856
2857 if (!tb_route(sw) || tb_switch_is_icm(sw))
2858 return;
2859
2860 tb_sw_dbg(sw, "current link speed %u.0 Gb/s\n", sw->link_speed);
2861 tb_sw_dbg(sw, "current link width %s\n", tb_width_name(sw->link_width));
2862
2863 bonded = sw->link_width >= TB_LINK_WIDTH_DUAL;
2864
2865 /*
2866 * Gen 4 links come up as bonded so update the port structures
2867 * accordingly.
2868 */
2869 up = tb_upstream_port(sw);
2870 down = tb_switch_downstream_port(sw);
2871
2872 up->bonded = bonded;
2873 if (up->dual_link_port)
2874 up->dual_link_port->bonded = bonded;
2875 tb_port_update_credits(up);
2876
2877 down->bonded = bonded;
2878 if (down->dual_link_port)
2879 down->dual_link_port->bonded = bonded;
2880 tb_port_update_credits(down);
2881
2882 if (tb_port_get_link_generation(up) < 4)
2883 return;
2884
2885 /*
2886 * Set the Gen 4 preferred link width. This is what the router
2887 * prefers when the link is brought up. If the router does not
2888 * support asymmetric link configuration, this also will be set
2889 * to TB_LINK_WIDTH_DUAL.
2890 */
2891 sw->preferred_link_width = sw->link_width;
2892 tb_sw_dbg(sw, "preferred link width %s\n",
2893 tb_width_name(sw->preferred_link_width));
2894 }
2895
2896 /**
2897 * tb_switch_lane_bonding_enable() - Enable lane bonding
2898 * @sw: Switch to enable lane bonding
2899 *
2900 * Connection manager can call this function to enable lane bonding of a
2901 * switch. If conditions are correct and both switches support the feature,
2902 * lanes are bonded. It is safe to call this to any switch.
2903 */
2904 static int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2905 {
2906 struct tb_port *up, *down;
2907 unsigned int width;
2908 int ret;
2909
2910 if (!tb_switch_lane_bonding_possible(sw))
2911 return 0;
2912
2913 up = tb_upstream_port(sw);
2914 down = tb_switch_downstream_port(sw);
2915
2916 if (!tb_port_width_supported(up, TB_LINK_WIDTH_DUAL) ||
2917 !tb_port_width_supported(down, TB_LINK_WIDTH_DUAL))
2918 return 0;
2919
2920 /*
2921 * Both lanes need to be in CL0. Here we assume lane 0 already be in
2922 * CL0 and check just for lane 1.
2923 */
2924 if (tb_wait_for_port(down->dual_link_port, false) <= 0)
2925 return -ENOTCONN;
2926
2927 ret = tb_port_lane_bonding_enable(up);
2928 if (ret) {
2929 tb_port_warn(up, "failed to enable lane bonding\n");
2930 return ret;
2931 }
2932
2933 ret = tb_port_lane_bonding_enable(down);
2934 if (ret) {
2935 tb_port_warn(down, "failed to enable lane bonding\n");
2936 tb_port_lane_bonding_disable(up);
2937 return ret;
2938 }
2939
2940 /* Any of the widths are all bonded */
2941 width = TB_LINK_WIDTH_DUAL | TB_LINK_WIDTH_ASYM_TX |
2942 TB_LINK_WIDTH_ASYM_RX;
2943
2944 return tb_port_wait_for_link_width(down, width, 100);
2945 }
2946
2947 /**
2948 * tb_switch_lane_bonding_disable() - Disable lane bonding
2949 * @sw: Switch whose lane bonding to disable
2950 *
2951 * Disables lane bonding between @sw and parent. This can be called even
2952 * if lanes were not bonded originally.
2953 */
2954 static int tb_switch_lane_bonding_disable(struct tb_switch *sw)
2955 {
2956 struct tb_port *up, *down;
2957 int ret;
2958
2959 up = tb_upstream_port(sw);
2960 if (!up->bonded)
2961 return 0;
2962
2963 /*
2964 * If the link is Gen 4 there is no way to switch the link to
2965 * two single lane links so avoid that here. Also don't bother
2966 * if the link is not up anymore (sw is unplugged).
2967 */
2968 ret = tb_port_get_link_generation(up);
2969 if (ret < 0)
2970 return ret;
2971 if (ret >= 4)
2972 return -EOPNOTSUPP;
2973
2974 down = tb_switch_downstream_port(sw);
2975 tb_port_lane_bonding_disable(up);
2976 tb_port_lane_bonding_disable(down);
2977
2978 /*
2979 * It is fine if we get other errors as the router might have
2980 * been unplugged.
