]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/block_dev.c
Merge tag 'for-5.8/block-2020-06-01' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / fs / block_dev.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/block_dev.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
7 */
8
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/fcntl.h>
12 #include <linux/slab.h>
13 #include <linux/kmod.h>
14 #include <linux/major.h>
15 #include <linux/device_cgroup.h>
16 #include <linux/highmem.h>
17 #include <linux/blkdev.h>
18 #include <linux/backing-dev.h>
19 #include <linux/module.h>
20 #include <linux/blkpg.h>
21 #include <linux/magic.h>
22 #include <linux/buffer_head.h>
23 #include <linux/swap.h>
24 #include <linux/pagevec.h>
25 #include <linux/writeback.h>
26 #include <linux/mpage.h>
27 #include <linux/mount.h>
28 #include <linux/pseudo_fs.h>
29 #include <linux/uio.h>
30 #include <linux/namei.h>
31 #include <linux/log2.h>
32 #include <linux/cleancache.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/falloc.h>
35 #include <linux/uaccess.h>
36 #include <linux/suspend.h>
37 #include "internal.h"
38
39 struct bdev_inode {
40 struct block_device bdev;
41 struct inode vfs_inode;
42 };
43
44 static const struct address_space_operations def_blk_aops;
45
46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
47 {
48 return container_of(inode, struct bdev_inode, vfs_inode);
49 }
50
51 struct block_device *I_BDEV(struct inode *inode)
52 {
53 return &BDEV_I(inode)->bdev;
54 }
55 EXPORT_SYMBOL(I_BDEV);
56
57 static void bdev_write_inode(struct block_device *bdev)
58 {
59 struct inode *inode = bdev->bd_inode;
60 int ret;
61
62 spin_lock(&inode->i_lock);
63 while (inode->i_state & I_DIRTY) {
64 spin_unlock(&inode->i_lock);
65 ret = write_inode_now(inode, true);
66 if (ret) {
67 char name[BDEVNAME_SIZE];
68 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
69 "for block device %s (err=%d).\n",
70 bdevname(bdev, name), ret);
71 }
72 spin_lock(&inode->i_lock);
73 }
74 spin_unlock(&inode->i_lock);
75 }
76
77 /* Kill _all_ buffers and pagecache , dirty or not.. */
78 void kill_bdev(struct block_device *bdev)
79 {
80 struct address_space *mapping = bdev->bd_inode->i_mapping;
81
82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
83 return;
84
85 invalidate_bh_lrus();
86 truncate_inode_pages(mapping, 0);
87 }
88 EXPORT_SYMBOL(kill_bdev);
89
90 /* Invalidate clean unused buffers and pagecache. */
91 void invalidate_bdev(struct block_device *bdev)
92 {
93 struct address_space *mapping = bdev->bd_inode->i_mapping;
94
95 if (mapping->nrpages) {
96 invalidate_bh_lrus();
97 lru_add_drain_all(); /* make sure all lru add caches are flushed */
98 invalidate_mapping_pages(mapping, 0, -1);
99 }
100 /* 99% of the time, we don't need to flush the cleancache on the bdev.
101 * But, for the strange corners, lets be cautious
102 */
103 cleancache_invalidate_inode(mapping);
104 }
105 EXPORT_SYMBOL(invalidate_bdev);
106
107 static void set_init_blocksize(struct block_device *bdev)
108 {
109 unsigned bsize = bdev_logical_block_size(bdev);
110 loff_t size = i_size_read(bdev->bd_inode);
111
112 while (bsize < PAGE_SIZE) {
113 if (size & bsize)
114 break;
115 bsize <<= 1;
116 }
117 bdev->bd_block_size = bsize;
118 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
119 }
120
121 int set_blocksize(struct block_device *bdev, int size)
122 {
123 /* Size must be a power of two, and between 512 and PAGE_SIZE */
124 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
125 return -EINVAL;
126
127 /* Size cannot be smaller than the size supported by the device */
128 if (size < bdev_logical_block_size(bdev))
129 return -EINVAL;
130
131 /* Don't change the size if it is same as current */
132 if (bdev->bd_block_size != size) {
133 sync_blockdev(bdev);
134 bdev->bd_block_size = size;
135 bdev->bd_inode->i_blkbits = blksize_bits(size);
136 kill_bdev(bdev);
137 }
138 return 0;
139 }
140
141 EXPORT_SYMBOL(set_blocksize);
142
143 int sb_set_blocksize(struct super_block *sb, int size)
144 {
145 if (set_blocksize(sb->s_bdev, size))
146 return 0;
147 /* If we get here, we know size is power of two
148 * and it's value is between 512 and PAGE_SIZE */
149 sb->s_blocksize = size;
150 sb->s_blocksize_bits = blksize_bits(size);
151 return sb->s_blocksize;
152 }
153
154 EXPORT_SYMBOL(sb_set_blocksize);
155
156 int sb_min_blocksize(struct super_block *sb, int size)
157 {
158 int minsize = bdev_logical_block_size(sb->s_bdev);
159 if (size < minsize)
160 size = minsize;
161 return sb_set_blocksize(sb, size);
162 }
163
164 EXPORT_SYMBOL(sb_min_blocksize);
165
166 static int
167 blkdev_get_block(struct inode *inode, sector_t iblock,
168 struct buffer_head *bh, int create)
169 {
170 bh->b_bdev = I_BDEV(inode);
171 bh->b_blocknr = iblock;
172 set_buffer_mapped(bh);
173 return 0;
174 }
175
176 static struct inode *bdev_file_inode(struct file *file)
177 {
178 return file->f_mapping->host;
179 }
180
181 static unsigned int dio_bio_write_op(struct kiocb *iocb)
182 {
183 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
184
185 /* avoid the need for a I/O completion work item */
186 if (iocb->ki_flags & IOCB_DSYNC)
187 op |= REQ_FUA;
188 return op;
189 }
190
191 #define DIO_INLINE_BIO_VECS 4
192
193 static void blkdev_bio_end_io_simple(struct bio *bio)
194 {
195 struct task_struct *waiter = bio->bi_private;
196
197 WRITE_ONCE(bio->bi_private, NULL);
198 blk_wake_io_task(waiter);
199 }
200
201 static ssize_t
202 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
203 int nr_pages)
204 {
205 struct file *file = iocb->ki_filp;
206 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
207 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs;
208 loff_t pos = iocb->ki_pos;
209 bool should_dirty = false;
210 struct bio bio;
211 ssize_t ret;
212 blk_qc_t qc;
213
214 if ((pos | iov_iter_alignment(iter)) &
215 (bdev_logical_block_size(bdev) - 1))
216 return -EINVAL;
217
218 if (nr_pages <= DIO_INLINE_BIO_VECS)
219 vecs = inline_vecs;
220 else {
221 vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec),
222 GFP_KERNEL);
223 if (!vecs)
224 return -ENOMEM;
225 }
226
227 bio_init(&bio, vecs, nr_pages);
228 bio_set_dev(&bio, bdev);
229 bio.bi_iter.bi_sector = pos >> 9;
230 bio.bi_write_hint = iocb->ki_hint;
231 bio.bi_private = current;
232 bio.bi_end_io = blkdev_bio_end_io_simple;
233 bio.bi_ioprio = iocb->ki_ioprio;
234
235 ret = bio_iov_iter_get_pages(&bio, iter);
236 if (unlikely(ret))
237 goto out;
238 ret = bio.bi_iter.bi_size;
239
240 if (iov_iter_rw(iter) == READ) {
241 bio.bi_opf = REQ_OP_READ;
242 if (iter_is_iovec(iter))
243 should_dirty = true;
244 } else {
245 bio.bi_opf = dio_bio_write_op(iocb);
246 task_io_account_write(ret);
247 }
248 if (iocb->ki_flags & IOCB_HIPRI)
249 bio_set_polled(&bio, iocb);
250
251 qc = submit_bio(&bio);
252 for (;;) {
253 set_current_state(TASK_UNINTERRUPTIBLE);
254 if (!READ_ONCE(bio.bi_private))
255 break;
256 if (!(iocb->ki_flags & IOCB_HIPRI) ||
257 !blk_poll(bdev_get_queue(bdev), qc, true))
258 blk_io_schedule();
259 }
260 __set_current_state(TASK_RUNNING);
261
262 bio_release_pages(&bio, should_dirty);
