]> git.ipfire.org Git - thirdparty/linux.git/blob - drivers/usb/host/xhci-ring.c
Merge tag 'usb-6.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[thirdparty/linux.git] / drivers / usb / host / xhci-ring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xHCI host controller driver
4 *
5 * Copyright (C) 2008 Intel Corp.
6 *
7 * Author: Sarah Sharp
8 * Some code borrowed from the Linux EHCI driver.
9 */
10
11 /*
12 * Ring initialization rules:
13 * 1. Each segment is initialized to zero, except for link TRBs.
14 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
15 * Consumer Cycle State (CCS), depending on ring function.
16 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
17 *
18 * Ring behavior rules:
19 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
20 * least one free TRB in the ring. This is useful if you want to turn that
21 * into a link TRB and expand the ring.
22 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
23 * link TRB, then load the pointer with the address in the link TRB. If the
24 * link TRB had its toggle bit set, you may need to update the ring cycle
25 * state (see cycle bit rules). You may have to do this multiple times
26 * until you reach a non-link TRB.
27 * 3. A ring is full if enqueue++ (for the definition of increment above)
28 * equals the dequeue pointer.
29 *
30 * Cycle bit rules:
31 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
32 * in a link TRB, it must toggle the ring cycle state.
33 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
34 * in a link TRB, it must toggle the ring cycle state.
35 *
36 * Producer rules:
37 * 1. Check if ring is full before you enqueue.
38 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
39 * Update enqueue pointer between each write (which may update the ring
40 * cycle state).
41 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
42 * and endpoint rings. If HC is the producer for the event ring,
43 * and it generates an interrupt according to interrupt modulation rules.
44 *
45 * Consumer rules:
46 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
47 * the TRB is owned by the consumer.
48 * 2. Update dequeue pointer (which may update the ring cycle state) and
49 * continue processing TRBs until you reach a TRB which is not owned by you.
50 * 3. Notify the producer. SW is the consumer for the event ring, and it
51 * updates event ring dequeue pointer. HC is the consumer for the command and
52 * endpoint rings; it generates events on the event ring for these.
53 */
54
55 #include <linux/scatterlist.h>
56 #include <linux/slab.h>
57 #include <linux/dma-mapping.h>
58 #include "xhci.h"
59 #include "xhci-trace.h"
60
61 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
62 u32 field1, u32 field2,
63 u32 field3, u32 field4, bool command_must_succeed);
64
65 /*
66 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
67 * address of the TRB.
68 */
69 dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
70 union xhci_trb *trb)
71 {
72 unsigned long segment_offset;
73
74 if (!seg || !trb || trb < seg->trbs)
75 return 0;
76 /* offset in TRBs */
77 segment_offset = trb - seg->trbs;
78 if (segment_offset >= TRBS_PER_SEGMENT)
79 return 0;
80 return seg->dma + (segment_offset * sizeof(*trb));
81 }
82
83 static bool trb_is_noop(union xhci_trb *trb)
84 {
85 return TRB_TYPE_NOOP_LE32(trb->generic.field[3]);
86 }
87
88 static bool trb_is_link(union xhci_trb *trb)
89 {
90 return TRB_TYPE_LINK_LE32(trb->link.control);
91 }
92
93 static bool last_trb_on_seg(struct xhci_segment *seg, union xhci_trb *trb)
94 {
95 return trb == &seg->trbs[TRBS_PER_SEGMENT - 1];
96 }
97
98 static bool last_trb_on_ring(struct xhci_ring *ring,
99 struct xhci_segment *seg, union xhci_trb *trb)
100 {
101 return last_trb_on_seg(seg, trb) && (seg->next == ring->first_seg);
102 }
103
104 static bool link_trb_toggles_cycle(union xhci_trb *trb)
105 {
106 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
107 }
108
109 static bool last_td_in_urb(struct xhci_td *td)
110 {
111 struct urb_priv *urb_priv = td->urb->hcpriv;
112
113 return urb_priv->num_tds_done == urb_priv->num_tds;
114 }
115
116 static bool unhandled_event_trb(struct xhci_ring *ring)
117 {
118 return ((le32_to_cpu(ring->dequeue->event_cmd.flags) & TRB_CYCLE) ==
119 ring->cycle_state);
120 }
121
122 static void inc_td_cnt(struct urb *urb)
123 {
124 struct urb_priv *urb_priv = urb->hcpriv;
125
126 urb_priv->num_tds_done++;
127 }
128
129 static void trb_to_noop(union xhci_trb *trb, u32 noop_type)
130 {
131 if (trb_is_link(trb)) {
132 /* unchain chained link TRBs */
133 trb->link.control &= cpu_to_le32(~TRB_CHAIN);
134 } else {
135 trb->generic.field[0] = 0;
136 trb->generic.field[1] = 0;
137 trb->generic.field[2] = 0;
138 /* Preserve only the cycle bit of this TRB */
139 trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
140 trb->generic.field[3] |= cpu_to_le32(TRB_TYPE(noop_type));
141 }
142 }
143
144 /* Updates trb to point to the next TRB in the ring, and updates seg if the next
145 * TRB is in a new segment. This does not skip over link TRBs, and it does not
146 * effect the ring dequeue or enqueue pointers.
147 */
148 static void next_trb(struct xhci_hcd *xhci,
149 struct xhci_ring *ring,
150 struct xhci_segment **seg,
151 union xhci_trb **trb)
152 {
153 if (trb_is_link(*trb) || last_trb_on_seg(*seg, *trb)) {
154 *seg = (*seg)->next;
155 *trb = ((*seg)->trbs);
156 } else {
157 (*trb)++;
158 }
159 }
160
161 /*
162 * See Cycle bit rules. SW is the consumer for the event ring only.
163 */
164 void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
165 {
166 unsigned int link_trb_count = 0;
167
168 /* event ring doesn't have link trbs, check for last trb */
169 if (ring->type == TYPE_EVENT) {
170 if (!last_trb_on_seg(ring->deq_seg, ring->dequeue)) {
171 ring->dequeue++;
172 goto out;
173 }
174 if (last_trb_on_ring(ring, ring->deq_seg, ring->dequeue))
175 ring->cycle_state ^= 1;
176 ring->deq_seg = ring->deq_seg->next;
177 ring->dequeue = ring->deq_seg->trbs;
178 goto out;
179 }
180
181 /* All other rings have link trbs */
182 if (!trb_is_link(ring->dequeue)) {
183 if (last_trb_on_seg(ring->deq_seg, ring->dequeue))
184 xhci_warn(xhci, "Missing link TRB at end of segment\n");
185 else
186 ring->dequeue++;
187 }
188
189 while (trb_is_link(ring->dequeue)) {
190 ring->deq_seg = ring->deq_seg->next;
191 ring->dequeue = ring->deq_seg->trbs;
192
193 if (link_trb_count++ > ring->num_segs) {
194 xhci_warn(xhci, "Ring is an endless link TRB loop\n");
195 break;
196 }
197 }
198 out:
199 trace_xhci_inc_deq(ring);
200
201 return;
202 }
203
204 /*
205 * See Cycle bit rules. SW is the consumer for the event ring only.
206 *
207 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
208 * chain bit is set), then set the chain bit in all the following link TRBs.
209 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
210 * have their chain bit cleared (so that each Link TRB is a separate TD).
211 *
212 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
213 * set, but other sections talk about dealing with the chain bit set. This was
214 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
215 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
216 *
217 * @more_trbs_coming: Will you enqueue more TRBs before calling
218 * prepare_transfer()?
219 */
220 static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
221 bool more_trbs_coming)
222 {
223 u32 chain;
224 union xhci_trb *next;
225 unsigned int link_trb_count = 0;
226
227 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
228
229 if (last_trb_on_seg(ring->enq_seg, ring->enqueue)) {
230 xhci_err(xhci, "Tried to move enqueue past ring segment\n");
231 return;
232 }
233
234 next = ++(ring->enqueue);
235
236 /* Update the dequeue pointer further if that was a link TRB */
237 while (trb_is_link(next)) {
238
239 /*
240 * If the caller doesn't plan on enqueueing more TDs before
241 * ringing the doorbell, then we don't want to give the link TRB
242 * to the hardware just yet. We'll give the link TRB back in
243 * prepare_ring() just before we enqueue the TD at the top of
244 * the ring.
245 */
246 if (!chain && !more_trbs_coming)
247 break;
248
249 /* If we're not dealing with 0.95 hardware or isoc rings on
250 * AMD 0.96 host, carry over the chain bit of the previous TRB
251 * (which may mean the chain bit is cleared).
252 */
253 if (!(ring->type == TYPE_ISOC &&
254 (xhci->quirks & XHCI_AMD_0x96_HOST)) &&
255 !xhci_link_trb_quirk(xhci)) {
256 next->link.control &= cpu_to_le32(~TRB_CHAIN);
257 next->link.control |= cpu_to_le32(chain);
258 }
259 /* Give this link TRB to the hardware */
260 wmb();
261 next->link.control ^= cpu_to_le32(TRB_CYCLE);
262
263 /* Toggle the cycle bit after the last ring segment. */
264 if (link_trb_toggles_cycle(next))
265 ring->cycle_state ^= 1;
266
267 ring->enq_seg = ring->enq_seg->next;
268 ring->enqueue = ring->enq_seg->trbs;
269 next = ring->enqueue;
270
271 if (link_trb_count++ > ring->num_segs) {
272 xhci_warn(xhci, "%s: Ring link TRB loop\n", __func__);
273 break;
274 }
275 }
276
277 trace_xhci_inc_enq(ring);
278 }
279
280 /*
281 * Return number of free normal TRBs from enqueue to dequeue pointer on ring.
282 * Not counting an assumed link TRB at end of each TRBS_PER_SEGMENT sized segment.
283 * Only for transfer and command rings where driver is the producer, not for
284 * event rings.
285 */
286 static unsigned int xhci_num_trbs_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
287 {
288 struct xhci_segment *enq_seg = ring->enq_seg;
289 union xhci_trb *enq = ring->enqueue;
290 union xhci_trb *last_on_seg;
291 unsigned int free = 0;
292 int i = 0;
293
294 /* Ring might be empty even if enq != deq if enq is left on a link trb */
295 if (trb_is_link(enq)) {
296 enq_seg = enq_seg->next;
297 enq = enq_seg->trbs;
298 }
299
300 /* Empty ring, common case, don't walk the segments */
301 if (enq == ring->dequeue)
302 return ring->num_segs * (TRBS_PER_SEGMENT - 1);
303
304 do {
305 if (ring->deq_seg == enq_seg && ring->dequeue >= enq)
306 return free + (ring->dequeue - enq);
307 last_on_seg = &enq_seg->trbs[TRBS_PER_SEGMENT - 1];
308 free += last_on_seg - enq;
309 enq_seg = enq_seg->next;
310 enq = enq_seg->trbs;
311 } while (i++ <= ring->num_segs);
312
313 return free;
314 }
315
316 /*
317 * Check to see if there's room to enqueue num_trbs on the ring and make sure
318 * enqueue pointer will not advance into dequeue segment. See rules above.
319 * return number of new segments needed to ensure this.
320 */
321
322 static unsigned int xhci_ring_expansion_needed(struct xhci_hcd *xhci, struct xhci_ring *ring,
323 unsigned int num_trbs)
324 {
325 struct xhci_segment *seg;
326 int trbs_past_seg;
327 int enq_used;
328 int new_segs;
329
330 enq_used = ring->enqueue - ring->enq_seg->trbs;
331
332 /* how many trbs will be queued past the enqueue segment? */
333 trbs_past_seg = enq_used + num_trbs - (TRBS_PER_SEGMENT - 1);
334
335 /*
336 * Consider expanding the ring already if num_trbs fills the current
337 * segment (i.e. trbs_past_seg == 0), not only when num_trbs goes into
338 * the next segment. Avoids confusing full ring with special empty ring
339 * case below
340 */
341 if (trbs_past_seg < 0)
342 return 0;
343
344 /* Empty ring special case, enqueue stuck on link trb while dequeue advanced */
345 if (trb_is_link(ring->enqueue) && ring->enq_seg->next->trbs == ring->dequeue)
346 return 0;
347
348 new_segs = 1 + (trbs_past_seg / (TRBS_PER_SEGMENT - 1));
349 seg = ring->enq_seg;
350
351 while (new_segs > 0) {
352 seg = seg->next;
353 if (seg == ring->deq_seg) {
354 xhci_dbg(xhci, "Ring expansion by %d segments needed\n",
355 new_segs);
356 xhci_dbg(xhci, "Adding %d trbs moves enq %d trbs into deq seg\n",
357 num_trbs, trbs_past_seg % TRBS_PER_SEGMENT);
358 return new_segs;
359 }
360 new_segs--;
361 }
362
363 return 0;
364 }
365
366 /* Ring the host controller doorbell after placing a command on the ring */
367 void xhci_ring_cmd_db(struct xhci_hcd *xhci)
368 {
369 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
370 return;
371
372 xhci_dbg(xhci, "// Ding dong!\n");
373
374 trace_xhci_ring_host_doorbell(0, DB_VALUE_HOST);
375
376 writel(DB_VALUE_HOST, &xhci->dba->doorbell[0]);
377 /* Flush PCI posted writes */
378 readl(&xhci->dba->doorbell[0]);
379 }
380
381 static bool xhci_mod_cmd_timer(struct xhci_hcd *xhci)
382 {
383 return mod_delayed_work(system_wq, &xhci->cmd_timer,
384 msecs_to_jiffies(xhci->current_cmd->timeout_ms));
385 }
386
387 static struct xhci_command *xhci_next_queued_cmd(struct xhci_hcd *xhci)
388 {
389 return list_first_entry_or_null(&xhci->cmd_list, struct xhci_command,
390 cmd_list);
391 }
392
393 /*
394 * Turn all commands on command ring with status set to "aborted" to no-op trbs.
395 * If there are other commands waiting then restart the ring and kick the timer.
396 * This must be called with command ring stopped and xhci->lock held.
397 */
398 static void xhci_handle_stopped_cmd_ring(struct xhci_hcd *xhci,
399 struct xhci_command *cur_cmd)
400 {
401 struct xhci_command *i_cmd;
402
403 /* Turn all aborted commands in list to no-ops, then restart */
404 list_for_each_entry(i_cmd, &xhci->cmd_list, cmd_list) {
405
406 if (i_cmd->status != COMP_COMMAND_ABORTED)
407 continue;
408
409 i_cmd->status = COMP_COMMAND_RING_STOPPED;
410
411 xhci_dbg(xhci, "Turn aborted command %p to no-op\n",
412 i_cmd->command_trb);
413
414 trb_to_noop(i_cmd->command_trb, TRB_CMD_NOOP);
415
416 /*
417 * caller waiting for completion is called when command
418 * completion event is received for these no-op commands
419 */
420 }
421
422 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
423
424 /* ring command ring doorbell to restart the command ring */
425 if ((xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue) &&
426 !(xhci->xhc_state & XHCI_STATE_DYING)) {
427 xhci->current_cmd = cur_cmd;
428 xhci_mod_cmd_timer(xhci);
429 xhci_ring_cmd_db(xhci);
430 }
431 }
432
433 /* Must be called with xhci->lock held, releases and aquires lock back */
434 static int xhci_abort_cmd_ring(struct xhci_hcd *xhci, unsigned long flags)
435 {
436 struct xhci_segment *new_seg = xhci->cmd_ring->deq_seg;
437 union xhci_trb *new_deq = xhci->cmd_ring->dequeue;
438 u64 crcr;
439 int ret;
440
441 xhci_dbg(xhci, "Abort command ring\n");
442
443 reinit_completion(&xhci->cmd_ring_stop_completion);
444
445 /*
446 * The control bits like command stop, abort are located in lower
447 * dword of the command ring control register.
448 * Some controllers require all 64 bits to be written to abort the ring.
449 * Make sure the upper dword is valid, pointing to the next command,
450 * avoiding corrupting the command ring pointer in case the command ring
451 * is stopped by the time the upper dword is written.
452 */
453 next_trb(xhci, NULL, &new_seg, &new_deq);
454 if (trb_is_link(new_deq))
455 next_trb(xhci, NULL, &new_seg, &new_deq);
456
457 crcr = xhci_trb_virt_to_dma(new_seg, new_deq);
458 xhci_write_64(xhci, crcr | CMD_RING_ABORT, &xhci->op_regs->cmd_ring);
459
460 /* Section 4.6.1.2 of xHCI 1.0 spec says software should also time the
461 * completion of the Command Abort operation. If CRR is not negated in 5
462 * seconds then driver handles it as if host died (-ENODEV).
463 * In the future we should distinguish between -ENODEV and -ETIMEDOUT
464 * and try to recover a -ETIMEDOUT with a host controller reset.
465 */
466 ret = xhci_handshake_check_state(xhci, &xhci->op_regs->cmd_ring,
467 CMD_RING_RUNNING, 0, 5 * 1000 * 1000,
468 XHCI_STATE_REMOVING);
469 if (ret < 0) {
470 xhci_err(xhci, "Abort failed to stop command ring: %d\n", ret);
471 xhci_halt(xhci);
472 xhci_hc_died(xhci);
473 return ret;
474 }
475 /*
476 * Writing the CMD_RING_ABORT bit should cause a cmd completion event,
477 * however on some host hw the CMD_RING_RUNNING bit is correctly cleared
478 * but the completion event in never sent. Wait 2 secs (arbitrary
479 * number) to handle those cases after negation of CMD_RING_RUNNING.
480 */
481 spin_unlock_irqrestore(&xhci->lock, flags);
482 ret = wait_for_completion_timeout(&xhci->cmd_ring_stop_completion,
483 msecs_to_jiffies(2000));
484 spin_lock_irqsave(&xhci->lock, flags);
485 if (!ret) {
486 xhci_dbg(xhci, "No stop event for abort, ring start fail?\n");
487 xhci_cleanup_command_queue(xhci);
488 } else {
489 xhci_handle_stopped_cmd_ring(xhci, xhci_next_queued_cmd(xhci));
490 }
491 return 0;
492 }
493
494 void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
495 unsigned int slot_id,
496 unsigned int ep_index,
497 unsigned int stream_id)
498 {
499 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
500 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
501 unsigned int ep_state = ep->ep_state;
502
503 /* Don't ring the doorbell for this endpoint if there are pending
504 * cancellations because we don't want to interrupt processing.
505 * We don't want to restart any stream rings if there's a set dequeue
506 * pointer command pending because the device can choose to start any
507 * stream once the endpoint is on the HW schedule.
508 */
509 if ((ep_state & EP_STOP_CMD_PENDING) || (ep_state & SET_DEQ_PENDING) ||
510 (ep_state & EP_HALTED) || (ep_state & EP_CLEARING_TT))
511 return;
512
513 trace_xhci_ring_ep_doorbell(slot_id, DB_VALUE(ep_index, stream_id));
514
515 writel(DB_VALUE(ep_index, stream_id), db_addr);
516 /* flush the write */
517 readl(db_addr);
518 }
519
520 /* Ring the doorbell for any rings with pending URBs */
521 static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
522 unsigned int slot_id,
523 unsigned int ep_index)
524 {
525 unsigned int stream_id;
526 struct xhci_virt_ep *ep;
527
528 ep = &xhci->devs[slot_id]->eps[ep_index];
529
530 /* A ring has pending URBs if its TD list is not empty */
531 if (!(ep->ep_state & EP_HAS_STREAMS)) {
532 if (ep->ring && !(list_empty(&ep->ring->td_list)))
533 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
534 return;
535 }
536
537 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
538 stream_id++) {
539 struct xhci_stream_info *stream_info = ep->stream_info;
540 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
541 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
542 stream_id);
543 }
544 }
545
546 void xhci_ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
547 unsigned int slot_id,
548 unsigned int ep_index)
549 {
550 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
551 }
552
553 static struct xhci_virt_ep *xhci_get_virt_ep(struct xhci_hcd *xhci,
554 unsigned int slot_id,
555 unsigned int ep_index)
556 {
557 if (slot_id == 0 || slot_id >= MAX_HC_SLOTS) {
558 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id);
559 return NULL;
560 }
561 if (ep_index >= EP_CTX_PER_DEV) {
562 xhci_warn(xhci, "Invalid endpoint index %u\n", ep_index);
563 return NULL;
564 }
565 if (!xhci->devs[slot_id]) {
566 xhci_warn(xhci, "No xhci virt device for slot_id %u\n", slot_id);
567 return NULL;
568 }
569
570 return &xhci->devs[slot_id]->eps[ep_index];
571 }
572
573 static struct xhci_ring *xhci_virt_ep_to_ring(struct xhci_hcd *xhci,
574 struct xhci_virt_ep *ep,
575 unsigned int stream_id)
576 {
577 /* common case, no streams */
578 if (!(ep->ep_state & EP_HAS_STREAMS))
579 return ep->ring;
580
581 if (!ep->stream_info)
582 return NULL;
583
584 if (stream_id == 0 || stream_id >= ep->stream_info->num_streams) {
585 xhci_warn(xhci, "Invalid stream_id %u request for slot_id %u ep_index %u\n",
586 stream_id, ep->vdev->slot_id, ep->ep_index);
587 return NULL;
588 }
589
590 return ep->stream_info->stream_rings[stream_id];
591 }
592
593 /* Get the right ring for the given slot_id, ep_index and stream_id.
