]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/btrfs/btrfs_inode.h
4311ac9ca0ae01d0006811a060d6b31e0412a038
[thirdparty/linux.git] / fs / btrfs / btrfs_inode.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #ifndef BTRFS_INODE_H
7 #define BTRFS_INODE_H
8
9 #include <linux/hash.h>
10 #include <linux/refcount.h>
11 #include <linux/fscrypt.h>
12 #include <trace/events/btrfs.h>
13 #include "extent_map.h"
14 #include "extent_io.h"
15 #include "ordered-data.h"
16 #include "delayed-inode.h"
17
18 /*
19 * Since we search a directory based on f_pos (struct dir_context::pos) we have
20 * to start at 2 since '.' and '..' have f_pos of 0 and 1 respectively, so
21 * everybody else has to start at 2 (see btrfs_real_readdir() and dir_emit_dots()).
22 */
23 #define BTRFS_DIR_START_INDEX 2
24
25 /*
26 * ordered_data_close is set by truncate when a file that used
27 * to have good data has been truncated to zero. When it is set
28 * the btrfs file release call will add this inode to the
29 * ordered operations list so that we make sure to flush out any
30 * new data the application may have written before commit.
31 */
32 enum {
33 BTRFS_INODE_FLUSH_ON_CLOSE,
34 BTRFS_INODE_DUMMY,
35 BTRFS_INODE_IN_DEFRAG,
36 BTRFS_INODE_HAS_ASYNC_EXTENT,
37 /*
38 * Always set under the VFS' inode lock, otherwise it can cause races
39 * during fsync (we start as a fast fsync and then end up in a full
40 * fsync racing with ordered extent completion).
41 */
42 BTRFS_INODE_NEEDS_FULL_SYNC,
43 BTRFS_INODE_COPY_EVERYTHING,
44 BTRFS_INODE_IN_DELALLOC_LIST,
45 BTRFS_INODE_HAS_PROPS,
46 BTRFS_INODE_SNAPSHOT_FLUSH,
47 /*
48 * Set and used when logging an inode and it serves to signal that an
49 * inode does not have xattrs, so subsequent fsyncs can avoid searching
50 * for xattrs to log. This bit must be cleared whenever a xattr is added
51 * to an inode.
52 */
53 BTRFS_INODE_NO_XATTRS,
54 /*
55 * Set when we are in a context where we need to start a transaction and
56 * have dirty pages with the respective file range locked. This is to
57 * ensure that when reserving space for the transaction, if we are low
58 * on available space and need to flush delalloc, we will not flush
59 * delalloc for this inode, because that could result in a deadlock (on
60 * the file range, inode's io_tree).
61 */
62 BTRFS_INODE_NO_DELALLOC_FLUSH,
63 /*
64 * Set when we are working on enabling verity for a file. Computing and
65 * writing the whole Merkle tree can take a while so we want to prevent
66 * races where two separate tasks attempt to simultaneously start verity
67 * on the same file.
68 */
69 BTRFS_INODE_VERITY_IN_PROGRESS,
70 /* Set when this inode is a free space inode. */
71 BTRFS_INODE_FREE_SPACE_INODE,
72 };
73
74 /* in memory btrfs inode */
75 struct btrfs_inode {
76 /* which subvolume this inode belongs to */
77 struct btrfs_root *root;
78
79 /* key used to find this inode on disk. This is used by the code
80 * to read in roots of subvolumes
81 */
82 struct btrfs_key location;
83
84 /* Cached value of inode property 'compression'. */
85 u8 prop_compress;
86
87 /*
88 * Force compression on the file using the defrag ioctl, could be
89 * different from prop_compress and takes precedence if set.
90 */
91 u8 defrag_compress;
92
93 /*
94 * Lock for counters and all fields used to determine if the inode is in
95 * the log or not (last_trans, last_sub_trans, last_log_commit,
96 * logged_trans), to access/update new_delalloc_bytes and to update the
97 * VFS' inode number of bytes used.
