]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/direct-io.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[thirdparty/linux.git] / fs / direct-io.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/direct-io.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * O_DIRECT
8 *
9 * 04Jul2002 Andrew Morton
10 * Initial version
11 * 11Sep2002 janetinc@us.ibm.com
12 * added readv/writev support.
13 * 29Oct2002 Andrew Morton
14 * rewrote bio_add_page() support.
15 * 30Oct2002 pbadari@us.ibm.com
16 * added support for non-aligned IO.
17 * 06Nov2002 pbadari@us.ibm.com
18 * added asynchronous IO support.
19 * 21Jul2003 nathans@sgi.com
20 * added IO completion notifier.
21 */
22
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/mm.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/bio.h>
33 #include <linux/wait.h>
34 #include <linux/err.h>
35 #include <linux/blkdev.h>
36 #include <linux/buffer_head.h>
37 #include <linux/rwsem.h>
38 #include <linux/uio.h>
39 #include <linux/atomic.h>
40 #include <linux/prefetch.h>
41
42 /*
43 * How many user pages to map in one call to get_user_pages(). This determines
44 * the size of a structure in the slab cache
45 */
46 #define DIO_PAGES 64
47
48 /*
49 * Flags for dio_complete()
50 */
51 #define DIO_COMPLETE_ASYNC 0x01 /* This is async IO */
52 #define DIO_COMPLETE_INVALIDATE 0x02 /* Can invalidate pages */
53
54 /*
55 * This code generally works in units of "dio_blocks". A dio_block is
56 * somewhere between the hard sector size and the filesystem block size. it
57 * is determined on a per-invocation basis. When talking to the filesystem
58 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
59 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
60 * to bio_block quantities by shifting left by blkfactor.
61 *
62 * If blkfactor is zero then the user's request was aligned to the filesystem's
63 * blocksize.
64 */
65
66 /* dio_state only used in the submission path */
67
68 struct dio_submit {
69 struct bio *bio; /* bio under assembly */
70 unsigned blkbits; /* doesn't change */
71 unsigned blkfactor; /* When we're using an alignment which
72 is finer than the filesystem's soft
73 blocksize, this specifies how much
74 finer. blkfactor=2 means 1/4-block
75 alignment. Does not change */
76 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
77 been performed at the start of a
78 write */
79 int pages_in_io; /* approximate total IO pages */
80 sector_t block_in_file; /* Current offset into the underlying
81 file in dio_block units. */
82 unsigned blocks_available; /* At block_in_file. changes */
83 int reap_counter; /* rate limit reaping */
84 sector_t final_block_in_request;/* doesn't change */
85 int boundary; /* prev block is at a boundary */
86 get_block_t *get_block; /* block mapping function */
87 dio_submit_t *submit_io; /* IO submition function */
88
89 loff_t logical_offset_in_bio; /* current first logical block in bio */
90 sector_t final_block_in_bio; /* current final block in bio + 1 */
91 sector_t next_block_for_io; /* next block to be put under IO,
92 in dio_blocks units */
93
94 /*
95 * Deferred addition of a page to the dio. These variables are
96 * private to dio_send_cur_page(), submit_page_section() and
97 * dio_bio_add_page().
98 */
99 struct page *cur_page; /* The page */
100 unsigned cur_page_offset; /* Offset into it, in bytes */
101 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
102 sector_t cur_page_block; /* Where it starts */
103 loff_t cur_page_fs_offset; /* Offset in file */
104
105 struct iov_iter *iter;
106 /*
107 * Page queue. These variables belong to dio_refill_pages() and
108 * dio_get_page().
109 */
110 unsigned head; /* next page to process */
111 unsigned tail; /* last valid page + 1 */
112 size_t from, to;
113 };
114
115 /* dio_state communicated between submission path and end_io */
116 struct dio {
117 int flags; /* doesn't change */
118 int op;
119 int op_flags;
120 blk_qc_t bio_cookie;
121 struct gendisk *bio_disk;
122 struct inode *inode;
123 loff_t i_size; /* i_size when submitted */
124 dio_iodone_t *end_io; /* IO completion function */
125
126 void *private; /* copy from map_bh.b_private */
127
128 /* BIO completion state */
129 spinlock_t bio_lock; /* protects BIO fields below */
130 int page_errors; /* errno from get_user_pages() */
131 int is_async; /* is IO async ? */
132 bool defer_completion; /* defer AIO completion to workqueue? */
133 bool should_dirty; /* if pages should be dirtied */
134 int io_error; /* IO error in completion path */
135 unsigned long refcount; /* direct_io_worker() and bios */
136 struct bio *bio_list; /* singly linked via bi_private */
137 struct task_struct *waiter; /* waiting task (NULL if none) */
138
139 /* AIO related stuff */
140 struct kiocb *iocb; /* kiocb */
141 ssize_t result; /* IO result */
142
143 /*
144 * pages[] (and any fields placed after it) are not zeroed out at
145 * allocation time. Don't add new fields after pages[] unless you
146 * wish that they not be zeroed.
