]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/btrfs/volumes.c
MAINTAINERS: Fix Hyperv vIOMMU driver file name
[thirdparty/linux.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "ctree.h"
18 #include "extent_map.h"
19 #include "disk-io.h"
20 #include "transaction.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
27 #include "math.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32
33 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
34 [BTRFS_RAID_RAID10] = {
35 .sub_stripes = 2,
36 .dev_stripes = 1,
37 .devs_max = 0, /* 0 == as many as possible */
38 .devs_min = 4,
39 .tolerated_failures = 1,
40 .devs_increment = 2,
41 .ncopies = 2,
42 .nparity = 0,
43 .raid_name = "raid10",
44 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
45 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
46 },
47 [BTRFS_RAID_RAID1] = {
48 .sub_stripes = 1,
49 .dev_stripes = 1,
50 .devs_max = 2,
51 .devs_min = 2,
52 .tolerated_failures = 1,
53 .devs_increment = 2,
54 .ncopies = 2,
55 .nparity = 0,
56 .raid_name = "raid1",
57 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
58 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
59 },
60 [BTRFS_RAID_DUP] = {
61 .sub_stripes = 1,
62 .dev_stripes = 2,
63 .devs_max = 1,
64 .devs_min = 1,
65 .tolerated_failures = 0,
66 .devs_increment = 1,
67 .ncopies = 2,
68 .nparity = 0,
69 .raid_name = "dup",
70 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
71 .mindev_error = 0,
72 },
73 [BTRFS_RAID_RAID0] = {
74 .sub_stripes = 1,
75 .dev_stripes = 1,
76 .devs_max = 0,
77 .devs_min = 2,
78 .tolerated_failures = 0,
79 .devs_increment = 1,
80 .ncopies = 1,
81 .nparity = 0,
82 .raid_name = "raid0",
83 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
84 .mindev_error = 0,
85 },
86 [BTRFS_RAID_SINGLE] = {
87 .sub_stripes = 1,
88 .dev_stripes = 1,
89 .devs_max = 1,
90 .devs_min = 1,
91 .tolerated_failures = 0,
92 .devs_increment = 1,
93 .ncopies = 1,
94 .nparity = 0,
95 .raid_name = "single",
96 .bg_flag = 0,
97 .mindev_error = 0,
98 },
99 [BTRFS_RAID_RAID5] = {
100 .sub_stripes = 1,
101 .dev_stripes = 1,
102 .devs_max = 0,
103 .devs_min = 2,
104 .tolerated_failures = 1,
105 .devs_increment = 1,
106 .ncopies = 1,
107 .nparity = 1,
108 .raid_name = "raid5",
109 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
110 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
111 },
112 [BTRFS_RAID_RAID6] = {
113 .sub_stripes = 1,
114 .dev_stripes = 1,
115 .devs_max = 0,
116 .devs_min = 3,
117 .tolerated_failures = 2,
118 .devs_increment = 1,
119 .ncopies = 1,
120 .nparity = 2,
121 .raid_name = "raid6",
122 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
123 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
124 },
125 };
126
127 const char *btrfs_bg_type_to_raid_name(u64 flags)
128 {
129 const int index = btrfs_bg_flags_to_raid_index(flags);
130
131 if (index >= BTRFS_NR_RAID_TYPES)
132 return NULL;
133
134 return btrfs_raid_array[index].raid_name;
135 }
136
137 /*
138 * Fill @buf with textual description of @bg_flags, no more than @size_buf
139 * bytes including terminating null byte.
140 */
141 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
142 {
143 int i;
144 int ret;
145 char *bp = buf;
146 u64 flags = bg_flags;
147 u32 size_bp = size_buf;
148
149 if (!flags) {
150 strcpy(bp, "NONE");
151 return;
152 }
153
154 #define DESCRIBE_FLAG(flag, desc) \
155 do { \
156 if (flags & (flag)) { \
157 ret = snprintf(bp, size_bp, "%s|", (desc)); \
158 if (ret < 0 || ret >= size_bp) \
159 goto out_overflow; \
160 size_bp -= ret; \
161 bp += ret; \
162 flags &= ~(flag); \
163 } \
164 } while (0)
165
166 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
167 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
168 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
169
170 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
171 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
172 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
173 btrfs_raid_array[i].raid_name);
174 #undef DESCRIBE_FLAG
175
176 if (flags) {
177 ret = snprintf(bp, size_bp, "0x%llx|", flags);
178 size_bp -= ret;
179 }
180
181 if (size_bp < size_buf)
182 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
183
184 /*
185 * The text is trimmed, it's up to the caller to provide sufficiently
186 * large buffer
187 */
188 out_overflow:;
189 }
190
191 static int init_first_rw_device(struct btrfs_trans_handle *trans);
192 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
193 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
194 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
195 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
196 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
197 enum btrfs_map_op op,
198 u64 logical, u64 *length,
199 struct btrfs_bio **bbio_ret,
200 int mirror_num, int need_raid_map);
201
202 /*
203 * Device locking
204 * ==============
205 *
206 * There are several mutexes that protect manipulation of devices and low-level
207 * structures like chunks but not block groups, extents or files
208 *
209 * uuid_mutex (global lock)
210 * ------------------------
211 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
212 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
213 * device) or requested by the device= mount option
214 *
215 * the mutex can be very coarse and can cover long-running operations
216 *
217 * protects: updates to fs_devices counters like missing devices, rw devices,
218 * seeding, structure cloning, opening/closing devices at mount/umount time
219 *
220 * global::fs_devs - add, remove, updates to the global list
221 *
222 * does not protect: manipulation of the fs_devices::devices list!
223 *
224 * btrfs_device::name - renames (write side), read is RCU
225 *
226 * fs_devices::device_list_mutex (per-fs, with RCU)
227 * ------------------------------------------------
228 * protects updates to fs_devices::devices, ie. adding and deleting
229 *
230 * simple list traversal with read-only actions can be done with RCU protection
231 *
232 * may be used to exclude some operations from running concurrently without any
233 * modifications to the list (see write_all_supers)
234 *
235 * balance_mutex
236 * -------------
237 * protects balance structures (status, state) and context accessed from
238 * several places (internally, ioctl)
239 *
240 * chunk_mutex
241 * -----------
242 * protects chunks, adding or removing during allocation, trim or when a new
243 * device is added/removed. Additionally it also protects post_commit_list of
244 * individual devices, since they can be added to the transaction's
245 * post_commit_list only with chunk_mutex held.
246 *
247 * cleaner_mutex
248 * -------------
249 * a big lock that is held by the cleaner thread and prevents running subvolume
250 * cleaning together with relocation or delayed iputs
251 *
252 *
253 * Lock nesting
254 * ============
255 *
256 * uuid_mutex
257 * volume_mutex
258 * device_list_mutex
259 * chunk_mutex
260 * balance_mutex
261 *
262 *
263 * Exclusive operations, BTRFS_FS_EXCL_OP
264 * ======================================
265 *
266 * Maintains the exclusivity of the following operations that apply to the
267 * whole filesystem and cannot run in parallel.
268 *
269 * - Balance (*)
270 * - Device add
271 * - Device remove
272 * - Device replace (*)
273 * - Resize
274 *
275 * The device operations (as above) can be in one of the following states:
276 *
277 * - Running state
278 * - Paused state
279 * - Completed state
280 *
281 * Only device operations marked with (*) can go into the Paused state for the
282 * following reasons:
283 *
284 * - ioctl (only Balance can be Paused through ioctl)
285 * - filesystem remounted as read-only
286 * - filesystem unmounted and mounted as read-only
287 * - system power-cycle and filesystem mounted as read-only
288 * - filesystem or device errors leading to forced read-only
289 *
290 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
291 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
292 * A device operation in Paused or Running state can be canceled or resumed
293 * either by ioctl (Balance only) or when remounted as read-write.
294 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
295 * completed.
296 */
297
298 DEFINE_MUTEX(uuid_mutex);
299 static LIST_HEAD(fs_uuids);
300 struct list_head *btrfs_get_fs_uuids(void)
301 {
302 return &fs_uuids;
303 }
304
305 /*
306 * alloc_fs_devices - allocate struct btrfs_fs_devices
307 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
308 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
309 *
310 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
311 * The returned struct is not linked onto any lists and can be destroyed with
312 * kfree() right away.
313 */
314 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
315 const u8 *metadata_fsid)
316 {
317 struct btrfs_fs_devices *fs_devs;
318
319 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
320 if (!fs_devs)
321 return ERR_PTR(-ENOMEM);
322
323 mutex_init(&fs_devs->device_list_mutex);
324
325 INIT_LIST_HEAD(&fs_devs->devices);
326 INIT_LIST_HEAD(&fs_devs->alloc_list);
327 INIT_LIST_HEAD(&fs_devs->fs_list);
328 if (fsid)
329 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
330
331 if (metadata_fsid)
332 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
333 else if (fsid)
334 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
335
336 return fs_devs;
337 }
338
339 void btrfs_free_device(struct btrfs_device *device)
340 {
341 WARN_ON(!list_empty(&device->post_commit_list));
342 rcu_string_free(device->name);
343 extent_io_tree_release(&device->alloc_state);
344 bio_put(device->flush_bio);
345 kfree(device);
346 }
347
348 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
349 {
350 struct btrfs_device *device;
351 WARN_ON(fs_devices->opened);
352 while (!list_empty(&fs_devices->devices)) {
353 device = list_entry(fs_devices->devices.next,
354 struct btrfs_device, dev_list);
355 list_del(&device->dev_list);
356 btrfs_free_device(device);
357 }
358 kfree(fs_devices);
359 }
360
361 static void btrfs_kobject_uevent(struct block_device *bdev,
362 enum kobject_action action)
363 {
364 int ret;
365
366 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
367 if (ret)
368 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
369 action,
370 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
371 &disk_to_dev(bdev->bd_disk)->kobj);
372 }
373
374 void __exit btrfs_cleanup_fs_uuids(void)
375 {
376 struct btrfs_fs_devices *fs_devices;
377
378 while (!list_empty(&fs_uuids)) {
379 fs_devices = list_entry(fs_uuids.next,
380 struct btrfs_fs_devices, fs_list);
381 list_del(&fs_devices->fs_list);
382 free_fs_devices(fs_devices);
383 }
384 }
385
386 /*
387 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
388 * Returned struct is not linked onto any lists and must be destroyed using
389 * btrfs_free_device.
390 */
391 static struct btrfs_device *__alloc_device(void)
392 {
393 struct btrfs_device *dev;
394
395 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
396 if (!dev)
397 return ERR_PTR(-ENOMEM);
398
399 /*
400 * Preallocate a bio that's always going to be used for flushing device
401 * barriers and matches the device lifespan
402 */
403 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
404 if (!dev->flush_bio) {
405 kfree(dev);
406 return ERR_PTR(-ENOMEM);
407 }
408
409 INIT_LIST_HEAD(&dev->dev_list);
410 INIT_LIST_HEAD(&dev->dev_alloc_list);
411 INIT_LIST_HEAD(&dev->post_commit_list);
412
413 spin_lock_init(&dev->io_lock);
414
415 atomic_set(&dev->reada_in_flight, 0);
416 atomic_set(&dev->dev_stats_ccnt, 0);
417 btrfs_device_data_ordered_init(dev);
418 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
419 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
420 extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
421
422 return dev;
423 }
424
425 static noinline struct btrfs_fs_devices *find_fsid(
426 const u8 *fsid, const u8 *metadata_fsid)
427 {
428 struct btrfs_fs_devices *fs_devices;
429
430 ASSERT(fsid);
431
432 if (metadata_fsid) {
433 /*
434 * Handle scanned device having completed its fsid change but
435 * belonging to a fs_devices that was created by first scanning
436 * a device which didn't have its fsid/metadata_uuid changed
437 * at all and the CHANGING_FSID_V2 flag set.
438 */
439 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
440 if (fs_devices->fsid_change &&
441 memcmp(metadata_fsid, fs_devices->fsid,
442 BTRFS_FSID_SIZE) == 0 &&
443 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
444 BTRFS_FSID_SIZE) == 0) {
445 return fs_devices;
446 }
447 }
448 /*
449 * Handle scanned device having completed its fsid change but
450 * belonging to a fs_devices that was created by a device that
451 * has an outdated pair of fsid/metadata_uuid and
452 * CHANGING_FSID_V2 flag set.
453 */
454 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
455 if (fs_devices->fsid_change &&
456 memcmp(fs_devices->metadata_uuid,
457 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
458 memcmp(metadata_fsid, fs_devices->metadata_uuid,
459 BTRFS_FSID_SIZE) == 0) {
460 return fs_devices;
461 }
462 }
463 }
464
465 /* Handle non-split brain cases */
466 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
467 if (metadata_fsid) {
468 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
469 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
470 BTRFS_FSID_SIZE) == 0)
471 return fs_devices;
472 } else {
473 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
474 return fs_devices;
475 }
476 }
477 return NULL;
478 }
479
480 static int
481 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
482 int flush, struct block_device **bdev,
483 struct buffer_head **bh)
484 {
485 int ret;
486
487 *bdev = blkdev_get_by_path(device_path, flags, holder);
488
489 if (IS_ERR(*bdev)) {
490 ret = PTR_ERR(*bdev);
491 goto error;
492 }
493
494 if (flush)
495 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
496 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
497 if (ret) {
498 blkdev_put(*bdev, flags);
499 goto error;
500 }
501 invalidate_bdev(*bdev);
502 *bh = btrfs_read_dev_super(*bdev);
503 if (IS_ERR(*bh)) {
504 ret = PTR_ERR(*bh);
505 blkdev_put(*bdev, flags);
506 goto error;
507 }
508
509 return 0;
510
511 error:
512 *bdev = NULL;
513 *bh = NULL;
514 return ret;
515 }
516
517 static void requeue_list(struct btrfs_pending_bios *pending_bios,
518 struct bio *head, struct bio *tail)
519 {
520
521 struct bio *old_head;
522
523 old_head = pending_bios->head;
524 pending_bios->head = head;
525 if (pending_bios->tail)
526 tail->bi_next = old_head;
527 else
528 pending_bios->tail = tail;
529 }
530
531 /*
532 * we try to collect pending bios for a device so we don't get a large
533 * number of procs sending bios down to the same device. This greatly
534 * improves the schedulers ability to collect and merge the bios.
535 *
536 * But, it also turns into a long list of bios to process and that is sure
537 * to eventually make the worker thread block. The solution here is to
538 * make some progress and then put this work struct back at the end of
539 * the list if the block device is congested. This way, multiple devices
540 * can make progress from a single worker thread.
541 */
542 static noinline void run_scheduled_bios(struct btrfs_device *device)
543 {
544 struct btrfs_fs_info *fs_info = device->fs_info;
545 struct bio *pending;
546 struct backing_dev_info *bdi;
547 struct btrfs_pending_bios *pending_bios;
548 struct bio *tail;
549 struct bio *cur;
550 int again = 0;
551 unsigned long num_run;
552 unsigned long batch_run = 0;
553 unsigned long last_waited = 0;
554 int force_reg = 0;
555 int sync_pending = 0;
556 struct blk_plug plug;
557
558 /*
559 * this function runs all the bios we've collected for
560 * a particular device. We don't want to wander off to
561 * another device without first sending all of these down.
562 * So, setup a plug here and finish it off before we return
563 */
564 blk_start_plug(&plug);
565
566 bdi = device->bdev->bd_bdi;
567
568 loop:
569 spin_lock(&device->io_lock);
570
571 loop_lock:
572 num_run = 0;
573
574 /* take all the bios off the list at once and process them
575 * later on (without the lock held). But, remember the
576 * tail and other pointers so the bios can be properly reinserted
577 * into the list if we hit congestion
578 */
579 if (!force_reg && device->pending_sync_bios.head) {
580 pending_bios = &device->pending_sync_bios;
581 force_reg = 1;
582 } else {
583 pending_bios = &device->pending_bios;
584 force_reg = 0;
585 }
586
587 pending = pending_bios->head;
588 tail = pending_bios->tail;
589 WARN_ON(pending && !tail);
590
591 /*
592 * if pending was null this time around, no bios need processing
593 * at all and we can stop. Otherwise it'll loop back up again
594 * and do an additional check so no bios are missed.
595 *
596 * device->running_pending is used to synchronize with the
597 * schedule_bio code.
598 */
599 if (device->pending_sync_bios.head == NULL &&
600 device->pending_bios.head == NULL) {
601 again = 0;
602 device->running_pending = 0;
603 } else {
604 again = 1;
605 device->running_pending = 1;
606 }
607
608 pending_bios->head = NULL;
609 pending_bios->tail = NULL;
610
611 spin_unlock(&device->io_lock);
612
613 while (pending) {
614
615 rmb();
616 /* we want to work on both lists, but do more bios on the
617 * sync list than the regular list
618 */
619 if ((num_run > 32 &&
620 pending_bios != &device->pending_sync_bios &&
621 device->pending_sync_bios.head) ||
622 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
623 device->pending_bios.head)) {
624 spin_lock(&device->io_lock);
625 requeue_list(pending_bios, pending, tail);
626 goto loop_lock;
627 }
628
629 cur = pending;
630 pending = pending->bi_next;
631 cur->bi_next = NULL;
632
633 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
634
635 /*
636 * if we're doing the sync list, record that our
637 * plug has some sync requests on it
638 *
639 * If we're doing the regular list and there are
640 * sync requests sitting around, unplug before
641 * we add more
642 */
643 if (pending_bios == &device->pending_sync_bios) {
644 sync_pending = 1;
645 } else if (sync_pending) {
646 blk_finish_plug(&plug);
647 blk_start_plug(&plug);
648 sync_pending = 0;
649 }
650
651 btrfsic_submit_bio(cur);
652 num_run++;
653 batch_run++;
654
655 cond_resched();
656
657 /*
658 * we made progress, there is more work to do and the bdi
659 * is now congested. Back off and let other work structs
660 * run instead
661 */
662 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
663 fs_info->fs_devices->open_devices > 1) {
664 struct io_context *ioc;
665
666 ioc = current->io_context;
667
668 /*
669 * the main goal here is that we don't want to
670 * block if we're going to be able to submit
671 * more requests without blocking.
672 *
673 * This code does two great things, it pokes into
674 * the elevator code from a filesystem _and_
675 * it makes assumptions about how batching works.
676 */
677 if (ioc && ioc->nr_batch_requests > 0 &&
678 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
679 (last_waited == 0 ||
680 ioc->last_waited == last_waited)) {
681 /*
682 * we want to go through our batch of
683 * requests and stop. So, we copy out
684 * the ioc->last_waited time and test
685 * against it before looping
686 */
687 last_waited = ioc->last_waited;
688 cond_resched();
689 continue;
690 }
691 spin_lock(&device->io_lock);
692 requeue_list(pending_bios, pending, tail);
693 device->running_pending = 1;
694
695 spin_unlock(&device->io_lock);
696 btrfs_queue_work(fs_info->submit_workers,
697 &device->work);
698 goto done;
699 }
700 }
701
702 cond_resched();
703 if (again)
704 goto loop;
705
706 spin_lock(&device->io_lock);
707 if (device->pending_bios.head || device->pending_sync_bios.head)
708 goto loop_lock;
709 spin_unlock(&device->io_lock);
710
711 done:
712 blk_finish_plug(&plug);
713 }
714
715 static void pending_bios_fn(struct btrfs_work *work)
716 {
717 struct btrfs_device *device;
718
719 device = container_of(work, struct btrfs_device, work);
720 run_scheduled_bios(device);
721 }
722
723 static bool device_path_matched(const char *path, struct btrfs_device *device)
724 {
725 int found;
726
727 rcu_read_lock();
728 found = strcmp(rcu_str_deref(device->name), path);
729 rcu_read_unlock();
730
731 return found == 0;
732 }
733
734 /*
735 * Search and remove all stale (devices which are not mounted) devices.
736 * When both inputs are NULL, it will search and release all stale devices.
737 * path: Optional. When provided will it release all unmounted devices
738 * matching this path only.
739 * skip_dev: Optional. Will skip this device when searching for the stale
740 * devices.
741 * Return: 0 for success or if @path is NULL.
742 * -EBUSY if @path is a mounted device.
743 * -ENOENT if @path does not match any device in the list.
744 */
745 static int btrfs_free_stale_devices(const char *path,
746 struct btrfs_device *skip_device)
747 {
748 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
749 struct btrfs_device *device, *tmp_device;
750 int ret = 0;
751
752 if (path)
753 ret = -ENOENT;
754
755 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
756
757 mutex_lock(&fs_devices->device_list_mutex);
758 list_for_each_entry_safe(device, tmp_device,
759 &fs_devices->devices, dev_list) {
760 if (skip_device && skip_device == device)
761 continue;
762 if (path && !device->name)
763 continue;
764 if (path && !device_path_matched(path, device))
765 continue;
766 if (fs_devices->opened) {
767 /* for an already deleted device return 0 */
768 if (path && ret != 0)
769 ret = -EBUSY;
770 break;
771 }
772
773 /* delete the stale device */
774 fs_devices->num_devices--;
775 list_del(&device->dev_list);
776 btrfs_free_device(device);
777
778 ret = 0;
779 if (fs_devices->num_devices == 0)
780 break;
781 }
782 mutex_unlock(&fs_devices->device_list_mutex);
783
784 if (fs_devices->num_devices == 0) {
785 btrfs_sysfs_remove_fsid(fs_devices);
786 list_del(&fs_devices->fs_list);
787 free_fs_devices(fs_devices);
788 }
789 }
790
791 return ret;
792 }
793
794 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
795 struct btrfs_device *device, fmode_t flags,
796 void *holder)
797 {
798 struct request_queue *q;
799 struct block_device *bdev;
800 struct buffer_head *bh;
801 struct btrfs_super_block *disk_super;
802 u64 devid;
803 int ret;
804
805 if (device->bdev)
806 return -EINVAL;
807 if (!device->name)
808 return -EINVAL;
809
810 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
811 &bdev, &bh);
812 if (ret)
813 return ret;
814
815 disk_super = (struct btrfs_super_block *)bh->b_data;
816 devid = btrfs_stack_device_id(&disk_super->dev_item);
817 if (devid != device->devid)
818 goto error_brelse;
819
820 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
821 goto error_brelse;
822
823 device->generation = btrfs_super_generation(disk_super);
824
825 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
826 if (btrfs_super_incompat_flags(disk_super) &
827 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
828 pr_err(
829 "BTRFS: Invalid seeding and uuid-changed device detected\n");
830 goto error_brelse;
831 }
832
833 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
834 fs_devices->seeding = 1;
835 } else {
836 if (bdev_read_only(bdev))
837 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
838 else
839 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
840 }
841
842 q = bdev_get_queue(bdev);
843 if (!blk_queue_nonrot(q))
844 fs_devices->rotating = 1;
845
846 device->bdev = bdev;
847 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
848 device->mode = flags;
849
850 fs_devices->open_devices++;
851 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
852 device->devid != BTRFS_DEV_REPLACE_DEVID) {
853 fs_devices->rw_devices++;
854 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
855 }
856 brelse(bh);
857
858 return 0;
859
860 error_brelse:
861 brelse(bh);
862 blkdev_put(bdev, flags);
863
864 return -EINVAL;
865 }
866
867 /*
868 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
869 * being created with a disk that has already completed its fsid change.
870 */
871 static struct btrfs_fs_devices *find_fsid_inprogress(
872 struct btrfs_super_block *disk_super)
873 {
874 struct btrfs_fs_devices *fs_devices;
875
876 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
877 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
878 BTRFS_FSID_SIZE) != 0 &&
879 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
880 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
881 return fs_devices;
882 }
883 }
884
885 return NULL;
886 }
887
888
889 static struct btrfs_fs_devices *find_fsid_changed(
890 struct btrfs_super_block *disk_super)
891 {
892 struct btrfs_fs_devices *fs_devices;
893
894 /*
895 * Handles the case where scanned device is part of an fs that had
896 * multiple successful changes of FSID but curently device didn't
897 * observe it. Meaning our fsid will be different than theirs.
898 */
899 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
900 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
901 BTRFS_FSID_SIZE) != 0 &&
902 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
903 BTRFS_FSID_SIZE) == 0 &&
904 memcmp(fs_devices->fsid, disk_super->fsid,
905 BTRFS_FSID_SIZE) != 0) {
906 return fs_devices;
907 }
908 }
909
910 return NULL;
911 }
912 /*
913 * Add new device to list of registered devices
914 *
915 * Returns:
916 * device pointer which was just added or updated when successful
917 * error pointer when failed
918 */
919 static noinline struct btrfs_device *device_list_add(const char *path,
920 struct btrfs_super_block *disk_super,
921 bool *new_device_added)
922 {
923 struct btrfs_device *device;
924 struct btrfs_fs_devices *fs_devices = NULL;
925 struct rcu_string *name;
926 u64 found_transid = btrfs_super_generation(disk_super);
927 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
928 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
929 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
930 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
931 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
932
933 if (fsid_change_in_progress) {
934 if (!has_metadata_uuid) {
935 /*
936 * When we have an image which has CHANGING_FSID_V2 set
937 * it might belong to either a filesystem which has
938 * disks with completed fsid change or it might belong
939 * to fs with no UUID changes in effect, handle both.
940 */
941 fs_devices = find_fsid_inprogress(disk_super);
942 if (!fs_devices)
943 fs_devices = find_fsid(disk_super->fsid, NULL);
944 } else {
945 fs_devices = find_fsid_changed(disk_super);
946 }
947 } else if (has_metadata_uuid) {
948 fs_devices = find_fsid(disk_super->fsid,
949 disk_super->metadata_uuid);
950 } else {
951 fs_devices = find_fsid(disk_super->fsid, NULL);
952 }
953
954
955 if (!fs_devices) {
956 if (has_metadata_uuid)
957 fs_devices = alloc_fs_devices(disk_super->fsid,
958 disk_super->metadata_uuid);
959 else
960 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
961
962 if (IS_ERR(fs_devices))
963 return ERR_CAST(fs_devices);
964
965 fs_devices->fsid_change = fsid_change_in_progress;
966
967 mutex_lock(&fs_devices->device_list_mutex);
968 list_add(&fs_devices->fs_list, &fs_uuids);
969
970 device = NULL;
971 } else {
972 mutex_lock(&fs_devices->device_list_mutex);
973 device = btrfs_find_device(fs_devices, devid,
974 disk_super->dev_item.uuid, NULL, false);
975
976 /*
977 * If this disk has been pulled into an fs devices created by
978 * a device which had the CHANGING_FSID_V2 flag then replace the
979 * metadata_uuid/fsid values of the fs_devices.
980 */
981 if (has_metadata_uuid && fs_devices->fsid_change &&
982 found_transid > fs_devices->latest_generation) {
983 memcpy(fs_devices->fsid, disk_super->fsid,
984 BTRFS_FSID_SIZE);
985 memcpy(fs_devices->metadata_uuid,
986 disk_super->metadata_uuid, BTRFS_FSID_SIZE);
987
988 fs_devices->fsid_change = false;
989 }
990 }
991
992 if (!device) {
993 if (fs_devices->opened) {
994 mutex_unlock(&fs_devices->device_list_mutex);
995 return ERR_PTR(-EBUSY);
996 }
997
998 device = btrfs_alloc_device(NULL, &devid,
999 disk_super->dev_item.uuid);
1000 if (IS_ERR(device)) {
1001 mutex_unlock(&fs_devices->device_list_mutex);
1002 /* we can safely leave the fs_devices entry around */
1003 return device;
1004 }
1005
1006 name = rcu_string_strdup(path, GFP_NOFS);
1007 if (!name) {
1008 btrfs_free_device(device);
1009 mutex_unlock(&fs_devices->device_list_mutex);
1010 return ERR_PTR(-ENOMEM);
1011 }
1012 rcu_assign_pointer(device->name, name);
1013
1014 list_add_rcu(&device->dev_list, &fs_devices->devices);
1015 fs_devices->num_devices++;
1016
1017 device->fs_devices = fs_devices;
1018 *new_device_added = true;
1019
1020 if (disk_super->label[0])
1021 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
1022 disk_super->label, devid, found_transid, path);
1023 else
1024 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
1025 disk_super->fsid, devid, found_transid, path);
1026
1027 } else if (!device->name || strcmp(device->name->str, path)) {
1028 /*
1029 * When FS is already mounted.
1030 * 1. If you are here and if the device->name is NULL that
1031 * means this device was missing at time of FS mount.
1032 * 2. If you are here and if the device->name is different
1033 * from 'path' that means either
1034 * a. The same device disappeared and reappeared with
1035 * different name. or
1036 * b. The missing-disk-which-was-replaced, has
1037 * reappeared now.
1038 *
1039 * We must allow 1 and 2a above. But 2b would be a spurious
1040 * and unintentional.
1041 *
1042 * Further in case of 1 and 2a above, the disk at 'path'
1043 * would have missed some transaction when it was away and
1044 * in case of 2a the stale bdev has to be updated as well.
1045 * 2b must not be allowed at all time.
1046 */
1047
1048 /*
1049 * For now, we do allow update to btrfs_fs_device through the
1050 * btrfs dev scan cli after FS has been mounted. We're still
1051 * tracking a problem where systems fail mount by subvolume id
1052 * when we reject replacement on a mounted FS.
