]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/btrfs/file.c
btrfs: add and use helpers for reading and writing fs_info->generation
[thirdparty/linux.git] / fs / btrfs / file.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include <linux/iomap.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "btrfs_inode.h"
25 #include "print-tree.h"
26 #include "tree-log.h"
27 #include "locking.h"
28 #include "volumes.h"
29 #include "qgroup.h"
30 #include "compression.h"
31 #include "delalloc-space.h"
32 #include "reflink.h"
33 #include "subpage.h"
34 #include "fs.h"
35 #include "accessors.h"
36 #include "extent-tree.h"
37 #include "file-item.h"
38 #include "ioctl.h"
39 #include "file.h"
40 #include "super.h"
41
42 /* simple helper to fault in pages and copy. This should go away
43 * and be replaced with calls into generic code.
44 */
45 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
46 struct page **prepared_pages,
47 struct iov_iter *i)
48 {
49 size_t copied = 0;
50 size_t total_copied = 0;
51 int pg = 0;
52 int offset = offset_in_page(pos);
53
54 while (write_bytes > 0) {
55 size_t count = min_t(size_t,
56 PAGE_SIZE - offset, write_bytes);
57 struct page *page = prepared_pages[pg];
58 /*
59 * Copy data from userspace to the current page
60 */
61 copied = copy_page_from_iter_atomic(page, offset, count, i);
62
63 /* Flush processor's dcache for this page */
64 flush_dcache_page(page);
65
66 /*
67 * if we get a partial write, we can end up with
68 * partially up to date pages. These add
69 * a lot of complexity, so make sure they don't
70 * happen by forcing this copy to be retried.
71 *
72 * The rest of the btrfs_file_write code will fall
73 * back to page at a time copies after we return 0.
74 */
75 if (unlikely(copied < count)) {
76 if (!PageUptodate(page)) {
77 iov_iter_revert(i, copied);
78 copied = 0;
79 }
80 if (!copied)
81 break;
82 }
83
84 write_bytes -= copied;
85 total_copied += copied;
86 offset += copied;
87 if (offset == PAGE_SIZE) {
88 pg++;
89 offset = 0;
90 }
91 }
92 return total_copied;
93 }
94
95 /*
96 * unlocks pages after btrfs_file_write is done with them
97 */
98 static void btrfs_drop_pages(struct btrfs_fs_info *fs_info,
99 struct page **pages, size_t num_pages,
100 u64 pos, u64 copied)
101 {
102 size_t i;
103 u64 block_start = round_down(pos, fs_info->sectorsize);
104 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
105
106 ASSERT(block_len <= U32_MAX);
107 for (i = 0; i < num_pages; i++) {
108 /* page checked is some magic around finding pages that
109 * have been modified without going through btrfs_set_page_dirty
110 * clear it here. There should be no need to mark the pages
111 * accessed as prepare_pages should have marked them accessed
112 * in prepare_pages via find_or_create_page()
113 */
114 btrfs_page_clamp_clear_checked(fs_info, pages[i], block_start,
115 block_len);
116 unlock_page(pages[i]);
117 put_page(pages[i]);
118 }
119 }
120
121 /*
122 * After btrfs_copy_from_user(), update the following things for delalloc:
123 * - Mark newly dirtied pages as DELALLOC in the io tree.
124 * Used to advise which range is to be written back.
125 * - Mark modified pages as Uptodate/Dirty and not needing COW fixup
126 * - Update inode size for past EOF write
127 */
128 int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
129 size_t num_pages, loff_t pos, size_t write_bytes,
130 struct extent_state **cached, bool noreserve)
131 {
132 struct btrfs_fs_info *fs_info = inode->root->fs_info;
133 int err = 0;
134 int i;
135 u64 num_bytes;
136 u64 start_pos;
137 u64 end_of_last_block;
138 u64 end_pos = pos + write_bytes;
139 loff_t isize = i_size_read(&inode->vfs_inode);
140 unsigned int extra_bits = 0;
141
142 if (write_bytes == 0)
143 return 0;
144
145 if (noreserve)
146 extra_bits |= EXTENT_NORESERVE;
147
148 start_pos = round_down(pos, fs_info->sectorsize);
149 num_bytes = round_up(write_bytes + pos - start_pos,
150 fs_info->sectorsize);
151 ASSERT(num_bytes <= U32_MAX);
152
153 end_of_last_block = start_pos + num_bytes - 1;
154
155 /*
156 * The pages may have already been dirty, clear out old accounting so
157 * we can set things up properly
158 */
159 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
160 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
161 cached);
162
163 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
164 extra_bits, cached);
165 if (err)
166 return err;
167
168 for (i = 0; i < num_pages; i++) {
169 struct page *p = pages[i];
170
171 btrfs_page_clamp_set_uptodate(fs_info, p, start_pos, num_bytes);
172 btrfs_page_clamp_clear_checked(fs_info, p, start_pos, num_bytes);
173 btrfs_page_clamp_set_dirty(fs_info, p, start_pos, num_bytes);
174 }
175
176 /*
177 * we've only changed i_size in ram, and we haven't updated
178 * the disk i_size. There is no need to log the inode
179 * at this time.
180 */
181 if (end_pos > isize)
182 i_size_write(&inode->vfs_inode, end_pos);
183 return 0;
184 }
185
186 /*
187 * this is very complex, but the basic idea is to drop all extents
188 * in the range start - end. hint_block is filled in with a block number
189 * that would be a good hint to the block allocator for this file.
190 *
191 * If an extent intersects the range but is not entirely inside the range
192 * it is either truncated or split. Anything entirely inside the range
193 * is deleted from the tree.
194 *
195 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
196 * to deal with that. We set the field 'bytes_found' of the arguments structure
197 * with the number of allocated bytes found in the target range, so that the
198 * caller can update the inode's number of bytes in an atomic way when
199 * replacing extents in a range to avoid races with stat(2).
200 */
201 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
202 struct btrfs_root *root, struct btrfs_inode *inode,
203 struct btrfs_drop_extents_args *args)
204 {
205 struct btrfs_fs_info *fs_info = root->fs_info;
206 struct extent_buffer *leaf;
207 struct btrfs_file_extent_item *fi;
208 struct btrfs_ref ref = { 0 };
209 struct btrfs_key key;
210 struct btrfs_key new_key;
211 u64 ino = btrfs_ino(inode);
212 u64 search_start = args->start;
213 u64 disk_bytenr = 0;
214 u64 num_bytes = 0;
215 u64 extent_offset = 0;
216 u64 extent_end = 0;
217 u64 last_end = args->start;
218 int del_nr = 0;
219 int del_slot = 0;
220 int extent_type;
221 int recow;
222 int ret;
223 int modify_tree = -1;
224 int update_refs;
225 int found = 0;
226 struct btrfs_path *path = args->path;
227
228 args->bytes_found = 0;
229 args->extent_inserted = false;
230
231 /* Must always have a path if ->replace_extent is true */
232 ASSERT(!(args->replace_extent && !args->path));
233
234 if (!path) {
235 path = btrfs_alloc_path();
236 if (!path) {
237 ret = -ENOMEM;
238 goto out;
239 }
240 }
241
242 if (args->drop_cache)
243 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
244
245 if (args->start >= inode->disk_i_size && !args->replace_extent)
246 modify_tree = 0;
247
248 update_refs = (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID);
249 while (1) {
250 recow = 0;
251 ret = btrfs_lookup_file_extent(trans, root, path, ino,
252 search_start, modify_tree);
253 if (ret < 0)
254 break;
255 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
256 leaf = path->nodes[0];
257 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
258 if (key.objectid == ino &&
259 key.type == BTRFS_EXTENT_DATA_KEY)
260 path->slots[0]--;
261 }
262 ret = 0;
263 next_slot:
264 leaf = path->nodes[0];
265 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
266 BUG_ON(del_nr > 0);
267 ret = btrfs_next_leaf(root, path);
268 if (ret < 0)
269 break;
270 if (ret > 0) {
271 ret = 0;
272 break;
273 }
274 leaf = path->nodes[0];
275 recow = 1;
276 }
277
278 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
279
280 if (key.objectid > ino)
281 break;
282 if (WARN_ON_ONCE(key.objectid < ino) ||
283 key.type < BTRFS_EXTENT_DATA_KEY) {
284 ASSERT(del_nr == 0);
285 path->slots[0]++;
286 goto next_slot;
287 }
288 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
289 break;
290
291 fi = btrfs_item_ptr(leaf, path->slots[0],
292 struct btrfs_file_extent_item);
293 extent_type = btrfs_file_extent_type(leaf, fi);
294
295 if (extent_type == BTRFS_FILE_EXTENT_REG ||
296 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
297 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
298 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
299 extent_offset = btrfs_file_extent_offset(leaf, fi);
300 extent_end = key.offset +
301 btrfs_file_extent_num_bytes(leaf, fi);
302 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
303 extent_end = key.offset +
304 btrfs_file_extent_ram_bytes(leaf, fi);
305 } else {
306 /* can't happen */
307 BUG();
308 }
309
310 /*
311 * Don't skip extent items representing 0 byte lengths. They
312 * used to be created (bug) if while punching holes we hit
313 * -ENOSPC condition. So if we find one here, just ensure we
314 * delete it, otherwise we would insert a new file extent item
315 * with the same key (offset) as that 0 bytes length file
316 * extent item in the call to setup_items_for_insert() later
317 * in this function.
318 */
319 if (extent_end == key.offset && extent_end >= search_start) {
320 last_end = extent_end;
321 goto delete_extent_item;
322 }
323
324 if (extent_end <= search_start) {
325 path->slots[0]++;
326 goto next_slot;
327 }
328
329 found = 1;
330 search_start = max(key.offset, args->start);
331 if (recow || !modify_tree) {
332 modify_tree = -1;
333 btrfs_release_path(path);
334 continue;
335 }
336
337 /*
338 * | - range to drop - |
339 * | -------- extent -------- |
340 */
341 if (args->start > key.offset && args->end < extent_end) {
342 BUG_ON(del_nr > 0);
343 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
344 ret = -EOPNOTSUPP;
345 break;
346 }
347
348 memcpy(&new_key, &key, sizeof(new_key));
349 new_key.offset = args->start;
350 ret = btrfs_duplicate_item(trans, root, path,
351 &new_key);
352 if (ret == -EAGAIN) {
353 btrfs_release_path(path);
354 continue;
355 }
356 if (ret < 0)
357 break;
358
359 leaf = path->nodes[0];
360 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
361 struct btrfs_file_extent_item);
362 btrfs_set_file_extent_num_bytes(leaf, fi,
363 args->start - key.offset);
364
365 fi = btrfs_item_ptr(leaf, path->slots[0],
366 struct btrfs_file_extent_item);
367
368 extent_offset += args->start - key.offset;
369 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
370 btrfs_set_file_extent_num_bytes(leaf, fi,
371 extent_end - args->start);
372 btrfs_mark_buffer_dirty(trans, leaf);
373
374 if (update_refs && disk_bytenr > 0) {
375 btrfs_init_generic_ref(&ref,
376 BTRFS_ADD_DELAYED_REF,
377 disk_bytenr, num_bytes, 0,
378 root->root_key.objectid);
379 btrfs_init_data_ref(&ref,
380 root->root_key.objectid,
381 new_key.objectid,
382 args->start - extent_offset,
383 0, false);
384 ret = btrfs_inc_extent_ref(trans, &ref);
385 if (ret) {
386 btrfs_abort_transaction(trans, ret);
387 break;
388 }
389 }
390 key.offset = args->start;
391 }
392 /*
393 * From here on out we will have actually dropped something, so
394 * last_end can be updated.
395 */
396 last_end = extent_end;
397
398 /*
399 * | ---- range to drop ----- |
400 * | -------- extent -------- |
401 */
402 if (args->start <= key.offset && args->end < extent_end) {
403 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
404 ret = -EOPNOTSUPP;
405 break;
406 }
407
408 memcpy(&new_key, &key, sizeof(new_key));
409 new_key.offset = args->end;
410 btrfs_set_item_key_safe(trans, path, &new_key);
411
412 extent_offset += args->end - key.offset;
413 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
414 btrfs_set_file_extent_num_bytes(leaf, fi,
415 extent_end - args->end);
416 btrfs_mark_buffer_dirty(trans, leaf);
417 if (update_refs && disk_bytenr > 0)
418 args->bytes_found += args->end - key.offset;
419 break;
420 }
421
422 search_start = extent_end;
423 /*
424 * | ---- range to drop ----- |
425 * | -------- extent -------- |
426 */
427 if (args->start > key.offset && args->end >= extent_end) {
428 BUG_ON(del_nr > 0);
429 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
430 ret = -EOPNOTSUPP;
431 break;
432 }
433
434 btrfs_set_file_extent_num_bytes(leaf, fi,
435 args->start - key.offset);
436 btrfs_mark_buffer_dirty(trans, leaf);
437 if (update_refs && disk_bytenr > 0)
438 args->bytes_found += extent_end - args->start;
439 if (args->end == extent_end)
440 break;
441
442 path->slots[0]++;
443 goto next_slot;
444 }
445
446 /*
447 * | ---- range to drop ----- |
448 * | ------ extent ------ |
449 */
450 if (args->start <= key.offset && args->end >= extent_end) {
451 delete_extent_item:
452 if (del_nr == 0) {
453 del_slot = path->slots[0];
454 del_nr = 1;
455 } else {
456 BUG_ON(del_slot + del_nr != path->slots[0]);
457 del_nr++;
458 }
459
460 if (update_refs &&
461 extent_type == BTRFS_FILE_EXTENT_INLINE) {
462 args->bytes_found += extent_end - key.offset;
463 extent_end = ALIGN(extent_end,
464 fs_info->sectorsize);
465 } else if (update_refs && disk_bytenr > 0) {
466 btrfs_init_generic_ref(&ref,
467 BTRFS_DROP_DELAYED_REF,
468 disk_bytenr, num_bytes, 0,
469 root->root_key.objectid);
470 btrfs_init_data_ref(&ref,
471 root->root_key.objectid,
472 key.objectid,
473 key.offset - extent_offset, 0,
474 false);
475 ret = btrfs_free_extent(trans, &ref);
476 if (ret) {
477 btrfs_abort_transaction(trans, ret);
478 break;
479 }
480 args->bytes_found += extent_end - key.offset;
481 }
482
483 if (args->end == extent_end)
484 break;
485
486 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
487 path->slots[0]++;
488 goto next_slot;
489 }
490
491 ret = btrfs_del_items(trans, root, path, del_slot,
492 del_nr);
493 if (ret) {
494 btrfs_abort_transaction(trans, ret);
495 break;
496 }
497
498 del_nr = 0;
499 del_slot = 0;
500
501 btrfs_release_path(path);
502 continue;
503 }
504
505 BUG();
506 }
507
508 if (!ret && del_nr > 0) {
509 /*
510 * Set path->slots[0] to first slot, so that after the delete
511 * if items are move off from our leaf to its immediate left or
512 * right neighbor leafs, we end up with a correct and adjusted
513 * path->slots[0] for our insertion (if args->replace_extent).