263 if (unlikely(bio.bi_status))
264 ret = blk_status_to_errno(bio.bi_status);
265
266 out:
267 if (vecs != inline_vecs)
268 kfree(vecs);
269
270 bio_uninit(&bio);
271
272 return ret;
273 }
274
275 struct blkdev_dio {
276 union {
277 struct kiocb *iocb;
278 struct task_struct *waiter;
279 };
280 size_t size;
281 atomic_t ref;
282 bool multi_bio : 1;
283 bool should_dirty : 1;
284 bool is_sync : 1;
285 struct bio bio;
286 };
287
288 static struct bio_set blkdev_dio_pool;
289
290 static int blkdev_iopoll(struct kiocb *kiocb, bool wait)
291 {
292 struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host);
293 struct request_queue *q = bdev_get_queue(bdev);
294
295 return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait);
296 }
297
298 static void blkdev_bio_end_io(struct bio *bio)
299 {
300 struct blkdev_dio *dio = bio->bi_private;
301 bool should_dirty = dio->should_dirty;
302
303 if (bio->bi_status && !dio->bio.bi_status)
304 dio->bio.bi_status = bio->bi_status;
305
306 if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) {
307 if (!dio->is_sync) {
308 struct kiocb *iocb = dio->iocb;
309 ssize_t ret;
310
311 if (likely(!dio->bio.bi_status)) {
312 ret = dio->size;
313 iocb->ki_pos += ret;
314 } else {
315 ret = blk_status_to_errno(dio->bio.bi_status);
316 }
317
318 dio->iocb->ki_complete(iocb, ret, 0);
319 if (dio->multi_bio)
320 bio_put(&dio->bio);
321 } else {
322 struct task_struct *waiter = dio->waiter;
323
324 WRITE_ONCE(dio->waiter, NULL);
325 blk_wake_io_task(waiter);
326 }
327 }
328
329 if (should_dirty) {
330 bio_check_pages_dirty(bio);
331 } else {
332 bio_release_pages(bio, false);
333 bio_put(bio);
334 }
335 }
336
337 static ssize_t
338 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
339 {
340 struct file *file = iocb->ki_filp;
341 struct inode *inode = bdev_file_inode(file);
342 struct block_device *bdev = I_BDEV(inode);
343 struct blk_plug plug;
344 struct blkdev_dio *dio;
345 struct bio *bio;
346 bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0;
347 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
348 loff_t pos = iocb->ki_pos;
349 blk_qc_t qc = BLK_QC_T_NONE;
350 int ret = 0;
351
352 if ((pos | iov_iter_alignment(iter)) &
353 (bdev_logical_block_size(bdev) - 1))
354 return -EINVAL;
355
356 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool);
357
358 dio = container_of(bio, struct blkdev_dio, bio);
359 dio->is_sync = is_sync = is_sync_kiocb(iocb);
360 if (dio->is_sync) {
361 dio->waiter = current;
362 bio_get(bio);
363 } else {
364 dio->iocb = iocb;
365 }
366
367 dio->size = 0;
368 dio->multi_bio = false;
369 dio->should_dirty = is_read && iter_is_iovec(iter);
370
371 /*
372 * Don't plug for HIPRI/polled IO, as those should go straight
373 * to issue
374 */
375 if (!is_poll)
376 blk_start_plug(&plug);
377
378 for (;;) {
379 bio_set_dev(bio, bdev);
380 bio->bi_iter.bi_sector = pos >> 9;
381 bio->bi_write_hint = iocb->ki_hint;
382 bio->bi_private = dio;
383 bio->bi_end_io = blkdev_bio_end_io;
384 bio->bi_ioprio = iocb->ki_ioprio;
385
386 ret = bio_iov_iter_get_pages(bio, iter);
387 if (unlikely(ret)) {
388 bio->bi_status = BLK_STS_IOERR;
389 bio_endio(bio);
390 break;
391 }
392
393 if (is_read) {
394 bio->bi_opf = REQ_OP_READ;
395 if (dio->should_dirty)
396 bio_set_pages_dirty(bio);
397 } else {
398 bio->bi_opf = dio_bio_write_op(iocb);
399 task_io_account_write(bio->bi_iter.bi_size);
400 }
401
402 dio->size += bio->bi_iter.bi_size;
403 pos += bio->bi_iter.bi_size;
404
405 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
406 if (!nr_pages) {
407 bool polled = false;
408
409 if (iocb->ki_flags & IOCB_HIPRI) {
410 bio_set_polled(bio, iocb);
411 polled = true;
412 }
413
414 qc = submit_bio(bio);
415
416 if (polled)
417 WRITE_ONCE(iocb->ki_cookie, qc);
418 break;
419 }
420
421 if (!dio->multi_bio) {
422 /*
423 * AIO needs an extra reference to ensure the dio
424 * structure which is embedded into the first bio
425 * stays around.
426 */
427 if (!is_sync)
428 bio_get(bio);
429 dio->multi_bio = true;
430 atomic_set(&dio->ref, 2);
431 } else {
432 atomic_inc(&dio->ref);
433 }
434
435 submit_bio(bio);
436 bio = bio_alloc(GFP_KERNEL, nr_pages);
437 }
438
439 if (!is_poll)
440 blk_finish_plug(&plug);
441
442 if (!is_sync)
443 return -EIOCBQUEUED;
444
445 for (;;) {
446 set_current_state(TASK_UNINTERRUPTIBLE);
447 if (!READ_ONCE(dio->waiter))
448 break;
449
450 if (!(iocb->ki_flags & IOCB_HIPRI) ||
451 !blk_poll(bdev_get_queue(bdev), qc, true))
452 blk_io_schedule();
453 }
454 __set_current_state(TASK_RUNNING);
455
456 if (!ret)
457 ret = blk_status_to_errno(dio->bio.bi_status);
458 if (likely(!ret))
459 ret = dio->size;
460
461 bio_put(&dio->bio);
462 return ret;
463 }
464
465 static ssize_t
466 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
467 {
468 int nr_pages;
469
470 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
471 if (!nr_pages)
472 return 0;
473 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
474 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
475
476 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
477 }
478
479 static __init int blkdev_init(void)
480 {
481 return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
482 }
483 module_init(blkdev_init);
484
485 int __sync_blockdev(struct block_device *bdev, int wait)
486 {
487 if (!bdev)
488 return 0;
489 if (!wait)
490 return filemap_flush(bdev->bd_inode->i_mapping);
491 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
492 }
493
494 /*
495 * Write out and wait upon all the dirty data associated with a block
496 * device via its mapping. Does not take the superblock lock.
497 */
498 int sync_blockdev(struct block_device *bdev)
499 {
500 return __sync_blockdev(bdev, 1);
501 }
502 EXPORT_SYMBOL(sync_blockdev);
503
504 /*
505 * Write out and wait upon all dirty data associated with this
506 * device. Filesystem data as well as the underlying block
507 * device. Takes the superblock lock.
508 */
509 int fsync_bdev(struct block_device *bdev)
510 {
511 struct super_block *sb = get_super(bdev);
512 if (sb) {
513 int res = sync_filesystem(sb);
514 drop_super(sb);
515 return res;
516 }
517 return sync_blockdev(bdev);
518 }
519 EXPORT_SYMBOL(fsync_bdev);
520
521 /**
522 * freeze_bdev -- lock a filesystem and force it into a consistent state
523 * @bdev: blockdevice to lock
524 *
525 * If a superblock is found on this device, we take the s_umount semaphore
526 * on it to make sure nobody unmounts until the snapshot creation is done.
527 * The reference counter (bd_fsfreeze_count) guarantees that only the last
528 * unfreeze process can unfreeze the frozen filesystem actually when multiple
529 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
530 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
531 * actually.
532 */
533 struct super_block *freeze_bdev(struct block_device *bdev)
534 {
535 struct super_block *sb;
536 int error = 0;
537
538 mutex_lock(&bdev->bd_fsfreeze_mutex);
539 if (++bdev->bd_fsfreeze_count > 1) {
540 /*
541 * We don't even need to grab a reference - the first call
542 * to freeze_bdev grab an active reference and only the last
543 * thaw_bdev drops it.
