]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/block_dev.c
power: supply: ab8500_charger: Mark expected switch fall-through
[thirdparty/linux.git] / fs / block_dev.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/block_dev.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
7 */
8
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/fcntl.h>
12 #include <linux/slab.h>
13 #include <linux/kmod.h>
14 #include <linux/major.h>
15 #include <linux/device_cgroup.h>
16 #include <linux/highmem.h>
17 #include <linux/blkdev.h>
18 #include <linux/backing-dev.h>
19 #include <linux/module.h>
20 #include <linux/blkpg.h>
21 #include <linux/magic.h>
22 #include <linux/dax.h>
23 #include <linux/buffer_head.h>
24 #include <linux/swap.h>
25 #include <linux/pagevec.h>
26 #include <linux/writeback.h>
27 #include <linux/mpage.h>
28 #include <linux/mount.h>
29 #include <linux/pseudo_fs.h>
30 #include <linux/uio.h>
31 #include <linux/namei.h>
32 #include <linux/log2.h>
33 #include <linux/cleancache.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/falloc.h>
36 #include <linux/uaccess.h>
37 #include "internal.h"
38
39 struct bdev_inode {
40 struct block_device bdev;
41 struct inode vfs_inode;
42 };
43
44 static const struct address_space_operations def_blk_aops;
45
46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
47 {
48 return container_of(inode, struct bdev_inode, vfs_inode);
49 }
50
51 struct block_device *I_BDEV(struct inode *inode)
52 {
53 return &BDEV_I(inode)->bdev;
54 }
55 EXPORT_SYMBOL(I_BDEV);
56
57 static void bdev_write_inode(struct block_device *bdev)
58 {
59 struct inode *inode = bdev->bd_inode;
60 int ret;
61
62 spin_lock(&inode->i_lock);
63 while (inode->i_state & I_DIRTY) {
64 spin_unlock(&inode->i_lock);
65 ret = write_inode_now(inode, true);
66 if (ret) {
67 char name[BDEVNAME_SIZE];
68 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
69 "for block device %s (err=%d).\n",
70 bdevname(bdev, name), ret);
71 }
72 spin_lock(&inode->i_lock);
73 }
74 spin_unlock(&inode->i_lock);
75 }
76
77 /* Kill _all_ buffers and pagecache , dirty or not.. */
78 void kill_bdev(struct block_device *bdev)
79 {
80 struct address_space *mapping = bdev->bd_inode->i_mapping;
81
82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
83 return;
84
85 invalidate_bh_lrus();
86 truncate_inode_pages(mapping, 0);
87 }
88 EXPORT_SYMBOL(kill_bdev);
89
90 /* Invalidate clean unused buffers and pagecache. */
91 void invalidate_bdev(struct block_device *bdev)
92 {
93 struct address_space *mapping = bdev->bd_inode->i_mapping;
94
95 if (mapping->nrpages) {
96 invalidate_bh_lrus();
97 lru_add_drain_all(); /* make sure all lru add caches are flushed */
98 invalidate_mapping_pages(mapping, 0, -1);
99 }
100 /* 99% of the time, we don't need to flush the cleancache on the bdev.
101 * But, for the strange corners, lets be cautious
102 */
103 cleancache_invalidate_inode(mapping);
104 }
105 EXPORT_SYMBOL(invalidate_bdev);
106
107 static void set_init_blocksize(struct block_device *bdev)
108 {
109 unsigned bsize = bdev_logical_block_size(bdev);
110 loff_t size = i_size_read(bdev->bd_inode);
111
112 while (bsize < PAGE_SIZE) {
113 if (size & bsize)
114 break;
115 bsize <<= 1;
116 }
117 bdev->bd_block_size = bsize;
118 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
119 }
120
121 int set_blocksize(struct block_device *bdev, int size)
122 {
123 /* Size must be a power of two, and between 512 and PAGE_SIZE */
124 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
125 return -EINVAL;
126
127 /* Size cannot be smaller than the size supported by the device */
128 if (size < bdev_logical_block_size(bdev))
129 return -EINVAL;
130
131 /* Don't change the size if it is same as current */
132 if (bdev->bd_block_size != size) {
133 sync_blockdev(bdev);
134 bdev->bd_block_size = size;
135 bdev->bd_inode->i_blkbits = blksize_bits(size);
136 kill_bdev(bdev);
137 }
138 return 0;
139 }
140
141 EXPORT_SYMBOL(set_blocksize);
142
143 int sb_set_blocksize(struct super_block *sb, int size)
144 {
145 if (set_blocksize(sb->s_bdev, size))
146 return 0;
147 /* If we get here, we know size is power of two
148 * and it's value is between 512 and PAGE_SIZE */
149 sb->s_blocksize = size;
150 sb->s_blocksize_bits = blksize_bits(size);
151 return sb->s_blocksize;
152 }
153
154 EXPORT_SYMBOL(sb_set_blocksize);
155
156 int sb_min_blocksize(struct super_block *sb, int size)
157 {
158 int minsize = bdev_logical_block_size(sb->s_bdev);
159 if (size < minsize)
160 size = minsize;
161 return sb_set_blocksize(sb, size);
162 }
163
164 EXPORT_SYMBOL(sb_min_blocksize);
165
166 static int
167 blkdev_get_block(struct inode *inode, sector_t iblock,
168 struct buffer_head *bh, int create)
169 {
170 bh->b_bdev = I_BDEV(inode);
171 bh->b_blocknr = iblock;
172 set_buffer_mapped(bh);
173 return 0;
174 }
175
176 static struct inode *bdev_file_inode(struct file *file)
177 {
178 return file->f_mapping->host;
179 }
180
181 static unsigned int dio_bio_write_op(struct kiocb *iocb)
182 {
183 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
184
185 /* avoid the need for a I/O completion work item */
186 if (iocb->ki_flags & IOCB_DSYNC)
187 op |= REQ_FUA;
188 return op;
189 }
190
191 #define DIO_INLINE_BIO_VECS 4
192
193 static void blkdev_bio_end_io_simple(struct bio *bio)
194 {
195 struct task_struct *waiter = bio->bi_private;
196
197 WRITE_ONCE(bio->bi_private, NULL);
198 blk_wake_io_task(waiter);
199 }
200
201 static ssize_t
202 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
203 int nr_pages)
204 {
205 struct file *file = iocb->ki_filp;
206 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
207 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs;
208 loff_t pos = iocb->ki_pos;
209 bool should_dirty = false;
210 struct bio bio;
211 ssize_t ret;
212 blk_qc_t qc;
213
214 if ((pos | iov_iter_alignment(iter)) &
215 (bdev_logical_block_size(bdev) - 1))
216 return -EINVAL;
217
218 if (nr_pages <= DIO_INLINE_BIO_VECS)
219 vecs = inline_vecs;
220 else {
221 vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec),
222 GFP_KERNEL);
223 if (!vecs)
224 return -ENOMEM;
225 }
226
227 bio_init(&bio, vecs, nr_pages);
228 bio_set_dev(&bio, bdev);
229 bio.bi_iter.bi_sector = pos >> 9;
230 bio.bi_write_hint = iocb->ki_hint;
231 bio.bi_private = current;
232 bio.bi_end_io = blkdev_bio_end_io_simple;
233 bio.bi_ioprio = iocb->ki_ioprio;
234
235 ret = bio_iov_iter_get_pages(&bio, iter);
236 if (unlikely(ret))
237 goto out;
238 ret = bio.bi_iter.bi_size;
239
240 if (iov_iter_rw(iter) == READ) {
241 bio.bi_opf = REQ_OP_READ;
242 if (iter_is_iovec(iter))
243 should_dirty = true;
244 } else {
245 bio.bi_opf = dio_bio_write_op(iocb);
246 task_io_account_write(ret);
247 }
248 if (iocb->ki_flags & IOCB_HIPRI)
249 bio_set_polled(&bio, iocb);
250
251 qc = submit_bio(&bio);
252 for (;;) {
253 set_current_state(TASK_UNINTERRUPTIBLE);
254 if (!READ_ONCE(bio.bi_private))
255 break;
256 if (!(iocb->ki_flags & IOCB_HIPRI) ||
257 !blk_poll(bdev_get_queue(bdev), qc, true))
258 io_schedule();
259 }
260 __set_current_state(TASK_RUNNING);
261
262 bio_release_pages(&bio, should_dirty);
263 if (unlikely(bio.bi_status))
264 ret = blk_status_to_errno(bio.bi_status);
265
266 out:
267 if (vecs != inline_vecs)
268 kfree(vecs);
269
270 bio_uninit(&bio);
271
272 return ret;
273 }
274
275 struct blkdev_dio {
276 union {