514 */
515 path->slots[0] = del_slot;
516 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
517 if (ret)
518 btrfs_abort_transaction(trans, ret);
519 }
520
521 leaf = path->nodes[0];
522 /*
523 * If btrfs_del_items() was called, it might have deleted a leaf, in
524 * which case it unlocked our path, so check path->locks[0] matches a
525 * write lock.
526 */
527 if (!ret && args->replace_extent &&
528 path->locks[0] == BTRFS_WRITE_LOCK &&
529 btrfs_leaf_free_space(leaf) >=
530 sizeof(struct btrfs_item) + args->extent_item_size) {
531
532 key.objectid = ino;
533 key.type = BTRFS_EXTENT_DATA_KEY;
534 key.offset = args->start;
535 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
536 struct btrfs_key slot_key;
537
538 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
539 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
540 path->slots[0]++;
541 }
542 btrfs_setup_item_for_insert(trans, root, path, &key,
543 args->extent_item_size);
544 args->extent_inserted = true;
545 }
546
547 if (!args->path)
548 btrfs_free_path(path);
549 else if (!args->extent_inserted)
550 btrfs_release_path(path);
551 out:
552 args->drop_end = found ? min(args->end, last_end) : args->end;
553
554 return ret;
555 }
556
557 static int extent_mergeable(struct extent_buffer *leaf, int slot,
558 u64 objectid, u64 bytenr, u64 orig_offset,
559 u64 *start, u64 *end)
560 {
561 struct btrfs_file_extent_item *fi;
562 struct btrfs_key key;
563 u64 extent_end;
564
565 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
566 return 0;
567
568 btrfs_item_key_to_cpu(leaf, &key, slot);
569 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
570 return 0;
571
572 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
573 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
574 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
575 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
576 btrfs_file_extent_compression(leaf, fi) ||
577 btrfs_file_extent_encryption(leaf, fi) ||
578 btrfs_file_extent_other_encoding(leaf, fi))
579 return 0;
580
581 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
582 if ((*start && *start != key.offset) || (*end && *end != extent_end))
583 return 0;
584
585 *start = key.offset;
586 *end = extent_end;
587 return 1;
588 }
589
590 /*
591 * Mark extent in the range start - end as written.
592 *
593 * This changes extent type from 'pre-allocated' to 'regular'. If only
594 * part of extent is marked as written, the extent will be split into
595 * two or three.
596 */
597 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
598 struct btrfs_inode *inode, u64 start, u64 end)
599 {
600 struct btrfs_root *root = inode->root;
601 struct extent_buffer *leaf;
602 struct btrfs_path *path;
603 struct btrfs_file_extent_item *fi;
604 struct btrfs_ref ref = { 0 };
605 struct btrfs_key key;
606 struct btrfs_key new_key;
607 u64 bytenr;
608 u64 num_bytes;
609 u64 extent_end;
610 u64 orig_offset;
611 u64 other_start;
612 u64 other_end;
613 u64 split;
614 int del_nr = 0;
615 int del_slot = 0;
616 int recow;
617 int ret = 0;
618 u64 ino = btrfs_ino(inode);
619
620 path = btrfs_alloc_path();
621 if (!path)
622 return -ENOMEM;
623 again:
624 recow = 0;
625 split = start;
626 key.objectid = ino;
627 key.type = BTRFS_EXTENT_DATA_KEY;
628 key.offset = split;
629
630 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
631 if (ret < 0)
632 goto out;
633 if (ret > 0 && path->slots[0] > 0)
634 path->slots[0]--;
635
636 leaf = path->nodes[0];
637 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
638 if (key.objectid != ino ||
639 key.type != BTRFS_EXTENT_DATA_KEY) {
640 ret = -EINVAL;
641 btrfs_abort_transaction(trans, ret);
642 goto out;
643 }
644 fi = btrfs_item_ptr(leaf, path->slots[0],
645 struct btrfs_file_extent_item);
646 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
647 ret = -EINVAL;
648 btrfs_abort_transaction(trans, ret);
649 goto out;
650 }
651 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
652 if (key.offset > start || extent_end < end) {
653 ret = -EINVAL;
654 btrfs_abort_transaction(trans, ret);
655 goto out;
656 }
657
658 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
659 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
660 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
661 memcpy(&new_key, &key, sizeof(new_key));
662
663 if (start == key.offset && end < extent_end) {
664 other_start = 0;
665 other_end = start;
666 if (extent_mergeable(leaf, path->slots[0] - 1,
667 ino, bytenr, orig_offset,
668 &other_start, &other_end)) {
669 new_key.offset = end;
670 btrfs_set_item_key_safe(trans, path, &new_key);
671 fi = btrfs_item_ptr(leaf, path->slots[0],
672 struct btrfs_file_extent_item);
673 btrfs_set_file_extent_generation(leaf, fi,
674 trans->transid);
675 btrfs_set_file_extent_num_bytes(leaf, fi,
676 extent_end - end);
677 btrfs_set_file_extent_offset(leaf, fi,
678 end - orig_offset);
679 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
680 struct btrfs_file_extent_item);
681 btrfs_set_file_extent_generation(leaf, fi,
682 trans->transid);
683 btrfs_set_file_extent_num_bytes(leaf, fi,
684 end - other_start);
685 btrfs_mark_buffer_dirty(trans, leaf);
686 goto out;
687 }
688 }
689
690 if (start > key.offset && end == extent_end) {
691 other_start = end;
692 other_end = 0;
693 if (extent_mergeable(leaf, path->slots[0] + 1,
694 ino, bytenr, orig_offset,
695 &other_start, &other_end)) {
696 fi = btrfs_item_ptr(leaf, path->slots[0],
697 struct btrfs_file_extent_item);
698 btrfs_set_file_extent_num_bytes(leaf, fi,
699 start - key.offset);
700 btrfs_set_file_extent_generation(leaf, fi,
701 trans->transid);
702 path->slots[0]++;
703 new_key.offset = start;
704 btrfs_set_item_key_safe(trans, path, &new_key);
705
706 fi = btrfs_item_ptr(leaf, path->slots[0],
707 struct btrfs_file_extent_item);
708 btrfs_set_file_extent_generation(leaf, fi,
709 trans->transid);
710 btrfs_set_file_extent_num_bytes(leaf, fi,
711 other_end - start);
712 btrfs_set_file_extent_offset(leaf, fi,
713 start - orig_offset);
714 btrfs_mark_buffer_dirty(trans, leaf);
715 goto out;
716 }
717 }
718
719 while (start > key.offset || end < extent_end) {
720 if (key.offset == start)
721 split = end;
722
723 new_key.offset = split;
724 ret = btrfs_duplicate_item(trans, root, path, &new_key);
725 if (ret == -EAGAIN) {
726 btrfs_release_path(path);
727 goto again;
728 }
729 if (ret < 0) {
730 btrfs_abort_transaction(trans, ret);
731 goto out;
732 }
733
734 leaf = path->nodes[0];
735 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
736 struct btrfs_file_extent_item);
737 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
738 btrfs_set_file_extent_num_bytes(leaf, fi,
739 split - key.offset);
740
741 fi = btrfs_item_ptr(leaf, path->slots[0],
742 struct btrfs_file_extent_item);
743
744 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
745 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
746 btrfs_set_file_extent_num_bytes(leaf, fi,
747 extent_end - split);
748 btrfs_mark_buffer_dirty(trans, leaf);
749
750 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, bytenr,
751 num_bytes, 0, root->root_key.objectid);
752 btrfs_init_data_ref(&ref, root->root_key.objectid, ino,
753 orig_offset, 0, false);
754 ret = btrfs_inc_extent_ref(trans, &ref);
755 if (ret) {
756 btrfs_abort_transaction(trans, ret);
757 goto out;
758 }
759
760 if (split == start) {
761 key.offset = start;
762 } else {
763 if (start != key.offset) {
764 ret = -EINVAL;
765 btrfs_abort_transaction(trans, ret);
766 goto out;
767 }
768 path->slots[0]--;
769 extent_end = end;
770 }
771 recow = 1;
772 }
773
774 other_start = end;
775 other_end = 0;
776 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
777 num_bytes, 0, root->root_key.objectid);
778 btrfs_init_data_ref(&ref, root->root_key.objectid, ino, orig_offset,
779 0, false);
780 if (extent_mergeable(leaf, path->slots[0] + 1,
781 ino, bytenr, orig_offset,
782 &other_start, &other_end)) {
783 if (recow) {
784 btrfs_release_path(path);
785 goto again;
786 }
787 extent_end = other_end;
788 del_slot = path->slots[0] + 1;
789 del_nr++;
790 ret = btrfs_free_extent(trans, &ref);
791 if (ret) {
792 btrfs_abort_transaction(trans, ret);
793 goto out;
794 }
795 }
796 other_start = 0;
797 other_end = start;
798 if (extent_mergeable(leaf, path->slots[0] - 1,
799 ino, bytenr, orig_offset,
800 &other_start, &other_end)) {
801 if (recow) {
802 btrfs_release_path(path);
803 goto again;
804 }
805 key.offset = other_start;
806 del_slot = path->slots[0];
807 del_nr++;
808 ret = btrfs_free_extent(trans, &ref);
809 if (ret) {
810 btrfs_abort_transaction(trans, ret);
811 goto out;
812 }
813 }
814 if (del_nr == 0) {
815 fi = btrfs_item_ptr(leaf, path->slots[0],
816 struct btrfs_file_extent_item);
817 btrfs_set_file_extent_type(leaf, fi,
818 BTRFS_FILE_EXTENT_REG);
819 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
820 btrfs_mark_buffer_dirty(trans, leaf);
821 } else {
822 fi = btrfs_item_ptr(leaf, del_slot - 1,
823 struct btrfs_file_extent_item);
824 btrfs_set_file_extent_type(leaf, fi,
825 BTRFS_FILE_EXTENT_REG);
826 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
827 btrfs_set_file_extent_num_bytes(leaf, fi,
828 extent_end - key.offset);
829 btrfs_mark_buffer_dirty(trans, leaf);
830
831 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
832 if (ret < 0) {
833 btrfs_abort_transaction(trans, ret);
834 goto out;
835 }
836 }
837 out:
838 btrfs_free_path(path);
839 return ret;
840 }
841
842 /*
843 * on error we return an unlocked page and the error value
844 * on success we return a locked page and 0
845 */
846 static int prepare_uptodate_page(struct inode *inode,
847 struct page *page, u64 pos,
848 bool force_uptodate)
849 {
850 struct folio *folio = page_folio(page);
851 int ret = 0;
852
853 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
854 !PageUptodate(page)) {
855 ret = btrfs_read_folio(NULL, folio);
856 if (ret)
857 return ret;
858 lock_page(page);
859 if (!PageUptodate(page)) {
860 unlock_page(page);
861 return -EIO;
862 }
863
864 /*
865 * Since btrfs_read_folio() will unlock the folio before it
866 * returns, there is a window where btrfs_release_folio() can be
867 * called to release the page. Here we check both inode
868 * mapping and PagePrivate() to make sure the page was not
869 * released.
870 *
871 * The private flag check is essential for subpage as we need
872 * to store extra bitmap using page->private.
873 */
874 if (page->mapping != inode->i_mapping || !PagePrivate(page)) {
875 unlock_page(page);
876 return -EAGAIN;
877 }
878 }
879 return 0;
880 }
881
882 static fgf_t get_prepare_fgp_flags(bool nowait)
883 {
884 fgf_t fgp_flags = FGP_LOCK | FGP_ACCESSED | FGP_CREAT;
885
886 if (nowait)
887 fgp_flags |= FGP_NOWAIT;
888
889 return fgp_flags;
890 }
891
892 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
893 {
894 gfp_t gfp;
895
896 gfp = btrfs_alloc_write_mask(inode->i_mapping);
897 if (nowait) {
898 gfp &= ~__GFP_DIRECT_RECLAIM;
899 gfp |= GFP_NOWAIT;
900 }
901
902 return gfp;
903 }
904
905 /*
906 * this just gets pages into the page cache and locks them down.
907 */
908 static noinline int prepare_pages(struct inode *inode, struct page **pages,
909 size_t num_pages, loff_t pos,
910 size_t write_bytes, bool force_uptodate,
911 bool nowait)
912 {
913 int i;
914 unsigned long index = pos >> PAGE_SHIFT;
915 gfp_t mask = get_prepare_gfp_flags(inode, nowait);
916 fgf_t fgp_flags = get_prepare_fgp_flags(nowait);
917 int err = 0;
918 int faili;
919
920 for (i = 0; i < num_pages; i++) {
921 again:
922 pages[i] = pagecache_get_page(inode->i_mapping, index + i,
923 fgp_flags, mask | __GFP_WRITE);
924 if (!pages[i]) {
925 faili = i - 1;
926 if (nowait)
927 err = -EAGAIN;
928 else
929 err = -ENOMEM;
930 goto fail;
931 }
932
933 err = set_page_extent_mapped(pages[i]);
934 if (err < 0) {
935 faili = i;
936 goto fail;
937 }
938
939 if (i == 0)
940 err = prepare_uptodate_page(inode, pages[i], pos,
941 force_uptodate);
942 if (!err && i == num_pages - 1)
943 err = prepare_uptodate_page(inode, pages[i],
944 pos + write_bytes, false);
945 if (err) {
946 put_page(pages[i]);
947 if (!nowait && err == -EAGAIN) {
948 err = 0;
949 goto again;
950 }
951 faili = i - 1;
952 goto fail;
953 }
954 wait_on_page_writeback(pages[i]);
955 }
956
957 return 0;
958 fail:
959 while (faili >= 0) {
960 unlock_page(pages[faili]);
961 put_page(pages[faili]);
962 faili--;
963 }
964 return err;
965
966 }
967
968 /*
969 * This function locks the extent and properly waits for data=ordered extents
970 * to finish before allowing the pages to be modified if need.
971 *
972 * The return value:
973 * 1 - the extent is locked
974 * 0 - the extent is not locked, and everything is OK
975 * -EAGAIN - need re-prepare the pages
976 * the other < 0 number - Something wrong happens
977 */
978 static noinline int
979 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
980 size_t num_pages, loff_t pos,
981 size_t write_bytes,
982 u64 *lockstart, u64 *lockend, bool nowait,
983 struct extent_state **cached_state)
984 {
985 struct btrfs_fs_info *fs_info = inode->root->fs_info;
986 u64 start_pos;
987 u64 last_pos;
988 int i;
989 int ret = 0;
990
991 start_pos = round_down(pos, fs_info->sectorsize);
992 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
993
994 if (start_pos < inode->vfs_inode.i_size) {
995 struct btrfs_ordered_extent *ordered;
996
997 if (nowait) {
998 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
999 cached_state)) {
1000 for (i = 0; i < num_pages; i++) {
1001 unlock_page(pages[i]);
1002 put_page(pages[i]);
1003 pages[i] = NULL;
1004 }
1005
1006 return -EAGAIN;
1007 }
1008 } else {
1009 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
1010 }
1011
1012 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1013 last_pos - start_pos + 1);
1014 if (ordered &&
1015 ordered->file_offset + ordered->num_bytes > start_pos &&
1016 ordered->file_offset <= last_pos) {
1017 unlock_extent(&inode->io_tree, start_pos, last_pos,
1018 cached_state);
1019 for (i = 0; i < num_pages; i++) {
1020 unlock_page(pages[i]);
1021 put_page(pages[i]);
1022 }
1023 btrfs_start_ordered_extent(ordered);
1024 btrfs_put_ordered_extent(ordered);
1025 return -EAGAIN;
1026 }
1027 if (ordered)
1028 btrfs_put_ordered_extent(ordered);
1029
1030 *lockstart = start_pos;
1031 *lockend = last_pos;
1032 ret = 1;
1033 }
1034
1035 /*
1036 * We should be called after prepare_pages() which should have locked
1037 * all pages in the range.