2981 */
2982 return tb_port_wait_for_link_width(down, TB_LINK_WIDTH_SINGLE, 100);
2983 }
2984
2985 /* Note updating sw->link_width done in tb_switch_update_link_attributes() */
2986 static int tb_switch_asym_enable(struct tb_switch *sw, enum tb_link_width width)
2987 {
2988 struct tb_port *up, *down, *port;
2989 enum tb_link_width down_width;
2990 int ret;
2991
2992 up = tb_upstream_port(sw);
2993 down = tb_switch_downstream_port(sw);
2994
2995 if (width == TB_LINK_WIDTH_ASYM_TX) {
2996 down_width = TB_LINK_WIDTH_ASYM_RX;
2997 port = down;
2998 } else {
2999 down_width = TB_LINK_WIDTH_ASYM_TX;
3000 port = up;
3001 }
3002
3003 ret = tb_port_set_link_width(up, width);
3004 if (ret)
3005 return ret;
3006
3007 ret = tb_port_set_link_width(down, down_width);
3008 if (ret)
3009 return ret;
3010
3011 /*
3012 * Initiate the change in the router that one of its TX lanes is
3013 * changing to RX but do so only if there is an actual change.
3014 */
3015 if (sw->link_width != width) {
3016 ret = usb4_port_asym_start(port);
3017 if (ret)
3018 return ret;
3019
3020 ret = tb_port_wait_for_link_width(up, width, 100);
3021 if (ret)
3022 return ret;
3023 }
3024
3025 return 0;
3026 }
3027
3028 /* Note updating sw->link_width done in tb_switch_update_link_attributes() */
3029 static int tb_switch_asym_disable(struct tb_switch *sw)
3030 {
3031 struct tb_port *up, *down;
3032 int ret;
3033
3034 up = tb_upstream_port(sw);
3035 down = tb_switch_downstream_port(sw);
3036
3037 ret = tb_port_set_link_width(up, TB_LINK_WIDTH_DUAL);
3038 if (ret)
3039 return ret;
3040
3041 ret = tb_port_set_link_width(down, TB_LINK_WIDTH_DUAL);
3042 if (ret)
3043 return ret;
3044
3045 /*
3046 * Initiate the change in the router that has three TX lanes and
3047 * is changing one of its TX lanes to RX but only if there is a
3048 * change in the link width.
3049 */
3050 if (sw->link_width > TB_LINK_WIDTH_DUAL) {
3051 if (sw->link_width == TB_LINK_WIDTH_ASYM_TX)
3052 ret = usb4_port_asym_start(up);
3053 else
3054 ret = usb4_port_asym_start(down);
3055 if (ret)
3056 return ret;
3057
3058 ret = tb_port_wait_for_link_width(up, TB_LINK_WIDTH_DUAL, 100);
3059 if (ret)
3060 return ret;
3061 }
3062
3063 return 0;
3064 }
3065
3066 /**
3067 * tb_switch_set_link_width() - Configure router link width
3068 * @sw: Router to configure
3069 * @width: The new link width
3070 *
3071 * Set device router link width to @width from router upstream port
3072 * perspective. Supports also asymmetric links if the routers boths side
3073 * of the link supports it.
3074 *
3075 * Does nothing for host router.
3076 *
3077 * Returns %0 in case of success, negative errno otherwise.