544 */
545 sb = get_super(bdev);
546 if (sb)
547 drop_super(sb);
548 mutex_unlock(&bdev->bd_fsfreeze_mutex);
549 return sb;
550 }
551
552 sb = get_active_super(bdev);
553 if (!sb)
554 goto out;
555 if (sb->s_op->freeze_super)
556 error = sb->s_op->freeze_super(sb);
557 else
558 error = freeze_super(sb);
559 if (error) {
560 deactivate_super(sb);
561 bdev->bd_fsfreeze_count--;
562 mutex_unlock(&bdev->bd_fsfreeze_mutex);
563 return ERR_PTR(error);
564 }
565 deactivate_super(sb);
566 out:
567 sync_blockdev(bdev);
568 mutex_unlock(&bdev->bd_fsfreeze_mutex);
569 return sb; /* thaw_bdev releases s->s_umount */
570 }
571 EXPORT_SYMBOL(freeze_bdev);
572
573 /**
574 * thaw_bdev -- unlock filesystem
575 * @bdev: blockdevice to unlock
576 * @sb: associated superblock
577 *
578 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
579 */
580 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
581 {
582 int error = -EINVAL;
583
584 mutex_lock(&bdev->bd_fsfreeze_mutex);
585 if (!bdev->bd_fsfreeze_count)
586 goto out;
587
588 error = 0;
589 if (--bdev->bd_fsfreeze_count > 0)
590 goto out;
591
592 if (!sb)
593 goto out;
594
595 if (sb->s_op->thaw_super)
596 error = sb->s_op->thaw_super(sb);
597 else
598 error = thaw_super(sb);
599 if (error)
600 bdev->bd_fsfreeze_count++;
601 out:
602 mutex_unlock(&bdev->bd_fsfreeze_mutex);
603 return error;
604 }
605 EXPORT_SYMBOL(thaw_bdev);
606
607 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
608 {
609 return block_write_full_page(page, blkdev_get_block, wbc);
610 }
611
612 static int blkdev_readpage(struct file * file, struct page * page)
613 {
614 return block_read_full_page(page, blkdev_get_block);
615 }
616
617 static void blkdev_readahead(struct readahead_control *rac)
618 {
619 mpage_readahead(rac, blkdev_get_block);
620 }
621
622 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
623 loff_t pos, unsigned len, unsigned flags,
624 struct page **pagep, void **fsdata)
625 {
626 return block_write_begin(mapping, pos, len, flags, pagep,
627 blkdev_get_block);
628 }
629
630 static int blkdev_write_end(struct file *file, struct address_space *mapping,
631 loff_t pos, unsigned len, unsigned copied,
632 struct page *page, void *fsdata)
633 {
634 int ret;
635 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
636
637 unlock_page(page);
638 put_page(page);
639
640 return ret;
641 }
642
643 /*
644 * private llseek:
645 * for a block special file file_inode(file)->i_size is zero
646 * so we compute the size by hand (just as in block_read/write above)
647 */
648 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
649 {
650 struct inode *bd_inode = bdev_file_inode(file);
651 loff_t retval;
652
653 inode_lock(bd_inode);
654 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
655 inode_unlock(bd_inode);
656 return retval;
657 }
658
659 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
660 {
661 struct inode *bd_inode = bdev_file_inode(filp);
662 struct block_device *bdev = I_BDEV(bd_inode);
663 int error;
664
665 error = file_write_and_wait_range(filp, start, end);
666 if (error)
667 return error;
668
669 /*
670 * There is no need to serialise calls to blkdev_issue_flush with
671 * i_mutex and doing so causes performance issues with concurrent
672 * O_SYNC writers to a block device.
673 */
674 error = blkdev_issue_flush(bdev, GFP_KERNEL);
675 if (error == -EOPNOTSUPP)
676 error = 0;
677
678 return error;
679 }
680 EXPORT_SYMBOL(blkdev_fsync);
681
682 /**
683 * bdev_read_page() - Start reading a page from a block device
684 * @bdev: The device to read the page from
685 * @sector: The offset on the device to read the page to (need not be aligned)
686 * @page: The page to read
687 *
688 * On entry, the page should be locked. It will be unlocked when the page
689 * has been read. If the block driver implements rw_page synchronously,
690 * that will be true on exit from this function, but it need not be.
691 *
692 * Errors returned by this function are usually "soft", eg out of memory, or
693 * queue full; callers should try a different route to read this page rather
694 * than propagate an error back up the stack.
695 *
696 * Return: negative errno if an error occurs, 0 if submission was successful.
697 */
698 int bdev_read_page(struct block_device *bdev, sector_t sector,
699 struct page *page)
700 {
701 const struct block_device_operations *ops = bdev->bd_disk->fops;
702 int result = -EOPNOTSUPP;
703
704 if (!ops->rw_page || bdev_get_integrity(bdev))
705 return result;
706
707 result = blk_queue_enter(bdev->bd_queue, 0);
708 if (result)
709 return result;
710 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
711 REQ_OP_READ);
712 blk_queue_exit(bdev->bd_queue);
713 return result;
714 }
715
716 /**
717 * bdev_write_page() - Start writing a page to a block device
718 * @bdev: The device to write the page to
719 * @sector: The offset on the device to write the page to (need not be aligned)
720 * @page: The page to write
721 * @wbc: The writeback_control for the write
722 *
723 * On entry, the page should be locked and not currently under writeback.
724 * On exit, if the write started successfully, the page will be unlocked and
725 * under writeback. If the write failed already (eg the driver failed to
726 * queue the page to the device), the page will still be locked. If the
727 * caller is a ->writepage implementation, it will need to unlock the page.
728 *
729 * Errors returned by this function are usually "soft", eg out of memory, or
730 * queue full; callers should try a different route to write this page rather
731 * than propagate an error back up the stack.
732 *
733 * Return: negative errno if an error occurs, 0 if submission was successful.
734 */
735 int bdev_write_page(struct block_device *bdev, sector_t sector,
736 struct page *page, struct writeback_control *wbc)
737 {
738 int result;
739 const struct block_device_operations *ops = bdev->bd_disk->fops;
740
741 if (!ops->rw_page || bdev_get_integrity(bdev))
742 return -EOPNOTSUPP;
743 result = blk_queue_enter(bdev->bd_queue, 0);
744 if (result)
745 return result;
746
747 set_page_writeback(page);
748 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
749 REQ_OP_WRITE);
750 if (result) {
751 end_page_writeback(page);
752 } else {
753 clean_page_buffers(page);
754 unlock_page(page);
755 }
756 blk_queue_exit(bdev->bd_queue);
757 return result;
758 }
759
760 /*
761 * pseudo-fs
762 */
763
764 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
765 static struct kmem_cache * bdev_cachep __read_mostly;
766
767 static struct inode *bdev_alloc_inode(struct super_block *sb)
768 {
769 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
770 if (!ei)
771 return NULL;
772 return &ei->vfs_inode;
773 }
774
775 static void bdev_free_inode(struct inode *inode)
776 {
777 kmem_cache_free(bdev_cachep, BDEV_I(inode));
778 }
779
780 static void init_once(void *foo)
781 {
782 struct bdev_inode *ei = (struct bdev_inode *) foo;
783 struct block_device *bdev = &ei->bdev;
784
785 memset(bdev, 0, sizeof(*bdev));
786 mutex_init(&bdev->bd_mutex);
787 INIT_LIST_HEAD(&bdev->bd_list);
788 #ifdef CONFIG_SYSFS
789 INIT_LIST_HEAD(&bdev->bd_holder_disks);
790 #endif
791 bdev->bd_bdi = &noop_backing_dev_info;
792 inode_init_once(&ei->vfs_inode);
793 /* Initialize mutex for freeze. */
794 mutex_init(&bdev->bd_fsfreeze_mutex);
795 }
796
797 static void bdev_evict_inode(struct inode *inode)
798 {
799 struct block_device *bdev = &BDEV_I(inode)->bdev;
800 truncate_inode_pages_final(&inode->i_data);
801 invalidate_inode_buffers(inode); /* is it needed here? */
802 clear_inode(inode);
803 spin_lock(&bdev_lock);
804 list_del_init(&bdev->bd_list);
805 spin_unlock(&bdev_lock);
806 /* Detach inode from wb early as bdi_put() may free bdi->wb */
807 inode_detach_wb(inode);
808 if (bdev->bd_bdi != &noop_backing_dev_info) {
809 bdi_put(bdev->bd_bdi);
810 bdev->bd_bdi = &noop_backing_dev_info;
811 }
812 }
813
814 static const struct super_operations bdev_sops = {
815 .statfs = simple_statfs,
816 .alloc_inode = bdev_alloc_inode,
817 .free_inode = bdev_free_inode,
818 .drop_inode = generic_delete_inode,
819 .evict_inode = bdev_evict_inode,
820 };
821
822 static int bd_init_fs_context(struct fs_context *fc)
823 {
824 struct pseudo_fs_context *ctx = init_pseudo(fc, BDEVFS_MAGIC);
825 if (!ctx)
826 return -ENOMEM;
827 fc->s_iflags |= SB_I_CGROUPWB;
828 ctx->ops = &bdev_sops;
829 return 0;
830 }
831
832 static struct file_system_type bd_type = {
833 .name = "bdev",
834 .init_fs_context = bd_init_fs_context,
835 .kill_sb = kill_anon_super,
836 };
837
838 struct super_block *blockdev_superblock __read_mostly;
839 EXPORT_SYMBOL_GPL(blockdev_superblock);
840
841 void __init bdev_cache_init(void)
842 {
843 int err;
844 static struct vfsmount *bd_mnt;
845
846 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
847 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
848 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
849 init_once);
850 err = register_filesystem(&bd_type);
851 if (err)
852 panic("Cannot register bdev pseudo-fs");
853 bd_mnt = kern_mount(&bd_type);
854 if (IS_ERR(bd_mnt))
855 panic("Cannot create bdev pseudo-fs");
856 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
857 }
858
859 /*
860 * Most likely _very_ bad one - but then it's hardly critical for small
861 * /dev and can be fixed when somebody will need really large one.
862 * Keep in mind that it will be fed through icache hash function too.