277 struct kiocb *iocb;
278 struct task_struct *waiter;
279 };
280 size_t size;
281 atomic_t ref;
282 bool multi_bio : 1;
283 bool should_dirty : 1;
284 bool is_sync : 1;
285 struct bio bio;
286 };
287
288 static struct bio_set blkdev_dio_pool;
289
290 static int blkdev_iopoll(struct kiocb *kiocb, bool wait)
291 {
292 struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host);
293 struct request_queue *q = bdev_get_queue(bdev);
294
295 return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait);
296 }
297
298 static void blkdev_bio_end_io(struct bio *bio)
299 {
300 struct blkdev_dio *dio = bio->bi_private;
301 bool should_dirty = dio->should_dirty;
302
303 if (bio->bi_status && !dio->bio.bi_status)
304 dio->bio.bi_status = bio->bi_status;
305
306 if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) {
307 if (!dio->is_sync) {
308 struct kiocb *iocb = dio->iocb;
309 ssize_t ret;
310
311 if (likely(!dio->bio.bi_status)) {
312 ret = dio->size;
313 iocb->ki_pos += ret;
314 } else {
315 ret = blk_status_to_errno(dio->bio.bi_status);
316 }
317
318 dio->iocb->ki_complete(iocb, ret, 0);
319 if (dio->multi_bio)
320 bio_put(&dio->bio);
321 } else {
322 struct task_struct *waiter = dio->waiter;
323
324 WRITE_ONCE(dio->waiter, NULL);
325 blk_wake_io_task(waiter);
326 }
327 }
328
329 if (should_dirty) {
330 bio_check_pages_dirty(bio);
331 } else {
332 bio_release_pages(bio, false);
333 bio_put(bio);
334 }
335 }
336
337 static ssize_t
338 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
339 {
340 struct file *file = iocb->ki_filp;
341 struct inode *inode = bdev_file_inode(file);
342 struct block_device *bdev = I_BDEV(inode);
343 struct blk_plug plug;
344 struct blkdev_dio *dio;
345 struct bio *bio;
346 bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0;
347 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
348 bool nowait = (iocb->ki_flags & IOCB_NOWAIT) != 0;
349 loff_t pos = iocb->ki_pos;
350 blk_qc_t qc = BLK_QC_T_NONE;
351 gfp_t gfp;
352 ssize_t ret;
353
354 if ((pos | iov_iter_alignment(iter)) &
355 (bdev_logical_block_size(bdev) - 1))
356 return -EINVAL;
357
358 if (nowait)
359 gfp = GFP_NOWAIT;
360 else
361 gfp = GFP_KERNEL;
362
363 bio = bio_alloc_bioset(gfp, nr_pages, &blkdev_dio_pool);
364 if (!bio)
365 return -EAGAIN;
366
367 dio = container_of(bio, struct blkdev_dio, bio);
368 dio->is_sync = is_sync = is_sync_kiocb(iocb);
369 if (dio->is_sync) {
370 dio->waiter = current;
371 bio_get(bio);
372 } else {
373 dio->iocb = iocb;
374 }
375
376 dio->size = 0;
377 dio->multi_bio = false;
378 dio->should_dirty = is_read && iter_is_iovec(iter);
379
380 /*
381 * Don't plug for HIPRI/polled IO, as those should go straight
382 * to issue
383 */
384 if (!is_poll)
385 blk_start_plug(&plug);
386
387 ret = 0;
388 for (;;) {
389 int err;
390
391 bio_set_dev(bio, bdev);
392 bio->bi_iter.bi_sector = pos >> 9;
393 bio->bi_write_hint = iocb->ki_hint;
394 bio->bi_private = dio;
395 bio->bi_end_io = blkdev_bio_end_io;
396 bio->bi_ioprio = iocb->ki_ioprio;
397
398 err = bio_iov_iter_get_pages(bio, iter);
399 if (unlikely(err)) {
400 if (!ret)
401 ret = err;
402 bio->bi_status = BLK_STS_IOERR;
403 bio_endio(bio);
404 break;
405 }
406
407 if (is_read) {
408 bio->bi_opf = REQ_OP_READ;
409 if (dio->should_dirty)
410 bio_set_pages_dirty(bio);
411 } else {
412 bio->bi_opf = dio_bio_write_op(iocb);
413 task_io_account_write(bio->bi_iter.bi_size);
414 }
415
416 /*
417 * Tell underlying layer to not block for resource shortage.
418 * And if we would have blocked, return error inline instead
419 * of through the bio->bi_end_io() callback.
420 */
421 if (nowait)
422 bio->bi_opf |= (REQ_NOWAIT | REQ_NOWAIT_INLINE);
423
424 dio->size += bio->bi_iter.bi_size;
425 pos += bio->bi_iter.bi_size;
426
427 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
428 if (!nr_pages) {
429 bool polled = false;
430
431 if (iocb->ki_flags & IOCB_HIPRI) {
432 bio_set_polled(bio, iocb);
433 polled = true;
434 }
435
436 qc = submit_bio(bio);
437 if (qc == BLK_QC_T_EAGAIN) {
438 if (!ret)
439 ret = -EAGAIN;
440 goto error;
441 }
442
443 if (polled)
444 WRITE_ONCE(iocb->ki_cookie, qc);
445 break;
446 }
447
448 if (!dio->multi_bio) {
449 /*
450 * AIO needs an extra reference to ensure the dio
451 * structure which is embedded into the first bio
452 * stays around.
453 */
454 if (!is_sync)
455 bio_get(bio);
456 dio->multi_bio = true;
457 atomic_set(&dio->ref, 2);
458 } else {
459 atomic_inc(&dio->ref);
460 }
461
462 qc = submit_bio(bio);
463 if (qc == BLK_QC_T_EAGAIN) {
464 if (!ret)
465 ret = -EAGAIN;
466 goto error;
467 }
468 ret += bio->bi_iter.bi_size;
469
470 bio = bio_alloc(gfp, nr_pages);
471 if (!bio) {
472 if (!ret)
473 ret = -EAGAIN;
474 goto error;
475 }
476 }
477
478 if (!is_poll)
479 blk_finish_plug(&plug);
480
481 if (!is_sync)
482 return -EIOCBQUEUED;
483
484 for (;;) {
485 set_current_state(TASK_UNINTERRUPTIBLE);
486 if (!READ_ONCE(dio->waiter))
487 break;
488
489 if (!(iocb->ki_flags & IOCB_HIPRI) ||
490 !blk_poll(bdev_get_queue(bdev), qc, true))
491 io_schedule();
492 }
493 __set_current_state(TASK_RUNNING);
494
495 out:
496 if (!ret)
497 ret = blk_status_to_errno(dio->bio.bi_status);
498
499 bio_put(&dio->bio);
500 return ret;
501 error:
502 if (!is_poll)
503 blk_finish_plug(&plug);
504 goto out;
505 }
506
507 static ssize_t
508 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
509 {
510 int nr_pages;
511
512 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
513 if (!nr_pages)
514 return 0;
515 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
516 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
517
518 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
519 }
520
521 static __init int blkdev_init(void)
522 {
523 return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
524 }
525 module_init(blkdev_init);
526
527 int __sync_blockdev(struct block_device *bdev, int wait)
528 {
529 if (!bdev)
530 return 0;
531 if (!wait)
532 return filemap_flush(bdev->bd_inode->i_mapping);
533 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
534 }
535
536 /*
537 * Write out and wait upon all the dirty data associated with a block
538 * device via its mapping. Does not take the superblock lock.
539 */
540 int sync_blockdev(struct block_device *bdev)
541 {
542 return __sync_blockdev(bdev, 1);
543 }
544 EXPORT_SYMBOL(sync_blockdev);
545
546 /*
547 * Write out and wait upon all dirty data associated with this
548 * device. Filesystem data as well as the underlying block
549 * device. Takes the superblock lock.
550 */
551 int fsync_bdev(struct block_device *bdev)
552 {
553 struct super_block *sb = get_super(bdev);
554 if (sb) {
555 int res = sync_filesystem(sb);
556 drop_super(sb);
557 return res;
558 }
559 return sync_blockdev(bdev);
560 }
561 EXPORT_SYMBOL(fsync_bdev);
562
563 /**
564 * freeze_bdev -- lock a filesystem and force it into a consistent state
565 * @bdev: blockdevice to lock
566 *
567 * If a superblock is found on this device, we take the s_umount semaphore
568 * on it to make sure nobody unmounts until the snapshot creation is done.
569 * The reference counter (bd_fsfreeze_count) guarantees that only the last
570 * unfreeze process can unfreeze the frozen filesystem actually when multiple
571 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
572 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
573 * actually.