3078 */
3079 int tb_switch_set_link_width(struct tb_switch *sw, enum tb_link_width width)
3080 {
3081 struct tb_port *up, *down;
3082 int ret = 0;
3083
3084 if (!tb_route(sw))
3085 return 0;
3086
3087 up = tb_upstream_port(sw);
3088 down = tb_switch_downstream_port(sw);
3089
3090 switch (width) {
3091 case TB_LINK_WIDTH_SINGLE:
3092 ret = tb_switch_lane_bonding_disable(sw);
3093 break;
3094
3095 case TB_LINK_WIDTH_DUAL:
3096 if (sw->link_width == TB_LINK_WIDTH_ASYM_TX ||
3097 sw->link_width == TB_LINK_WIDTH_ASYM_RX) {
3098 ret = tb_switch_asym_disable(sw);
3099 if (ret)
3100 break;
3101 }
3102 ret = tb_switch_lane_bonding_enable(sw);
3103 break;
3104
3105 case TB_LINK_WIDTH_ASYM_TX:
3106 case TB_LINK_WIDTH_ASYM_RX:
3107 ret = tb_switch_asym_enable(sw, width);
3108 break;
3109 }
3110
3111 switch (ret) {
3112 case 0:
3113 break;
3114
3115 case -ETIMEDOUT:
3116 tb_sw_warn(sw, "timeout changing link width\n");
3117 return ret;
3118
3119 case -ENOTCONN:
3120 case -EOPNOTSUPP:
3121 case -ENODEV:
3122 return ret;
3123
3124 default:
3125 tb_sw_dbg(sw, "failed to change link width: %d\n", ret);
3126 return ret;
3127 }
3128
3129 tb_port_update_credits(down);
3130 tb_port_update_credits(up);
3131
3132 tb_switch_update_link_attributes(sw);
3133
3134 tb_sw_dbg(sw, "link width set to %s\n", tb_width_name(width));
3135 return ret;
3136 }
3137
3138 /**
3139 * tb_switch_configure_link() - Set link configured
3140 * @sw: Switch whose link is configured
3141 *
3142 * Sets the link upstream from @sw configured (from both ends) so that
3143 * it will not be disconnected when the domain exits sleep. Can be
3144 * called for any switch.
3145 *
3146 * It is recommended that this is called after lane bonding is enabled.
3147 *
3148 * Returns %0 on success and negative errno in case of error.
3149 */
3150 int tb_switch_configure_link(struct tb_switch *sw)
3151 {
3152 struct tb_port *up, *down;
3153 int ret;
3154
3155 if (!tb_route(sw) || tb_switch_is_icm(sw))
3156 return 0;
3157
3158 up = tb_upstream_port(sw);
3159 if (tb_switch_is_usb4(up->sw))
3160 ret = usb4_port_configure(up);
3161 else
3162 ret = tb_lc_configure_port(up);
3163 if (ret)
3164 return ret;
3165
3166 down = up->remote;
3167 if (tb_switch_is_usb4(down->sw))
3168 return usb4_port_configure(down);
3169 return tb_lc_configure_port(down);
3170 }
3171
3172 /**
3173 * tb_switch_unconfigure_link() - Unconfigure link
3174 * @sw: Switch whose link is unconfigured
3175 *
3176 * Sets the link unconfigured so the @sw will be disconnected if the
3177 * domain exists sleep.
3178 */
3179 void tb_switch_unconfigure_link(struct tb_switch *sw)
3180 {
3181 struct tb_port *up, *down;
3182
3183 if (sw->is_unplugged)
3184 return;
3185 if (!tb_route(sw) || tb_switch_is_icm(sw))
3186 return;
3187
3188 up = tb_upstream_port(sw);
3189 if (tb_switch_is_usb4(up->sw))
3190 usb4_port_unconfigure(up);
3191 else
3192 tb_lc_unconfigure_port(up);
3193
3194 down = up->remote;
3195 if (tb_switch_is_usb4(down->sw))
3196 usb4_port_unconfigure(down);
3197 else
3198 tb_lc_unconfigure_port(down);
3199 }
3200
3201 static void tb_switch_credits_init(struct tb_switch *sw)
3202 {
3203 if (tb_switch_is_icm(sw))
3204 return;
3205 if (!tb_switch_is_usb4(sw))
3206 return;
3207 if (usb4_switch_credits_init(sw))
3208 tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n");
3209 }
3210
3211 static int tb_switch_port_hotplug_enable(struct tb_switch *sw)
3212 {
3213 struct tb_port *port;
3214
3215 if (tb_switch_is_icm(sw))
3216 return 0;
3217
3218 tb_switch_for_each_port(sw, port) {
3219 int res;
3220
3221 if (!port->cap_usb4)
3222 continue;
3223
3224 res = usb4_port_hotplug_enable(port);
3225 if (res)
3226 return res;
3227 }
3228 return 0;
3229 }
3230
3231 /**
3232 * tb_switch_add() - Add a switch to the domain
3233 * @sw: Switch to add
3234 *
3235 * This is the last step in adding switch to the domain. It will read
3236 * identification information from DROM and initializes ports so that
3237 * they can be used to connect other switches. The switch will be
3238 * exposed to the userspace when this function successfully returns. To
3239 * remove and release the switch, call tb_switch_remove().
3240 *
3241 * Return: %0 in case of success and negative errno in case of failure
3242 */
3243 int tb_switch_add(struct tb_switch *sw)
3244 {
3245 int i, ret;
3246
3247 /*
3248 * Initialize DMA control port now before we read DROM. Recent
3249 * host controllers have more complete DROM on NVM that includes
3250 * vendor and model identification strings which we then expose
3251 * to the userspace. NVM can be accessed through DMA
3252 * configuration based mailbox.