1053 */
1054 if (!fs_devices->opened && found_transid < device->generation) {
1055 /*
1056 * That is if the FS is _not_ mounted and if you
1057 * are here, that means there is more than one
1058 * disk with same uuid and devid.We keep the one
1059 * with larger generation number or the last-in if
1060 * generation are equal.
1061 */
1062 mutex_unlock(&fs_devices->device_list_mutex);
1063 return ERR_PTR(-EEXIST);
1064 }
1065
1066 /*
1067 * We are going to replace the device path for a given devid,
1068 * make sure it's the same device if the device is mounted
1069 */
1070 if (device->bdev) {
1071 struct block_device *path_bdev;
1072
1073 path_bdev = lookup_bdev(path);
1074 if (IS_ERR(path_bdev)) {
1075 mutex_unlock(&fs_devices->device_list_mutex);
1076 return ERR_CAST(path_bdev);
1077 }
1078
1079 if (device->bdev != path_bdev) {
1080 bdput(path_bdev);
1081 mutex_unlock(&fs_devices->device_list_mutex);
1082 btrfs_warn_in_rcu(device->fs_info,
1083 "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
1084 disk_super->fsid, devid,
1085 rcu_str_deref(device->name), path);
1086 return ERR_PTR(-EEXIST);
1087 }
1088 bdput(path_bdev);
1089 btrfs_info_in_rcu(device->fs_info,
1090 "device fsid %pU devid %llu moved old:%s new:%s",
1091 disk_super->fsid, devid,
1092 rcu_str_deref(device->name), path);
1093 }
1094
1095 name = rcu_string_strdup(path, GFP_NOFS);
1096 if (!name) {
1097 mutex_unlock(&fs_devices->device_list_mutex);
1098 return ERR_PTR(-ENOMEM);
1099 }
1100 rcu_string_free(device->name);
1101 rcu_assign_pointer(device->name, name);
1102 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1103 fs_devices->missing_devices--;
1104 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1105 }
1106 }
1107
1108 /*
1109 * Unmount does not free the btrfs_device struct but would zero
1110 * generation along with most of the other members. So just update
1111 * it back. We need it to pick the disk with largest generation
1112 * (as above).
1113 */
1114 if (!fs_devices->opened) {
1115 device->generation = found_transid;
1116 fs_devices->latest_generation = max_t(u64, found_transid,
1117 fs_devices->latest_generation);
1118 }
1119
1120 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1121
1122 mutex_unlock(&fs_devices->device_list_mutex);
1123 return device;
1124 }
1125
1126 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1127 {
1128 struct btrfs_fs_devices *fs_devices;
1129 struct btrfs_device *device;
1130 struct btrfs_device *orig_dev;
1131
1132 fs_devices = alloc_fs_devices(orig->fsid, NULL);
1133 if (IS_ERR(fs_devices))
1134 return fs_devices;
1135
1136 mutex_lock(&orig->device_list_mutex);
1137 fs_devices->total_devices = orig->total_devices;
1138
1139 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1140 struct rcu_string *name;
1141
1142 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1143 orig_dev->uuid);
1144 if (IS_ERR(device))
1145 goto error;
1146
1147 /*
1148 * This is ok to do without rcu read locked because we hold the
1149 * uuid mutex so nothing we touch in here is going to disappear.
1150 */
1151 if (orig_dev->name) {
1152 name = rcu_string_strdup(orig_dev->name->str,
1153 GFP_KERNEL);
1154 if (!name) {
1155 btrfs_free_device(device);
1156 goto error;
1157 }
1158 rcu_assign_pointer(device->name, name);
1159 }
1160
1161 list_add(&device->dev_list, &fs_devices->devices);
1162 device->fs_devices = fs_devices;
1163 fs_devices->num_devices++;
1164 }
1165 mutex_unlock(&orig->device_list_mutex);
1166 return fs_devices;
1167 error:
1168 mutex_unlock(&orig->device_list_mutex);
1169 free_fs_devices(fs_devices);
1170 return ERR_PTR(-ENOMEM);
1171 }
1172
1173 /*
1174 * After we have read the system tree and know devids belonging to
1175 * this filesystem, remove the device which does not belong there.
1176 */
1177 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1178 {
1179 struct btrfs_device *device, *next;
1180 struct btrfs_device *latest_dev = NULL;
1181
1182 mutex_lock(&uuid_mutex);
1183 again:
1184 /* This is the initialized path, it is safe to release the devices. */
1185 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1186 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1187 &device->dev_state)) {
1188 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1189 &device->dev_state) &&
1190 (!latest_dev ||
1191 device->generation > latest_dev->generation)) {
1192 latest_dev = device;
1193 }
1194 continue;
1195 }
1196
1197 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1198 /*
1199 * In the first step, keep the device which has
1200 * the correct fsid and the devid that is used
1201 * for the dev_replace procedure.
1202 * In the second step, the dev_replace state is
1203 * read from the device tree and it is known
1204 * whether the procedure is really active or
1205 * not, which means whether this device is
1206 * used or whether it should be removed.
1207 */
1208 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1209 &device->dev_state)) {
1210 continue;
1211 }
1212 }
1213 if (device->bdev) {
1214 blkdev_put(device->bdev, device->mode);
1215 device->bdev = NULL;
1216 fs_devices->open_devices--;
1217 }
1218 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1219 list_del_init(&device->dev_alloc_list);
1220 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1221 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1222 &device->dev_state))
1223 fs_devices->rw_devices--;
1224 }
1225 list_del_init(&device->dev_list);
1226 fs_devices->num_devices--;
1227 btrfs_free_device(device);
1228 }
1229
1230 if (fs_devices->seed) {
1231 fs_devices = fs_devices->seed;
1232 goto again;
1233 }
1234
1235 fs_devices->latest_bdev = latest_dev->bdev;
1236
1237 mutex_unlock(&uuid_mutex);
1238 }
1239
1240 static void btrfs_close_bdev(struct btrfs_device *device)
1241 {
1242 if (!device->bdev)
1243 return;
1244
1245 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1246 sync_blockdev(device->bdev);
1247 invalidate_bdev(device->bdev);
1248 }
1249
1250 blkdev_put(device->bdev, device->mode);
1251 }
1252
1253 static void btrfs_close_one_device(struct btrfs_device *device)
1254 {
1255 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1256 struct btrfs_device *new_device;
1257 struct rcu_string *name;
1258
1259 if (device->bdev)
1260 fs_devices->open_devices--;
1261
1262 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1263 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1264 list_del_init(&device->dev_alloc_list);
1265 fs_devices->rw_devices--;
1266 }
1267
1268 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1269 fs_devices->missing_devices--;
1270
1271 btrfs_close_bdev(device);
1272
1273 new_device = btrfs_alloc_device(NULL, &device->devid,
1274 device->uuid);
1275 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1276
1277 /* Safe because we are under uuid_mutex */
1278 if (device->name) {
1279 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1280 BUG_ON(!name); /* -ENOMEM */
1281 rcu_assign_pointer(new_device->name, name);
1282 }
1283
1284 list_replace_rcu(&device->dev_list, &new_device->dev_list);
1285 new_device->fs_devices = device->fs_devices;
1286
1287 synchronize_rcu();
1288 btrfs_free_device(device);
1289 }
1290
1291 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1292 {
1293 struct btrfs_device *device, *tmp;
1294
1295 if (--fs_devices->opened > 0)
1296 return 0;
1297
1298 mutex_lock(&fs_devices->device_list_mutex);
1299 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1300 btrfs_close_one_device(device);
1301 }
1302 mutex_unlock(&fs_devices->device_list_mutex);
1303
1304 WARN_ON(fs_devices->open_devices);
1305 WARN_ON(fs_devices->rw_devices);
1306 fs_devices->opened = 0;
1307 fs_devices->seeding = 0;
1308
1309 return 0;
1310 }
1311
1312 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1313 {
1314 struct btrfs_fs_devices *seed_devices = NULL;
1315 int ret;
1316
1317 mutex_lock(&uuid_mutex);
1318 ret = close_fs_devices(fs_devices);
1319 if (!fs_devices->opened) {
1320 seed_devices = fs_devices->seed;
1321 fs_devices->seed = NULL;
1322 }
1323 mutex_unlock(&uuid_mutex);
1324
1325 while (seed_devices) {
1326 fs_devices = seed_devices;
1327 seed_devices = fs_devices->seed;
1328 close_fs_devices(fs_devices);
1329 free_fs_devices(fs_devices);
1330 }
1331 return ret;
1332 }
1333
1334 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1335 fmode_t flags, void *holder)
1336 {
1337 struct btrfs_device *device;
1338 struct btrfs_device *latest_dev = NULL;
1339 int ret = 0;
1340
1341 flags |= FMODE_EXCL;
1342
1343 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1344 /* Just open everything we can; ignore failures here */
1345 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1346 continue;
1347
1348 if (!latest_dev ||
1349 device->generation > latest_dev->generation)
1350 latest_dev = device;
1351 }
1352 if (fs_devices->open_devices == 0) {
1353 ret = -EINVAL;
1354 goto out;
1355 }
1356 fs_devices->opened = 1;
1357 fs_devices->latest_bdev = latest_dev->bdev;
1358 fs_devices->total_rw_bytes = 0;
1359 out:
1360 return ret;
1361 }
1362
1363 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1364 {
1365 struct btrfs_device *dev1, *dev2;
1366
1367 dev1 = list_entry(a, struct btrfs_device, dev_list);
1368 dev2 = list_entry(b, struct btrfs_device, dev_list);
1369
1370 if (dev1->devid < dev2->devid)
1371 return -1;
1372 else if (dev1->devid > dev2->devid)
1373 return 1;
1374 return 0;
1375 }
1376
1377 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1378 fmode_t flags, void *holder)
1379 {
1380 int ret;
1381
1382 lockdep_assert_held(&uuid_mutex);
1383
1384 mutex_lock(&fs_devices->device_list_mutex);
1385 if (fs_devices->opened) {
1386 fs_devices->opened++;
1387 ret = 0;
1388 } else {
1389 list_sort(NULL, &fs_devices->devices, devid_cmp);
1390 ret = open_fs_devices(fs_devices, flags, holder);
1391 }
1392 mutex_unlock(&fs_devices->device_list_mutex);
1393
1394 return ret;
1395 }
1396
1397 static void btrfs_release_disk_super(struct page *page)
1398 {
1399 kunmap(page);
1400 put_page(page);
1401 }
1402
1403 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1404 struct page **page,
1405 struct btrfs_super_block **disk_super)
1406 {
1407 void *p;
1408 pgoff_t index;
1409
1410 /* make sure our super fits in the device */
1411 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1412 return 1;
1413
1414 /* make sure our super fits in the page */
1415 if (sizeof(**disk_super) > PAGE_SIZE)
1416 return 1;
1417
1418 /* make sure our super doesn't straddle pages on disk */
1419 index = bytenr >> PAGE_SHIFT;
1420 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1421 return 1;
1422
1423 /* pull in the page with our super */
1424 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1425 index, GFP_KERNEL);
1426
1427 if (IS_ERR_OR_NULL(*page))
1428 return 1;
1429
1430 p = kmap(*page);
1431
1432 /* align our pointer to the offset of the super block */
1433 *disk_super = p + offset_in_page(bytenr);
1434
1435 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1436 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1437 btrfs_release_disk_super(*page);
1438 return 1;
1439 }
1440
1441 if ((*disk_super)->label[0] &&
1442 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1443 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1444
1445 return 0;
1446 }
1447
1448 int btrfs_forget_devices(const char *path)
1449 {
1450 int ret;
1451
1452 mutex_lock(&uuid_mutex);
1453 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1454 mutex_unlock(&uuid_mutex);
1455
1456 return ret;
1457 }
1458
1459 /*
1460 * Look for a btrfs signature on a device. This may be called out of the mount path
1461 * and we are not allowed to call set_blocksize during the scan. The superblock
1462 * is read via pagecache
1463 */
1464 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1465 void *holder)
1466 {
1467 struct btrfs_super_block *disk_super;
1468 bool new_device_added = false;
1469 struct btrfs_device *device = NULL;
1470 struct block_device *bdev;
1471 struct page *page;
1472 u64 bytenr;
1473
1474 lockdep_assert_held(&uuid_mutex);
1475
1476 /*
1477 * we would like to check all the supers, but that would make
1478 * a btrfs mount succeed after a mkfs from a different FS.
1479 * So, we need to add a special mount option to scan for
1480 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1481 */
1482 bytenr = btrfs_sb_offset(0);
1483 flags |= FMODE_EXCL;
1484
1485 bdev = blkdev_get_by_path(path, flags, holder);
1486 if (IS_ERR(bdev))
1487 return ERR_CAST(bdev);
1488
1489 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1490 device = ERR_PTR(-EINVAL);
1491 goto error_bdev_put;
1492 }
1493
1494 device = device_list_add(path, disk_super, &new_device_added);
1495 if (!IS_ERR(device)) {
1496 if (new_device_added)
1497 btrfs_free_stale_devices(path, device);
1498 }
1499
1500 btrfs_release_disk_super(page);
1501
1502 error_bdev_put:
1503 blkdev_put(bdev, flags);
1504
1505 return device;
1506 }
1507
1508 /*
1509 * Try to find a chunk that intersects [start, start + len] range and when one
1510 * such is found, record the end of it in *start
1511 */
1512 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1513 u64 len)
1514 {
1515 u64 physical_start, physical_end;
1516
1517 lockdep_assert_held(&device->fs_info->chunk_mutex);
1518
1519 if (!find_first_extent_bit(&device->alloc_state, *start,
1520 &physical_start, &physical_end,
1521 CHUNK_ALLOCATED, NULL)) {
1522
1523 if (in_range(physical_start, *start, len) ||
1524 in_range(*start, physical_start,
1525 physical_end - physical_start)) {
1526 *start = physical_end + 1;
1527 return true;
1528 }
1529 }
1530 return false;
1531 }
1532
1533
1534 /*
1535 * find_free_dev_extent_start - find free space in the specified device
1536 * @device: the device which we search the free space in
1537 * @num_bytes: the size of the free space that we need
1538 * @search_start: the position from which to begin the search
1539 * @start: store the start of the free space.
1540 * @len: the size of the free space. that we find, or the size
1541 * of the max free space if we don't find suitable free space
1542 *
1543 * this uses a pretty simple search, the expectation is that it is
1544 * called very infrequently and that a given device has a small number
1545 * of extents
1546 *
1547 * @start is used to store the start of the free space if we find. But if we
1548 * don't find suitable free space, it will be used to store the start position
1549 * of the max free space.
1550 *
1551 * @len is used to store the size of the free space that we find.
1552 * But if we don't find suitable free space, it is used to store the size of
1553 * the max free space.
1554 */
1555 int find_free_dev_extent_start(struct btrfs_device *device, u64 num_bytes,
1556 u64 search_start, u64 *start, u64 *len)
1557 {
1558 struct btrfs_fs_info *fs_info = device->fs_info;
1559 struct btrfs_root *root = fs_info->dev_root;
1560 struct btrfs_key key;
1561 struct btrfs_dev_extent *dev_extent;
1562 struct btrfs_path *path;
1563 u64 hole_size;
1564 u64 max_hole_start;
1565 u64 max_hole_size;
1566 u64 extent_end;
1567 u64 search_end = device->total_bytes;
1568 int ret;
1569 int slot;
1570 struct extent_buffer *l;
1571
1572 /*
1573 * We don't want to overwrite the superblock on the drive nor any area
1574 * used by the boot loader (grub for example), so we make sure to start
1575 * at an offset of at least 1MB.
1576 */
1577 search_start = max_t(u64, search_start, SZ_1M);
1578
1579 path = btrfs_alloc_path();
1580 if (!path)
1581 return -ENOMEM;
1582
1583 max_hole_start = search_start;
1584 max_hole_size = 0;
1585
1586 again:
1587 if (search_start >= search_end ||
1588 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1589 ret = -ENOSPC;
1590 goto out;
1591 }
1592
1593 path->reada = READA_FORWARD;
1594 path->search_commit_root = 1;
1595 path->skip_locking = 1;
1596
1597 key.objectid = device->devid;
1598 key.offset = search_start;
1599 key.type = BTRFS_DEV_EXTENT_KEY;
1600
1601 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1602 if (ret < 0)
1603 goto out;
1604 if (ret > 0) {
1605 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1606 if (ret < 0)
1607 goto out;
1608 }
1609
1610 while (1) {
1611 l = path->nodes[0];
1612 slot = path->slots[0];
1613 if (slot >= btrfs_header_nritems(l)) {
1614 ret = btrfs_next_leaf(root, path);
1615 if (ret == 0)
1616 continue;
1617 if (ret < 0)
1618 goto out;
1619
1620 break;
1621 }
1622 btrfs_item_key_to_cpu(l, &key, slot);
1623
1624 if (key.objectid < device->devid)
1625 goto next;
1626
1627 if (key.objectid > device->devid)
1628 break;
1629
1630 if (key.type != BTRFS_DEV_EXTENT_KEY)
1631 goto next;
1632
1633 if (key.offset > search_start) {
1634 hole_size = key.offset - search_start;
1635
1636 /*
1637 * Have to check before we set max_hole_start, otherwise
1638 * we could end up sending back this offset anyway.
1639 */
1640 if (contains_pending_extent(device, &search_start,
1641 hole_size)) {
1642 if (key.offset >= search_start)
1643 hole_size = key.offset - search_start;
1644 else
1645 hole_size = 0;
1646 }
1647
1648 if (hole_size > max_hole_size) {
1649 max_hole_start = search_start;
1650 max_hole_size = hole_size;
1651 }
1652
1653 /*
1654 * If this free space is greater than which we need,
1655 * it must be the max free space that we have found
1656 * until now, so max_hole_start must point to the start
1657 * of this free space and the length of this free space
1658 * is stored in max_hole_size. Thus, we return
1659 * max_hole_start and max_hole_size and go back to the
1660 * caller.
1661 */
1662 if (hole_size >= num_bytes) {
1663 ret = 0;
1664 goto out;
1665 }
1666 }
1667
1668 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1669 extent_end = key.offset + btrfs_dev_extent_length(l,
1670 dev_extent);
1671 if (extent_end > search_start)
1672 search_start = extent_end;
1673 next:
1674 path->slots[0]++;
1675 cond_resched();
1676 }
1677
1678 /*
1679 * At this point, search_start should be the end of
1680 * allocated dev extents, and when shrinking the device,
1681 * search_end may be smaller than search_start.
1682 */
1683 if (search_end > search_start) {
1684 hole_size = search_end - search_start;
1685
1686 if (contains_pending_extent(device, &search_start, hole_size)) {
1687 btrfs_release_path(path);
1688 goto again;
1689 }
1690
1691 if (hole_size > max_hole_size) {
1692 max_hole_start = search_start;
1693 max_hole_size = hole_size;
1694 }
1695 }
1696
1697 /* See above. */
1698 if (max_hole_size < num_bytes)
1699 ret = -ENOSPC;
1700 else
1701 ret = 0;
1702
1703 out:
1704 btrfs_free_path(path);
1705 *start = max_hole_start;
1706 if (len)
1707 *len = max_hole_size;
1708 return ret;
1709 }
1710
1711 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1712 u64 *start, u64 *len)
1713 {
1714 /* FIXME use last free of some kind */
1715 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1716 }
1717
1718 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1719 struct btrfs_device *device,
1720 u64 start, u64 *dev_extent_len)
1721 {
1722 struct btrfs_fs_info *fs_info = device->fs_info;
1723 struct btrfs_root *root = fs_info->dev_root;
1724 int ret;
1725 struct btrfs_path *path;
1726 struct btrfs_key key;
1727 struct btrfs_key found_key;
1728 struct extent_buffer *leaf = NULL;
1729 struct btrfs_dev_extent *extent = NULL;
1730
1731 path = btrfs_alloc_path();
1732 if (!path)
1733 return -ENOMEM;
1734
1735 key.objectid = device->devid;
1736 key.offset = start;
1737 key.type = BTRFS_DEV_EXTENT_KEY;
1738 again:
1739 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1740 if (ret > 0) {
1741 ret = btrfs_previous_item(root, path, key.objectid,
1742 BTRFS_DEV_EXTENT_KEY);
1743 if (ret)
1744 goto out;
1745 leaf = path->nodes[0];
1746 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1747 extent = btrfs_item_ptr(leaf, path->slots[0],
1748 struct btrfs_dev_extent);
1749 BUG_ON(found_key.offset > start || found_key.offset +
1750 btrfs_dev_extent_length(leaf, extent) < start);
1751 key = found_key;
1752 btrfs_release_path(path);
1753 goto again;
1754 } else if (ret == 0) {
1755 leaf = path->nodes[0];
1756 extent = btrfs_item_ptr(leaf, path->slots[0],
1757 struct btrfs_dev_extent);
1758 } else {
1759 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1760 goto out;
1761 }
1762
1763 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1764
1765 ret = btrfs_del_item(trans, root, path);
1766 if (ret) {
1767 btrfs_handle_fs_error(fs_info, ret,
1768 "Failed to remove dev extent item");
1769 } else {
1770 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1771 }
1772 out:
1773 btrfs_free_path(path);
1774 return ret;
1775 }
1776
1777 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1778 struct btrfs_device *device,
1779 u64 chunk_offset, u64 start, u64 num_bytes)
1780 {
1781 int ret;
1782 struct btrfs_path *path;
1783 struct btrfs_fs_info *fs_info = device->fs_info;
1784 struct btrfs_root *root = fs_info->dev_root;
1785 struct btrfs_dev_extent *extent;
1786 struct extent_buffer *leaf;
1787 struct btrfs_key key;
1788
1789 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1790 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1791 path = btrfs_alloc_path();
1792 if (!path)
1793 return -ENOMEM;
1794
1795 key.objectid = device->devid;
1796 key.offset = start;
1797 key.type = BTRFS_DEV_EXTENT_KEY;
1798 ret = btrfs_insert_empty_item(trans, root, path, &key,
1799 sizeof(*extent));
1800 if (ret)
1801 goto out;
1802
1803 leaf = path->nodes[0];
1804 extent = btrfs_item_ptr(leaf, path->slots[0],
1805 struct btrfs_dev_extent);
1806 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1807 BTRFS_CHUNK_TREE_OBJECTID);
1808 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1809 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1810 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1811
1812 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1813 btrfs_mark_buffer_dirty(leaf);
1814 out:
1815 btrfs_free_path(path);
1816 return ret;
1817 }
1818
1819 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1820 {
1821 struct extent_map_tree *em_tree;
1822 struct extent_map *em;
1823 struct rb_node *n;
1824 u64 ret = 0;
1825
1826 em_tree = &fs_info->mapping_tree;
1827 read_lock(&em_tree->lock);
1828 n = rb_last(&em_tree->map.rb_root);
1829 if (n) {
1830 em = rb_entry(n, struct extent_map, rb_node);
1831 ret = em->start + em->len;
1832 }
1833 read_unlock(&em_tree->lock);
1834
1835 return ret;
1836 }
1837
1838 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1839 u64 *devid_ret)
1840 {
1841 int ret;
1842 struct btrfs_key key;
1843 struct btrfs_key found_key;
1844 struct btrfs_path *path;
1845
1846 path = btrfs_alloc_path();
1847 if (!path)
1848 return -ENOMEM;
1849
1850 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1851 key.type = BTRFS_DEV_ITEM_KEY;
1852 key.offset = (u64)-1;
1853
1854 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1855 if (ret < 0)
1856 goto error;
1857
1858 BUG_ON(ret == 0); /* Corruption */
1859
1860 ret = btrfs_previous_item(fs_info->chunk_root, path,
1861 BTRFS_DEV_ITEMS_OBJECTID,
1862 BTRFS_DEV_ITEM_KEY);
1863 if (ret) {
1864 *devid_ret = 1;
1865 } else {
1866 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1867 path->slots[0]);
1868 *devid_ret = found_key.offset + 1;
1869 }
1870 ret = 0;
1871 error:
1872 btrfs_free_path(path);
1873 return ret;
1874 }
1875
1876 /*
1877 * the device information is stored in the chunk root
1878 * the btrfs_device struct should be fully filled in
1879 */
1880 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1881 struct btrfs_device *device)
1882 {
1883 int ret;
1884 struct btrfs_path *path;
1885 struct btrfs_dev_item *dev_item;
1886 struct extent_buffer *leaf;
1887 struct btrfs_key key;
1888 unsigned long ptr;
1889
1890 path = btrfs_alloc_path();
1891 if (!path)
1892 return -ENOMEM;
1893
1894 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1895 key.type = BTRFS_DEV_ITEM_KEY;
1896 key.offset = device->devid;
1897
1898 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1899 &key, sizeof(*dev_item));
1900 if (ret)
1901 goto out;
1902
1903 leaf = path->nodes[0];
1904 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1905
1906 btrfs_set_device_id(leaf, dev_item, device->devid);
1907 btrfs_set_device_generation(leaf, dev_item, 0);
1908 btrfs_set_device_type(leaf, dev_item, device->type);
1909 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1910 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1911 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1912 btrfs_set_device_total_bytes(leaf, dev_item,
1913 btrfs_device_get_disk_total_bytes(device));
1914 btrfs_set_device_bytes_used(leaf, dev_item,
1915 btrfs_device_get_bytes_used(device));
1916 btrfs_set_device_group(leaf, dev_item, 0);
1917 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1918 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1919 btrfs_set_device_start_offset(leaf, dev_item, 0);
1920
1921 ptr = btrfs_device_uuid(dev_item);
1922 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1923 ptr = btrfs_device_fsid(dev_item);
1924 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1925 ptr, BTRFS_FSID_SIZE);
1926 btrfs_mark_buffer_dirty(leaf);
1927
1928 ret = 0;
1929 out:
1930 btrfs_free_path(path);
1931 return ret;
1932 }
1933
1934 /*
1935 * Function to update ctime/mtime for a given device path.
1936 * Mainly used for ctime/mtime based probe like libblkid.
1937 */
1938 static void update_dev_time(const char *path_name)
1939 {
1940 struct file *filp;
1941
1942 filp = filp_open(path_name, O_RDWR, 0);
1943 if (IS_ERR(filp))
1944 return;
1945 file_update_time(filp);
1946 filp_close(filp, NULL);
1947 }
1948
1949 static int btrfs_rm_dev_item(struct btrfs_device *device)
1950 {
1951 struct btrfs_root *root = device->fs_info->chunk_root;
1952 int ret;
1953 struct btrfs_path *path;
1954 struct btrfs_key key;
1955 struct btrfs_trans_handle *trans;
1956
1957 path = btrfs_alloc_path();
1958 if (!path)
1959 return -ENOMEM;
1960
1961 trans = btrfs_start_transaction(root, 0);
1962 if (IS_ERR(trans)) {
1963 btrfs_free_path(path);
1964 return PTR_ERR(trans);
1965 }
1966 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1967 key.type = BTRFS_DEV_ITEM_KEY;
1968 key.offset = device->devid;
1969
1970 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1971 if (ret) {
1972 if (ret > 0)
1973 ret = -ENOENT;
1974 btrfs_abort_transaction(trans, ret);
1975 btrfs_end_transaction(trans);
1976 goto out;
1977 }
1978
1979 ret = btrfs_del_item(trans, root, path);
1980 if (ret) {
1981 btrfs_abort_transaction(trans, ret);
1982 btrfs_end_transaction(trans);
1983 }
1984
1985 out:
1986 btrfs_free_path(path);
1987 if (!ret)
1988 ret = btrfs_commit_transaction(trans);
1989 return ret;
1990 }
1991
1992 /*
1993 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1994 * filesystem. It's up to the caller to adjust that number regarding eg. device
1995 * replace.
1996 */
1997 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1998 u64 num_devices)
1999 {
2000 u64 all_avail;
2001 unsigned seq;
2002 int i;
2003
2004 do {
2005 seq = read_seqbegin(&fs_info->profiles_lock);
2006
2007 all_avail = fs_info->avail_data_alloc_bits |
2008 fs_info->avail_system_alloc_bits |
2009 fs_info->avail_metadata_alloc_bits;
2010 } while (read_seqretry(&fs_info->profiles_lock, seq));
2011
2012 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2013 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2014 continue;
2015
2016 if (num_devices < btrfs_raid_array[i].devs_min) {
2017 int ret = btrfs_raid_array[i].mindev_error;
2018
2019 if (ret)
2020 return ret;
2021 }
2022 }
2023
2024 return 0;
2025 }
2026
2027 static struct btrfs_device * btrfs_find_next_active_device(
2028 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2029 {
2030 struct btrfs_device *next_device;
2031
2032 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2033 if (next_device != device &&
2034 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2035 && next_device->bdev)
2036 return next_device;
2037 }
2038
2039 return NULL;
2040 }
2041
2042 /*
2043 * Helper function to check if the given device is part of s_bdev / latest_bdev
2044 * and replace it with the provided or the next active device, in the context
2045 * where this function called, there should be always be another device (or
2046 * this_dev) which is active.