98 */
99 spinlock_t lock;
100
101 /* the extent_tree has caches of all the extent mappings to disk */
102 struct extent_map_tree extent_tree;
103
104 /* the io_tree does range state (DIRTY, LOCKED etc) */
105 struct extent_io_tree io_tree;
106
107 /*
108 * Keep track of where the inode has extent items mapped in order to
109 * make sure the i_size adjustments are accurate
110 */
111 struct extent_io_tree file_extent_tree;
112
113 /* held while logging the inode in tree-log.c */
114 struct mutex log_mutex;
115
116 /* used to order data wrt metadata */
117 struct btrfs_ordered_inode_tree ordered_tree;
118
119 /* list of all the delalloc inodes in the FS. There are times we need
120 * to write all the delalloc pages to disk, and this list is used
121 * to walk them all.
122 */
123 struct list_head delalloc_inodes;
124
125 /* node for the red-black tree that links inodes in subvolume root */
126 struct rb_node rb_node;
127
128 unsigned long runtime_flags;
129
130 /* full 64 bit generation number, struct vfs_inode doesn't have a big
131 * enough field for this.
132 */
133 u64 generation;
134
135 /*
136 * transid of the trans_handle that last modified this inode
137 */
138 u64 last_trans;
139
140 /*
141 * transid that last logged this inode
142 */
143 u64 logged_trans;
144
145 /*
146 * log transid when this inode was last modified
147 */
148 int last_sub_trans;
149
150 /* a local copy of root's last_log_commit */
151 int last_log_commit;
152
153 union {
154 /*
155 * Total number of bytes pending delalloc, used by stat to
156 * calculate the real block usage of the file. This is used
157 * only for files.
158 */
159 u64 delalloc_bytes;
160 /*
161 * The lowest possible index of the next dir index key which
162 * points to an inode that needs to be logged.
163 * This is used only for directories.
164 * Use the helpers btrfs_get_first_dir_index_to_log() and
165 * btrfs_set_first_dir_index_to_log() to access this field.
166 */
167 u64 first_dir_index_to_log;
168 };
169
170 union {
171 /*
172 * Total number of bytes pending delalloc that fall within a file
173 * range that is either a hole or beyond EOF (and no prealloc extent
174 * exists in the range). This is always <= delalloc_bytes and this
175 * is used only for files.
176 */
177 u64 new_delalloc_bytes;
178 /*
179 * The offset of the last dir index key that was logged.
180 * This is used only for directories.
181 */
182 u64 last_dir_index_offset;
183 };
184
185 /*
186 * total number of bytes pending defrag, used by stat to check whether
187 * it needs COW.
188 */
189 u64 defrag_bytes;
190
191 /*
192 * the size of the file stored in the metadata on disk. data=ordered
193 * means the in-memory i_size might be larger than the size on disk
194 * because not all the blocks are written yet.
195 */
196 u64 disk_i_size;
197
198 /*
199 * If this is a directory then index_cnt is the counter for the index
200 * number for new files that are created. For an empty directory, this
201 * must be initialized to BTRFS_DIR_START_INDEX.
202 */
203 u64 index_cnt;
204
205 /* Cache the directory index number to speed the dir/file remove */
206 u64 dir_index;
207
208 /* the fsync log has some corner cases that mean we have to check
209 * directories to see if any unlinks have been done before
210 * the directory was logged. See tree-log.c for all the
211 * details
212 */
213 u64 last_unlink_trans;
214
215 /*
216 * The id/generation of the last transaction where this inode was
217 * either the source or the destination of a clone/dedupe operation.
218 * Used when logging an inode to know if there are shared extents that
219 * need special care when logging checksum items, to avoid duplicate
220 * checksum items in a log (which can lead to a corruption where we end
221 * up with missing checksum ranges after log replay).
222 * Protected by the vfs inode lock.
223 */
224 u64 last_reflink_trans;
225
226 /*
227 * Number of bytes outstanding that are going to need csums. This is
228 * used in ENOSPC accounting.