574 */
575 struct super_block *freeze_bdev(struct block_device *bdev)
576 {
577 struct super_block *sb;
578 int error = 0;
579
580 mutex_lock(&bdev->bd_fsfreeze_mutex);
581 if (++bdev->bd_fsfreeze_count > 1) {
582 /*
583 * We don't even need to grab a reference - the first call
584 * to freeze_bdev grab an active reference and only the last
585 * thaw_bdev drops it.
586 */
587 sb = get_super(bdev);
588 if (sb)
589 drop_super(sb);
590 mutex_unlock(&bdev->bd_fsfreeze_mutex);
591 return sb;
592 }
593
594 sb = get_active_super(bdev);
595 if (!sb)
596 goto out;
597 if (sb->s_op->freeze_super)
598 error = sb->s_op->freeze_super(sb);
599 else
600 error = freeze_super(sb);
601 if (error) {
602 deactivate_super(sb);
603 bdev->bd_fsfreeze_count--;
604 mutex_unlock(&bdev->bd_fsfreeze_mutex);
605 return ERR_PTR(error);
606 }
607 deactivate_super(sb);
608 out:
609 sync_blockdev(bdev);
610 mutex_unlock(&bdev->bd_fsfreeze_mutex);
611 return sb; /* thaw_bdev releases s->s_umount */
612 }
613 EXPORT_SYMBOL(freeze_bdev);
614
615 /**
616 * thaw_bdev -- unlock filesystem
617 * @bdev: blockdevice to unlock
618 * @sb: associated superblock
619 *
620 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
621 */
622 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
623 {
624 int error = -EINVAL;
625
626 mutex_lock(&bdev->bd_fsfreeze_mutex);
627 if (!bdev->bd_fsfreeze_count)
628 goto out;
629
630 error = 0;
631 if (--bdev->bd_fsfreeze_count > 0)
632 goto out;
633
634 if (!sb)
635 goto out;
636
637 if (sb->s_op->thaw_super)
638 error = sb->s_op->thaw_super(sb);
639 else
640 error = thaw_super(sb);
641 if (error)
642 bdev->bd_fsfreeze_count++;
643 out:
644 mutex_unlock(&bdev->bd_fsfreeze_mutex);
645 return error;
646 }
647 EXPORT_SYMBOL(thaw_bdev);
648
649 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
650 {
651 return block_write_full_page(page, blkdev_get_block, wbc);
652 }
653
654 static int blkdev_readpage(struct file * file, struct page * page)
655 {
656 return block_read_full_page(page, blkdev_get_block);
657 }
658
659 static int blkdev_readpages(struct file *file, struct address_space *mapping,
660 struct list_head *pages, unsigned nr_pages)
661 {
662 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
663 }
664
665 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
666 loff_t pos, unsigned len, unsigned flags,
667 struct page **pagep, void **fsdata)
668 {
669 return block_write_begin(mapping, pos, len, flags, pagep,
670 blkdev_get_block);
671 }
672
673 static int blkdev_write_end(struct file *file, struct address_space *mapping,
674 loff_t pos, unsigned len, unsigned copied,
675 struct page *page, void *fsdata)
676 {
677 int ret;
678 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
679
680 unlock_page(page);
681 put_page(page);
682
683 return ret;
684 }
685
686 /*
687 * private llseek:
688 * for a block special file file_inode(file)->i_size is zero
689 * so we compute the size by hand (just as in block_read/write above)
690 */
691 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
692 {
693 struct inode *bd_inode = bdev_file_inode(file);
694 loff_t retval;
695
696 inode_lock(bd_inode);
697 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
698 inode_unlock(bd_inode);
699 return retval;
700 }
701
702 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
703 {
704 struct inode *bd_inode = bdev_file_inode(filp);
705 struct block_device *bdev = I_BDEV(bd_inode);
706 int error;
707
708 error = file_write_and_wait_range(filp, start, end);
709 if (error)
710 return error;
711
712 /*
713 * There is no need to serialise calls to blkdev_issue_flush with
714 * i_mutex and doing so causes performance issues with concurrent
715 * O_SYNC writers to a block device.
716 */
717 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
718 if (error == -EOPNOTSUPP)
719 error = 0;
720
721 return error;
722 }
723 EXPORT_SYMBOL(blkdev_fsync);
724
725 /**
726 * bdev_read_page() - Start reading a page from a block device
727 * @bdev: The device to read the page from
728 * @sector: The offset on the device to read the page to (need not be aligned)
729 * @page: The page to read
730 *
731 * On entry, the page should be locked. It will be unlocked when the page
732 * has been read. If the block driver implements rw_page synchronously,
733 * that will be true on exit from this function, but it need not be.
734 *
735 * Errors returned by this function are usually "soft", eg out of memory, or
736 * queue full; callers should try a different route to read this page rather
737 * than propagate an error back up the stack.
738 *
739 * Return: negative errno if an error occurs, 0 if submission was successful.
740 */
741 int bdev_read_page(struct block_device *bdev, sector_t sector,
742 struct page *page)
743 {
744 const struct block_device_operations *ops = bdev->bd_disk->fops;
745 int result = -EOPNOTSUPP;
746
747 if (!ops->rw_page || bdev_get_integrity(bdev))
748 return result;
749
750 result = blk_queue_enter(bdev->bd_queue, 0);
751 if (result)
752 return result;
753 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
754 REQ_OP_READ);
755 blk_queue_exit(bdev->bd_queue);
756 return result;
757 }
758 EXPORT_SYMBOL_GPL(bdev_read_page);
759
760 /**
761 * bdev_write_page() - Start writing a page to a block device
762 * @bdev: The device to write the page to
763 * @sector: The offset on the device to write the page to (need not be aligned)
764 * @page: The page to write
765 * @wbc: The writeback_control for the write
766 *
767 * On entry, the page should be locked and not currently under writeback.
768 * On exit, if the write started successfully, the page will be unlocked and
769 * under writeback. If the write failed already (eg the driver failed to
770 * queue the page to the device), the page will still be locked. If the
771 * caller is a ->writepage implementation, it will need to unlock the page.
772 *
773 * Errors returned by this function are usually "soft", eg out of memory, or
774 * queue full; callers should try a different route to write this page rather
775 * than propagate an error back up the stack.
776 *
777 * Return: negative errno if an error occurs, 0 if submission was successful.
778 */
779 int bdev_write_page(struct block_device *bdev, sector_t sector,
780 struct page *page, struct writeback_control *wbc)
781 {
782 int result;
783 const struct block_device_operations *ops = bdev->bd_disk->fops;
784
785 if (!ops->rw_page || bdev_get_integrity(bdev))
786 return -EOPNOTSUPP;
787 result = blk_queue_enter(bdev->bd_queue, 0);
788 if (result)
789 return result;
790
791 set_page_writeback(page);
792 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
793 REQ_OP_WRITE);
794 if (result) {
795 end_page_writeback(page);
796 } else {
797 clean_page_buffers(page);
798 unlock_page(page);
799 }
800 blk_queue_exit(bdev->bd_queue);
801 return result;
802 }
803 EXPORT_SYMBOL_GPL(bdev_write_page);
804
805 /*
806 * pseudo-fs
807 */
808
809 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
810 static struct kmem_cache * bdev_cachep __read_mostly;
811
812 static struct inode *bdev_alloc_inode(struct super_block *sb)
813 {
814 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
815 if (!ei)
816 return NULL;
817 return &ei->vfs_inode;
818 }
819
820 static void bdev_free_inode(struct inode *inode)
821 {
822 kmem_cache_free(bdev_cachep, BDEV_I(inode));
823 }
824
825 static void init_once(void *foo)
826 {
827 struct bdev_inode *ei = (struct bdev_inode *) foo;
828 struct block_device *bdev = &ei->bdev;
829
830 memset(bdev, 0, sizeof(*bdev));
831 mutex_init(&bdev->bd_mutex);
832 INIT_LIST_HEAD(&bdev->bd_list);
833 #ifdef CONFIG_SYSFS
834 INIT_LIST_HEAD(&bdev->bd_holder_disks);
835 #endif
836 bdev->bd_bdi = &noop_backing_dev_info;
837 inode_init_once(&ei->vfs_inode);
838 /* Initialize mutex for freeze. */
839 mutex_init(&bdev->bd_fsfreeze_mutex);
840 }
841
842 static void bdev_evict_inode(struct inode *inode)
843 {
844 struct block_device *bdev = &BDEV_I(inode)->bdev;
845 truncate_inode_pages_final(&inode->i_data);
846 invalidate_inode_buffers(inode); /* is it needed here? */
847 clear_inode(inode);
848 spin_lock(&bdev_lock);
849 list_del_init(&bdev->bd_list);
850 spin_unlock(&bdev_lock);
851 /* Detach inode from wb early as bdi_put() may free bdi->wb */
852 inode_detach_wb(inode);
853 if (bdev->bd_bdi != &noop_backing_dev_info) {
854 bdi_put(bdev->bd_bdi);
855 bdev->bd_bdi = &noop_backing_dev_info;
856 }
857 }
858
859 static const struct super_operations bdev_sops = {
860 .statfs = simple_statfs,
861 .alloc_inode = bdev_alloc_inode,
862 .free_inode = bdev_free_inode,
863 .drop_inode = generic_delete_inode,
864 .evict_inode = bdev_evict_inode,
865 };
866
867 static int bd_init_fs_context(struct fs_context *fc)
868 {
869 struct pseudo_fs_context *ctx = init_pseudo(fc, BDEVFS_MAGIC);
870 if (!ctx)
871 return -ENOMEM;
872 fc->s_iflags |= SB_I_CGROUPWB;
873 ctx->ops = &bdev_sops;
874 return 0;
875 }
876
877 static struct file_system_type bd_type = {
878 .name = "bdev",
879 .init_fs_context = bd_init_fs_context,
880 .kill_sb = kill_anon_super,
881 };
882
883 struct super_block *blockdev_superblock __read_mostly;
884 EXPORT_SYMBOL_GPL(blockdev_superblock);
885
886 void __init bdev_cache_init(void)
887 {
888 int err;
889 static struct vfsmount *bd_mnt;
890
891 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
892 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
893 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
894 init_once);
895 err = register_filesystem(&bd_type);
896 if (err)
897 panic("Cannot register bdev pseudo-fs");
898 bd_mnt = kern_mount(&bd_type);
899 if (IS_ERR(bd_mnt))
900 panic("Cannot create bdev pseudo-fs");
901 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
902 }
903
904 /*
905 * Most likely _very_ bad one - but then it's hardly critical for small
906 * /dev and can be fixed when somebody will need really large one.