594 * If the endpoint supports streams, boundary check the URB's stream ID.
595 * If the endpoint doesn't support streams, return the singular endpoint ring.
596 */
597 struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
598 unsigned int slot_id, unsigned int ep_index,
599 unsigned int stream_id)
600 {
601 struct xhci_virt_ep *ep;
602
603 ep = xhci_get_virt_ep(xhci, slot_id, ep_index);
604 if (!ep)
605 return NULL;
606
607 return xhci_virt_ep_to_ring(xhci, ep, stream_id);
608 }
609
610
611 /*
612 * Get the hw dequeue pointer xHC stopped on, either directly from the
613 * endpoint context, or if streams are in use from the stream context.
614 * The returned hw_dequeue contains the lowest four bits with cycle state
615 * and possbile stream context type.
616 */
617 static u64 xhci_get_hw_deq(struct xhci_hcd *xhci, struct xhci_virt_device *vdev,
618 unsigned int ep_index, unsigned int stream_id)
619 {
620 struct xhci_ep_ctx *ep_ctx;
621 struct xhci_stream_ctx *st_ctx;
622 struct xhci_virt_ep *ep;
623
624 ep = &vdev->eps[ep_index];
625
626 if (ep->ep_state & EP_HAS_STREAMS) {
627 st_ctx = &ep->stream_info->stream_ctx_array[stream_id];
628 return le64_to_cpu(st_ctx->stream_ring);
629 }
630 ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
631 return le64_to_cpu(ep_ctx->deq);
632 }
633
634 static int xhci_move_dequeue_past_td(struct xhci_hcd *xhci,
635 unsigned int slot_id, unsigned int ep_index,
636 unsigned int stream_id, struct xhci_td *td)
637 {
638 struct xhci_virt_device *dev = xhci->devs[slot_id];
639 struct xhci_virt_ep *ep = &dev->eps[ep_index];
640 struct xhci_ring *ep_ring;
641 struct xhci_command *cmd;
642 struct xhci_segment *new_seg;
643 union xhci_trb *new_deq;
644 int new_cycle;
645 dma_addr_t addr;
646 u64 hw_dequeue;
647 bool cycle_found = false;
648 bool td_last_trb_found = false;
649 u32 trb_sct = 0;
650 int ret;
651
652 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
653 ep_index, stream_id);
654 if (!ep_ring) {
655 xhci_warn(xhci, "WARN can't find new dequeue, invalid stream ID %u\n",
656 stream_id);
657 return -ENODEV;
658 }
659 /*
660 * A cancelled TD can complete with a stall if HW cached the trb.
661 * In this case driver can't find td, but if the ring is empty we
662 * can move the dequeue pointer to the current enqueue position.
663 * We shouldn't hit this anymore as cached cancelled TRBs are given back
664 * after clearing the cache, but be on the safe side and keep it anyway
665 */
666 if (!td) {
667 if (list_empty(&ep_ring->td_list)) {
668 new_seg = ep_ring->enq_seg;
669 new_deq = ep_ring->enqueue;
670 new_cycle = ep_ring->cycle_state;
671 xhci_dbg(xhci, "ep ring empty, Set new dequeue = enqueue");
672 goto deq_found;
673 } else {
674 xhci_warn(xhci, "Can't find new dequeue state, missing td\n");
675 return -EINVAL;
676 }
677 }
678
679 hw_dequeue = xhci_get_hw_deq(xhci, dev, ep_index, stream_id);
680 new_seg = ep_ring->deq_seg;
681 new_deq = ep_ring->dequeue;
682 new_cycle = hw_dequeue & 0x1;
683
684 /*
685 * We want to find the pointer, segment and cycle state of the new trb
686 * (the one after current TD's last_trb). We know the cycle state at
687 * hw_dequeue, so walk the ring until both hw_dequeue and last_trb are
688 * found.
689 */
690 do {
691 if (!cycle_found && xhci_trb_virt_to_dma(new_seg, new_deq)
692 == (dma_addr_t)(hw_dequeue & ~0xf)) {
693 cycle_found = true;
694 if (td_last_trb_found)
695 break;
696 }
697 if (new_deq == td->last_trb)
698 td_last_trb_found = true;
699
700 if (cycle_found && trb_is_link(new_deq) &&
701 link_trb_toggles_cycle(new_deq))
702 new_cycle ^= 0x1;
703
704 next_trb(xhci, ep_ring, &new_seg, &new_deq);
705
706 /* Search wrapped around, bail out */
707 if (new_deq == ep->ring->dequeue) {
708 xhci_err(xhci, "Error: Failed finding new dequeue state\n");
709 return -EINVAL;
710 }
711
712 } while (!cycle_found || !td_last_trb_found);
713
714 deq_found:
715
716 /* Don't update the ring cycle state for the producer (us). */
717 addr = xhci_trb_virt_to_dma(new_seg, new_deq);
718 if (addr == 0) {
719 xhci_warn(xhci, "Can't find dma of new dequeue ptr\n");
720 xhci_warn(xhci, "deq seg = %p, deq ptr = %p\n", new_seg, new_deq);
721 return -EINVAL;
722 }
723
724 if ((ep->ep_state & SET_DEQ_PENDING)) {
725 xhci_warn(xhci, "Set TR Deq already pending, don't submit for 0x%pad\n",
726 &addr);
727 return -EBUSY;
728 }
729
730 /* This function gets called from contexts where it cannot sleep */
731 cmd = xhci_alloc_command(xhci, false, GFP_ATOMIC);
732 if (!cmd) {
733 xhci_warn(xhci, "Can't alloc Set TR Deq cmd 0x%pad\n", &addr);
734 return -ENOMEM;
735 }
736
737 if (stream_id)
738 trb_sct = SCT_FOR_TRB(SCT_PRI_TR);
739 ret = queue_command(xhci, cmd,
740 lower_32_bits(addr) | trb_sct | new_cycle,
741 upper_32_bits(addr),
742 STREAM_ID_FOR_TRB(stream_id), SLOT_ID_FOR_TRB(slot_id) |
743 EP_ID_FOR_TRB(ep_index) | TRB_TYPE(TRB_SET_DEQ), false);
744 if (ret < 0) {
745 xhci_free_command(xhci, cmd);
746 return ret;
747 }
748 ep->queued_deq_seg = new_seg;
749 ep->queued_deq_ptr = new_deq;
750
751 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
752 "Set TR Deq ptr 0x%llx, cycle %u\n", addr, new_cycle);
753
754 /* Stop the TD queueing code from ringing the doorbell until
755 * this command completes. The HC won't set the dequeue pointer
756 * if the ring is running, and ringing the doorbell starts the
757 * ring running.
758 */
759 ep->ep_state |= SET_DEQ_PENDING;
760 xhci_ring_cmd_db(xhci);
761 return 0;
762 }
763
764 /* flip_cycle means flip the cycle bit of all but the first and last TRB.
765 * (The last TRB actually points to the ring enqueue pointer, which is not part
766 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
767 */
768 static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
769 struct xhci_td *td, bool flip_cycle)
770 {
771 struct xhci_segment *seg = td->start_seg;
772 union xhci_trb *trb = td->first_trb;
773
774 while (1) {
775 trb_to_noop(trb, TRB_TR_NOOP);
776
777 /* flip cycle if asked to */
778 if (flip_cycle && trb != td->first_trb && trb != td->last_trb)
779 trb->generic.field[3] ^= cpu_to_le32(TRB_CYCLE);
780
781 if (trb == td->last_trb)
782 break;
783
784 next_trb(xhci, ep_ring, &seg, &trb);
785 }
786 }
787
788 /*
789 * Must be called with xhci->lock held in interrupt context,
790 * releases and re-acquires xhci->lock
791 */
792 static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
793 struct xhci_td *cur_td, int status)
794 {
795 struct urb *urb = cur_td->urb;
796 struct urb_priv *urb_priv = urb->hcpriv;
797 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
798
799 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
800 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
801 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
802 if (xhci->quirks & XHCI_AMD_PLL_FIX)
803 usb_amd_quirk_pll_enable();
804 }
805 }
806 xhci_urb_free_priv(urb_priv);
807 usb_hcd_unlink_urb_from_ep(hcd, urb);
808 trace_xhci_urb_giveback(urb);
809 usb_hcd_giveback_urb(hcd, urb, status);
810 }
811
812 static void xhci_unmap_td_bounce_buffer(struct xhci_hcd *xhci,
813 struct xhci_ring *ring, struct xhci_td *td)
814 {
815 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
816 struct xhci_segment *seg = td->bounce_seg;
817 struct urb *urb = td->urb;
818 size_t len;
819
820 if (!ring || !seg || !urb)
821 return;
822
823 if (usb_urb_dir_out(urb)) {
824 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
825 DMA_TO_DEVICE);
826 return;
827 }
828
829 dma_unmap_single(dev, seg->bounce_dma, ring->bounce_buf_len,
830 DMA_FROM_DEVICE);
831 /* for in tranfers we need to copy the data from bounce to sg */
832 if (urb->num_sgs) {
833 len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs, seg->bounce_buf,
834 seg->bounce_len, seg->bounce_offs);
835 if (len != seg->bounce_len)
836 xhci_warn(xhci, "WARN Wrong bounce buffer read length: %zu != %d\n",
837 len, seg->bounce_len);
838 } else {
839 memcpy(urb->transfer_buffer + seg->bounce_offs, seg->bounce_buf,
840 seg->bounce_len);
841 }
842 seg->bounce_len = 0;
843 seg->bounce_offs = 0;
844 }
845
846 static int xhci_td_cleanup(struct xhci_hcd *xhci, struct xhci_td *td,
847 struct xhci_ring *ep_ring, int status)
848 {
849 struct urb *urb = NULL;
850
851 /* Clean up the endpoint's TD list */
852 urb = td->urb;
853
854 /* if a bounce buffer was used to align this td then unmap it */
855 xhci_unmap_td_bounce_buffer(xhci, ep_ring, td);
856
857 /* Do one last check of the actual transfer length.
858 * If the host controller said we transferred more data than the buffer
859 * length, urb->actual_length will be a very big number (since it's
860 * unsigned). Play it safe and say we didn't transfer anything.
861 */
862 if (urb->actual_length > urb->transfer_buffer_length) {
863 xhci_warn(xhci, "URB req %u and actual %u transfer length mismatch\n",
864 urb->transfer_buffer_length, urb->actual_length);
865 urb->actual_length = 0;
866 status = 0;
867 }
868 /* TD might be removed from td_list if we are giving back a cancelled URB */
869 if (!list_empty(&td->td_list))
870 list_del_init(&td->td_list);
871 /* Giving back a cancelled URB, or if a slated TD completed anyway */
872 if (!list_empty(&td->cancelled_td_list))
873 list_del_init(&td->cancelled_td_list);
874
875 inc_td_cnt(urb);
876 /* Giveback the urb when all the tds are completed */
877 if (last_td_in_urb(td)) {
878 if ((urb->actual_length != urb->transfer_buffer_length &&
879 (urb->transfer_flags & URB_SHORT_NOT_OK)) ||
880 (status != 0 && !usb_endpoint_xfer_isoc(&urb->ep->desc)))
881 xhci_dbg(xhci, "Giveback URB %p, len = %d, expected = %d, status = %d\n",
882 urb, urb->actual_length,
883 urb->transfer_buffer_length, status);
884
885 /* set isoc urb status to 0 just as EHCI, UHCI, and OHCI */
886 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
887 status = 0;
888 xhci_giveback_urb_in_irq(xhci, td, status);
889 }
890
891 return 0;
892 }
893
894
895 /* Complete the cancelled URBs we unlinked from td_list. */
896 static void xhci_giveback_invalidated_tds(struct xhci_virt_ep *ep)
897 {
898 struct xhci_ring *ring;
899 struct xhci_td *td, *tmp_td;
900
901 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list,
902 cancelled_td_list) {
903
904 ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb);
905
906 if (td->cancel_status == TD_CLEARED) {
907 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n",
908 __func__, td->urb);
909 xhci_td_cleanup(ep->xhci, td, ring, td->status);
910 } else {
911 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n",
912 __func__, td->urb, td->cancel_status);
913 }
914 if (ep->xhci->xhc_state & XHCI_STATE_DYING)
915 return;
916 }
917 }
918
919 static int xhci_reset_halted_ep(struct xhci_hcd *xhci, unsigned int slot_id,
920 unsigned int ep_index, enum xhci_ep_reset_type reset_type)
921 {
922 struct xhci_command *command;
923 int ret = 0;
924
925 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
926 if (!command) {
927 ret = -ENOMEM;
928 goto done;
929 }
930
931 xhci_dbg(xhci, "%s-reset ep %u, slot %u\n",
932 (reset_type == EP_HARD_RESET) ? "Hard" : "Soft",
933 ep_index, slot_id);
934
935 ret = xhci_queue_reset_ep(xhci, command, slot_id, ep_index, reset_type);
936 done:
937 if (ret)
938 xhci_err(xhci, "ERROR queuing reset endpoint for slot %d ep_index %d, %d\n",
939 slot_id, ep_index, ret);
940 return ret;
941 }
942
943 static int xhci_handle_halted_endpoint(struct xhci_hcd *xhci,
944 struct xhci_virt_ep *ep,
945 struct xhci_td *td,
946 enum xhci_ep_reset_type reset_type)
947 {
948 unsigned int slot_id = ep->vdev->slot_id;
949 int err;
950
951 /*
952 * Avoid resetting endpoint if link is inactive. Can cause host hang.
953 * Device will be reset soon to recover the link so don't do anything
954 */
955 if (ep->vdev->flags & VDEV_PORT_ERROR)
956 return -ENODEV;
957
958 /* add td to cancelled list and let reset ep handler take care of it */
959 if (reset_type == EP_HARD_RESET) {
960 ep->ep_state |= EP_HARD_CLEAR_TOGGLE;
961 if (td && list_empty(&td->cancelled_td_list)) {
962 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
963 td->cancel_status = TD_HALTED;
964 }
965 }
966
967 if (ep->ep_state & EP_HALTED) {
968 xhci_dbg(xhci, "Reset ep command for ep_index %d already pending\n",
969 ep->ep_index);
970 return 0;
971 }
972
973 err = xhci_reset_halted_ep(xhci, slot_id, ep->ep_index, reset_type);
974 if (err)
975 return err;
976
977 ep->ep_state |= EP_HALTED;
978
979 xhci_ring_cmd_db(xhci);
980
981 return 0;
982 }
983
984 /*
985 * Fix up the ep ring first, so HW stops executing cancelled TDs.
986 * We have the xHCI lock, so nothing can modify this list until we drop it.
987 * We're also in the event handler, so we can't get re-interrupted if another
988 * Stop Endpoint command completes.
989 *
990 * only call this when ring is not in a running state
991 */
992
993 static int xhci_invalidate_cancelled_tds(struct xhci_virt_ep *ep)
994 {
995 struct xhci_hcd *xhci;
996 struct xhci_td *td = NULL;
997 struct xhci_td *tmp_td = NULL;
998 struct xhci_td *cached_td = NULL;
999 struct xhci_ring *ring;
1000 u64 hw_deq;
1001 unsigned int slot_id = ep->vdev->slot_id;
1002 int err;
1003
1004 xhci = ep->xhci;
1005
1006 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) {
1007 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1008 "Removing canceled TD starting at 0x%llx (dma) in stream %u URB %p",
1009 (unsigned long long)xhci_trb_virt_to_dma(
1010 td->start_seg, td->first_trb),
1011 td->urb->stream_id, td->urb);
1012 list_del_init(&td->td_list);
1013 ring = xhci_urb_to_transfer_ring(xhci, td->urb);
1014 if (!ring) {
1015 xhci_warn(xhci, "WARN Cancelled URB %p has invalid stream ID %u.\n",
1016 td->urb, td->urb->stream_id);
1017 continue;
1018 }
1019 /*
1020 * If a ring stopped on the TD we need to cancel then we have to
1021 * move the xHC endpoint ring dequeue pointer past this TD.
1022 * Rings halted due to STALL may show hw_deq is past the stalled
1023 * TD, but still require a set TR Deq command to flush xHC cache.
1024 */
1025 hw_deq = xhci_get_hw_deq(xhci, ep->vdev, ep->ep_index,
1026 td->urb->stream_id);
1027 hw_deq &= ~0xf;
1028
1029 if (td->cancel_status == TD_HALTED ||
1030 trb_in_td(xhci, td->start_seg, td->first_trb, td->last_trb, hw_deq, false)) {
1031 switch (td->cancel_status) {
1032 case TD_CLEARED: /* TD is already no-op */
1033 case TD_CLEARING_CACHE: /* set TR deq command already queued */
1034 break;
1035 case TD_DIRTY: /* TD is cached, clear it */
1036 case TD_HALTED:
1037 td->cancel_status = TD_CLEARING_CACHE;
1038 if (cached_td)
1039 /* FIXME stream case, several stopped rings */
1040 xhci_dbg(xhci,
1041 "Move dq past stream %u URB %p instead of stream %u URB %p\n",
1042 td->urb->stream_id, td->urb,
1043 cached_td->urb->stream_id, cached_td->urb);
1044 cached_td = td;
1045 break;
1046 }
1047 } else {
1048 td_to_noop(xhci, ring, td, false);
1049 td->cancel_status = TD_CLEARED;
1050 }
1051 }
1052
1053 /* If there's no need to move the dequeue pointer then we're done */
1054 if (!cached_td)
1055 return 0;
1056
1057 err = xhci_move_dequeue_past_td(xhci, slot_id, ep->ep_index,
1058 cached_td->urb->stream_id,
1059 cached_td);
1060 if (err) {
1061 /* Failed to move past cached td, just set cached TDs to no-op */
1062 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list, cancelled_td_list) {
1063 if (td->cancel_status != TD_CLEARING_CACHE)
1064 continue;
1065 xhci_dbg(xhci, "Failed to clear cancelled cached URB %p, mark clear anyway\n",
1066 td->urb);
1067 td_to_noop(xhci, ring, td, false);
1068 td->cancel_status = TD_CLEARED;
1069 }
1070 }
1071 return 0;
1072 }
1073
1074 /*
1075 * Returns the TD the endpoint ring halted on.
1076 * Only call for non-running rings without streams.
1077 */
1078 static struct xhci_td *find_halted_td(struct xhci_virt_ep *ep)
1079 {
1080 struct xhci_td *td;
1081 u64 hw_deq;
1082
1083 if (!list_empty(&ep->ring->td_list)) { /* Not streams compatible */
1084 hw_deq = xhci_get_hw_deq(ep->xhci, ep->vdev, ep->ep_index, 0);
1085 hw_deq &= ~0xf;
1086 td = list_first_entry(&ep->ring->td_list, struct xhci_td, td_list);
1087 if (trb_in_td(ep->xhci, td->start_seg, td->first_trb,
1088 td->last_trb, hw_deq, false))
1089 return td;
1090 }
1091 return NULL;
1092 }
1093
1094 /*
1095 * When we get a command completion for a Stop Endpoint Command, we need to
1096 * unlink any cancelled TDs from the ring. There are two ways to do that:
1097 *
1098 * 1. If the HW was in the middle of processing the TD that needs to be
1099 * cancelled, then we must move the ring's dequeue pointer past the last TRB
1100 * in the TD with a Set Dequeue Pointer Command.
1101 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
1102 * bit cleared) so that the HW will skip over them.
1103 */
1104 static void xhci_handle_cmd_stop_ep(struct xhci_hcd *xhci, int slot_id,
1105 union xhci_trb *trb, u32 comp_code)
1106 {
1107 unsigned int ep_index;
1108 struct xhci_virt_ep *ep;
1109 struct xhci_ep_ctx *ep_ctx;
1110 struct xhci_td *td = NULL;
1111 enum xhci_ep_reset_type reset_type;
1112 struct xhci_command *command;
1113 int err;
1114
1115 if (unlikely(TRB_TO_SUSPEND_PORT(le32_to_cpu(trb->generic.field[3])))) {
1116 if (!xhci->devs[slot_id])
1117 xhci_warn(xhci, "Stop endpoint command completion for disabled slot %u\n",
1118 slot_id);
1119 return;
1120 }
1121
1122 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1123 ep = xhci_get_virt_ep(xhci, slot_id, ep_index);
1124 if (!ep)
1125 return;
1126
1127 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index);
1128
1129 trace_xhci_handle_cmd_stop_ep(ep_ctx);
1130
1131 if (comp_code == COMP_CONTEXT_STATE_ERROR) {
1132 /*
1133 * If stop endpoint command raced with a halting endpoint we need to
1134 * reset the host side endpoint first.
1135 * If the TD we halted on isn't cancelled the TD should be given back
1136 * with a proper error code, and the ring dequeue moved past the TD.
1137 * If streams case we can't find hw_deq, or the TD we halted on so do a
1138 * soft reset.
1139 *
1140 * Proper error code is unknown here, it would be -EPIPE if device side
1141 * of enadpoit halted (aka STALL), and -EPROTO if not (transaction error)
1142 * We use -EPROTO, if device is stalled it should return a stall error on
1143 * next transfer, which then will return -EPIPE, and device side stall is
1144 * noted and cleared by class driver.