863 */
864 static inline unsigned long hash(dev_t dev)
865 {
866 return MAJOR(dev)+MINOR(dev);
867 }
868
869 static int bdev_test(struct inode *inode, void *data)
870 {
871 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
872 }
873
874 static int bdev_set(struct inode *inode, void *data)
875 {
876 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
877 return 0;
878 }
879
880 static LIST_HEAD(all_bdevs);
881
882 struct block_device *bdget(dev_t dev)
883 {
884 struct block_device *bdev;
885 struct inode *inode;
886
887 inode = iget5_locked(blockdev_superblock, hash(dev),
888 bdev_test, bdev_set, &dev);
889
890 if (!inode)
891 return NULL;
892
893 bdev = &BDEV_I(inode)->bdev;
894
895 if (inode->i_state & I_NEW) {
896 bdev->bd_contains = NULL;
897 bdev->bd_super = NULL;
898 bdev->bd_inode = inode;
899 bdev->bd_block_size = i_blocksize(inode);
900 bdev->bd_part_count = 0;
901 bdev->bd_invalidated = 0;
902 inode->i_mode = S_IFBLK;
903 inode->i_rdev = dev;
904 inode->i_bdev = bdev;
905 inode->i_data.a_ops = &def_blk_aops;
906 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
907 spin_lock(&bdev_lock);
908 list_add(&bdev->bd_list, &all_bdevs);
909 spin_unlock(&bdev_lock);
910 unlock_new_inode(inode);
911 }
912 return bdev;
913 }
914
915 EXPORT_SYMBOL(bdget);
916
917 /**
918 * bdgrab -- Grab a reference to an already referenced block device
919 * @bdev: Block device to grab a reference to.
920 */
921 struct block_device *bdgrab(struct block_device *bdev)
922 {
923 ihold(bdev->bd_inode);
924 return bdev;
925 }
926 EXPORT_SYMBOL(bdgrab);
927
928 long nr_blockdev_pages(void)
929 {
930 struct block_device *bdev;
931 long ret = 0;
932 spin_lock(&bdev_lock);
933 list_for_each_entry(bdev, &all_bdevs, bd_list) {
934 ret += bdev->bd_inode->i_mapping->nrpages;
935 }
936 spin_unlock(&bdev_lock);
937 return ret;
938 }
939
940 void bdput(struct block_device *bdev)
941 {
942 iput(bdev->bd_inode);
943 }
944
945 EXPORT_SYMBOL(bdput);
946
947 static struct block_device *bd_acquire(struct inode *inode)
948 {
949 struct block_device *bdev;
950
951 spin_lock(&bdev_lock);
952 bdev = inode->i_bdev;
953 if (bdev && !inode_unhashed(bdev->bd_inode)) {
954 bdgrab(bdev);
955 spin_unlock(&bdev_lock);
956 return bdev;
957 }
958 spin_unlock(&bdev_lock);
959
960 /*
961 * i_bdev references block device inode that was already shut down
962 * (corresponding device got removed). Remove the reference and look
963 * up block device inode again just in case new device got
964 * reestablished under the same device number.
965 */
966 if (bdev)
967 bd_forget(inode);
968
969 bdev = bdget(inode->i_rdev);
970 if (bdev) {
971 spin_lock(&bdev_lock);
972 if (!inode->i_bdev) {
973 /*
974 * We take an additional reference to bd_inode,
975 * and it's released in clear_inode() of inode.
976 * So, we can access it via ->i_mapping always
977 * without igrab().
978 */
979 bdgrab(bdev);
980 inode->i_bdev = bdev;
981 inode->i_mapping = bdev->bd_inode->i_mapping;
982 }
983 spin_unlock(&bdev_lock);
984 }
985 return bdev;
986 }
987
988 /* Call when you free inode */
989
990 void bd_forget(struct inode *inode)
991 {
992 struct block_device *bdev = NULL;
993
994 spin_lock(&bdev_lock);
995 if (!sb_is_blkdev_sb(inode->i_sb))
996 bdev = inode->i_bdev;
997 inode->i_bdev = NULL;
998 inode->i_mapping = &inode->i_data;
999 spin_unlock(&bdev_lock);
1000
1001 if (bdev)
1002 bdput(bdev);
1003 }
1004
1005 /**
1006 * bd_may_claim - test whether a block device can be claimed
1007 * @bdev: block device of interest
1008 * @whole: whole block device containing @bdev, may equal @bdev
1009 * @holder: holder trying to claim @bdev
1010 *
1011 * Test whether @bdev can be claimed by @holder.
1012 *
1013 * CONTEXT:
1014 * spin_lock(&bdev_lock).
1015 *
1016 * RETURNS:
1017 * %true if @bdev can be claimed, %false otherwise.
1018 */
1019 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1020 void *holder)
1021 {
1022 if (bdev->bd_holder == holder)
1023 return true; /* already a holder */
1024 else if (bdev->bd_holder != NULL)
1025 return false; /* held by someone else */
1026 else if (whole == bdev)
1027 return true; /* is a whole device which isn't held */
1028
1029 else if (whole->bd_holder == bd_may_claim)
1030 return true; /* is a partition of a device that is being partitioned */
1031 else if (whole->bd_holder != NULL)
1032 return false; /* is a partition of a held device */
1033 else
1034 return true; /* is a partition of an un-held device */
1035 }
1036
1037 /**
1038 * bd_prepare_to_claim - prepare to claim a block device
1039 * @bdev: block device of interest
1040 * @whole: the whole device containing @bdev, may equal @bdev
1041 * @holder: holder trying to claim @bdev
1042 *
1043 * Prepare to claim @bdev. This function fails if @bdev is already
1044 * claimed by another holder and waits if another claiming is in
1045 * progress. This function doesn't actually claim. On successful
1046 * return, the caller has ownership of bd_claiming and bd_holder[s].
1047 *
1048 * CONTEXT:
1049 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
1050 * it multiple times.
1051 *
1052 * RETURNS:
1053 * 0 if @bdev can be claimed, -EBUSY otherwise.
1054 */
1055 static int bd_prepare_to_claim(struct block_device *bdev,
1056 struct block_device *whole, void *holder)
1057 {
1058 retry:
1059 /* if someone else claimed, fail */
1060 if (!bd_may_claim(bdev, whole, holder))
1061 return -EBUSY;
1062
1063 /* if claiming is already in progress, wait for it to finish */
1064 if (whole->bd_claiming) {
1065 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1066 DEFINE_WAIT(wait);
1067
1068 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1069 spin_unlock(&bdev_lock);
1070 schedule();
1071 finish_wait(wq, &wait);
1072 spin_lock(&bdev_lock);
1073 goto retry;
1074 }
1075
1076 /* yay, all mine */
1077 return 0;
1078 }
1079
1080 static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno)
1081 {
1082 struct gendisk *disk = get_gendisk(bdev->bd_dev, partno);
1083
1084 if (!disk)
1085 return NULL;
1086 /*
1087 * Now that we hold gendisk reference we make sure bdev we looked up is
1088 * not stale. If it is, it means device got removed and created before
1089 * we looked up gendisk and we fail open in such case. Associating
1090 * unhashed bdev with newly created gendisk could lead to two bdevs
1091 * (and thus two independent caches) being associated with one device
1092 * which is bad.
1093 */
1094 if (inode_unhashed(bdev->bd_inode)) {
1095 put_disk_and_module(disk);
1096 return NULL;
1097 }
1098 return disk;
1099 }
1100
1101 /**
1102 * bd_start_claiming - start claiming a block device
1103 * @bdev: block device of interest
1104 * @holder: holder trying to claim @bdev
1105 *
1106 * @bdev is about to be opened exclusively. Check @bdev can be opened
1107 * exclusively and mark that an exclusive open is in progress. Each
1108 * successful call to this function must be matched with a call to
1109 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1110 * fail).
1111 *
1112 * This function is used to gain exclusive access to the block device
1113 * without actually causing other exclusive open attempts to fail. It
1114 * should be used when the open sequence itself requires exclusive
1115 * access but may subsequently fail.
1116 *
1117 * CONTEXT:
1118 * Might sleep.
1119 *
1120 * RETURNS:
1121 * Pointer to the block device containing @bdev on success, ERR_PTR()
1122 * value on failure.
1123 */
1124 struct block_device *bd_start_claiming(struct block_device *bdev, void *holder)
1125 {
1126 struct gendisk *disk;
1127 struct block_device *whole;
1128 int partno, err;
1129
1130 might_sleep();
1131
1132 /*
1133 * @bdev might not have been initialized properly yet, look up
1134 * and grab the outer block device the hard way.
1135 */
1136 disk = bdev_get_gendisk(bdev, &partno);
1137 if (!disk)
1138 return ERR_PTR(-ENXIO);
1139
1140 /*
1141 * Normally, @bdev should equal what's returned from bdget_disk()
1142 * if partno is 0; however, some drivers (floppy) use multiple
1143 * bdev's for the same physical device and @bdev may be one of the
1144 * aliases. Keep @bdev if partno is 0. This means claimer
1145 * tracking is broken for those devices but it has always been that
1146 * way.