147 */
148 union {
149 struct page *pages[DIO_PAGES]; /* page buffer */
150 struct work_struct complete_work;/* deferred AIO completion */
151 };
152 } ____cacheline_aligned_in_smp;
153
154 static struct kmem_cache *dio_cache __read_mostly;
155
156 /*
157 * How many pages are in the queue?
158 */
159 static inline unsigned dio_pages_present(struct dio_submit *sdio)
160 {
161 return sdio->tail - sdio->head;
162 }
163
164 /*
165 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
166 */
167 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
168 {
169 ssize_t ret;
170
171 ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
172 &sdio->from);
173
174 if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
175 struct page *page = ZERO_PAGE(0);
176 /*
177 * A memory fault, but the filesystem has some outstanding
178 * mapped blocks. We need to use those blocks up to avoid
179 * leaking stale data in the file.
180 */
181 if (dio->page_errors == 0)
182 dio->page_errors = ret;
183 get_page(page);
184 dio->pages[0] = page;
185 sdio->head = 0;
186 sdio->tail = 1;
187 sdio->from = 0;
188 sdio->to = PAGE_SIZE;
189 return 0;
190 }
191
192 if (ret >= 0) {
193 iov_iter_advance(sdio->iter, ret);
194 ret += sdio->from;
195 sdio->head = 0;
196 sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
197 sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
198 return 0;
199 }
200 return ret;
201 }
202
203 /*
204 * Get another userspace page. Returns an ERR_PTR on error. Pages are
205 * buffered inside the dio so that we can call get_user_pages() against a
206 * decent number of pages, less frequently. To provide nicer use of the
207 * L1 cache.
208 */
209 static inline struct page *dio_get_page(struct dio *dio,
210 struct dio_submit *sdio)
211 {
212 if (dio_pages_present(sdio) == 0) {
213 int ret;
214
215 ret = dio_refill_pages(dio, sdio);
216 if (ret)
217 return ERR_PTR(ret);
218 BUG_ON(dio_pages_present(sdio) == 0);
219 }
220 return dio->pages[sdio->head];
221 }
222
223 /*
224 * Warn about a page cache invalidation failure during a direct io write.
225 */
226 void dio_warn_stale_pagecache(struct file *filp)
227 {
228 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
229 char pathname[128];
230 struct inode *inode = file_inode(filp);
231 char *path;
232
233 errseq_set(&inode->i_mapping->wb_err, -EIO);
234 if (__ratelimit(&_rs)) {
235 path = file_path(filp, pathname, sizeof(pathname));
236 if (IS_ERR(path))
237 path = "(unknown)";
238 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
239 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
240 current->comm);
241 }
242 }
243
244 /**
245 * dio_complete() - called when all DIO BIO I/O has been completed
246 * @offset: the byte offset in the file of the completed operation
247 *
248 * This drops i_dio_count, lets interested parties know that a DIO operation
249 * has completed, and calculates the resulting return code for the operation.
250 *
251 * It lets the filesystem know if it registered an interest earlier via
252 * get_block. Pass the private field of the map buffer_head so that
253 * filesystems can use it to hold additional state between get_block calls and
254 * dio_complete.
255 */
256 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
257 {
258 loff_t offset = dio->iocb->ki_pos;
259 ssize_t transferred = 0;
260 int err;
261
262 /*
263 * AIO submission can race with bio completion to get here while
264 * expecting to have the last io completed by bio completion.
265 * In that case -EIOCBQUEUED is in fact not an error we want
266 * to preserve through this call.
267 */
268 if (ret == -EIOCBQUEUED)
269 ret = 0;
270
271 if (dio->result) {
272 transferred = dio->result;
273
274 /* Check for short read case */
275 if ((dio->op == REQ_OP_READ) &&
276 ((offset + transferred) > dio->i_size))
277 transferred = dio->i_size - offset;
278 /* ignore EFAULT if some IO has been done */
279 if (unlikely(ret == -EFAULT) && transferred)
280 ret = 0;
281 }
282
283 if (ret == 0)
284 ret = dio->page_errors;
285 if (ret == 0)
286 ret = dio->io_error;
287 if (ret == 0)
288 ret = transferred;
289
290 if (dio->end_io) {
291 // XXX: ki_pos??