1038 */
1039 for (i = 0; i < num_pages; i++)
1040 WARN_ON(!PageLocked(pages[i]));
1041
1042 return ret;
1043 }
1044
1045 /*
1046 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1047 *
1048 * @pos: File offset.
1049 * @write_bytes: The length to write, will be updated to the nocow writeable
1050 * range.
1051 *
1052 * This function will flush ordered extents in the range to ensure proper
1053 * nocow checks.
1054 *
1055 * Return:
1056 * > 0 If we can nocow, and updates @write_bytes.
1057 * 0 If we can't do a nocow write.
1058 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's
1059 * root is in progress.
1060 * < 0 If an error happened.
1061 *
1062 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1063 */
1064 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1065 size_t *write_bytes, bool nowait)
1066 {
1067 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1068 struct btrfs_root *root = inode->root;
1069 struct extent_state *cached_state = NULL;
1070 u64 lockstart, lockend;
1071 u64 num_bytes;
1072 int ret;
1073
1074 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1075 return 0;
1076
1077 if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1078 return -EAGAIN;
1079
1080 lockstart = round_down(pos, fs_info->sectorsize);
1081 lockend = round_up(pos + *write_bytes,
1082 fs_info->sectorsize) - 1;
1083 num_bytes = lockend - lockstart + 1;
1084
1085 if (nowait) {
1086 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1087 &cached_state)) {
1088 btrfs_drew_write_unlock(&root->snapshot_lock);
1089 return -EAGAIN;
1090 }
1091 } else {
1092 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1093 &cached_state);
1094 }
1095 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1096 NULL, NULL, NULL, nowait, false);
1097 if (ret <= 0)
1098 btrfs_drew_write_unlock(&root->snapshot_lock);
1099 else
1100 *write_bytes = min_t(size_t, *write_bytes ,
1101 num_bytes - pos + lockstart);
1102 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1103
1104 return ret;
1105 }
1106
1107 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1108 {
1109 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1110 }
1111
1112 static void update_time_for_write(struct inode *inode)
1113 {
1114 struct timespec64 now, ctime;
1115
1116 if (IS_NOCMTIME(inode))
1117 return;
1118
1119 now = current_time(inode);
1120 if (!timespec64_equal(&inode->i_mtime, &now))
1121 inode->i_mtime = now;
1122
1123 ctime = inode_get_ctime(inode);
1124 if (!timespec64_equal(&ctime, &now))
1125 inode_set_ctime_to_ts(inode, now);
1126
1127 if (IS_I_VERSION(inode))
1128 inode_inc_iversion(inode);
1129 }
1130
1131 static int btrfs_write_check(struct kiocb *iocb, struct iov_iter *from,
1132 size_t count)
1133 {
1134 struct file *file = iocb->ki_filp;
1135 struct inode *inode = file_inode(file);
1136 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1137 loff_t pos = iocb->ki_pos;
1138 int ret;
1139 loff_t oldsize;
1140 loff_t start_pos;
1141
1142 /*
1143 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1144 * prealloc flags, as without those flags we always have to COW. We will
1145 * later check if we can really COW into the target range (using
1146 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1147 */
1148 if ((iocb->ki_flags & IOCB_NOWAIT) &&
1149 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1150 return -EAGAIN;
1151
1152 ret = file_remove_privs(file);
1153 if (ret)
1154 return ret;
1155
1156 /*
1157 * We reserve space for updating the inode when we reserve space for the
1158 * extent we are going to write, so we will enospc out there. We don't
1159 * need to start yet another transaction to update the inode as we will
1160 * update the inode when we finish writing whatever data we write.
1161 */
1162 update_time_for_write(inode);
1163
1164 start_pos = round_down(pos, fs_info->sectorsize);
1165 oldsize = i_size_read(inode);
1166 if (start_pos > oldsize) {
1167 /* Expand hole size to cover write data, preventing empty gap */
1168 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1169
1170 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1171 if (ret)
1172 return ret;
1173 }
1174
1175 return 0;
1176 }
1177
1178 static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1179 struct iov_iter *i)
1180 {
1181 struct file *file = iocb->ki_filp;
1182 loff_t pos;
1183 struct inode *inode = file_inode(file);
1184 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1185 struct page **pages = NULL;
1186 struct extent_changeset *data_reserved = NULL;
1187 u64 release_bytes = 0;
1188 u64 lockstart;
1189 u64 lockend;
1190 size_t num_written = 0;
1191 int nrptrs;
1192 ssize_t ret;
1193 bool only_release_metadata = false;
1194 bool force_page_uptodate = false;
1195 loff_t old_isize = i_size_read(inode);
1196 unsigned int ilock_flags = 0;
1197 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1198 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1199
1200 if (nowait)
1201 ilock_flags |= BTRFS_ILOCK_TRY;
1202
1203 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1204 if (ret < 0)
1205 return ret;
1206
1207 ret = generic_write_checks(iocb, i);
1208 if (ret <= 0)
1209 goto out;
1210
1211 ret = btrfs_write_check(iocb, i, ret);
1212 if (ret < 0)
1213 goto out;
1214
1215 pos = iocb->ki_pos;
1216 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1217 PAGE_SIZE / (sizeof(struct page *)));
1218 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1219 nrptrs = max(nrptrs, 8);
1220 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
1221 if (!pages) {
1222 ret = -ENOMEM;
1223 goto out;
1224 }
1225
1226 while (iov_iter_count(i) > 0) {
1227 struct extent_state *cached_state = NULL;
1228 size_t offset = offset_in_page(pos);
1229 size_t sector_offset;
1230 size_t write_bytes = min(iov_iter_count(i),
1231 nrptrs * (size_t)PAGE_SIZE -
1232 offset);
1233 size_t num_pages;
1234 size_t reserve_bytes;
1235 size_t dirty_pages;
1236 size_t copied;
1237 size_t dirty_sectors;
1238 size_t num_sectors;
1239 int extents_locked;
1240
1241 /*
1242 * Fault pages before locking them in prepare_pages
1243 * to avoid recursive lock
1244 */
1245 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1246 ret = -EFAULT;
1247 break;
1248 }
1249
1250 only_release_metadata = false;
1251 sector_offset = pos & (fs_info->sectorsize - 1);
1252
1253 extent_changeset_release(data_reserved);
1254 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1255 &data_reserved, pos,
1256 write_bytes, nowait);
1257 if (ret < 0) {
1258 int can_nocow;
1259
1260 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1261 ret = -EAGAIN;
1262 break;
1263 }
1264
1265 /*
1266 * If we don't have to COW at the offset, reserve
1267 * metadata only. write_bytes may get smaller than
1268 * requested here.
1269 */
1270 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1271 &write_bytes, nowait);
1272 if (can_nocow < 0)
1273 ret = can_nocow;
1274 if (can_nocow > 0)
1275 ret = 0;
1276 if (ret)
1277 break;
1278 only_release_metadata = true;
1279 }
1280
1281 num_pages = DIV_ROUND_UP(write_bytes + offset, PAGE_SIZE);
1282 WARN_ON(num_pages > nrptrs);
1283 reserve_bytes = round_up(write_bytes + sector_offset,
1284 fs_info->sectorsize);
1285 WARN_ON(reserve_bytes == 0);
1286 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1287 reserve_bytes,
1288 reserve_bytes, nowait);
1289 if (ret) {
1290 if (!only_release_metadata)
1291 btrfs_free_reserved_data_space(BTRFS_I(inode),
1292 data_reserved, pos,
1293 write_bytes);
1294 else
1295 btrfs_check_nocow_unlock(BTRFS_I(inode));
1296
1297 if (nowait && ret == -ENOSPC)
1298 ret = -EAGAIN;
1299 break;
1300 }
1301
1302 release_bytes = reserve_bytes;
1303 again:
1304 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1305 if (ret) {
1306 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1307 break;
1308 }
1309
1310 /*
1311 * This is going to setup the pages array with the number of
1312 * pages we want, so we don't really need to worry about the
1313 * contents of pages from loop to loop
1314 */
1315 ret = prepare_pages(inode, pages, num_pages,
1316 pos, write_bytes, force_page_uptodate, false);
1317 if (ret) {
1318 btrfs_delalloc_release_extents(BTRFS_I(inode),
1319 reserve_bytes);
1320 break;
1321 }
1322
1323 extents_locked = lock_and_cleanup_extent_if_need(
1324 BTRFS_I(inode), pages,
1325 num_pages, pos, write_bytes, &lockstart,
1326 &lockend, nowait, &cached_state);
1327 if (extents_locked < 0) {
1328 if (!nowait && extents_locked == -EAGAIN)
1329 goto again;
1330
1331 btrfs_delalloc_release_extents(BTRFS_I(inode),
1332 reserve_bytes);
1333 ret = extents_locked;
1334 break;
1335 }
1336
1337 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
1338
1339 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1340 dirty_sectors = round_up(copied + sector_offset,
1341 fs_info->sectorsize);
1342 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1343
1344 /*
1345 * if we have trouble faulting in the pages, fall
1346 * back to one page at a time
1347 */
1348 if (copied < write_bytes)
1349 nrptrs = 1;
1350
1351 if (copied == 0) {
1352 force_page_uptodate = true;
1353 dirty_sectors = 0;
1354 dirty_pages = 0;
1355 } else {
1356 force_page_uptodate = false;
1357 dirty_pages = DIV_ROUND_UP(copied + offset,
1358 PAGE_SIZE);
1359 }
1360
1361 if (num_sectors > dirty_sectors) {
1362 /* release everything except the sectors we dirtied */
1363 release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1364 if (only_release_metadata) {
1365 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1366 release_bytes, true);
1367 } else {
1368 u64 __pos;
1369
1370 __pos = round_down(pos,
1371 fs_info->sectorsize) +
1372 (dirty_pages << PAGE_SHIFT);
1373 btrfs_delalloc_release_space(BTRFS_I(inode),
1374 data_reserved, __pos,
1375 release_bytes, true);
1376 }
1377 }
1378
1379 release_bytes = round_up(copied + sector_offset,
1380 fs_info->sectorsize);
1381
1382 ret = btrfs_dirty_pages(BTRFS_I(inode), pages,
1383 dirty_pages, pos, copied,
1384 &cached_state, only_release_metadata);
1385
1386 /*
1387 * If we have not locked the extent range, because the range's
1388 * start offset is >= i_size, we might still have a non-NULL
1389 * cached extent state, acquired while marking the extent range
1390 * as delalloc through btrfs_dirty_pages(). Therefore free any
1391 * possible cached extent state to avoid a memory leak.
1392 */
1393 if (extents_locked)
1394 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1395 lockend, &cached_state);
1396 else
1397 free_extent_state(cached_state);
1398
1399 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1400 if (ret) {
1401 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1402 break;
1403 }
1404
1405 release_bytes = 0;
1406 if (only_release_metadata)
1407 btrfs_check_nocow_unlock(BTRFS_I(inode));
1408
1409 btrfs_drop_pages(fs_info, pages, num_pages, pos, copied);
1410
1411 cond_resched();
1412
1413 pos += copied;
1414 num_written += copied;
1415 }
1416
1417 kfree(pages);
1418
1419 if (release_bytes) {
1420 if (only_release_metadata) {
1421 btrfs_check_nocow_unlock(BTRFS_I(inode));
1422 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1423 release_bytes, true);
1424 } else {
1425 btrfs_delalloc_release_space(BTRFS_I(inode),
1426 data_reserved,
1427 round_down(pos, fs_info->sectorsize),
1428 release_bytes, true);
1429 }
1430 }
1431
1432 extent_changeset_free(data_reserved);
1433 if (num_written > 0) {
1434 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1435 iocb->ki_pos += num_written;
1436 }
1437 out:
1438 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1439 return num_written ? num_written : ret;
1440 }
1441
1442 static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
1443 const struct iov_iter *iter, loff_t offset)
1444 {
1445 const u32 blocksize_mask = fs_info->sectorsize - 1;
1446
1447 if (offset & blocksize_mask)
1448 return -EINVAL;
1449
1450 if (iov_iter_alignment(iter) & blocksize_mask)
1451 return -EINVAL;
1452
1453 return 0;
1454 }
1455
1456 static ssize_t btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
1457 {
1458 struct file *file = iocb->ki_filp;
1459 struct inode *inode = file_inode(file);
1460 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1461 loff_t pos;
1462 ssize_t written = 0;
1463 ssize_t written_buffered;
1464 size_t prev_left = 0;
1465 loff_t endbyte;
1466 ssize_t err;
1467 unsigned int ilock_flags = 0;
1468 struct iomap_dio *dio;
1469
1470 if (iocb->ki_flags & IOCB_NOWAIT)
1471 ilock_flags |= BTRFS_ILOCK_TRY;
1472
1473 /*
1474 * If the write DIO is within EOF, use a shared lock and also only if
1475 * security bits will likely not be dropped by file_remove_privs() called
1476 * from btrfs_write_check(). Either will need to be rechecked after the
1477 * lock was acquired.
1478 */
1479 if (iocb->ki_pos + iov_iter_count(from) <= i_size_read(inode) && IS_NOSEC(inode))
1480 ilock_flags |= BTRFS_ILOCK_SHARED;
1481
1482 relock:
1483 err = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1484 if (err < 0)
1485 return err;
1486
1487 /* Shared lock cannot be used with security bits set. */
1488 if ((ilock_flags & BTRFS_ILOCK_SHARED) && !IS_NOSEC(inode)) {
1489 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1490 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1491 goto relock;
1492 }
1493
1494 err = generic_write_checks(iocb, from);
1495 if (err <= 0) {
1496 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1497 return err;
1498 }
1499
1500 err = btrfs_write_check(iocb, from, err);
1501 if (err < 0) {
1502 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1503 goto out;
1504 }
1505
1506 pos = iocb->ki_pos;
1507 /*
1508 * Re-check since file size may have changed just before taking the
1509 * lock or pos may have changed because of O_APPEND in generic_write_check()
1510 */
1511 if ((ilock_flags & BTRFS_ILOCK_SHARED) &&
1512 pos + iov_iter_count(from) > i_size_read(inode)) {
1513 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1514 ilock_flags &= ~BTRFS_ILOCK_SHARED;
1515 goto relock;
1516 }
1517
1518 if (check_direct_IO(fs_info, from, pos)) {
1519 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1520 goto buffered;
1521 }
1522
1523 /*
1524 * The iov_iter can be mapped to the same file range we are writing to.