229 */
230 u64 csum_bytes;
231
232 /* Backwards incompatible flags, lower half of inode_item::flags */
233 u32 flags;
234 /* Read-only compatibility flags, upper half of inode_item::flags */
235 u32 ro_flags;
236
237 /*
238 * Counters to keep track of the number of extent item's we may use due
239 * to delalloc and such. outstanding_extents is the number of extent
240 * items we think we'll end up using, and reserved_extents is the number
241 * of extent items we've reserved metadata for.
242 */
243 unsigned outstanding_extents;
244
245 struct btrfs_block_rsv block_rsv;
246
247 struct btrfs_delayed_node *delayed_node;
248
249 /* File creation time. */
250 struct timespec64 i_otime;
251
252 /* Hook into fs_info->delayed_iputs */
253 struct list_head delayed_iput;
254
255 struct rw_semaphore i_mmap_lock;
256 struct inode vfs_inode;
257 };
258
259 static inline u64 btrfs_get_first_dir_index_to_log(const struct btrfs_inode *inode)
260 {
261 return READ_ONCE(inode->first_dir_index_to_log);
262 }
263
264 static inline void btrfs_set_first_dir_index_to_log(struct btrfs_inode *inode,
265 u64 index)
266 {
267 WRITE_ONCE(inode->first_dir_index_to_log, index);
268 }
269
270 static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
271 {
272 return container_of(inode, struct btrfs_inode, vfs_inode);
273 }
274
275 static inline unsigned long btrfs_inode_hash(u64 objectid,
276 const struct btrfs_root *root)
277 {
278 u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME);
279
280 #if BITS_PER_LONG == 32
281 h = (h >> 32) ^ (h & 0xffffffff);
282 #endif
283
284 return (unsigned long)h;
285 }
286
287 #if BITS_PER_LONG == 32
288
289 /*
290 * On 32 bit systems the i_ino of struct inode is 32 bits (unsigned long), so
291 * we use the inode's location objectid which is a u64 to avoid truncation.
292 */
293 static inline u64 btrfs_ino(const struct btrfs_inode *inode)
294 {
295 u64 ino = inode->location.objectid;
296
297 /* type == BTRFS_ROOT_ITEM_KEY: subvol dir */
298 if (inode->location.type == BTRFS_ROOT_ITEM_KEY)
299 ino = inode->vfs_inode.i_ino;
300 return ino;
301 }
302
303 #else
304
305 static inline u64 btrfs_ino(const struct btrfs_inode *inode)
306 {
307 return inode->vfs_inode.i_ino;
308 }
309
310 #endif
311
312 static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
313 {
314 i_size_write(&inode->vfs_inode, size);
315 inode->disk_i_size = size;
316 }
317
318 static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
319 {
320 return test_bit(BTRFS_INODE_FREE_SPACE_INODE, &inode->runtime_flags);
321 }
322
323 static inline bool is_data_inode(struct inode *inode)
324 {
325 return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID;
326 }
327
328 static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
329 int mod)
330 {
331 lockdep_assert_held(&inode->lock);
332 inode->outstanding_extents += mod;
333 if (btrfs_is_free_space_inode(inode))
334 return;
335 trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
336 mod, inode->outstanding_extents);
337 }
338
339 /*
340 * Called every time after doing a buffered, direct IO or memory mapped write.
341 *
342 * This is to ensure that if we write to a file that was previously fsynced in
343 * the current transaction, then try to fsync it again in the same transaction,
344 * we will know that there were changes in the file and that it needs to be
345 * logged.
346 */
347 static inline void btrfs_set_inode_last_sub_trans(struct btrfs_inode *inode)
348 {
349 spin_lock(&inode->lock);
350 inode->last_sub_trans = inode->root->log_transid;
351 spin_unlock(&inode->lock);
352 }
353
354 /*
355 * Should be called while holding the inode's VFS lock in exclusive mode or in a
356 * context where no one else can access the inode concurrently (during inode
357 * creation or when loading an inode from disk).
358 */
359 static inline void btrfs_set_inode_full_sync(struct btrfs_inode *inode)
360 {
361 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
362 /*
363 * The inode may have been part of a reflink operation in the last
364 * transaction that modified it, and then a fsync has reset the
365 * last_reflink_trans to avoid subsequent fsyncs in the same
366 * transaction to do unnecessary work. So update last_reflink_trans
367 * to the last_trans value (we have to be pessimistic and assume a
368 * reflink happened).