1145 */
1146 switch (GET_EP_CTX_STATE(ep_ctx)) {
1147 case EP_STATE_HALTED:
1148 xhci_dbg(xhci, "Stop ep completion raced with stall, reset ep\n");
1149 if (ep->ep_state & EP_HAS_STREAMS) {
1150 reset_type = EP_SOFT_RESET;
1151 } else {
1152 reset_type = EP_HARD_RESET;
1153 td = find_halted_td(ep);
1154 if (td)
1155 td->status = -EPROTO;
1156 }
1157 /* reset ep, reset handler cleans up cancelled tds */
1158 err = xhci_handle_halted_endpoint(xhci, ep, td, reset_type);
1159 if (err)
1160 break;
1161 ep->ep_state &= ~EP_STOP_CMD_PENDING;
1162 return;
1163 case EP_STATE_STOPPED:
1164 /*
1165 * NEC uPD720200 sometimes sets this state and fails with
1166 * Context Error while continuing to process TRBs.
1167 * Be conservative and trust EP_CTX_STATE on other chips.
1168 */
1169 if (!(xhci->quirks & XHCI_NEC_HOST))
1170 break;
1171 fallthrough;
1172 case EP_STATE_RUNNING:
1173 /* Race, HW handled stop ep cmd before ep was running */
1174 xhci_dbg(xhci, "Stop ep completion ctx error, ep is running\n");
1175
1176 command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1177 if (!command) {
1178 ep->ep_state &= ~EP_STOP_CMD_PENDING;
1179 return;
1180 }
1181 xhci_queue_stop_endpoint(xhci, command, slot_id, ep_index, 0);
1182 xhci_ring_cmd_db(xhci);
1183
1184 return;
1185 default:
1186 break;
1187 }
1188 }
1189
1190 /* will queue a set TR deq if stopped on a cancelled, uncleared TD */
1191 xhci_invalidate_cancelled_tds(ep);
1192 ep->ep_state &= ~EP_STOP_CMD_PENDING;
1193
1194 /* Otherwise ring the doorbell(s) to restart queued transfers */
1195 xhci_giveback_invalidated_tds(ep);
1196 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1197 }
1198
1199 static void xhci_kill_ring_urbs(struct xhci_hcd *xhci, struct xhci_ring *ring)
1200 {
1201 struct xhci_td *cur_td;
1202 struct xhci_td *tmp;
1203
1204 list_for_each_entry_safe(cur_td, tmp, &ring->td_list, td_list) {
1205 list_del_init(&cur_td->td_list);
1206
1207 if (!list_empty(&cur_td->cancelled_td_list))
1208 list_del_init(&cur_td->cancelled_td_list);
1209
1210 xhci_unmap_td_bounce_buffer(xhci, ring, cur_td);
1211
1212 inc_td_cnt(cur_td->urb);
1213 if (last_td_in_urb(cur_td))
1214 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
1215 }
1216 }
1217
1218 static void xhci_kill_endpoint_urbs(struct xhci_hcd *xhci,
1219 int slot_id, int ep_index)
1220 {
1221 struct xhci_td *cur_td;
1222 struct xhci_td *tmp;
1223 struct xhci_virt_ep *ep;
1224 struct xhci_ring *ring;
1225
1226 ep = xhci_get_virt_ep(xhci, slot_id, ep_index);
1227 if (!ep)
1228 return;
1229
1230 if ((ep->ep_state & EP_HAS_STREAMS) ||
1231 (ep->ep_state & EP_GETTING_NO_STREAMS)) {
1232 int stream_id;
1233
1234 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
1235 stream_id++) {
1236 ring = ep->stream_info->stream_rings[stream_id];
1237 if (!ring)
1238 continue;
1239
1240 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1241 "Killing URBs for slot ID %u, ep index %u, stream %u",
1242 slot_id, ep_index, stream_id);
1243 xhci_kill_ring_urbs(xhci, ring);
1244 }
1245 } else {
1246 ring = ep->ring;
1247 if (!ring)
1248 return;
1249 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1250 "Killing URBs for slot ID %u, ep index %u",
1251 slot_id, ep_index);
1252 xhci_kill_ring_urbs(xhci, ring);
1253 }
1254
1255 list_for_each_entry_safe(cur_td, tmp, &ep->cancelled_td_list,
1256 cancelled_td_list) {
1257 list_del_init(&cur_td->cancelled_td_list);
1258 inc_td_cnt(cur_td->urb);
1259
1260 if (last_td_in_urb(cur_td))
1261 xhci_giveback_urb_in_irq(xhci, cur_td, -ESHUTDOWN);
1262 }
1263 }
1264
1265 /*
1266 * host controller died, register read returns 0xffffffff
1267 * Complete pending commands, mark them ABORTED.
1268 * URBs need to be given back as usb core might be waiting with device locks
1269 * held for the URBs to finish during device disconnect, blocking host remove.
1270 *
1271 * Call with xhci->lock held.
1272 * lock is relased and re-acquired while giving back urb.
1273 */
1274 void xhci_hc_died(struct xhci_hcd *xhci)
1275 {
1276 int i, j;
1277
1278 if (xhci->xhc_state & XHCI_STATE_DYING)
1279 return;
1280
1281 xhci_err(xhci, "xHCI host controller not responding, assume dead\n");
1282 xhci->xhc_state |= XHCI_STATE_DYING;
1283
1284 xhci_cleanup_command_queue(xhci);
1285
1286 /* return any pending urbs, remove may be waiting for them */
1287 for (i = 0; i <= HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
1288 if (!xhci->devs[i])
1289 continue;
1290 for (j = 0; j < 31; j++)
1291 xhci_kill_endpoint_urbs(xhci, i, j);
1292 }
1293
1294 /* inform usb core hc died if PCI remove isn't already handling it */
1295 if (!(xhci->xhc_state & XHCI_STATE_REMOVING))
1296 usb_hc_died(xhci_to_hcd(xhci));
1297 }
1298
1299 static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
1300 struct xhci_virt_device *dev,
1301 struct xhci_ring *ep_ring,
1302 unsigned int ep_index)
1303 {
1304 union xhci_trb *dequeue_temp;
1305
1306 dequeue_temp = ep_ring->dequeue;
1307
1308 /* If we get two back-to-back stalls, and the first stalled transfer
1309 * ends just before a link TRB, the dequeue pointer will be left on
1310 * the link TRB by the code in the while loop. So we have to update
1311 * the dequeue pointer one segment further, or we'll jump off
1312 * the segment into la-la-land.
1313 */
1314 if (trb_is_link(ep_ring->dequeue)) {
1315 ep_ring->deq_seg = ep_ring->deq_seg->next;
1316 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1317 }
1318
1319 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
1320 /* We have more usable TRBs */
1321 ep_ring->dequeue++;
1322 if (trb_is_link(ep_ring->dequeue)) {
1323 if (ep_ring->dequeue ==
1324 dev->eps[ep_index].queued_deq_ptr)
1325 break;
1326 ep_ring->deq_seg = ep_ring->deq_seg->next;
1327 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1328 }
1329 if (ep_ring->dequeue == dequeue_temp) {
1330 xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1331 break;
1332 }
1333 }
1334 }
1335
1336 /*
1337 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1338 * we need to clear the set deq pending flag in the endpoint ring state, so that
1339 * the TD queueing code can ring the doorbell again. We also need to ring the
1340 * endpoint doorbell to restart the ring, but only if there aren't more
1341 * cancellations pending.
1342 */
1343 static void xhci_handle_cmd_set_deq(struct xhci_hcd *xhci, int slot_id,
1344 union xhci_trb *trb, u32 cmd_comp_code)
1345 {
1346 unsigned int ep_index;
1347 unsigned int stream_id;
1348 struct xhci_ring *ep_ring;
1349 struct xhci_virt_ep *ep;
1350 struct xhci_ep_ctx *ep_ctx;
1351 struct xhci_slot_ctx *slot_ctx;
1352 struct xhci_td *td, *tmp_td;
1353
1354 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1355 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1356 ep = xhci_get_virt_ep(xhci, slot_id, ep_index);
1357 if (!ep)
1358 return;
1359
1360 ep_ring = xhci_virt_ep_to_ring(xhci, ep, stream_id);
1361 if (!ep_ring) {
1362 xhci_warn(xhci, "WARN Set TR deq ptr command for freed stream ID %u\n",
1363 stream_id);
1364 /* XXX: Harmless??? */
1365 goto cleanup;
1366 }
1367
1368 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index);
1369 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx);
1370 trace_xhci_handle_cmd_set_deq(slot_ctx);
1371 trace_xhci_handle_cmd_set_deq_ep(ep_ctx);
1372
1373 if (cmd_comp_code != COMP_SUCCESS) {
1374 unsigned int ep_state;
1375 unsigned int slot_state;
1376
1377 switch (cmd_comp_code) {
1378 case COMP_TRB_ERROR:
1379 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because of stream ID configuration\n");
1380 break;
1381 case COMP_CONTEXT_STATE_ERROR:
1382 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due to incorrect slot or ep state.\n");
1383 ep_state = GET_EP_CTX_STATE(ep_ctx);
1384 slot_state = le32_to_cpu(slot_ctx->dev_state);
1385 slot_state = GET_SLOT_STATE(slot_state);
1386 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1387 "Slot state = %u, EP state = %u",
1388 slot_state, ep_state);
1389 break;
1390 case COMP_SLOT_NOT_ENABLED_ERROR:
1391 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because slot %u was not enabled.\n",
1392 slot_id);
1393 break;
1394 default:
1395 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown completion code of %u.\n",
1396 cmd_comp_code);
1397 break;
1398 }
1399 /* OK what do we do now? The endpoint state is hosed, and we
1400 * should never get to this point if the synchronization between
1401 * queueing, and endpoint state are correct. This might happen
1402 * if the device gets disconnected after we've finished
1403 * cancelling URBs, which might not be an error...
1404 */
1405 } else {
1406 u64 deq;
1407 /* 4.6.10 deq ptr is written to the stream ctx for streams */
1408 if (ep->ep_state & EP_HAS_STREAMS) {
1409 struct xhci_stream_ctx *ctx =
1410 &ep->stream_info->stream_ctx_array[stream_id];
1411 deq = le64_to_cpu(ctx->stream_ring) & SCTX_DEQ_MASK;
1412 } else {
1413 deq = le64_to_cpu(ep_ctx->deq) & ~EP_CTX_CYCLE_MASK;
1414 }
1415 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1416 "Successful Set TR Deq Ptr cmd, deq = @%08llx", deq);
1417 if (xhci_trb_virt_to_dma(ep->queued_deq_seg,
1418 ep->queued_deq_ptr) == deq) {
1419 /* Update the ring's dequeue segment and dequeue pointer
1420 * to reflect the new position.
1421 */
1422 update_ring_for_set_deq_completion(xhci, ep->vdev,
1423 ep_ring, ep_index);
1424 } else {
1425 xhci_warn(xhci, "Mismatch between completed Set TR Deq Ptr command & xHCI internal state.\n");
1426 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1427 ep->queued_deq_seg, ep->queued_deq_ptr);
1428 }
1429 }
1430 /* HW cached TDs cleared from cache, give them back */
1431 list_for_each_entry_safe(td, tmp_td, &ep->cancelled_td_list,
1432 cancelled_td_list) {
1433 ep_ring = xhci_urb_to_transfer_ring(ep->xhci, td->urb);
1434 if (td->cancel_status == TD_CLEARING_CACHE) {
1435 td->cancel_status = TD_CLEARED;
1436 xhci_dbg(ep->xhci, "%s: Giveback cancelled URB %p TD\n",
1437 __func__, td->urb);
1438 xhci_td_cleanup(ep->xhci, td, ep_ring, td->status);
1439 } else {
1440 xhci_dbg(ep->xhci, "%s: Keep cancelled URB %p TD as cancel_status is %d\n",
1441 __func__, td->urb, td->cancel_status);
1442 }
1443 }
1444 cleanup:
1445 ep->ep_state &= ~SET_DEQ_PENDING;
1446 ep->queued_deq_seg = NULL;
1447 ep->queued_deq_ptr = NULL;
1448 /* Restart any rings with pending URBs */
1449 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1450 }
1451
1452 static void xhci_handle_cmd_reset_ep(struct xhci_hcd *xhci, int slot_id,
1453 union xhci_trb *trb, u32 cmd_comp_code)
1454 {
1455 struct xhci_virt_ep *ep;
1456 struct xhci_ep_ctx *ep_ctx;
1457 unsigned int ep_index;
1458
1459 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1460 ep = xhci_get_virt_ep(xhci, slot_id, ep_index);
1461 if (!ep)
1462 return;
1463
1464 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index);
1465 trace_xhci_handle_cmd_reset_ep(ep_ctx);
1466
1467 /* This command will only fail if the endpoint wasn't halted,
1468 * but we don't care.
1469 */
1470 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
1471 "Ignoring reset ep completion code of %u", cmd_comp_code);
1472
1473 /* Cleanup cancelled TDs as ep is stopped. May queue a Set TR Deq cmd */
1474 xhci_invalidate_cancelled_tds(ep);
1475
1476 /* Clear our internal halted state */
1477 ep->ep_state &= ~EP_HALTED;
1478
1479 xhci_giveback_invalidated_tds(ep);
1480
1481 /* if this was a soft reset, then restart */
1482 if ((le32_to_cpu(trb->generic.field[3])) & TRB_TSP)
1483 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1484 }
1485
1486 static void xhci_handle_cmd_enable_slot(struct xhci_hcd *xhci, int slot_id,
1487 struct xhci_command *command, u32 cmd_comp_code)
1488 {
1489 if (cmd_comp_code == COMP_SUCCESS)
1490 command->slot_id = slot_id;
1491 else
1492 command->slot_id = 0;
1493 }
1494
1495 static void xhci_handle_cmd_disable_slot(struct xhci_hcd *xhci, int slot_id)
1496 {
1497 struct xhci_virt_device *virt_dev;
1498 struct xhci_slot_ctx *slot_ctx;
1499
1500 virt_dev = xhci->devs[slot_id];
1501 if (!virt_dev)
1502 return;
1503
1504 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
1505 trace_xhci_handle_cmd_disable_slot(slot_ctx);
1506
1507 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1508 /* Delete default control endpoint resources */
1509 xhci_free_device_endpoint_resources(xhci, virt_dev, true);
1510 }
1511
1512 static void xhci_handle_cmd_config_ep(struct xhci_hcd *xhci, int slot_id,
1513 u32 cmd_comp_code)
1514 {
1515 struct xhci_virt_device *virt_dev;
1516 struct xhci_input_control_ctx *ctrl_ctx;
1517 struct xhci_ep_ctx *ep_ctx;
1518 unsigned int ep_index;
1519 u32 add_flags;
1520
1521 /*
1522 * Configure endpoint commands can come from the USB core configuration
1523 * or alt setting changes, or when streams were being configured.
1524 */
1525
1526 virt_dev = xhci->devs[slot_id];
1527 if (!virt_dev)
1528 return;
1529 ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1530 if (!ctrl_ctx) {
1531 xhci_warn(xhci, "Could not get input context, bad type.\n");
1532 return;
1533 }
1534
1535 add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1536
1537 /* Input ctx add_flags are the endpoint index plus one */
1538 ep_index = xhci_last_valid_endpoint(add_flags) - 1;
1539
1540 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->out_ctx, ep_index);
1541 trace_xhci_handle_cmd_config_ep(ep_ctx);
1542
1543 return;
1544 }
1545
1546 static void xhci_handle_cmd_addr_dev(struct xhci_hcd *xhci, int slot_id)
1547 {
1548 struct xhci_virt_device *vdev;
1549 struct xhci_slot_ctx *slot_ctx;
1550
1551 vdev = xhci->devs[slot_id];
1552 if (!vdev)
1553 return;
1554 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1555 trace_xhci_handle_cmd_addr_dev(slot_ctx);
1556 }
1557
1558 static void xhci_handle_cmd_reset_dev(struct xhci_hcd *xhci, int slot_id)
1559 {
1560 struct xhci_virt_device *vdev;
1561 struct xhci_slot_ctx *slot_ctx;
1562
1563 vdev = xhci->devs[slot_id];
1564 if (!vdev) {
1565 xhci_warn(xhci, "Reset device command completion for disabled slot %u\n",
1566 slot_id);
1567 return;
1568 }
1569 slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
1570 trace_xhci_handle_cmd_reset_dev(slot_ctx);
1571
1572 xhci_dbg(xhci, "Completed reset device command.\n");
1573 }
1574
1575 static void xhci_handle_cmd_nec_get_fw(struct xhci_hcd *xhci,
1576 struct xhci_event_cmd *event)
1577 {
1578 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1579 xhci_warn(xhci, "WARN NEC_GET_FW command on non-NEC host\n");
1580 return;
1581 }
1582 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1583 "NEC firmware version %2x.%02x",
1584 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1585 NEC_FW_MINOR(le32_to_cpu(event->status)));
1586 }
1587
1588 static void xhci_complete_del_and_free_cmd(struct xhci_command *cmd, u32 status)
1589 {
1590 list_del(&cmd->cmd_list);
1591
1592 if (cmd->completion) {
1593 cmd->status = status;
1594 complete(cmd->completion);
1595 } else {
1596 kfree(cmd);
1597 }
1598 }
1599
1600 void xhci_cleanup_command_queue(struct xhci_hcd *xhci)
1601 {
1602 struct xhci_command *cur_cmd, *tmp_cmd;
1603 xhci->current_cmd = NULL;
1604 list_for_each_entry_safe(cur_cmd, tmp_cmd, &xhci->cmd_list, cmd_list)
1605 xhci_complete_del_and_free_cmd(cur_cmd, COMP_COMMAND_ABORTED);
1606 }
1607
1608 void xhci_handle_command_timeout(struct work_struct *work)
1609 {
1610 struct xhci_hcd *xhci;
1611 unsigned long flags;
1612 char str[XHCI_MSG_MAX];
1613 u64 hw_ring_state;
1614 u32 cmd_field3;
1615 u32 usbsts;
1616
1617 xhci = container_of(to_delayed_work(work), struct xhci_hcd, cmd_timer);
1618
1619 spin_lock_irqsave(&xhci->lock, flags);
1620
1621 /*
1622 * If timeout work is pending, or current_cmd is NULL, it means we
1623 * raced with command completion. Command is handled so just return.
1624 */
1625 if (!xhci->current_cmd || delayed_work_pending(&xhci->cmd_timer)) {
1626 spin_unlock_irqrestore(&xhci->lock, flags);
1627 return;
1628 }
1629
1630 cmd_field3 = le32_to_cpu(xhci->current_cmd->command_trb->generic.field[3]);
1631 usbsts = readl(&xhci->op_regs->status);
1632 xhci_dbg(xhci, "Command timeout, USBSTS:%s\n", xhci_decode_usbsts(str, usbsts));
1633
1634 /* Bail out and tear down xhci if a stop endpoint command failed */
1635 if (TRB_FIELD_TO_TYPE(cmd_field3) == TRB_STOP_RING) {
1636 struct xhci_virt_ep *ep;
1637
1638 xhci_warn(xhci, "xHCI host not responding to stop endpoint command\n");
1639
1640 ep = xhci_get_virt_ep(xhci, TRB_TO_SLOT_ID(cmd_field3),
1641 TRB_TO_EP_INDEX(cmd_field3));
1642 if (ep)
1643 ep->ep_state &= ~EP_STOP_CMD_PENDING;
1644
1645 xhci_halt(xhci);
1646 xhci_hc_died(xhci);
1647 goto time_out_completed;
1648 }
1649
1650 /* mark this command to be cancelled */
1651 xhci->current_cmd->status = COMP_COMMAND_ABORTED;
1652
1653 /* Make sure command ring is running before aborting it */
1654 hw_ring_state = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
1655 if (hw_ring_state == ~(u64)0) {
1656 xhci_hc_died(xhci);
1657 goto time_out_completed;
1658 }
1659
1660 if ((xhci->cmd_ring_state & CMD_RING_STATE_RUNNING) &&
1661 (hw_ring_state & CMD_RING_RUNNING)) {
1662 /* Prevent new doorbell, and start command abort */
1663 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
1664 xhci_dbg(xhci, "Command timeout\n");
1665 xhci_abort_cmd_ring(xhci, flags);
1666 goto time_out_completed;
1667 }
1668
1669 /* host removed. Bail out */
1670 if (xhci->xhc_state & XHCI_STATE_REMOVING) {
1671 xhci_dbg(xhci, "host removed, ring start fail?\n");
1672 xhci_cleanup_command_queue(xhci);
1673
1674 goto time_out_completed;
1675 }
1676
1677 /* command timeout on stopped ring, ring can't be aborted */
1678 xhci_dbg(xhci, "Command timeout on stopped ring\n");
1679 xhci_handle_stopped_cmd_ring(xhci, xhci->current_cmd);
1680
1681 time_out_completed:
1682 spin_unlock_irqrestore(&xhci->lock, flags);
1683 return;
1684 }
1685
1686 static void handle_cmd_completion(struct xhci_hcd *xhci,
1687 struct xhci_event_cmd *event)
1688 {
1689 unsigned int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1690 u64 cmd_dma;
1691 dma_addr_t cmd_dequeue_dma;
1692 u32 cmd_comp_code;
1693 union xhci_trb *cmd_trb;
1694 struct xhci_command *cmd;
1695 u32 cmd_type;
1696
1697 if (slot_id >= MAX_HC_SLOTS) {
1698 xhci_warn(xhci, "Invalid slot_id %u\n", slot_id);
1699 return;
1700 }
1701
1702 cmd_dma = le64_to_cpu(event->cmd_trb);
1703 cmd_trb = xhci->cmd_ring->dequeue;
1704
1705 trace_xhci_handle_command(xhci->cmd_ring, &cmd_trb->generic);
1706
1707 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1708 cmd_trb);
1709 /*
1710 * Check whether the completion event is for our internal kept
1711 * command.