2047 */
2048 void btrfs_assign_next_active_device(struct btrfs_device *device,
2049 struct btrfs_device *this_dev)
2050 {
2051 struct btrfs_fs_info *fs_info = device->fs_info;
2052 struct btrfs_device *next_device;
2053
2054 if (this_dev)
2055 next_device = this_dev;
2056 else
2057 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2058 device);
2059 ASSERT(next_device);
2060
2061 if (fs_info->sb->s_bdev &&
2062 (fs_info->sb->s_bdev == device->bdev))
2063 fs_info->sb->s_bdev = next_device->bdev;
2064
2065 if (fs_info->fs_devices->latest_bdev == device->bdev)
2066 fs_info->fs_devices->latest_bdev = next_device->bdev;
2067 }
2068
2069 /*
2070 * Return btrfs_fs_devices::num_devices excluding the device that's being
2071 * currently replaced.
2072 */
2073 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2074 {
2075 u64 num_devices = fs_info->fs_devices->num_devices;
2076
2077 down_read(&fs_info->dev_replace.rwsem);
2078 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2079 ASSERT(num_devices > 1);
2080 num_devices--;
2081 }
2082 up_read(&fs_info->dev_replace.rwsem);
2083
2084 return num_devices;
2085 }
2086
2087 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2088 u64 devid)
2089 {
2090 struct btrfs_device *device;
2091 struct btrfs_fs_devices *cur_devices;
2092 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2093 u64 num_devices;
2094 int ret = 0;
2095
2096 mutex_lock(&uuid_mutex);
2097
2098 num_devices = btrfs_num_devices(fs_info);
2099
2100 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2101 if (ret)
2102 goto out;
2103
2104 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2105
2106 if (IS_ERR(device)) {
2107 if (PTR_ERR(device) == -ENOENT &&
2108 strcmp(device_path, "missing") == 0)
2109 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2110 else
2111 ret = PTR_ERR(device);
2112 goto out;
2113 }
2114
2115 if (btrfs_pinned_by_swapfile(fs_info, device)) {
2116 btrfs_warn_in_rcu(fs_info,
2117 "cannot remove device %s (devid %llu) due to active swapfile",
2118 rcu_str_deref(device->name), device->devid);
2119 ret = -ETXTBSY;
2120 goto out;
2121 }
2122
2123 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2124 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2125 goto out;
2126 }
2127
2128 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2129 fs_info->fs_devices->rw_devices == 1) {
2130 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2131 goto out;
2132 }
2133
2134 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2135 mutex_lock(&fs_info->chunk_mutex);
2136 list_del_init(&device->dev_alloc_list);
2137 device->fs_devices->rw_devices--;
2138 mutex_unlock(&fs_info->chunk_mutex);
2139 }
2140
2141 mutex_unlock(&uuid_mutex);
2142 ret = btrfs_shrink_device(device, 0);
2143 mutex_lock(&uuid_mutex);
2144 if (ret)
2145 goto error_undo;
2146
2147 /*
2148 * TODO: the superblock still includes this device in its num_devices
2149 * counter although write_all_supers() is not locked out. This
2150 * could give a filesystem state which requires a degraded mount.
2151 */
2152 ret = btrfs_rm_dev_item(device);
2153 if (ret)
2154 goto error_undo;
2155
2156 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2157 btrfs_scrub_cancel_dev(device);
2158
2159 /*
2160 * the device list mutex makes sure that we don't change
2161 * the device list while someone else is writing out all
2162 * the device supers. Whoever is writing all supers, should
2163 * lock the device list mutex before getting the number of
2164 * devices in the super block (super_copy). Conversely,
2165 * whoever updates the number of devices in the super block
2166 * (super_copy) should hold the device list mutex.
2167 */
2168
2169 /*
2170 * In normal cases the cur_devices == fs_devices. But in case
2171 * of deleting a seed device, the cur_devices should point to
2172 * its own fs_devices listed under the fs_devices->seed.
2173 */
2174 cur_devices = device->fs_devices;
2175 mutex_lock(&fs_devices->device_list_mutex);
2176 list_del_rcu(&device->dev_list);
2177
2178 cur_devices->num_devices--;
2179 cur_devices->total_devices--;
2180 /* Update total_devices of the parent fs_devices if it's seed */
2181 if (cur_devices != fs_devices)
2182 fs_devices->total_devices--;
2183
2184 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2185 cur_devices->missing_devices--;
2186
2187 btrfs_assign_next_active_device(device, NULL);
2188
2189 if (device->bdev) {
2190 cur_devices->open_devices--;
2191 /* remove sysfs entry */
2192 btrfs_sysfs_rm_device_link(fs_devices, device);
2193 }
2194
2195 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2196 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2197 mutex_unlock(&fs_devices->device_list_mutex);
2198
2199 /*
2200 * at this point, the device is zero sized and detached from
2201 * the devices list. All that's left is to zero out the old
2202 * supers and free the device.
2203 */
2204 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2205 btrfs_scratch_superblocks(device->bdev, device->name->str);
2206
2207 btrfs_close_bdev(device);
2208 synchronize_rcu();
2209 btrfs_free_device(device);
2210
2211 if (cur_devices->open_devices == 0) {
2212 while (fs_devices) {
2213 if (fs_devices->seed == cur_devices) {
2214 fs_devices->seed = cur_devices->seed;
2215 break;
2216 }
2217 fs_devices = fs_devices->seed;
2218 }
2219 cur_devices->seed = NULL;
2220 close_fs_devices(cur_devices);
2221 free_fs_devices(cur_devices);
2222 }
2223
2224 out:
2225 mutex_unlock(&uuid_mutex);
2226 return ret;
2227
2228 error_undo:
2229 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2230 mutex_lock(&fs_info->chunk_mutex);
2231 list_add(&device->dev_alloc_list,
2232 &fs_devices->alloc_list);
2233 device->fs_devices->rw_devices++;
2234 mutex_unlock(&fs_info->chunk_mutex);
2235 }
2236 goto out;
2237 }
2238
2239 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2240 {
2241 struct btrfs_fs_devices *fs_devices;
2242
2243 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2244
2245 /*
2246 * in case of fs with no seed, srcdev->fs_devices will point
2247 * to fs_devices of fs_info. However when the dev being replaced is
2248 * a seed dev it will point to the seed's local fs_devices. In short
2249 * srcdev will have its correct fs_devices in both the cases.
2250 */
2251 fs_devices = srcdev->fs_devices;
2252
2253 list_del_rcu(&srcdev->dev_list);
2254 list_del(&srcdev->dev_alloc_list);
2255 fs_devices->num_devices--;
2256 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2257 fs_devices->missing_devices--;
2258
2259 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2260 fs_devices->rw_devices--;
2261
2262 if (srcdev->bdev)
2263 fs_devices->open_devices--;
2264 }
2265
2266 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2267 {
2268 struct btrfs_fs_info *fs_info = srcdev->fs_info;
2269 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2270
2271 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2272 /* zero out the old super if it is writable */
2273 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2274 }
2275
2276 btrfs_close_bdev(srcdev);
2277 synchronize_rcu();
2278 btrfs_free_device(srcdev);
2279
2280 /* if this is no devs we rather delete the fs_devices */
2281 if (!fs_devices->num_devices) {
2282 struct btrfs_fs_devices *tmp_fs_devices;
2283
2284 /*
2285 * On a mounted FS, num_devices can't be zero unless it's a
2286 * seed. In case of a seed device being replaced, the replace
2287 * target added to the sprout FS, so there will be no more
2288 * device left under the seed FS.
2289 */
2290 ASSERT(fs_devices->seeding);
2291
2292 tmp_fs_devices = fs_info->fs_devices;
2293 while (tmp_fs_devices) {
2294 if (tmp_fs_devices->seed == fs_devices) {
2295 tmp_fs_devices->seed = fs_devices->seed;
2296 break;
2297 }
2298 tmp_fs_devices = tmp_fs_devices->seed;
2299 }
2300 fs_devices->seed = NULL;
2301 close_fs_devices(fs_devices);
2302 free_fs_devices(fs_devices);
2303 }
2304 }
2305
2306 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2307 {
2308 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2309
2310 WARN_ON(!tgtdev);
2311 mutex_lock(&fs_devices->device_list_mutex);
2312
2313 btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2314
2315 if (tgtdev->bdev)
2316 fs_devices->open_devices--;
2317
2318 fs_devices->num_devices--;
2319
2320 btrfs_assign_next_active_device(tgtdev, NULL);
2321
2322 list_del_rcu(&tgtdev->dev_list);
2323
2324 mutex_unlock(&fs_devices->device_list_mutex);
2325
2326 /*
2327 * The update_dev_time() with in btrfs_scratch_superblocks()
2328 * may lead to a call to btrfs_show_devname() which will try
2329 * to hold device_list_mutex. And here this device
2330 * is already out of device list, so we don't have to hold
2331 * the device_list_mutex lock.
2332 */
2333 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2334
2335 btrfs_close_bdev(tgtdev);
2336 synchronize_rcu();
2337 btrfs_free_device(tgtdev);
2338 }
2339
2340 static struct btrfs_device *btrfs_find_device_by_path(
2341 struct btrfs_fs_info *fs_info, const char *device_path)
2342 {
2343 int ret = 0;
2344 struct btrfs_super_block *disk_super;
2345 u64 devid;
2346 u8 *dev_uuid;
2347 struct block_device *bdev;
2348 struct buffer_head *bh;
2349 struct btrfs_device *device;
2350
2351 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2352 fs_info->bdev_holder, 0, &bdev, &bh);
2353 if (ret)
2354 return ERR_PTR(ret);
2355 disk_super = (struct btrfs_super_block *)bh->b_data;
2356 devid = btrfs_stack_device_id(&disk_super->dev_item);
2357 dev_uuid = disk_super->dev_item.uuid;
2358 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2359 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2360 disk_super->metadata_uuid, true);
2361 else
2362 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2363 disk_super->fsid, true);
2364
2365 brelse(bh);
2366 if (!device)
2367 device = ERR_PTR(-ENOENT);
2368 blkdev_put(bdev, FMODE_READ);
2369 return device;
2370 }
2371
2372 /*
2373 * Lookup a device given by device id, or the path if the id is 0.
2374 */
2375 struct btrfs_device *btrfs_find_device_by_devspec(
2376 struct btrfs_fs_info *fs_info, u64 devid,
2377 const char *device_path)
2378 {
2379 struct btrfs_device *device;
2380
2381 if (devid) {
2382 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2383 NULL, true);
2384 if (!device)
2385 return ERR_PTR(-ENOENT);
2386 return device;
2387 }
2388
2389 if (!device_path || !device_path[0])
2390 return ERR_PTR(-EINVAL);
2391
2392 if (strcmp(device_path, "missing") == 0) {
2393 /* Find first missing device */
2394 list_for_each_entry(device, &fs_info->fs_devices->devices,
2395 dev_list) {
2396 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2397 &device->dev_state) && !device->bdev)
2398 return device;
2399 }
2400 return ERR_PTR(-ENOENT);
2401 }
2402
2403 return btrfs_find_device_by_path(fs_info, device_path);
2404 }
2405
2406 /*
2407 * does all the dirty work required for changing file system's UUID.
2408 */
2409 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2410 {
2411 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2412 struct btrfs_fs_devices *old_devices;
2413 struct btrfs_fs_devices *seed_devices;
2414 struct btrfs_super_block *disk_super = fs_info->super_copy;
2415 struct btrfs_device *device;
2416 u64 super_flags;
2417
2418 lockdep_assert_held(&uuid_mutex);
2419 if (!fs_devices->seeding)
2420 return -EINVAL;
2421
2422 seed_devices = alloc_fs_devices(NULL, NULL);
2423 if (IS_ERR(seed_devices))
2424 return PTR_ERR(seed_devices);
2425
2426 old_devices = clone_fs_devices(fs_devices);
2427 if (IS_ERR(old_devices)) {
2428 kfree(seed_devices);
2429 return PTR_ERR(old_devices);
2430 }
2431
2432 list_add(&old_devices->fs_list, &fs_uuids);
2433
2434 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2435 seed_devices->opened = 1;
2436 INIT_LIST_HEAD(&seed_devices->devices);
2437 INIT_LIST_HEAD(&seed_devices->alloc_list);
2438 mutex_init(&seed_devices->device_list_mutex);
2439
2440 mutex_lock(&fs_devices->device_list_mutex);
2441 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2442 synchronize_rcu);
2443 list_for_each_entry(device, &seed_devices->devices, dev_list)
2444 device->fs_devices = seed_devices;
2445
2446 mutex_lock(&fs_info->chunk_mutex);
2447 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2448 mutex_unlock(&fs_info->chunk_mutex);
2449
2450 fs_devices->seeding = 0;
2451 fs_devices->num_devices = 0;
2452 fs_devices->open_devices = 0;
2453 fs_devices->missing_devices = 0;
2454 fs_devices->rotating = 0;
2455 fs_devices->seed = seed_devices;
2456
2457 generate_random_uuid(fs_devices->fsid);
2458 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2459 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2460 mutex_unlock(&fs_devices->device_list_mutex);
2461
2462 super_flags = btrfs_super_flags(disk_super) &
2463 ~BTRFS_SUPER_FLAG_SEEDING;
2464 btrfs_set_super_flags(disk_super, super_flags);
2465
2466 return 0;
2467 }
2468
2469 /*
2470 * Store the expected generation for seed devices in device items.
2471 */
2472 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2473 {
2474 struct btrfs_fs_info *fs_info = trans->fs_info;
2475 struct btrfs_root *root = fs_info->chunk_root;
2476 struct btrfs_path *path;
2477 struct extent_buffer *leaf;
2478 struct btrfs_dev_item *dev_item;
2479 struct btrfs_device *device;
2480 struct btrfs_key key;
2481 u8 fs_uuid[BTRFS_FSID_SIZE];
2482 u8 dev_uuid[BTRFS_UUID_SIZE];
2483 u64 devid;
2484 int ret;
2485
2486 path = btrfs_alloc_path();
2487 if (!path)
2488 return -ENOMEM;
2489
2490 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2491 key.offset = 0;
2492 key.type = BTRFS_DEV_ITEM_KEY;
2493
2494 while (1) {
2495 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2496 if (ret < 0)
2497 goto error;
2498
2499 leaf = path->nodes[0];
2500 next_slot:
2501 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2502 ret = btrfs_next_leaf(root, path);
2503 if (ret > 0)
2504 break;
2505 if (ret < 0)
2506 goto error;
2507 leaf = path->nodes[0];
2508 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2509 btrfs_release_path(path);
2510 continue;
2511 }
2512
2513 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2514 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2515 key.type != BTRFS_DEV_ITEM_KEY)
2516 break;
2517
2518 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2519 struct btrfs_dev_item);
2520 devid = btrfs_device_id(leaf, dev_item);
2521 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2522 BTRFS_UUID_SIZE);
2523 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2524 BTRFS_FSID_SIZE);
2525 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2526 fs_uuid, true);
2527 BUG_ON(!device); /* Logic error */
2528
2529 if (device->fs_devices->seeding) {
2530 btrfs_set_device_generation(leaf, dev_item,
2531 device->generation);
2532 btrfs_mark_buffer_dirty(leaf);
2533 }
2534
2535 path->slots[0]++;
2536 goto next_slot;
2537 }
2538 ret = 0;
2539 error:
2540 btrfs_free_path(path);
2541 return ret;
2542 }
2543
2544 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2545 {
2546 struct btrfs_root *root = fs_info->dev_root;
2547 struct request_queue *q;
2548 struct btrfs_trans_handle *trans;
2549 struct btrfs_device *device;
2550 struct block_device *bdev;
2551 struct super_block *sb = fs_info->sb;
2552 struct rcu_string *name;
2553 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2554 u64 orig_super_total_bytes;
2555 u64 orig_super_num_devices;
2556 int seeding_dev = 0;
2557 int ret = 0;
2558 bool unlocked = false;
2559
2560 if (sb_rdonly(sb) && !fs_devices->seeding)
2561 return -EROFS;
2562
2563 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2564 fs_info->bdev_holder);
2565 if (IS_ERR(bdev))
2566 return PTR_ERR(bdev);
2567
2568 if (fs_devices->seeding) {
2569 seeding_dev = 1;
2570 down_write(&sb->s_umount);
2571 mutex_lock(&uuid_mutex);
2572 }
2573
2574 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2575
2576 mutex_lock(&fs_devices->device_list_mutex);
2577 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2578 if (device->bdev == bdev) {
2579 ret = -EEXIST;
2580 mutex_unlock(
2581 &fs_devices->device_list_mutex);
2582 goto error;
2583 }
2584 }
2585 mutex_unlock(&fs_devices->device_list_mutex);
2586
2587 device = btrfs_alloc_device(fs_info, NULL, NULL);
2588 if (IS_ERR(device)) {
2589 /* we can safely leave the fs_devices entry around */
2590 ret = PTR_ERR(device);
2591 goto error;
2592 }
2593
2594 name = rcu_string_strdup(device_path, GFP_KERNEL);
2595 if (!name) {
2596 ret = -ENOMEM;
2597 goto error_free_device;
2598 }
2599 rcu_assign_pointer(device->name, name);
2600
2601 trans = btrfs_start_transaction(root, 0);
2602 if (IS_ERR(trans)) {
2603 ret = PTR_ERR(trans);
2604 goto error_free_device;
2605 }
2606
2607 q = bdev_get_queue(bdev);
2608 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2609 device->generation = trans->transid;
2610 device->io_width = fs_info->sectorsize;
2611 device->io_align = fs_info->sectorsize;
2612 device->sector_size = fs_info->sectorsize;
2613 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2614 fs_info->sectorsize);
2615 device->disk_total_bytes = device->total_bytes;
2616 device->commit_total_bytes = device->total_bytes;
2617 device->fs_info = fs_info;
2618 device->bdev = bdev;
2619 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2620 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2621 device->mode = FMODE_EXCL;
2622 device->dev_stats_valid = 1;
2623 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2624
2625 if (seeding_dev) {
2626 sb->s_flags &= ~SB_RDONLY;
2627 ret = btrfs_prepare_sprout(fs_info);
2628 if (ret) {
2629 btrfs_abort_transaction(trans, ret);
2630 goto error_trans;
2631 }
2632 }
2633
2634 device->fs_devices = fs_devices;
2635
2636 mutex_lock(&fs_devices->device_list_mutex);
2637 mutex_lock(&fs_info->chunk_mutex);
2638 list_add_rcu(&device->dev_list, &fs_devices->devices);
2639 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2640 fs_devices->num_devices++;
2641 fs_devices->open_devices++;
2642 fs_devices->rw_devices++;
2643 fs_devices->total_devices++;
2644 fs_devices->total_rw_bytes += device->total_bytes;
2645
2646 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2647
2648 if (!blk_queue_nonrot(q))
2649 fs_devices->rotating = 1;
2650
2651 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2652 btrfs_set_super_total_bytes(fs_info->super_copy,
2653 round_down(orig_super_total_bytes + device->total_bytes,
2654 fs_info->sectorsize));
2655
2656 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2657 btrfs_set_super_num_devices(fs_info->super_copy,
2658 orig_super_num_devices + 1);
2659
2660 /* add sysfs device entry */
2661 btrfs_sysfs_add_device_link(fs_devices, device);
2662
2663 /*
2664 * we've got more storage, clear any full flags on the space
2665 * infos
2666 */
2667 btrfs_clear_space_info_full(fs_info);
2668
2669 mutex_unlock(&fs_info->chunk_mutex);
2670 mutex_unlock(&fs_devices->device_list_mutex);
2671
2672 if (seeding_dev) {
2673 mutex_lock(&fs_info->chunk_mutex);
2674 ret = init_first_rw_device(trans);
2675 mutex_unlock(&fs_info->chunk_mutex);
2676 if (ret) {
2677 btrfs_abort_transaction(trans, ret);
2678 goto error_sysfs;
2679 }
2680 }
2681
2682 ret = btrfs_add_dev_item(trans, device);
2683 if (ret) {
2684 btrfs_abort_transaction(trans, ret);
2685 goto error_sysfs;
2686 }
2687
2688 if (seeding_dev) {
2689 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2690
2691 ret = btrfs_finish_sprout(trans);
2692 if (ret) {
2693 btrfs_abort_transaction(trans, ret);
2694 goto error_sysfs;
2695 }
2696
2697 /* Sprouting would change fsid of the mounted root,
2698 * so rename the fsid on the sysfs
2699 */
2700 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2701 fs_info->fs_devices->fsid);
2702 if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
2703 btrfs_warn(fs_info,
2704 "sysfs: failed to create fsid for sprout");
2705 }
2706
2707 ret = btrfs_commit_transaction(trans);
2708
2709 if (seeding_dev) {
2710 mutex_unlock(&uuid_mutex);
2711 up_write(&sb->s_umount);
2712 unlocked = true;
2713
2714 if (ret) /* transaction commit */
2715 return ret;
2716
2717 ret = btrfs_relocate_sys_chunks(fs_info);
2718 if (ret < 0)
2719 btrfs_handle_fs_error(fs_info, ret,
2720 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2721 trans = btrfs_attach_transaction(root);
2722 if (IS_ERR(trans)) {
2723 if (PTR_ERR(trans) == -ENOENT)
2724 return 0;
2725 ret = PTR_ERR(trans);
2726 trans = NULL;
2727 goto error_sysfs;
2728 }
2729 ret = btrfs_commit_transaction(trans);
2730 }
2731
2732 /* Update ctime/mtime for libblkid */
2733 update_dev_time(device_path);
2734 return ret;
2735
2736 error_sysfs:
2737 btrfs_sysfs_rm_device_link(fs_devices, device);
2738 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2739 mutex_lock(&fs_info->chunk_mutex);
2740 list_del_rcu(&device->dev_list);
2741 list_del(&device->dev_alloc_list);
2742 fs_info->fs_devices->num_devices--;
2743 fs_info->fs_devices->open_devices--;
2744 fs_info->fs_devices->rw_devices--;
2745 fs_info->fs_devices->total_devices--;
2746 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2747 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2748 btrfs_set_super_total_bytes(fs_info->super_copy,
2749 orig_super_total_bytes);
2750 btrfs_set_super_num_devices(fs_info->super_copy,
2751 orig_super_num_devices);
2752 mutex_unlock(&fs_info->chunk_mutex);
2753 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2754 error_trans:
2755 if (seeding_dev)
2756 sb->s_flags |= SB_RDONLY;
2757 if (trans)
2758 btrfs_end_transaction(trans);
2759 error_free_device:
2760 btrfs_free_device(device);
2761 error:
2762 blkdev_put(bdev, FMODE_EXCL);
2763 if (seeding_dev && !unlocked) {
2764 mutex_unlock(&uuid_mutex);
2765 up_write(&sb->s_umount);
2766 }
2767 return ret;
2768 }
2769
2770 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2771 struct btrfs_device *device)
2772 {
2773 int ret;
2774 struct btrfs_path *path;
2775 struct btrfs_root *root = device->fs_info->chunk_root;
2776 struct btrfs_dev_item *dev_item;
2777 struct extent_buffer *leaf;
2778 struct btrfs_key key;
2779
2780 path = btrfs_alloc_path();
2781 if (!path)
2782 return -ENOMEM;
2783
2784 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2785 key.type = BTRFS_DEV_ITEM_KEY;
2786 key.offset = device->devid;
2787
2788 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2789 if (ret < 0)
2790 goto out;
2791
2792 if (ret > 0) {
2793 ret = -ENOENT;
2794 goto out;
2795 }
2796
2797 leaf = path->nodes[0];
2798 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2799
2800 btrfs_set_device_id(leaf, dev_item, device->devid);
2801 btrfs_set_device_type(leaf, dev_item, device->type);
2802 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2803 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2804 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2805 btrfs_set_device_total_bytes(leaf, dev_item,
2806 btrfs_device_get_disk_total_bytes(device));
2807 btrfs_set_device_bytes_used(leaf, dev_item,
2808 btrfs_device_get_bytes_used(device));
2809 btrfs_mark_buffer_dirty(leaf);
2810
2811 out:
2812 btrfs_free_path(path);
2813 return ret;
2814 }
2815
2816 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2817 struct btrfs_device *device, u64 new_size)
2818 {
2819 struct btrfs_fs_info *fs_info = device->fs_info;
2820 struct btrfs_super_block *super_copy = fs_info->super_copy;
2821 u64 old_total;
2822 u64 diff;
2823
2824 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2825 return -EACCES;
2826
2827 new_size = round_down(new_size, fs_info->sectorsize);
2828
2829 mutex_lock(&fs_info->chunk_mutex);
2830 old_total = btrfs_super_total_bytes(super_copy);
2831 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2832
2833 if (new_size <= device->total_bytes ||
2834 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2835 mutex_unlock(&fs_info->chunk_mutex);
2836 return -EINVAL;
2837 }
2838
2839 btrfs_set_super_total_bytes(super_copy,
2840 round_down(old_total + diff, fs_info->sectorsize));
2841 device->fs_devices->total_rw_bytes += diff;
2842
2843 btrfs_device_set_total_bytes(device, new_size);
2844 btrfs_device_set_disk_total_bytes(device, new_size);
2845 btrfs_clear_space_info_full(device->fs_info);
2846 if (list_empty(&device->post_commit_list))
2847 list_add_tail(&device->post_commit_list,
2848 &trans->transaction->dev_update_list);
2849 mutex_unlock(&fs_info->chunk_mutex);
2850
2851 return btrfs_update_device(trans, device);
2852 }
2853
2854 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2855 {
2856 struct btrfs_fs_info *fs_info = trans->fs_info;
2857 struct btrfs_root *root = fs_info->chunk_root;
2858 int ret;
2859 struct btrfs_path *path;
2860 struct btrfs_key key;
2861
2862 path = btrfs_alloc_path();
2863 if (!path)
2864 return -ENOMEM;
2865
2866 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2867 key.offset = chunk_offset;
2868 key.type = BTRFS_CHUNK_ITEM_KEY;
2869
2870 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2871 if (ret < 0)
2872 goto out;
2873 else if (ret > 0) { /* Logic error or corruption */
2874 btrfs_handle_fs_error(fs_info, -ENOENT,
2875 "Failed lookup while freeing chunk.");
2876 ret = -ENOENT;
2877 goto out;
2878 }
2879
2880 ret = btrfs_del_item(trans, root, path);
2881 if (ret < 0)
2882 btrfs_handle_fs_error(fs_info, ret,
2883 "Failed to delete chunk item.");
2884 out:
2885 btrfs_free_path(path);
2886 return ret;
2887 }
2888
2889 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2890 {
2891 struct btrfs_super_block *super_copy = fs_info->super_copy;
2892 struct btrfs_disk_key *disk_key;
2893 struct btrfs_chunk *chunk;
2894 u8 *ptr;
2895 int ret = 0;
2896 u32 num_stripes;
2897 u32 array_size;
2898 u32 len = 0;
2899 u32 cur;
2900 struct btrfs_key key;
2901
2902 mutex_lock(&fs_info->chunk_mutex);
2903 array_size = btrfs_super_sys_array_size(super_copy);
2904
2905 ptr = super_copy->sys_chunk_array;
2906 cur = 0;
2907
2908 while (cur < array_size) {
2909 disk_key = (struct btrfs_disk_key *)ptr;
2910 btrfs_disk_key_to_cpu(&key, disk_key);
2911
2912 len = sizeof(*disk_key);
2913
2914 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2915 chunk = (struct btrfs_chunk *)(ptr + len);
2916 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2917 len += btrfs_chunk_item_size(num_stripes);
2918 } else {
2919 ret = -EIO;
2920 break;
2921 }
2922 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2923 key.offset == chunk_offset) {
2924 memmove(ptr, ptr + len, array_size - (cur + len));
2925 array_size -= len;
2926 btrfs_set_super_sys_array_size(super_copy, array_size);
2927 } else {
2928 ptr += len;
2929 cur += len;
2930 }
2931 }
2932 mutex_unlock(&fs_info->chunk_mutex);
2933 return ret;
2934 }
2935
2936 /*
2937 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2938 * @logical: Logical block offset in bytes.
2939 * @length: Length of extent in bytes.
2940 *
2941 * Return: Chunk mapping or ERR_PTR.
2942 */
2943 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2944 u64 logical, u64 length)
2945 {
2946 struct extent_map_tree *em_tree;
2947 struct extent_map *em;
2948
2949 em_tree = &fs_info->mapping_tree;
2950 read_lock(&em_tree->lock);
2951 em = lookup_extent_mapping(em_tree, logical, length);
2952 read_unlock(&em_tree->lock);
2953
2954 if (!em) {
2955 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2956 logical, length);
2957 return ERR_PTR(-EINVAL);
2958 }
2959
2960 if (em->start > logical || em->start + em->len < logical) {
2961 btrfs_crit(fs_info,
2962 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2963 logical, length, em->start, em->start + em->len);
2964 free_extent_map(em);
2965 return ERR_PTR(-EINVAL);
2966 }
2967
2968 /* callers are responsible for dropping em's ref. */
2969 return em;
2970 }
2971
2972 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2973 {
2974 struct btrfs_fs_info *fs_info = trans->fs_info;
2975 struct extent_map *em;
2976 struct map_lookup *map;
2977 u64 dev_extent_len = 0;
2978 int i, ret = 0;
2979 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2980
2981 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2982 if (IS_ERR(em)) {
2983 /*
2984 * This is a logic error, but we don't want to just rely on the
2985 * user having built with ASSERT enabled, so if ASSERT doesn't
2986 * do anything we still error out.