1525 * If that's the case, then we will deadlock in the iomap code, because
1526 * it first calls our callback btrfs_dio_iomap_begin(), which will create
1527 * an ordered extent, and after that it will fault in the pages that the
1528 * iov_iter refers to. During the fault in we end up in the readahead
1529 * pages code (starting at btrfs_readahead()), which will lock the range,
1530 * find that ordered extent and then wait for it to complete (at
1531 * btrfs_lock_and_flush_ordered_range()), resulting in a deadlock since
1532 * obviously the ordered extent can never complete as we didn't submit
1533 * yet the respective bio(s). This always happens when the buffer is
1534 * memory mapped to the same file range, since the iomap DIO code always
1535 * invalidates pages in the target file range (after starting and waiting
1536 * for any writeback).
1537 *
1538 * So here we disable page faults in the iov_iter and then retry if we
1539 * got -EFAULT, faulting in the pages before the retry.
1540 */
1541 from->nofault = true;
1542 dio = btrfs_dio_write(iocb, from, written);
1543 from->nofault = false;
1544
1545 /*
1546 * iomap_dio_complete() will call btrfs_sync_file() if we have a dsync
1547 * iocb, and that needs to lock the inode. So unlock it before calling
1548 * iomap_dio_complete() to avoid a deadlock.
1549 */
1550 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1551
1552 if (IS_ERR_OR_NULL(dio))
1553 err = PTR_ERR_OR_ZERO(dio);
1554 else
1555 err = iomap_dio_complete(dio);
1556
1557 /* No increment (+=) because iomap returns a cumulative value. */
1558 if (err > 0)
1559 written = err;
1560
1561 if (iov_iter_count(from) > 0 && (err == -EFAULT || err > 0)) {
1562 const size_t left = iov_iter_count(from);
1563 /*
1564 * We have more data left to write. Try to fault in as many as
1565 * possible of the remainder pages and retry. We do this without
1566 * releasing and locking again the inode, to prevent races with
1567 * truncate.
1568 *
1569 * Also, in case the iov refers to pages in the file range of the
1570 * file we want to write to (due to a mmap), we could enter an
1571 * infinite loop if we retry after faulting the pages in, since
1572 * iomap will invalidate any pages in the range early on, before
1573 * it tries to fault in the pages of the iov. So we keep track of
1574 * how much was left of iov in the previous EFAULT and fallback
1575 * to buffered IO in case we haven't made any progress.
1576 */
1577 if (left == prev_left) {
1578 err = -ENOTBLK;
1579 } else {
1580 fault_in_iov_iter_readable(from, left);
1581 prev_left = left;
1582 goto relock;
1583 }
1584 }
1585
1586 /*
1587 * If 'err' is -ENOTBLK or we have not written all data, then it means
1588 * we must fallback to buffered IO.
1589 */
1590 if ((err < 0 && err != -ENOTBLK) || !iov_iter_count(from))
1591 goto out;
1592
1593 buffered:
1594 /*
1595 * If we are in a NOWAIT context, then return -EAGAIN to signal the caller
1596 * it must retry the operation in a context where blocking is acceptable,
1597 * because even if we end up not blocking during the buffered IO attempt
1598 * below, we will block when flushing and waiting for the IO.
1599 */
1600 if (iocb->ki_flags & IOCB_NOWAIT) {
1601 err = -EAGAIN;
1602 goto out;
1603 }
1604
1605 pos = iocb->ki_pos;
1606 written_buffered = btrfs_buffered_write(iocb, from);
1607 if (written_buffered < 0) {
1608 err = written_buffered;
1609 goto out;
1610 }
1611 /*
1612 * Ensure all data is persisted. We want the next direct IO read to be
1613 * able to read what was just written.
1614 */
1615 endbyte = pos + written_buffered - 1;
1616 err = btrfs_fdatawrite_range(inode, pos, endbyte);
1617 if (err)
1618 goto out;
1619 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
1620 if (err)
1621 goto out;
1622 written += written_buffered;
1623 iocb->ki_pos = pos + written_buffered;
1624 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1625 endbyte >> PAGE_SHIFT);
1626 out:
1627 return err < 0 ? err : written;
1628 }
1629
1630 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1631 const struct btrfs_ioctl_encoded_io_args *encoded)
1632 {
1633 struct file *file = iocb->ki_filp;
1634 struct inode *inode = file_inode(file);
1635 loff_t count;
1636 ssize_t ret;
1637
1638 btrfs_inode_lock(BTRFS_I(inode), 0);
1639 count = encoded->len;
1640 ret = generic_write_checks_count(iocb, &count);
1641 if (ret == 0 && count != encoded->len) {
1642 /*
1643 * The write got truncated by generic_write_checks_count(). We
1644 * can't do a partial encoded write.
1645 */
1646 ret = -EFBIG;
1647 }
1648 if (ret || encoded->len == 0)
1649 goto out;
1650
1651 ret = btrfs_write_check(iocb, from, encoded->len);
1652 if (ret < 0)
1653 goto out;
1654
1655 ret = btrfs_do_encoded_write(iocb, from, encoded);
1656 out:
1657 btrfs_inode_unlock(BTRFS_I(inode), 0);
1658 return ret;
1659 }
1660
1661 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1662 const struct btrfs_ioctl_encoded_io_args *encoded)
1663 {
1664 struct file *file = iocb->ki_filp;
1665 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1666 ssize_t num_written, num_sync;
1667
1668 /*
1669 * If the fs flips readonly due to some impossible error, although we
1670 * have opened a file as writable, we have to stop this write operation
1671 * to ensure consistency.
1672 */
1673 if (BTRFS_FS_ERROR(inode->root->fs_info))
1674 return -EROFS;
1675
1676 if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1677 return -EOPNOTSUPP;
1678
1679 if (encoded) {
1680 num_written = btrfs_encoded_write(iocb, from, encoded);
1681 num_sync = encoded->len;
1682 } else if (iocb->ki_flags & IOCB_DIRECT) {
1683 num_written = btrfs_direct_write(iocb, from);
1684 num_sync = num_written;
1685 } else {
1686 num_written = btrfs_buffered_write(iocb, from);
1687 num_sync = num_written;
1688 }
1689
1690 btrfs_set_inode_last_sub_trans(inode);
1691
1692 if (num_sync > 0) {
1693 num_sync = generic_write_sync(iocb, num_sync);
1694 if (num_sync < 0)
1695 num_written = num_sync;
1696 }
1697
1698 return num_written;
1699 }
1700
1701 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1702 {
1703 return btrfs_do_write_iter(iocb, from, NULL);
1704 }
1705
1706 int btrfs_release_file(struct inode *inode, struct file *filp)
1707 {
1708 struct btrfs_file_private *private = filp->private_data;
1709
1710 if (private) {
1711 kfree(private->filldir_buf);
1712 free_extent_state(private->llseek_cached_state);
1713 kfree(private);
1714 filp->private_data = NULL;
1715 }
1716
1717 /*
1718 * Set by setattr when we are about to truncate a file from a non-zero
1719 * size to a zero size. This tries to flush down new bytes that may
1720 * have been written if the application were using truncate to replace
1721 * a file in place.
1722 */
1723 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1724 &BTRFS_I(inode)->runtime_flags))
1725 filemap_flush(inode->i_mapping);
1726 return 0;
1727 }
1728
1729 static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1730 {
1731 int ret;
1732 struct blk_plug plug;
1733
1734 /*
1735 * This is only called in fsync, which would do synchronous writes, so
1736 * a plug can merge adjacent IOs as much as possible. Esp. in case of
1737 * multiple disks using raid profile, a large IO can be split to
1738 * several segments of stripe length (currently 64K).
1739 */
1740 blk_start_plug(&plug);
1741 ret = btrfs_fdatawrite_range(inode, start, end);
1742 blk_finish_plug(&plug);
1743
1744 return ret;
1745 }
1746
1747 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1748 {
1749 struct btrfs_inode *inode = BTRFS_I(ctx->inode);
1750 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1751
1752 if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) &&
1753 list_empty(&ctx->ordered_extents))
1754 return true;
1755
1756 /*
1757 * If we are doing a fast fsync we can not bail out if the inode's
1758 * last_trans is <= then the last committed transaction, because we only
1759 * update the last_trans of the inode during ordered extent completion,
1760 * and for a fast fsync we don't wait for that, we only wait for the
1761 * writeback to complete.
1762 */
1763 if (inode->last_trans <= fs_info->last_trans_committed &&
1764 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1765 list_empty(&ctx->ordered_extents)))
1766 return true;
1767
1768 return false;
1769 }
1770
1771 /*
1772 * fsync call for both files and directories. This logs the inode into
1773 * the tree log instead of forcing full commits whenever possible.
1774 *
1775 * It needs to call filemap_fdatawait so that all ordered extent updates are
1776 * in the metadata btree are up to date for copying to the log.
1777 *
1778 * It drops the inode mutex before doing the tree log commit. This is an
1779 * important optimization for directories because holding the mutex prevents
1780 * new operations on the dir while we write to disk.
1781 */
1782 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1783 {
1784 struct dentry *dentry = file_dentry(file);
1785 struct inode *inode = d_inode(dentry);
1786 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1787 struct btrfs_root *root = BTRFS_I(inode)->root;
1788 struct btrfs_trans_handle *trans;
1789 struct btrfs_log_ctx ctx;
1790 int ret = 0, err;
1791 u64 len;
1792 bool full_sync;
1793
1794 trace_btrfs_sync_file(file, datasync);
1795
1796 btrfs_init_log_ctx(&ctx, inode);
1797
1798 /*
1799 * Always set the range to a full range, otherwise we can get into
1800 * several problems, from missing file extent items to represent holes
1801 * when not using the NO_HOLES feature, to log tree corruption due to
1802 * races between hole detection during logging and completion of ordered
1803 * extents outside the range, to missing checksums due to ordered extents
1804 * for which we flushed only a subset of their pages.
1805 */
1806 start = 0;
1807 end = LLONG_MAX;
1808 len = (u64)LLONG_MAX + 1;
1809
1810 /*
1811 * We write the dirty pages in the range and wait until they complete
1812 * out of the ->i_mutex. If so, we can flush the dirty pages by
1813 * multi-task, and make the performance up. See
1814 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1815 */
1816 ret = start_ordered_ops(inode, start, end);
1817 if (ret)
1818 goto out;
1819
1820 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1821
1822 atomic_inc(&root->log_batch);
1823
1824 /*
1825 * Before we acquired the inode's lock and the mmap lock, someone may
1826 * have dirtied more pages in the target range. We need to make sure
1827 * that writeback for any such pages does not start while we are logging
1828 * the inode, because if it does, any of the following might happen when
1829 * we are not doing a full inode sync:
1830 *
1831 * 1) We log an extent after its writeback finishes but before its
1832 * checksums are added to the csum tree, leading to -EIO errors
1833 * when attempting to read the extent after a log replay.
1834 *
1835 * 2) We can end up logging an extent before its writeback finishes.
1836 * Therefore after the log replay we will have a file extent item
1837 * pointing to an unwritten extent (and no data checksums as well).
1838 *
1839 * So trigger writeback for any eventual new dirty pages and then we
1840 * wait for all ordered extents to complete below.
1841 */
1842 ret = start_ordered_ops(inode, start, end);
1843 if (ret) {
1844 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1845 goto out;
1846 }
1847
1848 /*
1849 * Always check for the full sync flag while holding the inode's lock,
1850 * to avoid races with other tasks. The flag must be either set all the
1851 * time during logging or always off all the time while logging.
1852 * We check the flag here after starting delalloc above, because when
1853 * running delalloc the full sync flag may be set if we need to drop
1854 * extra extent map ranges due to temporary memory allocation failures.
1855 */
1856 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1857 &BTRFS_I(inode)->runtime_flags);
1858
1859 /*
1860 * We have to do this here to avoid the priority inversion of waiting on
1861 * IO of a lower priority task while holding a transaction open.
1862 *
1863 * For a full fsync we wait for the ordered extents to complete while
1864 * for a fast fsync we wait just for writeback to complete, and then
1865 * attach the ordered extents to the transaction so that a transaction
1866 * commit waits for their completion, to avoid data loss if we fsync,
1867 * the current transaction commits before the ordered extents complete
1868 * and a power failure happens right after that.
1869 *
1870 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1871 * logical address recorded in the ordered extent may change. We need
1872 * to wait for the IO to stabilize the logical address.
1873 */
1874 if (full_sync || btrfs_is_zoned(fs_info)) {
1875 ret = btrfs_wait_ordered_range(inode, start, len);
1876 } else {
1877 /*
1878 * Get our ordered extents as soon as possible to avoid doing
1879 * checksum lookups in the csum tree, and use instead the
1880 * checksums attached to the ordered extents.
1881 */
1882 btrfs_get_ordered_extents_for_logging(BTRFS_I(inode),
1883 &ctx.ordered_extents);
1884 ret = filemap_fdatawait_range(inode->i_mapping, start, end);
1885 }
1886
1887 if (ret)
1888 goto out_release_extents;
1889
1890 atomic_inc(&root->log_batch);
1891
1892 smp_mb();
1893 if (skip_inode_logging(&ctx)) {
1894 /*
1895 * We've had everything committed since the last time we were
1896 * modified so clear this flag in case it was set for whatever
1897 * reason, it's no longer relevant.
1898 */
1899 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1900 &BTRFS_I(inode)->runtime_flags);
1901 /*
1902 * An ordered extent might have started before and completed
1903 * already with io errors, in which case the inode was not
1904 * updated and we end up here. So check the inode's mapping
1905 * for any errors that might have happened since we last
1906 * checked called fsync.
1907 */
1908 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
1909 goto out_release_extents;
1910 }
1911
1912 /*
1913 * We use start here because we will need to wait on the IO to complete
1914 * in btrfs_sync_log, which could require joining a transaction (for
1915 * example checking cross references in the nocow path). If we use join
1916 * here we could get into a situation where we're waiting on IO to
1917 * happen that is blocked on a transaction trying to commit. With start
1918 * we inc the extwriter counter, so we wait for all extwriters to exit
1919 * before we start blocking joiners. This comment is to keep somebody
1920 * from thinking they are super smart and changing this to
1921 * btrfs_join_transaction *cough*Josef*cough*.
1922 */
1923 trans = btrfs_start_transaction(root, 0);
1924 if (IS_ERR(trans)) {
1925 ret = PTR_ERR(trans);
1926 goto out_release_extents;
1927 }
1928 trans->in_fsync = true;
1929
1930 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1931 btrfs_release_log_ctx_extents(&ctx);
1932 if (ret < 0) {
1933 /* Fallthrough and commit/free transaction. */
1934 ret = BTRFS_LOG_FORCE_COMMIT;
1935 }
1936
1937 /* we've logged all the items and now have a consistent
1938 * version of the file in the log. It is possible that
1939 * someone will come in and modify the file, but that's
1940 * fine because the log is consistent on disk, and we
1941 * have references to all of the file's extents
1942 *
1943 * It is possible that someone will come in and log the
1944 * file again, but that will end up using the synchronization
1945 * inside btrfs_sync_log to keep things safe.