1712 */
1713 if (!cmd_dequeue_dma || cmd_dma != (u64)cmd_dequeue_dma) {
1714 xhci_warn(xhci,
1715 "ERROR mismatched command completion event\n");
1716 return;
1717 }
1718
1719 cmd = list_first_entry(&xhci->cmd_list, struct xhci_command, cmd_list);
1720
1721 cancel_delayed_work(&xhci->cmd_timer);
1722
1723 cmd_comp_code = GET_COMP_CODE(le32_to_cpu(event->status));
1724
1725 /* If CMD ring stopped we own the trbs between enqueue and dequeue */
1726 if (cmd_comp_code == COMP_COMMAND_RING_STOPPED) {
1727 complete_all(&xhci->cmd_ring_stop_completion);
1728 return;
1729 }
1730
1731 if (cmd->command_trb != xhci->cmd_ring->dequeue) {
1732 xhci_err(xhci,
1733 "Command completion event does not match command\n");
1734 return;
1735 }
1736
1737 /*
1738 * Host aborted the command ring, check if the current command was
1739 * supposed to be aborted, otherwise continue normally.
1740 * The command ring is stopped now, but the xHC will issue a Command
1741 * Ring Stopped event which will cause us to restart it.
1742 */
1743 if (cmd_comp_code == COMP_COMMAND_ABORTED) {
1744 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1745 if (cmd->status == COMP_COMMAND_ABORTED) {
1746 if (xhci->current_cmd == cmd)
1747 xhci->current_cmd = NULL;
1748 goto event_handled;
1749 }
1750 }
1751
1752 cmd_type = TRB_FIELD_TO_TYPE(le32_to_cpu(cmd_trb->generic.field[3]));
1753 switch (cmd_type) {
1754 case TRB_ENABLE_SLOT:
1755 xhci_handle_cmd_enable_slot(xhci, slot_id, cmd, cmd_comp_code);
1756 break;
1757 case TRB_DISABLE_SLOT:
1758 xhci_handle_cmd_disable_slot(xhci, slot_id);
1759 break;
1760 case TRB_CONFIG_EP:
1761 if (!cmd->completion)
1762 xhci_handle_cmd_config_ep(xhci, slot_id, cmd_comp_code);
1763 break;
1764 case TRB_EVAL_CONTEXT:
1765 break;
1766 case TRB_ADDR_DEV:
1767 xhci_handle_cmd_addr_dev(xhci, slot_id);
1768 break;
1769 case TRB_STOP_RING:
1770 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1771 le32_to_cpu(cmd_trb->generic.field[3])));
1772 if (!cmd->completion)
1773 xhci_handle_cmd_stop_ep(xhci, slot_id, cmd_trb,
1774 cmd_comp_code);
1775 break;
1776 case TRB_SET_DEQ:
1777 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1778 le32_to_cpu(cmd_trb->generic.field[3])));
1779 xhci_handle_cmd_set_deq(xhci, slot_id, cmd_trb, cmd_comp_code);
1780 break;
1781 case TRB_CMD_NOOP:
1782 /* Is this an aborted command turned to NO-OP? */
1783 if (cmd->status == COMP_COMMAND_RING_STOPPED)
1784 cmd_comp_code = COMP_COMMAND_RING_STOPPED;
1785 break;
1786 case TRB_RESET_EP:
1787 WARN_ON(slot_id != TRB_TO_SLOT_ID(
1788 le32_to_cpu(cmd_trb->generic.field[3])));
1789 xhci_handle_cmd_reset_ep(xhci, slot_id, cmd_trb, cmd_comp_code);
1790 break;
1791 case TRB_RESET_DEV:
1792 /* SLOT_ID field in reset device cmd completion event TRB is 0.
1793 * Use the SLOT_ID from the command TRB instead (xhci 4.6.11)
1794 */
1795 slot_id = TRB_TO_SLOT_ID(
1796 le32_to_cpu(cmd_trb->generic.field[3]));
1797 xhci_handle_cmd_reset_dev(xhci, slot_id);
1798 break;
1799 case TRB_NEC_GET_FW:
1800 xhci_handle_cmd_nec_get_fw(xhci, event);
1801 break;
1802 default:
1803 /* Skip over unknown commands on the event ring */
1804 xhci_info(xhci, "INFO unknown command type %d\n", cmd_type);
1805 break;
1806 }
1807
1808 /* restart timer if this wasn't the last command */
1809 if (!list_is_singular(&xhci->cmd_list)) {
1810 xhci->current_cmd = list_first_entry(&cmd->cmd_list,
1811 struct xhci_command, cmd_list);
1812 xhci_mod_cmd_timer(xhci);
1813 } else if (xhci->current_cmd == cmd) {
1814 xhci->current_cmd = NULL;
1815 }
1816
1817 event_handled:
1818 xhci_complete_del_and_free_cmd(cmd, cmd_comp_code);
1819
1820 inc_deq(xhci, xhci->cmd_ring);
1821 }
1822
1823 static void handle_vendor_event(struct xhci_hcd *xhci,
1824 union xhci_trb *event, u32 trb_type)
1825 {
1826 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1827 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1828 handle_cmd_completion(xhci, &event->event_cmd);
1829 }
1830
1831 static void handle_device_notification(struct xhci_hcd *xhci,
1832 union xhci_trb *event)
1833 {
1834 u32 slot_id;
1835 struct usb_device *udev;
1836
1837 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->generic.field[3]));
1838 if (!xhci->devs[slot_id]) {
1839 xhci_warn(xhci, "Device Notification event for "
1840 "unused slot %u\n", slot_id);
1841 return;
1842 }
1843
1844 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1845 slot_id);
1846 udev = xhci->devs[slot_id]->udev;
1847 if (udev && udev->parent)
1848 usb_wakeup_notification(udev->parent, udev->portnum);
1849 }
1850
1851 /*
1852 * Quirk hanlder for errata seen on Cavium ThunderX2 processor XHCI
1853 * Controller.
1854 * As per ThunderX2errata-129 USB 2 device may come up as USB 1
1855 * If a connection to a USB 1 device is followed by another connection
1856 * to a USB 2 device.
1857 *
1858 * Reset the PHY after the USB device is disconnected if device speed
1859 * is less than HCD_USB3.
1860 * Retry the reset sequence max of 4 times checking the PLL lock status.
1861 *
1862 */
1863 static void xhci_cavium_reset_phy_quirk(struct xhci_hcd *xhci)
1864 {
1865 struct usb_hcd *hcd = xhci_to_hcd(xhci);
1866 u32 pll_lock_check;
1867 u32 retry_count = 4;
1868
1869 do {
1870 /* Assert PHY reset */
1871 writel(0x6F, hcd->regs + 0x1048);
1872 udelay(10);
1873 /* De-assert the PHY reset */
1874 writel(0x7F, hcd->regs + 0x1048);
1875 udelay(200);
1876 pll_lock_check = readl(hcd->regs + 0x1070);
1877 } while (!(pll_lock_check & 0x1) && --retry_count);
1878 }
1879
1880 static void handle_port_status(struct xhci_hcd *xhci,
1881 struct xhci_interrupter *ir,
1882 union xhci_trb *event)
1883 {
1884 struct usb_hcd *hcd;
1885 u32 port_id;
1886 u32 portsc, cmd_reg;
1887 int max_ports;
1888 unsigned int hcd_portnum;
1889 struct xhci_bus_state *bus_state;
1890 bool bogus_port_status = false;
1891 struct xhci_port *port;
1892
1893 /* Port status change events always have a successful completion code */
1894 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS)
1895 xhci_warn(xhci,
1896 "WARN: xHC returned failed port status event\n");
1897
1898 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1899 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1900
1901 if ((port_id <= 0) || (port_id > max_ports)) {
1902 xhci_warn(xhci, "Port change event with invalid port ID %d\n",
1903 port_id);
1904 return;
1905 }
1906
1907 port = &xhci->hw_ports[port_id - 1];
1908 if (!port || !port->rhub || port->hcd_portnum == DUPLICATE_ENTRY) {
1909 xhci_warn(xhci, "Port change event, no port for port ID %u\n",
1910 port_id);
1911 bogus_port_status = true;
1912 goto cleanup;
1913 }
1914
1915 /* We might get interrupts after shared_hcd is removed */
1916 if (port->rhub == &xhci->usb3_rhub && xhci->shared_hcd == NULL) {
1917 xhci_dbg(xhci, "ignore port event for removed USB3 hcd\n");
1918 bogus_port_status = true;
1919 goto cleanup;
1920 }
1921
1922 hcd = port->rhub->hcd;
1923 bus_state = &port->rhub->bus_state;
1924 hcd_portnum = port->hcd_portnum;
1925 portsc = readl(port->addr);
1926
1927 xhci_dbg(xhci, "Port change event, %d-%d, id %d, portsc: 0x%x\n",
1928 hcd->self.busnum, hcd_portnum + 1, port_id, portsc);
1929
1930 trace_xhci_handle_port_status(port, portsc);
1931
1932 if (hcd->state == HC_STATE_SUSPENDED) {
1933 xhci_dbg(xhci, "resume root hub\n");
1934 usb_hcd_resume_root_hub(hcd);
1935 }
1936
1937 if (hcd->speed >= HCD_USB3 &&
1938 (portsc & PORT_PLS_MASK) == XDEV_INACTIVE) {
1939 if (port->slot_id && xhci->devs[port->slot_id])
1940 xhci->devs[port->slot_id]->flags |= VDEV_PORT_ERROR;
1941 }
1942
1943 if ((portsc & PORT_PLC) && (portsc & PORT_PLS_MASK) == XDEV_RESUME) {
1944 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1945
1946 cmd_reg = readl(&xhci->op_regs->command);
1947 if (!(cmd_reg & CMD_RUN)) {
1948 xhci_warn(xhci, "xHC is not running.\n");
1949 goto cleanup;
1950 }
1951
1952 if (DEV_SUPERSPEED_ANY(portsc)) {
1953 xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1954 /* Set a flag to say the port signaled remote wakeup,
1955 * so we can tell the difference between the end of
1956 * device and host initiated resume.
1957 */
1958 bus_state->port_remote_wakeup |= 1 << hcd_portnum;
1959 xhci_test_and_clear_bit(xhci, port, PORT_PLC);
1960 usb_hcd_start_port_resume(&hcd->self, hcd_portnum);
1961 xhci_set_link_state(xhci, port, XDEV_U0);
1962 /* Need to wait until the next link state change
1963 * indicates the device is actually in U0.
1964 */
1965 bogus_port_status = true;
1966 goto cleanup;
1967 } else if (!test_bit(hcd_portnum, &bus_state->resuming_ports)) {
1968 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1969 port->resume_timestamp = jiffies +
1970 msecs_to_jiffies(USB_RESUME_TIMEOUT);
1971 set_bit(hcd_portnum, &bus_state->resuming_ports);
1972 /* Do the rest in GetPortStatus after resume time delay.
1973 * Avoid polling roothub status before that so that a
1974 * usb device auto-resume latency around ~40ms.
1975 */
1976 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1977 mod_timer(&hcd->rh_timer,
1978 port->resume_timestamp);
1979 usb_hcd_start_port_resume(&hcd->self, hcd_portnum);
1980 bogus_port_status = true;
1981 }
1982 }
1983
1984 if ((portsc & PORT_PLC) &&
1985 DEV_SUPERSPEED_ANY(portsc) &&
1986 ((portsc & PORT_PLS_MASK) == XDEV_U0 ||
1987 (portsc & PORT_PLS_MASK) == XDEV_U1 ||
1988 (portsc & PORT_PLS_MASK) == XDEV_U2)) {
1989 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1990 complete(&port->u3exit_done);
1991 /* We've just brought the device into U0/1/2 through either the
1992 * Resume state after a device remote wakeup, or through the
1993 * U3Exit state after a host-initiated resume. If it's a device
1994 * initiated remote wake, don't pass up the link state change,
1995 * so the roothub behavior is consistent with external
1996 * USB 3.0 hub behavior.
1997 */
1998 if (port->slot_id && xhci->devs[port->slot_id])
1999 xhci_ring_device(xhci, port->slot_id);
2000 if (bus_state->port_remote_wakeup & (1 << hcd_portnum)) {
2001 xhci_test_and_clear_bit(xhci, port, PORT_PLC);
2002 usb_wakeup_notification(hcd->self.root_hub,
2003 hcd_portnum + 1);
2004 bogus_port_status = true;
2005 goto cleanup;
2006 }
2007 }
2008
2009 /*
2010 * Check to see if xhci-hub.c is waiting on RExit to U0 transition (or
2011 * RExit to a disconnect state). If so, let the driver know it's
2012 * out of the RExit state.
2013 */
2014 if (hcd->speed < HCD_USB3 && port->rexit_active) {
2015 complete(&port->rexit_done);
2016 port->rexit_active = false;
2017 bogus_port_status = true;
2018 goto cleanup;
2019 }
2020
2021 if (hcd->speed < HCD_USB3) {
2022 xhci_test_and_clear_bit(xhci, port, PORT_PLC);
2023 if ((xhci->quirks & XHCI_RESET_PLL_ON_DISCONNECT) &&
2024 (portsc & PORT_CSC) && !(portsc & PORT_CONNECT))
2025 xhci_cavium_reset_phy_quirk(xhci);
2026 }
2027
2028 cleanup:
2029
2030 /* Don't make the USB core poll the roothub if we got a bad port status
2031 * change event. Besides, at that point we can't tell which roothub
2032 * (USB 2.0 or USB 3.0) to kick.
2033 */
2034 if (bogus_port_status)
2035 return;
2036
2037 /*
2038 * xHCI port-status-change events occur when the "or" of all the
2039 * status-change bits in the portsc register changes from 0 to 1.
2040 * New status changes won't cause an event if any other change
2041 * bits are still set. When an event occurs, switch over to
2042 * polling to avoid losing status changes.
2043 */
2044 xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
2045 __func__, hcd->self.busnum);
2046 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2047 spin_unlock(&xhci->lock);
2048 /* Pass this up to the core */
2049 usb_hcd_poll_rh_status(hcd);
2050 spin_lock(&xhci->lock);
2051 }
2052
2053 /*
2054 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
2055 * at end_trb, which may be in another segment. If the suspect DMA address is a
2056 * TRB in this TD, this function returns that TRB's segment. Otherwise it
2057 * returns 0.
2058 */
2059 struct xhci_segment *trb_in_td(struct xhci_hcd *xhci,
2060 struct xhci_segment *start_seg,
2061 union xhci_trb *start_trb,
2062 union xhci_trb *end_trb,
2063 dma_addr_t suspect_dma,
2064 bool debug)
2065 {
2066 dma_addr_t start_dma;
2067 dma_addr_t end_seg_dma;
2068 dma_addr_t end_trb_dma;
2069 struct xhci_segment *cur_seg;
2070
2071 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
2072 cur_seg = start_seg;
2073
2074 do {
2075 if (start_dma == 0)
2076 return NULL;
2077 /* We may get an event for a Link TRB in the middle of a TD */
2078 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
2079 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
2080 /* If the end TRB isn't in this segment, this is set to 0 */
2081 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
2082
2083 if (debug)
2084 xhci_warn(xhci,
2085 "Looking for event-dma %016llx trb-start %016llx trb-end %016llx seg-start %016llx seg-end %016llx\n",
2086 (unsigned long long)suspect_dma,
2087 (unsigned long long)start_dma,
2088 (unsigned long long)end_trb_dma,
2089 (unsigned long long)cur_seg->dma,
2090 (unsigned long long)end_seg_dma);
2091
2092 if (end_trb_dma > 0) {
2093 /* The end TRB is in this segment, so suspect should be here */
2094 if (start_dma <= end_trb_dma) {
2095 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
2096 return cur_seg;
2097 } else {
2098 /* Case for one segment with
2099 * a TD wrapped around to the top
2100 */
2101 if ((suspect_dma >= start_dma &&
2102 suspect_dma <= end_seg_dma) ||
2103 (suspect_dma >= cur_seg->dma &&
2104 suspect_dma <= end_trb_dma))
2105 return cur_seg;
2106 }
2107 return NULL;
2108 } else {
2109 /* Might still be somewhere in this segment */
2110 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
2111 return cur_seg;
2112 }
2113 cur_seg = cur_seg->next;
2114 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
2115 } while (cur_seg != start_seg);
2116
2117 return NULL;
2118 }
2119
2120 static void xhci_clear_hub_tt_buffer(struct xhci_hcd *xhci, struct xhci_td *td,
2121 struct xhci_virt_ep *ep)
2122 {
2123 /*
2124 * As part of low/full-speed endpoint-halt processing
2125 * we must clear the TT buffer (USB 2.0 specification 11.17.5).
2126 */
2127 if (td->urb->dev->tt && !usb_pipeint(td->urb->pipe) &&
2128 (td->urb->dev->tt->hub != xhci_to_hcd(xhci)->self.root_hub) &&
2129 !(ep->ep_state & EP_CLEARING_TT)) {
2130 ep->ep_state |= EP_CLEARING_TT;
2131 td->urb->ep->hcpriv = td->urb->dev;
2132 if (usb_hub_clear_tt_buffer(td->urb))
2133 ep->ep_state &= ~EP_CLEARING_TT;
2134 }
2135 }
2136
2137 /* Check if an error has halted the endpoint ring. The class driver will
2138 * cleanup the halt for a non-default control endpoint if we indicate a stall.
2139 * However, a babble and other errors also halt the endpoint ring, and the class
2140 * driver won't clear the halt in that case, so we need to issue a Set Transfer
2141 * Ring Dequeue Pointer command manually.
2142 */
2143 static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
2144 struct xhci_ep_ctx *ep_ctx,
2145 unsigned int trb_comp_code)
2146 {
2147 /* TRB completion codes that may require a manual halt cleanup */
2148 if (trb_comp_code == COMP_USB_TRANSACTION_ERROR ||
2149 trb_comp_code == COMP_BABBLE_DETECTED_ERROR ||
2150 trb_comp_code == COMP_SPLIT_TRANSACTION_ERROR)
2151 /* The 0.95 spec says a babbling control endpoint
2152 * is not halted. The 0.96 spec says it is. Some HW
2153 * claims to be 0.95 compliant, but it halts the control
2154 * endpoint anyway. Check if a babble halted the
2155 * endpoint.
2156 */
2157 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_HALTED)
2158 return 1;
2159
2160 return 0;
2161 }
2162
2163 int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
2164 {
2165 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
2166 /* Vendor defined "informational" completion code,
2167 * treat as not-an-error.
2168 */
2169 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
2170 trb_comp_code);
2171 xhci_dbg(xhci, "Treating code as success.\n");
2172 return 1;
2173 }
2174 return 0;
2175 }
2176
2177 static int finish_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep,
2178 struct xhci_ring *ep_ring, struct xhci_td *td,
2179 u32 trb_comp_code)
2180 {
2181 struct xhci_ep_ctx *ep_ctx;
2182
2183 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index);
2184
2185 switch (trb_comp_code) {
2186 case COMP_STOPPED_LENGTH_INVALID:
2187 case COMP_STOPPED_SHORT_PACKET:
2188 case COMP_STOPPED:
2189 /*
2190 * The "Stop Endpoint" completion will take care of any
2191 * stopped TDs. A stopped TD may be restarted, so don't update
2192 * the ring dequeue pointer or take this TD off any lists yet.
2193 */
2194 return 0;
2195 case COMP_USB_TRANSACTION_ERROR:
2196 case COMP_BABBLE_DETECTED_ERROR:
2197 case COMP_SPLIT_TRANSACTION_ERROR:
2198 /*
2199 * If endpoint context state is not halted we might be
2200 * racing with a reset endpoint command issued by a unsuccessful
2201 * stop endpoint completion (context error). In that case the
2202 * td should be on the cancelled list, and EP_HALTED flag set.
2203 *
2204 * Or then it's not halted due to the 0.95 spec stating that a
2205 * babbling control endpoint should not halt. The 0.96 spec
2206 * again says it should. Some HW claims to be 0.95 compliant,
2207 * but it halts the control endpoint anyway.