369 *
370 * The ->last_trans is protected by the inode's spinlock and we can
371 * have a concurrent ordered extent completion update it. Also set
372 * last_reflink_trans to ->last_trans only if the former is less than
373 * the later, because we can be called in a context where
374 * last_reflink_trans was set to the current transaction generation
375 * while ->last_trans was not yet updated in the current transaction,
376 * and therefore has a lower value.
377 */
378 spin_lock(&inode->lock);
379 if (inode->last_reflink_trans < inode->last_trans)
380 inode->last_reflink_trans = inode->last_trans;
381 spin_unlock(&inode->lock);
382 }
383
384 static inline bool btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
385 {
386 bool ret = false;
387
388 spin_lock(&inode->lock);
389 if (inode->logged_trans == generation &&
390 inode->last_sub_trans <= inode->last_log_commit &&
391 inode->last_sub_trans <= inode->root->last_log_commit)
392 ret = true;
393 spin_unlock(&inode->lock);
394 return ret;
395 }
396
397 /*
398 * Check if the inode has flags compatible with compression
399 */
400 static inline bool btrfs_inode_can_compress(const struct btrfs_inode *inode)
401 {
402 if (inode->flags & BTRFS_INODE_NODATACOW ||
403 inode->flags & BTRFS_INODE_NODATASUM)
404 return false;
405 return true;
406 }
407
408 /* Array of bytes with variable length, hexadecimal format 0x1234 */
409 #define CSUM_FMT "0x%*phN"
410 #define CSUM_FMT_VALUE(size, bytes) size, bytes
411
412 int btrfs_check_sector_csum(struct btrfs_fs_info *fs_info, struct page *page,
413 u32 pgoff, u8 *csum, const u8 * const csum_expected);
414 bool btrfs_data_csum_ok(struct btrfs_bio *bbio, struct btrfs_device *dev,
415 u32 bio_offset, struct bio_vec *bv);
416 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
417 u64 *orig_start, u64 *orig_block_len,
418 u64 *ram_bytes, bool nowait, bool strict);
419
420 void __btrfs_del_delalloc_inode(struct btrfs_root *root, struct btrfs_inode *inode);
421 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
422 int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
423 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
424 struct btrfs_inode *dir, struct btrfs_inode *inode,
425 const struct fscrypt_str *name);
426 int btrfs_add_link(struct btrfs_trans_handle *trans,
427 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
428 const struct fscrypt_str *name, int add_backref, u64 index);
429 int btrfs_delete_subvolume(struct btrfs_inode *dir, struct dentry *dentry);
430 int btrfs_truncate_block(struct btrfs_inode *inode, loff_t from, loff_t len,
431 int front);
432
433 int btrfs_start_delalloc_snapshot(struct btrfs_root *root, bool in_reclaim_context);
434 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, long nr,
435 bool in_reclaim_context);
436 int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
437 unsigned int extra_bits,
438 struct extent_state **cached_state);
439
440 struct btrfs_new_inode_args {
441 /* Input */
442 struct inode *dir;
443 struct dentry *dentry;
444 struct inode *inode;
445 bool orphan;
446 bool subvol;
447
448 /* Output from btrfs_new_inode_prepare(), input to btrfs_create_new_inode(). */
449 struct posix_acl *default_acl;
450 struct posix_acl *acl;
451 struct fscrypt_name fname;
452 };
453
454 int btrfs_new_inode_prepare(struct btrfs_new_inode_args *args,
455 unsigned int *trans_num_items);
456 int btrfs_create_new_inode(struct btrfs_trans_handle *trans,
457 struct btrfs_new_inode_args *args);
458 void btrfs_new_inode_args_destroy(struct btrfs_new_inode_args *args);
459 struct inode *btrfs_new_subvol_inode(struct mnt_idmap *idmap,
460 struct inode *dir);
461 void btrfs_set_delalloc_extent(struct btrfs_inode *inode, struct extent_state *state,