907 * Keep in mind that it will be fed through icache hash function too.
908 */
909 static inline unsigned long hash(dev_t dev)
910 {
911 return MAJOR(dev)+MINOR(dev);
912 }
913
914 static int bdev_test(struct inode *inode, void *data)
915 {
916 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
917 }
918
919 static int bdev_set(struct inode *inode, void *data)
920 {
921 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
922 return 0;
923 }
924
925 static LIST_HEAD(all_bdevs);
926
927 /*
928 * If there is a bdev inode for this device, unhash it so that it gets evicted
929 * as soon as last inode reference is dropped.
930 */
931 void bdev_unhash_inode(dev_t dev)
932 {
933 struct inode *inode;
934
935 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
936 if (inode) {
937 remove_inode_hash(inode);
938 iput(inode);
939 }
940 }
941
942 struct block_device *bdget(dev_t dev)
943 {
944 struct block_device *bdev;
945 struct inode *inode;
946
947 inode = iget5_locked(blockdev_superblock, hash(dev),
948 bdev_test, bdev_set, &dev);
949
950 if (!inode)
951 return NULL;
952
953 bdev = &BDEV_I(inode)->bdev;
954
955 if (inode->i_state & I_NEW) {
956 bdev->bd_contains = NULL;
957 bdev->bd_super = NULL;
958 bdev->bd_inode = inode;
959 bdev->bd_block_size = i_blocksize(inode);
960 bdev->bd_part_count = 0;
961 bdev->bd_invalidated = 0;
962 inode->i_mode = S_IFBLK;
963 inode->i_rdev = dev;
964 inode->i_bdev = bdev;
965 inode->i_data.a_ops = &def_blk_aops;
966 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
967 spin_lock(&bdev_lock);
968 list_add(&bdev->bd_list, &all_bdevs);
969 spin_unlock(&bdev_lock);
970 unlock_new_inode(inode);
971 }
972 return bdev;
973 }
974
975 EXPORT_SYMBOL(bdget);
976
977 /**
978 * bdgrab -- Grab a reference to an already referenced block device
979 * @bdev: Block device to grab a reference to.
980 */
981 struct block_device *bdgrab(struct block_device *bdev)
982 {
983 ihold(bdev->bd_inode);
984 return bdev;
985 }
986 EXPORT_SYMBOL(bdgrab);
987
988 long nr_blockdev_pages(void)
989 {
990 struct block_device *bdev;
991 long ret = 0;
992 spin_lock(&bdev_lock);
993 list_for_each_entry(bdev, &all_bdevs, bd_list) {
994 ret += bdev->bd_inode->i_mapping->nrpages;
995 }
996 spin_unlock(&bdev_lock);
997 return ret;
998 }
999
1000 void bdput(struct block_device *bdev)
1001 {
1002 iput(bdev->bd_inode);
1003 }
1004
1005 EXPORT_SYMBOL(bdput);
1006
1007 static struct block_device *bd_acquire(struct inode *inode)
1008 {
1009 struct block_device *bdev;
1010
1011 spin_lock(&bdev_lock);
1012 bdev = inode->i_bdev;
1013 if (bdev && !inode_unhashed(bdev->bd_inode)) {
1014 bdgrab(bdev);
1015 spin_unlock(&bdev_lock);
1016 return bdev;
1017 }
1018 spin_unlock(&bdev_lock);
1019
1020 /*
1021 * i_bdev references block device inode that was already shut down
1022 * (corresponding device got removed). Remove the reference and look
1023 * up block device inode again just in case new device got
1024 * reestablished under the same device number.
1025 */
1026 if (bdev)
1027 bd_forget(inode);
1028
1029 bdev = bdget(inode->i_rdev);
1030 if (bdev) {
1031 spin_lock(&bdev_lock);
1032 if (!inode->i_bdev) {
1033 /*
1034 * We take an additional reference to bd_inode,
1035 * and it's released in clear_inode() of inode.
1036 * So, we can access it via ->i_mapping always
1037 * without igrab().
1038 */
1039 bdgrab(bdev);
1040 inode->i_bdev = bdev;
1041 inode->i_mapping = bdev->bd_inode->i_mapping;
1042 }
1043 spin_unlock(&bdev_lock);
1044 }
1045 return bdev;
1046 }
1047
1048 /* Call when you free inode */
1049
1050 void bd_forget(struct inode *inode)
1051 {
1052 struct block_device *bdev = NULL;
1053
1054 spin_lock(&bdev_lock);
1055 if (!sb_is_blkdev_sb(inode->i_sb))
1056 bdev = inode->i_bdev;
1057 inode->i_bdev = NULL;
1058 inode->i_mapping = &inode->i_data;
1059 spin_unlock(&bdev_lock);
1060
1061 if (bdev)
1062 bdput(bdev);
1063 }
1064
1065 /**
1066 * bd_may_claim - test whether a block device can be claimed
1067 * @bdev: block device of interest
1068 * @whole: whole block device containing @bdev, may equal @bdev
1069 * @holder: holder trying to claim @bdev
1070 *
1071 * Test whether @bdev can be claimed by @holder.
1072 *
1073 * CONTEXT:
1074 * spin_lock(&bdev_lock).
1075 *
1076 * RETURNS:
1077 * %true if @bdev can be claimed, %false otherwise.
1078 */
1079 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1080 void *holder)
1081 {
1082 if (bdev->bd_holder == holder)
1083 return true; /* already a holder */
1084 else if (bdev->bd_holder != NULL)
1085 return false; /* held by someone else */
1086 else if (whole == bdev)
1087 return true; /* is a whole device which isn't held */
1088
1089 else if (whole->bd_holder == bd_may_claim)
1090 return true; /* is a partition of a device that is being partitioned */
1091 else if (whole->bd_holder != NULL)
1092 return false; /* is a partition of a held device */
1093 else
1094 return true; /* is a partition of an un-held device */
1095 }
1096
1097 /**
1098 * bd_prepare_to_claim - prepare to claim a block device
1099 * @bdev: block device of interest
1100 * @whole: the whole device containing @bdev, may equal @bdev
1101 * @holder: holder trying to claim @bdev
1102 *
1103 * Prepare to claim @bdev. This function fails if @bdev is already
1104 * claimed by another holder and waits if another claiming is in
1105 * progress. This function doesn't actually claim. On successful
1106 * return, the caller has ownership of bd_claiming and bd_holder[s].
1107 *
1108 * CONTEXT:
1109 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
1110 * it multiple times.
1111 *
1112 * RETURNS:
1113 * 0 if @bdev can be claimed, -EBUSY otherwise.