2208 */
2209 if (GET_EP_CTX_STATE(ep_ctx) != EP_STATE_HALTED) {
2210 /*
2211 * If EP_HALTED is set and TD is on the cancelled list
2212 * the TD and dequeue pointer will be handled by reset
2213 * ep command completion
2214 */
2215 if ((ep->ep_state & EP_HALTED) &&
2216 !list_empty(&td->cancelled_td_list)) {
2217 xhci_dbg(xhci, "Already resolving halted ep for 0x%llx\n",
2218 (unsigned long long)xhci_trb_virt_to_dma(
2219 td->start_seg, td->first_trb));
2220 return 0;
2221 }
2222 /* endpoint not halted, don't reset it */
2223 break;
2224 }
2225 /* Almost same procedure as for STALL_ERROR below */
2226 xhci_clear_hub_tt_buffer(xhci, td, ep);
2227 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET);
2228 return 0;
2229 case COMP_STALL_ERROR:
2230 /*
2231 * xhci internal endpoint state will go to a "halt" state for
2232 * any stall, including default control pipe protocol stall.
2233 * To clear the host side halt we need to issue a reset endpoint
2234 * command, followed by a set dequeue command to move past the
2235 * TD.
2236 * Class drivers clear the device side halt from a functional
2237 * stall later. Hub TT buffer should only be cleared for FS/LS
2238 * devices behind HS hubs for functional stalls.
2239 */
2240 if (ep->ep_index != 0)
2241 xhci_clear_hub_tt_buffer(xhci, td, ep);
2242
2243 xhci_handle_halted_endpoint(xhci, ep, td, EP_HARD_RESET);
2244
2245 return 0; /* xhci_handle_halted_endpoint marked td cancelled */
2246 default:
2247 break;
2248 }
2249
2250 /* Update ring dequeue pointer */
2251 ep_ring->dequeue = td->last_trb;
2252 ep_ring->deq_seg = td->last_trb_seg;
2253 inc_deq(xhci, ep_ring);
2254
2255 return xhci_td_cleanup(xhci, td, ep_ring, td->status);
2256 }
2257
2258 /* sum trb lengths from ring dequeue up to stop_trb, _excluding_ stop_trb */
2259 static int sum_trb_lengths(struct xhci_hcd *xhci, struct xhci_ring *ring,
2260 union xhci_trb *stop_trb)
2261 {
2262 u32 sum;
2263 union xhci_trb *trb = ring->dequeue;
2264 struct xhci_segment *seg = ring->deq_seg;
2265
2266 for (sum = 0; trb != stop_trb; next_trb(xhci, ring, &seg, &trb)) {
2267 if (!trb_is_noop(trb) && !trb_is_link(trb))
2268 sum += TRB_LEN(le32_to_cpu(trb->generic.field[2]));
2269 }
2270 return sum;
2271 }
2272
2273 /*
2274 * Process control tds, update urb status and actual_length.
2275 */
2276 static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep,
2277 struct xhci_ring *ep_ring, struct xhci_td *td,
2278 union xhci_trb *ep_trb, struct xhci_transfer_event *event)
2279 {
2280 struct xhci_ep_ctx *ep_ctx;
2281 u32 trb_comp_code;
2282 u32 remaining, requested;
2283 u32 trb_type;
2284
2285 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(ep_trb->generic.field[3]));
2286 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep->ep_index);
2287 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2288 requested = td->urb->transfer_buffer_length;
2289 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2290
2291 switch (trb_comp_code) {
2292 case COMP_SUCCESS:
2293 if (trb_type != TRB_STATUS) {
2294 xhci_warn(xhci, "WARN: Success on ctrl %s TRB without IOC set?\n",
2295 (trb_type == TRB_DATA) ? "data" : "setup");
2296 td->status = -ESHUTDOWN;
2297 break;
2298 }
2299 td->status = 0;
2300 break;
2301 case COMP_SHORT_PACKET:
2302 td->status = 0;
2303 break;
2304 case COMP_STOPPED_SHORT_PACKET:
2305 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
2306 td->urb->actual_length = remaining;
2307 else
2308 xhci_warn(xhci, "WARN: Stopped Short Packet on ctrl setup or status TRB\n");
2309 goto finish_td;
2310 case COMP_STOPPED:
2311 switch (trb_type) {
2312 case TRB_SETUP:
2313 td->urb->actual_length = 0;
2314 goto finish_td;
2315 case TRB_DATA:
2316 case TRB_NORMAL:
2317 td->urb->actual_length = requested - remaining;
2318 goto finish_td;
2319 case TRB_STATUS:
2320 td->urb->actual_length = requested;
2321 goto finish_td;
2322 default:
2323 xhci_warn(xhci, "WARN: unexpected TRB Type %d\n",
2324 trb_type);
2325 goto finish_td;
2326 }
2327 case COMP_STOPPED_LENGTH_INVALID:
2328 goto finish_td;
2329 default:
2330 if (!xhci_requires_manual_halt_cleanup(xhci,
2331 ep_ctx, trb_comp_code))
2332 break;
2333 xhci_dbg(xhci, "TRB error %u, halted endpoint index = %u\n",
2334 trb_comp_code, ep->ep_index);
2335 fallthrough;
2336 case COMP_STALL_ERROR:
2337 /* Did we transfer part of the data (middle) phase? */
2338 if (trb_type == TRB_DATA || trb_type == TRB_NORMAL)
2339 td->urb->actual_length = requested - remaining;
2340 else if (!td->urb_length_set)
2341 td->urb->actual_length = 0;
2342 goto finish_td;
2343 }
2344
2345 /* stopped at setup stage, no data transferred */
2346 if (trb_type == TRB_SETUP)
2347 goto finish_td;
2348
2349 /*
2350 * if on data stage then update the actual_length of the URB and flag it
2351 * as set, so it won't be overwritten in the event for the last TRB.
2352 */
2353 if (trb_type == TRB_DATA ||
2354 trb_type == TRB_NORMAL) {
2355 td->urb_length_set = true;
2356 td->urb->actual_length = requested - remaining;
2357 xhci_dbg(xhci, "Waiting for status stage event\n");
2358 return 0;
2359 }
2360
2361 /* at status stage */
2362 if (!td->urb_length_set)
2363 td->urb->actual_length = requested;
2364
2365 finish_td:
2366 return finish_td(xhci, ep, ep_ring, td, trb_comp_code);
2367 }
2368
2369 /*
2370 * Process isochronous tds, update urb packet status and actual_length.
2371 */
2372 static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep,
2373 struct xhci_ring *ep_ring, struct xhci_td *td,
2374 union xhci_trb *ep_trb, struct xhci_transfer_event *event)
2375 {
2376 struct urb_priv *urb_priv;
2377 int idx;
2378 struct usb_iso_packet_descriptor *frame;
2379 u32 trb_comp_code;
2380 bool sum_trbs_for_length = false;
2381 u32 remaining, requested, ep_trb_len;
2382 int short_framestatus;
2383
2384 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2385 urb_priv = td->urb->hcpriv;
2386 idx = urb_priv->num_tds_done;
2387 frame = &td->urb->iso_frame_desc[idx];
2388 requested = frame->length;
2389 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2390 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2391 short_framestatus = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2392 -EREMOTEIO : 0;
2393
2394 /* handle completion code */
2395 switch (trb_comp_code) {
2396 case COMP_SUCCESS:
2397 /* Don't overwrite status if TD had an error, see xHCI 4.9.1 */
2398 if (td->error_mid_td)
2399 break;
2400 if (remaining) {
2401 frame->status = short_framestatus;
2402 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2403 sum_trbs_for_length = true;
2404 break;
2405 }
2406 frame->status = 0;
2407 break;
2408 case COMP_SHORT_PACKET:
2409 frame->status = short_framestatus;
2410 sum_trbs_for_length = true;
2411 break;
2412 case COMP_BANDWIDTH_OVERRUN_ERROR:
2413 frame->status = -ECOMM;
2414 break;
2415 case COMP_BABBLE_DETECTED_ERROR:
2416 sum_trbs_for_length = true;
2417 fallthrough;
2418 case COMP_ISOCH_BUFFER_OVERRUN:
2419 frame->status = -EOVERFLOW;
2420 if (ep_trb != td->last_trb)
2421 td->error_mid_td = true;
2422 break;
2423 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2424 case COMP_STALL_ERROR:
2425 frame->status = -EPROTO;
2426 break;
2427 case COMP_USB_TRANSACTION_ERROR:
2428 frame->status = -EPROTO;
2429 sum_trbs_for_length = true;
2430 if (ep_trb != td->last_trb)
2431 td->error_mid_td = true;
2432 break;
2433 case COMP_STOPPED:
2434 sum_trbs_for_length = true;
2435 break;
2436 case COMP_STOPPED_SHORT_PACKET:
2437 /* field normally containing residue now contains tranferred */
2438 frame->status = short_framestatus;
2439 requested = remaining;
2440 break;
2441 case COMP_STOPPED_LENGTH_INVALID:
2442 requested = 0;
2443 remaining = 0;
2444 break;
2445 default:
2446 sum_trbs_for_length = true;
2447 frame->status = -1;
2448 break;
2449 }
2450
2451 if (td->urb_length_set)
2452 goto finish_td;
2453
2454 if (sum_trbs_for_length)
2455 frame->actual_length = sum_trb_lengths(xhci, ep->ring, ep_trb) +
2456 ep_trb_len - remaining;
2457 else
2458 frame->actual_length = requested;
2459
2460 td->urb->actual_length += frame->actual_length;
2461
2462 finish_td:
2463 /* Don't give back TD yet if we encountered an error mid TD */
2464 if (td->error_mid_td && ep_trb != td->last_trb) {
2465 xhci_dbg(xhci, "Error mid isoc TD, wait for final completion event\n");
2466 td->urb_length_set = true;
2467 return 0;
2468 }
2469
2470 return finish_td(xhci, ep, ep_ring, td, trb_comp_code);
2471 }
2472
2473 static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2474 struct xhci_virt_ep *ep, int status)
2475 {
2476 struct urb_priv *urb_priv;
2477 struct usb_iso_packet_descriptor *frame;
2478 int idx;
2479
2480 urb_priv = td->urb->hcpriv;
2481 idx = urb_priv->num_tds_done;
2482 frame = &td->urb->iso_frame_desc[idx];
2483
2484 /* The transfer is partly done. */
2485 frame->status = -EXDEV;
2486
2487 /* calc actual length */
2488 frame->actual_length = 0;
2489
2490 /* Update ring dequeue pointer */
2491 ep->ring->dequeue = td->last_trb;
2492 ep->ring->deq_seg = td->last_trb_seg;
2493 inc_deq(xhci, ep->ring);
2494
2495 return xhci_td_cleanup(xhci, td, ep->ring, status);
2496 }
2497
2498 /*
2499 * Process bulk and interrupt tds, update urb status and actual_length.
2500 */
2501 static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_virt_ep *ep,
2502 struct xhci_ring *ep_ring, struct xhci_td *td,
2503 union xhci_trb *ep_trb, struct xhci_transfer_event *event)
2504 {
2505 struct xhci_slot_ctx *slot_ctx;
2506 u32 trb_comp_code;
2507 u32 remaining, requested, ep_trb_len;
2508
2509 slot_ctx = xhci_get_slot_ctx(xhci, ep->vdev->out_ctx);
2510 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2511 remaining = EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2512 ep_trb_len = TRB_LEN(le32_to_cpu(ep_trb->generic.field[2]));
2513 requested = td->urb->transfer_buffer_length;
2514
2515 switch (trb_comp_code) {
2516 case COMP_SUCCESS:
2517 ep->err_count = 0;
2518 /* handle success with untransferred data as short packet */
2519 if (ep_trb != td->last_trb || remaining) {
2520 xhci_warn(xhci, "WARN Successful completion on short TX\n");
2521 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2522 td->urb->ep->desc.bEndpointAddress,
2523 requested, remaining);
2524 }
2525 td->status = 0;
2526 break;
2527 case COMP_SHORT_PACKET:
2528 xhci_dbg(xhci, "ep %#x - asked for %d bytes, %d bytes untransferred\n",
2529 td->urb->ep->desc.bEndpointAddress,
2530 requested, remaining);
2531 td->status = 0;
2532 break;
2533 case COMP_STOPPED_SHORT_PACKET:
2534 td->urb->actual_length = remaining;
2535 goto finish_td;
2536 case COMP_STOPPED_LENGTH_INVALID:
2537 /* stopped on ep trb with invalid length, exclude it */
2538 ep_trb_len = 0;
2539 remaining = 0;
2540 break;
2541 case COMP_USB_TRANSACTION_ERROR:
2542 if (xhci->quirks & XHCI_NO_SOFT_RETRY ||
2543 (ep->err_count++ > MAX_SOFT_RETRY) ||
2544 le32_to_cpu(slot_ctx->tt_info) & TT_SLOT)
2545 break;
2546
2547 td->status = 0;
2548
2549 xhci_handle_halted_endpoint(xhci, ep, td, EP_SOFT_RESET);
2550 return 0;
2551 default:
2552 /* do nothing */
2553 break;
2554 }
2555
2556 if (ep_trb == td->last_trb)
2557 td->urb->actual_length = requested - remaining;
2558 else
2559 td->urb->actual_length =
2560 sum_trb_lengths(xhci, ep_ring, ep_trb) +
2561 ep_trb_len - remaining;
2562 finish_td:
2563 if (remaining > requested) {
2564 xhci_warn(xhci, "bad transfer trb length %d in event trb\n",
2565 remaining);
2566 td->urb->actual_length = 0;
2567 }
2568
2569 return finish_td(xhci, ep, ep_ring, td, trb_comp_code);
2570 }
2571
2572 /*
2573 * If this function returns an error condition, it means it got a Transfer
2574 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2575 * At this point, the host controller is probably hosed and should be reset.
2576 */
2577 static int handle_tx_event(struct xhci_hcd *xhci,
2578 struct xhci_interrupter *ir,
2579 struct xhci_transfer_event *event)
2580 {
2581 struct xhci_virt_ep *ep;
2582 struct xhci_ring *ep_ring;
2583 unsigned int slot_id;
2584 int ep_index;
2585 struct xhci_td *td = NULL;
2586 dma_addr_t ep_trb_dma;
2587 struct xhci_segment *ep_seg;
2588 union xhci_trb *ep_trb;
2589 int status = -EINPROGRESS;
2590 struct xhci_ep_ctx *ep_ctx;
2591 u32 trb_comp_code;
2592 int td_num = 0;
2593 bool handling_skipped_tds = false;
2594
2595 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2596 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2597 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2598 ep_trb_dma = le64_to_cpu(event->buffer);
2599
2600 ep = xhci_get_virt_ep(xhci, slot_id, ep_index);
2601 if (!ep) {
2602 xhci_err(xhci, "ERROR Invalid Transfer event\n");
2603 goto err_out;
2604 }
2605
2606 ep_ring = xhci_dma_to_transfer_ring(ep, ep_trb_dma);
2607 ep_ctx = xhci_get_ep_ctx(xhci, ep->vdev->out_ctx, ep_index);
2608
2609 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) {
2610 xhci_err(xhci,
2611 "ERROR Transfer event for disabled endpoint slot %u ep %u\n",
2612 slot_id, ep_index);
2613 goto err_out;
2614 }
2615
2616 /* Some transfer events don't always point to a trb, see xhci 4.17.4 */
2617 if (!ep_ring) {
2618 switch (trb_comp_code) {
2619 case COMP_STALL_ERROR:
2620 case COMP_USB_TRANSACTION_ERROR:
2621 case COMP_INVALID_STREAM_TYPE_ERROR:
2622 case COMP_INVALID_STREAM_ID_ERROR:
2623 xhci_dbg(xhci, "Stream transaction error ep %u no id\n",
2624 ep_index);
2625 if (ep->err_count++ > MAX_SOFT_RETRY)
2626 xhci_handle_halted_endpoint(xhci, ep, NULL,
2627 EP_HARD_RESET);
2628 else
2629 xhci_handle_halted_endpoint(xhci, ep, NULL,
2630 EP_SOFT_RESET);
2631 goto cleanup;
2632 case COMP_RING_UNDERRUN:
2633 case COMP_RING_OVERRUN:
2634 case COMP_STOPPED_LENGTH_INVALID:
2635 goto cleanup;
2636 default:
2637 xhci_err(xhci, "ERROR Transfer event for unknown stream ring slot %u ep %u\n",
2638 slot_id, ep_index);
2639 goto err_out;
2640 }
2641 }
2642
2643 /* Count current td numbers if ep->skip is set */
2644 if (ep->skip)
2645 td_num += list_count_nodes(&ep_ring->td_list);
2646
2647 /* Look for common error cases */
2648 switch (trb_comp_code) {
2649 /* Skip codes that require special handling depending on
2650 * transfer type
2651 */
2652 case COMP_SUCCESS:
2653 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2654 break;
2655 if (xhci->quirks & XHCI_TRUST_TX_LENGTH ||
2656 ep_ring->last_td_was_short)
2657 trb_comp_code = COMP_SHORT_PACKET;
2658 else
2659 xhci_warn_ratelimited(xhci,
2660 "WARN Successful completion on short TX for slot %u ep %u: needs XHCI_TRUST_TX_LENGTH quirk?\n",
2661 slot_id, ep_index);
2662 break;
2663 case COMP_SHORT_PACKET:
2664 break;
2665 /* Completion codes for endpoint stopped state */
2666 case COMP_STOPPED:
2667 xhci_dbg(xhci, "Stopped on Transfer TRB for slot %u ep %u\n",
2668 slot_id, ep_index);
2669 break;
2670 case COMP_STOPPED_LENGTH_INVALID:
2671 xhci_dbg(xhci,
2672 "Stopped on No-op or Link TRB for slot %u ep %u\n",
2673 slot_id, ep_index);
2674 break;
2675 case COMP_STOPPED_SHORT_PACKET:
2676 xhci_dbg(xhci,
2677 "Stopped with short packet transfer detected for slot %u ep %u\n",
2678 slot_id, ep_index);
2679 break;
2680 /* Completion codes for endpoint halted state */
2681 case COMP_STALL_ERROR:
2682 xhci_dbg(xhci, "Stalled endpoint for slot %u ep %u\n", slot_id,
2683 ep_index);
2684 status = -EPIPE;
2685 break;
2686 case COMP_SPLIT_TRANSACTION_ERROR:
2687 xhci_dbg(xhci, "Split transaction error for slot %u ep %u\n",
2688 slot_id, ep_index);
2689 status = -EPROTO;
2690 break;
2691 case COMP_USB_TRANSACTION_ERROR:
2692 xhci_dbg(xhci, "Transfer error for slot %u ep %u on endpoint\n",
2693 slot_id, ep_index);
2694 status = -EPROTO;
2695 break;
2696 case COMP_BABBLE_DETECTED_ERROR:
2697 xhci_dbg(xhci, "Babble error for slot %u ep %u on endpoint\n",
2698 slot_id, ep_index);
2699 status = -EOVERFLOW;
2700 break;
2701 /* Completion codes for endpoint error state */
2702 case COMP_TRB_ERROR:
2703 xhci_warn(xhci,
2704 "WARN: TRB error for slot %u ep %u on endpoint\n",
2705 slot_id, ep_index);
2706 status = -EILSEQ;
2707 break;
2708 /* completion codes not indicating endpoint state change */
2709 case COMP_DATA_BUFFER_ERROR:
2710 xhci_warn(xhci,
2711 "WARN: HC couldn't access mem fast enough for slot %u ep %u\n",
2712 slot_id, ep_index);
2713 status = -ENOSR;
2714 break;
2715 case COMP_BANDWIDTH_OVERRUN_ERROR:
2716 xhci_warn(xhci,
2717 "WARN: bandwidth overrun event for slot %u ep %u on endpoint\n",
2718 slot_id, ep_index);
2719 break;
2720 case COMP_ISOCH_BUFFER_OVERRUN:
2721 xhci_warn(xhci,
2722 "WARN: buffer overrun event for slot %u ep %u on endpoint",
2723 slot_id, ep_index);
2724 break;
2725 case COMP_RING_UNDERRUN:
2726 /*
2727 * When the Isoch ring is empty, the xHC will generate
2728 * a Ring Overrun Event for IN Isoch endpoint or Ring
2729 * Underrun Event for OUT Isoch endpoint.
2730 */
2731 xhci_dbg(xhci, "underrun event on endpoint\n");
2732 if (!list_empty(&ep_ring->td_list))
2733 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2734 "still with TDs queued?\n",
2735 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2736 ep_index);
2737 goto cleanup;
2738 case COMP_RING_OVERRUN:
2739 xhci_dbg(xhci, "overrun event on endpoint\n");
2740 if (!list_empty(&ep_ring->td_list))
2741 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2742 "still with TDs queued?\n",
2743 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2744 ep_index);
2745 goto cleanup;
2746 case COMP_MISSED_SERVICE_ERROR:
2747 /*
2748 * When encounter missed service error, one or more isoc tds
2749 * may be missed by xHC.
2750 * Set skip flag of the ep_ring; Complete the missed tds as
2751 * short transfer when process the ep_ring next time.