1147 */
1148 if (partno)
1149 whole = bdget_disk(disk, 0);
1150 else
1151 whole = bdgrab(bdev);
1152
1153 put_disk_and_module(disk);
1154 if (!whole)
1155 return ERR_PTR(-ENOMEM);
1156
1157 /* prepare to claim, if successful, mark claiming in progress */
1158 spin_lock(&bdev_lock);
1159
1160 err = bd_prepare_to_claim(bdev, whole, holder);
1161 if (err == 0) {
1162 whole->bd_claiming = holder;
1163 spin_unlock(&bdev_lock);
1164 return whole;
1165 } else {
1166 spin_unlock(&bdev_lock);
1167 bdput(whole);
1168 return ERR_PTR(err);
1169 }
1170 }
1171 EXPORT_SYMBOL(bd_start_claiming);
1172
1173 static void bd_clear_claiming(struct block_device *whole, void *holder)
1174 {
1175 lockdep_assert_held(&bdev_lock);
1176 /* tell others that we're done */
1177 BUG_ON(whole->bd_claiming != holder);
1178 whole->bd_claiming = NULL;
1179 wake_up_bit(&whole->bd_claiming, 0);
1180 }
1181
1182 /**
1183 * bd_finish_claiming - finish claiming of a block device
1184 * @bdev: block device of interest
1185 * @whole: whole block device (returned from bd_start_claiming())
1186 * @holder: holder that has claimed @bdev
1187 *
1188 * Finish exclusive open of a block device. Mark the device as exlusively
1189 * open by the holder and wake up all waiters for exclusive open to finish.
1190 */
1191 void bd_finish_claiming(struct block_device *bdev, struct block_device *whole,
1192 void *holder)
1193 {
1194 spin_lock(&bdev_lock);
1195 BUG_ON(!bd_may_claim(bdev, whole, holder));
1196 /*
1197 * Note that for a whole device bd_holders will be incremented twice,
1198 * and bd_holder will be set to bd_may_claim before being set to holder
1199 */
1200 whole->bd_holders++;
1201 whole->bd_holder = bd_may_claim;
1202 bdev->bd_holders++;
1203 bdev->bd_holder = holder;
1204 bd_clear_claiming(whole, holder);
1205 spin_unlock(&bdev_lock);
1206 }
1207 EXPORT_SYMBOL(bd_finish_claiming);
1208
1209 /**
1210 * bd_abort_claiming - abort claiming of a block device
1211 * @bdev: block device of interest
1212 * @whole: whole block device (returned from bd_start_claiming())
1213 * @holder: holder that has claimed @bdev
1214 *
1215 * Abort claiming of a block device when the exclusive open failed. This can be
1216 * also used when exclusive open is not actually desired and we just needed
1217 * to block other exclusive openers for a while.
1218 */
1219 void bd_abort_claiming(struct block_device *bdev, struct block_device *whole,
1220 void *holder)
1221 {
1222 spin_lock(&bdev_lock);
1223 bd_clear_claiming(whole, holder);
1224 spin_unlock(&bdev_lock);
1225 }
1226 EXPORT_SYMBOL(bd_abort_claiming);
1227
1228 #ifdef CONFIG_SYSFS
1229 struct bd_holder_disk {
1230 struct list_head list;
1231 struct gendisk *disk;
1232 int refcnt;
1233 };
1234
1235 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1236 struct gendisk *disk)
1237 {
1238 struct bd_holder_disk *holder;
1239
1240 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1241 if (holder->disk == disk)
1242 return holder;
1243 return NULL;
1244 }
1245
1246 static int add_symlink(struct kobject *from, struct kobject *to)
1247 {
1248 return sysfs_create_link(from, to, kobject_name(to));
1249 }
1250
1251 static void del_symlink(struct kobject *from, struct kobject *to)
1252 {
1253 sysfs_remove_link(from, kobject_name(to));
1254 }
1255
1256 /**
1257 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1258 * @bdev: the claimed slave bdev
1259 * @disk: the holding disk
1260 *
1261 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1262 *
1263 * This functions creates the following sysfs symlinks.
1264 *
1265 * - from "slaves" directory of the holder @disk to the claimed @bdev
1266 * - from "holders" directory of the @bdev to the holder @disk
1267 *
1268 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1269 * passed to bd_link_disk_holder(), then:
1270 *
1271 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1272 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1273 *
1274 * The caller must have claimed @bdev before calling this function and
1275 * ensure that both @bdev and @disk are valid during the creation and
1276 * lifetime of these symlinks.
1277 *
1278 * CONTEXT:
1279 * Might sleep.
1280 *
1281 * RETURNS:
1282 * 0 on success, -errno on failure.
1283 */
1284 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1285 {
1286 struct bd_holder_disk *holder;
1287 int ret = 0;
1288
1289 mutex_lock(&bdev->bd_mutex);
1290
1291 WARN_ON_ONCE(!bdev->bd_holder);
1292
1293 /* FIXME: remove the following once add_disk() handles errors */
1294 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1295 goto out_unlock;
1296
1297 holder = bd_find_holder_disk(bdev, disk);
1298 if (holder) {
1299 holder->refcnt++;
1300 goto out_unlock;
1301 }
1302
1303 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1304 if (!holder) {
1305 ret = -ENOMEM;
1306 goto out_unlock;
1307 }
1308
1309 INIT_LIST_HEAD(&holder->list);
1310 holder->disk = disk;
1311 holder->refcnt = 1;
1312
1313 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1314 if (ret)
1315 goto out_free;
1316
1317 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1318 if (ret)
1319 goto out_del;
1320 /*
1321 * bdev could be deleted beneath us which would implicitly destroy
1322 * the holder directory. Hold on to it.
1323 */
1324 kobject_get(bdev->bd_part->holder_dir);
1325
1326 list_add(&holder->list, &bdev->bd_holder_disks);
1327 goto out_unlock;
1328
1329 out_del:
1330 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1331 out_free:
1332 kfree(holder);
1333 out_unlock:
1334 mutex_unlock(&bdev->bd_mutex);
1335 return ret;
1336 }
1337 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1338
1339 /**
1340 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1341 * @bdev: the calimed slave bdev
1342 * @disk: the holding disk
1343 *
1344 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1345 *
1346 * CONTEXT:
1347 * Might sleep.
1348 */
1349 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1350 {
1351 struct bd_holder_disk *holder;
1352
1353 mutex_lock(&bdev->bd_mutex);
1354
1355 holder = bd_find_holder_disk(bdev, disk);
1356
1357 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1358 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1359 del_symlink(bdev->bd_part->holder_dir,
1360 &disk_to_dev(disk)->kobj);
1361 kobject_put(bdev->bd_part->holder_dir);
1362 list_del_init(&holder->list);
1363 kfree(holder);
1364 }
1365
1366 mutex_unlock(&bdev->bd_mutex);
1367 }
1368 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1369 #endif
1370
1371 /**
1372 * flush_disk - invalidates all buffer-cache entries on a disk
1373 *
1374 * @bdev: struct block device to be flushed
1375 * @kill_dirty: flag to guide handling of dirty inodes
1376 *
1377 * Invalidates all buffer-cache entries on a disk. It should be called
1378 * when a disk has been changed -- either by a media change or online
1379 * resize.
1380 */
1381 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1382 {
1383 if (__invalidate_device(bdev, kill_dirty)) {
1384 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1385 "resized disk %s\n",
1386 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1387 }
1388 bdev->bd_invalidated = 1;
1389 }
1390
1391 /**
1392 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1393 * @disk: struct gendisk to check
1394 * @bdev: struct bdev to adjust.
1395 * @verbose: if %true log a message about a size change if there is any
1396 *
1397 * This routine checks to see if the bdev size does not match the disk size
1398 * and adjusts it if it differs. When shrinking the bdev size, its all caches
1399 * are freed.
1400 */
1401 static void check_disk_size_change(struct gendisk *disk,
1402 struct block_device *bdev, bool verbose)
1403 {
1404 loff_t disk_size, bdev_size;
1405
1406 disk_size = (loff_t)get_capacity(disk) << 9;
1407 bdev_size = i_size_read(bdev->bd_inode);
1408 if (disk_size != bdev_size) {
1409 if (verbose) {
1410 printk(KERN_INFO
1411 "%s: detected capacity change from %lld to %lld\n",
1412 disk->disk_name, bdev_size, disk_size);
1413 }
1414 i_size_write(bdev->bd_inode, disk_size);
1415 if (bdev_size > disk_size)
1416 flush_disk(bdev, false);
1417 }
1418 bdev->bd_invalidated = 0;
1419 }
1420
1421 /**
1422 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1423 * @disk: struct gendisk to be revalidated
1424 *
1425 * This routine is a wrapper for lower-level driver's revalidate_disk
1426 * call-backs. It is used to do common pre and post operations needed
1427 * for all revalidate_disk operations.
1428 */
1429 int revalidate_disk(struct gendisk *disk)
1430 {
1431 int ret = 0;
1432
1433 if (disk->fops->revalidate_disk)
1434 ret = disk->fops->revalidate_disk(disk);
1435
1436 /*
1437 * Hidden disks don't have associated bdev so there's no point in
1438 * revalidating it.