3253 */
3254 ret = tb_switch_add_dma_port(sw);
3255 if (ret) {
3256 dev_err(&sw->dev, "failed to add DMA port\n");
3257 return ret;
3258 }
3259
3260 if (!sw->safe_mode) {
3261 tb_switch_credits_init(sw);
3262
3263 /* read drom */
3264 ret = tb_drom_read(sw);
3265 if (ret)
3266 dev_warn(&sw->dev, "reading DROM failed: %d\n", ret);
3267 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
3268
3269 ret = tb_switch_set_uuid(sw);
3270 if (ret) {
3271 dev_err(&sw->dev, "failed to set UUID\n");
3272 return ret;
3273 }
3274
3275 for (i = 0; i <= sw->config.max_port_number; i++) {
3276 if (sw->ports[i].disabled) {
3277 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
3278 continue;
3279 }
3280 ret = tb_init_port(&sw->ports[i]);
3281 if (ret) {
3282 dev_err(&sw->dev, "failed to initialize port %d\n", i);
3283 return ret;
3284 }
3285 }
3286
3287 tb_check_quirks(sw);
3288
3289 tb_switch_default_link_ports(sw);
3290
3291 ret = tb_switch_update_link_attributes(sw);
3292 if (ret)
3293 return ret;
3294
3295 tb_switch_link_init(sw);
3296
3297 ret = tb_switch_clx_init(sw);
3298 if (ret)
3299 return ret;
3300
3301 ret = tb_switch_tmu_init(sw);
3302 if (ret)
3303 return ret;
3304 }
3305
3306 ret = tb_switch_port_hotplug_enable(sw);
3307 if (ret)
3308 return ret;
3309
3310 ret = device_add(&sw->dev);
3311 if (ret) {
3312 dev_err(&sw->dev, "failed to add device: %d\n", ret);
3313 return ret;
3314 }
3315
3316 if (tb_route(sw)) {
3317 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
3318 sw->vendor, sw->device);
3319 if (sw->vendor_name && sw->device_name)
3320 dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
3321 sw->device_name);
3322 }
3323
3324 ret = usb4_switch_add_ports(sw);
3325 if (ret) {
3326 dev_err(&sw->dev, "failed to add USB4 ports\n");
3327 goto err_del;
3328 }
3329
3330 ret = tb_switch_nvm_add(sw);
3331 if (ret) {
3332 dev_err(&sw->dev, "failed to add NVM devices\n");
3333 goto err_ports;
3334 }
3335
3336 /*
3337 * Thunderbolt routers do not generate wakeups themselves but
3338 * they forward wakeups from tunneled protocols, so enable it
3339 * here.
3340 */
3341 device_init_wakeup(&sw->dev, true);
3342
3343 pm_runtime_set_active(&sw->dev);
3344 if (sw->rpm) {
3345 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
3346 pm_runtime_use_autosuspend(&sw->dev);
3347 pm_runtime_mark_last_busy(&sw->dev);
3348 pm_runtime_enable(&sw->dev);
3349 pm_request_autosuspend(&sw->dev);
3350 }
3351
3352 tb_switch_debugfs_init(sw);
3353 return 0;
3354
3355 err_ports:
3356 usb4_switch_remove_ports(sw);
3357 err_del:
3358 device_del(&sw->dev);
3359
3360 return ret;
3361 }
3362
3363 /**
3364 * tb_switch_remove() - Remove and release a switch
3365 * @sw: Switch to remove
3366 *
3367 * This will remove the switch from the domain and release it after last
3368 * reference count drops to zero. If there are switches connected below
3369 * this switch, they will be removed as well.