2987 */
2988 ASSERT(0);
2989 return PTR_ERR(em);
2990 }
2991 map = em->map_lookup;
2992 mutex_lock(&fs_info->chunk_mutex);
2993 check_system_chunk(trans, map->type);
2994 mutex_unlock(&fs_info->chunk_mutex);
2995
2996 /*
2997 * Take the device list mutex to prevent races with the final phase of
2998 * a device replace operation that replaces the device object associated
2999 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
3000 */
3001 mutex_lock(&fs_devices->device_list_mutex);
3002 for (i = 0; i < map->num_stripes; i++) {
3003 struct btrfs_device *device = map->stripes[i].dev;
3004 ret = btrfs_free_dev_extent(trans, device,
3005 map->stripes[i].physical,
3006 &dev_extent_len);
3007 if (ret) {
3008 mutex_unlock(&fs_devices->device_list_mutex);
3009 btrfs_abort_transaction(trans, ret);
3010 goto out;
3011 }
3012
3013 if (device->bytes_used > 0) {
3014 mutex_lock(&fs_info->chunk_mutex);
3015 btrfs_device_set_bytes_used(device,
3016 device->bytes_used - dev_extent_len);
3017 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3018 btrfs_clear_space_info_full(fs_info);
3019 mutex_unlock(&fs_info->chunk_mutex);
3020 }
3021
3022 ret = btrfs_update_device(trans, device);
3023 if (ret) {
3024 mutex_unlock(&fs_devices->device_list_mutex);
3025 btrfs_abort_transaction(trans, ret);
3026 goto out;
3027 }
3028 }
3029 mutex_unlock(&fs_devices->device_list_mutex);
3030
3031 ret = btrfs_free_chunk(trans, chunk_offset);
3032 if (ret) {
3033 btrfs_abort_transaction(trans, ret);
3034 goto out;
3035 }
3036
3037 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3038
3039 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3040 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3041 if (ret) {
3042 btrfs_abort_transaction(trans, ret);
3043 goto out;
3044 }
3045 }
3046
3047 ret = btrfs_remove_block_group(trans, chunk_offset, em);
3048 if (ret) {
3049 btrfs_abort_transaction(trans, ret);
3050 goto out;
3051 }
3052
3053 out:
3054 /* once for us */
3055 free_extent_map(em);
3056 return ret;
3057 }
3058
3059 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3060 {
3061 struct btrfs_root *root = fs_info->chunk_root;
3062 struct btrfs_trans_handle *trans;
3063 int ret;
3064
3065 /*
3066 * Prevent races with automatic removal of unused block groups.
3067 * After we relocate and before we remove the chunk with offset
3068 * chunk_offset, automatic removal of the block group can kick in,
3069 * resulting in a failure when calling btrfs_remove_chunk() below.
3070 *
3071 * Make sure to acquire this mutex before doing a tree search (dev
3072 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3073 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3074 * we release the path used to search the chunk/dev tree and before
3075 * the current task acquires this mutex and calls us.
3076 */
3077 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3078
3079 ret = btrfs_can_relocate(fs_info, chunk_offset);
3080 if (ret)
3081 return -ENOSPC;
3082
3083 /* step one, relocate all the extents inside this chunk */
3084 btrfs_scrub_pause(fs_info);
3085 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3086 btrfs_scrub_continue(fs_info);
3087 if (ret)
3088 return ret;
3089
3090 /*
3091 * We add the kobjects here (and after forcing data chunk creation)
3092 * since relocation is the only place we'll create chunks of a new
3093 * type at runtime. The only place where we'll remove the last
3094 * chunk of a type is the call immediately below this one. Even
3095 * so, we're protected against races with the cleaner thread since
3096 * we're covered by the delete_unused_bgs_mutex.
3097 */
3098 btrfs_add_raid_kobjects(fs_info);
3099
3100 trans = btrfs_start_trans_remove_block_group(root->fs_info,
3101 chunk_offset);
3102 if (IS_ERR(trans)) {
3103 ret = PTR_ERR(trans);
3104 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3105 return ret;
3106 }
3107
3108 /*
3109 * step two, delete the device extents and the
3110 * chunk tree entries
3111 */
3112 ret = btrfs_remove_chunk(trans, chunk_offset);
3113 btrfs_end_transaction(trans);
3114 return ret;
3115 }
3116
3117 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3118 {
3119 struct btrfs_root *chunk_root = fs_info->chunk_root;
3120 struct btrfs_path *path;
3121 struct extent_buffer *leaf;
3122 struct btrfs_chunk *chunk;
3123 struct btrfs_key key;
3124 struct btrfs_key found_key;
3125 u64 chunk_type;
3126 bool retried = false;
3127 int failed = 0;
3128 int ret;
3129
3130 path = btrfs_alloc_path();
3131 if (!path)
3132 return -ENOMEM;
3133
3134 again:
3135 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3136 key.offset = (u64)-1;
3137 key.type = BTRFS_CHUNK_ITEM_KEY;
3138
3139 while (1) {
3140 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3141 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3142 if (ret < 0) {
3143 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3144 goto error;
3145 }
3146 BUG_ON(ret == 0); /* Corruption */
3147
3148 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3149 key.type);
3150 if (ret)
3151 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3152 if (ret < 0)
3153 goto error;
3154 if (ret > 0)
3155 break;
3156
3157 leaf = path->nodes[0];
3158 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3159
3160 chunk = btrfs_item_ptr(leaf, path->slots[0],
3161 struct btrfs_chunk);
3162 chunk_type = btrfs_chunk_type(leaf, chunk);
3163 btrfs_release_path(path);
3164
3165 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3166 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3167 if (ret == -ENOSPC)
3168 failed++;
3169 else
3170 BUG_ON(ret);
3171 }
3172 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3173
3174 if (found_key.offset == 0)
3175 break;
3176 key.offset = found_key.offset - 1;
3177 }
3178 ret = 0;
3179 if (failed && !retried) {
3180 failed = 0;
3181 retried = true;
3182 goto again;
3183 } else if (WARN_ON(failed && retried)) {
3184 ret = -ENOSPC;
3185 }
3186 error:
3187 btrfs_free_path(path);
3188 return ret;
3189 }
3190
3191 /*
3192 * return 1 : allocate a data chunk successfully,
3193 * return <0: errors during allocating a data chunk,
3194 * return 0 : no need to allocate a data chunk.
3195 */
3196 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3197 u64 chunk_offset)
3198 {
3199 struct btrfs_block_group_cache *cache;
3200 u64 bytes_used;
3201 u64 chunk_type;
3202
3203 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3204 ASSERT(cache);
3205 chunk_type = cache->flags;
3206 btrfs_put_block_group(cache);
3207
3208 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3209 spin_lock(&fs_info->data_sinfo->lock);
3210 bytes_used = fs_info->data_sinfo->bytes_used;
3211 spin_unlock(&fs_info->data_sinfo->lock);
3212
3213 if (!bytes_used) {
3214 struct btrfs_trans_handle *trans;
3215 int ret;
3216
3217 trans = btrfs_join_transaction(fs_info->tree_root);
3218 if (IS_ERR(trans))
3219 return PTR_ERR(trans);
3220
3221 ret = btrfs_force_chunk_alloc(trans,
3222 BTRFS_BLOCK_GROUP_DATA);
3223 btrfs_end_transaction(trans);
3224 if (ret < 0)
3225 return ret;
3226
3227 btrfs_add_raid_kobjects(fs_info);
3228
3229 return 1;
3230 }
3231 }
3232 return 0;
3233 }
3234
3235 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3236 struct btrfs_balance_control *bctl)
3237 {
3238 struct btrfs_root *root = fs_info->tree_root;
3239 struct btrfs_trans_handle *trans;
3240 struct btrfs_balance_item *item;
3241 struct btrfs_disk_balance_args disk_bargs;
3242 struct btrfs_path *path;
3243 struct extent_buffer *leaf;
3244 struct btrfs_key key;
3245 int ret, err;
3246
3247 path = btrfs_alloc_path();
3248 if (!path)
3249 return -ENOMEM;
3250
3251 trans = btrfs_start_transaction(root, 0);
3252 if (IS_ERR(trans)) {
3253 btrfs_free_path(path);
3254 return PTR_ERR(trans);
3255 }
3256
3257 key.objectid = BTRFS_BALANCE_OBJECTID;
3258 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3259 key.offset = 0;
3260
3261 ret = btrfs_insert_empty_item(trans, root, path, &key,
3262 sizeof(*item));
3263 if (ret)
3264 goto out;
3265
3266 leaf = path->nodes[0];
3267 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3268
3269 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3270
3271 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3272 btrfs_set_balance_data(leaf, item, &disk_bargs);
3273 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3274 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3275 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3276 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3277
3278 btrfs_set_balance_flags(leaf, item, bctl->flags);
3279
3280 btrfs_mark_buffer_dirty(leaf);
3281 out:
3282 btrfs_free_path(path);
3283 err = btrfs_commit_transaction(trans);
3284 if (err && !ret)
3285 ret = err;
3286 return ret;
3287 }
3288
3289 static int del_balance_item(struct btrfs_fs_info *fs_info)
3290 {
3291 struct btrfs_root *root = fs_info->tree_root;
3292 struct btrfs_trans_handle *trans;
3293 struct btrfs_path *path;
3294 struct btrfs_key key;
3295 int ret, err;
3296
3297 path = btrfs_alloc_path();
3298 if (!path)
3299 return -ENOMEM;
3300
3301 trans = btrfs_start_transaction(root, 0);
3302 if (IS_ERR(trans)) {
3303 btrfs_free_path(path);
3304 return PTR_ERR(trans);
3305 }
3306
3307 key.objectid = BTRFS_BALANCE_OBJECTID;
3308 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3309 key.offset = 0;
3310
3311 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3312 if (ret < 0)
3313 goto out;
3314 if (ret > 0) {
3315 ret = -ENOENT;
3316 goto out;
3317 }
3318
3319 ret = btrfs_del_item(trans, root, path);
3320 out:
3321 btrfs_free_path(path);
3322 err = btrfs_commit_transaction(trans);
3323 if (err && !ret)
3324 ret = err;
3325 return ret;
3326 }
3327
3328 /*
3329 * This is a heuristic used to reduce the number of chunks balanced on
3330 * resume after balance was interrupted.
3331 */
3332 static void update_balance_args(struct btrfs_balance_control *bctl)
3333 {
3334 /*
3335 * Turn on soft mode for chunk types that were being converted.
3336 */
3337 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3338 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3339 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3340 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3341 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3342 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3343
3344 /*
3345 * Turn on usage filter if is not already used. The idea is
3346 * that chunks that we have already balanced should be
3347 * reasonably full. Don't do it for chunks that are being
3348 * converted - that will keep us from relocating unconverted
3349 * (albeit full) chunks.
3350 */
3351 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3352 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3353 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3354 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3355 bctl->data.usage = 90;
3356 }
3357 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3358 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3359 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3360 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3361 bctl->sys.usage = 90;
3362 }
3363 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3364 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3365 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3366 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3367 bctl->meta.usage = 90;
3368 }
3369 }
3370
3371 /*
3372 * Clear the balance status in fs_info and delete the balance item from disk.
3373 */
3374 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3375 {
3376 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3377 int ret;
3378
3379 BUG_ON(!fs_info->balance_ctl);
3380
3381 spin_lock(&fs_info->balance_lock);
3382 fs_info->balance_ctl = NULL;
3383 spin_unlock(&fs_info->balance_lock);
3384
3385 kfree(bctl);
3386 ret = del_balance_item(fs_info);
3387 if (ret)
3388 btrfs_handle_fs_error(fs_info, ret, NULL);
3389 }
3390
3391 /*
3392 * Balance filters. Return 1 if chunk should be filtered out
3393 * (should not be balanced).
3394 */
3395 static int chunk_profiles_filter(u64 chunk_type,
3396 struct btrfs_balance_args *bargs)
3397 {
3398 chunk_type = chunk_to_extended(chunk_type) &
3399 BTRFS_EXTENDED_PROFILE_MASK;
3400
3401 if (bargs->profiles & chunk_type)
3402 return 0;
3403
3404 return 1;
3405 }
3406
3407 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3408 struct btrfs_balance_args *bargs)
3409 {
3410 struct btrfs_block_group_cache *cache;
3411 u64 chunk_used;
3412 u64 user_thresh_min;
3413 u64 user_thresh_max;
3414 int ret = 1;
3415
3416 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3417 chunk_used = btrfs_block_group_used(&cache->item);
3418
3419 if (bargs->usage_min == 0)
3420 user_thresh_min = 0;
3421 else
3422 user_thresh_min = div_factor_fine(cache->key.offset,
3423 bargs->usage_min);
3424
3425 if (bargs->usage_max == 0)
3426 user_thresh_max = 1;
3427 else if (bargs->usage_max > 100)
3428 user_thresh_max = cache->key.offset;
3429 else
3430 user_thresh_max = div_factor_fine(cache->key.offset,
3431 bargs->usage_max);
3432
3433 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3434 ret = 0;
3435
3436 btrfs_put_block_group(cache);
3437 return ret;
3438 }
3439
3440 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3441 u64 chunk_offset, struct btrfs_balance_args *bargs)
3442 {
3443 struct btrfs_block_group_cache *cache;
3444 u64 chunk_used, user_thresh;
3445 int ret = 1;
3446
3447 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3448 chunk_used = btrfs_block_group_used(&cache->item);
3449
3450 if (bargs->usage_min == 0)
3451 user_thresh = 1;
3452 else if (bargs->usage > 100)
3453 user_thresh = cache->key.offset;
3454 else
3455 user_thresh = div_factor_fine(cache->key.offset,
3456 bargs->usage);
3457
3458 if (chunk_used < user_thresh)
3459 ret = 0;
3460
3461 btrfs_put_block_group(cache);
3462 return ret;
3463 }
3464
3465 static int chunk_devid_filter(struct extent_buffer *leaf,
3466 struct btrfs_chunk *chunk,
3467 struct btrfs_balance_args *bargs)
3468 {
3469 struct btrfs_stripe *stripe;
3470 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3471 int i;
3472
3473 for (i = 0; i < num_stripes; i++) {
3474 stripe = btrfs_stripe_nr(chunk, i);
3475 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3476 return 0;
3477 }
3478
3479 return 1;
3480 }
3481
3482 static u64 calc_data_stripes(u64 type, int num_stripes)
3483 {
3484 const int index = btrfs_bg_flags_to_raid_index(type);
3485 const int ncopies = btrfs_raid_array[index].ncopies;
3486 const int nparity = btrfs_raid_array[index].nparity;
3487
3488 if (nparity)
3489 return num_stripes - nparity;
3490 else
3491 return num_stripes / ncopies;
3492 }
3493
3494 /* [pstart, pend) */
3495 static int chunk_drange_filter(struct extent_buffer *leaf,
3496 struct btrfs_chunk *chunk,
3497 struct btrfs_balance_args *bargs)
3498 {
3499 struct btrfs_stripe *stripe;
3500 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3501 u64 stripe_offset;
3502 u64 stripe_length;
3503 u64 type;
3504 int factor;
3505 int i;
3506
3507 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3508 return 0;
3509
3510 type = btrfs_chunk_type(leaf, chunk);
3511 factor = calc_data_stripes(type, num_stripes);
3512
3513 for (i = 0; i < num_stripes; i++) {
3514 stripe = btrfs_stripe_nr(chunk, i);
3515 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3516 continue;
3517
3518 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3519 stripe_length = btrfs_chunk_length(leaf, chunk);
3520 stripe_length = div_u64(stripe_length, factor);
3521
3522 if (stripe_offset < bargs->pend &&
3523 stripe_offset + stripe_length > bargs->pstart)
3524 return 0;
3525 }
3526
3527 return 1;
3528 }
3529
3530 /* [vstart, vend) */
3531 static int chunk_vrange_filter(struct extent_buffer *leaf,
3532 struct btrfs_chunk *chunk,
3533 u64 chunk_offset,
3534 struct btrfs_balance_args *bargs)
3535 {
3536 if (chunk_offset < bargs->vend &&
3537 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3538 /* at least part of the chunk is inside this vrange */
3539 return 0;
3540
3541 return 1;
3542 }
3543
3544 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3545 struct btrfs_chunk *chunk,
3546 struct btrfs_balance_args *bargs)
3547 {
3548 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3549
3550 if (bargs->stripes_min <= num_stripes
3551 && num_stripes <= bargs->stripes_max)
3552 return 0;
3553
3554 return 1;
3555 }
3556
3557 static int chunk_soft_convert_filter(u64 chunk_type,
3558 struct btrfs_balance_args *bargs)
3559 {
3560 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3561 return 0;
3562
3563 chunk_type = chunk_to_extended(chunk_type) &
3564 BTRFS_EXTENDED_PROFILE_MASK;
3565
3566 if (bargs->target == chunk_type)
3567 return 1;
3568
3569 return 0;
3570 }
3571
3572 static int should_balance_chunk(struct extent_buffer *leaf,
3573 struct btrfs_chunk *chunk, u64 chunk_offset)
3574 {
3575 struct btrfs_fs_info *fs_info = leaf->fs_info;
3576 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3577 struct btrfs_balance_args *bargs = NULL;
3578 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3579
3580 /* type filter */
3581 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3582 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3583 return 0;
3584 }
3585
3586 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3587 bargs = &bctl->data;
3588 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3589 bargs = &bctl->sys;
3590 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3591 bargs = &bctl->meta;
3592
3593 /* profiles filter */
3594 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3595 chunk_profiles_filter(chunk_type, bargs)) {
3596 return 0;
3597 }
3598
3599 /* usage filter */
3600 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3601 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3602 return 0;
3603 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3604 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3605 return 0;
3606 }
3607
3608 /* devid filter */
3609 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3610 chunk_devid_filter(leaf, chunk, bargs)) {
3611 return 0;
3612 }
3613
3614 /* drange filter, makes sense only with devid filter */
3615 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3616 chunk_drange_filter(leaf, chunk, bargs)) {
3617 return 0;
3618 }
3619
3620 /* vrange filter */
3621 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3622 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3623 return 0;
3624 }
3625
3626 /* stripes filter */
3627 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3628 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3629 return 0;
3630 }
3631
3632 /* soft profile changing mode */
3633 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3634 chunk_soft_convert_filter(chunk_type, bargs)) {
3635 return 0;
3636 }
3637
3638 /*
3639 * limited by count, must be the last filter
3640 */
3641 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3642 if (bargs->limit == 0)
3643 return 0;
3644 else
3645 bargs->limit--;
3646 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3647 /*
3648 * Same logic as the 'limit' filter; the minimum cannot be
3649 * determined here because we do not have the global information
3650 * about the count of all chunks that satisfy the filters.
3651 */
3652 if (bargs->limit_max == 0)
3653 return 0;
3654 else
3655 bargs->limit_max--;
3656 }
3657
3658 return 1;
3659 }
3660
3661 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3662 {
3663 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3664 struct btrfs_root *chunk_root = fs_info->chunk_root;
3665 u64 chunk_type;
3666 struct btrfs_chunk *chunk;
3667 struct btrfs_path *path = NULL;
3668 struct btrfs_key key;
3669 struct btrfs_key found_key;
3670 struct extent_buffer *leaf;
3671 int slot;
3672 int ret;
3673 int enospc_errors = 0;
3674 bool counting = true;
3675 /* The single value limit and min/max limits use the same bytes in the */
3676 u64 limit_data = bctl->data.limit;
3677 u64 limit_meta = bctl->meta.limit;
3678 u64 limit_sys = bctl->sys.limit;
3679 u32 count_data = 0;
3680 u32 count_meta = 0;
3681 u32 count_sys = 0;
3682 int chunk_reserved = 0;
3683
3684 path = btrfs_alloc_path();
3685 if (!path) {
3686 ret = -ENOMEM;
3687 goto error;
3688 }
3689
3690 /* zero out stat counters */
3691 spin_lock(&fs_info->balance_lock);
3692 memset(&bctl->stat, 0, sizeof(bctl->stat));
3693 spin_unlock(&fs_info->balance_lock);
3694 again:
3695 if (!counting) {
3696 /*
3697 * The single value limit and min/max limits use the same bytes
3698 * in the
3699 */
3700 bctl->data.limit = limit_data;
3701 bctl->meta.limit = limit_meta;
3702 bctl->sys.limit = limit_sys;
3703 }
3704 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3705 key.offset = (u64)-1;
3706 key.type = BTRFS_CHUNK_ITEM_KEY;
3707
3708 while (1) {
3709 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3710 atomic_read(&fs_info->balance_cancel_req)) {
3711 ret = -ECANCELED;
3712 goto error;
3713 }
3714
3715 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3716 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3717 if (ret < 0) {
3718 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3719 goto error;
3720 }
3721
3722 /*
3723 * this shouldn't happen, it means the last relocate
3724 * failed
3725 */
3726 if (ret == 0)
3727 BUG(); /* FIXME break ? */
3728
3729 ret = btrfs_previous_item(chunk_root, path, 0,
3730 BTRFS_CHUNK_ITEM_KEY);
3731 if (ret) {
3732 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3733 ret = 0;
3734 break;
3735 }
3736
3737 leaf = path->nodes[0];
3738 slot = path->slots[0];
3739 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3740
3741 if (found_key.objectid != key.objectid) {
3742 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3743 break;
3744 }
3745
3746 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3747 chunk_type = btrfs_chunk_type(leaf, chunk);
3748
3749 if (!counting) {
3750 spin_lock(&fs_info->balance_lock);
3751 bctl->stat.considered++;
3752 spin_unlock(&fs_info->balance_lock);
3753 }
3754
3755 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3756
3757 btrfs_release_path(path);
3758 if (!ret) {
3759 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3760 goto loop;
3761 }
3762
3763 if (counting) {
3764 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3765 spin_lock(&fs_info->balance_lock);
3766 bctl->stat.expected++;
3767 spin_unlock(&fs_info->balance_lock);
3768
3769 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3770 count_data++;
3771 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3772 count_sys++;
3773 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3774 count_meta++;
3775
3776 goto loop;
3777 }
3778
3779 /*
3780 * Apply limit_min filter, no need to check if the LIMITS
3781 * filter is used, limit_min is 0 by default
3782 */
3783 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3784 count_data < bctl->data.limit_min)
3785 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3786 count_meta < bctl->meta.limit_min)
3787 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3788 count_sys < bctl->sys.limit_min)) {
3789 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3790 goto loop;
3791 }
3792
3793 if (!chunk_reserved) {
3794 /*
3795 * We may be relocating the only data chunk we have,
3796 * which could potentially end up with losing data's
3797 * raid profile, so lets allocate an empty one in
3798 * advance.
3799 */
3800 ret = btrfs_may_alloc_data_chunk(fs_info,
3801 found_key.offset);
3802 if (ret < 0) {
3803 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3804 goto error;
3805 } else if (ret == 1) {
3806 chunk_reserved = 1;
3807 }
3808 }
3809
3810 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3811 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3812 if (ret == -ENOSPC) {
3813 enospc_errors++;
3814 } else if (ret == -ETXTBSY) {
3815 btrfs_info(fs_info,
3816 "skipping relocation of block group %llu due to active swapfile",
3817 found_key.offset);
3818 ret = 0;
3819 } else if (ret) {
3820 goto error;
3821 } else {
3822 spin_lock(&fs_info->balance_lock);
3823 bctl->stat.completed++;
3824 spin_unlock(&fs_info->balance_lock);
3825 }
3826 loop:
3827 if (found_key.offset == 0)
3828 break;
3829 key.offset = found_key.offset - 1;
3830 }
3831
3832 if (counting) {
3833 btrfs_release_path(path);
3834 counting = false;
3835 goto again;
3836 }
3837 error:
3838 btrfs_free_path(path);
3839 if (enospc_errors) {
3840 btrfs_info(fs_info, "%d enospc errors during balance",
3841 enospc_errors);
3842 if (!ret)
3843 ret = -ENOSPC;
3844 }
3845
3846 return ret;
3847 }
3848
3849 /**
3850 * alloc_profile_is_valid - see if a given profile is valid and reduced
3851 * @flags: profile to validate
3852 * @extended: if true @flags is treated as an extended profile
3853 */
3854 static int alloc_profile_is_valid(u64 flags, int extended)
3855 {
3856 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3857 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3858
3859 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3860
3861 /* 1) check that all other bits are zeroed */
3862 if (flags & ~mask)
3863 return 0;
3864
3865 /* 2) see if profile is reduced */
3866 if (flags == 0)
3867 return !extended; /* "0" is valid for usual profiles */
3868
3869 /* true if exactly one bit set */
3870 return is_power_of_2(flags);
3871 }
3872
3873 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3874 {
3875 /* cancel requested || normal exit path */
3876 return atomic_read(&fs_info->balance_cancel_req) ||
3877 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3878 atomic_read(&fs_info->balance_cancel_req) == 0);
3879 }
3880
3881 /* Non-zero return value signifies invalidity */
3882 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3883 u64 allowed)
3884 {
3885 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3886 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3887 (bctl_arg->target & ~allowed)));
3888 }
3889
3890 /*
3891 * Fill @buf with textual description of balance filter flags @bargs, up to
3892 * @size_buf including the terminating null. The output may be trimmed if it
3893 * does not fit into the provided buffer.
3894 */
3895 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3896 u32 size_buf)
3897 {
3898 int ret;
3899 u32 size_bp = size_buf;
3900 char *bp = buf;
3901 u64 flags = bargs->flags;
3902 char tmp_buf[128] = {'\0'};
3903
3904 if (!flags)
3905 return;
3906
3907 #define CHECK_APPEND_NOARG(a) \
3908 do { \
3909 ret = snprintf(bp, size_bp, (a)); \
3910 if (ret < 0 || ret >= size_bp) \
3911 goto out_overflow; \
3912 size_bp -= ret; \
3913 bp += ret; \
3914 } while (0)
3915
3916 #define CHECK_APPEND_1ARG(a, v1) \
3917 do { \
3918 ret = snprintf(bp, size_bp, (a), (v1)); \
3919 if (ret < 0 || ret >= size_bp) \
3920 goto out_overflow; \
3921 size_bp -= ret; \
3922 bp += ret; \
3923 } while (0)
3924
3925 #define CHECK_APPEND_2ARG(a, v1, v2) \
3926 do { \
3927 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
3928 if (ret < 0 || ret >= size_bp) \
3929 goto out_overflow; \
3930 size_bp -= ret; \
3931 bp += ret; \
3932 } while (0)
3933
3934 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3935 CHECK_APPEND_1ARG("convert=%s,",
3936 btrfs_bg_type_to_raid_name(bargs->target));
3937
3938 if (flags & BTRFS_BALANCE_ARGS_SOFT)
3939 CHECK_APPEND_NOARG("soft,");
3940
3941 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3942 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3943 sizeof(tmp_buf));
3944 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3945 }
3946
3947 if (flags & BTRFS_BALANCE_ARGS_USAGE)
3948 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3949
3950 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3951 CHECK_APPEND_2ARG("usage=%u..%u,",
3952 bargs->usage_min, bargs->usage_max);
3953
3954 if (flags & BTRFS_BALANCE_ARGS_DEVID)
3955 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3956
3957 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3958 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3959 bargs->pstart, bargs->pend);
3960
3961 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3962 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3963 bargs->vstart, bargs->vend);
3964
3965 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3966 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3967
3968 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3969 CHECK_APPEND_2ARG("limit=%u..%u,",
3970 bargs->limit_min, bargs->limit_max);
3971
3972 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3973 CHECK_APPEND_2ARG("stripes=%u..%u,",
3974 bargs->stripes_min, bargs->stripes_max);
3975
3976 #undef CHECK_APPEND_2ARG
3977 #undef CHECK_APPEND_1ARG
3978 #undef CHECK_APPEND_NOARG
3979
3980 out_overflow:
3981
3982 if (size_bp < size_buf)
3983 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3984 else
3985 buf[0] = '\0';
3986 }
3987
3988 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3989 {
3990 u32 size_buf = 1024;
3991 char tmp_buf[192] = {'\0'};
3992 char *buf;
3993 char *bp;
3994 u32 size_bp = size_buf;
3995 int ret;
3996 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3997
3998 buf = kzalloc(size_buf, GFP_KERNEL);
3999 if (!buf)
4000 return;
4001
4002 bp = buf;
4003
4004 #define CHECK_APPEND_1ARG(a, v1) \
4005 do { \
4006 ret = snprintf(bp, size_bp, (a), (v1)); \
4007 if (ret < 0 || ret >= size_bp) \
4008 goto out_overflow; \
4009 size_bp -= ret; \
4010 bp += ret; \
4011 } while (0)
4012
4013 if (bctl->flags & BTRFS_BALANCE_FORCE)
4014 CHECK_APPEND_1ARG("%s", "-f ");
4015
4016 if (bctl->flags & BTRFS_BALANCE_DATA) {
4017 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4018 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4019 }
4020
4021 if (bctl->flags & BTRFS_BALANCE_METADATA) {
4022 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4023 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4024 }
4025
4026 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4027 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4028 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4029 }
4030
4031 #undef CHECK_APPEND_1ARG
4032
4033 out_overflow:
4034
4035 if (size_bp < size_buf)
4036 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4037 btrfs_info(fs_info, "balance: %s %s",
4038 (bctl->flags & BTRFS_BALANCE_RESUME) ?