1946 */
1947 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
1948
1949 if (ret == BTRFS_NO_LOG_SYNC) {
1950 ret = btrfs_end_transaction(trans);
1951 goto out;
1952 }
1953
1954 /* We successfully logged the inode, attempt to sync the log. */
1955 if (!ret) {
1956 ret = btrfs_sync_log(trans, root, &ctx);
1957 if (!ret) {
1958 ret = btrfs_end_transaction(trans);
1959 goto out;
1960 }
1961 }
1962
1963 /*
1964 * At this point we need to commit the transaction because we had
1965 * btrfs_need_log_full_commit() or some other error.
1966 *
1967 * If we didn't do a full sync we have to stop the trans handle, wait on
1968 * the ordered extents, start it again and commit the transaction. If
1969 * we attempt to wait on the ordered extents here we could deadlock with
1970 * something like fallocate() that is holding the extent lock trying to
1971 * start a transaction while some other thread is trying to commit the
1972 * transaction while we (fsync) are currently holding the transaction
1973 * open.
1974 */
1975 if (!full_sync) {
1976 ret = btrfs_end_transaction(trans);
1977 if (ret)
1978 goto out;
1979 ret = btrfs_wait_ordered_range(inode, start, len);
1980 if (ret)
1981 goto out;
1982
1983 /*
1984 * This is safe to use here because we're only interested in
1985 * making sure the transaction that had the ordered extents is
1986 * committed. We aren't waiting on anything past this point,
1987 * we're purely getting the transaction and committing it.
1988 */
1989 trans = btrfs_attach_transaction_barrier(root);
1990 if (IS_ERR(trans)) {
1991 ret = PTR_ERR(trans);
1992
1993 /*
1994 * We committed the transaction and there's no currently
1995 * running transaction, this means everything we care
1996 * about made it to disk and we are done.
1997 */
1998 if (ret == -ENOENT)
1999 ret = 0;
2000 goto out;
2001 }
2002 }
2003
2004 ret = btrfs_commit_transaction(trans);
2005 out:
2006 ASSERT(list_empty(&ctx.list));
2007 ASSERT(list_empty(&ctx.conflict_inodes));
2008 err = file_check_and_advance_wb_err(file);
2009 if (!ret)
2010 ret = err;
2011 return ret > 0 ? -EIO : ret;
2012
2013 out_release_extents:
2014 btrfs_release_log_ctx_extents(&ctx);
2015 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2016 goto out;
2017 }
2018
2019 static const struct vm_operations_struct btrfs_file_vm_ops = {
2020 .fault = filemap_fault,
2021 .map_pages = filemap_map_pages,
2022 .page_mkwrite = btrfs_page_mkwrite,
2023 };
2024
2025 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2026 {
2027 struct address_space *mapping = filp->f_mapping;
2028
2029 if (!mapping->a_ops->read_folio)
2030 return -ENOEXEC;
2031
2032 file_accessed(filp);
2033 vma->vm_ops = &btrfs_file_vm_ops;
2034
2035 return 0;
2036 }
2037
2038 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2039 int slot, u64 start, u64 end)
2040 {
2041 struct btrfs_file_extent_item *fi;
2042 struct btrfs_key key;
2043
2044 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2045 return 0;
2046
2047 btrfs_item_key_to_cpu(leaf, &key, slot);
2048 if (key.objectid != btrfs_ino(inode) ||
2049 key.type != BTRFS_EXTENT_DATA_KEY)
2050 return 0;
2051
2052 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2053
2054 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2055 return 0;
2056
2057 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2058 return 0;
2059
2060 if (key.offset == end)
2061 return 1;
2062 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2063 return 1;
2064 return 0;
2065 }
2066
2067 static int fill_holes(struct btrfs_trans_handle *trans,
2068 struct btrfs_inode *inode,
2069 struct btrfs_path *path, u64 offset, u64 end)
2070 {
2071 struct btrfs_fs_info *fs_info = trans->fs_info;
2072 struct btrfs_root *root = inode->root;
2073 struct extent_buffer *leaf;
2074 struct btrfs_file_extent_item *fi;
2075 struct extent_map *hole_em;
2076 struct btrfs_key key;
2077 int ret;
2078
2079 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2080 goto out;
2081
2082 key.objectid = btrfs_ino(inode);
2083 key.type = BTRFS_EXTENT_DATA_KEY;
2084 key.offset = offset;
2085
2086 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2087 if (ret <= 0) {
2088 /*
2089 * We should have dropped this offset, so if we find it then
2090 * something has gone horribly wrong.
2091 */
2092 if (ret == 0)
2093 ret = -EINVAL;
2094 return ret;
2095 }
2096
2097 leaf = path->nodes[0];
2098 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2099 u64 num_bytes;
2100
2101 path->slots[0]--;
2102 fi = btrfs_item_ptr(leaf, path->slots[0],
2103 struct btrfs_file_extent_item);
2104 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2105 end - offset;
2106 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2107 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2108 btrfs_set_file_extent_offset(leaf, fi, 0);
2109 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2110 btrfs_mark_buffer_dirty(trans, leaf);
2111 goto out;
2112 }
2113
2114 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2115 u64 num_bytes;
2116
2117 key.offset = offset;
2118 btrfs_set_item_key_safe(trans, path, &key);
2119 fi = btrfs_item_ptr(leaf, path->slots[0],
2120 struct btrfs_file_extent_item);
2121 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2122 offset;
2123 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2124 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2125 btrfs_set_file_extent_offset(leaf, fi, 0);
2126 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2127 btrfs_mark_buffer_dirty(trans, leaf);
2128 goto out;
2129 }
2130 btrfs_release_path(path);
2131
2132 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2133 end - offset);
2134 if (ret)
2135 return ret;
2136
2137 out:
2138 btrfs_release_path(path);
2139
2140 hole_em = alloc_extent_map();
2141 if (!hole_em) {
2142 btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2143 btrfs_set_inode_full_sync(inode);
2144 } else {
2145 hole_em->start = offset;
2146 hole_em->len = end - offset;
2147 hole_em->ram_bytes = hole_em->len;
2148 hole_em->orig_start = offset;
2149
2150 hole_em->block_start = EXTENT_MAP_HOLE;
2151 hole_em->block_len = 0;
2152 hole_em->orig_block_len = 0;
2153 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2154 hole_em->generation = trans->transid;
2155
2156 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2157 free_extent_map(hole_em);
2158 if (ret)
2159 btrfs_set_inode_full_sync(inode);
2160 }
2161
2162 return 0;
2163 }
2164
2165 /*
2166 * Find a hole extent on given inode and change start/len to the end of hole
2167 * extent.(hole/vacuum extent whose em->start <= start &&
2168 * em->start + em->len > start)
2169 * When a hole extent is found, return 1 and modify start/len.
2170 */
2171 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2172 {
2173 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2174 struct extent_map *em;
2175 int ret = 0;
2176
2177 em = btrfs_get_extent(inode, NULL, 0,
2178 round_down(*start, fs_info->sectorsize),
2179 round_up(*len, fs_info->sectorsize));
2180 if (IS_ERR(em))
2181 return PTR_ERR(em);
2182
2183 /* Hole or vacuum extent(only exists in no-hole mode) */
2184 if (em->block_start == EXTENT_MAP_HOLE) {
2185 ret = 1;
2186 *len = em->start + em->len > *start + *len ?
2187 0 : *start + *len - em->start - em->len;
2188 *start = em->start + em->len;
2189 }
2190 free_extent_map(em);
2191 return ret;
2192 }
2193
2194 static void btrfs_punch_hole_lock_range(struct inode *inode,
2195 const u64 lockstart,
2196 const u64 lockend,
2197 struct extent_state **cached_state)
2198 {
2199 /*
2200 * For subpage case, if the range is not at page boundary, we could
2201 * have pages at the leading/tailing part of the range.
2202 * This could lead to dead loop since filemap_range_has_page()
2203 * will always return true.
2204 * So here we need to do extra page alignment for
2205 * filemap_range_has_page().
2206 */
2207 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2208 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2209
2210 while (1) {
2211 truncate_pagecache_range(inode, lockstart, lockend);
2212
2213 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2214 cached_state);
2215 /*
2216 * We can't have ordered extents in the range, nor dirty/writeback
2217 * pages, because we have locked the inode's VFS lock in exclusive
2218 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2219 * we have flushed all delalloc in the range and we have waited
2220 * for any ordered extents in the range to complete.
2221 * We can race with anyone reading pages from this range, so after
2222 * locking the range check if we have pages in the range, and if
2223 * we do, unlock the range and retry.
2224 */
2225 if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2226 page_lockend))
2227 break;
2228
2229 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2230 cached_state);
2231 }
2232
2233 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2234 }
2235
2236 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2237 struct btrfs_inode *inode,
2238 struct btrfs_path *path,
2239 struct btrfs_replace_extent_info *extent_info,
2240 const u64 replace_len,
2241 const u64 bytes_to_drop)
2242 {
2243 struct btrfs_fs_info *fs_info = trans->fs_info;
2244 struct btrfs_root *root = inode->root;
2245 struct btrfs_file_extent_item *extent;
2246 struct extent_buffer *leaf;
2247 struct btrfs_key key;
2248 int slot;
2249 struct btrfs_ref ref = { 0 };
2250 int ret;
2251
2252 if (replace_len == 0)
2253 return 0;
2254
2255 if (extent_info->disk_offset == 0 &&
2256 btrfs_fs_incompat(fs_info, NO_HOLES)) {
2257 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2258 return 0;
2259 }
2260
2261 key.objectid = btrfs_ino(inode);
2262 key.type = BTRFS_EXTENT_DATA_KEY;
2263 key.offset = extent_info->file_offset;
2264 ret = btrfs_insert_empty_item(trans, root, path, &key,
2265 sizeof(struct btrfs_file_extent_item));
2266 if (ret)
2267 return ret;
2268 leaf = path->nodes[0];
2269 slot = path->slots[0];
2270 write_extent_buffer(leaf, extent_info->extent_buf,
2271 btrfs_item_ptr_offset(leaf, slot),
2272 sizeof(struct btrfs_file_extent_item));
2273 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2274 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2275 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2276 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2277 if (extent_info->is_new_extent)
2278 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2279 btrfs_mark_buffer_dirty(trans, leaf);
2280 btrfs_release_path(path);
2281
2282 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2283 replace_len);
2284 if (ret)
2285 return ret;
2286
2287 /* If it's a hole, nothing more needs to be done. */
2288 if (extent_info->disk_offset == 0) {
2289 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2290 return 0;
2291 }
2292
2293 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2294
2295 if (extent_info->is_new_extent && extent_info->insertions == 0) {
2296 key.objectid = extent_info->disk_offset;
2297 key.type = BTRFS_EXTENT_ITEM_KEY;
2298 key.offset = extent_info->disk_len;
2299 ret = btrfs_alloc_reserved_file_extent(trans, root,
2300 btrfs_ino(inode),
2301 extent_info->file_offset,
2302 extent_info->qgroup_reserved,
2303 &key);
2304 } else {
2305 u64 ref_offset;
2306
2307 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2308 extent_info->disk_offset,
2309 extent_info->disk_len, 0,
2310 root->root_key.objectid);
2311 ref_offset = extent_info->file_offset - extent_info->data_offset;
2312 btrfs_init_data_ref(&ref, root->root_key.objectid,
2313 btrfs_ino(inode), ref_offset, 0, false);
2314 ret = btrfs_inc_extent_ref(trans, &ref);
2315 }
2316
2317 extent_info->insertions++;
2318
2319 return ret;
2320 }
2321
2322 /*
2323 * The respective range must have been previously locked, as well as the inode.
2324 * The end offset is inclusive (last byte of the range).
2325 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2326 * the file range with an extent.
2327 * When not punching a hole, we don't want to end up in a state where we dropped
2328 * extents without inserting a new one, so we must abort the transaction to avoid
2329 * a corruption.
2330 */
2331 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2332 struct btrfs_path *path, const u64 start,
2333 const u64 end,
2334 struct btrfs_replace_extent_info *extent_info,
2335 struct btrfs_trans_handle **trans_out)
2336 {
2337 struct btrfs_drop_extents_args drop_args = { 0 };
2338 struct btrfs_root *root = inode->root;
2339 struct btrfs_fs_info *fs_info = root->fs_info;
2340 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2341 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2342 struct btrfs_trans_handle *trans = NULL;
2343 struct btrfs_block_rsv *rsv;
2344 unsigned int rsv_count;
2345 u64 cur_offset;
2346 u64 len = end - start;
2347 int ret = 0;
2348
2349 if (end <= start)
2350 return -EINVAL;
2351
2352 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2353 if (!rsv) {
2354 ret = -ENOMEM;
2355 goto out;
2356 }
2357 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2358 rsv->failfast = true;
2359
2360 /*
2361 * 1 - update the inode
2362 * 1 - removing the extents in the range
2363 * 1 - adding the hole extent if no_holes isn't set or if we are
2364 * replacing the range with a new extent
2365 */
2366 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2367 rsv_count = 3;
2368 else
2369 rsv_count = 2;
2370
2371 trans = btrfs_start_transaction(root, rsv_count);
2372 if (IS_ERR(trans)) {
2373 ret = PTR_ERR(trans);
2374 trans = NULL;
2375 goto out_free;
2376 }
2377
2378 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2379 min_size, false);
2380 if (WARN_ON(ret))
2381 goto out_trans;
2382 trans->block_rsv = rsv;
2383
2384 cur_offset = start;
2385 drop_args.path = path;
2386 drop_args.end = end + 1;
2387 drop_args.drop_cache = true;
2388 while (cur_offset < end) {
2389 drop_args.start = cur_offset;
2390 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2391 /* If we are punching a hole decrement the inode's byte count */
2392 if (!extent_info)
2393 btrfs_update_inode_bytes(inode, 0,
2394 drop_args.bytes_found);
2395 if (ret != -ENOSPC) {
2396 /*
2397 * The only time we don't want to abort is if we are
2398 * attempting to clone a partial inline extent, in which
2399 * case we'll get EOPNOTSUPP. However if we aren't
2400 * clone we need to abort no matter what, because if we
2401 * got EOPNOTSUPP via prealloc then we messed up and
2402 * need to abort.
2403 */
2404 if (ret &&
2405 (ret != -EOPNOTSUPP ||
2406 (extent_info && extent_info->is_new_extent)))
2407 btrfs_abort_transaction(trans, ret);
2408 break;
2409 }
2410
2411 trans->block_rsv = &fs_info->trans_block_rsv;
2412
2413 if (!extent_info && cur_offset < drop_args.drop_end &&
2414 cur_offset < ino_size) {
2415 ret = fill_holes(trans, inode, path, cur_offset,
2416 drop_args.drop_end);
2417 if (ret) {
2418 /*
2419 * If we failed then we didn't insert our hole
2420 * entries for the area we dropped, so now the
2421 * fs is corrupted, so we must abort the
2422 * transaction.