2752 */
2753 ep->skip = true;
2754 xhci_dbg(xhci,
2755 "Miss service interval error for slot %u ep %u, set skip flag\n",
2756 slot_id, ep_index);
2757 goto cleanup;
2758 case COMP_NO_PING_RESPONSE_ERROR:
2759 ep->skip = true;
2760 xhci_dbg(xhci,
2761 "No Ping response error for slot %u ep %u, Skip one Isoc TD\n",
2762 slot_id, ep_index);
2763 goto cleanup;
2764
2765 case COMP_INCOMPATIBLE_DEVICE_ERROR:
2766 /* needs disable slot command to recover */
2767 xhci_warn(xhci,
2768 "WARN: detect an incompatible device for slot %u ep %u",
2769 slot_id, ep_index);
2770 status = -EPROTO;
2771 break;
2772 default:
2773 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2774 status = 0;
2775 break;
2776 }
2777 xhci_warn(xhci,
2778 "ERROR Unknown event condition %u for slot %u ep %u , HC probably busted\n",
2779 trb_comp_code, slot_id, ep_index);
2780 goto cleanup;
2781 }
2782
2783 do {
2784 /* This TRB should be in the TD at the head of this ring's
2785 * TD list.
2786 */
2787 if (list_empty(&ep_ring->td_list)) {
2788 /*
2789 * Don't print wanings if it's due to a stopped endpoint
2790 * generating an extra completion event if the device
2791 * was suspended. Or, a event for the last TRB of a
2792 * short TD we already got a short event for.
2793 * The short TD is already removed from the TD list.
2794 */
2795
2796 if (!(trb_comp_code == COMP_STOPPED ||
2797 trb_comp_code == COMP_STOPPED_LENGTH_INVALID ||
2798 ep_ring->last_td_was_short)) {
2799 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2800 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2801 ep_index);
2802 }
2803 if (ep->skip) {
2804 ep->skip = false;
2805 xhci_dbg(xhci, "td_list is empty while skip flag set. Clear skip flag for slot %u ep %u.\n",
2806 slot_id, ep_index);
2807 }
2808 if (trb_comp_code == COMP_STALL_ERROR ||
2809 xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
2810 trb_comp_code)) {
2811 xhci_handle_halted_endpoint(xhci, ep, NULL,
2812 EP_HARD_RESET);
2813 }
2814 goto cleanup;
2815 }
2816
2817 /* We've skipped all the TDs on the ep ring when ep->skip set */
2818 if (ep->skip && td_num == 0) {
2819 ep->skip = false;
2820 xhci_dbg(xhci, "All tds on the ep_ring skipped. Clear skip flag for slot %u ep %u.\n",
2821 slot_id, ep_index);
2822 goto cleanup;
2823 }
2824
2825 td = list_first_entry(&ep_ring->td_list, struct xhci_td,
2826 td_list);
2827 if (ep->skip)
2828 td_num--;
2829
2830 /* Is this a TRB in the currently executing TD? */
2831 ep_seg = trb_in_td(xhci, td->start_seg, td->first_trb,
2832 td->last_trb, ep_trb_dma, false);
2833
2834 /*
2835 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2836 * is not in the current TD pointed by ep_ring->dequeue because
2837 * that the hardware dequeue pointer still at the previous TRB
2838 * of the current TD. The previous TRB maybe a Link TD or the
2839 * last TRB of the previous TD. The command completion handle
2840 * will take care the rest.
2841 */
2842 if (!ep_seg && (trb_comp_code == COMP_STOPPED ||
2843 trb_comp_code == COMP_STOPPED_LENGTH_INVALID)) {
2844 goto cleanup;
2845 }
2846
2847 if (!ep_seg) {
2848
2849 if (ep->skip && usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2850 skip_isoc_td(xhci, td, ep, status);
2851 goto cleanup;
2852 }
2853
2854 /*
2855 * Some hosts give a spurious success event after a short
2856 * transfer. Ignore it.
2857 */
2858 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2859 ep_ring->last_td_was_short) {
2860 ep_ring->last_td_was_short = false;
2861 goto cleanup;
2862 }
2863
2864 /*
2865 * xhci 4.10.2 states isoc endpoints should continue
2866 * processing the next TD if there was an error mid TD.
2867 * So host like NEC don't generate an event for the last
2868 * isoc TRB even if the IOC flag is set.
2869 * xhci 4.9.1 states that if there are errors in mult-TRB
2870 * TDs xHC should generate an error for that TRB, and if xHC
2871 * proceeds to the next TD it should genete an event for
2872 * any TRB with IOC flag on the way. Other host follow this.
2873 * So this event might be for the next TD.
2874 */
2875 if (td->error_mid_td &&
2876 !list_is_last(&td->td_list, &ep_ring->td_list)) {
2877 struct xhci_td *td_next = list_next_entry(td, td_list);
2878
2879 ep_seg = trb_in_td(xhci, td_next->start_seg, td_next->first_trb,
2880 td_next->last_trb, ep_trb_dma, false);
2881 if (ep_seg) {
2882 /* give back previous TD, start handling new */
2883 xhci_dbg(xhci, "Missing TD completion event after mid TD error\n");
2884 ep_ring->dequeue = td->last_trb;
2885 ep_ring->deq_seg = td->last_trb_seg;
2886 inc_deq(xhci, ep_ring);
2887 xhci_td_cleanup(xhci, td, ep_ring, td->status);
2888 td = td_next;
2889 }
2890 }
2891
2892 if (!ep_seg) {
2893 /* HC is busted, give up! */
2894 xhci_err(xhci,
2895 "ERROR Transfer event TRB DMA ptr not "
2896 "part of current TD ep_index %d "
2897 "comp_code %u\n", ep_index,
2898 trb_comp_code);
2899 trb_in_td(xhci, td->start_seg, td->first_trb,
2900 td->last_trb, ep_trb_dma, true);
2901 return -ESHUTDOWN;
2902 }
2903 }
2904 if (trb_comp_code == COMP_SHORT_PACKET)
2905 ep_ring->last_td_was_short = true;
2906 else
2907 ep_ring->last_td_was_short = false;
2908
2909 if (ep->skip) {
2910 xhci_dbg(xhci,
2911 "Found td. Clear skip flag for slot %u ep %u.\n",
2912 slot_id, ep_index);
2913 ep->skip = false;
2914 }
2915
2916 ep_trb = &ep_seg->trbs[(ep_trb_dma - ep_seg->dma) /
2917 sizeof(*ep_trb)];
2918
2919 trace_xhci_handle_transfer(ep_ring,
2920 (struct xhci_generic_trb *) ep_trb);
2921
2922 /*
2923 * No-op TRB could trigger interrupts in a case where
2924 * a URB was killed and a STALL_ERROR happens right
2925 * after the endpoint ring stopped. Reset the halted
2926 * endpoint. Otherwise, the endpoint remains stalled
2927 * indefinitely.
2928 */
2929
2930 if (trb_is_noop(ep_trb)) {
2931 if (trb_comp_code == COMP_STALL_ERROR ||
2932 xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
2933 trb_comp_code))
2934 xhci_handle_halted_endpoint(xhci, ep, td,
2935 EP_HARD_RESET);
2936 goto cleanup;
2937 }
2938
2939 td->status = status;
2940
2941 /* update the urb's actual_length and give back to the core */
2942 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2943 process_ctrl_td(xhci, ep, ep_ring, td, ep_trb, event);
2944 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2945 process_isoc_td(xhci, ep, ep_ring, td, ep_trb, event);
2946 else
2947 process_bulk_intr_td(xhci, ep, ep_ring, td, ep_trb, event);
2948 cleanup:
2949 handling_skipped_tds = ep->skip &&
2950 trb_comp_code != COMP_MISSED_SERVICE_ERROR &&
2951 trb_comp_code != COMP_NO_PING_RESPONSE_ERROR;
2952
2953 /*
2954 * If ep->skip is set, it means there are missed tds on the
2955 * endpoint ring need to take care of.
2956 * Process them as short transfer until reach the td pointed by
2957 * the event.
2958 */
2959 } while (handling_skipped_tds);
2960
2961 return 0;
2962
2963 err_out:
2964 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2965 (unsigned long long) xhci_trb_virt_to_dma(
2966 ir->event_ring->deq_seg,
2967 ir->event_ring->dequeue),
2968 lower_32_bits(le64_to_cpu(event->buffer)),
2969 upper_32_bits(le64_to_cpu(event->buffer)),
2970 le32_to_cpu(event->transfer_len),
2971 le32_to_cpu(event->flags));
2972 return -ENODEV;
2973 }
2974
2975 /*
2976 * This function handles one OS-owned event on the event ring. It may drop
2977 * xhci->lock between event processing (e.g. to pass up port status changes).
2978 */
2979 static int xhci_handle_event_trb(struct xhci_hcd *xhci, struct xhci_interrupter *ir,
2980 union xhci_trb *event)
2981 {
2982 u32 trb_type;
2983
2984 trace_xhci_handle_event(ir->event_ring, &event->generic);
2985
2986 /*
2987 * Barrier between reading the TRB_CYCLE (valid) flag before, and any
2988 * speculative reads of the event's flags/data below.
2989 */
2990 rmb();
2991 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->event_cmd.flags));
2992 /* FIXME: Handle more event types. */
2993
2994 switch (trb_type) {
2995 case TRB_COMPLETION:
2996 handle_cmd_completion(xhci, &event->event_cmd);
2997 break;
2998 case TRB_PORT_STATUS:
2999 handle_port_status(xhci, ir, event);
3000 break;
3001 case TRB_TRANSFER:
3002 handle_tx_event(xhci, ir, &event->trans_event);
3003 break;
3004 case TRB_DEV_NOTE:
3005 handle_device_notification(xhci, event);
3006 break;
3007 default:
3008 if (trb_type >= TRB_VENDOR_DEFINED_LOW)
3009 handle_vendor_event(xhci, event, trb_type);
3010 else
3011 xhci_warn(xhci, "ERROR unknown event type %d\n", trb_type);
3012 }
3013 /* Any of the above functions may drop and re-acquire the lock, so check
3014 * to make sure a watchdog timer didn't mark the host as non-responsive.
3015 */
3016 if (xhci->xhc_state & XHCI_STATE_DYING) {
3017 xhci_dbg(xhci, "xHCI host dying, returning from event handler.\n");
3018 return -ENODEV;
3019 }
3020
3021 return 0;
3022 }
3023
3024 /*
3025 * Update Event Ring Dequeue Pointer:
3026 * - When all events have finished
3027 * - To avoid "Event Ring Full Error" condition
3028 */
3029 static void xhci_update_erst_dequeue(struct xhci_hcd *xhci,
3030 struct xhci_interrupter *ir,
3031 bool clear_ehb)
3032 {
3033 u64 temp_64;
3034 dma_addr_t deq;
3035
3036 temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
3037 deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg,
3038 ir->event_ring->dequeue);
3039 if (deq == 0)
3040 xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr\n");
3041 /*
3042 * Per 4.9.4, Software writes to the ERDP register shall always advance
3043 * the Event Ring Dequeue Pointer value.
3044 */
3045 if ((temp_64 & ERST_PTR_MASK) == (deq & ERST_PTR_MASK) && !clear_ehb)
3046 return;
3047
3048 /* Update HC event ring dequeue pointer */
3049 temp_64 = ir->event_ring->deq_seg->num & ERST_DESI_MASK;
3050 temp_64 |= deq & ERST_PTR_MASK;
3051
3052 /* Clear the event handler busy flag (RW1C) */
3053 if (clear_ehb)
3054 temp_64 |= ERST_EHB;
3055 xhci_write_64(xhci, temp_64, &ir->ir_set->erst_dequeue);
3056 }
3057
3058 /* Clear the interrupt pending bit for a specific interrupter. */
3059 static void xhci_clear_interrupt_pending(struct xhci_hcd *xhci,
3060 struct xhci_interrupter *ir)
3061 {
3062 if (!ir->ip_autoclear) {
3063 u32 irq_pending;
3064
3065 irq_pending = readl(&ir->ir_set->irq_pending);
3066 irq_pending |= IMAN_IP;
3067 writel(irq_pending, &ir->ir_set->irq_pending);
3068 }
3069 }
3070
3071 /*
3072 * Handle all OS-owned events on an interrupter event ring. It may drop
3073 * and reaquire xhci->lock between event processing.
3074 */
3075 static int xhci_handle_events(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
3076 {
3077 int event_loop = 0;
3078 int err;
3079 u64 temp;
3080
3081 xhci_clear_interrupt_pending(xhci, ir);
3082
3083 /* Event ring hasn't been allocated yet. */
3084 if (!ir->event_ring || !ir->event_ring->dequeue) {
3085 xhci_err(xhci, "ERROR interrupter event ring not ready\n");
3086 return -ENOMEM;
3087 }
3088
3089 if (xhci->xhc_state & XHCI_STATE_DYING ||
3090 xhci->xhc_state & XHCI_STATE_HALTED) {
3091 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. Shouldn't IRQs be disabled?\n");
3092
3093 /* Clear the event handler busy flag (RW1C) */
3094 temp = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
3095 xhci_write_64(xhci, temp | ERST_EHB, &ir->ir_set->erst_dequeue);
3096 return -ENODEV;
3097 }
3098
3099 /* Process all OS owned event TRBs on this event ring */
3100 while (unhandled_event_trb(ir->event_ring)) {
3101 err = xhci_handle_event_trb(xhci, ir, ir->event_ring->dequeue);
3102
3103 /*
3104 * If half a segment of events have been handled in one go then
3105 * update ERDP, and force isoc trbs to interrupt more often
3106 */
3107 if (event_loop++ > TRBS_PER_SEGMENT / 2) {
3108 xhci_update_erst_dequeue(xhci, ir, false);
3109
3110 if (ir->isoc_bei_interval > AVOID_BEI_INTERVAL_MIN)
3111 ir->isoc_bei_interval = ir->isoc_bei_interval / 2;
3112
3113 event_loop = 0;
3114 }
3115
3116 /* Update SW event ring dequeue pointer */
3117 inc_deq(xhci, ir->event_ring);
3118
3119 if (err)
3120 break;
3121 }
3122
3123 xhci_update_erst_dequeue(xhci, ir, true);
3124
3125 return 0;
3126 }
3127
3128 /*
3129 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
3130 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
3131 * indicators of an event TRB error, but we check the status *first* to be safe.
3132 */
3133 irqreturn_t xhci_irq(struct usb_hcd *hcd)
3134 {
3135 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3136 irqreturn_t ret = IRQ_NONE;
3137 u32 status;
3138
3139 spin_lock(&xhci->lock);
3140 /* Check if the xHC generated the interrupt, or the irq is shared */
3141 status = readl(&xhci->op_regs->status);
3142 if (status == ~(u32)0) {
3143 xhci_hc_died(xhci);
3144 ret = IRQ_HANDLED;
3145 goto out;
3146 }
3147
3148 if (!(status & STS_EINT))
3149 goto out;
3150
3151 if (status & STS_HCE) {
3152 xhci_warn(xhci, "WARNING: Host Controller Error\n");
3153 goto out;
3154 }
3155
3156 if (status & STS_FATAL) {
3157 xhci_warn(xhci, "WARNING: Host System Error\n");
3158 xhci_halt(xhci);
3159 ret = IRQ_HANDLED;
3160 goto out;
3161 }
3162
3163 /*
3164 * Clear the op reg interrupt status first,
3165 * so we can receive interrupts from other MSI-X interrupters.
3166 * Write 1 to clear the interrupt status.
3167 */
3168 status |= STS_EINT;
3169 writel(status, &xhci->op_regs->status);
3170 ret = IRQ_HANDLED;
3171
3172 /* This is the handler of the primary interrupter */
3173 xhci_handle_events(xhci, xhci->interrupters[0]);
3174 out:
3175 spin_unlock(&xhci->lock);
3176
3177 return ret;
3178 }
3179
3180 irqreturn_t xhci_msi_irq(int irq, void *hcd)
3181 {
3182 return xhci_irq(hcd);
3183 }
3184 EXPORT_SYMBOL_GPL(xhci_msi_irq);
3185
3186 /**** Endpoint Ring Operations ****/
3187
3188 /*
3189 * Generic function for queueing a TRB on a ring.
3190 * The caller must have checked to make sure there's room on the ring.
3191 *
3192 * @more_trbs_coming: Will you enqueue more TRBs before calling
3193 * prepare_transfer()?
3194 */
3195 static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
3196 bool more_trbs_coming,
3197 u32 field1, u32 field2, u32 field3, u32 field4)
3198 {
3199 struct xhci_generic_trb *trb;
3200
3201 trb = &ring->enqueue->generic;
3202 trb->field[0] = cpu_to_le32(field1);
3203 trb->field[1] = cpu_to_le32(field2);
3204 trb->field[2] = cpu_to_le32(field3);
3205 /* make sure TRB is fully written before giving it to the controller */
3206 wmb();
3207 trb->field[3] = cpu_to_le32(field4);
3208
3209 trace_xhci_queue_trb(ring, trb);
3210
3211 inc_enq(xhci, ring, more_trbs_coming);
3212 }
3213
3214 /*
3215 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
3216 * expand ring if it start to be full.
3217 */
3218 static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
3219 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
3220 {
3221 unsigned int link_trb_count = 0;
3222 unsigned int new_segs = 0;
3223
3224 /* Make sure the endpoint has been added to xHC schedule */
3225 switch (ep_state) {
3226 case EP_STATE_DISABLED:
3227 /*
3228 * USB core changed config/interfaces without notifying us,
3229 * or hardware is reporting the wrong state.
3230 */
3231 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
3232 return -ENOENT;
3233 case EP_STATE_ERROR:
3234 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
3235 /* FIXME event handling code for error needs to clear it */
3236 /* XXX not sure if this should be -ENOENT or not */
3237 return -EINVAL;
3238 case EP_STATE_HALTED:
3239 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
3240 break;
3241 case EP_STATE_STOPPED:
3242 case EP_STATE_RUNNING:
3243 break;
3244 default:
3245 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
3246 /*
3247 * FIXME issue Configure Endpoint command to try to get the HC
3248 * back into a known state.
3249 */
3250 return -EINVAL;
3251 }
3252
3253 if (ep_ring != xhci->cmd_ring) {
3254 new_segs = xhci_ring_expansion_needed(xhci, ep_ring, num_trbs);
3255 } else if (xhci_num_trbs_free(xhci, ep_ring) <= num_trbs) {
3256 xhci_err(xhci, "Do not support expand command ring\n");
3257 return -ENOMEM;
3258 }
3259
3260 if (new_segs) {
3261 xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
3262 "ERROR no room on ep ring, try ring expansion");
3263 if (xhci_ring_expansion(xhci, ep_ring, new_segs, mem_flags)) {
3264 xhci_err(xhci, "Ring expansion failed\n");
3265 return -ENOMEM;
3266 }
3267 }
3268
3269 while (trb_is_link(ep_ring->enqueue)) {
3270 /* If we're not dealing with 0.95 hardware or isoc rings
3271 * on AMD 0.96 host, clear the chain bit.
3272 */
3273 if (!xhci_link_trb_quirk(xhci) &&
3274 !(ep_ring->type == TYPE_ISOC &&
3275 (xhci->quirks & XHCI_AMD_0x96_HOST)))
3276 ep_ring->enqueue->link.control &=
3277 cpu_to_le32(~TRB_CHAIN);
3278 else
3279 ep_ring->enqueue->link.control |=
3280 cpu_to_le32(TRB_CHAIN);
3281
3282 wmb();
3283 ep_ring->enqueue->link.control ^= cpu_to_le32(TRB_CYCLE);
3284
3285 /* Toggle the cycle bit after the last ring segment. */
3286 if (link_trb_toggles_cycle(ep_ring->enqueue))
3287 ep_ring->cycle_state ^= 1;
3288
3289 ep_ring->enq_seg = ep_ring->enq_seg->next;
3290 ep_ring->enqueue = ep_ring->enq_seg->trbs;
3291
3292 /* prevent infinite loop if all first trbs are link trbs */
3293 if (link_trb_count++ > ep_ring->num_segs) {
3294 xhci_warn(xhci, "Ring is an endless link TRB loop\n");
3295 return -EINVAL;
3296 }
3297 }
3298
3299 if (last_trb_on_seg(ep_ring->enq_seg, ep_ring->enqueue)) {
3300 xhci_warn(xhci, "Missing link TRB at end of ring segment\n");
3301 return -EINVAL;
3302 }
3303
3304 return 0;
3305 }
3306
3307 static int prepare_transfer(struct xhci_hcd *xhci,
3308 struct xhci_virt_device *xdev,
3309 unsigned int ep_index,
3310 unsigned int stream_id,
3311 unsigned int num_trbs,
3312 struct urb *urb,
3313 unsigned int td_index,
3314 gfp_t mem_flags)
3315 {
3316 int ret;
3317 struct urb_priv *urb_priv;
3318 struct xhci_td *td;
3319 struct xhci_ring *ep_ring;
3320 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3321
3322 ep_ring = xhci_triad_to_transfer_ring(xhci, xdev->slot_id, ep_index,
3323 stream_id);
3324 if (!ep_ring) {
3325 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
3326 stream_id);
3327 return -EINVAL;
3328 }
3329
3330 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
3331 num_trbs, mem_flags);
3332 if (ret)
3333 return ret;
3334
3335 urb_priv = urb->hcpriv;
3336 td = &urb_priv->td[td_index];
3337
3338 INIT_LIST_HEAD(&td->td_list);
3339 INIT_LIST_HEAD(&td->cancelled_td_list);
3340
3341 if (td_index == 0) {
3342 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
3343 if (unlikely(ret))
3344 return ret;
3345 }
3346
3347 td->urb = urb;
3348 /* Add this TD to the tail of the endpoint ring's TD list */
3349 list_add_tail(&td->td_list, &ep_ring->td_list);
3350 td->start_seg = ep_ring->enq_seg;
3351 td->first_trb = ep_ring->enqueue;
3352
3353 return 0;
3354 }
3355
3356 unsigned int count_trbs(u64 addr, u64 len)
3357 {
3358 unsigned int num_trbs;
3359
3360 num_trbs = DIV_ROUND_UP(len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3361 TRB_MAX_BUFF_SIZE);
3362 if (num_trbs == 0)
3363 num_trbs++;
3364
3365 return num_trbs;
3366 }
3367
3368 static inline unsigned int count_trbs_needed(struct urb *urb)
3369 {
3370 return count_trbs(urb->transfer_dma, urb->transfer_buffer_length);
3371 }
3372
3373 static unsigned int count_sg_trbs_needed(struct urb *urb)
3374 {
3375 struct scatterlist *sg;
3376 unsigned int i, len, full_len, num_trbs = 0;
3377
3378 full_len = urb->transfer_buffer_length;
3379
3380 for_each_sg(urb->sg, sg, urb->num_mapped_sgs, i) {
3381 len = sg_dma_len(sg);
3382 num_trbs += count_trbs(sg_dma_address(sg), len);
3383 len = min_t(unsigned int, len, full_len);
3384 full_len -= len;
3385 if (full_len == 0)
3386 break;
3387 }
3388
3389 return num_trbs;
3390 }
3391
3392 static unsigned int count_isoc_trbs_needed(struct urb *urb, int i)
3393 {
3394 u64 addr, len;
3395
3396 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3397 len = urb->iso_frame_desc[i].length;
3398
3399 return count_trbs(addr, len);
3400 }
3401
3402 static void check_trb_math(struct urb *urb, int running_total)
3403 {
3404 if (unlikely(running_total != urb->transfer_buffer_length))
3405 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
3406 "queued %#x (%d), asked for %#x (%d)\n",
3407 __func__,
3408 urb->ep->desc.bEndpointAddress,
3409 running_total, running_total,
3410 urb->transfer_buffer_length,
3411 urb->transfer_buffer_length);
3412 }
3413
3414 static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3415 unsigned int ep_index, unsigned int stream_id, int start_cycle,
3416 struct xhci_generic_trb *start_trb)
3417 {
3418 /*
3419 * Pass all the TRBs to the hardware at once and make sure this write
3420 * isn't reordered.