4039 "resume" : "start", buf);
4040
4041 kfree(buf);
4042 }
4043
4044 /*
4045 * Should be called with balance mutexe held
4046 */
4047 int btrfs_balance(struct btrfs_fs_info *fs_info,
4048 struct btrfs_balance_control *bctl,
4049 struct btrfs_ioctl_balance_args *bargs)
4050 {
4051 u64 meta_target, data_target;
4052 u64 allowed;
4053 int mixed = 0;
4054 int ret;
4055 u64 num_devices;
4056 unsigned seq;
4057 bool reducing_integrity;
4058 int i;
4059
4060 if (btrfs_fs_closing(fs_info) ||
4061 atomic_read(&fs_info->balance_pause_req) ||
4062 atomic_read(&fs_info->balance_cancel_req)) {
4063 ret = -EINVAL;
4064 goto out;
4065 }
4066
4067 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4068 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4069 mixed = 1;
4070
4071 /*
4072 * In case of mixed groups both data and meta should be picked,
4073 * and identical options should be given for both of them.
4074 */
4075 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4076 if (mixed && (bctl->flags & allowed)) {
4077 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4078 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4079 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4080 btrfs_err(fs_info,
4081 "balance: mixed groups data and metadata options must be the same");
4082 ret = -EINVAL;
4083 goto out;
4084 }
4085 }
4086
4087 num_devices = btrfs_num_devices(fs_info);
4088 allowed = 0;
4089 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4090 if (num_devices >= btrfs_raid_array[i].devs_min)
4091 allowed |= btrfs_raid_array[i].bg_flag;
4092
4093 if (validate_convert_profile(&bctl->data, allowed)) {
4094 btrfs_err(fs_info,
4095 "balance: invalid convert data profile %s",
4096 btrfs_bg_type_to_raid_name(bctl->data.target));
4097 ret = -EINVAL;
4098 goto out;
4099 }
4100 if (validate_convert_profile(&bctl->meta, allowed)) {
4101 btrfs_err(fs_info,
4102 "balance: invalid convert metadata profile %s",
4103 btrfs_bg_type_to_raid_name(bctl->meta.target));
4104 ret = -EINVAL;
4105 goto out;
4106 }
4107 if (validate_convert_profile(&bctl->sys, allowed)) {
4108 btrfs_err(fs_info,
4109 "balance: invalid convert system profile %s",
4110 btrfs_bg_type_to_raid_name(bctl->sys.target));
4111 ret = -EINVAL;
4112 goto out;
4113 }
4114
4115 /*
4116 * Allow to reduce metadata or system integrity only if force set for
4117 * profiles with redundancy (copies, parity)
4118 */
4119 allowed = 0;
4120 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4121 if (btrfs_raid_array[i].ncopies >= 2 ||
4122 btrfs_raid_array[i].tolerated_failures >= 1)
4123 allowed |= btrfs_raid_array[i].bg_flag;
4124 }
4125 do {
4126 seq = read_seqbegin(&fs_info->profiles_lock);
4127
4128 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4129 (fs_info->avail_system_alloc_bits & allowed) &&
4130 !(bctl->sys.target & allowed)) ||
4131 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4132 (fs_info->avail_metadata_alloc_bits & allowed) &&
4133 !(bctl->meta.target & allowed)))
4134 reducing_integrity = true;
4135 else
4136 reducing_integrity = false;
4137
4138 /* if we're not converting, the target field is uninitialized */
4139 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4140 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4141 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4142 bctl->data.target : fs_info->avail_data_alloc_bits;
4143 } while (read_seqretry(&fs_info->profiles_lock, seq));
4144
4145 if (reducing_integrity) {
4146 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4147 btrfs_info(fs_info,
4148 "balance: force reducing metadata integrity");
4149 } else {
4150 btrfs_err(fs_info,
4151 "balance: reduces metadata integrity, use --force if you want this");
4152 ret = -EINVAL;
4153 goto out;
4154 }
4155 }
4156
4157 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4158 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4159 btrfs_warn(fs_info,
4160 "balance: metadata profile %s has lower redundancy than data profile %s",
4161 btrfs_bg_type_to_raid_name(meta_target),
4162 btrfs_bg_type_to_raid_name(data_target));
4163 }
4164
4165 if (fs_info->send_in_progress) {
4166 btrfs_warn_rl(fs_info,
4167 "cannot run balance while send operations are in progress (%d in progress)",
4168 fs_info->send_in_progress);
4169 ret = -EAGAIN;
4170 goto out;
4171 }
4172
4173 ret = insert_balance_item(fs_info, bctl);
4174 if (ret && ret != -EEXIST)
4175 goto out;
4176
4177 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4178 BUG_ON(ret == -EEXIST);
4179 BUG_ON(fs_info->balance_ctl);
4180 spin_lock(&fs_info->balance_lock);
4181 fs_info->balance_ctl = bctl;
4182 spin_unlock(&fs_info->balance_lock);
4183 } else {
4184 BUG_ON(ret != -EEXIST);
4185 spin_lock(&fs_info->balance_lock);
4186 update_balance_args(bctl);
4187 spin_unlock(&fs_info->balance_lock);
4188 }
4189
4190 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4191 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4192 describe_balance_start_or_resume(fs_info);
4193 mutex_unlock(&fs_info->balance_mutex);
4194
4195 ret = __btrfs_balance(fs_info);
4196
4197 mutex_lock(&fs_info->balance_mutex);
4198 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4199 btrfs_info(fs_info, "balance: paused");
4200 else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
4201 btrfs_info(fs_info, "balance: canceled");
4202 else
4203 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4204
4205 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4206
4207 if (bargs) {
4208 memset(bargs, 0, sizeof(*bargs));
4209 btrfs_update_ioctl_balance_args(fs_info, bargs);
4210 }
4211
4212 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4213 balance_need_close(fs_info)) {
4214 reset_balance_state(fs_info);
4215 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4216 }
4217
4218 wake_up(&fs_info->balance_wait_q);
4219
4220 return ret;
4221 out:
4222 if (bctl->flags & BTRFS_BALANCE_RESUME)
4223 reset_balance_state(fs_info);
4224 else
4225 kfree(bctl);
4226 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4227
4228 return ret;
4229 }
4230
4231 static int balance_kthread(void *data)
4232 {
4233 struct btrfs_fs_info *fs_info = data;
4234 int ret = 0;
4235
4236 mutex_lock(&fs_info->balance_mutex);
4237 if (fs_info->balance_ctl)
4238 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4239 mutex_unlock(&fs_info->balance_mutex);
4240
4241 return ret;
4242 }
4243
4244 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4245 {
4246 struct task_struct *tsk;
4247
4248 mutex_lock(&fs_info->balance_mutex);
4249 if (!fs_info->balance_ctl) {
4250 mutex_unlock(&fs_info->balance_mutex);
4251 return 0;
4252 }
4253 mutex_unlock(&fs_info->balance_mutex);
4254
4255 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4256 btrfs_info(fs_info, "balance: resume skipped");
4257 return 0;
4258 }
4259
4260 /*
4261 * A ro->rw remount sequence should continue with the paused balance
4262 * regardless of who pauses it, system or the user as of now, so set
4263 * the resume flag.
4264 */
4265 spin_lock(&fs_info->balance_lock);
4266 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4267 spin_unlock(&fs_info->balance_lock);
4268
4269 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4270 return PTR_ERR_OR_ZERO(tsk);
4271 }
4272
4273 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4274 {
4275 struct btrfs_balance_control *bctl;
4276 struct btrfs_balance_item *item;
4277 struct btrfs_disk_balance_args disk_bargs;
4278 struct btrfs_path *path;
4279 struct extent_buffer *leaf;
4280 struct btrfs_key key;
4281 int ret;
4282
4283 path = btrfs_alloc_path();
4284 if (!path)
4285 return -ENOMEM;
4286
4287 key.objectid = BTRFS_BALANCE_OBJECTID;
4288 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4289 key.offset = 0;
4290
4291 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4292 if (ret < 0)
4293 goto out;
4294 if (ret > 0) { /* ret = -ENOENT; */
4295 ret = 0;
4296 goto out;
4297 }
4298
4299 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4300 if (!bctl) {
4301 ret = -ENOMEM;
4302 goto out;
4303 }
4304
4305 leaf = path->nodes[0];
4306 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4307
4308 bctl->flags = btrfs_balance_flags(leaf, item);
4309 bctl->flags |= BTRFS_BALANCE_RESUME;
4310
4311 btrfs_balance_data(leaf, item, &disk_bargs);
4312 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4313 btrfs_balance_meta(leaf, item, &disk_bargs);
4314 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4315 btrfs_balance_sys(leaf, item, &disk_bargs);
4316 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4317
4318 /*
4319 * This should never happen, as the paused balance state is recovered
4320 * during mount without any chance of other exclusive ops to collide.
4321 *
4322 * This gives the exclusive op status to balance and keeps in paused
4323 * state until user intervention (cancel or umount). If the ownership
4324 * cannot be assigned, show a message but do not fail. The balance
4325 * is in a paused state and must have fs_info::balance_ctl properly
4326 * set up.
4327 */
4328 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4329 btrfs_warn(fs_info,
4330 "balance: cannot set exclusive op status, resume manually");
4331
4332 mutex_lock(&fs_info->balance_mutex);
4333 BUG_ON(fs_info->balance_ctl);
4334 spin_lock(&fs_info->balance_lock);
4335 fs_info->balance_ctl = bctl;
4336 spin_unlock(&fs_info->balance_lock);
4337 mutex_unlock(&fs_info->balance_mutex);
4338 out:
4339 btrfs_free_path(path);
4340 return ret;
4341 }
4342
4343 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4344 {
4345 int ret = 0;
4346
4347 mutex_lock(&fs_info->balance_mutex);
4348 if (!fs_info->balance_ctl) {
4349 mutex_unlock(&fs_info->balance_mutex);
4350 return -ENOTCONN;
4351 }
4352
4353 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4354 atomic_inc(&fs_info->balance_pause_req);
4355 mutex_unlock(&fs_info->balance_mutex);
4356
4357 wait_event(fs_info->balance_wait_q,
4358 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4359
4360 mutex_lock(&fs_info->balance_mutex);
4361 /* we are good with balance_ctl ripped off from under us */
4362 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4363 atomic_dec(&fs_info->balance_pause_req);
4364 } else {
4365 ret = -ENOTCONN;
4366 }
4367
4368 mutex_unlock(&fs_info->balance_mutex);
4369 return ret;
4370 }
4371
4372 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4373 {
4374 mutex_lock(&fs_info->balance_mutex);
4375 if (!fs_info->balance_ctl) {
4376 mutex_unlock(&fs_info->balance_mutex);
4377 return -ENOTCONN;
4378 }
4379
4380 /*
4381 * A paused balance with the item stored on disk can be resumed at
4382 * mount time if the mount is read-write. Otherwise it's still paused
4383 * and we must not allow cancelling as it deletes the item.
4384 */
4385 if (sb_rdonly(fs_info->sb)) {
4386 mutex_unlock(&fs_info->balance_mutex);
4387 return -EROFS;
4388 }
4389
4390 atomic_inc(&fs_info->balance_cancel_req);
4391 /*
4392 * if we are running just wait and return, balance item is
4393 * deleted in btrfs_balance in this case
4394 */
4395 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4396 mutex_unlock(&fs_info->balance_mutex);
4397 wait_event(fs_info->balance_wait_q,
4398 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4399 mutex_lock(&fs_info->balance_mutex);
4400 } else {
4401 mutex_unlock(&fs_info->balance_mutex);
4402 /*
4403 * Lock released to allow other waiters to continue, we'll
4404 * reexamine the status again.
4405 */
4406 mutex_lock(&fs_info->balance_mutex);
4407
4408 if (fs_info->balance_ctl) {
4409 reset_balance_state(fs_info);
4410 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4411 btrfs_info(fs_info, "balance: canceled");
4412 }
4413 }
4414
4415 BUG_ON(fs_info->balance_ctl ||
4416 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4417 atomic_dec(&fs_info->balance_cancel_req);
4418 mutex_unlock(&fs_info->balance_mutex);
4419 return 0;
4420 }
4421
4422 static int btrfs_uuid_scan_kthread(void *data)
4423 {
4424 struct btrfs_fs_info *fs_info = data;
4425 struct btrfs_root *root = fs_info->tree_root;
4426 struct btrfs_key key;
4427 struct btrfs_path *path = NULL;
4428 int ret = 0;
4429 struct extent_buffer *eb;
4430 int slot;
4431 struct btrfs_root_item root_item;
4432 u32 item_size;
4433 struct btrfs_trans_handle *trans = NULL;
4434
4435 path = btrfs_alloc_path();
4436 if (!path) {
4437 ret = -ENOMEM;
4438 goto out;
4439 }
4440
4441 key.objectid = 0;
4442 key.type = BTRFS_ROOT_ITEM_KEY;
4443 key.offset = 0;
4444
4445 while (1) {
4446 ret = btrfs_search_forward(root, &key, path,
4447 BTRFS_OLDEST_GENERATION);
4448 if (ret) {
4449 if (ret > 0)
4450 ret = 0;
4451 break;
4452 }
4453
4454 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4455 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4456 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4457 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4458 goto skip;
4459
4460 eb = path->nodes[0];
4461 slot = path->slots[0];
4462 item_size = btrfs_item_size_nr(eb, slot);
4463 if (item_size < sizeof(root_item))
4464 goto skip;
4465
4466 read_extent_buffer(eb, &root_item,
4467 btrfs_item_ptr_offset(eb, slot),
4468 (int)sizeof(root_item));
4469 if (btrfs_root_refs(&root_item) == 0)
4470 goto skip;
4471
4472 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4473 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4474 if (trans)
4475 goto update_tree;
4476
4477 btrfs_release_path(path);
4478 /*
4479 * 1 - subvol uuid item
4480 * 1 - received_subvol uuid item
4481 */
4482 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4483 if (IS_ERR(trans)) {
4484 ret = PTR_ERR(trans);
4485 break;
4486 }
4487 continue;
4488 } else {
4489 goto skip;
4490 }
4491 update_tree:
4492 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4493 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4494 BTRFS_UUID_KEY_SUBVOL,
4495 key.objectid);
4496 if (ret < 0) {
4497 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4498 ret);
4499 break;
4500 }
4501 }
4502
4503 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4504 ret = btrfs_uuid_tree_add(trans,
4505 root_item.received_uuid,
4506 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4507 key.objectid);
4508 if (ret < 0) {
4509 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4510 ret);
4511 break;
4512 }
4513 }
4514
4515 skip:
4516 if (trans) {
4517 ret = btrfs_end_transaction(trans);
4518 trans = NULL;
4519 if (ret)
4520 break;
4521 }
4522
4523 btrfs_release_path(path);
4524 if (key.offset < (u64)-1) {
4525 key.offset++;
4526 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4527 key.offset = 0;
4528 key.type = BTRFS_ROOT_ITEM_KEY;
4529 } else if (key.objectid < (u64)-1) {
4530 key.offset = 0;
4531 key.type = BTRFS_ROOT_ITEM_KEY;
4532 key.objectid++;
4533 } else {
4534 break;
4535 }
4536 cond_resched();
4537 }
4538
4539 out:
4540 btrfs_free_path(path);
4541 if (trans && !IS_ERR(trans))
4542 btrfs_end_transaction(trans);
4543 if (ret)
4544 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4545 else
4546 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4547 up(&fs_info->uuid_tree_rescan_sem);
4548 return 0;
4549 }
4550
4551 /*
4552 * Callback for btrfs_uuid_tree_iterate().
4553 * returns:
4554 * 0 check succeeded, the entry is not outdated.
4555 * < 0 if an error occurred.
4556 * > 0 if the check failed, which means the caller shall remove the entry.
4557 */
4558 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4559 u8 *uuid, u8 type, u64 subid)
4560 {
4561 struct btrfs_key key;
4562 int ret = 0;
4563 struct btrfs_root *subvol_root;
4564
4565 if (type != BTRFS_UUID_KEY_SUBVOL &&
4566 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4567 goto out;
4568
4569 key.objectid = subid;
4570 key.type = BTRFS_ROOT_ITEM_KEY;
4571 key.offset = (u64)-1;
4572 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4573 if (IS_ERR(subvol_root)) {
4574 ret = PTR_ERR(subvol_root);
4575 if (ret == -ENOENT)
4576 ret = 1;
4577 goto out;
4578 }
4579
4580 switch (type) {
4581 case BTRFS_UUID_KEY_SUBVOL:
4582 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4583 ret = 1;
4584 break;
4585 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4586 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4587 BTRFS_UUID_SIZE))
4588 ret = 1;
4589 break;
4590 }
4591
4592 out:
4593 return ret;
4594 }
4595
4596 static int btrfs_uuid_rescan_kthread(void *data)
4597 {
4598 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4599 int ret;
4600
4601 /*
4602 * 1st step is to iterate through the existing UUID tree and
4603 * to delete all entries that contain outdated data.
4604 * 2nd step is to add all missing entries to the UUID tree.
4605 */
4606 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4607 if (ret < 0) {
4608 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4609 up(&fs_info->uuid_tree_rescan_sem);
4610 return ret;
4611 }
4612 return btrfs_uuid_scan_kthread(data);
4613 }
4614
4615 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4616 {
4617 struct btrfs_trans_handle *trans;
4618 struct btrfs_root *tree_root = fs_info->tree_root;
4619 struct btrfs_root *uuid_root;
4620 struct task_struct *task;
4621 int ret;
4622
4623 /*
4624 * 1 - root node
4625 * 1 - root item
4626 */
4627 trans = btrfs_start_transaction(tree_root, 2);
4628 if (IS_ERR(trans))
4629 return PTR_ERR(trans);
4630
4631 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4632 if (IS_ERR(uuid_root)) {
4633 ret = PTR_ERR(uuid_root);
4634 btrfs_abort_transaction(trans, ret);
4635 btrfs_end_transaction(trans);
4636 return ret;
4637 }
4638
4639 fs_info->uuid_root = uuid_root;
4640
4641 ret = btrfs_commit_transaction(trans);
4642 if (ret)
4643 return ret;
4644
4645 down(&fs_info->uuid_tree_rescan_sem);
4646 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4647 if (IS_ERR(task)) {
4648 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4649 btrfs_warn(fs_info, "failed to start uuid_scan task");
4650 up(&fs_info->uuid_tree_rescan_sem);
4651 return PTR_ERR(task);
4652 }
4653
4654 return 0;
4655 }
4656
4657 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4658 {
4659 struct task_struct *task;
4660
4661 down(&fs_info->uuid_tree_rescan_sem);
4662 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4663 if (IS_ERR(task)) {
4664 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4665 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4666 up(&fs_info->uuid_tree_rescan_sem);
4667 return PTR_ERR(task);
4668 }
4669
4670 return 0;
4671 }
4672
4673 /*
4674 * shrinking a device means finding all of the device extents past
4675 * the new size, and then following the back refs to the chunks.
4676 * The chunk relocation code actually frees the device extent
4677 */
4678 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4679 {
4680 struct btrfs_fs_info *fs_info = device->fs_info;
4681 struct btrfs_root *root = fs_info->dev_root;
4682 struct btrfs_trans_handle *trans;
4683 struct btrfs_dev_extent *dev_extent = NULL;
4684 struct btrfs_path *path;
4685 u64 length;
4686 u64 chunk_offset;
4687 int ret;
4688 int slot;
4689 int failed = 0;
4690 bool retried = false;
4691 struct extent_buffer *l;
4692 struct btrfs_key key;
4693 struct btrfs_super_block *super_copy = fs_info->super_copy;
4694 u64 old_total = btrfs_super_total_bytes(super_copy);
4695 u64 old_size = btrfs_device_get_total_bytes(device);
4696 u64 diff;
4697 u64 start;
4698
4699 new_size = round_down(new_size, fs_info->sectorsize);
4700 start = new_size;
4701 diff = round_down(old_size - new_size, fs_info->sectorsize);
4702
4703 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4704 return -EINVAL;
4705
4706 path = btrfs_alloc_path();
4707 if (!path)
4708 return -ENOMEM;
4709
4710 path->reada = READA_BACK;
4711
4712 trans = btrfs_start_transaction(root, 0);
4713 if (IS_ERR(trans)) {
4714 btrfs_free_path(path);
4715 return PTR_ERR(trans);
4716 }
4717
4718 mutex_lock(&fs_info->chunk_mutex);
4719
4720 btrfs_device_set_total_bytes(device, new_size);
4721 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4722 device->fs_devices->total_rw_bytes -= diff;
4723 atomic64_sub(diff, &fs_info->free_chunk_space);
4724 }
4725
4726 /*
4727 * Once the device's size has been set to the new size, ensure all
4728 * in-memory chunks are synced to disk so that the loop below sees them
4729 * and relocates them accordingly.
4730 */
4731 if (contains_pending_extent(device, &start, diff)) {
4732 mutex_unlock(&fs_info->chunk_mutex);
4733 ret = btrfs_commit_transaction(trans);
4734 if (ret)
4735 goto done;
4736 } else {
4737 mutex_unlock(&fs_info->chunk_mutex);
4738 btrfs_end_transaction(trans);
4739 }
4740
4741 again:
4742 key.objectid = device->devid;
4743 key.offset = (u64)-1;
4744 key.type = BTRFS_DEV_EXTENT_KEY;
4745
4746 do {
4747 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4748 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4749 if (ret < 0) {
4750 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4751 goto done;
4752 }
4753
4754 ret = btrfs_previous_item(root, path, 0, key.type);
4755 if (ret)
4756 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4757 if (ret < 0)
4758 goto done;
4759 if (ret) {
4760 ret = 0;
4761 btrfs_release_path(path);
4762 break;
4763 }
4764
4765 l = path->nodes[0];
4766 slot = path->slots[0];
4767 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4768
4769 if (key.objectid != device->devid) {
4770 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4771 btrfs_release_path(path);
4772 break;
4773 }
4774
4775 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4776 length = btrfs_dev_extent_length(l, dev_extent);
4777
4778 if (key.offset + length <= new_size) {
4779 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4780 btrfs_release_path(path);
4781 break;
4782 }
4783
4784 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4785 btrfs_release_path(path);
4786
4787 /*
4788 * We may be relocating the only data chunk we have,
4789 * which could potentially end up with losing data's
4790 * raid profile, so lets allocate an empty one in
4791 * advance.
4792 */
4793 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4794 if (ret < 0) {
4795 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4796 goto done;
4797 }
4798
4799 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4800 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4801 if (ret == -ENOSPC) {
4802 failed++;
4803 } else if (ret) {
4804 if (ret == -ETXTBSY) {
4805 btrfs_warn(fs_info,
4806 "could not shrink block group %llu due to active swapfile",
4807 chunk_offset);
4808 }
4809 goto done;
4810 }
4811 } while (key.offset-- > 0);
4812
4813 if (failed && !retried) {
4814 failed = 0;
4815 retried = true;
4816 goto again;
4817 } else if (failed && retried) {
4818 ret = -ENOSPC;
4819 goto done;
4820 }
4821
4822 /* Shrinking succeeded, else we would be at "done". */
4823 trans = btrfs_start_transaction(root, 0);
4824 if (IS_ERR(trans)) {
4825 ret = PTR_ERR(trans);
4826 goto done;
4827 }
4828
4829 mutex_lock(&fs_info->chunk_mutex);
4830 btrfs_device_set_disk_total_bytes(device, new_size);
4831 if (list_empty(&device->post_commit_list))
4832 list_add_tail(&device->post_commit_list,
4833 &trans->transaction->dev_update_list);
4834
4835 WARN_ON(diff > old_total);
4836 btrfs_set_super_total_bytes(super_copy,
4837 round_down(old_total - diff, fs_info->sectorsize));
4838 mutex_unlock(&fs_info->chunk_mutex);
4839
4840 /* Now btrfs_update_device() will change the on-disk size. */
4841 ret = btrfs_update_device(trans, device);
4842 if (ret < 0) {
4843 btrfs_abort_transaction(trans, ret);
4844 btrfs_end_transaction(trans);
4845 } else {
4846 ret = btrfs_commit_transaction(trans);
4847 }
4848 done:
4849 btrfs_free_path(path);
4850 if (ret) {
4851 mutex_lock(&fs_info->chunk_mutex);
4852 btrfs_device_set_total_bytes(device, old_size);
4853 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4854 device->fs_devices->total_rw_bytes += diff;
4855 atomic64_add(diff, &fs_info->free_chunk_space);
4856 mutex_unlock(&fs_info->chunk_mutex);
4857 }
4858 return ret;
4859 }
4860
4861 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4862 struct btrfs_key *key,
4863 struct btrfs_chunk *chunk, int item_size)
4864 {
4865 struct btrfs_super_block *super_copy = fs_info->super_copy;
4866 struct btrfs_disk_key disk_key;
4867 u32 array_size;
4868 u8 *ptr;
4869
4870 mutex_lock(&fs_info->chunk_mutex);
4871 array_size = btrfs_super_sys_array_size(super_copy);
4872 if (array_size + item_size + sizeof(disk_key)
4873 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4874 mutex_unlock(&fs_info->chunk_mutex);
4875 return -EFBIG;
4876 }
4877
4878 ptr = super_copy->sys_chunk_array + array_size;
4879 btrfs_cpu_key_to_disk(&disk_key, key);
4880 memcpy(ptr, &disk_key, sizeof(disk_key));
4881 ptr += sizeof(disk_key);
4882 memcpy(ptr, chunk, item_size);
4883 item_size += sizeof(disk_key);
4884 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4885 mutex_unlock(&fs_info->chunk_mutex);
4886
4887 return 0;
4888 }
4889
4890 /*
4891 * sort the devices in descending order by max_avail, total_avail
4892 */
4893 static int btrfs_cmp_device_info(const void *a, const void *b)
4894 {
4895 const struct btrfs_device_info *di_a = a;
4896 const struct btrfs_device_info *di_b = b;
4897
4898 if (di_a->max_avail > di_b->max_avail)
4899 return -1;
4900 if (di_a->max_avail < di_b->max_avail)
4901 return 1;
4902 if (di_a->total_avail > di_b->total_avail)
4903 return -1;
4904 if (di_a->total_avail < di_b->total_avail)
4905 return 1;
4906 return 0;
4907 }
4908
4909 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4910 {
4911 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4912 return;
4913
4914 btrfs_set_fs_incompat(info, RAID56);
4915 }
4916
4917 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4918 u64 start, u64 type)
4919 {
4920 struct btrfs_fs_info *info = trans->fs_info;
4921 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4922 struct btrfs_device *device;
4923 struct map_lookup *map = NULL;
4924 struct extent_map_tree *em_tree;
4925 struct extent_map *em;
4926 struct btrfs_device_info *devices_info = NULL;
4927 u64 total_avail;
4928 int num_stripes; /* total number of stripes to allocate */
4929 int data_stripes; /* number of stripes that count for
4930 block group size */
4931 int sub_stripes; /* sub_stripes info for map */
4932 int dev_stripes; /* stripes per dev */
4933 int devs_max; /* max devs to use */
4934 int devs_min; /* min devs needed */
4935 int devs_increment; /* ndevs has to be a multiple of this */
4936 int ncopies; /* how many copies to data has */
4937 int nparity; /* number of stripes worth of bytes to
4938 store parity information */
4939 int ret;
4940 u64 max_stripe_size;
4941 u64 max_chunk_size;
4942 u64 stripe_size;
4943 u64 chunk_size;
4944 int ndevs;
4945 int i;
4946 int j;
4947 int index;
4948
4949 BUG_ON(!alloc_profile_is_valid(type, 0));
4950
4951 if (list_empty(&fs_devices->alloc_list)) {
4952 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4953 btrfs_debug(info, "%s: no writable device", __func__);
4954 return -ENOSPC;
4955 }
4956
4957 index = btrfs_bg_flags_to_raid_index(type);
4958
4959 sub_stripes = btrfs_raid_array[index].sub_stripes;
4960 dev_stripes = btrfs_raid_array[index].dev_stripes;
4961 devs_max = btrfs_raid_array[index].devs_max;
4962 if (!devs_max)
4963 devs_max = BTRFS_MAX_DEVS(info);
4964 devs_min = btrfs_raid_array[index].devs_min;
4965 devs_increment = btrfs_raid_array[index].devs_increment;
4966 ncopies = btrfs_raid_array[index].ncopies;
4967 nparity = btrfs_raid_array[index].nparity;
4968
4969 if (type & BTRFS_BLOCK_GROUP_DATA) {
4970 max_stripe_size = SZ_1G;
4971 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4972 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4973 /* for larger filesystems, use larger metadata chunks */
4974 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4975 max_stripe_size = SZ_1G;
4976 else
4977 max_stripe_size = SZ_256M;
4978 max_chunk_size = max_stripe_size;
4979 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4980 max_stripe_size = SZ_32M;
4981 max_chunk_size = 2 * max_stripe_size;
4982 } else {
4983 btrfs_err(info, "invalid chunk type 0x%llx requested",
4984 type);
4985 BUG();
4986 }
4987
4988 /* We don't want a chunk larger than 10% of writable space */
4989 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4990 max_chunk_size);
4991
4992 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4993 GFP_NOFS);
4994 if (!devices_info)
4995 return -ENOMEM;
4996
4997 /*
4998 * in the first pass through the devices list, we gather information
4999 * about the available holes on each device.