2423 */
2424 btrfs_abort_transaction(trans, ret);
2425 break;
2426 }
2427 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2428 /*
2429 * We are past the i_size here, but since we didn't
2430 * insert holes we need to clear the mapped area so we
2431 * know to not set disk_i_size in this area until a new
2432 * file extent is inserted here.
2433 */
2434 ret = btrfs_inode_clear_file_extent_range(inode,
2435 cur_offset,
2436 drop_args.drop_end - cur_offset);
2437 if (ret) {
2438 /*
2439 * We couldn't clear our area, so we could
2440 * presumably adjust up and corrupt the fs, so
2441 * we need to abort.
2442 */
2443 btrfs_abort_transaction(trans, ret);
2444 break;
2445 }
2446 }
2447
2448 if (extent_info &&
2449 drop_args.drop_end > extent_info->file_offset) {
2450 u64 replace_len = drop_args.drop_end -
2451 extent_info->file_offset;
2452
2453 ret = btrfs_insert_replace_extent(trans, inode, path,
2454 extent_info, replace_len,
2455 drop_args.bytes_found);
2456 if (ret) {
2457 btrfs_abort_transaction(trans, ret);
2458 break;
2459 }
2460 extent_info->data_len -= replace_len;
2461 extent_info->data_offset += replace_len;
2462 extent_info->file_offset += replace_len;
2463 }
2464
2465 /*
2466 * We are releasing our handle on the transaction, balance the
2467 * dirty pages of the btree inode and flush delayed items, and
2468 * then get a new transaction handle, which may now point to a
2469 * new transaction in case someone else may have committed the
2470 * transaction we used to replace/drop file extent items. So
2471 * bump the inode's iversion and update mtime and ctime except
2472 * if we are called from a dedupe context. This is because a
2473 * power failure/crash may happen after the transaction is
2474 * committed and before we finish replacing/dropping all the
2475 * file extent items we need.
2476 */
2477 inode_inc_iversion(&inode->vfs_inode);
2478
2479 if (!extent_info || extent_info->update_times)
2480 inode->vfs_inode.i_mtime = inode_set_ctime_current(&inode->vfs_inode);
2481
2482 ret = btrfs_update_inode(trans, inode);
2483 if (ret)
2484 break;
2485
2486 btrfs_end_transaction(trans);
2487 btrfs_btree_balance_dirty(fs_info);
2488
2489 trans = btrfs_start_transaction(root, rsv_count);
2490 if (IS_ERR(trans)) {
2491 ret = PTR_ERR(trans);
2492 trans = NULL;
2493 break;
2494 }
2495
2496 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2497 rsv, min_size, false);
2498 if (WARN_ON(ret))
2499 break;
2500 trans->block_rsv = rsv;
2501
2502 cur_offset = drop_args.drop_end;
2503 len = end - cur_offset;
2504 if (!extent_info && len) {
2505 ret = find_first_non_hole(inode, &cur_offset, &len);
2506 if (unlikely(ret < 0))
2507 break;
2508 if (ret && !len) {
2509 ret = 0;
2510 break;
2511 }
2512 }
2513 }
2514
2515 /*
2516 * If we were cloning, force the next fsync to be a full one since we
2517 * we replaced (or just dropped in the case of cloning holes when
2518 * NO_HOLES is enabled) file extent items and did not setup new extent
2519 * maps for the replacement extents (or holes).
2520 */
2521 if (extent_info && !extent_info->is_new_extent)
2522 btrfs_set_inode_full_sync(inode);
2523
2524 if (ret)
2525 goto out_trans;
2526
2527 trans->block_rsv = &fs_info->trans_block_rsv;
2528 /*
2529 * If we are using the NO_HOLES feature we might have had already an
2530 * hole that overlaps a part of the region [lockstart, lockend] and
2531 * ends at (or beyond) lockend. Since we have no file extent items to
2532 * represent holes, drop_end can be less than lockend and so we must
2533 * make sure we have an extent map representing the existing hole (the
2534 * call to __btrfs_drop_extents() might have dropped the existing extent
2535 * map representing the existing hole), otherwise the fast fsync path
2536 * will not record the existence of the hole region
2537 * [existing_hole_start, lockend].
2538 */
2539 if (drop_args.drop_end <= end)
2540 drop_args.drop_end = end + 1;
2541 /*
2542 * Don't insert file hole extent item if it's for a range beyond eof
2543 * (because it's useless) or if it represents a 0 bytes range (when
2544 * cur_offset == drop_end).
2545 */
2546 if (!extent_info && cur_offset < ino_size &&
2547 cur_offset < drop_args.drop_end) {
2548 ret = fill_holes(trans, inode, path, cur_offset,
2549 drop_args.drop_end);
2550 if (ret) {
2551 /* Same comment as above. */
2552 btrfs_abort_transaction(trans, ret);
2553 goto out_trans;
2554 }
2555 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2556 /* See the comment in the loop above for the reasoning here. */
2557 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2558 drop_args.drop_end - cur_offset);
2559 if (ret) {
2560 btrfs_abort_transaction(trans, ret);
2561 goto out_trans;
2562 }
2563
2564 }
2565 if (extent_info) {
2566 ret = btrfs_insert_replace_extent(trans, inode, path,
2567 extent_info, extent_info->data_len,
2568 drop_args.bytes_found);
2569 if (ret) {
2570 btrfs_abort_transaction(trans, ret);
2571 goto out_trans;
2572 }
2573 }
2574
2575 out_trans:
2576 if (!trans)
2577 goto out_free;
2578
2579 trans->block_rsv = &fs_info->trans_block_rsv;
2580 if (ret)
2581 btrfs_end_transaction(trans);
2582 else
2583 *trans_out = trans;
2584 out_free:
2585 btrfs_free_block_rsv(fs_info, rsv);
2586 out:
2587 return ret;
2588 }
2589
2590 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2591 {
2592 struct inode *inode = file_inode(file);
2593 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2594 struct btrfs_root *root = BTRFS_I(inode)->root;
2595 struct extent_state *cached_state = NULL;
2596 struct btrfs_path *path;
2597 struct btrfs_trans_handle *trans = NULL;
2598 u64 lockstart;
2599 u64 lockend;
2600 u64 tail_start;
2601 u64 tail_len;
2602 u64 orig_start = offset;
2603 int ret = 0;
2604 bool same_block;
2605 u64 ino_size;
2606 bool truncated_block = false;
2607 bool updated_inode = false;
2608
2609 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2610
2611 ret = btrfs_wait_ordered_range(inode, offset, len);
2612 if (ret)
2613 goto out_only_mutex;
2614
2615 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2616 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2617 if (ret < 0)
2618 goto out_only_mutex;
2619 if (ret && !len) {
2620 /* Already in a large hole */
2621 ret = 0;
2622 goto out_only_mutex;
2623 }
2624
2625 ret = file_modified(file);
2626 if (ret)
2627 goto out_only_mutex;
2628
2629 lockstart = round_up(offset, fs_info->sectorsize);
2630 lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2631 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2632 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2633 /*
2634 * We needn't truncate any block which is beyond the end of the file
2635 * because we are sure there is no data there.
2636 */
2637 /*
2638 * Only do this if we are in the same block and we aren't doing the
2639 * entire block.
2640 */
2641 if (same_block && len < fs_info->sectorsize) {
2642 if (offset < ino_size) {
2643 truncated_block = true;
2644 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2645 0);
2646 } else {
2647 ret = 0;
2648 }
2649 goto out_only_mutex;
2650 }
2651
2652 /* zero back part of the first block */
2653 if (offset < ino_size) {
2654 truncated_block = true;
2655 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2656 if (ret) {
2657 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2658 return ret;
2659 }
2660 }
2661
2662 /* Check the aligned pages after the first unaligned page,
2663 * if offset != orig_start, which means the first unaligned page
2664 * including several following pages are already in holes,
2665 * the extra check can be skipped */
2666 if (offset == orig_start) {
2667 /* after truncate page, check hole again */
2668 len = offset + len - lockstart;
2669 offset = lockstart;
2670 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2671 if (ret < 0)
2672 goto out_only_mutex;
2673 if (ret && !len) {
2674 ret = 0;
2675 goto out_only_mutex;
2676 }
2677 lockstart = offset;
2678 }
2679
2680 /* Check the tail unaligned part is in a hole */
2681 tail_start = lockend + 1;
2682 tail_len = offset + len - tail_start;
2683 if (tail_len) {
2684 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2685 if (unlikely(ret < 0))
2686 goto out_only_mutex;
2687 if (!ret) {
2688 /* zero the front end of the last page */
2689 if (tail_start + tail_len < ino_size) {
2690 truncated_block = true;
2691 ret = btrfs_truncate_block(BTRFS_I(inode),
2692 tail_start + tail_len,
2693 0, 1);
2694 if (ret)
2695 goto out_only_mutex;
2696 }
2697 }
2698 }
2699
2700 if (lockend < lockstart) {
2701 ret = 0;
2702 goto out_only_mutex;
2703 }
2704
2705 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2706
2707 path = btrfs_alloc_path();
2708 if (!path) {
2709 ret = -ENOMEM;
2710 goto out;
2711 }
2712
2713 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2714 lockend, NULL, &trans);
2715 btrfs_free_path(path);
2716 if (ret)
2717 goto out;
2718
2719 ASSERT(trans != NULL);
2720 inode_inc_iversion(inode);
2721 inode->i_mtime = inode_set_ctime_current(inode);
2722 ret = btrfs_update_inode(trans, BTRFS_I(inode));
2723 updated_inode = true;
2724 btrfs_end_transaction(trans);
2725 btrfs_btree_balance_dirty(fs_info);
2726 out:
2727 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2728 &cached_state);
2729 out_only_mutex:
2730 if (!updated_inode && truncated_block && !ret) {
2731 /*
2732 * If we only end up zeroing part of a page, we still need to
2733 * update the inode item, so that all the time fields are
2734 * updated as well as the necessary btrfs inode in memory fields
2735 * for detecting, at fsync time, if the inode isn't yet in the
2736 * log tree or it's there but not up to date.
2737 */
2738 struct timespec64 now = inode_set_ctime_current(inode);
2739
2740 inode_inc_iversion(inode);
2741 inode->i_mtime = now;
2742 trans = btrfs_start_transaction(root, 1);
2743 if (IS_ERR(trans)) {
2744 ret = PTR_ERR(trans);
2745 } else {
2746 int ret2;
2747
2748 ret = btrfs_update_inode(trans, BTRFS_I(inode));
2749 ret2 = btrfs_end_transaction(trans);
2750 if (!ret)
2751 ret = ret2;
2752 }
2753 }
2754 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2755 return ret;
2756 }
2757
2758 /* Helper structure to record which range is already reserved */
2759 struct falloc_range {
2760 struct list_head list;
2761 u64 start;
2762 u64 len;
2763 };
2764
2765 /*
2766 * Helper function to add falloc range
2767 *
2768 * Caller should have locked the larger range of extent containing
2769 * [start, len)
2770 */
2771 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2772 {
2773 struct falloc_range *range = NULL;
2774
2775 if (!list_empty(head)) {
2776 /*
2777 * As fallocate iterates by bytenr order, we only need to check
2778 * the last range.
2779 */
2780 range = list_last_entry(head, struct falloc_range, list);
2781 if (range->start + range->len == start) {
2782 range->len += len;
2783 return 0;
2784 }
2785 }
2786
2787 range = kmalloc(sizeof(*range), GFP_KERNEL);
2788 if (!range)
2789 return -ENOMEM;
2790 range->start = start;
2791 range->len = len;
2792 list_add_tail(&range->list, head);
2793 return 0;
2794 }
2795
2796 static int btrfs_fallocate_update_isize(struct inode *inode,
2797 const u64 end,
2798 const int mode)
2799 {
2800 struct btrfs_trans_handle *trans;
2801 struct btrfs_root *root = BTRFS_I(inode)->root;
2802 int ret;
2803 int ret2;
2804
2805 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2806 return 0;
2807
2808 trans = btrfs_start_transaction(root, 1);
2809 if (IS_ERR(trans))
2810 return PTR_ERR(trans);
2811
2812 inode_set_ctime_current(inode);
2813 i_size_write(inode, end);
2814 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2815 ret = btrfs_update_inode(trans, BTRFS_I(inode));
2816 ret2 = btrfs_end_transaction(trans);
2817
2818 return ret ? ret : ret2;
2819 }
2820
2821 enum {
2822 RANGE_BOUNDARY_WRITTEN_EXTENT,
2823 RANGE_BOUNDARY_PREALLOC_EXTENT,
2824 RANGE_BOUNDARY_HOLE,
2825 };
2826
2827 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2828 u64 offset)
2829 {
2830 const u64 sectorsize = inode->root->fs_info->sectorsize;
2831 struct extent_map *em;
2832 int ret;
2833
2834 offset = round_down(offset, sectorsize);
2835 em = btrfs_get_extent(inode, NULL, 0, offset, sectorsize);
2836 if (IS_ERR(em))
2837 return PTR_ERR(em);
2838
2839 if (em->block_start == EXTENT_MAP_HOLE)
2840 ret = RANGE_BOUNDARY_HOLE;
2841 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2842 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2843 else
2844 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2845
2846 free_extent_map(em);
2847 return ret;
2848 }
2849
2850 static int btrfs_zero_range(struct inode *inode,
2851 loff_t offset,
2852 loff_t len,
2853 const int mode)
2854 {
2855 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2856 struct extent_map *em;
2857 struct extent_changeset *data_reserved = NULL;
2858 int ret;
2859 u64 alloc_hint = 0;
2860 const u64 sectorsize = fs_info->sectorsize;
2861 u64 alloc_start = round_down(offset, sectorsize);
2862 u64 alloc_end = round_up(offset + len, sectorsize);
2863 u64 bytes_to_reserve = 0;
2864 bool space_reserved = false;
2865
2866 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2867 alloc_end - alloc_start);
2868 if (IS_ERR(em)) {
2869 ret = PTR_ERR(em);
2870 goto out;
2871 }
2872
2873 /*
2874 * Avoid hole punching and extent allocation for some cases. More cases
2875 * could be considered, but these are unlikely common and we keep things
2876 * as simple as possible for now. Also, intentionally, if the target
2877 * range contains one or more prealloc extents together with regular
2878 * extents and holes, we drop all the existing extents and allocate a
2879 * new prealloc extent, so that we get a larger contiguous disk extent.
2880 */
2881 if (em->start <= alloc_start &&
2882 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2883 const u64 em_end = em->start + em->len;
2884
2885 if (em_end >= offset + len) {
2886 /*
2887 * The whole range is already a prealloc extent,
2888 * do nothing except updating the inode's i_size if
2889 * needed.
2890 */
2891 free_extent_map(em);
2892 ret = btrfs_fallocate_update_isize(inode, offset + len,
2893 mode);
2894 goto out;
2895 }
2896 /*
2897 * Part of the range is already a prealloc extent, so operate
2898 * only on the remaining part of the range.