3370 */
3371 void tb_switch_remove(struct tb_switch *sw)
3372 {
3373 struct tb_port *port;
3374
3375 tb_switch_debugfs_remove(sw);
3376
3377 if (sw->rpm) {
3378 pm_runtime_get_sync(&sw->dev);
3379 pm_runtime_disable(&sw->dev);
3380 }
3381
3382 /* port 0 is the switch itself and never has a remote */
3383 tb_switch_for_each_port(sw, port) {
3384 if (tb_port_has_remote(port)) {
3385 tb_switch_remove(port->remote->sw);
3386 port->remote = NULL;
3387 } else if (port->xdomain) {
3388 tb_xdomain_remove(port->xdomain);
3389 port->xdomain = NULL;
3390 }
3391
3392 /* Remove any downstream retimers */
3393 tb_retimer_remove_all(port);
3394 }
3395
3396 if (!sw->is_unplugged)
3397 tb_plug_events_active(sw, false);
3398
3399 tb_switch_nvm_remove(sw);
3400 usb4_switch_remove_ports(sw);
3401
3402 if (tb_route(sw))
3403 dev_info(&sw->dev, "device disconnected\n");
3404 device_unregister(&sw->dev);
3405 }
3406
3407 /**
3408 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
3409 * @sw: Router to mark unplugged
3410 */
3411 void tb_sw_set_unplugged(struct tb_switch *sw)
3412 {
3413 struct tb_port *port;
3414
3415 if (sw == sw->tb->root_switch) {
3416 tb_sw_WARN(sw, "cannot unplug root switch\n");
3417 return;
3418 }
3419 if (sw->is_unplugged) {
3420 tb_sw_WARN(sw, "is_unplugged already set\n");
3421 return;
3422 }
3423 sw->is_unplugged = true;
3424 tb_switch_for_each_port(sw, port) {
3425 if (tb_port_has_remote(port))
3426 tb_sw_set_unplugged(port->remote->sw);
3427 else if (port->xdomain)
3428 port->xdomain->is_unplugged = true;
3429 }
3430 }
3431
3432 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
3433 {
3434 if (flags)
3435 tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
3436 else
3437 tb_sw_dbg(sw, "disabling wakeup\n");
3438
3439 if (tb_switch_is_usb4(sw))
3440 return usb4_switch_set_wake(sw, flags);
3441 return tb_lc_set_wake(sw, flags);
3442 }
3443
3444 int tb_switch_resume(struct tb_switch *sw)
3445 {
3446 struct tb_port *port;
3447 int err;
3448
3449 tb_sw_dbg(sw, "resuming switch\n");
3450
3451 /*
3452 * Check for UID of the connected switches except for root
3453 * switch which we assume cannot be removed.
3454 */
3455 if (tb_route(sw)) {
3456 u64 uid;
3457
3458 /*
3459 * Check first that we can still read the switch config
3460 * space. It may be that there is now another domain
3461 * connected.
3462 */
3463 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
3464 if (err < 0) {
3465 tb_sw_info(sw, "switch not present anymore\n");
3466 return err;
3467 }
3468
3469 /* We don't have any way to confirm this was the same device */
3470 if (!sw->uid)
3471 return -ENODEV;
3472
3473 if (tb_switch_is_usb4(sw))
3474 err = usb4_switch_read_uid(sw, &uid);
3475 else
3476 err = tb_drom_read_uid_only(sw, &uid);
3477 if (err) {
3478 tb_sw_warn(sw, "uid read failed\n");
3479 return err;
3480 }
3481 if (sw->uid != uid) {
3482 tb_sw_info(sw,
3483 "changed while suspended (uid %#llx -> %#llx)\n",
3484 sw->uid, uid);
3485 return -ENODEV;
3486 }
3487 }
3488
3489 err = tb_switch_configure(sw);
3490 if (err)
3491 return err;
3492
3493 /* Disable wakes */
3494 tb_switch_set_wake(sw, 0);
3495
3496 err = tb_switch_tmu_init(sw);
3497 if (err)
3498 return err;
3499
3500 /* check for surviving downstream switches */
3501 tb_switch_for_each_port(sw, port) {
3502 if (!tb_port_is_null(port))
3503 continue;
3504
3505 if (!tb_port_resume(port))
3506 continue;
3507
3508 if (tb_wait_for_port(port, true) <= 0) {
3509 tb_port_warn(port,
3510 "lost during suspend, disconnecting\n");
3511 if (tb_port_has_remote(port))
3512 tb_sw_set_unplugged(port->remote->sw);
3513 else if (port->xdomain)
3514 port->xdomain->is_unplugged = true;
3515 } else {
3516 /*
3517 * Always unlock the port so the downstream
3518 * switch/domain is accessible.
3519 */
3520 if (tb_port_unlock(port))
3521 tb_port_warn(port, "failed to unlock port\n");
3522 if (port->remote && tb_switch_resume(port->remote->sw)) {
3523 tb_port_warn(port,
3524 "lost during suspend, disconnecting\n");
3525 tb_sw_set_unplugged(port->remote->sw);
3526 }
3527 }
3528 }
3529 return 0;
3530 }
3531
3532 /**
3533 * tb_switch_suspend() - Put a switch to sleep
3534 * @sw: Switch to suspend
3535 * @runtime: Is this runtime suspend or system sleep
3536 *
3537 * Suspends router and all its children. Enables wakes according to
3538 * value of @runtime and then sets sleep bit for the router. If @sw is
3539 * host router the domain is ready to go to sleep once this function
3540 * returns.