5000 */
5001 ndevs = 0;
5002 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
5003 u64 max_avail;
5004 u64 dev_offset;
5005
5006 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
5007 WARN(1, KERN_ERR
5008 "BTRFS: read-only device in alloc_list\n");
5009 continue;
5010 }
5011
5012 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5013 &device->dev_state) ||
5014 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5015 continue;
5016
5017 if (device->total_bytes > device->bytes_used)
5018 total_avail = device->total_bytes - device->bytes_used;
5019 else
5020 total_avail = 0;
5021
5022 /* If there is no space on this device, skip it. */
5023 if (total_avail == 0)
5024 continue;
5025
5026 ret = find_free_dev_extent(device,
5027 max_stripe_size * dev_stripes,
5028 &dev_offset, &max_avail);
5029 if (ret && ret != -ENOSPC)
5030 goto error;
5031
5032 if (ret == 0)
5033 max_avail = max_stripe_size * dev_stripes;
5034
5035 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
5036 if (btrfs_test_opt(info, ENOSPC_DEBUG))
5037 btrfs_debug(info,
5038 "%s: devid %llu has no free space, have=%llu want=%u",
5039 __func__, device->devid, max_avail,
5040 BTRFS_STRIPE_LEN * dev_stripes);
5041 continue;
5042 }
5043
5044 if (ndevs == fs_devices->rw_devices) {
5045 WARN(1, "%s: found more than %llu devices\n",
5046 __func__, fs_devices->rw_devices);
5047 break;
5048 }
5049 devices_info[ndevs].dev_offset = dev_offset;
5050 devices_info[ndevs].max_avail = max_avail;
5051 devices_info[ndevs].total_avail = total_avail;
5052 devices_info[ndevs].dev = device;
5053 ++ndevs;
5054 }
5055
5056 /*
5057 * now sort the devices by hole size / available space
5058 */
5059 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5060 btrfs_cmp_device_info, NULL);
5061
5062 /* round down to number of usable stripes */
5063 ndevs = round_down(ndevs, devs_increment);
5064
5065 if (ndevs < devs_min) {
5066 ret = -ENOSPC;
5067 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5068 btrfs_debug(info,
5069 "%s: not enough devices with free space: have=%d minimum required=%d",
5070 __func__, ndevs, devs_min);
5071 }
5072 goto error;
5073 }
5074
5075 ndevs = min(ndevs, devs_max);
5076
5077 /*
5078 * The primary goal is to maximize the number of stripes, so use as
5079 * many devices as possible, even if the stripes are not maximum sized.
5080 *
5081 * The DUP profile stores more than one stripe per device, the
5082 * max_avail is the total size so we have to adjust.
5083 */
5084 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
5085 num_stripes = ndevs * dev_stripes;
5086
5087 /*
5088 * this will have to be fixed for RAID1 and RAID10 over
5089 * more drives
5090 */
5091 data_stripes = (num_stripes - nparity) / ncopies;
5092
5093 /*
5094 * Use the number of data stripes to figure out how big this chunk
5095 * is really going to be in terms of logical address space,
5096 * and compare that answer with the max chunk size. If it's higher,
5097 * we try to reduce stripe_size.
5098 */
5099 if (stripe_size * data_stripes > max_chunk_size) {
5100 /*
5101 * Reduce stripe_size, round it up to a 16MB boundary again and
5102 * then use it, unless it ends up being even bigger than the
5103 * previous value we had already.
5104 */
5105 stripe_size = min(round_up(div_u64(max_chunk_size,
5106 data_stripes), SZ_16M),
5107 stripe_size);
5108 }
5109
5110 /* align to BTRFS_STRIPE_LEN */
5111 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
5112
5113 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5114 if (!map) {
5115 ret = -ENOMEM;
5116 goto error;
5117 }
5118 map->num_stripes = num_stripes;
5119
5120 for (i = 0; i < ndevs; ++i) {
5121 for (j = 0; j < dev_stripes; ++j) {
5122 int s = i * dev_stripes + j;
5123 map->stripes[s].dev = devices_info[i].dev;
5124 map->stripes[s].physical = devices_info[i].dev_offset +
5125 j * stripe_size;
5126 }
5127 }
5128 map->stripe_len = BTRFS_STRIPE_LEN;
5129 map->io_align = BTRFS_STRIPE_LEN;
5130 map->io_width = BTRFS_STRIPE_LEN;
5131 map->type = type;
5132 map->sub_stripes = sub_stripes;
5133
5134 chunk_size = stripe_size * data_stripes;
5135
5136 trace_btrfs_chunk_alloc(info, map, start, chunk_size);
5137
5138 em = alloc_extent_map();
5139 if (!em) {
5140 kfree(map);
5141 ret = -ENOMEM;
5142 goto error;
5143 }
5144 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5145 em->map_lookup = map;
5146 em->start = start;
5147 em->len = chunk_size;
5148 em->block_start = 0;
5149 em->block_len = em->len;
5150 em->orig_block_len = stripe_size;
5151
5152 em_tree = &info->mapping_tree;
5153 write_lock(&em_tree->lock);
5154 ret = add_extent_mapping(em_tree, em, 0);
5155 if (ret) {
5156 write_unlock(&em_tree->lock);
5157 free_extent_map(em);
5158 goto error;
5159 }
5160 write_unlock(&em_tree->lock);
5161
5162 ret = btrfs_make_block_group(trans, 0, type, start, chunk_size);
5163 if (ret)
5164 goto error_del_extent;
5165
5166 for (i = 0; i < map->num_stripes; i++) {
5167 struct btrfs_device *dev = map->stripes[i].dev;
5168
5169 btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size);
5170 if (list_empty(&dev->post_commit_list))
5171 list_add_tail(&dev->post_commit_list,
5172 &trans->transaction->dev_update_list);
5173 }
5174
5175 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
5176
5177 free_extent_map(em);
5178 check_raid56_incompat_flag(info, type);
5179
5180 kfree(devices_info);
5181 return 0;
5182
5183 error_del_extent:
5184 write_lock(&em_tree->lock);
5185 remove_extent_mapping(em_tree, em);
5186 write_unlock(&em_tree->lock);
5187
5188 /* One for our allocation */
5189 free_extent_map(em);
5190 /* One for the tree reference */
5191 free_extent_map(em);
5192 error:
5193 kfree(devices_info);
5194 return ret;
5195 }
5196
5197 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5198 u64 chunk_offset, u64 chunk_size)
5199 {
5200 struct btrfs_fs_info *fs_info = trans->fs_info;
5201 struct btrfs_root *extent_root = fs_info->extent_root;
5202 struct btrfs_root *chunk_root = fs_info->chunk_root;
5203 struct btrfs_key key;
5204 struct btrfs_device *device;
5205 struct btrfs_chunk *chunk;
5206 struct btrfs_stripe *stripe;
5207 struct extent_map *em;
5208 struct map_lookup *map;
5209 size_t item_size;
5210 u64 dev_offset;
5211 u64 stripe_size;
5212 int i = 0;
5213 int ret = 0;
5214
5215 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5216 if (IS_ERR(em))
5217 return PTR_ERR(em);
5218
5219 map = em->map_lookup;
5220 item_size = btrfs_chunk_item_size(map->num_stripes);
5221 stripe_size = em->orig_block_len;
5222
5223 chunk = kzalloc(item_size, GFP_NOFS);
5224 if (!chunk) {
5225 ret = -ENOMEM;
5226 goto out;
5227 }
5228
5229 /*
5230 * Take the device list mutex to prevent races with the final phase of
5231 * a device replace operation that replaces the device object associated
5232 * with the map's stripes, because the device object's id can change
5233 * at any time during that final phase of the device replace operation
5234 * (dev-replace.c:btrfs_dev_replace_finishing()).
5235 */
5236 mutex_lock(&fs_info->fs_devices->device_list_mutex);
5237 for (i = 0; i < map->num_stripes; i++) {
5238 device = map->stripes[i].dev;
5239 dev_offset = map->stripes[i].physical;
5240
5241 ret = btrfs_update_device(trans, device);
5242 if (ret)
5243 break;
5244 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5245 dev_offset, stripe_size);
5246 if (ret)
5247 break;
5248 }
5249 if (ret) {
5250 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5251 goto out;
5252 }
5253
5254 stripe = &chunk->stripe;
5255 for (i = 0; i < map->num_stripes; i++) {
5256 device = map->stripes[i].dev;
5257 dev_offset = map->stripes[i].physical;
5258
5259 btrfs_set_stack_stripe_devid(stripe, device->devid);
5260 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5261 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5262 stripe++;
5263 }
5264 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5265
5266 btrfs_set_stack_chunk_length(chunk, chunk_size);
5267 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5268 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5269 btrfs_set_stack_chunk_type(chunk, map->type);
5270 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5271 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5272 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5273 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5274 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5275
5276 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5277 key.type = BTRFS_CHUNK_ITEM_KEY;
5278 key.offset = chunk_offset;
5279
5280 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5281 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5282 /*
5283 * TODO: Cleanup of inserted chunk root in case of
5284 * failure.
5285 */
5286 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5287 }
5288
5289 out:
5290 kfree(chunk);
5291 free_extent_map(em);
5292 return ret;
5293 }
5294
5295 /*
5296 * Chunk allocation falls into two parts. The first part does work
5297 * that makes the new allocated chunk usable, but does not do any operation
5298 * that modifies the chunk tree. The second part does the work that
5299 * requires modifying the chunk tree. This division is important for the
5300 * bootstrap process of adding storage to a seed btrfs.
5301 */
5302 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5303 {
5304 u64 chunk_offset;
5305
5306 lockdep_assert_held(&trans->fs_info->chunk_mutex);
5307 chunk_offset = find_next_chunk(trans->fs_info);
5308 return __btrfs_alloc_chunk(trans, chunk_offset, type);
5309 }
5310
5311 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5312 {
5313 struct btrfs_fs_info *fs_info = trans->fs_info;
5314 u64 chunk_offset;
5315 u64 sys_chunk_offset;
5316 u64 alloc_profile;
5317 int ret;
5318
5319 chunk_offset = find_next_chunk(fs_info);
5320 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5321 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5322 if (ret)
5323 return ret;
5324
5325 sys_chunk_offset = find_next_chunk(fs_info);
5326 alloc_profile = btrfs_system_alloc_profile(fs_info);
5327 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5328 return ret;
5329 }
5330
5331 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5332 {
5333 const int index = btrfs_bg_flags_to_raid_index(map->type);
5334
5335 return btrfs_raid_array[index].tolerated_failures;
5336 }
5337
5338 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5339 {
5340 struct extent_map *em;
5341 struct map_lookup *map;
5342 int readonly = 0;
5343 int miss_ndevs = 0;
5344 int i;
5345
5346 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5347 if (IS_ERR(em))
5348 return 1;
5349
5350 map = em->map_lookup;
5351 for (i = 0; i < map->num_stripes; i++) {
5352 if (test_bit(BTRFS_DEV_STATE_MISSING,
5353 &map->stripes[i].dev->dev_state)) {
5354 miss_ndevs++;
5355 continue;
5356 }
5357 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5358 &map->stripes[i].dev->dev_state)) {
5359 readonly = 1;
5360 goto end;
5361 }
5362 }
5363
5364 /*
5365 * If the number of missing devices is larger than max errors,
5366 * we can not write the data into that chunk successfully, so
5367 * set it readonly.
5368 */
5369 if (miss_ndevs > btrfs_chunk_max_errors(map))
5370 readonly = 1;
5371 end:
5372 free_extent_map(em);
5373 return readonly;
5374 }
5375
5376 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5377 {
5378 struct extent_map *em;
5379
5380 while (1) {
5381 write_lock(&tree->lock);
5382 em = lookup_extent_mapping(tree, 0, (u64)-1);
5383 if (em)
5384 remove_extent_mapping(tree, em);
5385 write_unlock(&tree->lock);
5386 if (!em)
5387 break;
5388 /* once for us */
5389 free_extent_map(em);
5390 /* once for the tree */
5391 free_extent_map(em);
5392 }
5393 }
5394
5395 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5396 {
5397 struct extent_map *em;
5398 struct map_lookup *map;
5399 int ret;
5400
5401 em = btrfs_get_chunk_map(fs_info, logical, len);
5402 if (IS_ERR(em))
5403 /*
5404 * We could return errors for these cases, but that could get
5405 * ugly and we'd probably do the same thing which is just not do
5406 * anything else and exit, so return 1 so the callers don't try
5407 * to use other copies.
5408 */
5409 return 1;
5410
5411 map = em->map_lookup;
5412 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5413 ret = map->num_stripes;
5414 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5415 ret = map->sub_stripes;
5416 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5417 ret = 2;
5418 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5419 /*
5420 * There could be two corrupted data stripes, we need
5421 * to loop retry in order to rebuild the correct data.
5422 *
5423 * Fail a stripe at a time on every retry except the
5424 * stripe under reconstruction.
5425 */
5426 ret = map->num_stripes;
5427 else
5428 ret = 1;
5429 free_extent_map(em);
5430
5431 down_read(&fs_info->dev_replace.rwsem);
5432 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5433 fs_info->dev_replace.tgtdev)
5434 ret++;
5435 up_read(&fs_info->dev_replace.rwsem);
5436
5437 return ret;
5438 }
5439
5440 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5441 u64 logical)
5442 {
5443 struct extent_map *em;
5444 struct map_lookup *map;
5445 unsigned long len = fs_info->sectorsize;
5446
5447 em = btrfs_get_chunk_map(fs_info, logical, len);
5448
5449 if (!WARN_ON(IS_ERR(em))) {
5450 map = em->map_lookup;
5451 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5452 len = map->stripe_len * nr_data_stripes(map);
5453 free_extent_map(em);
5454 }
5455 return len;
5456 }
5457
5458 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5459 {
5460 struct extent_map *em;
5461 struct map_lookup *map;
5462 int ret = 0;
5463
5464 em = btrfs_get_chunk_map(fs_info, logical, len);
5465
5466 if(!WARN_ON(IS_ERR(em))) {
5467 map = em->map_lookup;
5468 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5469 ret = 1;
5470 free_extent_map(em);
5471 }
5472 return ret;
5473 }
5474
5475 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5476 struct map_lookup *map, int first,
5477 int dev_replace_is_ongoing)
5478 {
5479 int i;
5480 int num_stripes;
5481 int preferred_mirror;
5482 int tolerance;
5483 struct btrfs_device *srcdev;
5484
5485 ASSERT((map->type &
5486 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5487
5488 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5489 num_stripes = map->sub_stripes;
5490 else
5491 num_stripes = map->num_stripes;
5492
5493 preferred_mirror = first + current->pid % num_stripes;
5494
5495 if (dev_replace_is_ongoing &&
5496 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5497 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5498 srcdev = fs_info->dev_replace.srcdev;
5499 else
5500 srcdev = NULL;
5501
5502 /*
5503 * try to avoid the drive that is the source drive for a
5504 * dev-replace procedure, only choose it if no other non-missing
5505 * mirror is available
5506 */
5507 for (tolerance = 0; tolerance < 2; tolerance++) {
5508 if (map->stripes[preferred_mirror].dev->bdev &&
5509 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5510 return preferred_mirror;
5511 for (i = first; i < first + num_stripes; i++) {
5512 if (map->stripes[i].dev->bdev &&
5513 (tolerance || map->stripes[i].dev != srcdev))
5514 return i;
5515 }
5516 }
5517
5518 /* we couldn't find one that doesn't fail. Just return something
5519 * and the io error handling code will clean up eventually
5520 */
5521 return preferred_mirror;
5522 }
5523
5524 static inline int parity_smaller(u64 a, u64 b)
5525 {
5526 return a > b;
5527 }
5528
5529 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5530 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5531 {
5532 struct btrfs_bio_stripe s;
5533 int i;
5534 u64 l;
5535 int again = 1;
5536
5537 while (again) {
5538 again = 0;
5539 for (i = 0; i < num_stripes - 1; i++) {
5540 if (parity_smaller(bbio->raid_map[i],
5541 bbio->raid_map[i+1])) {
5542 s = bbio->stripes[i];
5543 l = bbio->raid_map[i];
5544 bbio->stripes[i] = bbio->stripes[i+1];
5545 bbio->raid_map[i] = bbio->raid_map[i+1];
5546 bbio->stripes[i+1] = s;
5547 bbio->raid_map[i+1] = l;
5548
5549 again = 1;
5550 }
5551 }
5552 }
5553 }
5554
5555 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5556 {
5557 struct btrfs_bio *bbio = kzalloc(
5558 /* the size of the btrfs_bio */
5559 sizeof(struct btrfs_bio) +
5560 /* plus the variable array for the stripes */
5561 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5562 /* plus the variable array for the tgt dev */
5563 sizeof(int) * (real_stripes) +
5564 /*
5565 * plus the raid_map, which includes both the tgt dev
5566 * and the stripes
5567 */
5568 sizeof(u64) * (total_stripes),
5569 GFP_NOFS|__GFP_NOFAIL);
5570
5571 atomic_set(&bbio->error, 0);
5572 refcount_set(&bbio->refs, 1);
5573
5574 return bbio;
5575 }
5576
5577 void btrfs_get_bbio(struct btrfs_bio *bbio)
5578 {
5579 WARN_ON(!refcount_read(&bbio->refs));
5580 refcount_inc(&bbio->refs);
5581 }
5582
5583 void btrfs_put_bbio(struct btrfs_bio *bbio)
5584 {
5585 if (!bbio)
5586 return;
5587 if (refcount_dec_and_test(&bbio->refs))
5588 kfree(bbio);
5589 }
5590
5591 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5592 /*
5593 * Please note that, discard won't be sent to target device of device
5594 * replace.
5595 */
5596 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5597 u64 logical, u64 length,
5598 struct btrfs_bio **bbio_ret)
5599 {
5600 struct extent_map *em;
5601 struct map_lookup *map;
5602 struct btrfs_bio *bbio;
5603 u64 offset;
5604 u64 stripe_nr;
5605 u64 stripe_nr_end;
5606 u64 stripe_end_offset;
5607 u64 stripe_cnt;
5608 u64 stripe_len;
5609 u64 stripe_offset;
5610 u64 num_stripes;
5611 u32 stripe_index;
5612 u32 factor = 0;
5613 u32 sub_stripes = 0;
5614 u64 stripes_per_dev = 0;
5615 u32 remaining_stripes = 0;
5616 u32 last_stripe = 0;
5617 int ret = 0;
5618 int i;
5619
5620 /* discard always return a bbio */
5621 ASSERT(bbio_ret);
5622
5623 em = btrfs_get_chunk_map(fs_info, logical, length);
5624 if (IS_ERR(em))
5625 return PTR_ERR(em);
5626
5627 map = em->map_lookup;
5628 /* we don't discard raid56 yet */
5629 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5630 ret = -EOPNOTSUPP;
5631 goto out;
5632 }
5633
5634 offset = logical - em->start;
5635 length = min_t(u64, em->len - offset, length);
5636
5637 stripe_len = map->stripe_len;
5638 /*
5639 * stripe_nr counts the total number of stripes we have to stride
5640 * to get to this block
5641 */
5642 stripe_nr = div64_u64(offset, stripe_len);
5643
5644 /* stripe_offset is the offset of this block in its stripe */
5645 stripe_offset = offset - stripe_nr * stripe_len;
5646
5647 stripe_nr_end = round_up(offset + length, map->stripe_len);
5648 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5649 stripe_cnt = stripe_nr_end - stripe_nr;
5650 stripe_end_offset = stripe_nr_end * map->stripe_len -
5651 (offset + length);
5652 /*
5653 * after this, stripe_nr is the number of stripes on this
5654 * device we have to walk to find the data, and stripe_index is
5655 * the number of our device in the stripe array
5656 */
5657 num_stripes = 1;
5658 stripe_index = 0;
5659 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5660 BTRFS_BLOCK_GROUP_RAID10)) {
5661 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5662 sub_stripes = 1;
5663 else
5664 sub_stripes = map->sub_stripes;
5665
5666 factor = map->num_stripes / sub_stripes;
5667 num_stripes = min_t(u64, map->num_stripes,
5668 sub_stripes * stripe_cnt);
5669 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5670 stripe_index *= sub_stripes;
5671 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5672 &remaining_stripes);
5673 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5674 last_stripe *= sub_stripes;
5675 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5676 BTRFS_BLOCK_GROUP_DUP)) {
5677 num_stripes = map->num_stripes;
5678 } else {
5679 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5680 &stripe_index);
5681 }
5682
5683 bbio = alloc_btrfs_bio(num_stripes, 0);
5684 if (!bbio) {
5685 ret = -ENOMEM;
5686 goto out;
5687 }
5688
5689 for (i = 0; i < num_stripes; i++) {
5690 bbio->stripes[i].physical =
5691 map->stripes[stripe_index].physical +
5692 stripe_offset + stripe_nr * map->stripe_len;
5693 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5694
5695 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5696 BTRFS_BLOCK_GROUP_RAID10)) {
5697 bbio->stripes[i].length = stripes_per_dev *
5698 map->stripe_len;
5699
5700 if (i / sub_stripes < remaining_stripes)
5701 bbio->stripes[i].length +=
5702 map->stripe_len;
5703
5704 /*
5705 * Special for the first stripe and
5706 * the last stripe:
5707 *
5708 * |-------|...|-------|
5709 * |----------|
5710 * off end_off
5711 */
5712 if (i < sub_stripes)
5713 bbio->stripes[i].length -=
5714 stripe_offset;
5715
5716 if (stripe_index >= last_stripe &&
5717 stripe_index <= (last_stripe +
5718 sub_stripes - 1))
5719 bbio->stripes[i].length -=
5720 stripe_end_offset;
5721
5722 if (i == sub_stripes - 1)
5723 stripe_offset = 0;
5724 } else {
5725 bbio->stripes[i].length = length;
5726 }
5727
5728 stripe_index++;
5729 if (stripe_index == map->num_stripes) {
5730 stripe_index = 0;
5731 stripe_nr++;
5732 }
5733 }
5734
5735 *bbio_ret = bbio;
5736 bbio->map_type = map->type;
5737 bbio->num_stripes = num_stripes;
5738 out:
5739 free_extent_map(em);
5740 return ret;
5741 }
5742
5743 /*
5744 * In dev-replace case, for repair case (that's the only case where the mirror
5745 * is selected explicitly when calling btrfs_map_block), blocks left of the
5746 * left cursor can also be read from the target drive.
5747 *
5748 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5749 * array of stripes.
5750 * For READ, it also needs to be supported using the same mirror number.
5751 *
5752 * If the requested block is not left of the left cursor, EIO is returned. This
5753 * can happen because btrfs_num_copies() returns one more in the dev-replace
5754 * case.
5755 */
5756 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5757 u64 logical, u64 length,
5758 u64 srcdev_devid, int *mirror_num,
5759 u64 *physical)
5760 {
5761 struct btrfs_bio *bbio = NULL;
5762 int num_stripes;
5763 int index_srcdev = 0;
5764 int found = 0;
5765 u64 physical_of_found = 0;
5766 int i;
5767 int ret = 0;
5768
5769 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5770 logical, &length, &bbio, 0, 0);
5771 if (ret) {
5772 ASSERT(bbio == NULL);
5773 return ret;
5774 }
5775
5776 num_stripes = bbio->num_stripes;
5777 if (*mirror_num > num_stripes) {
5778 /*
5779 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5780 * that means that the requested area is not left of the left
5781 * cursor
5782 */
5783 btrfs_put_bbio(bbio);
5784 return -EIO;
5785 }
5786
5787 /*
5788 * process the rest of the function using the mirror_num of the source
5789 * drive. Therefore look it up first. At the end, patch the device
5790 * pointer to the one of the target drive.
5791 */
5792 for (i = 0; i < num_stripes; i++) {
5793 if (bbio->stripes[i].dev->devid != srcdev_devid)
5794 continue;
5795
5796 /*
5797 * In case of DUP, in order to keep it simple, only add the
5798 * mirror with the lowest physical address
5799 */
5800 if (found &&
5801 physical_of_found <= bbio->stripes[i].physical)
5802 continue;
5803
5804 index_srcdev = i;
5805 found = 1;
5806 physical_of_found = bbio->stripes[i].physical;
5807 }
5808
5809 btrfs_put_bbio(bbio);
5810
5811 ASSERT(found);
5812 if (!found)
5813 return -EIO;
5814
5815 *mirror_num = index_srcdev + 1;
5816 *physical = physical_of_found;
5817 return ret;
5818 }
5819
5820 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5821 struct btrfs_bio **bbio_ret,
5822 struct btrfs_dev_replace *dev_replace,
5823 int *num_stripes_ret, int *max_errors_ret)
5824 {
5825 struct btrfs_bio *bbio = *bbio_ret;
5826 u64 srcdev_devid = dev_replace->srcdev->devid;
5827 int tgtdev_indexes = 0;
5828 int num_stripes = *num_stripes_ret;
5829 int max_errors = *max_errors_ret;
5830 int i;
5831
5832 if (op == BTRFS_MAP_WRITE) {
5833 int index_where_to_add;
5834
5835 /*
5836 * duplicate the write operations while the dev replace
5837 * procedure is running. Since the copying of the old disk to
5838 * the new disk takes place at run time while the filesystem is
5839 * mounted writable, the regular write operations to the old
5840 * disk have to be duplicated to go to the new disk as well.
5841 *
5842 * Note that device->missing is handled by the caller, and that
5843 * the write to the old disk is already set up in the stripes
5844 * array.
5845 */
5846 index_where_to_add = num_stripes;
5847 for (i = 0; i < num_stripes; i++) {
5848 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5849 /* write to new disk, too */
5850 struct btrfs_bio_stripe *new =
5851 bbio->stripes + index_where_to_add;
5852 struct btrfs_bio_stripe *old =
5853 bbio->stripes + i;
5854
5855 new->physical = old->physical;
5856 new->length = old->length;
5857 new->dev = dev_replace->tgtdev;
5858 bbio->tgtdev_map[i] = index_where_to_add;
5859 index_where_to_add++;
5860 max_errors++;
5861 tgtdev_indexes++;
5862 }
5863 }
5864 num_stripes = index_where_to_add;
5865 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5866 int index_srcdev = 0;
5867 int found = 0;
5868 u64 physical_of_found = 0;
5869
5870 /*
5871 * During the dev-replace procedure, the target drive can also
5872 * be used to read data in case it is needed to repair a corrupt
5873 * block elsewhere. This is possible if the requested area is
5874 * left of the left cursor. In this area, the target drive is a
5875 * full copy of the source drive.
5876 */
5877 for (i = 0; i < num_stripes; i++) {
5878 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5879 /*
5880 * In case of DUP, in order to keep it simple,
5881 * only add the mirror with the lowest physical
5882 * address
5883 */
5884 if (found &&
5885 physical_of_found <=
5886 bbio->stripes[i].physical)
5887 continue;
5888 index_srcdev = i;
5889 found = 1;
5890 physical_of_found = bbio->stripes[i].physical;
5891 }
5892 }
5893 if (found) {
5894 struct btrfs_bio_stripe *tgtdev_stripe =
5895 bbio->stripes + num_stripes;
5896
5897 tgtdev_stripe->physical = physical_of_found;
5898 tgtdev_stripe->length =
5899 bbio->stripes[index_srcdev].length;
5900 tgtdev_stripe->dev = dev_replace->tgtdev;
5901 bbio->tgtdev_map[index_srcdev] = num_stripes;
5902
5903 tgtdev_indexes++;
5904 num_stripes++;
5905 }
5906 }
5907
5908 *num_stripes_ret = num_stripes;
5909 *max_errors_ret = max_errors;
5910 bbio->num_tgtdevs = tgtdev_indexes;
5911 *bbio_ret = bbio;
5912 }
5913
5914 static bool need_full_stripe(enum btrfs_map_op op)
5915 {
5916 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5917 }
5918
5919 /*
5920 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5921 * tuple. This information is used to calculate how big a
5922 * particular bio can get before it straddles a stripe.