2899 */
2900 alloc_start = em_end;
2901 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2902 len = offset + len - alloc_start;
2903 offset = alloc_start;
2904 alloc_hint = em->block_start + em->len;
2905 }
2906 free_extent_map(em);
2907
2908 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2909 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2910 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, alloc_start,
2911 sectorsize);
2912 if (IS_ERR(em)) {
2913 ret = PTR_ERR(em);
2914 goto out;
2915 }
2916
2917 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2918 free_extent_map(em);
2919 ret = btrfs_fallocate_update_isize(inode, offset + len,
2920 mode);
2921 goto out;
2922 }
2923 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2924 free_extent_map(em);
2925 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2926 0);
2927 if (!ret)
2928 ret = btrfs_fallocate_update_isize(inode,
2929 offset + len,
2930 mode);
2931 return ret;
2932 }
2933 free_extent_map(em);
2934 alloc_start = round_down(offset, sectorsize);
2935 alloc_end = alloc_start + sectorsize;
2936 goto reserve_space;
2937 }
2938
2939 alloc_start = round_up(offset, sectorsize);
2940 alloc_end = round_down(offset + len, sectorsize);
2941
2942 /*
2943 * For unaligned ranges, check the pages at the boundaries, they might
2944 * map to an extent, in which case we need to partially zero them, or
2945 * they might map to a hole, in which case we need our allocation range
2946 * to cover them.
2947 */
2948 if (!IS_ALIGNED(offset, sectorsize)) {
2949 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2950 offset);
2951 if (ret < 0)
2952 goto out;
2953 if (ret == RANGE_BOUNDARY_HOLE) {
2954 alloc_start = round_down(offset, sectorsize);
2955 ret = 0;
2956 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2957 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2958 if (ret)
2959 goto out;
2960 } else {
2961 ret = 0;
2962 }
2963 }
2964
2965 if (!IS_ALIGNED(offset + len, sectorsize)) {
2966 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2967 offset + len);
2968 if (ret < 0)
2969 goto out;
2970 if (ret == RANGE_BOUNDARY_HOLE) {
2971 alloc_end = round_up(offset + len, sectorsize);
2972 ret = 0;
2973 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2974 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
2975 0, 1);
2976 if (ret)
2977 goto out;
2978 } else {
2979 ret = 0;
2980 }
2981 }
2982
2983 reserve_space:
2984 if (alloc_start < alloc_end) {
2985 struct extent_state *cached_state = NULL;
2986 const u64 lockstart = alloc_start;
2987 const u64 lockend = alloc_end - 1;
2988
2989 bytes_to_reserve = alloc_end - alloc_start;
2990 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2991 bytes_to_reserve);
2992 if (ret < 0)
2993 goto out;
2994 space_reserved = true;
2995 btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2996 &cached_state);
2997 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
2998 alloc_start, bytes_to_reserve);
2999 if (ret) {
3000 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
3001 lockend, &cached_state);
3002 goto out;
3003 }
3004 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
3005 alloc_end - alloc_start,
3006 i_blocksize(inode),
3007 offset + len, &alloc_hint);
3008 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3009 &cached_state);
3010 /* btrfs_prealloc_file_range releases reserved space on error */
3011 if (ret) {
3012 space_reserved = false;
3013 goto out;
3014 }
3015 }
3016 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
3017 out:
3018 if (ret && space_reserved)
3019 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
3020 alloc_start, bytes_to_reserve);
3021 extent_changeset_free(data_reserved);
3022
3023 return ret;
3024 }
3025
3026 static long btrfs_fallocate(struct file *file, int mode,
3027 loff_t offset, loff_t len)
3028 {
3029 struct inode *inode = file_inode(file);
3030 struct extent_state *cached_state = NULL;
3031 struct extent_changeset *data_reserved = NULL;
3032 struct falloc_range *range;
3033 struct falloc_range *tmp;
3034 LIST_HEAD(reserve_list);
3035 u64 cur_offset;
3036 u64 last_byte;
3037 u64 alloc_start;
3038 u64 alloc_end;
3039 u64 alloc_hint = 0;
3040 u64 locked_end;
3041 u64 actual_end = 0;
3042 u64 data_space_needed = 0;
3043 u64 data_space_reserved = 0;
3044 u64 qgroup_reserved = 0;
3045 struct extent_map *em;
3046 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
3047 int ret;
3048
3049 /* Do not allow fallocate in ZONED mode */
3050 if (btrfs_is_zoned(btrfs_sb(inode->i_sb)))
3051 return -EOPNOTSUPP;
3052
3053 alloc_start = round_down(offset, blocksize);
3054 alloc_end = round_up(offset + len, blocksize);
3055 cur_offset = alloc_start;
3056
3057 /* Make sure we aren't being give some crap mode */
3058 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
3059 FALLOC_FL_ZERO_RANGE))
3060 return -EOPNOTSUPP;
3061
3062 if (mode & FALLOC_FL_PUNCH_HOLE)
3063 return btrfs_punch_hole(file, offset, len);
3064
3065 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3066
3067 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3068 ret = inode_newsize_ok(inode, offset + len);
3069 if (ret)
3070 goto out;
3071 }
3072
3073 ret = file_modified(file);
3074 if (ret)
3075 goto out;
3076
3077 /*
3078 * TODO: Move these two operations after we have checked
3079 * accurate reserved space, or fallocate can still fail but
3080 * with page truncated or size expanded.
3081 *
3082 * But that's a minor problem and won't do much harm BTW.
3083 */
3084 if (alloc_start > inode->i_size) {
3085 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3086 alloc_start);
3087 if (ret)
3088 goto out;
3089 } else if (offset + len > inode->i_size) {
3090 /*
3091 * If we are fallocating from the end of the file onward we
3092 * need to zero out the end of the block if i_size lands in the
3093 * middle of a block.
3094 */
3095 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3096 if (ret)
3097 goto out;
3098 }
3099
3100 /*
3101 * We have locked the inode at the VFS level (in exclusive mode) and we
3102 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3103 * locking the file range, flush all dealloc in the range and wait for
3104 * all ordered extents in the range to complete. After this we can lock
3105 * the file range and, due to the previous locking we did, we know there
3106 * can't be more delalloc or ordered extents in the range.
3107 */
3108 ret = btrfs_wait_ordered_range(inode, alloc_start,
3109 alloc_end - alloc_start);
3110 if (ret)
3111 goto out;
3112
3113 if (mode & FALLOC_FL_ZERO_RANGE) {
3114 ret = btrfs_zero_range(inode, offset, len, mode);
3115 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3116 return ret;
3117 }
3118
3119 locked_end = alloc_end - 1;
3120 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3121 &cached_state);
3122
3123 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3124
3125 /* First, check if we exceed the qgroup limit */
3126 while (cur_offset < alloc_end) {
3127 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
3128 alloc_end - cur_offset);
3129 if (IS_ERR(em)) {
3130 ret = PTR_ERR(em);
3131 break;
3132 }
3133 last_byte = min(extent_map_end(em), alloc_end);
3134 actual_end = min_t(u64, extent_map_end(em), offset + len);
3135 last_byte = ALIGN(last_byte, blocksize);
3136 if (em->block_start == EXTENT_MAP_HOLE ||
3137 (cur_offset >= inode->i_size &&
3138 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
3139 const u64 range_len = last_byte - cur_offset;
3140
3141 ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3142 if (ret < 0) {
3143 free_extent_map(em);
3144 break;
3145 }
3146 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3147 &data_reserved, cur_offset, range_len);
3148 if (ret < 0) {
3149 free_extent_map(em);
3150 break;
3151 }
3152 qgroup_reserved += range_len;
3153 data_space_needed += range_len;
3154 }
3155 free_extent_map(em);
3156 cur_offset = last_byte;
3157 }
3158
3159 if (!ret && data_space_needed > 0) {
3160 /*
3161 * We are safe to reserve space here as we can't have delalloc
3162 * in the range, see above.
3163 */
3164 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3165 data_space_needed);
3166 if (!ret)
3167 data_space_reserved = data_space_needed;
3168 }
3169
3170 /*
3171 * If ret is still 0, means we're OK to fallocate.
3172 * Or just cleanup the list and exit.
3173 */
3174 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3175 if (!ret) {
3176 ret = btrfs_prealloc_file_range(inode, mode,
3177 range->start,
3178 range->len, i_blocksize(inode),
3179 offset + len, &alloc_hint);
3180 /*
3181 * btrfs_prealloc_file_range() releases space even
3182 * if it returns an error.
3183 */
3184 data_space_reserved -= range->len;
3185 qgroup_reserved -= range->len;
3186 } else if (data_space_reserved > 0) {
3187 btrfs_free_reserved_data_space(BTRFS_I(inode),
3188 data_reserved, range->start,
3189 range->len);
3190 data_space_reserved -= range->len;
3191 qgroup_reserved -= range->len;
3192 } else if (qgroup_reserved > 0) {
3193 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3194 range->start, range->len);
3195 qgroup_reserved -= range->len;
3196 }
3197 list_del(&range->list);
3198 kfree(range);
3199 }
3200 if (ret < 0)
3201 goto out_unlock;
3202
3203 /*
3204 * We didn't need to allocate any more space, but we still extended the
3205 * size of the file so we need to update i_size and the inode item.
3206 */
3207 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3208 out_unlock:
3209 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3210 &cached_state);
3211 out:
3212 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3213 extent_changeset_free(data_reserved);
3214 return ret;
3215 }
3216
3217 /*
3218 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3219 * that has unflushed and/or flushing delalloc. There might be other adjacent
3220 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3221 * looping while it gets adjacent subranges, and merging them together.
3222 */
3223 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3224 struct extent_state **cached_state,
3225 bool *search_io_tree,
3226 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3227 {
3228 u64 len = end + 1 - start;
3229 u64 delalloc_len = 0;
3230 struct btrfs_ordered_extent *oe;
3231 u64 oe_start;
3232 u64 oe_end;
3233
3234 /*
3235 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3236 * means we have delalloc (dirty pages) for which writeback has not
3237 * started yet.
3238 */
3239 if (*search_io_tree) {
3240 spin_lock(&inode->lock);
3241 if (inode->delalloc_bytes > 0) {
3242 spin_unlock(&inode->lock);
3243 *delalloc_start_ret = start;
3244 delalloc_len = count_range_bits(&inode->io_tree,
3245 delalloc_start_ret, end,
3246 len, EXTENT_DELALLOC, 1,
3247 cached_state);
3248 } else {
3249 spin_unlock(&inode->lock);
3250 }
3251 }
3252
3253 if (delalloc_len > 0) {
3254 /*
3255 * If delalloc was found then *delalloc_start_ret has a sector size
3256 * aligned value (rounded down).
3257 */
3258 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3259
3260 if (*delalloc_start_ret == start) {
3261 /* Delalloc for the whole range, nothing more to do. */
3262 if (*delalloc_end_ret == end)
3263 return true;
3264 /* Else trim our search range for ordered extents. */
3265 start = *delalloc_end_ret + 1;
3266 len = end + 1 - start;
3267 }
3268 } else {
3269 /* No delalloc, future calls don't need to search again. */
3270 *search_io_tree = false;
3271 }
3272
3273 /*
3274 * Now also check if there's any ordered extent in the range.
3275 * We do this because:
3276 *
3277 * 1) When delalloc is flushed, the file range is locked, we clear the
3278 * EXTENT_DELALLOC bit from the io tree and create an extent map and
3279 * an ordered extent for the write. So we might just have been called
3280 * after delalloc is flushed and before the ordered extent completes
3281 * and inserts the new file extent item in the subvolume's btree;
3282 *
3283 * 2) We may have an ordered extent created by flushing delalloc for a
3284 * subrange that starts before the subrange we found marked with
3285 * EXTENT_DELALLOC in the io tree.
3286 *
3287 * We could also use the extent map tree to find such delalloc that is
3288 * being flushed, but using the ordered extents tree is more efficient
3289 * because it's usually much smaller as ordered extents are removed from
3290 * the tree once they complete. With the extent maps, we mau have them
3291 * in the extent map tree for a very long time, and they were either
3292 * created by previous writes or loaded by read operations.
3293 */
3294 oe = btrfs_lookup_first_ordered_range(inode, start, len);
3295 if (!oe)
3296 return (delalloc_len > 0);
3297
3298 /* The ordered extent may span beyond our search range. */
3299 oe_start = max(oe->file_offset, start);
3300 oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3301
3302 btrfs_put_ordered_extent(oe);
3303
3304 /* Don't have unflushed delalloc, return the ordered extent range. */
3305 if (delalloc_len == 0) {
3306 *delalloc_start_ret = oe_start;
3307 *delalloc_end_ret = oe_end;
3308 return true;
3309 }
3310
3311 /*
3312 * We have both unflushed delalloc (io_tree) and an ordered extent.
3313 * If the ranges are adjacent returned a combined range, otherwise
3314 * return the leftmost range.
3315 */
3316 if (oe_start < *delalloc_start_ret) {
3317 if (oe_end < *delalloc_start_ret)
3318 *delalloc_end_ret = oe_end;
3319 *delalloc_start_ret = oe_start;
3320 } else if (*delalloc_end_ret + 1 == oe_start) {
3321 *delalloc_end_ret = oe_end;
3322 }
3323
3324 return true;
3325 }
3326
3327 /*
3328 * Check if there's delalloc in a given range.
3329 *
3330 * @inode: The inode.
3331 * @start: The start offset of the range. It does not need to be
3332 * sector size aligned.
3333 * @end: The end offset (inclusive value) of the search range.
3334 * It does not need to be sector size aligned.
3335 * @cached_state: Extent state record used for speeding up delalloc
3336 * searches in the inode's io_tree. Can be NULL.
3337 * @delalloc_start_ret: Output argument, set to the start offset of the
3338 * subrange found with delalloc (may not be sector size
3339 * aligned).
3340 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value)
3341 * of the subrange found with delalloc.
3342 *
3343 * Returns true if a subrange with delalloc is found within the given range, and
3344 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3345 * end offsets of the subrange.
3346 */
3347 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3348 struct extent_state **cached_state,
3349 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3350 {
3351 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3352 u64 prev_delalloc_end = 0;
3353 bool search_io_tree = true;
3354 bool ret = false;
3355
3356 while (cur_offset <= end) {
3357 u64 delalloc_start;
3358 u64 delalloc_end;
3359 bool delalloc;
3360
3361 delalloc = find_delalloc_subrange(inode, cur_offset, end,
3362 cached_state, &search_io_tree,
3363 &delalloc_start,
3364 &delalloc_end);
3365 if (!delalloc)
3366 break;
3367
3368 if (prev_delalloc_end == 0) {
3369 /* First subrange found. */
3370 *delalloc_start_ret = max(delalloc_start, start);
3371 *delalloc_end_ret = delalloc_end;
3372 ret = true;
3373 } else if (delalloc_start == prev_delalloc_end + 1) {
3374 /* Subrange adjacent to the previous one, merge them. */
3375 *delalloc_end_ret = delalloc_end;
3376 } else {
3377 /* Subrange not adjacent to the previous one, exit. */
3378 break;
3379 }
3380
3381 prev_delalloc_end = delalloc_end;
3382 cur_offset = delalloc_end + 1;
3383 cond_resched();
3384 }
3385
3386 return ret;
3387 }
3388
3389 /*
3390 * Check if there's a hole or delalloc range in a range representing a hole (or
3391 * prealloc extent) found in the inode's subvolume btree.