3541 */
3542 void tb_switch_suspend(struct tb_switch *sw, bool runtime)
3543 {
3544 unsigned int flags = 0;
3545 struct tb_port *port;
3546 int err;
3547
3548 tb_sw_dbg(sw, "suspending switch\n");
3549
3550 /*
3551 * Actually only needed for Titan Ridge but for simplicity can be
3552 * done for USB4 device too as CLx is re-enabled at resume.
3553 */
3554 tb_switch_clx_disable(sw);
3555
3556 err = tb_plug_events_active(sw, false);
3557 if (err)
3558 return;
3559
3560 tb_switch_for_each_port(sw, port) {
3561 if (tb_port_has_remote(port))
3562 tb_switch_suspend(port->remote->sw, runtime);
3563 }
3564
3565 if (runtime) {
3566 /* Trigger wake when something is plugged in/out */
3567 flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
3568 flags |= TB_WAKE_ON_USB4;
3569 flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
3570 } else if (device_may_wakeup(&sw->dev)) {
3571 flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
3572 }
3573
3574 tb_switch_set_wake(sw, flags);
3575
3576 if (tb_switch_is_usb4(sw))
3577 usb4_switch_set_sleep(sw);
3578 else
3579 tb_lc_set_sleep(sw);
3580 }
3581
3582 /**
3583 * tb_switch_query_dp_resource() - Query availability of DP resource
3584 * @sw: Switch whose DP resource is queried
3585 * @in: DP IN port
3586 *
3587 * Queries availability of DP resource for DP tunneling using switch
3588 * specific means. Returns %true if resource is available.
3589 */
3590 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
3591 {
3592 if (tb_switch_is_usb4(sw))
3593 return usb4_switch_query_dp_resource(sw, in);
3594 return tb_lc_dp_sink_query(sw, in);
3595 }
3596
3597 /**
3598 * tb_switch_alloc_dp_resource() - Allocate available DP resource
3599 * @sw: Switch whose DP resource is allocated
3600 * @in: DP IN port
3601 *
3602 * Allocates DP resource for DP tunneling. The resource must be
3603 * available for this to succeed (see tb_switch_query_dp_resource()).
3604 * Returns %0 in success and negative errno otherwise.
3605 */
3606 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3607 {
3608 int ret;
3609
3610 if (tb_switch_is_usb4(sw))
3611 ret = usb4_switch_alloc_dp_resource(sw, in);
3612 else
3613 ret = tb_lc_dp_sink_alloc(sw, in);
3614
3615 if (ret)
3616 tb_sw_warn(sw, "failed to allocate DP resource for port %d\n",
3617 in->port);
3618 else
3619 tb_sw_dbg(sw, "allocated DP resource for port %d\n", in->port);
3620
3621 return ret;
3622 }
3623
3624 /**
3625 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
3626 * @sw: Switch whose DP resource is de-allocated
3627 * @in: DP IN port
3628 *
3629 * De-allocates DP resource that was previously allocated for DP
3630 * tunneling.
3631 */
3632 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3633 {
3634 int ret;
3635
3636 if (tb_switch_is_usb4(sw))
3637 ret = usb4_switch_dealloc_dp_resource(sw, in);
3638 else
3639 ret = tb_lc_dp_sink_dealloc(sw, in);
3640
3641 if (ret)
3642 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
3643 in->port);
3644 else
3645 tb_sw_dbg(sw, "released DP resource for port %d\n", in->port);
3646 }
3647
3648 struct tb_sw_lookup {
3649 struct tb *tb;
3650 u8 link;
3651 u8 depth;
3652 const uuid_t *uuid;
3653 u64 route;
3654 };
3655
3656 static int tb_switch_match(struct device *dev, const void *data)
3657 {
3658 struct tb_switch *sw = tb_to_switch(dev);
3659 const struct tb_sw_lookup *lookup = data;
3660
3661 if (!sw)
3662 return 0;
3663 if (sw->tb != lookup->tb)
3664 return 0;
3665
3666 if (lookup->uuid)
3667 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
3668
3669 if (lookup->route) {
3670 return sw->config.route_lo == lower_32_bits(lookup->route) &&
3671 sw->config.route_hi == upper_32_bits(lookup->route);
3672 }
3673
3674 /* Root switch is matched only by depth */
3675 if (!lookup->depth)
3676 return !sw->depth;
3677
3678 return sw->link == lookup->link && sw->depth == lookup->depth;
3679 }
3680
3681 /**
3682 * tb_switch_find_by_link_depth() - Find switch by link and depth
3683 * @tb: Domain the switch belongs
3684 * @link: Link number the switch is connected
3685 * @depth: Depth of the switch in link
3686 *
3687 * Returned switch has reference count increased so the caller needs to
3688 * call tb_switch_put() when done with the switch.