1114 */
1115 static int bd_prepare_to_claim(struct block_device *bdev,
1116 struct block_device *whole, void *holder)
1117 {
1118 retry:
1119 /* if someone else claimed, fail */
1120 if (!bd_may_claim(bdev, whole, holder))
1121 return -EBUSY;
1122
1123 /* if claiming is already in progress, wait for it to finish */
1124 if (whole->bd_claiming) {
1125 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1126 DEFINE_WAIT(wait);
1127
1128 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1129 spin_unlock(&bdev_lock);
1130 schedule();
1131 finish_wait(wq, &wait);
1132 spin_lock(&bdev_lock);
1133 goto retry;
1134 }
1135
1136 /* yay, all mine */
1137 return 0;
1138 }
1139
1140 static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno)
1141 {
1142 struct gendisk *disk = get_gendisk(bdev->bd_dev, partno);
1143
1144 if (!disk)
1145 return NULL;
1146 /*
1147 * Now that we hold gendisk reference we make sure bdev we looked up is
1148 * not stale. If it is, it means device got removed and created before
1149 * we looked up gendisk and we fail open in such case. Associating
1150 * unhashed bdev with newly created gendisk could lead to two bdevs
1151 * (and thus two independent caches) being associated with one device
1152 * which is bad.
1153 */
1154 if (inode_unhashed(bdev->bd_inode)) {
1155 put_disk_and_module(disk);
1156 return NULL;
1157 }
1158 return disk;
1159 }
1160
1161 /**
1162 * bd_start_claiming - start claiming a block device
1163 * @bdev: block device of interest
1164 * @holder: holder trying to claim @bdev
1165 *
1166 * @bdev is about to be opened exclusively. Check @bdev can be opened
1167 * exclusively and mark that an exclusive open is in progress. Each
1168 * successful call to this function must be matched with a call to
1169 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1170 * fail).
1171 *
1172 * This function is used to gain exclusive access to the block device
1173 * without actually causing other exclusive open attempts to fail. It
1174 * should be used when the open sequence itself requires exclusive
1175 * access but may subsequently fail.
1176 *
1177 * CONTEXT:
1178 * Might sleep.
1179 *
1180 * RETURNS:
1181 * Pointer to the block device containing @bdev on success, ERR_PTR()
1182 * value on failure.
1183 */
1184 static struct block_device *bd_start_claiming(struct block_device *bdev,
1185 void *holder)
1186 {
1187 struct gendisk *disk;
1188 struct block_device *whole;
1189 int partno, err;
1190
1191 might_sleep();
1192
1193 /*
1194 * @bdev might not have been initialized properly yet, look up
1195 * and grab the outer block device the hard way.
1196 */
1197 disk = bdev_get_gendisk(bdev, &partno);
1198 if (!disk)
1199 return ERR_PTR(-ENXIO);
1200
1201 /*
1202 * Normally, @bdev should equal what's returned from bdget_disk()
1203 * if partno is 0; however, some drivers (floppy) use multiple
1204 * bdev's for the same physical device and @bdev may be one of the
1205 * aliases. Keep @bdev if partno is 0. This means claimer
1206 * tracking is broken for those devices but it has always been that
1207 * way.
1208 */
1209 if (partno)
1210 whole = bdget_disk(disk, 0);
1211 else
1212 whole = bdgrab(bdev);
1213
1214 put_disk_and_module(disk);
1215 if (!whole)
1216 return ERR_PTR(-ENOMEM);
1217
1218 /* prepare to claim, if successful, mark claiming in progress */
1219 spin_lock(&bdev_lock);
1220
1221 err = bd_prepare_to_claim(bdev, whole, holder);
1222 if (err == 0) {
1223 whole->bd_claiming = holder;
1224 spin_unlock(&bdev_lock);
1225 return whole;
1226 } else {
1227 spin_unlock(&bdev_lock);
1228 bdput(whole);
1229 return ERR_PTR(err);
1230 }
1231 }
1232
1233 #ifdef CONFIG_SYSFS
1234 struct bd_holder_disk {
1235 struct list_head list;
1236 struct gendisk *disk;
1237 int refcnt;
1238 };
1239
1240 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1241 struct gendisk *disk)
1242 {
1243 struct bd_holder_disk *holder;
1244
1245 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1246 if (holder->disk == disk)
1247 return holder;
1248 return NULL;
1249 }
1250
1251 static int add_symlink(struct kobject *from, struct kobject *to)
1252 {
1253 return sysfs_create_link(from, to, kobject_name(to));
1254 }
1255
1256 static void del_symlink(struct kobject *from, struct kobject *to)
1257 {
1258 sysfs_remove_link(from, kobject_name(to));
1259 }
1260
1261 /**
1262 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1263 * @bdev: the claimed slave bdev
1264 * @disk: the holding disk
1265 *
1266 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1267 *
1268 * This functions creates the following sysfs symlinks.
1269 *
1270 * - from "slaves" directory of the holder @disk to the claimed @bdev
1271 * - from "holders" directory of the @bdev to the holder @disk
1272 *
1273 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1274 * passed to bd_link_disk_holder(), then:
1275 *
1276 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1277 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1278 *
1279 * The caller must have claimed @bdev before calling this function and
1280 * ensure that both @bdev and @disk are valid during the creation and
1281 * lifetime of these symlinks.
1282 *
1283 * CONTEXT:
1284 * Might sleep.
1285 *
1286 * RETURNS:
1287 * 0 on success, -errno on failure.
1288 */
1289 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1290 {
1291 struct bd_holder_disk *holder;
1292 int ret = 0;
1293
1294 mutex_lock(&bdev->bd_mutex);
1295
1296 WARN_ON_ONCE(!bdev->bd_holder);
1297
1298 /* FIXME: remove the following once add_disk() handles errors */
1299 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1300 goto out_unlock;
1301
1302 holder = bd_find_holder_disk(bdev, disk);
1303 if (holder) {
1304 holder->refcnt++;
1305 goto out_unlock;
1306 }
1307
1308 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1309 if (!holder) {
1310 ret = -ENOMEM;
1311 goto out_unlock;
1312 }
1313
1314 INIT_LIST_HEAD(&holder->list);
1315 holder->disk = disk;
1316 holder->refcnt = 1;
1317
1318 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1319 if (ret)
1320 goto out_free;
1321
1322 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1323 if (ret)
1324 goto out_del;
1325 /*
1326 * bdev could be deleted beneath us which would implicitly destroy
1327 * the holder directory. Hold on to it.
1328 */
1329 kobject_get(bdev->bd_part->holder_dir);
1330
1331 list_add(&holder->list, &bdev->bd_holder_disks);
1332 goto out_unlock;
1333
1334 out_del:
1335 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1336 out_free:
1337 kfree(holder);
1338 out_unlock:
1339 mutex_unlock(&bdev->bd_mutex);
1340 return ret;
1341 }
1342 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1343
1344 /**
1345 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1346 * @bdev: the calimed slave bdev
1347 * @disk: the holding disk
1348 *
1349 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1350 *
1351 * CONTEXT:
1352 * Might sleep.
1353 */
1354 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1355 {
1356 struct bd_holder_disk *holder;
1357
1358 mutex_lock(&bdev->bd_mutex);
1359
1360 holder = bd_find_holder_disk(bdev, disk);
1361
1362 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1363 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1364 del_symlink(bdev->bd_part->holder_dir,
1365 &disk_to_dev(disk)->kobj);
1366 kobject_put(bdev->bd_part->holder_dir);
1367 list_del_init(&holder->list);
1368 kfree(holder);
1369 }
1370
1371 mutex_unlock(&bdev->bd_mutex);
1372 }
1373 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1374 #endif
1375
1376 /**
1377 * flush_disk - invalidates all buffer-cache entries on a disk
1378 *
1379 * @bdev: struct block device to be flushed
1380 * @kill_dirty: flag to guide handling of dirty inodes
1381 *
1382 * Invalidates all buffer-cache entries on a disk. It should be called
1383 * when a disk has been changed -- either by a media change or online
1384 * resize.
1385 */
1386 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1387 {
1388 if (__invalidate_device(bdev, kill_dirty)) {
1389 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1390 "resized disk %s\n",
1391 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1392 }
1393
1394 if (!bdev->bd_disk)
1395 return;
1396 if (disk_part_scan_enabled(bdev->bd_disk))
1397 bdev->bd_invalidated = 1;
1398 }
1399
1400 /**
1401 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1402 * @disk: struct gendisk to check
1403 * @bdev: struct bdev to adjust.
1404 * @verbose: if %true log a message about a size change if there is any
1405 *
1406 * This routine checks to see if the bdev size does not match the disk size
1407 * and adjusts it if it differs. When shrinking the bdev size, its all caches
1408 * are freed.
1409 */
1410 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev,
1411 bool verbose)
1412 {
1413 loff_t disk_size, bdev_size;
1414
1415 disk_size = (loff_t)get_capacity(disk) << 9;
1416 bdev_size = i_size_read(bdev->bd_inode);
1417 if (disk_size != bdev_size) {
1418 if (verbose) {
1419 printk(KERN_INFO
1420 "%s: detected capacity change from %lld to %lld\n",
1421 disk->disk_name, bdev_size, disk_size);
1422 }
1423 i_size_write(bdev->bd_inode, disk_size);
1424 if (bdev_size > disk_size)
1425 flush_disk(bdev, false);
1426 }
1427 }
1428
1429 /**
1430 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1431 * @disk: struct gendisk to be revalidated
1432 *
1433 * This routine is a wrapper for lower-level driver's revalidate_disk
1434 * call-backs. It is used to do common pre and post operations needed
1435 * for all revalidate_disk operations.