462 u32 bits);
463 void btrfs_clear_delalloc_extent(struct btrfs_inode *inode,
464 struct extent_state *state, u32 bits);
465 void btrfs_merge_delalloc_extent(struct btrfs_inode *inode, struct extent_state *new,
466 struct extent_state *other);
467 void btrfs_split_delalloc_extent(struct btrfs_inode *inode,
468 struct extent_state *orig, u64 split);
469 void btrfs_set_range_writeback(struct btrfs_inode *inode, u64 start, u64 end);
470 vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
471 void btrfs_evict_inode(struct inode *inode);
472 struct inode *btrfs_alloc_inode(struct super_block *sb);
473 void btrfs_destroy_inode(struct inode *inode);
474 void btrfs_free_inode(struct inode *inode);
475 int btrfs_drop_inode(struct inode *inode);
476 int __init btrfs_init_cachep(void);
477 void __cold btrfs_destroy_cachep(void);
478 struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
479 struct btrfs_root *root, struct btrfs_path *path);
480 struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root);
481 struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
482 struct page *page, size_t pg_offset,
483 u64 start, u64 end);
484 int btrfs_update_inode(struct btrfs_trans_handle *trans,
485 struct btrfs_root *root, struct btrfs_inode *inode);
486 int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
487 struct btrfs_root *root, struct btrfs_inode *inode);
488 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct btrfs_inode *inode);
489 int btrfs_orphan_cleanup(struct btrfs_root *root);
490 int btrfs_cont_expand(struct btrfs_inode *inode, loff_t oldsize, loff_t size);
491 void btrfs_add_delayed_iput(struct btrfs_inode *inode);
492 void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
493 int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
494 int btrfs_prealloc_file_range(struct inode *inode, int mode,
495 u64 start, u64 num_bytes, u64 min_size,
496 loff_t actual_len, u64 *alloc_hint);
497 int btrfs_prealloc_file_range_trans(struct inode *inode,
498 struct btrfs_trans_handle *trans, int mode,
499 u64 start, u64 num_bytes, u64 min_size,
500 loff_t actual_len, u64 *alloc_hint);
501 int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
502 u64 start, u64 end, struct writeback_control *wbc);
503 int btrfs_writepage_cow_fixup(struct page *page);
504 int btrfs_encoded_io_compression_from_extent(struct btrfs_fs_info *fs_info,
505 int compress_type);
506 int btrfs_encoded_read_regular_fill_pages(struct btrfs_inode *inode,
507 u64 file_offset, u64 disk_bytenr,
508 u64 disk_io_size,
509 struct page **pages);
510 ssize_t btrfs_encoded_read(struct kiocb *iocb, struct iov_iter *iter,
511 struct btrfs_ioctl_encoded_io_args *encoded);
512 ssize_t btrfs_do_encoded_write(struct kiocb *iocb, struct iov_iter *from,
513 const struct btrfs_ioctl_encoded_io_args *encoded);
514
515 ssize_t btrfs_dio_read(struct kiocb *iocb, struct iov_iter *iter,
516 size_t done_before);
517 struct iomap_dio *btrfs_dio_write(struct kiocb *iocb, struct iov_iter *iter,
518 size_t done_before);
519
520 extern const struct dentry_operations btrfs_dentry_operations;
521
522 /* Inode locking type flags, by default the exclusive lock is taken. */
523 enum btrfs_ilock_type {
524 ENUM_BIT(BTRFS_ILOCK_SHARED),
525 ENUM_BIT(BTRFS_ILOCK_TRY),
526 ENUM_BIT(BTRFS_ILOCK_MMAP),
527 };
528
529 int btrfs_inode_lock(struct btrfs_inode *inode, unsigned int ilock_flags);
530 void btrfs_inode_unlock(struct btrfs_inode *inode, unsigned int ilock_flags);
531 void btrfs_update_inode_bytes(struct btrfs_inode *inode, const u64 add_bytes,
532 const u64 del_bytes);
533 void btrfs_assert_inode_range_clean(struct btrfs_inode *inode, u64 start, u64 end);
534
535 #endif