1439 */
1440 if (!(disk->flags & GENHD_FL_HIDDEN)) {
1441 struct block_device *bdev = bdget_disk(disk, 0);
1442
1443 if (!bdev)
1444 return ret;
1445
1446 mutex_lock(&bdev->bd_mutex);
1447 check_disk_size_change(disk, bdev, ret == 0);
1448 mutex_unlock(&bdev->bd_mutex);
1449 bdput(bdev);
1450 }
1451 return ret;
1452 }
1453 EXPORT_SYMBOL(revalidate_disk);
1454
1455 /*
1456 * This routine checks whether a removable media has been changed,
1457 * and invalidates all buffer-cache-entries in that case. This
1458 * is a relatively slow routine, so we have to try to minimize using
1459 * it. Thus it is called only upon a 'mount' or 'open'. This
1460 * is the best way of combining speed and utility, I think.
1461 * People changing diskettes in the middle of an operation deserve
1462 * to lose :-)
1463 */
1464 int check_disk_change(struct block_device *bdev)
1465 {
1466 struct gendisk *disk = bdev->bd_disk;
1467 const struct block_device_operations *bdops = disk->fops;
1468 unsigned int events;
1469
1470 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1471 DISK_EVENT_EJECT_REQUEST);
1472 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1473 return 0;
1474
1475 flush_disk(bdev, true);
1476 if (bdops->revalidate_disk)
1477 bdops->revalidate_disk(bdev->bd_disk);
1478 return 1;
1479 }
1480
1481 EXPORT_SYMBOL(check_disk_change);
1482
1483 void bd_set_size(struct block_device *bdev, loff_t size)
1484 {
1485 inode_lock(bdev->bd_inode);
1486 i_size_write(bdev->bd_inode, size);
1487 inode_unlock(bdev->bd_inode);
1488 }
1489 EXPORT_SYMBOL(bd_set_size);
1490
1491 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1492
1493 int bdev_disk_changed(struct block_device *bdev, bool invalidate)
1494 {
1495 struct gendisk *disk = bdev->bd_disk;
1496 int ret;
1497
1498 lockdep_assert_held(&bdev->bd_mutex);
1499
1500 rescan:
1501 ret = blk_drop_partitions(bdev);
1502 if (ret)
1503 return ret;
1504
1505 /*
1506 * Historically we only set the capacity to zero for devices that
1507 * support partitions (independ of actually having partitions created).
1508 * Doing that is rather inconsistent, but changing it broke legacy
1509 * udisks polling for legacy ide-cdrom devices. Use the crude check
1510 * below to get the sane behavior for most device while not breaking
1511 * userspace for this particular setup.
1512 */
1513 if (invalidate) {
1514 if (disk_part_scan_enabled(disk) ||
1515 !(disk->flags & GENHD_FL_REMOVABLE))
1516 set_capacity(disk, 0);
1517 } else {
1518 if (disk->fops->revalidate_disk)
1519 disk->fops->revalidate_disk(disk);
1520 }
1521
1522 check_disk_size_change(disk, bdev, !invalidate);
1523
1524 if (get_capacity(disk)) {
1525 ret = blk_add_partitions(disk, bdev);
1526 if (ret == -EAGAIN)
1527 goto rescan;
1528 } else if (invalidate) {
1529 /*
1530 * Tell userspace that the media / partition table may have
1531 * changed.
1532 */
1533 kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
1534 }
1535
1536 return ret;
1537 }
1538 /*
1539 * Only exported for for loop and dasd for historic reasons. Don't use in new
1540 * code!
1541 */
1542 EXPORT_SYMBOL_GPL(bdev_disk_changed);
1543
1544 /*
1545 * bd_mutex locking:
1546 *
1547 * mutex_lock(part->bd_mutex)
1548 * mutex_lock_nested(whole->bd_mutex, 1)
1549 */
1550
1551 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1552 {
1553 struct gendisk *disk;
1554 int ret;
1555 int partno;
1556 int perm = 0;
1557 bool first_open = false;
1558
1559 if (mode & FMODE_READ)
1560 perm |= MAY_READ;
1561 if (mode & FMODE_WRITE)
1562 perm |= MAY_WRITE;
1563 /*
1564 * hooks: /n/, see "layering violations".
1565 */
1566 if (!for_part) {
1567 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1568 if (ret != 0) {
1569 bdput(bdev);
1570 return ret;
1571 }
1572 }
1573
1574 restart:
1575
1576 ret = -ENXIO;
1577 disk = bdev_get_gendisk(bdev, &partno);
1578 if (!disk)
1579 goto out;
1580
1581 disk_block_events(disk);
1582 mutex_lock_nested(&bdev->bd_mutex, for_part);
1583 if (!bdev->bd_openers) {
1584 first_open = true;
1585 bdev->bd_disk = disk;
1586 bdev->bd_queue = disk->queue;
1587 bdev->bd_contains = bdev;
1588 bdev->bd_partno = partno;
1589
1590 if (!partno) {
1591 ret = -ENXIO;
1592 bdev->bd_part = disk_get_part(disk, partno);
1593 if (!bdev->bd_part)
1594 goto out_clear;
1595
1596 ret = 0;
1597 if (disk->fops->open) {
1598 ret = disk->fops->open(bdev, mode);
1599 if (ret == -ERESTARTSYS) {
1600 /* Lost a race with 'disk' being
1601 * deleted, try again.
1602 * See md.c
1603 */
1604 disk_put_part(bdev->bd_part);
1605 bdev->bd_part = NULL;
1606 bdev->bd_disk = NULL;
1607 bdev->bd_queue = NULL;
1608 mutex_unlock(&bdev->bd_mutex);
1609 disk_unblock_events(disk);
1610 put_disk_and_module(disk);
1611 goto restart;
1612 }
1613 }
1614
1615 if (!ret) {
1616 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1617 set_init_blocksize(bdev);
1618 }
1619
1620 /*
1621 * If the device is invalidated, rescan partition
1622 * if open succeeded or failed with -ENOMEDIUM.
1623 * The latter is necessary to prevent ghost
1624 * partitions on a removed medium.
1625 */
1626 if (bdev->bd_invalidated &&
1627 (!ret || ret == -ENOMEDIUM))
1628 bdev_disk_changed(bdev, ret == -ENOMEDIUM);
1629
1630 if (ret)
1631 goto out_clear;
1632 } else {
1633 struct block_device *whole;
1634 whole = bdget_disk(disk, 0);
1635 ret = -ENOMEM;
1636 if (!whole)
1637 goto out_clear;
1638 BUG_ON(for_part);
1639 ret = __blkdev_get(whole, mode, 1);
1640 if (ret)
1641 goto out_clear;
1642 bdev->bd_contains = whole;
1643 bdev->bd_part = disk_get_part(disk, partno);
1644 if (!(disk->flags & GENHD_FL_UP) ||
1645 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1646 ret = -ENXIO;
1647 goto out_clear;
1648 }
1649 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1650 set_init_blocksize(bdev);
1651 }
1652
1653 if (bdev->bd_bdi == &noop_backing_dev_info)
1654 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1655 } else {
1656 if (bdev->bd_contains == bdev) {
1657 ret = 0;
1658 if (bdev->bd_disk->fops->open)
1659 ret = bdev->bd_disk->fops->open(bdev, mode);
1660 /* the same as first opener case, read comment there */
1661 if (bdev->bd_invalidated &&
1662 (!ret || ret == -ENOMEDIUM))
1663 bdev_disk_changed(bdev, ret == -ENOMEDIUM);
1664 if (ret)
1665 goto out_unlock_bdev;
1666 }
1667 }
1668 bdev->bd_openers++;
1669 if (for_part)
1670 bdev->bd_part_count++;
1671 mutex_unlock(&bdev->bd_mutex);
1672 disk_unblock_events(disk);
1673 /* only one opener holds refs to the module and disk */
1674 if (!first_open)
1675 put_disk_and_module(disk);
1676 return 0;
1677
1678 out_clear:
1679 disk_put_part(bdev->bd_part);
1680 bdev->bd_disk = NULL;
1681 bdev->bd_part = NULL;
1682 bdev->bd_queue = NULL;
1683 if (bdev != bdev->bd_contains)
1684 __blkdev_put(bdev->bd_contains, mode, 1);
1685 bdev->bd_contains = NULL;
1686 out_unlock_bdev:
1687 mutex_unlock(&bdev->bd_mutex);
1688 disk_unblock_events(disk);
1689 put_disk_and_module(disk);
1690 out:
1691 bdput(bdev);
1692
1693 return ret;
1694 }
1695
1696 /**
1697 * blkdev_get - open a block device
1698 * @bdev: block_device to open
1699 * @mode: FMODE_* mask
1700 * @holder: exclusive holder identifier
1701 *
1702 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1703 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1704 * @holder is invalid. Exclusive opens may nest for the same @holder.
1705 *
1706 * On success, the reference count of @bdev is unchanged. On failure,
1707 * @bdev is put.
1708 *
1709 * CONTEXT:
1710 * Might sleep.