1436 */
1437 int revalidate_disk(struct gendisk *disk)
1438 {
1439 int ret = 0;
1440
1441 if (disk->fops->revalidate_disk)
1442 ret = disk->fops->revalidate_disk(disk);
1443
1444 /*
1445 * Hidden disks don't have associated bdev so there's no point in
1446 * revalidating it.
1447 */
1448 if (!(disk->flags & GENHD_FL_HIDDEN)) {
1449 struct block_device *bdev = bdget_disk(disk, 0);
1450
1451 if (!bdev)
1452 return ret;
1453
1454 mutex_lock(&bdev->bd_mutex);
1455 check_disk_size_change(disk, bdev, ret == 0);
1456 bdev->bd_invalidated = 0;
1457 mutex_unlock(&bdev->bd_mutex);
1458 bdput(bdev);
1459 }
1460 return ret;
1461 }
1462 EXPORT_SYMBOL(revalidate_disk);
1463
1464 /*
1465 * This routine checks whether a removable media has been changed,
1466 * and invalidates all buffer-cache-entries in that case. This
1467 * is a relatively slow routine, so we have to try to minimize using
1468 * it. Thus it is called only upon a 'mount' or 'open'. This
1469 * is the best way of combining speed and utility, I think.
1470 * People changing diskettes in the middle of an operation deserve
1471 * to lose :-)
1472 */
1473 int check_disk_change(struct block_device *bdev)
1474 {
1475 struct gendisk *disk = bdev->bd_disk;
1476 const struct block_device_operations *bdops = disk->fops;
1477 unsigned int events;
1478
1479 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1480 DISK_EVENT_EJECT_REQUEST);
1481 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1482 return 0;
1483
1484 flush_disk(bdev, true);
1485 if (bdops->revalidate_disk)
1486 bdops->revalidate_disk(bdev->bd_disk);
1487 return 1;
1488 }
1489
1490 EXPORT_SYMBOL(check_disk_change);
1491
1492 void bd_set_size(struct block_device *bdev, loff_t size)
1493 {
1494 inode_lock(bdev->bd_inode);
1495 i_size_write(bdev->bd_inode, size);
1496 inode_unlock(bdev->bd_inode);
1497 }
1498 EXPORT_SYMBOL(bd_set_size);
1499
1500 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1501
1502 /*
1503 * bd_mutex locking:
1504 *
1505 * mutex_lock(part->bd_mutex)
1506 * mutex_lock_nested(whole->bd_mutex, 1)
1507 */
1508
1509 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1510 {
1511 struct gendisk *disk;
1512 int ret;
1513 int partno;
1514 int perm = 0;
1515 bool first_open = false;
1516
1517 if (mode & FMODE_READ)
1518 perm |= MAY_READ;
1519 if (mode & FMODE_WRITE)
1520 perm |= MAY_WRITE;
1521 /*
1522 * hooks: /n/, see "layering violations".
1523 */
1524 if (!for_part) {
1525 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1526 if (ret != 0) {
1527 bdput(bdev);
1528 return ret;
1529 }
1530 }
1531
1532 restart:
1533
1534 ret = -ENXIO;
1535 disk = bdev_get_gendisk(bdev, &partno);
1536 if (!disk)
1537 goto out;
1538
1539 disk_block_events(disk);
1540 mutex_lock_nested(&bdev->bd_mutex, for_part);
1541 if (!bdev->bd_openers) {
1542 first_open = true;
1543 bdev->bd_disk = disk;
1544 bdev->bd_queue = disk->queue;
1545 bdev->bd_contains = bdev;
1546 bdev->bd_partno = partno;
1547
1548 if (!partno) {
1549 ret = -ENXIO;
1550 bdev->bd_part = disk_get_part(disk, partno);
1551 if (!bdev->bd_part)
1552 goto out_clear;
1553
1554 ret = 0;
1555 if (disk->fops->open) {
1556 ret = disk->fops->open(bdev, mode);
1557 if (ret == -ERESTARTSYS) {
1558 /* Lost a race with 'disk' being
1559 * deleted, try again.
1560 * See md.c
1561 */
1562 disk_put_part(bdev->bd_part);
1563 bdev->bd_part = NULL;
1564 bdev->bd_disk = NULL;
1565 bdev->bd_queue = NULL;
1566 mutex_unlock(&bdev->bd_mutex);
1567 disk_unblock_events(disk);
1568 put_disk_and_module(disk);
1569 goto restart;
1570 }
1571 }
1572
1573 if (!ret) {
1574 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1575 set_init_blocksize(bdev);
1576 }
1577
1578 /*
1579 * If the device is invalidated, rescan partition
1580 * if open succeeded or failed with -ENOMEDIUM.
1581 * The latter is necessary to prevent ghost
1582 * partitions on a removed medium.
1583 */
1584 if (bdev->bd_invalidated) {
1585 if (!ret)
1586 rescan_partitions(disk, bdev);
1587 else if (ret == -ENOMEDIUM)
1588 invalidate_partitions(disk, bdev);
1589 }
1590
1591 if (ret)
1592 goto out_clear;
1593 } else {
1594 struct block_device *whole;
1595 whole = bdget_disk(disk, 0);
1596 ret = -ENOMEM;
1597 if (!whole)
1598 goto out_clear;
1599 BUG_ON(for_part);
1600 ret = __blkdev_get(whole, mode, 1);
1601 if (ret)
1602 goto out_clear;
1603 bdev->bd_contains = whole;
1604 bdev->bd_part = disk_get_part(disk, partno);
1605 if (!(disk->flags & GENHD_FL_UP) ||
1606 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1607 ret = -ENXIO;
1608 goto out_clear;
1609 }
1610 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1611 set_init_blocksize(bdev);
1612 }
1613
1614 if (bdev->bd_bdi == &noop_backing_dev_info)
1615 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1616 } else {
1617 if (bdev->bd_contains == bdev) {
1618 ret = 0;
1619 if (bdev->bd_disk->fops->open)
1620 ret = bdev->bd_disk->fops->open(bdev, mode);
1621 /* the same as first opener case, read comment there */
1622 if (bdev->bd_invalidated) {
1623 if (!ret)
1624 rescan_partitions(bdev->bd_disk, bdev);
1625 else if (ret == -ENOMEDIUM)
1626 invalidate_partitions(bdev->bd_disk, bdev);
1627 }
1628 if (ret)
1629 goto out_unlock_bdev;
1630 }
1631 }
1632 bdev->bd_openers++;
1633 if (for_part)
1634 bdev->bd_part_count++;
1635 mutex_unlock(&bdev->bd_mutex);
1636 disk_unblock_events(disk);
1637 /* only one opener holds refs to the module and disk */
1638 if (!first_open)
1639 put_disk_and_module(disk);
1640 return 0;
1641
1642 out_clear:
1643 disk_put_part(bdev->bd_part);
1644 bdev->bd_disk = NULL;
1645 bdev->bd_part = NULL;
1646 bdev->bd_queue = NULL;
1647 if (bdev != bdev->bd_contains)
1648 __blkdev_put(bdev->bd_contains, mode, 1);
1649 bdev->bd_contains = NULL;
1650 out_unlock_bdev:
1651 mutex_unlock(&bdev->bd_mutex);
1652 disk_unblock_events(disk);
1653 put_disk_and_module(disk);
1654 out:
1655 bdput(bdev);
1656
1657 return ret;
1658 }
1659
1660 /**
1661 * blkdev_get - open a block device
1662 * @bdev: block_device to open
1663 * @mode: FMODE_* mask
1664 * @holder: exclusive holder identifier
1665 *
1666 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1667 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1668 * @holder is invalid. Exclusive opens may nest for the same @holder.
1669 *
1670 * On success, the reference count of @bdev is unchanged. On failure,
1671 * @bdev is put.
1672 *
1673 * CONTEXT:
1674 * Might sleep.
1675 *
1676 * RETURNS:
1677 * 0 on success, -errno on failure.