5923 *
5924 * @fs_info - the filesystem
5925 * @logical - address that we want to figure out the geometry of
5926 * @len - the length of IO we are going to perform, starting at @logical
5927 * @op - type of operation - write or read
5928 * @io_geom - pointer used to return values
5929 *
5930 * Returns < 0 in case a chunk for the given logical address cannot be found,
5931 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5932 */
5933 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5934 u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5935 {
5936 struct extent_map *em;
5937 struct map_lookup *map;
5938 u64 offset;
5939 u64 stripe_offset;
5940 u64 stripe_nr;
5941 u64 stripe_len;
5942 u64 raid56_full_stripe_start = (u64)-1;
5943 int data_stripes;
5944
5945 ASSERT(op != BTRFS_MAP_DISCARD);
5946
5947 em = btrfs_get_chunk_map(fs_info, logical, len);
5948 if (IS_ERR(em))
5949 return PTR_ERR(em);
5950
5951 map = em->map_lookup;
5952 /* Offset of this logical address in the chunk */
5953 offset = logical - em->start;
5954 /* Len of a stripe in a chunk */
5955 stripe_len = map->stripe_len;
5956 /* Stripe wher this block falls in */
5957 stripe_nr = div64_u64(offset, stripe_len);
5958 /* Offset of stripe in the chunk */
5959 stripe_offset = stripe_nr * stripe_len;
5960 if (offset < stripe_offset) {
5961 btrfs_crit(fs_info,
5962 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5963 stripe_offset, offset, em->start, logical, stripe_len);
5964 free_extent_map(em);
5965 return -EINVAL;
5966 }
5967
5968 /* stripe_offset is the offset of this block in its stripe */
5969 stripe_offset = offset - stripe_offset;
5970 data_stripes = nr_data_stripes(map);
5971
5972 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5973 u64 max_len = stripe_len - stripe_offset;
5974
5975 /*
5976 * In case of raid56, we need to know the stripe aligned start
5977 */
5978 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5979 unsigned long full_stripe_len = stripe_len * data_stripes;
5980 raid56_full_stripe_start = offset;
5981
5982 /*
5983 * Allow a write of a full stripe, but make sure we
5984 * don't allow straddling of stripes
5985 */
5986 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5987 full_stripe_len);
5988 raid56_full_stripe_start *= full_stripe_len;
5989
5990 /*
5991 * For writes to RAID[56], allow a full stripeset across
5992 * all disks. For other RAID types and for RAID[56]
5993 * reads, just allow a single stripe (on a single disk).
5994 */
5995 if (op == BTRFS_MAP_WRITE) {
5996 max_len = stripe_len * data_stripes -
5997 (offset - raid56_full_stripe_start);
5998 }
5999 }
6000 len = min_t(u64, em->len - offset, max_len);
6001 } else {
6002 len = em->len - offset;
6003 }
6004
6005 io_geom->len = len;
6006 io_geom->offset = offset;
6007 io_geom->stripe_len = stripe_len;
6008 io_geom->stripe_nr = stripe_nr;
6009 io_geom->stripe_offset = stripe_offset;
6010 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
6011
6012 return 0;
6013 }
6014
6015 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6016 enum btrfs_map_op op,
6017 u64 logical, u64 *length,
6018 struct btrfs_bio **bbio_ret,
6019 int mirror_num, int need_raid_map)
6020 {
6021 struct extent_map *em;
6022 struct map_lookup *map;
6023 u64 offset;
6024 u64 stripe_offset;
6025 u64 stripe_nr;
6026 u64 stripe_len;
6027 u32 stripe_index;
6028 int data_stripes;
6029 int i;
6030 int ret = 0;
6031 int num_stripes;
6032 int max_errors = 0;
6033 int tgtdev_indexes = 0;
6034 struct btrfs_bio *bbio = NULL;
6035 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6036 int dev_replace_is_ongoing = 0;
6037 int num_alloc_stripes;
6038 int patch_the_first_stripe_for_dev_replace = 0;
6039 u64 physical_to_patch_in_first_stripe = 0;
6040 u64 raid56_full_stripe_start = (u64)-1;
6041 struct btrfs_io_geometry geom;
6042
6043 ASSERT(bbio_ret);
6044
6045 if (op == BTRFS_MAP_DISCARD)
6046 return __btrfs_map_block_for_discard(fs_info, logical,
6047 *length, bbio_ret);
6048
6049 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6050 if (ret < 0)
6051 return ret;
6052
6053 em = btrfs_get_chunk_map(fs_info, logical, *length);
6054 ASSERT(em);
6055 map = em->map_lookup;
6056
6057 *length = geom.len;
6058 offset = geom.offset;
6059 stripe_len = geom.stripe_len;
6060 stripe_nr = geom.stripe_nr;
6061 stripe_offset = geom.stripe_offset;
6062 raid56_full_stripe_start = geom.raid56_stripe_offset;
6063 data_stripes = nr_data_stripes(map);
6064
6065 down_read(&dev_replace->rwsem);
6066 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6067 /*
6068 * Hold the semaphore for read during the whole operation, write is
6069 * requested at commit time but must wait.
6070 */
6071 if (!dev_replace_is_ongoing)
6072 up_read(&dev_replace->rwsem);
6073
6074 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6075 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6076 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6077 dev_replace->srcdev->devid,
6078 &mirror_num,
6079 &physical_to_patch_in_first_stripe);
6080 if (ret)
6081 goto out;
6082 else
6083 patch_the_first_stripe_for_dev_replace = 1;
6084 } else if (mirror_num > map->num_stripes) {
6085 mirror_num = 0;
6086 }
6087
6088 num_stripes = 1;
6089 stripe_index = 0;
6090 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6091 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6092 &stripe_index);
6093 if (!need_full_stripe(op))
6094 mirror_num = 1;
6095 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6096 if (need_full_stripe(op))
6097 num_stripes = map->num_stripes;
6098 else if (mirror_num)
6099 stripe_index = mirror_num - 1;
6100 else {
6101 stripe_index = find_live_mirror(fs_info, map, 0,
6102 dev_replace_is_ongoing);
6103 mirror_num = stripe_index + 1;
6104 }
6105
6106 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6107 if (need_full_stripe(op)) {
6108 num_stripes = map->num_stripes;
6109 } else if (mirror_num) {
6110 stripe_index = mirror_num - 1;
6111 } else {
6112 mirror_num = 1;
6113 }
6114
6115 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6116 u32 factor = map->num_stripes / map->sub_stripes;
6117
6118 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6119 stripe_index *= map->sub_stripes;
6120
6121 if (need_full_stripe(op))
6122 num_stripes = map->sub_stripes;
6123 else if (mirror_num)
6124 stripe_index += mirror_num - 1;
6125 else {
6126 int old_stripe_index = stripe_index;
6127 stripe_index = find_live_mirror(fs_info, map,
6128 stripe_index,
6129 dev_replace_is_ongoing);
6130 mirror_num = stripe_index - old_stripe_index + 1;
6131 }
6132
6133 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6134 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6135 /* push stripe_nr back to the start of the full stripe */
6136 stripe_nr = div64_u64(raid56_full_stripe_start,
6137 stripe_len * data_stripes);
6138
6139 /* RAID[56] write or recovery. Return all stripes */
6140 num_stripes = map->num_stripes;
6141 max_errors = nr_parity_stripes(map);
6142
6143 *length = map->stripe_len;
6144 stripe_index = 0;
6145 stripe_offset = 0;
6146 } else {
6147 /*
6148 * Mirror #0 or #1 means the original data block.
6149 * Mirror #2 is RAID5 parity block.
6150 * Mirror #3 is RAID6 Q block.
6151 */
6152 stripe_nr = div_u64_rem(stripe_nr,
6153 data_stripes, &stripe_index);
6154 if (mirror_num > 1)
6155 stripe_index = data_stripes + mirror_num - 2;
6156
6157 /* We distribute the parity blocks across stripes */
6158 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6159 &stripe_index);
6160 if (!need_full_stripe(op) && mirror_num <= 1)
6161 mirror_num = 1;
6162 }
6163 } else {
6164 /*
6165 * after this, stripe_nr is the number of stripes on this
6166 * device we have to walk to find the data, and stripe_index is
6167 * the number of our device in the stripe array
6168 */
6169 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6170 &stripe_index);
6171 mirror_num = stripe_index + 1;
6172 }
6173 if (stripe_index >= map->num_stripes) {
6174 btrfs_crit(fs_info,
6175 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6176 stripe_index, map->num_stripes);
6177 ret = -EINVAL;
6178 goto out;
6179 }
6180
6181 num_alloc_stripes = num_stripes;
6182 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6183 if (op == BTRFS_MAP_WRITE)
6184 num_alloc_stripes <<= 1;
6185 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6186 num_alloc_stripes++;
6187 tgtdev_indexes = num_stripes;
6188 }
6189
6190 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6191 if (!bbio) {
6192 ret = -ENOMEM;
6193 goto out;
6194 }
6195 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
6196 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
6197
6198 /* build raid_map */
6199 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6200 (need_full_stripe(op) || mirror_num > 1)) {
6201 u64 tmp;
6202 unsigned rot;
6203
6204 bbio->raid_map = (u64 *)((void *)bbio->stripes +
6205 sizeof(struct btrfs_bio_stripe) *
6206 num_alloc_stripes +
6207 sizeof(int) * tgtdev_indexes);
6208
6209 /* Work out the disk rotation on this stripe-set */
6210 div_u64_rem(stripe_nr, num_stripes, &rot);
6211
6212 /* Fill in the logical address of each stripe */
6213 tmp = stripe_nr * data_stripes;
6214 for (i = 0; i < data_stripes; i++)
6215 bbio->raid_map[(i+rot) % num_stripes] =
6216 em->start + (tmp + i) * map->stripe_len;
6217
6218 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6219 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6220 bbio->raid_map[(i+rot+1) % num_stripes] =
6221 RAID6_Q_STRIPE;
6222 }
6223
6224
6225 for (i = 0; i < num_stripes; i++) {
6226 bbio->stripes[i].physical =
6227 map->stripes[stripe_index].physical +
6228 stripe_offset +
6229 stripe_nr * map->stripe_len;
6230 bbio->stripes[i].dev =
6231 map->stripes[stripe_index].dev;
6232 stripe_index++;
6233 }
6234
6235 if (need_full_stripe(op))
6236 max_errors = btrfs_chunk_max_errors(map);
6237
6238 if (bbio->raid_map)
6239 sort_parity_stripes(bbio, num_stripes);
6240
6241 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6242 need_full_stripe(op)) {
6243 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6244 &max_errors);
6245 }
6246
6247 *bbio_ret = bbio;
6248 bbio->map_type = map->type;
6249 bbio->num_stripes = num_stripes;
6250 bbio->max_errors = max_errors;
6251 bbio->mirror_num = mirror_num;
6252
6253 /*
6254 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6255 * mirror_num == num_stripes + 1 && dev_replace target drive is
6256 * available as a mirror
6257 */
6258 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6259 WARN_ON(num_stripes > 1);
6260 bbio->stripes[0].dev = dev_replace->tgtdev;
6261 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6262 bbio->mirror_num = map->num_stripes + 1;
6263 }
6264 out:
6265 if (dev_replace_is_ongoing) {
6266 lockdep_assert_held(&dev_replace->rwsem);
6267 /* Unlock and let waiting writers proceed */
6268 up_read(&dev_replace->rwsem);
6269 }
6270 free_extent_map(em);
6271 return ret;
6272 }
6273
6274 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6275 u64 logical, u64 *length,
6276 struct btrfs_bio **bbio_ret, int mirror_num)
6277 {
6278 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6279 mirror_num, 0);
6280 }
6281
6282 /* For Scrub/replace */
6283 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6284 u64 logical, u64 *length,
6285 struct btrfs_bio **bbio_ret)
6286 {
6287 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6288 }
6289
6290 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
6291 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
6292 {
6293 struct extent_map *em;
6294 struct map_lookup *map;
6295 u64 *buf;
6296 u64 bytenr;
6297 u64 length;
6298 u64 stripe_nr;
6299 u64 rmap_len;
6300 int i, j, nr = 0;
6301
6302 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
6303 if (IS_ERR(em))
6304 return -EIO;
6305
6306 map = em->map_lookup;
6307 length = em->len;
6308 rmap_len = map->stripe_len;
6309
6310 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6311 length = div_u64(length, map->num_stripes / map->sub_stripes);
6312 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6313 length = div_u64(length, map->num_stripes);
6314 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6315 length = div_u64(length, nr_data_stripes(map));
6316 rmap_len = map->stripe_len * nr_data_stripes(map);
6317 }
6318
6319 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6320 BUG_ON(!buf); /* -ENOMEM */
6321
6322 for (i = 0; i < map->num_stripes; i++) {
6323 if (map->stripes[i].physical > physical ||
6324 map->stripes[i].physical + length <= physical)
6325 continue;
6326
6327 stripe_nr = physical - map->stripes[i].physical;
6328 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6329
6330 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6331 stripe_nr = stripe_nr * map->num_stripes + i;
6332 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6333 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6334 stripe_nr = stripe_nr * map->num_stripes + i;
6335 } /* else if RAID[56], multiply by nr_data_stripes().
6336 * Alternatively, just use rmap_len below instead of
6337 * map->stripe_len */
6338
6339 bytenr = chunk_start + stripe_nr * rmap_len;
6340 WARN_ON(nr >= map->num_stripes);
6341 for (j = 0; j < nr; j++) {
6342 if (buf[j] == bytenr)
6343 break;
6344 }
6345 if (j == nr) {
6346 WARN_ON(nr >= map->num_stripes);
6347 buf[nr++] = bytenr;
6348 }
6349 }
6350
6351 *logical = buf;
6352 *naddrs = nr;
6353 *stripe_len = rmap_len;
6354
6355 free_extent_map(em);
6356 return 0;
6357 }
6358
6359 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6360 {
6361 bio->bi_private = bbio->private;
6362 bio->bi_end_io = bbio->end_io;
6363 bio_endio(bio);
6364
6365 btrfs_put_bbio(bbio);
6366 }
6367
6368 static void btrfs_end_bio(struct bio *bio)
6369 {
6370 struct btrfs_bio *bbio = bio->bi_private;
6371 int is_orig_bio = 0;
6372
6373 if (bio->bi_status) {
6374 atomic_inc(&bbio->error);
6375 if (bio->bi_status == BLK_STS_IOERR ||
6376 bio->bi_status == BLK_STS_TARGET) {
6377 unsigned int stripe_index =
6378 btrfs_io_bio(bio)->stripe_index;
6379 struct btrfs_device *dev;
6380
6381 BUG_ON(stripe_index >= bbio->num_stripes);
6382 dev = bbio->stripes[stripe_index].dev;
6383 if (dev->bdev) {
6384 if (bio_op(bio) == REQ_OP_WRITE)
6385 btrfs_dev_stat_inc_and_print(dev,
6386 BTRFS_DEV_STAT_WRITE_ERRS);
6387 else if (!(bio->bi_opf & REQ_RAHEAD))
6388 btrfs_dev_stat_inc_and_print(dev,
6389 BTRFS_DEV_STAT_READ_ERRS);
6390 if (bio->bi_opf & REQ_PREFLUSH)
6391 btrfs_dev_stat_inc_and_print(dev,
6392 BTRFS_DEV_STAT_FLUSH_ERRS);
6393 }
6394 }
6395 }
6396
6397 if (bio == bbio->orig_bio)
6398 is_orig_bio = 1;
6399
6400 btrfs_bio_counter_dec(bbio->fs_info);
6401
6402 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6403 if (!is_orig_bio) {
6404 bio_put(bio);
6405 bio = bbio->orig_bio;
6406 }
6407
6408 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6409 /* only send an error to the higher layers if it is
6410 * beyond the tolerance of the btrfs bio
6411 */
6412 if (atomic_read(&bbio->error) > bbio->max_errors) {
6413 bio->bi_status = BLK_STS_IOERR;
6414 } else {
6415 /*
6416 * this bio is actually up to date, we didn't
6417 * go over the max number of errors
6418 */
6419 bio->bi_status = BLK_STS_OK;
6420 }
6421
6422 btrfs_end_bbio(bbio, bio);
6423 } else if (!is_orig_bio) {
6424 bio_put(bio);
6425 }
6426 }
6427
6428 /*
6429 * see run_scheduled_bios for a description of why bios are collected for
6430 * async submit.
6431 *
6432 * This will add one bio to the pending list for a device and make sure
6433 * the work struct is scheduled.
6434 */
6435 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6436 struct bio *bio)
6437 {
6438 struct btrfs_fs_info *fs_info = device->fs_info;
6439 int should_queue = 1;
6440 struct btrfs_pending_bios *pending_bios;
6441
6442 /* don't bother with additional async steps for reads, right now */
6443 if (bio_op(bio) == REQ_OP_READ) {
6444 btrfsic_submit_bio(bio);
6445 return;
6446 }
6447
6448 WARN_ON(bio->bi_next);
6449 bio->bi_next = NULL;
6450
6451 spin_lock(&device->io_lock);
6452 if (op_is_sync(bio->bi_opf))
6453 pending_bios = &device->pending_sync_bios;
6454 else
6455 pending_bios = &device->pending_bios;
6456
6457 if (pending_bios->tail)
6458 pending_bios->tail->bi_next = bio;
6459
6460 pending_bios->tail = bio;
6461 if (!pending_bios->head)
6462 pending_bios->head = bio;
6463 if (device->running_pending)
6464 should_queue = 0;
6465
6466 spin_unlock(&device->io_lock);
6467
6468 if (should_queue)
6469 btrfs_queue_work(fs_info->submit_workers, &device->work);
6470 }
6471
6472 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6473 u64 physical, int dev_nr, int async)
6474 {
6475 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6476 struct btrfs_fs_info *fs_info = bbio->fs_info;
6477
6478 bio->bi_private = bbio;
6479 btrfs_io_bio(bio)->stripe_index = dev_nr;
6480 bio->bi_end_io = btrfs_end_bio;
6481 bio->bi_iter.bi_sector = physical >> 9;
6482 btrfs_debug_in_rcu(fs_info,
6483 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6484 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6485 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6486 bio->bi_iter.bi_size);
6487 bio_set_dev(bio, dev->bdev);
6488
6489 btrfs_bio_counter_inc_noblocked(fs_info);
6490
6491 if (async)
6492 btrfs_schedule_bio(dev, bio);
6493 else
6494 btrfsic_submit_bio(bio);
6495 }
6496
6497 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6498 {
6499 atomic_inc(&bbio->error);
6500 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6501 /* Should be the original bio. */
6502 WARN_ON(bio != bbio->orig_bio);
6503
6504 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6505 bio->bi_iter.bi_sector = logical >> 9;
6506 if (atomic_read(&bbio->error) > bbio->max_errors)
6507 bio->bi_status = BLK_STS_IOERR;
6508 else
6509 bio->bi_status = BLK_STS_OK;
6510 btrfs_end_bbio(bbio, bio);
6511 }
6512 }
6513
6514 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6515 int mirror_num, int async_submit)
6516 {
6517 struct btrfs_device *dev;
6518 struct bio *first_bio = bio;
6519 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6520 u64 length = 0;
6521 u64 map_length;
6522 int ret;
6523 int dev_nr;
6524 int total_devs;
6525 struct btrfs_bio *bbio = NULL;
6526
6527 length = bio->bi_iter.bi_size;
6528 map_length = length;
6529
6530 btrfs_bio_counter_inc_blocked(fs_info);
6531 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6532 &map_length, &bbio, mirror_num, 1);
6533 if (ret) {
6534 btrfs_bio_counter_dec(fs_info);
6535 return errno_to_blk_status(ret);
6536 }
6537
6538 total_devs = bbio->num_stripes;
6539 bbio->orig_bio = first_bio;
6540 bbio->private = first_bio->bi_private;
6541 bbio->end_io = first_bio->bi_end_io;
6542 bbio->fs_info = fs_info;
6543 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6544
6545 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6546 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6547 /* In this case, map_length has been set to the length of
6548 a single stripe; not the whole write */
6549 if (bio_op(bio) == REQ_OP_WRITE) {
6550 ret = raid56_parity_write(fs_info, bio, bbio,
6551 map_length);
6552 } else {
6553 ret = raid56_parity_recover(fs_info, bio, bbio,
6554 map_length, mirror_num, 1);
6555 }
6556
6557 btrfs_bio_counter_dec(fs_info);
6558 return errno_to_blk_status(ret);
6559 }
6560
6561 if (map_length < length) {
6562 btrfs_crit(fs_info,
6563 "mapping failed logical %llu bio len %llu len %llu",
6564 logical, length, map_length);
6565 BUG();
6566 }
6567
6568 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6569 dev = bbio->stripes[dev_nr].dev;
6570 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6571 &dev->dev_state) ||
6572 (bio_op(first_bio) == REQ_OP_WRITE &&
6573 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6574 bbio_error(bbio, first_bio, logical);
6575 continue;
6576 }
6577
6578 if (dev_nr < total_devs - 1)
6579 bio = btrfs_bio_clone(first_bio);
6580 else
6581 bio = first_bio;
6582
6583 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6584 dev_nr, async_submit);
6585 }
6586 btrfs_bio_counter_dec(fs_info);
6587 return BLK_STS_OK;
6588 }
6589
6590 /*
6591 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6592 * return NULL.
6593 *
6594 * If devid and uuid are both specified, the match must be exact, otherwise
6595 * only devid is used.
6596 *
6597 * If @seed is true, traverse through the seed devices.
6598 */
6599 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6600 u64 devid, u8 *uuid, u8 *fsid,
6601 bool seed)
6602 {
6603 struct btrfs_device *device;
6604
6605 while (fs_devices) {
6606 if (!fsid ||
6607 !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6608 list_for_each_entry(device, &fs_devices->devices,
6609 dev_list) {
6610 if (device->devid == devid &&
6611 (!uuid || memcmp(device->uuid, uuid,
6612 BTRFS_UUID_SIZE) == 0))
6613 return device;
6614 }
6615 }
6616 if (seed)
6617 fs_devices = fs_devices->seed;
6618 else
6619 return NULL;
6620 }
6621 return NULL;
6622 }
6623
6624 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6625 u64 devid, u8 *dev_uuid)
6626 {
6627 struct btrfs_device *device;
6628
6629 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6630 if (IS_ERR(device))
6631 return device;
6632
6633 list_add(&device->dev_list, &fs_devices->devices);
6634 device->fs_devices = fs_devices;
6635 fs_devices->num_devices++;
6636
6637 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6638 fs_devices->missing_devices++;
6639
6640 return device;
6641 }
6642
6643 /**
6644 * btrfs_alloc_device - allocate struct btrfs_device
6645 * @fs_info: used only for generating a new devid, can be NULL if
6646 * devid is provided (i.e. @devid != NULL).
6647 * @devid: a pointer to devid for this device. If NULL a new devid
6648 * is generated.
6649 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6650 * is generated.
6651 *
6652 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6653 * on error. Returned struct is not linked onto any lists and must be
6654 * destroyed with btrfs_free_device.
6655 */
6656 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6657 const u64 *devid,
6658 const u8 *uuid)
6659 {
6660 struct btrfs_device *dev;
6661 u64 tmp;
6662
6663 if (WARN_ON(!devid && !fs_info))
6664 return ERR_PTR(-EINVAL);
6665
6666 dev = __alloc_device();
6667 if (IS_ERR(dev))
6668 return dev;
6669
6670 if (devid)
6671 tmp = *devid;
6672 else {
6673 int ret;
6674
6675 ret = find_next_devid(fs_info, &tmp);
6676 if (ret) {
6677 btrfs_free_device(dev);
6678 return ERR_PTR(ret);
6679 }
6680 }
6681 dev->devid = tmp;
6682
6683 if (uuid)
6684 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6685 else
6686 generate_random_uuid(dev->uuid);
6687
6688 btrfs_init_work(&dev->work, btrfs_submit_helper,
6689 pending_bios_fn, NULL, NULL);
6690
6691 return dev;
6692 }
6693
6694 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6695 u64 devid, u8 *uuid, bool error)
6696 {
6697 if (error)
6698 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6699 devid, uuid);
6700 else
6701 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6702 devid, uuid);
6703 }
6704
6705 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6706 {
6707 int index = btrfs_bg_flags_to_raid_index(type);
6708 int ncopies = btrfs_raid_array[index].ncopies;
6709 int data_stripes;
6710
6711 switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6712 case BTRFS_BLOCK_GROUP_RAID5:
6713 data_stripes = num_stripes - 1;
6714 break;
6715 case BTRFS_BLOCK_GROUP_RAID6:
6716 data_stripes = num_stripes - 2;
6717 break;
6718 default:
6719 data_stripes = num_stripes / ncopies;
6720 break;
6721 }
6722 return div_u64(chunk_len, data_stripes);
6723 }
6724
6725 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6726 struct btrfs_chunk *chunk)
6727 {
6728 struct btrfs_fs_info *fs_info = leaf->fs_info;
6729 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6730 struct map_lookup *map;
6731 struct extent_map *em;
6732 u64 logical;
6733 u64 length;
6734 u64 devid;
6735 u8 uuid[BTRFS_UUID_SIZE];
6736 int num_stripes;
6737 int ret;
6738 int i;
6739
6740 logical = key->offset;
6741 length = btrfs_chunk_length(leaf, chunk);
6742 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6743
6744 /*
6745 * Only need to verify chunk item if we're reading from sys chunk array,
6746 * as chunk item in tree block is already verified by tree-checker.
6747 */
6748 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6749 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6750 if (ret)
6751 return ret;
6752 }
6753
6754 read_lock(&map_tree->lock);
6755 em = lookup_extent_mapping(map_tree, logical, 1);
6756 read_unlock(&map_tree->lock);
6757
6758 /* already mapped? */
6759 if (em && em->start <= logical && em->start + em->len > logical) {
6760 free_extent_map(em);
6761 return 0;
6762 } else if (em) {
6763 free_extent_map(em);
6764 }
6765
6766 em = alloc_extent_map();
6767 if (!em)
6768 return -ENOMEM;
6769 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6770 if (!map) {
6771 free_extent_map(em);
6772 return -ENOMEM;
6773 }
6774
6775 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6776 em->map_lookup = map;
6777 em->start = logical;
6778 em->len = length;
6779 em->orig_start = 0;
6780 em->block_start = 0;
6781 em->block_len = em->len;
6782
6783 map->num_stripes = num_stripes;
6784 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6785 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6786 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6787 map->type = btrfs_chunk_type(leaf, chunk);
6788 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6789 map->verified_stripes = 0;
6790 em->orig_block_len = calc_stripe_length(map->type, em->len,
6791 map->num_stripes);
6792 for (i = 0; i < num_stripes; i++) {
6793 map->stripes[i].physical =
6794 btrfs_stripe_offset_nr(leaf, chunk, i);
6795 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6796 read_extent_buffer(leaf, uuid, (unsigned long)
6797 btrfs_stripe_dev_uuid_nr(chunk, i),
6798 BTRFS_UUID_SIZE);
6799 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6800 devid, uuid, NULL, true);
6801 if (!map->stripes[i].dev &&
6802 !btrfs_test_opt(fs_info, DEGRADED)) {
6803 free_extent_map(em);
6804 btrfs_report_missing_device(fs_info, devid, uuid, true);
6805 return -ENOENT;
6806 }
6807 if (!map->stripes[i].dev) {
6808 map->stripes[i].dev =
6809 add_missing_dev(fs_info->fs_devices, devid,
6810 uuid);
6811 if (IS_ERR(map->stripes[i].dev)) {
6812 free_extent_map(em);
6813 btrfs_err(fs_info,
6814 "failed to init missing dev %llu: %ld",
6815 devid, PTR_ERR(map->stripes[i].dev));
6816 return PTR_ERR(map->stripes[i].dev);
6817 }
6818 btrfs_report_missing_device(fs_info, devid, uuid, false);
6819 }
6820 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6821 &(map->stripes[i].dev->dev_state));
6822
6823 }
6824
6825 write_lock(&map_tree->lock);
6826 ret = add_extent_mapping(map_tree, em, 0);
6827 write_unlock(&map_tree->lock);
6828 if (ret < 0) {
6829 btrfs_err(fs_info,
6830 "failed to add chunk map, start=%llu len=%llu: %d",
6831 em->start, em->len, ret);
6832 }
6833 free_extent_map(em);
6834
6835 return ret;
6836 }
6837
6838 static void fill_device_from_item(struct extent_buffer *leaf,
6839 struct btrfs_dev_item *dev_item,
6840 struct btrfs_device *device)
6841 {
6842 unsigned long ptr;
6843
6844 device->devid = btrfs_device_id(leaf, dev_item);
6845 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6846 device->total_bytes = device->disk_total_bytes;
6847 device->commit_total_bytes = device->disk_total_bytes;
6848 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6849 device->commit_bytes_used = device->bytes_used;
6850 device->type = btrfs_device_type(leaf, dev_item);
6851 device->io_align = btrfs_device_io_align(leaf, dev_item);
6852 device->io_width = btrfs_device_io_width(leaf, dev_item);
6853 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6854 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6855 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6856
6857 ptr = btrfs_device_uuid(dev_item);
6858 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6859 }
6860
6861 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6862 u8 *fsid)
6863 {
6864 struct btrfs_fs_devices *fs_devices;
6865 int ret;
6866
6867 lockdep_assert_held(&uuid_mutex);
6868 ASSERT(fsid);
6869
6870 fs_devices = fs_info->fs_devices->seed;
6871 while (fs_devices) {
6872 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6873 return fs_devices;
6874
6875 fs_devices = fs_devices->seed;
6876 }
6877
6878 fs_devices = find_fsid(fsid, NULL);
6879 if (!fs_devices) {
6880 if (!btrfs_test_opt(fs_info, DEGRADED))
6881 return ERR_PTR(-ENOENT);
6882
6883 fs_devices = alloc_fs_devices(fsid, NULL);
6884 if (IS_ERR(fs_devices))
6885 return fs_devices;
6886
6887 fs_devices->seeding = 1;
6888 fs_devices->opened = 1;
6889 return fs_devices;
6890 }
6891
6892 fs_devices = clone_fs_devices(fs_devices);
6893 if (IS_ERR(fs_devices))
6894 return fs_devices;
6895
6896 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6897 if (ret) {
6898 free_fs_devices(fs_devices);
6899 fs_devices = ERR_PTR(ret);
6900 goto out;
6901 }
6902
6903 if (!fs_devices->seeding) {
6904 close_fs_devices(fs_devices);
6905 free_fs_devices(fs_devices);
6906 fs_devices = ERR_PTR(-EINVAL);
6907 goto out;
6908 }
6909
6910 fs_devices->seed = fs_info->fs_devices->seed;
6911 fs_info->fs_devices->seed = fs_devices;
6912 out:
6913 return fs_devices;
6914 }
6915
6916 static int read_one_dev(struct extent_buffer *leaf,
6917 struct btrfs_dev_item *dev_item)
6918 {
6919 struct btrfs_fs_info *fs_info = leaf->fs_info;
6920 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6921 struct btrfs_device *device;
6922 u64 devid;
6923 int ret;
6924 u8 fs_uuid[BTRFS_FSID_SIZE];
6925 u8 dev_uuid[BTRFS_UUID_SIZE];
6926
6927 devid = btrfs_device_id(leaf, dev_item);
6928 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6929 BTRFS_UUID_SIZE);
6930 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6931 BTRFS_FSID_SIZE);
6932
6933 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6934 fs_devices = open_seed_devices(fs_info, fs_uuid);
6935 if (IS_ERR(fs_devices))
6936 return PTR_ERR(fs_devices);
6937 }
6938
6939 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6940 fs_uuid, true);
6941 if (!device) {
6942 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6943 btrfs_report_missing_device(fs_info, devid,
6944 dev_uuid, true);
6945 return -ENOENT;
6946 }
6947
6948 device = add_missing_dev(fs_devices, devid, dev_uuid);
6949 if (IS_ERR(device)) {
6950 btrfs_err(fs_info,
6951 "failed to add missing dev %llu: %ld",
6952 devid, PTR_ERR(device));
6953 return PTR_ERR(device);
6954 }
6955 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6956 } else {
6957 if (!device->bdev) {
6958 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6959 btrfs_report_missing_device(fs_info,
6960 devid, dev_uuid, true);
6961 return -ENOENT;
6962 }
6963 btrfs_report_missing_device(fs_info, devid,
6964 dev_uuid, false);
6965 }
6966
6967 if (!device->bdev &&
6968 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6969 /*
6970 * this happens when a device that was properly setup
6971 * in the device info lists suddenly goes bad.