3689 */
3690 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
3691 {
3692 struct tb_sw_lookup lookup;
3693 struct device *dev;
3694
3695 memset(&lookup, 0, sizeof(lookup));
3696 lookup.tb = tb;
3697 lookup.link = link;
3698 lookup.depth = depth;
3699
3700 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3701 if (dev)
3702 return tb_to_switch(dev);
3703
3704 return NULL;
3705 }
3706
3707 /**
3708 * tb_switch_find_by_uuid() - Find switch by UUID
3709 * @tb: Domain the switch belongs
3710 * @uuid: UUID to look for
3711 *
3712 * Returned switch has reference count increased so the caller needs to
3713 * call tb_switch_put() when done with the switch.
3714 */
3715 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
3716 {
3717 struct tb_sw_lookup lookup;
3718 struct device *dev;
3719
3720 memset(&lookup, 0, sizeof(lookup));
3721 lookup.tb = tb;
3722 lookup.uuid = uuid;
3723
3724 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3725 if (dev)
3726 return tb_to_switch(dev);
3727
3728 return NULL;
3729 }
3730
3731 /**
3732 * tb_switch_find_by_route() - Find switch by route string
3733 * @tb: Domain the switch belongs
3734 * @route: Route string to look for
3735 *
3736 * Returned switch has reference count increased so the caller needs to
3737 * call tb_switch_put() when done with the switch.
3738 */
3739 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3740 {
3741 struct tb_sw_lookup lookup;
3742 struct device *dev;
3743
3744 if (!route)
3745 return tb_switch_get(tb->root_switch);
3746
3747 memset(&lookup, 0, sizeof(lookup));
3748 lookup.tb = tb;
3749 lookup.route = route;
3750
3751 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3752 if (dev)
3753 return tb_to_switch(dev);
3754
3755 return NULL;
3756 }
3757
3758 /**
3759 * tb_switch_find_port() - return the first port of @type on @sw or NULL
3760 * @sw: Switch to find the port from
3761 * @type: Port type to look for
3762 */
3763 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3764 enum tb_port_type type)
3765 {
3766 struct tb_port *port;
3767
3768 tb_switch_for_each_port(sw, port) {
3769 if (port->config.type == type)
3770 return port;
3771 }
3772
3773 return NULL;
3774 }
3775
3776 /*
3777 * Can be used for read/write a specified PCIe bridge for any Thunderbolt 3
3778 * device. For now used only for Titan Ridge.
3779 */
3780 static int tb_switch_pcie_bridge_write(struct tb_switch *sw, unsigned int bridge,
3781 unsigned int pcie_offset, u32 value)
3782 {
3783 u32 offset, command, val;
3784 int ret;
3785
3786 if (sw->generation != 3)
3787 return -EOPNOTSUPP;
3788
3789 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_WR_DATA;
3790 ret = tb_sw_write(sw, &value, TB_CFG_SWITCH, offset, 1);
3791 if (ret)
3792 return ret;
3793
3794 command = pcie_offset & TB_PLUG_EVENTS_PCIE_CMD_DW_OFFSET_MASK;
3795 command |= BIT(bridge + TB_PLUG_EVENTS_PCIE_CMD_BR_SHIFT);
3796 command |= TB_PLUG_EVENTS_PCIE_CMD_RD_WR_MASK;
3797 command |= TB_PLUG_EVENTS_PCIE_CMD_COMMAND_VAL
3798 << TB_PLUG_EVENTS_PCIE_CMD_COMMAND_SHIFT;
3799 command |= TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK;
3800
3801 offset = sw->cap_plug_events + TB_PLUG_EVENTS_PCIE_CMD;
3802
3803 ret = tb_sw_write(sw, &command, TB_CFG_SWITCH, offset, 1);
3804 if (ret)
3805 return ret;
3806
3807 ret = tb_switch_wait_for_bit(sw, offset,
3808 TB_PLUG_EVENTS_PCIE_CMD_REQ_ACK_MASK, 0, 100);
3809 if (ret)
3810 return ret;
3811
3812 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
3813 if (ret)
3814 return ret;
3815
3816 if (val & TB_PLUG_EVENTS_PCIE_CMD_TIMEOUT_MASK)
3817 return -ETIMEDOUT;
3818
3819 return 0;
3820 }
3821
3822 /**
3823 * tb_switch_pcie_l1_enable() - Enable PCIe link to enter L1 state
3824 * @sw: Router to enable PCIe L1
3825 *
3826 * For Titan Ridge switch to enter CLx state, its PCIe bridges shall enable
3827 * entry to PCIe L1 state. Shall be called after the upstream PCIe tunnel
3828 * was configured. Due to Intel platforms limitation, shall be called only
3829 * for first hop switch.