1678 */
1679 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1680 {
1681 struct block_device *whole = NULL;
1682 int res;
1683
1684 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1685
1686 if ((mode & FMODE_EXCL) && holder) {
1687 whole = bd_start_claiming(bdev, holder);
1688 if (IS_ERR(whole)) {
1689 bdput(bdev);
1690 return PTR_ERR(whole);
1691 }
1692 }
1693
1694 res = __blkdev_get(bdev, mode, 0);
1695
1696 if (whole) {
1697 struct gendisk *disk = whole->bd_disk;
1698
1699 /* finish claiming */
1700 mutex_lock(&bdev->bd_mutex);
1701 spin_lock(&bdev_lock);
1702
1703 if (!res) {
1704 BUG_ON(!bd_may_claim(bdev, whole, holder));
1705 /*
1706 * Note that for a whole device bd_holders
1707 * will be incremented twice, and bd_holder
1708 * will be set to bd_may_claim before being
1709 * set to holder
1710 */
1711 whole->bd_holders++;
1712 whole->bd_holder = bd_may_claim;
1713 bdev->bd_holders++;
1714 bdev->bd_holder = holder;
1715 }
1716
1717 /* tell others that we're done */
1718 BUG_ON(whole->bd_claiming != holder);
1719 whole->bd_claiming = NULL;
1720 wake_up_bit(&whole->bd_claiming, 0);
1721
1722 spin_unlock(&bdev_lock);
1723
1724 /*
1725 * Block event polling for write claims if requested. Any
1726 * write holder makes the write_holder state stick until
1727 * all are released. This is good enough and tracking
1728 * individual writeable reference is too fragile given the
1729 * way @mode is used in blkdev_get/put().
1730 */
1731 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1732 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1733 bdev->bd_write_holder = true;
1734 disk_block_events(disk);
1735 }
1736
1737 mutex_unlock(&bdev->bd_mutex);
1738 bdput(whole);
1739 }
1740
1741 return res;
1742 }
1743 EXPORT_SYMBOL(blkdev_get);
1744
1745 /**
1746 * blkdev_get_by_path - open a block device by name
1747 * @path: path to the block device to open
1748 * @mode: FMODE_* mask
1749 * @holder: exclusive holder identifier
1750 *
1751 * Open the blockdevice described by the device file at @path. @mode
1752 * and @holder are identical to blkdev_get().
1753 *
1754 * On success, the returned block_device has reference count of one.
1755 *
1756 * CONTEXT:
1757 * Might sleep.
1758 *
1759 * RETURNS:
1760 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1761 */
1762 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1763 void *holder)
1764 {
1765 struct block_device *bdev;
1766 int err;
1767
1768 bdev = lookup_bdev(path);
1769 if (IS_ERR(bdev))
1770 return bdev;
1771
1772 err = blkdev_get(bdev, mode, holder);
1773 if (err)
1774 return ERR_PTR(err);
1775
1776 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1777 blkdev_put(bdev, mode);
1778 return ERR_PTR(-EACCES);
1779 }
1780
1781 return bdev;
1782 }
1783 EXPORT_SYMBOL(blkdev_get_by_path);
1784
1785 /**
1786 * blkdev_get_by_dev - open a block device by device number
1787 * @dev: device number of block device to open
1788 * @mode: FMODE_* mask
1789 * @holder: exclusive holder identifier
1790 *
1791 * Open the blockdevice described by device number @dev. @mode and
1792 * @holder are identical to blkdev_get().
1793 *
1794 * Use it ONLY if you really do not have anything better - i.e. when
1795 * you are behind a truly sucky interface and all you are given is a
1796 * device number. _Never_ to be used for internal purposes. If you
1797 * ever need it - reconsider your API.
1798 *
1799 * On success, the returned block_device has reference count of one.
1800 *
1801 * CONTEXT:
1802 * Might sleep.
1803 *
1804 * RETURNS:
1805 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1806 */
1807 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1808 {
1809 struct block_device *bdev;
1810 int err;
1811
1812 bdev = bdget(dev);
1813 if (!bdev)
1814 return ERR_PTR(-ENOMEM);
1815
1816 err = blkdev_get(bdev, mode, holder);
1817 if (err)
1818 return ERR_PTR(err);
1819
1820 return bdev;
1821 }
1822 EXPORT_SYMBOL(blkdev_get_by_dev);
1823
1824 static int blkdev_open(struct inode * inode, struct file * filp)
1825 {
1826 struct block_device *bdev;
1827
1828 /*
1829 * Preserve backwards compatibility and allow large file access
1830 * even if userspace doesn't ask for it explicitly. Some mkfs
1831 * binary needs it. We might want to drop this workaround
1832 * during an unstable branch.
1833 */
1834 filp->f_flags |= O_LARGEFILE;
1835
1836 filp->f_mode |= FMODE_NOWAIT;
1837
1838 if (filp->f_flags & O_NDELAY)
1839 filp->f_mode |= FMODE_NDELAY;
1840 if (filp->f_flags & O_EXCL)
1841 filp->f_mode |= FMODE_EXCL;
1842 if ((filp->f_flags & O_ACCMODE) == 3)
1843 filp->f_mode |= FMODE_WRITE_IOCTL;
1844
1845 bdev = bd_acquire(inode);
1846 if (bdev == NULL)
1847 return -ENOMEM;
1848
1849 filp->f_mapping = bdev->bd_inode->i_mapping;
1850 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1851
1852 return blkdev_get(bdev, filp->f_mode, filp);
1853 }
1854
1855 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1856 {
1857 struct gendisk *disk = bdev->bd_disk;
1858 struct block_device *victim = NULL;
1859
1860 mutex_lock_nested(&bdev->bd_mutex, for_part);
1861 if (for_part)
1862 bdev->bd_part_count--;
1863
1864 if (!--bdev->bd_openers) {
1865 WARN_ON_ONCE(bdev->bd_holders);
1866 sync_blockdev(bdev);
1867 kill_bdev(bdev);
1868
1869 bdev_write_inode(bdev);
1870 }
1871 if (bdev->bd_contains == bdev) {
1872 if (disk->fops->release)
1873 disk->fops->release(disk, mode);
1874 }
1875 if (!bdev->bd_openers) {
1876 disk_put_part(bdev->bd_part);
1877 bdev->bd_part = NULL;
1878 bdev->bd_disk = NULL;
1879 if (bdev != bdev->bd_contains)
1880 victim = bdev->bd_contains;
1881 bdev->bd_contains = NULL;
1882
1883 put_disk_and_module(disk);
1884 }
1885 mutex_unlock(&bdev->bd_mutex);
1886 bdput(bdev);
1887 if (victim)
1888 __blkdev_put(victim, mode, 1);
1889 }
1890
1891 void blkdev_put(struct block_device *bdev, fmode_t mode)
1892 {
1893 mutex_lock(&bdev->bd_mutex);
1894
1895 if (mode & FMODE_EXCL) {
1896 bool bdev_free;
1897
1898 /*
1899 * Release a claim on the device. The holder fields
1900 * are protected with bdev_lock. bd_mutex is to
1901 * synchronize disk_holder unlinking.
1902 */
1903 spin_lock(&bdev_lock);
1904
1905 WARN_ON_ONCE(--bdev->bd_holders < 0);
1906 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1907
1908 /* bd_contains might point to self, check in a separate step */
1909 if ((bdev_free = !bdev->bd_holders))
1910 bdev->bd_holder = NULL;
1911 if (!bdev->bd_contains->bd_holders)
1912 bdev->bd_contains->bd_holder = NULL;
1913
1914 spin_unlock(&bdev_lock);
1915
1916 /*
1917 * If this was the last claim, remove holder link and
1918 * unblock evpoll if it was a write holder.
1919 */
1920 if (bdev_free && bdev->bd_write_holder) {
1921 disk_unblock_events(bdev->bd_disk);
1922 bdev->bd_write_holder = false;
1923 }
1924 }
1925
1926 /*
1927 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1928 * event. This is to ensure detection of media removal commanded
1929 * from userland - e.g. eject(1).
1930 */
1931 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1932
1933 mutex_unlock(&bdev->bd_mutex);
1934
1935 __blkdev_put(bdev, mode, 0);
1936 }
1937 EXPORT_SYMBOL(blkdev_put);
1938
1939 static int blkdev_close(struct inode * inode, struct file * filp)
1940 {
1941 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1942 blkdev_put(bdev, filp->f_mode);
1943 return 0;
1944 }
1945
1946 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1947 {
1948 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1949 fmode_t mode = file->f_mode;
1950
1951 /*
1952 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1953 * to updated it before every ioctl.
1954 */
1955 if (file->f_flags & O_NDELAY)
1956 mode |= FMODE_NDELAY;
1957 else
1958 mode &= ~FMODE_NDELAY;
1959
1960 return blkdev_ioctl(bdev, mode, cmd, arg);
1961 }
1962
1963 /*
1964 * Write data to the block device. Only intended for the block device itself
1965 * and the raw driver which basically is a fake block device.
1966 *
1967 * Does not take i_mutex for the write and thus is not for general purpose
1968 * use.