6972 * device->bdev is NULL, and so we have to set
6973 * device->missing to one here
6974 */
6975 device->fs_devices->missing_devices++;
6976 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6977 }
6978
6979 /* Move the device to its own fs_devices */
6980 if (device->fs_devices != fs_devices) {
6981 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6982 &device->dev_state));
6983
6984 list_move(&device->dev_list, &fs_devices->devices);
6985 device->fs_devices->num_devices--;
6986 fs_devices->num_devices++;
6987
6988 device->fs_devices->missing_devices--;
6989 fs_devices->missing_devices++;
6990
6991 device->fs_devices = fs_devices;
6992 }
6993 }
6994
6995 if (device->fs_devices != fs_info->fs_devices) {
6996 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6997 if (device->generation !=
6998 btrfs_device_generation(leaf, dev_item))
6999 return -EINVAL;
7000 }
7001
7002 fill_device_from_item(leaf, dev_item, device);
7003 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
7004 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
7005 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
7006 device->fs_devices->total_rw_bytes += device->total_bytes;
7007 atomic64_add(device->total_bytes - device->bytes_used,
7008 &fs_info->free_chunk_space);
7009 }
7010 ret = 0;
7011 return ret;
7012 }
7013
7014 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7015 {
7016 struct btrfs_root *root = fs_info->tree_root;
7017 struct btrfs_super_block *super_copy = fs_info->super_copy;
7018 struct extent_buffer *sb;
7019 struct btrfs_disk_key *disk_key;
7020 struct btrfs_chunk *chunk;
7021 u8 *array_ptr;
7022 unsigned long sb_array_offset;
7023 int ret = 0;
7024 u32 num_stripes;
7025 u32 array_size;
7026 u32 len = 0;
7027 u32 cur_offset;
7028 u64 type;
7029 struct btrfs_key key;
7030
7031 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7032 /*
7033 * This will create extent buffer of nodesize, superblock size is
7034 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7035 * overallocate but we can keep it as-is, only the first page is used.
7036 */
7037 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
7038 if (IS_ERR(sb))
7039 return PTR_ERR(sb);
7040 set_extent_buffer_uptodate(sb);
7041 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
7042 /*
7043 * The sb extent buffer is artificial and just used to read the system array.
7044 * set_extent_buffer_uptodate() call does not properly mark all it's
7045 * pages up-to-date when the page is larger: extent does not cover the
7046 * whole page and consequently check_page_uptodate does not find all
7047 * the page's extents up-to-date (the hole beyond sb),
7048 * write_extent_buffer then triggers a WARN_ON.
7049 *
7050 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7051 * but sb spans only this function. Add an explicit SetPageUptodate call
7052 * to silence the warning eg. on PowerPC 64.
7053 */
7054 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7055 SetPageUptodate(sb->pages[0]);
7056
7057 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7058 array_size = btrfs_super_sys_array_size(super_copy);
7059
7060 array_ptr = super_copy->sys_chunk_array;
7061 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7062 cur_offset = 0;
7063
7064 while (cur_offset < array_size) {
7065 disk_key = (struct btrfs_disk_key *)array_ptr;
7066 len = sizeof(*disk_key);
7067 if (cur_offset + len > array_size)
7068 goto out_short_read;
7069
7070 btrfs_disk_key_to_cpu(&key, disk_key);
7071
7072 array_ptr += len;
7073 sb_array_offset += len;
7074 cur_offset += len;
7075
7076 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
7077 chunk = (struct btrfs_chunk *)sb_array_offset;
7078 /*
7079 * At least one btrfs_chunk with one stripe must be
7080 * present, exact stripe count check comes afterwards
7081 */
7082 len = btrfs_chunk_item_size(1);
7083 if (cur_offset + len > array_size)
7084 goto out_short_read;
7085
7086 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7087 if (!num_stripes) {
7088 btrfs_err(fs_info,
7089 "invalid number of stripes %u in sys_array at offset %u",
7090 num_stripes, cur_offset);
7091 ret = -EIO;
7092 break;
7093 }
7094
7095 type = btrfs_chunk_type(sb, chunk);
7096 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7097 btrfs_err(fs_info,
7098 "invalid chunk type %llu in sys_array at offset %u",
7099 type, cur_offset);
7100 ret = -EIO;
7101 break;
7102 }
7103
7104 len = btrfs_chunk_item_size(num_stripes);
7105 if (cur_offset + len > array_size)
7106 goto out_short_read;
7107
7108 ret = read_one_chunk(&key, sb, chunk);
7109 if (ret)
7110 break;
7111 } else {
7112 btrfs_err(fs_info,
7113 "unexpected item type %u in sys_array at offset %u",
7114 (u32)key.type, cur_offset);
7115 ret = -EIO;
7116 break;
7117 }
7118 array_ptr += len;
7119 sb_array_offset += len;
7120 cur_offset += len;
7121 }
7122 clear_extent_buffer_uptodate(sb);
7123 free_extent_buffer_stale(sb);
7124 return ret;
7125
7126 out_short_read:
7127 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7128 len, cur_offset);
7129 clear_extent_buffer_uptodate(sb);
7130 free_extent_buffer_stale(sb);
7131 return -EIO;
7132 }
7133
7134 /*
7135 * Check if all chunks in the fs are OK for read-write degraded mount
7136 *
7137 * If the @failing_dev is specified, it's accounted as missing.
7138 *
7139 * Return true if all chunks meet the minimal RW mount requirements.
7140 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7141 */
7142 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7143 struct btrfs_device *failing_dev)
7144 {
7145 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7146 struct extent_map *em;
7147 u64 next_start = 0;
7148 bool ret = true;
7149
7150 read_lock(&map_tree->lock);
7151 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7152 read_unlock(&map_tree->lock);
7153 /* No chunk at all? Return false anyway */
7154 if (!em) {
7155 ret = false;
7156 goto out;
7157 }
7158 while (em) {
7159 struct map_lookup *map;
7160 int missing = 0;
7161 int max_tolerated;
7162 int i;
7163
7164 map = em->map_lookup;
7165 max_tolerated =
7166 btrfs_get_num_tolerated_disk_barrier_failures(
7167 map->type);
7168 for (i = 0; i < map->num_stripes; i++) {
7169 struct btrfs_device *dev = map->stripes[i].dev;
7170
7171 if (!dev || !dev->bdev ||
7172 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7173 dev->last_flush_error)
7174 missing++;
7175 else if (failing_dev && failing_dev == dev)
7176 missing++;
7177 }
7178 if (missing > max_tolerated) {
7179 if (!failing_dev)
7180 btrfs_warn(fs_info,
7181 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7182 em->start, missing, max_tolerated);
7183 free_extent_map(em);
7184 ret = false;
7185 goto out;
7186 }
7187 next_start = extent_map_end(em);
7188 free_extent_map(em);
7189
7190 read_lock(&map_tree->lock);
7191 em = lookup_extent_mapping(map_tree, next_start,
7192 (u64)(-1) - next_start);
7193 read_unlock(&map_tree->lock);
7194 }
7195 out:
7196 return ret;
7197 }
7198
7199 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7200 {
7201 struct btrfs_root *root = fs_info->chunk_root;
7202 struct btrfs_path *path;
7203 struct extent_buffer *leaf;
7204 struct btrfs_key key;
7205 struct btrfs_key found_key;
7206 int ret;
7207 int slot;
7208 u64 total_dev = 0;
7209
7210 path = btrfs_alloc_path();
7211 if (!path)
7212 return -ENOMEM;
7213
7214 /*
7215 * uuid_mutex is needed only if we are mounting a sprout FS
7216 * otherwise we don't need it.
7217 */
7218 mutex_lock(&uuid_mutex);
7219 mutex_lock(&fs_info->chunk_mutex);
7220
7221 /*
7222 * Read all device items, and then all the chunk items. All
7223 * device items are found before any chunk item (their object id
7224 * is smaller than the lowest possible object id for a chunk
7225 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7226 */
7227 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7228 key.offset = 0;
7229 key.type = 0;
7230 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7231 if (ret < 0)
7232 goto error;
7233 while (1) {
7234 leaf = path->nodes[0];
7235 slot = path->slots[0];
7236 if (slot >= btrfs_header_nritems(leaf)) {
7237 ret = btrfs_next_leaf(root, path);
7238 if (ret == 0)
7239 continue;
7240 if (ret < 0)
7241 goto error;
7242 break;
7243 }
7244 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7245 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7246 struct btrfs_dev_item *dev_item;
7247 dev_item = btrfs_item_ptr(leaf, slot,
7248 struct btrfs_dev_item);
7249 ret = read_one_dev(leaf, dev_item);
7250 if (ret)
7251 goto error;
7252 total_dev++;
7253 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7254 struct btrfs_chunk *chunk;
7255 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7256 ret = read_one_chunk(&found_key, leaf, chunk);
7257 if (ret)
7258 goto error;
7259 }
7260 path->slots[0]++;
7261 }
7262
7263 /*
7264 * After loading chunk tree, we've got all device information,
7265 * do another round of validation checks.
7266 */
7267 if (total_dev != fs_info->fs_devices->total_devices) {
7268 btrfs_err(fs_info,
7269 "super_num_devices %llu mismatch with num_devices %llu found here",
7270 btrfs_super_num_devices(fs_info->super_copy),
7271 total_dev);
7272 ret = -EINVAL;
7273 goto error;
7274 }
7275 if (btrfs_super_total_bytes(fs_info->super_copy) <
7276 fs_info->fs_devices->total_rw_bytes) {
7277 btrfs_err(fs_info,
7278 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7279 btrfs_super_total_bytes(fs_info->super_copy),
7280 fs_info->fs_devices->total_rw_bytes);
7281 ret = -EINVAL;
7282 goto error;
7283 }
7284 ret = 0;
7285 error:
7286 mutex_unlock(&fs_info->chunk_mutex);
7287 mutex_unlock(&uuid_mutex);
7288
7289 btrfs_free_path(path);
7290 return ret;
7291 }
7292
7293 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7294 {
7295 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7296 struct btrfs_device *device;
7297
7298 while (fs_devices) {
7299 mutex_lock(&fs_devices->device_list_mutex);
7300 list_for_each_entry(device, &fs_devices->devices, dev_list)
7301 device->fs_info = fs_info;
7302 mutex_unlock(&fs_devices->device_list_mutex);
7303
7304 fs_devices = fs_devices->seed;
7305 }
7306 }
7307
7308 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7309 {
7310 int i;
7311
7312 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7313 btrfs_dev_stat_reset(dev, i);
7314 }
7315
7316 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7317 {
7318 struct btrfs_key key;
7319 struct btrfs_key found_key;
7320 struct btrfs_root *dev_root = fs_info->dev_root;
7321 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7322 struct extent_buffer *eb;
7323 int slot;
7324 int ret = 0;
7325 struct btrfs_device *device;
7326 struct btrfs_path *path = NULL;
7327 int i;
7328
7329 path = btrfs_alloc_path();
7330 if (!path) {
7331 ret = -ENOMEM;
7332 goto out;
7333 }
7334
7335 mutex_lock(&fs_devices->device_list_mutex);
7336 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7337 int item_size;
7338 struct btrfs_dev_stats_item *ptr;
7339
7340 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7341 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7342 key.offset = device->devid;
7343 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7344 if (ret) {
7345 __btrfs_reset_dev_stats(device);
7346 device->dev_stats_valid = 1;
7347 btrfs_release_path(path);
7348 continue;
7349 }
7350 slot = path->slots[0];
7351 eb = path->nodes[0];
7352 btrfs_item_key_to_cpu(eb, &found_key, slot);
7353 item_size = btrfs_item_size_nr(eb, slot);
7354
7355 ptr = btrfs_item_ptr(eb, slot,
7356 struct btrfs_dev_stats_item);
7357
7358 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7359 if (item_size >= (1 + i) * sizeof(__le64))
7360 btrfs_dev_stat_set(device, i,
7361 btrfs_dev_stats_value(eb, ptr, i));
7362 else
7363 btrfs_dev_stat_reset(device, i);
7364 }
7365
7366 device->dev_stats_valid = 1;
7367 btrfs_dev_stat_print_on_load(device);
7368 btrfs_release_path(path);
7369 }
7370 mutex_unlock(&fs_devices->device_list_mutex);
7371
7372 out:
7373 btrfs_free_path(path);
7374 return ret < 0 ? ret : 0;
7375 }
7376
7377 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7378 struct btrfs_device *device)
7379 {
7380 struct btrfs_fs_info *fs_info = trans->fs_info;
7381 struct btrfs_root *dev_root = fs_info->dev_root;
7382 struct btrfs_path *path;
7383 struct btrfs_key key;
7384 struct extent_buffer *eb;
7385 struct btrfs_dev_stats_item *ptr;
7386 int ret;
7387 int i;
7388
7389 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7390 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7391 key.offset = device->devid;
7392
7393 path = btrfs_alloc_path();
7394 if (!path)
7395 return -ENOMEM;
7396 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7397 if (ret < 0) {
7398 btrfs_warn_in_rcu(fs_info,
7399 "error %d while searching for dev_stats item for device %s",
7400 ret, rcu_str_deref(device->name));
7401 goto out;
7402 }
7403
7404 if (ret == 0 &&
7405 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7406 /* need to delete old one and insert a new one */
7407 ret = btrfs_del_item(trans, dev_root, path);
7408 if (ret != 0) {
7409 btrfs_warn_in_rcu(fs_info,
7410 "delete too small dev_stats item for device %s failed %d",
7411 rcu_str_deref(device->name), ret);
7412 goto out;
7413 }
7414 ret = 1;
7415 }
7416
7417 if (ret == 1) {
7418 /* need to insert a new item */
7419 btrfs_release_path(path);
7420 ret = btrfs_insert_empty_item(trans, dev_root, path,
7421 &key, sizeof(*ptr));
7422 if (ret < 0) {
7423 btrfs_warn_in_rcu(fs_info,
7424 "insert dev_stats item for device %s failed %d",
7425 rcu_str_deref(device->name), ret);
7426 goto out;
7427 }
7428 }
7429
7430 eb = path->nodes[0];
7431 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7432 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7433 btrfs_set_dev_stats_value(eb, ptr, i,
7434 btrfs_dev_stat_read(device, i));
7435 btrfs_mark_buffer_dirty(eb);
7436
7437 out:
7438 btrfs_free_path(path);
7439 return ret;
7440 }
7441
7442 /*
7443 * called from commit_transaction. Writes all changed device stats to disk.
7444 */
7445 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7446 {
7447 struct btrfs_fs_info *fs_info = trans->fs_info;
7448 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7449 struct btrfs_device *device;
7450 int stats_cnt;
7451 int ret = 0;
7452
7453 mutex_lock(&fs_devices->device_list_mutex);
7454 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7455 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7456 if (!device->dev_stats_valid || stats_cnt == 0)
7457 continue;
7458
7459
7460 /*
7461 * There is a LOAD-LOAD control dependency between the value of
7462 * dev_stats_ccnt and updating the on-disk values which requires
7463 * reading the in-memory counters. Such control dependencies
7464 * require explicit read memory barriers.
7465 *
7466 * This memory barriers pairs with smp_mb__before_atomic in
7467 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7468 * barrier implied by atomic_xchg in
7469 * btrfs_dev_stats_read_and_reset
7470 */
7471 smp_rmb();
7472
7473 ret = update_dev_stat_item(trans, device);
7474 if (!ret)
7475 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7476 }
7477 mutex_unlock(&fs_devices->device_list_mutex);
7478
7479 return ret;
7480 }
7481
7482 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7483 {
7484 btrfs_dev_stat_inc(dev, index);
7485 btrfs_dev_stat_print_on_error(dev);
7486 }
7487
7488 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7489 {
7490 if (!dev->dev_stats_valid)
7491 return;
7492 btrfs_err_rl_in_rcu(dev->fs_info,
7493 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7494 rcu_str_deref(dev->name),
7495 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7496 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7497 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7498 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7499 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7500 }
7501
7502 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7503 {
7504 int i;
7505
7506 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7507 if (btrfs_dev_stat_read(dev, i) != 0)
7508 break;
7509 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7510 return; /* all values == 0, suppress message */
7511
7512 btrfs_info_in_rcu(dev->fs_info,
7513 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7514 rcu_str_deref(dev->name),
7515 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7516 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7517 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7518 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7519 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7520 }
7521
7522 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7523 struct btrfs_ioctl_get_dev_stats *stats)
7524 {
7525 struct btrfs_device *dev;
7526 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7527 int i;
7528
7529 mutex_lock(&fs_devices->device_list_mutex);
7530 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7531 true);
7532 mutex_unlock(&fs_devices->device_list_mutex);
7533
7534 if (!dev) {
7535 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7536 return -ENODEV;
7537 } else if (!dev->dev_stats_valid) {
7538 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7539 return -ENODEV;
7540 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7541 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7542 if (stats->nr_items > i)
7543 stats->values[i] =
7544 btrfs_dev_stat_read_and_reset(dev, i);
7545 else
7546 btrfs_dev_stat_reset(dev, i);
7547 }
7548 } else {
7549 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7550 if (stats->nr_items > i)
7551 stats->values[i] = btrfs_dev_stat_read(dev, i);
7552 }
7553 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7554 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7555 return 0;
7556 }
7557
7558 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7559 {
7560 struct buffer_head *bh;
7561 struct btrfs_super_block *disk_super;
7562 int copy_num;
7563
7564 if (!bdev)
7565 return;
7566
7567 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7568 copy_num++) {
7569
7570 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7571 continue;
7572
7573 disk_super = (struct btrfs_super_block *)bh->b_data;
7574
7575 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7576 set_buffer_dirty(bh);
7577 sync_dirty_buffer(bh);
7578 brelse(bh);
7579 }
7580
7581 /* Notify udev that device has changed */
7582 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7583
7584 /* Update ctime/mtime for device path for libblkid */
7585 update_dev_time(device_path);
7586 }
7587
7588 /*
7589 * Update the size and bytes used for each device where it changed. This is
7590 * delayed since we would otherwise get errors while writing out the
7591 * superblocks.
7592 *
7593 * Must be invoked during transaction commit.
7594 */
7595 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7596 {
7597 struct btrfs_device *curr, *next;
7598
7599 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7600
7601 if (list_empty(&trans->dev_update_list))
7602 return;
7603
7604 /*
7605 * We don't need the device_list_mutex here. This list is owned by the
7606 * transaction and the transaction must complete before the device is
7607 * released.
7608 */
7609 mutex_lock(&trans->fs_info->chunk_mutex);
7610 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7611 post_commit_list) {
7612 list_del_init(&curr->post_commit_list);
7613 curr->commit_total_bytes = curr->disk_total_bytes;
7614 curr->commit_bytes_used = curr->bytes_used;
7615 }
7616 mutex_unlock(&trans->fs_info->chunk_mutex);
7617 }
7618
7619 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7620 {
7621 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7622 while (fs_devices) {
7623 fs_devices->fs_info = fs_info;
7624 fs_devices = fs_devices->seed;
7625 }
7626 }
7627
7628 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7629 {
7630 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7631 while (fs_devices) {
7632 fs_devices->fs_info = NULL;
7633 fs_devices = fs_devices->seed;
7634 }
7635 }
7636
7637 /*
7638 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7639 */
7640 int btrfs_bg_type_to_factor(u64 flags)
7641 {
7642 const int index = btrfs_bg_flags_to_raid_index(flags);
7643
7644 return btrfs_raid_array[index].ncopies;
7645 }
7646
7647
7648
7649 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7650 u64 chunk_offset, u64 devid,
7651 u64 physical_offset, u64 physical_len)
7652 {
7653 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7654 struct extent_map *em;
7655 struct map_lookup *map;
7656 struct btrfs_device *dev;
7657 u64 stripe_len;
7658 bool found = false;
7659 int ret = 0;
7660 int i;
7661
7662 read_lock(&em_tree->lock);
7663 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7664 read_unlock(&em_tree->lock);
7665
7666 if (!em) {
7667 btrfs_err(fs_info,
7668 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7669 physical_offset, devid);
7670 ret = -EUCLEAN;
7671 goto out;
7672 }
7673
7674 map = em->map_lookup;
7675 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7676 if (physical_len != stripe_len) {
7677 btrfs_err(fs_info,
7678 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7679 physical_offset, devid, em->start, physical_len,
7680 stripe_len);
7681 ret = -EUCLEAN;
7682 goto out;
7683 }
7684
7685 for (i = 0; i < map->num_stripes; i++) {
7686 if (map->stripes[i].dev->devid == devid &&
7687 map->stripes[i].physical == physical_offset) {
7688 found = true;
7689 if (map->verified_stripes >= map->num_stripes) {
7690 btrfs_err(fs_info,
7691 "too many dev extents for chunk %llu found",
7692 em->start);
7693 ret = -EUCLEAN;
7694 goto out;
7695 }
7696 map->verified_stripes++;
7697 break;
7698 }
7699 }
7700 if (!found) {
7701 btrfs_err(fs_info,
7702 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7703 physical_offset, devid);
7704 ret = -EUCLEAN;
7705 }
7706
7707 /* Make sure no dev extent is beyond device bondary */
7708 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7709 if (!dev) {
7710 btrfs_err(fs_info, "failed to find devid %llu", devid);
7711 ret = -EUCLEAN;
7712 goto out;
7713 }
7714
7715 /* It's possible this device is a dummy for seed device */
7716 if (dev->disk_total_bytes == 0) {
7717 dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7718 NULL, false);
7719 if (!dev) {
7720 btrfs_err(fs_info, "failed to find seed devid %llu",
7721 devid);
7722 ret = -EUCLEAN;
7723 goto out;
7724 }
7725 }
7726
7727 if (physical_offset + physical_len > dev->disk_total_bytes) {
7728 btrfs_err(fs_info,
7729 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7730 devid, physical_offset, physical_len,
7731 dev->disk_total_bytes);
7732 ret = -EUCLEAN;
7733 goto out;
7734 }
7735 out:
7736 free_extent_map(em);
7737 return ret;
7738 }
7739
7740 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7741 {
7742 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7743 struct extent_map *em;
7744 struct rb_node *node;
7745 int ret = 0;
7746
7747 read_lock(&em_tree->lock);
7748 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7749 em = rb_entry(node, struct extent_map, rb_node);
7750 if (em->map_lookup->num_stripes !=
7751 em->map_lookup->verified_stripes) {
7752 btrfs_err(fs_info,
7753 "chunk %llu has missing dev extent, have %d expect %d",
7754 em->start, em->map_lookup->verified_stripes,
7755 em->map_lookup->num_stripes);
7756 ret = -EUCLEAN;
7757 goto out;
7758 }
7759 }
7760 out:
7761 read_unlock(&em_tree->lock);
7762 return ret;
7763 }
7764
7765 /*
7766 * Ensure that all dev extents are mapped to correct chunk, otherwise
7767 * later chunk allocation/free would cause unexpected behavior.
7768 *
7769 * NOTE: This will iterate through the whole device tree, which should be of
7770 * the same size level as the chunk tree. This slightly increases mount time.
7771 */
7772 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7773 {
7774 struct btrfs_path *path;
7775 struct btrfs_root *root = fs_info->dev_root;
7776 struct btrfs_key key;
7777 u64 prev_devid = 0;
7778 u64 prev_dev_ext_end = 0;
7779 int ret = 0;
7780
7781 key.objectid = 1;
7782 key.type = BTRFS_DEV_EXTENT_KEY;
7783 key.offset = 0;
7784
7785 path = btrfs_alloc_path();
7786 if (!path)
7787 return -ENOMEM;
7788
7789 path->reada = READA_FORWARD;
7790 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7791 if (ret < 0)
7792 goto out;
7793
7794 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7795 ret = btrfs_next_item(root, path);
7796 if (ret < 0)
7797 goto out;
7798 /* No dev extents at all? Not good */
7799 if (ret > 0) {
7800 ret = -EUCLEAN;
7801 goto out;
7802 }
7803 }
7804 while (1) {
7805 struct extent_buffer *leaf = path->nodes[0];
7806 struct btrfs_dev_extent *dext;
7807 int slot = path->slots[0];
7808 u64 chunk_offset;
7809 u64 physical_offset;
7810 u64 physical_len;
7811 u64 devid;
7812
7813 btrfs_item_key_to_cpu(leaf, &key, slot);
7814 if (key.type != BTRFS_DEV_EXTENT_KEY)
7815 break;
7816 devid = key.objectid;
7817 physical_offset = key.offset;
7818
7819 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7820 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7821 physical_len = btrfs_dev_extent_length(leaf, dext);
7822
7823 /* Check if this dev extent overlaps with the previous one */
7824 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7825 btrfs_err(fs_info,
7826 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7827 devid, physical_offset, prev_dev_ext_end);
7828 ret = -EUCLEAN;
7829 goto out;
7830 }
7831
7832 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7833 physical_offset, physical_len);
7834 if (ret < 0)
7835 goto out;
7836 prev_devid = devid;
7837 prev_dev_ext_end = physical_offset + physical_len;
7838
7839 ret = btrfs_next_item(root, path);
7840 if (ret < 0)
7841 goto out;
7842 if (ret > 0) {
7843 ret = 0;
7844 break;
7845 }
7846 }
7847
7848 /* Ensure all chunks have corresponding dev extents */
7849 ret = verify_chunk_dev_extent_mapping(fs_info);
7850 out:
7851 btrfs_free_path(path);
7852 return ret;
7853 }
7854
7855 /*
7856 * Check whether the given block group or device is pinned by any inode being
7857 * used as a swapfile.
7858 */
7859 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7860 {
7861 struct btrfs_swapfile_pin *sp;
7862 struct rb_node *node;
7863
7864 spin_lock(&fs_info->swapfile_pins_lock);
7865 node = fs_info->swapfile_pins.rb_node;
7866 while (node) {
7867 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7868 if (ptr < sp->ptr)
7869 node = node->rb_left;
7870 else if (ptr > sp->ptr)
7871 node = node->rb_right;
7872 else
7873 break;
7874 }
7875 spin_unlock(&fs_info->swapfile_pins_lock);
7876 return node != NULL;
7877 }