3421 */
3422 wmb();
3423 if (start_cycle)
3424 start_trb->field[3] |= cpu_to_le32(start_cycle);
3425 else
3426 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3427 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3428 }
3429
3430 static void check_interval(struct xhci_hcd *xhci, struct urb *urb,
3431 struct xhci_ep_ctx *ep_ctx)
3432 {
3433 int xhci_interval;
3434 int ep_interval;
3435
3436 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3437 ep_interval = urb->interval;
3438
3439 /* Convert to microframes */
3440 if (urb->dev->speed == USB_SPEED_LOW ||
3441 urb->dev->speed == USB_SPEED_FULL)
3442 ep_interval *= 8;
3443
3444 /* FIXME change this to a warning and a suggestion to use the new API
3445 * to set the polling interval (once the API is added).
3446 */
3447 if (xhci_interval != ep_interval) {
3448 dev_dbg_ratelimited(&urb->dev->dev,
3449 "Driver uses different interval (%d microframe%s) than xHCI (%d microframe%s)\n",
3450 ep_interval, ep_interval == 1 ? "" : "s",
3451 xhci_interval, xhci_interval == 1 ? "" : "s");
3452 urb->interval = xhci_interval;
3453 /* Convert back to frames for LS/FS devices */
3454 if (urb->dev->speed == USB_SPEED_LOW ||
3455 urb->dev->speed == USB_SPEED_FULL)
3456 urb->interval /= 8;
3457 }
3458 }
3459
3460 /*
3461 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
3462 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
3463 * (comprised of sg list entries) can take several service intervals to
3464 * transmit.
3465 */
3466 int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3467 struct urb *urb, int slot_id, unsigned int ep_index)
3468 {
3469 struct xhci_ep_ctx *ep_ctx;
3470
3471 ep_ctx = xhci_get_ep_ctx(xhci, xhci->devs[slot_id]->out_ctx, ep_index);
3472 check_interval(xhci, urb, ep_ctx);
3473
3474 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3475 }
3476
3477 /*
3478 * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3479 * packets remaining in the TD (*not* including this TRB).
3480 *
3481 * Total TD packet count = total_packet_count =
3482 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3483 *
3484 * Packets transferred up to and including this TRB = packets_transferred =
3485 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3486 *
3487 * TD size = total_packet_count - packets_transferred
3488 *
3489 * For xHCI 0.96 and older, TD size field should be the remaining bytes
3490 * including this TRB, right shifted by 10
3491 *
3492 * For all hosts it must fit in bits 21:17, so it can't be bigger than 31.
3493 * This is taken care of in the TRB_TD_SIZE() macro
3494 *
3495 * The last TRB in a TD must have the TD size set to zero.
3496 */
3497 static u32 xhci_td_remainder(struct xhci_hcd *xhci, int transferred,
3498 int trb_buff_len, unsigned int td_total_len,
3499 struct urb *urb, bool more_trbs_coming)
3500 {
3501 u32 maxp, total_packet_count;
3502
3503 /* MTK xHCI 0.96 contains some features from 1.0 */
3504 if (xhci->hci_version < 0x100 && !(xhci->quirks & XHCI_MTK_HOST))
3505 return ((td_total_len - transferred) >> 10);
3506
3507 /* One TRB with a zero-length data packet. */
3508 if (!more_trbs_coming || (transferred == 0 && trb_buff_len == 0) ||
3509 trb_buff_len == td_total_len)
3510 return 0;
3511
3512 /* for MTK xHCI 0.96, TD size include this TRB, but not in 1.x */
3513 if ((xhci->quirks & XHCI_MTK_HOST) && (xhci->hci_version < 0x100))
3514 trb_buff_len = 0;
3515
3516 maxp = usb_endpoint_maxp(&urb->ep->desc);
3517 total_packet_count = DIV_ROUND_UP(td_total_len, maxp);
3518
3519 /* Queueing functions don't count the current TRB into transferred */
3520 return (total_packet_count - ((transferred + trb_buff_len) / maxp));
3521 }
3522
3523
3524 static int xhci_align_td(struct xhci_hcd *xhci, struct urb *urb, u32 enqd_len,
3525 u32 *trb_buff_len, struct xhci_segment *seg)
3526 {
3527 struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
3528 unsigned int unalign;
3529 unsigned int max_pkt;
3530 u32 new_buff_len;
3531 size_t len;
3532
3533 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
3534 unalign = (enqd_len + *trb_buff_len) % max_pkt;
3535
3536 /* we got lucky, last normal TRB data on segment is packet aligned */
3537 if (unalign == 0)
3538 return 0;
3539
3540 xhci_dbg(xhci, "Unaligned %d bytes, buff len %d\n",
3541 unalign, *trb_buff_len);
3542
3543 /* is the last nornal TRB alignable by splitting it */
3544 if (*trb_buff_len > unalign) {
3545 *trb_buff_len -= unalign;
3546 xhci_dbg(xhci, "split align, new buff len %d\n", *trb_buff_len);
3547 return 0;
3548 }
3549
3550 /*
3551 * We want enqd_len + trb_buff_len to sum up to a number aligned to
3552 * number which is divisible by the endpoint's wMaxPacketSize. IOW:
3553 * (size of currently enqueued TRBs + remainder) % wMaxPacketSize == 0.
3554 */
3555 new_buff_len = max_pkt - (enqd_len % max_pkt);
3556
3557 if (new_buff_len > (urb->transfer_buffer_length - enqd_len))
3558 new_buff_len = (urb->transfer_buffer_length - enqd_len);
3559
3560 /* create a max max_pkt sized bounce buffer pointed to by last trb */
3561 if (usb_urb_dir_out(urb)) {
3562 if (urb->num_sgs) {
3563 len = sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
3564 seg->bounce_buf, new_buff_len, enqd_len);
3565 if (len != new_buff_len)
3566 xhci_warn(xhci, "WARN Wrong bounce buffer write length: %zu != %d\n",
3567 len, new_buff_len);
3568 } else {
3569 memcpy(seg->bounce_buf, urb->transfer_buffer + enqd_len, new_buff_len);
3570 }
3571
3572 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3573 max_pkt, DMA_TO_DEVICE);
3574 } else {
3575 seg->bounce_dma = dma_map_single(dev, seg->bounce_buf,
3576 max_pkt, DMA_FROM_DEVICE);
3577 }
3578
3579 if (dma_mapping_error(dev, seg->bounce_dma)) {
3580 /* try without aligning. Some host controllers survive */
3581 xhci_warn(xhci, "Failed mapping bounce buffer, not aligning\n");
3582 return 0;
3583 }
3584 *trb_buff_len = new_buff_len;
3585 seg->bounce_len = new_buff_len;
3586 seg->bounce_offs = enqd_len;
3587
3588 xhci_dbg(xhci, "Bounce align, new buff len %d\n", *trb_buff_len);
3589
3590 return 1;
3591 }
3592
3593 /* This is very similar to what ehci-q.c qtd_fill() does */
3594 int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3595 struct urb *urb, int slot_id, unsigned int ep_index)
3596 {
3597 struct xhci_ring *ring;
3598 struct urb_priv *urb_priv;
3599 struct xhci_td *td;
3600 struct xhci_generic_trb *start_trb;
3601 struct scatterlist *sg = NULL;
3602 bool more_trbs_coming = true;
3603 bool need_zero_pkt = false;
3604 bool first_trb = true;
3605 unsigned int num_trbs;
3606 unsigned int start_cycle, num_sgs = 0;
3607 unsigned int enqd_len, block_len, trb_buff_len, full_len;
3608 int sent_len, ret;
3609 u32 field, length_field, remainder;
3610 u64 addr, send_addr;
3611
3612 ring = xhci_urb_to_transfer_ring(xhci, urb);
3613 if (!ring)
3614 return -EINVAL;
3615
3616 full_len = urb->transfer_buffer_length;
3617 /* If we have scatter/gather list, we use it. */
3618 if (urb->num_sgs && !(urb->transfer_flags & URB_DMA_MAP_SINGLE)) {
3619 num_sgs = urb->num_mapped_sgs;
3620 sg = urb->sg;
3621 addr = (u64) sg_dma_address(sg);
3622 block_len = sg_dma_len(sg);
3623 num_trbs = count_sg_trbs_needed(urb);
3624 } else {
3625 num_trbs = count_trbs_needed(urb);
3626 addr = (u64) urb->transfer_dma;
3627 block_len = full_len;
3628 }
3629 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3630 ep_index, urb->stream_id,
3631 num_trbs, urb, 0, mem_flags);
3632 if (unlikely(ret < 0))
3633 return ret;
3634
3635 urb_priv = urb->hcpriv;
3636
3637 /* Deal with URB_ZERO_PACKET - need one more td/trb */
3638 if (urb->transfer_flags & URB_ZERO_PACKET && urb_priv->num_tds > 1)
3639 need_zero_pkt = true;
3640
3641 td = &urb_priv->td[0];
3642
3643 /*
3644 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3645 * until we've finished creating all the other TRBs. The ring's cycle
3646 * state may change as we enqueue the other TRBs, so save it too.
3647 */
3648 start_trb = &ring->enqueue->generic;
3649 start_cycle = ring->cycle_state;
3650 send_addr = addr;
3651
3652 /* Queue the TRBs, even if they are zero-length */
3653 for (enqd_len = 0; first_trb || enqd_len < full_len;
3654 enqd_len += trb_buff_len) {
3655 field = TRB_TYPE(TRB_NORMAL);
3656
3657 /* TRB buffer should not cross 64KB boundaries */
3658 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
3659 trb_buff_len = min_t(unsigned int, trb_buff_len, block_len);
3660
3661 if (enqd_len + trb_buff_len > full_len)
3662 trb_buff_len = full_len - enqd_len;
3663
3664 /* Don't change the cycle bit of the first TRB until later */
3665 if (first_trb) {
3666 first_trb = false;
3667 if (start_cycle == 0)
3668 field |= TRB_CYCLE;
3669 } else
3670 field |= ring->cycle_state;
3671
3672 /* Chain all the TRBs together; clear the chain bit in the last
3673 * TRB to indicate it's the last TRB in the chain.
3674 */
3675 if (enqd_len + trb_buff_len < full_len) {
3676 field |= TRB_CHAIN;
3677 if (trb_is_link(ring->enqueue + 1)) {
3678 if (xhci_align_td(xhci, urb, enqd_len,
3679 &trb_buff_len,
3680 ring->enq_seg)) {
3681 send_addr = ring->enq_seg->bounce_dma;
3682 /* assuming TD won't span 2 segs */
3683 td->bounce_seg = ring->enq_seg;
3684 }
3685 }
3686 }
3687 if (enqd_len + trb_buff_len >= full_len) {
3688 field &= ~TRB_CHAIN;
3689 field |= TRB_IOC;
3690 more_trbs_coming = false;
3691 td->last_trb = ring->enqueue;
3692 td->last_trb_seg = ring->enq_seg;
3693 if (xhci_urb_suitable_for_idt(urb)) {
3694 memcpy(&send_addr, urb->transfer_buffer,
3695 trb_buff_len);
3696 le64_to_cpus(&send_addr);
3697 field |= TRB_IDT;
3698 }
3699 }
3700
3701 /* Only set interrupt on short packet for IN endpoints */
3702 if (usb_urb_dir_in(urb))
3703 field |= TRB_ISP;
3704
3705 /* Set the TRB length, TD size, and interrupter fields. */
3706 remainder = xhci_td_remainder(xhci, enqd_len, trb_buff_len,
3707 full_len, urb, more_trbs_coming);
3708
3709 length_field = TRB_LEN(trb_buff_len) |
3710 TRB_TD_SIZE(remainder) |
3711 TRB_INTR_TARGET(0);
3712
3713 queue_trb(xhci, ring, more_trbs_coming | need_zero_pkt,
3714 lower_32_bits(send_addr),
3715 upper_32_bits(send_addr),
3716 length_field,
3717 field);
3718 td->num_trbs++;
3719 addr += trb_buff_len;
3720 sent_len = trb_buff_len;
3721
3722 while (sg && sent_len >= block_len) {
3723 /* New sg entry */
3724 --num_sgs;
3725 sent_len -= block_len;
3726 sg = sg_next(sg);
3727 if (num_sgs != 0 && sg) {
3728 block_len = sg_dma_len(sg);
3729 addr = (u64) sg_dma_address(sg);
3730 addr += sent_len;
3731 }
3732 }
3733 block_len -= sent_len;
3734 send_addr = addr;
3735 }
3736
3737 if (need_zero_pkt) {
3738 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3739 ep_index, urb->stream_id,
3740 1, urb, 1, mem_flags);
3741 urb_priv->td[1].last_trb = ring->enqueue;
3742 urb_priv->td[1].last_trb_seg = ring->enq_seg;
3743 field = TRB_TYPE(TRB_NORMAL) | ring->cycle_state | TRB_IOC;
3744 queue_trb(xhci, ring, 0, 0, 0, TRB_INTR_TARGET(0), field);
3745 urb_priv->td[1].num_trbs++;
3746 }
3747
3748 check_trb_math(urb, enqd_len);
3749 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3750 start_cycle, start_trb);
3751 return 0;
3752 }
3753
3754 /* Caller must have locked xhci->lock */
3755 int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3756 struct urb *urb, int slot_id, unsigned int ep_index)
3757 {
3758 struct xhci_ring *ep_ring;
3759 int num_trbs;
3760 int ret;
3761 struct usb_ctrlrequest *setup;
3762 struct xhci_generic_trb *start_trb;
3763 int start_cycle;
3764 u32 field;
3765 struct urb_priv *urb_priv;
3766 struct xhci_td *td;
3767
3768 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3769 if (!ep_ring)
3770 return -EINVAL;
3771
3772 /*
3773 * Need to copy setup packet into setup TRB, so we can't use the setup
3774 * DMA address.
3775 */
3776 if (!urb->setup_packet)
3777 return -EINVAL;
3778
3779 /* 1 TRB for setup, 1 for status */
3780 num_trbs = 2;
3781 /*
3782 * Don't need to check if we need additional event data and normal TRBs,
3783 * since data in control transfers will never get bigger than 16MB
3784 * XXX: can we get a buffer that crosses 64KB boundaries?
3785 */
3786 if (urb->transfer_buffer_length > 0)
3787 num_trbs++;
3788 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3789 ep_index, urb->stream_id,
3790 num_trbs, urb, 0, mem_flags);
3791 if (ret < 0)
3792 return ret;
3793
3794 urb_priv = urb->hcpriv;
3795 td = &urb_priv->td[0];
3796 td->num_trbs = num_trbs;
3797
3798 /*
3799 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3800 * until we've finished creating all the other TRBs. The ring's cycle
3801 * state may change as we enqueue the other TRBs, so save it too.
3802 */
3803 start_trb = &ep_ring->enqueue->generic;
3804 start_cycle = ep_ring->cycle_state;
3805
3806 /* Queue setup TRB - see section 6.4.1.2.1 */
3807 /* FIXME better way to translate setup_packet into two u32 fields? */
3808 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3809 field = 0;
3810 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3811 if (start_cycle == 0)
3812 field |= 0x1;
3813
3814 /* xHCI 1.0/1.1 6.4.1.2.1: Transfer Type field */
3815 if ((xhci->hci_version >= 0x100) || (xhci->quirks & XHCI_MTK_HOST)) {
3816 if (urb->transfer_buffer_length > 0) {
3817 if (setup->bRequestType & USB_DIR_IN)
3818 field |= TRB_TX_TYPE(TRB_DATA_IN);
3819 else
3820 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3821 }
3822 }
3823
3824 queue_trb(xhci, ep_ring, true,
3825 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3826 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3827 TRB_LEN(8) | TRB_INTR_TARGET(0),
3828 /* Immediate data in pointer */
3829 field);
3830
3831 /* If there's data, queue data TRBs */
3832 /* Only set interrupt on short packet for IN endpoints */
3833 if (usb_urb_dir_in(urb))
3834 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3835 else
3836 field = TRB_TYPE(TRB_DATA);
3837
3838 if (urb->transfer_buffer_length > 0) {
3839 u32 length_field, remainder;
3840 u64 addr;
3841
3842 if (xhci_urb_suitable_for_idt(urb)) {
3843 memcpy(&addr, urb->transfer_buffer,
3844 urb->transfer_buffer_length);
3845 le64_to_cpus(&addr);
3846 field |= TRB_IDT;
3847 } else {
3848 addr = (u64) urb->transfer_dma;
3849 }
3850
3851 remainder = xhci_td_remainder(xhci, 0,
3852 urb->transfer_buffer_length,
3853 urb->transfer_buffer_length,
3854 urb, 1);
3855 length_field = TRB_LEN(urb->transfer_buffer_length) |
3856 TRB_TD_SIZE(remainder) |
3857 TRB_INTR_TARGET(0);
3858 if (setup->bRequestType & USB_DIR_IN)
3859 field |= TRB_DIR_IN;
3860 queue_trb(xhci, ep_ring, true,
3861 lower_32_bits(addr),
3862 upper_32_bits(addr),
3863 length_field,
3864 field | ep_ring->cycle_state);
3865 }
3866
3867 /* Save the DMA address of the last TRB in the TD */
3868 td->last_trb = ep_ring->enqueue;
3869 td->last_trb_seg = ep_ring->enq_seg;
3870
3871 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3872 /* If the device sent data, the status stage is an OUT transfer */
3873 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3874 field = 0;
3875 else
3876 field = TRB_DIR_IN;
3877 queue_trb(xhci, ep_ring, false,
3878 0,
3879 0,
3880 TRB_INTR_TARGET(0),
3881 /* Event on completion */
3882 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3883
3884 giveback_first_trb(xhci, slot_id, ep_index, 0,
3885 start_cycle, start_trb);
3886 return 0;
3887 }
3888
3889 /*
3890 * The transfer burst count field of the isochronous TRB defines the number of
3891 * bursts that are required to move all packets in this TD. Only SuperSpeed
3892 * devices can burst up to bMaxBurst number of packets per service interval.
3893 * This field is zero based, meaning a value of zero in the field means one
3894 * burst. Basically, for everything but SuperSpeed devices, this field will be
3895 * zero. Only xHCI 1.0 host controllers support this field.
3896 */
3897 static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3898 struct urb *urb, unsigned int total_packet_count)
3899 {
3900 unsigned int max_burst;
3901
3902 if (xhci->hci_version < 0x100 || urb->dev->speed < USB_SPEED_SUPER)
3903 return 0;
3904
3905 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3906 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3907 }
3908
3909 /*
3910 * Returns the number of packets in the last "burst" of packets. This field is
3911 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3912 * the last burst packet count is equal to the total number of packets in the
3913 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3914 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3915 * contain 1 to (bMaxBurst + 1) packets.