1969 */
1970 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1971 {
1972 struct file *file = iocb->ki_filp;
1973 struct inode *bd_inode = bdev_file_inode(file);
1974 loff_t size = i_size_read(bd_inode);
1975 struct blk_plug plug;
1976 ssize_t ret;
1977
1978 if (bdev_read_only(I_BDEV(bd_inode)))
1979 return -EPERM;
1980
1981 if (!iov_iter_count(from))
1982 return 0;
1983
1984 if (iocb->ki_pos >= size)
1985 return -ENOSPC;
1986
1987 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
1988 return -EOPNOTSUPP;
1989
1990 iov_iter_truncate(from, size - iocb->ki_pos);
1991
1992 blk_start_plug(&plug);
1993 ret = __generic_file_write_iter(iocb, from);
1994 if (ret > 0)
1995 ret = generic_write_sync(iocb, ret);
1996 blk_finish_plug(&plug);
1997 return ret;
1998 }
1999 EXPORT_SYMBOL_GPL(blkdev_write_iter);
2000
2001 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
2002 {
2003 struct file *file = iocb->ki_filp;
2004 struct inode *bd_inode = bdev_file_inode(file);
2005 loff_t size = i_size_read(bd_inode);
2006 loff_t pos = iocb->ki_pos;
2007
2008 if (pos >= size)
2009 return 0;
2010
2011 size -= pos;
2012 iov_iter_truncate(to, size);
2013 return generic_file_read_iter(iocb, to);
2014 }
2015 EXPORT_SYMBOL_GPL(blkdev_read_iter);
2016
2017 /*
2018 * Try to release a page associated with block device when the system
2019 * is under memory pressure.
2020 */
2021 static int blkdev_releasepage(struct page *page, gfp_t wait)
2022 {
2023 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
2024
2025 if (super && super->s_op->bdev_try_to_free_page)
2026 return super->s_op->bdev_try_to_free_page(super, page, wait);
2027
2028 return try_to_free_buffers(page);
2029 }
2030
2031 static int blkdev_writepages(struct address_space *mapping,
2032 struct writeback_control *wbc)
2033 {
2034 return generic_writepages(mapping, wbc);
2035 }
2036
2037 static const struct address_space_operations def_blk_aops = {
2038 .readpage = blkdev_readpage,
2039 .readpages = blkdev_readpages,
2040 .writepage = blkdev_writepage,
2041 .write_begin = blkdev_write_begin,
2042 .write_end = blkdev_write_end,
2043 .writepages = blkdev_writepages,
2044 .releasepage = blkdev_releasepage,
2045 .direct_IO = blkdev_direct_IO,
2046 .migratepage = buffer_migrate_page_norefs,
2047 .is_dirty_writeback = buffer_check_dirty_writeback,
2048 };
2049
2050 #define BLKDEV_FALLOC_FL_SUPPORTED \
2051 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
2052 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
2053
2054 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
2055 loff_t len)
2056 {
2057 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
2058 struct address_space *mapping;
2059 loff_t end = start + len - 1;
2060 loff_t isize;
2061 int error;
2062
2063 /* Fail if we don't recognize the flags. */
2064 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
2065 return -EOPNOTSUPP;
2066
2067 /* Don't go off the end of the device. */
2068 isize = i_size_read(bdev->bd_inode);
2069 if (start >= isize)
2070 return -EINVAL;
2071 if (end >= isize) {
2072 if (mode & FALLOC_FL_KEEP_SIZE) {
2073 len = isize - start;
2074 end = start + len - 1;
2075 } else
2076 return -EINVAL;
2077 }
2078
2079 /*
2080 * Don't allow IO that isn't aligned to logical block size.
2081 */
2082 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2083 return -EINVAL;
2084
2085 /* Invalidate the page cache, including dirty pages. */
2086 mapping = bdev->bd_inode->i_mapping;
2087 truncate_inode_pages_range(mapping, start, end);
2088
2089 switch (mode) {
2090 case FALLOC_FL_ZERO_RANGE:
2091 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2092 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2093 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2094 break;
2095 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2096 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2097 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2098 break;
2099 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2100 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2101 GFP_KERNEL, 0);
2102 break;
2103 default:
2104 return -EOPNOTSUPP;
2105 }
2106 if (error)
2107 return error;
2108
2109 /*
2110 * Invalidate again; if someone wandered in and dirtied a page,
2111 * the caller will be given -EBUSY. The third argument is
2112 * inclusive, so the rounding here is safe.
2113 */
2114 return invalidate_inode_pages2_range(mapping,
2115 start >> PAGE_SHIFT,
2116 end >> PAGE_SHIFT);
2117 }
2118
2119 const struct file_operations def_blk_fops = {
2120 .open = blkdev_open,
2121 .release = blkdev_close,
2122 .llseek = block_llseek,
2123 .read_iter = blkdev_read_iter,
2124 .write_iter = blkdev_write_iter,
2125 .iopoll = blkdev_iopoll,
2126 .mmap = generic_file_mmap,
2127 .fsync = blkdev_fsync,
2128 .unlocked_ioctl = block_ioctl,
2129 #ifdef CONFIG_COMPAT
2130 .compat_ioctl = compat_blkdev_ioctl,
2131 #endif
2132 .splice_read = generic_file_splice_read,
2133 .splice_write = iter_file_splice_write,
2134 .fallocate = blkdev_fallocate,
2135 };
2136
2137 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2138 {
2139 int res;
2140 mm_segment_t old_fs = get_fs();
2141 set_fs(KERNEL_DS);
2142 res = blkdev_ioctl(bdev, 0, cmd, arg);
2143 set_fs(old_fs);
2144 return res;
2145 }
2146
2147 EXPORT_SYMBOL(ioctl_by_bdev);
2148
2149 /**
2150 * lookup_bdev - lookup a struct block_device by name
2151 * @pathname: special file representing the block device
2152 *
2153 * Get a reference to the blockdevice at @pathname in the current
2154 * namespace if possible and return it. Return ERR_PTR(error)
2155 * otherwise.
2156 */
2157 struct block_device *lookup_bdev(const char *pathname)
2158 {
2159 struct block_device *bdev;
2160 struct inode *inode;
2161 struct path path;
2162 int error;
2163
2164 if (!pathname || !*pathname)
2165 return ERR_PTR(-EINVAL);
2166
2167 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2168 if (error)
2169 return ERR_PTR(error);
2170
2171 inode = d_backing_inode(path.dentry);
2172 error = -ENOTBLK;
2173 if (!S_ISBLK(inode->i_mode))
2174 goto fail;
2175 error = -EACCES;
2176 if (!may_open_dev(&path))
2177 goto fail;
2178 error = -ENOMEM;
2179 bdev = bd_acquire(inode);
2180 if (!bdev)
2181 goto fail;
2182 out:
2183 path_put(&path);
2184 return bdev;
2185 fail:
2186 bdev = ERR_PTR(error);
2187 goto out;
2188 }
2189 EXPORT_SYMBOL(lookup_bdev);
2190
2191 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2192 {
2193 struct super_block *sb = get_super(bdev);
2194 int res = 0;
2195
2196 if (sb) {
2197 /*
2198 * no need to lock the super, get_super holds the
2199 * read mutex so the filesystem cannot go away
2200 * under us (->put_super runs with the write lock
2201 * hold).
2202 */
2203 shrink_dcache_sb(sb);
2204 res = invalidate_inodes(sb, kill_dirty);
2205 drop_super(sb);
2206 }
2207 invalidate_bdev(bdev);
2208 return res;
2209 }
2210 EXPORT_SYMBOL(__invalidate_device);
2211
2212 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2213 {
2214 struct inode *inode, *old_inode = NULL;
2215
2216 spin_lock(&blockdev_superblock->s_inode_list_lock);
2217 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2218 struct address_space *mapping = inode->i_mapping;
2219 struct block_device *bdev;
2220
2221 spin_lock(&inode->i_lock);
2222 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2223 mapping->nrpages == 0) {
2224 spin_unlock(&inode->i_lock);
2225 continue;
2226 }
2227 __iget(inode);
2228 spin_unlock(&inode->i_lock);
2229 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2230 /*
2231 * We hold a reference to 'inode' so it couldn't have been
2232 * removed from s_inodes list while we dropped the
2233 * s_inode_list_lock We cannot iput the inode now as we can
2234 * be holding the last reference and we cannot iput it under
2235 * s_inode_list_lock. So we keep the reference and iput it
2236 * later.
2237 */
2238 iput(old_inode);
2239 old_inode = inode;
2240 bdev = I_BDEV(inode);
2241
2242 mutex_lock(&bdev->bd_mutex);
2243 if (bdev->bd_openers)
2244 func(bdev, arg);
2245 mutex_unlock(&bdev->bd_mutex);
2246
2247 spin_lock(&blockdev_superblock->s_inode_list_lock);
2248 }
2249 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2250 iput(old_inode);
2251 }