3830 */
3831 int tb_switch_pcie_l1_enable(struct tb_switch *sw)
3832 {
3833 struct tb_switch *parent = tb_switch_parent(sw);
3834 int ret;
3835
3836 if (!tb_route(sw))
3837 return 0;
3838
3839 if (!tb_switch_is_titan_ridge(sw))
3840 return 0;
3841
3842 /* Enable PCIe L1 enable only for first hop router (depth = 1) */
3843 if (tb_route(parent))
3844 return 0;
3845
3846 /* Write to downstream PCIe bridge #5 aka Dn4 */
3847 ret = tb_switch_pcie_bridge_write(sw, 5, 0x143, 0x0c7806b1);
3848 if (ret)
3849 return ret;
3850
3851 /* Write to Upstream PCIe bridge #0 aka Up0 */
3852 return tb_switch_pcie_bridge_write(sw, 0, 0x143, 0x0c5806b1);
3853 }
3854
3855 /**
3856 * tb_switch_xhci_connect() - Connect internal xHCI
3857 * @sw: Router whose xHCI to connect
3858 *
3859 * Can be called to any router. For Alpine Ridge and Titan Ridge
3860 * performs special flows that bring the xHCI functional for any device
3861 * connected to the type-C port. Call only after PCIe tunnel has been
3862 * established. The function only does the connect if not done already
3863 * so can be called several times for the same router.
3864 */
3865 int tb_switch_xhci_connect(struct tb_switch *sw)
3866 {
3867 struct tb_port *port1, *port3;
3868 int ret;
3869
3870 if (sw->generation != 3)
3871 return 0;
3872
3873 port1 = &sw->ports[1];
3874 port3 = &sw->ports[3];
3875
3876 if (tb_switch_is_alpine_ridge(sw)) {
3877 bool usb_port1, usb_port3, xhci_port1, xhci_port3;
3878
3879 usb_port1 = tb_lc_is_usb_plugged(port1);
3880 usb_port3 = tb_lc_is_usb_plugged(port3);
3881 xhci_port1 = tb_lc_is_xhci_connected(port1);
3882 xhci_port3 = tb_lc_is_xhci_connected(port3);
3883
3884 /* Figure out correct USB port to connect */
3885 if (usb_port1 && !xhci_port1) {
3886 ret = tb_lc_xhci_connect(port1);
3887 if (ret)
3888 return ret;
3889 }
3890 if (usb_port3 && !xhci_port3)
3891 return tb_lc_xhci_connect(port3);
3892 } else if (tb_switch_is_titan_ridge(sw)) {
3893 ret = tb_lc_xhci_connect(port1);
3894 if (ret)
3895 return ret;
3896 return tb_lc_xhci_connect(port3);
3897 }
3898
3899 return 0;
3900 }
3901
3902 /**
3903 * tb_switch_xhci_disconnect() - Disconnect internal xHCI
3904 * @sw: Router whose xHCI to disconnect
3905 *
3906 * The opposite of tb_switch_xhci_connect(). Disconnects xHCI on both
3907 * ports.
3908 */
3909 void tb_switch_xhci_disconnect(struct tb_switch *sw)
3910 {
3911 if (sw->generation == 3) {
3912 struct tb_port *port1 = &sw->ports[1];
3913 struct tb_port *port3 = &sw->ports[3];
3914
3915 tb_lc_xhci_disconnect(port1);
3916 tb_port_dbg(port1, "disconnected xHCI\n");
3917 tb_lc_xhci_disconnect(port3);
3918 tb_port_dbg(port3, "disconnected xHCI\n");
3919 }
3920 }