3916 */
3917 static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3918 struct urb *urb, unsigned int total_packet_count)
3919 {
3920 unsigned int max_burst;
3921 unsigned int residue;
3922
3923 if (xhci->hci_version < 0x100)
3924 return 0;
3925
3926 if (urb->dev->speed >= USB_SPEED_SUPER) {
3927 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3928 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3929 residue = total_packet_count % (max_burst + 1);
3930 /* If residue is zero, the last burst contains (max_burst + 1)
3931 * number of packets, but the TLBPC field is zero-based.
3932 */
3933 if (residue == 0)
3934 return max_burst;
3935 return residue - 1;
3936 }
3937 if (total_packet_count == 0)
3938 return 0;
3939 return total_packet_count - 1;
3940 }
3941
3942 /*
3943 * Calculates Frame ID field of the isochronous TRB identifies the
3944 * target frame that the Interval associated with this Isochronous
3945 * Transfer Descriptor will start on. Refer to 4.11.2.5 in 1.1 spec.
3946 *
3947 * Returns actual frame id on success, negative value on error.
3948 */
3949 static int xhci_get_isoc_frame_id(struct xhci_hcd *xhci,
3950 struct urb *urb, int index)
3951 {
3952 int start_frame, ist, ret = 0;
3953 int start_frame_id, end_frame_id, current_frame_id;
3954
3955 if (urb->dev->speed == USB_SPEED_LOW ||
3956 urb->dev->speed == USB_SPEED_FULL)
3957 start_frame = urb->start_frame + index * urb->interval;
3958 else
3959 start_frame = (urb->start_frame + index * urb->interval) >> 3;
3960
3961 /* Isochronous Scheduling Threshold (IST, bits 0~3 in HCSPARAMS2):
3962 *
3963 * If bit [3] of IST is cleared to '0', software can add a TRB no
3964 * later than IST[2:0] Microframes before that TRB is scheduled to
3965 * be executed.
3966 * If bit [3] of IST is set to '1', software can add a TRB no later
3967 * than IST[2:0] Frames before that TRB is scheduled to be executed.
3968 */
3969 ist = HCS_IST(xhci->hcs_params2) & 0x7;
3970 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
3971 ist <<= 3;
3972
3973 /* Software shall not schedule an Isoch TD with a Frame ID value that
3974 * is less than the Start Frame ID or greater than the End Frame ID,
3975 * where:
3976 *
3977 * End Frame ID = (Current MFINDEX register value + 895 ms.) MOD 2048
3978 * Start Frame ID = (Current MFINDEX register value + IST + 1) MOD 2048
3979 *
3980 * Both the End Frame ID and Start Frame ID values are calculated
3981 * in microframes. When software determines the valid Frame ID value;
3982 * The End Frame ID value should be rounded down to the nearest Frame
3983 * boundary, and the Start Frame ID value should be rounded up to the
3984 * nearest Frame boundary.
3985 */
3986 current_frame_id = readl(&xhci->run_regs->microframe_index);
3987 start_frame_id = roundup(current_frame_id + ist + 1, 8);
3988 end_frame_id = rounddown(current_frame_id + 895 * 8, 8);
3989
3990 start_frame &= 0x7ff;
3991 start_frame_id = (start_frame_id >> 3) & 0x7ff;
3992 end_frame_id = (end_frame_id >> 3) & 0x7ff;
3993
3994 xhci_dbg(xhci, "%s: index %d, reg 0x%x start_frame_id 0x%x, end_frame_id 0x%x, start_frame 0x%x\n",
3995 __func__, index, readl(&xhci->run_regs->microframe_index),
3996 start_frame_id, end_frame_id, start_frame);
3997
3998 if (start_frame_id < end_frame_id) {
3999 if (start_frame > end_frame_id ||
4000 start_frame < start_frame_id)
4001 ret = -EINVAL;
4002 } else if (start_frame_id > end_frame_id) {
4003 if ((start_frame > end_frame_id &&
4004 start_frame < start_frame_id))
4005 ret = -EINVAL;
4006 } else {
4007 ret = -EINVAL;
4008 }
4009
4010 if (index == 0) {
4011 if (ret == -EINVAL || start_frame == start_frame_id) {
4012 start_frame = start_frame_id + 1;
4013 if (urb->dev->speed == USB_SPEED_LOW ||
4014 urb->dev->speed == USB_SPEED_FULL)
4015 urb->start_frame = start_frame;
4016 else
4017 urb->start_frame = start_frame << 3;
4018 ret = 0;
4019 }
4020 }
4021
4022 if (ret) {
4023 xhci_warn(xhci, "Frame ID %d (reg %d, index %d) beyond range (%d, %d)\n",
4024 start_frame, current_frame_id, index,
4025 start_frame_id, end_frame_id);
4026 xhci_warn(xhci, "Ignore frame ID field, use SIA bit instead\n");
4027 return ret;
4028 }
4029
4030 return start_frame;
4031 }
4032
4033 /* Check if we should generate event interrupt for a TD in an isoc URB */
4034 static bool trb_block_event_intr(struct xhci_hcd *xhci, int num_tds, int i,
4035 struct xhci_interrupter *ir)
4036 {
4037 if (xhci->hci_version < 0x100)
4038 return false;
4039 /* always generate an event interrupt for the last TD */
4040 if (i == num_tds - 1)
4041 return false;
4042 /*
4043 * If AVOID_BEI is set the host handles full event rings poorly,
4044 * generate an event at least every 8th TD to clear the event ring
4045 */
4046 if (i && ir->isoc_bei_interval && xhci->quirks & XHCI_AVOID_BEI)
4047 return !!(i % ir->isoc_bei_interval);
4048
4049 return true;
4050 }
4051
4052 /* This is for isoc transfer */
4053 static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
4054 struct urb *urb, int slot_id, unsigned int ep_index)
4055 {
4056 struct xhci_interrupter *ir;
4057 struct xhci_ring *ep_ring;
4058 struct urb_priv *urb_priv;
4059 struct xhci_td *td;
4060 int num_tds, trbs_per_td;
4061 struct xhci_generic_trb *start_trb;
4062 bool first_trb;
4063 int start_cycle;
4064 u32 field, length_field;
4065 int running_total, trb_buff_len, td_len, td_remain_len, ret;
4066 u64 start_addr, addr;
4067 int i, j;
4068 bool more_trbs_coming;
4069 struct xhci_virt_ep *xep;
4070 int frame_id;
4071
4072 xep = &xhci->devs[slot_id]->eps[ep_index];
4073 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
4074 ir = xhci->interrupters[0];
4075
4076 num_tds = urb->number_of_packets;
4077 if (num_tds < 1) {
4078 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
4079 return -EINVAL;
4080 }
4081 start_addr = (u64) urb->transfer_dma;
4082 start_trb = &ep_ring->enqueue->generic;
4083 start_cycle = ep_ring->cycle_state;
4084
4085 urb_priv = urb->hcpriv;
4086 /* Queue the TRBs for each TD, even if they are zero-length */
4087 for (i = 0; i < num_tds; i++) {
4088 unsigned int total_pkt_count, max_pkt;
4089 unsigned int burst_count, last_burst_pkt_count;
4090 u32 sia_frame_id;
4091
4092 first_trb = true;
4093 running_total = 0;
4094 addr = start_addr + urb->iso_frame_desc[i].offset;
4095 td_len = urb->iso_frame_desc[i].length;
4096 td_remain_len = td_len;
4097 max_pkt = usb_endpoint_maxp(&urb->ep->desc);
4098 total_pkt_count = DIV_ROUND_UP(td_len, max_pkt);
4099
4100 /* A zero-length transfer still involves at least one packet. */
4101 if (total_pkt_count == 0)
4102 total_pkt_count++;
4103 burst_count = xhci_get_burst_count(xhci, urb, total_pkt_count);
4104 last_burst_pkt_count = xhci_get_last_burst_packet_count(xhci,
4105 urb, total_pkt_count);
4106
4107 trbs_per_td = count_isoc_trbs_needed(urb, i);
4108
4109 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
4110 urb->stream_id, trbs_per_td, urb, i, mem_flags);
4111 if (ret < 0) {
4112 if (i == 0)
4113 return ret;
4114 goto cleanup;
4115 }
4116 td = &urb_priv->td[i];
4117 td->num_trbs = trbs_per_td;
4118 /* use SIA as default, if frame id is used overwrite it */
4119 sia_frame_id = TRB_SIA;
4120 if (!(urb->transfer_flags & URB_ISO_ASAP) &&
4121 HCC_CFC(xhci->hcc_params)) {
4122 frame_id = xhci_get_isoc_frame_id(xhci, urb, i);
4123 if (frame_id >= 0)
4124 sia_frame_id = TRB_FRAME_ID(frame_id);
4125 }
4126 /*
4127 * Set isoc specific data for the first TRB in a TD.
4128 * Prevent HW from getting the TRBs by keeping the cycle state
4129 * inverted in the first TDs isoc TRB.
4130 */
4131 field = TRB_TYPE(TRB_ISOC) |
4132 TRB_TLBPC(last_burst_pkt_count) |
4133 sia_frame_id |
4134 (i ? ep_ring->cycle_state : !start_cycle);
4135
4136 /* xhci 1.1 with ETE uses TD_Size field for TBC, old is Rsvdz */
4137 if (!xep->use_extended_tbc)
4138 field |= TRB_TBC(burst_count);
4139
4140 /* fill the rest of the TRB fields, and remaining normal TRBs */
4141 for (j = 0; j < trbs_per_td; j++) {
4142 u32 remainder = 0;
4143
4144 /* only first TRB is isoc, overwrite otherwise */
4145 if (!first_trb)
4146 field = TRB_TYPE(TRB_NORMAL) |
4147 ep_ring->cycle_state;
4148
4149 /* Only set interrupt on short packet for IN EPs */
4150 if (usb_urb_dir_in(urb))
4151 field |= TRB_ISP;
4152
4153 /* Set the chain bit for all except the last TRB */
4154 if (j < trbs_per_td - 1) {
4155 more_trbs_coming = true;
4156 field |= TRB_CHAIN;
4157 } else {
4158 more_trbs_coming = false;
4159 td->last_trb = ep_ring->enqueue;
4160 td->last_trb_seg = ep_ring->enq_seg;
4161 field |= TRB_IOC;
4162 if (trb_block_event_intr(xhci, num_tds, i, ir))
4163 field |= TRB_BEI;
4164 }
4165 /* Calculate TRB length */
4166 trb_buff_len = TRB_BUFF_LEN_UP_TO_BOUNDARY(addr);
4167 if (trb_buff_len > td_remain_len)
4168 trb_buff_len = td_remain_len;
4169
4170 /* Set the TRB length, TD size, & interrupter fields. */
4171 remainder = xhci_td_remainder(xhci, running_total,
4172 trb_buff_len, td_len,
4173 urb, more_trbs_coming);
4174
4175 length_field = TRB_LEN(trb_buff_len) |
4176 TRB_INTR_TARGET(0);
4177
4178 /* xhci 1.1 with ETE uses TD Size field for TBC */
4179 if (first_trb && xep->use_extended_tbc)
4180 length_field |= TRB_TD_SIZE_TBC(burst_count);
4181 else
4182 length_field |= TRB_TD_SIZE(remainder);
4183 first_trb = false;
4184
4185 queue_trb(xhci, ep_ring, more_trbs_coming,
4186 lower_32_bits(addr),
4187 upper_32_bits(addr),
4188 length_field,
4189 field);
4190 running_total += trb_buff_len;
4191
4192 addr += trb_buff_len;
4193 td_remain_len -= trb_buff_len;
4194 }
4195
4196 /* Check TD length */
4197 if (running_total != td_len) {
4198 xhci_err(xhci, "ISOC TD length unmatch\n");
4199 ret = -EINVAL;
4200 goto cleanup;
4201 }
4202 }
4203
4204 /* store the next frame id */
4205 if (HCC_CFC(xhci->hcc_params))
4206 xep->next_frame_id = urb->start_frame + num_tds * urb->interval;
4207
4208 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
4209 if (xhci->quirks & XHCI_AMD_PLL_FIX)
4210 usb_amd_quirk_pll_disable();
4211 }
4212 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
4213
4214 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
4215 start_cycle, start_trb);
4216 return 0;
4217 cleanup:
4218 /* Clean up a partially enqueued isoc transfer. */
4219
4220 for (i--; i >= 0; i--)
4221 list_del_init(&urb_priv->td[i].td_list);
4222
4223 /* Use the first TD as a temporary variable to turn the TDs we've queued
4224 * into No-ops with a software-owned cycle bit. That way the hardware
4225 * won't accidentally start executing bogus TDs when we partially
4226 * overwrite them. td->first_trb and td->start_seg are already set.
4227 */
4228 urb_priv->td[0].last_trb = ep_ring->enqueue;
4229 /* Every TRB except the first & last will have its cycle bit flipped. */
4230 td_to_noop(xhci, ep_ring, &urb_priv->td[0], true);
4231
4232 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
4233 ep_ring->enqueue = urb_priv->td[0].first_trb;
4234 ep_ring->enq_seg = urb_priv->td[0].start_seg;
4235 ep_ring->cycle_state = start_cycle;
4236 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
4237 return ret;
4238 }
4239
4240 /*
4241 * Check transfer ring to guarantee there is enough room for the urb.
4242 * Update ISO URB start_frame and interval.
4243 * Update interval as xhci_queue_intr_tx does. Use xhci frame_index to
4244 * update urb->start_frame if URB_ISO_ASAP is set in transfer_flags or
4245 * Contiguous Frame ID is not supported by HC.
4246 */
4247 int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
4248 struct urb *urb, int slot_id, unsigned int ep_index)
4249 {
4250 struct xhci_virt_device *xdev;
4251 struct xhci_ring *ep_ring;
4252 struct xhci_ep_ctx *ep_ctx;
4253 int start_frame;
4254 int num_tds, num_trbs, i;
4255 int ret;
4256 struct xhci_virt_ep *xep;
4257 int ist;
4258
4259 xdev = xhci->devs[slot_id];
4260 xep = &xhci->devs[slot_id]->eps[ep_index];
4261 ep_ring = xdev->eps[ep_index].ring;
4262 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
4263
4264 num_trbs = 0;
4265 num_tds = urb->number_of_packets;
4266 for (i = 0; i < num_tds; i++)
4267 num_trbs += count_isoc_trbs_needed(urb, i);
4268
4269 /* Check the ring to guarantee there is enough room for the whole urb.
4270 * Do not insert any td of the urb to the ring if the check failed.
4271 */
4272 ret = prepare_ring(xhci, ep_ring, GET_EP_CTX_STATE(ep_ctx),
4273 num_trbs, mem_flags);
4274 if (ret)
4275 return ret;
4276
4277 /*
4278 * Check interval value. This should be done before we start to
4279 * calculate the start frame value.
4280 */
4281 check_interval(xhci, urb, ep_ctx);
4282
4283 /* Calculate the start frame and put it in urb->start_frame. */
4284 if (HCC_CFC(xhci->hcc_params) && !list_empty(&ep_ring->td_list)) {
4285 if (GET_EP_CTX_STATE(ep_ctx) == EP_STATE_RUNNING) {
4286 urb->start_frame = xep->next_frame_id;
4287 goto skip_start_over;
4288 }
4289 }
4290
4291 start_frame = readl(&xhci->run_regs->microframe_index);
4292 start_frame &= 0x3fff;
4293 /*
4294 * Round up to the next frame and consider the time before trb really
4295 * gets scheduled by hardare.
4296 */
4297 ist = HCS_IST(xhci->hcs_params2) & 0x7;
4298 if (HCS_IST(xhci->hcs_params2) & (1 << 3))
4299 ist <<= 3;
4300 start_frame += ist + XHCI_CFC_DELAY;
4301 start_frame = roundup(start_frame, 8);
4302
4303 /*
4304 * Round up to the next ESIT (Endpoint Service Interval Time) if ESIT
4305 * is greate than 8 microframes.
4306 */
4307 if (urb->dev->speed == USB_SPEED_LOW ||
4308 urb->dev->speed == USB_SPEED_FULL) {
4309 start_frame = roundup(start_frame, urb->interval << 3);
4310 urb->start_frame = start_frame >> 3;
4311 } else {
4312 start_frame = roundup(start_frame, urb->interval);
4313 urb->start_frame = start_frame;
4314 }
4315
4316 skip_start_over:
4317
4318 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
4319 }
4320
4321 /**** Command Ring Operations ****/
4322
4323 /* Generic function for queueing a command TRB on the command ring.
4324 * Check to make sure there's room on the command ring for one command TRB.
4325 * Also check that there's room reserved for commands that must not fail.
4326 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
4327 * then only check for the number of reserved spots.
4328 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
4329 * because the command event handler may want to resubmit a failed command.
4330 */
4331 static int queue_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
4332 u32 field1, u32 field2,
4333 u32 field3, u32 field4, bool command_must_succeed)
4334 {
4335 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
4336 int ret;
4337
4338 if ((xhci->xhc_state & XHCI_STATE_DYING) ||
4339 (xhci->xhc_state & XHCI_STATE_HALTED)) {
4340 xhci_dbg(xhci, "xHCI dying or halted, can't queue_command\n");
4341 return -ESHUTDOWN;
4342 }
4343
4344 if (!command_must_succeed)
4345 reserved_trbs++;
4346
4347 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
4348 reserved_trbs, GFP_ATOMIC);
4349 if (ret < 0) {
4350 xhci_err(xhci, "ERR: No room for command on command ring\n");
4351 if (command_must_succeed)
4352 xhci_err(xhci, "ERR: Reserved TRB counting for "
4353 "unfailable commands failed.\n");
4354 return ret;
4355 }
4356
4357 cmd->command_trb = xhci->cmd_ring->enqueue;
4358
4359 /* if there are no other commands queued we start the timeout timer */
4360 if (list_empty(&xhci->cmd_list)) {
4361 xhci->current_cmd = cmd;
4362 xhci_mod_cmd_timer(xhci);
4363 }
4364
4365 list_add_tail(&cmd->cmd_list, &xhci->cmd_list);
4366
4367 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
4368 field4 | xhci->cmd_ring->cycle_state);
4369 return 0;
4370 }
4371
4372 /* Queue a slot enable or disable request on the command ring */
4373 int xhci_queue_slot_control(struct xhci_hcd *xhci, struct xhci_command *cmd,
4374 u32 trb_type, u32 slot_id)
4375 {
4376 return queue_command(xhci, cmd, 0, 0, 0,
4377 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
4378 }
4379
4380 /* Queue an address device command TRB */
4381 int xhci_queue_address_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
4382 dma_addr_t in_ctx_ptr, u32 slot_id, enum xhci_setup_dev setup)
4383 {
4384 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
4385 upper_32_bits(in_ctx_ptr), 0,
4386 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id)
4387 | (setup == SETUP_CONTEXT_ONLY ? TRB_BSR : 0), false);
4388 }
4389
4390 int xhci_queue_vendor_command(struct xhci_hcd *xhci, struct xhci_command *cmd,
4391 u32 field1, u32 field2, u32 field3, u32 field4)
4392 {
4393 return queue_command(xhci, cmd, field1, field2, field3, field4, false);
4394 }
4395
4396 /* Queue a reset device command TRB */
4397 int xhci_queue_reset_device(struct xhci_hcd *xhci, struct xhci_command *cmd,
4398 u32 slot_id)
4399 {
4400 return queue_command(xhci, cmd, 0, 0, 0,
4401 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
4402 false);
4403 }
4404
4405 /* Queue a configure endpoint command TRB */
4406 int xhci_queue_configure_endpoint(struct xhci_hcd *xhci,
4407 struct xhci_command *cmd, dma_addr_t in_ctx_ptr,
4408 u32 slot_id, bool command_must_succeed)
4409 {
4410 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
4411 upper_32_bits(in_ctx_ptr), 0,
4412 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
4413 command_must_succeed);
4414 }
4415
4416 /* Queue an evaluate context command TRB */
4417 int xhci_queue_evaluate_context(struct xhci_hcd *xhci, struct xhci_command *cmd,
4418 dma_addr_t in_ctx_ptr, u32 slot_id, bool command_must_succeed)
4419 {
4420 return queue_command(xhci, cmd, lower_32_bits(in_ctx_ptr),
4421 upper_32_bits(in_ctx_ptr), 0,
4422 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
4423 command_must_succeed);
4424 }
4425
4426 /*
4427 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
4428 * activity on an endpoint that is about to be suspended.
4429 */
4430 int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, struct xhci_command *cmd,
4431 int slot_id, unsigned int ep_index, int suspend)
4432 {
4433 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4434 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4435 u32 type = TRB_TYPE(TRB_STOP_RING);
4436 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
4437
4438 return queue_command(xhci, cmd, 0, 0, 0,
4439 trb_slot_id | trb_ep_index | type | trb_suspend, false);
4440 }
4441
4442 int xhci_queue_reset_ep(struct xhci_hcd *xhci, struct xhci_command *cmd,
4443 int slot_id, unsigned int ep_index,
4444 enum xhci_ep_reset_type reset_type)
4445 {
4446 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4447 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4448 u32 type = TRB_TYPE(TRB_RESET_EP);
4449
4450 if (reset_type == EP_SOFT_RESET)
4451 type |= TRB_TSP;
4452
4453 return queue_command(xhci, cmd, 0, 0, 0,
4454 trb_slot_id | trb_ep_index | type, false);
4455 }