3392 *
3393 * @inode: The inode.
3394 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE).
3395 * @start: Start offset of the hole region. It does not need to be sector
3396 * size aligned.
3397 * @end: End offset (inclusive value) of the hole region. It does not
3398 * need to be sector size aligned.
3399 * @start_ret: Return parameter, used to set the start of the subrange in the
3400 * hole that matches the search criteria (seek mode), if such
3401 * subrange is found (return value of the function is true).
3402 * The value returned here may not be sector size aligned.
3403 *
3404 * Returns true if a subrange matching the given seek mode is found, and if one
3405 * is found, it updates @start_ret with the start of the subrange.
3406 */
3407 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3408 struct extent_state **cached_state,
3409 u64 start, u64 end, u64 *start_ret)
3410 {
3411 u64 delalloc_start;
3412 u64 delalloc_end;
3413 bool delalloc;
3414
3415 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3416 &delalloc_start, &delalloc_end);
3417 if (delalloc && whence == SEEK_DATA) {
3418 *start_ret = delalloc_start;
3419 return true;
3420 }
3421
3422 if (delalloc && whence == SEEK_HOLE) {
3423 /*
3424 * We found delalloc but it starts after out start offset. So we
3425 * have a hole between our start offset and the delalloc start.
3426 */
3427 if (start < delalloc_start) {
3428 *start_ret = start;
3429 return true;
3430 }
3431 /*
3432 * Delalloc range starts at our start offset.
3433 * If the delalloc range's length is smaller than our range,
3434 * then it means we have a hole that starts where the delalloc
3435 * subrange ends.
3436 */
3437 if (delalloc_end < end) {
3438 *start_ret = delalloc_end + 1;
3439 return true;
3440 }
3441
3442 /* There's delalloc for the whole range. */
3443 return false;
3444 }
3445
3446 if (!delalloc && whence == SEEK_HOLE) {
3447 *start_ret = start;
3448 return true;
3449 }
3450
3451 /*
3452 * No delalloc in the range and we are seeking for data. The caller has
3453 * to iterate to the next extent item in the subvolume btree.
3454 */
3455 return false;
3456 }
3457
3458 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3459 {
3460 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3461 struct btrfs_file_private *private = file->private_data;
3462 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3463 struct extent_state *cached_state = NULL;
3464 struct extent_state **delalloc_cached_state;
3465 const loff_t i_size = i_size_read(&inode->vfs_inode);
3466 const u64 ino = btrfs_ino(inode);
3467 struct btrfs_root *root = inode->root;
3468 struct btrfs_path *path;
3469 struct btrfs_key key;
3470 u64 last_extent_end;
3471 u64 lockstart;
3472 u64 lockend;
3473 u64 start;
3474 int ret;
3475 bool found = false;
3476
3477 if (i_size == 0 || offset >= i_size)
3478 return -ENXIO;
3479
3480 /*
3481 * Quick path. If the inode has no prealloc extents and its number of
3482 * bytes used matches its i_size, then it can not have holes.
3483 */
3484 if (whence == SEEK_HOLE &&
3485 !(inode->flags & BTRFS_INODE_PREALLOC) &&
3486 inode_get_bytes(&inode->vfs_inode) == i_size)
3487 return i_size;
3488
3489 if (!private) {
3490 private = kzalloc(sizeof(*private), GFP_KERNEL);
3491 /*
3492 * No worries if memory allocation failed.
3493 * The private structure is used only for speeding up multiple
3494 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3495 * so everything will still be correct.
3496 */
3497 file->private_data = private;
3498 }
3499
3500 if (private)
3501 delalloc_cached_state = &private->llseek_cached_state;
3502 else
3503 delalloc_cached_state = NULL;
3504
3505 /*
3506 * offset can be negative, in this case we start finding DATA/HOLE from
3507 * the very start of the file.
3508 */
3509 start = max_t(loff_t, 0, offset);
3510
3511 lockstart = round_down(start, fs_info->sectorsize);
3512 lockend = round_up(i_size, fs_info->sectorsize);
3513 if (lockend <= lockstart)
3514 lockend = lockstart + fs_info->sectorsize;
3515 lockend--;
3516
3517 path = btrfs_alloc_path();
3518 if (!path)
3519 return -ENOMEM;
3520 path->reada = READA_FORWARD;
3521
3522 key.objectid = ino;
3523 key.type = BTRFS_EXTENT_DATA_KEY;
3524 key.offset = start;
3525
3526 last_extent_end = lockstart;
3527
3528 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3529
3530 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3531 if (ret < 0) {
3532 goto out;
3533 } else if (ret > 0 && path->slots[0] > 0) {
3534 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3535 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3536 path->slots[0]--;
3537 }
3538
3539 while (start < i_size) {
3540 struct extent_buffer *leaf = path->nodes[0];
3541 struct btrfs_file_extent_item *extent;
3542 u64 extent_end;
3543 u8 type;
3544
3545 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3546 ret = btrfs_next_leaf(root, path);
3547 if (ret < 0)
3548 goto out;
3549 else if (ret > 0)
3550 break;
3551
3552 leaf = path->nodes[0];
3553 }
3554
3555 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3556 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3557 break;
3558
3559 extent_end = btrfs_file_extent_end(path);
3560
3561 /*
3562 * In the first iteration we may have a slot that points to an
3563 * extent that ends before our start offset, so skip it.
3564 */
3565 if (extent_end <= start) {
3566 path->slots[0]++;
3567 continue;
3568 }
3569
3570 /* We have an implicit hole, NO_HOLES feature is likely set. */
3571 if (last_extent_end < key.offset) {
3572 u64 search_start = last_extent_end;
3573 u64 found_start;
3574
3575 /*
3576 * First iteration, @start matches @offset and it's
3577 * within the hole.
3578 */
3579 if (start == offset)
3580 search_start = offset;
3581
3582 found = find_desired_extent_in_hole(inode, whence,
3583 delalloc_cached_state,
3584 search_start,
3585 key.offset - 1,
3586 &found_start);
3587 if (found) {
3588 start = found_start;
3589 break;
3590 }
3591 /*
3592 * Didn't find data or a hole (due to delalloc) in the
3593 * implicit hole range, so need to analyze the extent.
3594 */
3595 }
3596
3597 extent = btrfs_item_ptr(leaf, path->slots[0],
3598 struct btrfs_file_extent_item);
3599 type = btrfs_file_extent_type(leaf, extent);
3600
3601 /*
3602 * Can't access the extent's disk_bytenr field if this is an
3603 * inline extent, since at that offset, it's where the extent
3604 * data starts.
3605 */
3606 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3607 (type == BTRFS_FILE_EXTENT_REG &&
3608 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3609 /*
3610 * Explicit hole or prealloc extent, search for delalloc.
3611 * A prealloc extent is treated like a hole.
3612 */
3613 u64 search_start = key.offset;
3614 u64 found_start;
3615
3616 /*
3617 * First iteration, @start matches @offset and it's
3618 * within the hole.
3619 */
3620 if (start == offset)
3621 search_start = offset;
3622
3623 found = find_desired_extent_in_hole(inode, whence,
3624 delalloc_cached_state,
3625 search_start,
3626 extent_end - 1,
3627 &found_start);
3628 if (found) {
3629 start = found_start;
3630 break;
3631 }
3632 /*
3633 * Didn't find data or a hole (due to delalloc) in the
3634 * implicit hole range, so need to analyze the next
3635 * extent item.
3636 */
3637 } else {
3638 /*
3639 * Found a regular or inline extent.
3640 * If we are seeking for data, adjust the start offset
3641 * and stop, we're done.
3642 */
3643 if (whence == SEEK_DATA) {
3644 start = max_t(u64, key.offset, offset);
3645 found = true;
3646 break;
3647 }
3648 /*
3649 * Else, we are seeking for a hole, check the next file
3650 * extent item.
3651 */
3652 }
3653
3654 start = extent_end;
3655 last_extent_end = extent_end;
3656 path->slots[0]++;
3657 if (fatal_signal_pending(current)) {
3658 ret = -EINTR;
3659 goto out;
3660 }
3661 cond_resched();
3662 }
3663
3664 /* We have an implicit hole from the last extent found up to i_size. */
3665 if (!found && start < i_size) {
3666 found = find_desired_extent_in_hole(inode, whence,
3667 delalloc_cached_state, start,
3668 i_size - 1, &start);
3669 if (!found)
3670 start = i_size;
3671 }
3672
3673 out:
3674 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3675 btrfs_free_path(path);
3676
3677 if (ret < 0)
3678 return ret;
3679
3680 if (whence == SEEK_DATA && start >= i_size)
3681 return -ENXIO;
3682
3683 return min_t(loff_t, start, i_size);
3684 }
3685
3686 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3687 {
3688 struct inode *inode = file->f_mapping->host;
3689
3690 switch (whence) {
3691 default:
3692 return generic_file_llseek(file, offset, whence);
3693 case SEEK_DATA:
3694 case SEEK_HOLE:
3695 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3696 offset = find_desired_extent(file, offset, whence);
3697 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3698 break;
3699 }
3700
3701 if (offset < 0)
3702 return offset;
3703
3704 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3705 }
3706
3707 static int btrfs_file_open(struct inode *inode, struct file *filp)
3708 {
3709 int ret;
3710
3711 filp->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC | FMODE_BUF_WASYNC |
3712 FMODE_CAN_ODIRECT;
3713
3714 ret = fsverity_file_open(inode, filp);
3715 if (ret)
3716 return ret;
3717 return generic_file_open(inode, filp);
3718 }
3719
3720 static int check_direct_read(struct btrfs_fs_info *fs_info,
3721 const struct iov_iter *iter, loff_t offset)
3722 {
3723 int ret;
3724 int i, seg;
3725
3726 ret = check_direct_IO(fs_info, iter, offset);
3727 if (ret < 0)
3728 return ret;
3729
3730 if (!iter_is_iovec(iter))
3731 return 0;
3732
3733 for (seg = 0; seg < iter->nr_segs; seg++) {
3734 for (i = seg + 1; i < iter->nr_segs; i++) {
3735 const struct iovec *iov1 = iter_iov(iter) + seg;
3736 const struct iovec *iov2 = iter_iov(iter) + i;
3737
3738 if (iov1->iov_base == iov2->iov_base)
3739 return -EINVAL;
3740 }
3741 }
3742 return 0;
3743 }
3744
3745 static ssize_t btrfs_direct_read(struct kiocb *iocb, struct iov_iter *to)
3746 {
3747 struct inode *inode = file_inode(iocb->ki_filp);
3748 size_t prev_left = 0;
3749 ssize_t read = 0;
3750 ssize_t ret;
3751
3752 if (fsverity_active(inode))
3753 return 0;
3754
3755 if (check_direct_read(btrfs_sb(inode->i_sb), to, iocb->ki_pos))
3756 return 0;
3757
3758 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3759 again:
3760 /*
3761 * This is similar to what we do for direct IO writes, see the comment
3762 * at btrfs_direct_write(), but we also disable page faults in addition
3763 * to disabling them only at the iov_iter level. This is because when
3764 * reading from a hole or prealloc extent, iomap calls iov_iter_zero(),
3765 * which can still trigger page fault ins despite having set ->nofault
3766 * to true of our 'to' iov_iter.
3767 *
3768 * The difference to direct IO writes is that we deadlock when trying
3769 * to lock the extent range in the inode's tree during he page reads
3770 * triggered by the fault in (while for writes it is due to waiting for
3771 * our own ordered extent). This is because for direct IO reads,
3772 * btrfs_dio_iomap_begin() returns with the extent range locked, which
3773 * is only unlocked in the endio callback (end_bio_extent_readpage()).
3774 */
3775 pagefault_disable();
3776 to->nofault = true;
3777 ret = btrfs_dio_read(iocb, to, read);
3778 to->nofault = false;
3779 pagefault_enable();
3780
3781 /* No increment (+=) because iomap returns a cumulative value. */
3782 if (ret > 0)
3783 read = ret;
3784
3785 if (iov_iter_count(to) > 0 && (ret == -EFAULT || ret > 0)) {
3786 const size_t left = iov_iter_count(to);
3787
3788 if (left == prev_left) {
3789 /*
3790 * We didn't make any progress since the last attempt,
3791 * fallback to a buffered read for the remainder of the
3792 * range. This is just to avoid any possibility of looping
3793 * for too long.
3794 */
3795 ret = read;
3796 } else {
3797 /*
3798 * We made some progress since the last retry or this is
3799 * the first time we are retrying. Fault in as many pages
3800 * as possible and retry.
3801 */
3802 fault_in_iov_iter_writeable(to, left);
3803 prev_left = left;
3804 goto again;
3805 }
3806 }
3807 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3808 return ret < 0 ? ret : read;
3809 }
3810
3811 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3812 {
3813 ssize_t ret = 0;
3814
3815 if (iocb->ki_flags & IOCB_DIRECT) {
3816 ret = btrfs_direct_read(iocb, to);
3817 if (ret < 0 || !iov_iter_count(to) ||
3818 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3819 return ret;
3820 }
3821
3822 return filemap_read(iocb, to, ret);
3823 }
3824
3825 const struct file_operations btrfs_file_operations = {
3826 .llseek = btrfs_file_llseek,
3827 .read_iter = btrfs_file_read_iter,
3828 .splice_read = filemap_splice_read,
3829 .write_iter = btrfs_file_write_iter,
3830 .splice_write = iter_file_splice_write,
3831 .mmap = btrfs_file_mmap,
3832 .open = btrfs_file_open,
3833 .release = btrfs_release_file,
3834 .get_unmapped_area = thp_get_unmapped_area,
3835 .fsync = btrfs_sync_file,
3836 .fallocate = btrfs_fallocate,
3837 .unlocked_ioctl = btrfs_ioctl,
3838 #ifdef CONFIG_COMPAT
3839 .compat_ioctl = btrfs_compat_ioctl,
3840 #endif
3841 .remap_file_range = btrfs_remap_file_range,
3842 };
3843
3844 int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3845 {
3846 int ret;
3847
3848 /*
3849 * So with compression we will find and lock a dirty page and clear the
3850 * first one as dirty, setup an async extent, and immediately return
3851 * with the entire range locked but with nobody actually marked with
3852 * writeback. So we can't just filemap_write_and_wait_range() and
3853 * expect it to work since it will just kick off a thread to do the
3854 * actual work. So we need to call filemap_fdatawrite_range _again_
3855 * since it will wait on the page lock, which won't be unlocked until
3856 * after the pages have been marked as writeback and so we're good to go
3857 * from there. We have to do this otherwise we'll miss the ordered
3858 * extents and that results in badness. Please Josef, do not think you
3859 * know better and pull this out at some point in the future, it is
3860 * right and you are wrong.
3861 */
3862 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3863 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3864 &BTRFS_I(inode)->runtime_flags))
3865 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3866
3867 return ret;
3868 }