1711 *
1712 * RETURNS:
1713 * 0 on success, -errno on failure.
1714 */
1715 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1716 {
1717 struct block_device *whole = NULL;
1718 int res;
1719
1720 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1721
1722 if ((mode & FMODE_EXCL) && holder) {
1723 whole = bd_start_claiming(bdev, holder);
1724 if (IS_ERR(whole)) {
1725 bdput(bdev);
1726 return PTR_ERR(whole);
1727 }
1728 }
1729
1730 res = __blkdev_get(bdev, mode, 0);
1731
1732 if (whole) {
1733 struct gendisk *disk = whole->bd_disk;
1734
1735 /* finish claiming */
1736 mutex_lock(&bdev->bd_mutex);
1737 if (!res)
1738 bd_finish_claiming(bdev, whole, holder);
1739 else
1740 bd_abort_claiming(bdev, whole, holder);
1741 /*
1742 * Block event polling for write claims if requested. Any
1743 * write holder makes the write_holder state stick until
1744 * all are released. This is good enough and tracking
1745 * individual writeable reference is too fragile given the
1746 * way @mode is used in blkdev_get/put().
1747 */
1748 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1749 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1750 bdev->bd_write_holder = true;
1751 disk_block_events(disk);
1752 }
1753
1754 mutex_unlock(&bdev->bd_mutex);
1755 bdput(whole);
1756 }
1757
1758 return res;
1759 }
1760 EXPORT_SYMBOL(blkdev_get);
1761
1762 /**
1763 * blkdev_get_by_path - open a block device by name
1764 * @path: path to the block device to open
1765 * @mode: FMODE_* mask
1766 * @holder: exclusive holder identifier
1767 *
1768 * Open the blockdevice described by the device file at @path. @mode
1769 * and @holder are identical to blkdev_get().
1770 *
1771 * On success, the returned block_device has reference count of one.
1772 *
1773 * CONTEXT:
1774 * Might sleep.
1775 *
1776 * RETURNS:
1777 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1778 */
1779 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1780 void *holder)
1781 {
1782 struct block_device *bdev;
1783 int err;
1784
1785 bdev = lookup_bdev(path);
1786 if (IS_ERR(bdev))
1787 return bdev;
1788
1789 err = blkdev_get(bdev, mode, holder);
1790 if (err)
1791 return ERR_PTR(err);
1792
1793 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1794 blkdev_put(bdev, mode);
1795 return ERR_PTR(-EACCES);
1796 }
1797
1798 return bdev;
1799 }
1800 EXPORT_SYMBOL(blkdev_get_by_path);
1801
1802 /**
1803 * blkdev_get_by_dev - open a block device by device number
1804 * @dev: device number of block device to open
1805 * @mode: FMODE_* mask
1806 * @holder: exclusive holder identifier
1807 *
1808 * Open the blockdevice described by device number @dev. @mode and
1809 * @holder are identical to blkdev_get().
1810 *
1811 * Use it ONLY if you really do not have anything better - i.e. when
1812 * you are behind a truly sucky interface and all you are given is a
1813 * device number. _Never_ to be used for internal purposes. If you
1814 * ever need it - reconsider your API.
1815 *
1816 * On success, the returned block_device has reference count of one.
1817 *
1818 * CONTEXT:
1819 * Might sleep.
1820 *
1821 * RETURNS:
1822 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1823 */
1824 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1825 {
1826 struct block_device *bdev;
1827 int err;
1828
1829 bdev = bdget(dev);
1830 if (!bdev)
1831 return ERR_PTR(-ENOMEM);
1832
1833 err = blkdev_get(bdev, mode, holder);
1834 if (err)
1835 return ERR_PTR(err);
1836
1837 return bdev;
1838 }
1839 EXPORT_SYMBOL(blkdev_get_by_dev);
1840
1841 static int blkdev_open(struct inode * inode, struct file * filp)
1842 {
1843 struct block_device *bdev;
1844
1845 /*
1846 * Preserve backwards compatibility and allow large file access
1847 * even if userspace doesn't ask for it explicitly. Some mkfs
1848 * binary needs it. We might want to drop this workaround
1849 * during an unstable branch.
1850 */
1851 filp->f_flags |= O_LARGEFILE;
1852
1853 filp->f_mode |= FMODE_NOWAIT;
1854
1855 if (filp->f_flags & O_NDELAY)
1856 filp->f_mode |= FMODE_NDELAY;
1857 if (filp->f_flags & O_EXCL)
1858 filp->f_mode |= FMODE_EXCL;
1859 if ((filp->f_flags & O_ACCMODE) == 3)
1860 filp->f_mode |= FMODE_WRITE_IOCTL;
1861
1862 bdev = bd_acquire(inode);
1863 if (bdev == NULL)
1864 return -ENOMEM;
1865
1866 filp->f_mapping = bdev->bd_inode->i_mapping;
1867 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1868
1869 return blkdev_get(bdev, filp->f_mode, filp);
1870 }
1871
1872 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1873 {
1874 struct gendisk *disk = bdev->bd_disk;
1875 struct block_device *victim = NULL;
1876
1877 /*
1878 * Sync early if it looks like we're the last one. If someone else
1879 * opens the block device between now and the decrement of bd_openers
1880 * then we did a sync that we didn't need to, but that's not the end
1881 * of the world and we want to avoid long (could be several minute)
1882 * syncs while holding the mutex.
1883 */
1884 if (bdev->bd_openers == 1)
1885 sync_blockdev(bdev);
1886
1887 mutex_lock_nested(&bdev->bd_mutex, for_part);
1888 if (for_part)
1889 bdev->bd_part_count--;
1890
1891 if (!--bdev->bd_openers) {
1892 WARN_ON_ONCE(bdev->bd_holders);
1893 sync_blockdev(bdev);
1894 kill_bdev(bdev);
1895
1896 bdev_write_inode(bdev);
1897 }
1898 if (bdev->bd_contains == bdev) {
1899 if (disk->fops->release)
1900 disk->fops->release(disk, mode);
1901 }
1902 if (!bdev->bd_openers) {
1903 disk_put_part(bdev->bd_part);
1904 bdev->bd_part = NULL;
1905 bdev->bd_disk = NULL;
1906 if (bdev != bdev->bd_contains)
1907 victim = bdev->bd_contains;
1908 bdev->bd_contains = NULL;
1909
1910 put_disk_and_module(disk);
1911 }
1912 mutex_unlock(&bdev->bd_mutex);
1913 bdput(bdev);
1914 if (victim)
1915 __blkdev_put(victim, mode, 1);
1916 }
1917
1918 void blkdev_put(struct block_device *bdev, fmode_t mode)
1919 {
1920 mutex_lock(&bdev->bd_mutex);
1921
1922 if (mode & FMODE_EXCL) {
1923 bool bdev_free;
1924
1925 /*
1926 * Release a claim on the device. The holder fields
1927 * are protected with bdev_lock. bd_mutex is to
1928 * synchronize disk_holder unlinking.
1929 */
1930 spin_lock(&bdev_lock);
1931
1932 WARN_ON_ONCE(--bdev->bd_holders < 0);
1933 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1934
1935 /* bd_contains might point to self, check in a separate step */
1936 if ((bdev_free = !bdev->bd_holders))
1937 bdev->bd_holder = NULL;
1938 if (!bdev->bd_contains->bd_holders)
1939 bdev->bd_contains->bd_holder = NULL;
1940
1941 spin_unlock(&bdev_lock);
1942
1943 /*
1944 * If this was the last claim, remove holder link and
1945 * unblock evpoll if it was a write holder.
1946 */
1947 if (bdev_free && bdev->bd_write_holder) {
1948 disk_unblock_events(bdev->bd_disk);
1949 bdev->bd_write_holder = false;
1950 }
1951 }
1952
1953 /*
1954 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1955 * event. This is to ensure detection of media removal commanded
1956 * from userland - e.g. eject(1).
1957 */
1958 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1959
1960 mutex_unlock(&bdev->bd_mutex);
1961
1962 __blkdev_put(bdev, mode, 0);
1963 }
1964 EXPORT_SYMBOL(blkdev_put);
1965
1966 static int blkdev_close(struct inode * inode, struct file * filp)
1967 {
1968 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1969 blkdev_put(bdev, filp->f_mode);
1970 return 0;
1971 }
1972
1973 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1974 {
1975 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1976 fmode_t mode = file->f_mode;
1977
1978 /*
1979 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1980 * to updated it before every ioctl.
1981 */
1982 if (file->f_flags & O_NDELAY)
1983 mode |= FMODE_NDELAY;
1984 else
1985 mode &= ~FMODE_NDELAY;
1986
1987 return blkdev_ioctl(bdev, mode, cmd, arg);
1988 }
1989
1990 /*
1991 * Write data to the block device. Only intended for the block device itself
1992 * and the raw driver which basically is a fake block device.
1993 *
1994 * Does not take i_mutex for the write and thus is not for general purpose
1995 * use.
1996 */
1997 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1998 {
1999 struct file *file = iocb->ki_filp;
2000 struct inode *bd_inode = bdev_file_inode(file);
2001 loff_t size = i_size_read(bd_inode);
2002 struct blk_plug plug;
2003 ssize_t ret;
2004
2005 if (bdev_read_only(I_BDEV(bd_inode)))
2006 return -EPERM;
2007
2008 if (IS_SWAPFILE(bd_inode) && !is_hibernate_resume_dev(bd_inode))
2009 return -ETXTBSY;
2010
2011 if (!iov_iter_count(from))
2012 return 0;
2013
2014 if (iocb->ki_pos >= size)
2015 return -ENOSPC;
2016
2017 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
2018 return -EOPNOTSUPP;
2019
2020 iov_iter_truncate(from, size - iocb->ki_pos);
2021
2022 blk_start_plug(&plug);
2023 ret = __generic_file_write_iter(iocb, from);
2024 if (ret > 0)
2025 ret = generic_write_sync(iocb, ret);
2026 blk_finish_plug(&plug);
2027 return ret;
2028 }
2029 EXPORT_SYMBOL_GPL(blkdev_write_iter);
2030
2031 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
2032 {
2033 struct file *file = iocb->ki_filp;
2034 struct inode *bd_inode = bdev_file_inode(file);
2035 loff_t size = i_size_read(bd_inode);
2036 loff_t pos = iocb->ki_pos;
2037
2038 if (pos >= size)
2039 return 0;
2040
2041 size -= pos;
2042 iov_iter_truncate(to, size);
2043 return generic_file_read_iter(iocb, to);
2044 }
2045 EXPORT_SYMBOL_GPL(blkdev_read_iter);
2046
2047 /*
2048 * Try to release a page associated with block device when the system
2049 * is under memory pressure.
2050 */
2051 static int blkdev_releasepage(struct page *page, gfp_t wait)
2052 {
2053 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
2054
2055 if (super && super->s_op->bdev_try_to_free_page)
2056 return super->s_op->bdev_try_to_free_page(super, page, wait);
2057
2058 return try_to_free_buffers(page);
2059 }
2060
2061 static int blkdev_writepages(struct address_space *mapping,
2062 struct writeback_control *wbc)
2063 {
2064 return generic_writepages(mapping, wbc);
2065 }
2066
2067 static const struct address_space_operations def_blk_aops = {
2068 .readpage = blkdev_readpage,
2069 .readahead = blkdev_readahead,
2070 .writepage = blkdev_writepage,
2071 .write_begin = blkdev_write_begin,
2072 .write_end = blkdev_write_end,
2073 .writepages = blkdev_writepages,
2074 .releasepage = blkdev_releasepage,
2075 .direct_IO = blkdev_direct_IO,
2076 .migratepage = buffer_migrate_page_norefs,
2077 .is_dirty_writeback = buffer_check_dirty_writeback,
2078 };
2079
2080 #define BLKDEV_FALLOC_FL_SUPPORTED \
2081 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
2082 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
2083
2084 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
2085 loff_t len)
2086 {
2087 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
2088 struct address_space *mapping;
2089 loff_t end = start + len - 1;
2090 loff_t isize;
2091 int error;
2092
2093 /* Fail if we don't recognize the flags. */
2094 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
2095 return -EOPNOTSUPP;
2096
2097 /* Don't go off the end of the device. */
2098 isize = i_size_read(bdev->bd_inode);
2099 if (start >= isize)
2100 return -EINVAL;
2101 if (end >= isize) {
2102 if (mode & FALLOC_FL_KEEP_SIZE) {
2103 len = isize - start;
2104 end = start + len - 1;
2105 } else
2106 return -EINVAL;
2107 }
2108
2109 /*
2110 * Don't allow IO that isn't aligned to logical block size.
2111 */
2112 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2113 return -EINVAL;
2114
2115 /* Invalidate the page cache, including dirty pages. */
2116 mapping = bdev->bd_inode->i_mapping;
2117 truncate_inode_pages_range(mapping, start, end);
2118
2119 switch (mode) {
2120 case FALLOC_FL_ZERO_RANGE:
2121 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2122 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2123 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2124 break;
2125 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2126 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2127 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2128 break;
2129 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2130 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2131 GFP_KERNEL, 0);
2132 break;
2133 default:
2134 return -EOPNOTSUPP;
2135 }
2136 if (error)
2137 return error;
2138
2139 /*
2140 * Invalidate again; if someone wandered in and dirtied a page,
2141 * the caller will be given -EBUSY. The third argument is
2142 * inclusive, so the rounding here is safe.
2143 */
2144 return invalidate_inode_pages2_range(mapping,
2145 start >> PAGE_SHIFT,
2146 end >> PAGE_SHIFT);
2147 }
2148
2149 const struct file_operations def_blk_fops = {
2150 .open = blkdev_open,
2151 .release = blkdev_close,
2152 .llseek = block_llseek,
2153 .read_iter = blkdev_read_iter,
2154 .write_iter = blkdev_write_iter,
2155 .iopoll = blkdev_iopoll,
2156 .mmap = generic_file_mmap,
2157 .fsync = blkdev_fsync,
2158 .unlocked_ioctl = block_ioctl,
2159 #ifdef CONFIG_COMPAT
2160 .compat_ioctl = compat_blkdev_ioctl,
2161 #endif
2162 .splice_read = generic_file_splice_read,
2163 .splice_write = iter_file_splice_write,
2164 .fallocate = blkdev_fallocate,
2165 };
2166
2167 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2168 {
2169 int res;
2170 mm_segment_t old_fs = get_fs();
2171 set_fs(KERNEL_DS);
2172 res = blkdev_ioctl(bdev, 0, cmd, arg);
2173 set_fs(old_fs);
2174 return res;
2175 }
2176
2177 EXPORT_SYMBOL(ioctl_by_bdev);
2178
2179 /**
2180 * lookup_bdev - lookup a struct block_device by name
2181 * @pathname: special file representing the block device
2182 *
2183 * Get a reference to the blockdevice at @pathname in the current
2184 * namespace if possible and return it. Return ERR_PTR(error)
2185 * otherwise.
2186 */
2187 struct block_device *lookup_bdev(const char *pathname)
2188 {
2189 struct block_device *bdev;
2190 struct inode *inode;
2191 struct path path;
2192 int error;
2193
2194 if (!pathname || !*pathname)
2195 return ERR_PTR(-EINVAL);
2196
2197 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2198 if (error)
2199 return ERR_PTR(error);
2200
2201 inode = d_backing_inode(path.dentry);
2202 error = -ENOTBLK;
2203 if (!S_ISBLK(inode->i_mode))
2204 goto fail;
2205 error = -EACCES;
2206 if (!may_open_dev(&path))
2207 goto fail;
2208 error = -ENOMEM;
2209 bdev = bd_acquire(inode);
2210 if (!bdev)
2211 goto fail;
2212 out:
2213 path_put(&path);
2214 return bdev;
2215 fail:
2216 bdev = ERR_PTR(error);
2217 goto out;
2218 }
2219 EXPORT_SYMBOL(lookup_bdev);
2220
2221 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2222 {
2223 struct super_block *sb = get_super(bdev);
2224 int res = 0;
2225
2226 if (sb) {
2227 /*
2228 * no need to lock the super, get_super holds the
2229 * read mutex so the filesystem cannot go away
2230 * under us (->put_super runs with the write lock
2231 * hold).
2232 */
2233 shrink_dcache_sb(sb);
2234 res = invalidate_inodes(sb, kill_dirty);
2235 drop_super(sb);
2236 }
2237 invalidate_bdev(bdev);
2238 return res;
2239 }
2240 EXPORT_SYMBOL(__invalidate_device);
2241
2242 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2243 {
2244 struct inode *inode, *old_inode = NULL;
2245
2246 spin_lock(&blockdev_superblock->s_inode_list_lock);
2247 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2248 struct address_space *mapping = inode->i_mapping;
2249 struct block_device *bdev;
2250
2251 spin_lock(&inode->i_lock);
2252 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2253 mapping->nrpages == 0) {
2254 spin_unlock(&inode->i_lock);
2255 continue;
2256 }
2257 __iget(inode);
2258 spin_unlock(&inode->i_lock);
2259 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2260 /*
2261 * We hold a reference to 'inode' so it couldn't have been
2262 * removed from s_inodes list while we dropped the
2263 * s_inode_list_lock We cannot iput the inode now as we can
2264 * be holding the last reference and we cannot iput it under
2265 * s_inode_list_lock. So we keep the reference and iput it
2266 * later.
2267 */
2268 iput(old_inode);
2269 old_inode = inode;
2270 bdev = I_BDEV(inode);
2271
2272 mutex_lock(&bdev->bd_mutex);
2273 if (bdev->bd_openers)
2274 func(bdev, arg);
2275 mutex_unlock(&bdev->bd_mutex);
2276
2277 spin_lock(&blockdev_superblock->s_inode_list_lock);
2278 }
2279 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2280 iput(old_inode);
2281 }