292 err = dio->end_io(dio->iocb, offset, ret, dio->private);
293 if (err)
294 ret = err;
295 }
296
297 /*
298 * Try again to invalidate clean pages which might have been cached by
299 * non-direct readahead, or faulted in by get_user_pages() if the source
300 * of the write was an mmap'ed region of the file we're writing. Either
301 * one is a pretty crazy thing to do, so we don't support it 100%. If
302 * this invalidation fails, tough, the write still worked...
303 *
304 * And this page cache invalidation has to be after dio->end_io(), as
305 * some filesystems convert unwritten extents to real allocations in
306 * end_io() when necessary, otherwise a racing buffer read would cache
307 * zeros from unwritten extents.
308 */
309 if (flags & DIO_COMPLETE_INVALIDATE &&
310 ret > 0 && dio->op == REQ_OP_WRITE &&
311 dio->inode->i_mapping->nrpages) {
312 err = invalidate_inode_pages2_range(dio->inode->i_mapping,
313 offset >> PAGE_SHIFT,
314 (offset + ret - 1) >> PAGE_SHIFT);
315 if (err)
316 dio_warn_stale_pagecache(dio->iocb->ki_filp);
317 }
318
319 inode_dio_end(dio->inode);
320
321 if (flags & DIO_COMPLETE_ASYNC) {
322 /*
323 * generic_write_sync expects ki_pos to have been updated
324 * already, but the submission path only does this for
325 * synchronous I/O.
326 */
327 dio->iocb->ki_pos += transferred;
328
329 if (ret > 0 && dio->op == REQ_OP_WRITE)
330 ret = generic_write_sync(dio->iocb, ret);
331 dio->iocb->ki_complete(dio->iocb, ret, 0);
332 }
333
334 kmem_cache_free(dio_cache, dio);
335 return ret;
336 }
337
338 static void dio_aio_complete_work(struct work_struct *work)
339 {
340 struct dio *dio = container_of(work, struct dio, complete_work);
341
342 dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
343 }
344
345 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
346
347 /*
348 * Asynchronous IO callback.
349 */
350 static void dio_bio_end_aio(struct bio *bio)
351 {
352 struct dio *dio = bio->bi_private;
353 unsigned long remaining;
354 unsigned long flags;
355 bool defer_completion = false;
356
357 /* cleanup the bio */
358 dio_bio_complete(dio, bio);
359
360 spin_lock_irqsave(&dio->bio_lock, flags);
361 remaining = --dio->refcount;
362 if (remaining == 1 && dio->waiter)
363 wake_up_process(dio->waiter);
364 spin_unlock_irqrestore(&dio->bio_lock, flags);
365
366 if (remaining == 0) {
367 /*
368 * Defer completion when defer_completion is set or
369 * when the inode has pages mapped and this is AIO write.
370 * We need to invalidate those pages because there is a
371 * chance they contain stale data in the case buffered IO
372 * went in between AIO submission and completion into the
373 * same region.
374 */
375 if (dio->result)
376 defer_completion = dio->defer_completion ||
377 (dio->op == REQ_OP_WRITE &&
378 dio->inode->i_mapping->nrpages);
379 if (defer_completion) {
380 INIT_WORK(&dio->complete_work, dio_aio_complete_work);
381 queue_work(dio->inode->i_sb->s_dio_done_wq,
382 &dio->complete_work);
383 } else {
384 dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
385 }
386 }
387 }
388
389 /*
390 * The BIO completion handler simply queues the BIO up for the process-context
391 * handler.
392 *
393 * During I/O bi_private points at the dio. After I/O, bi_private is used to
394 * implement a singly-linked list of completed BIOs, at dio->bio_list.
395 */
396 static void dio_bio_end_io(struct bio *bio)
397 {
398 struct dio *dio = bio->bi_private;
399 unsigned long flags;
400
401 spin_lock_irqsave(&dio->bio_lock, flags);
402 bio->bi_private = dio->bio_list;
403 dio->bio_list = bio;
404 if (--dio->refcount == 1 && dio->waiter)
405 wake_up_process(dio->waiter);
406 spin_unlock_irqrestore(&dio->bio_lock, flags);
407 }
408
409 /**
410 * dio_end_io - handle the end io action for the given bio
411 * @bio: The direct io bio thats being completed
412 *
413 * This is meant to be called by any filesystem that uses their own dio_submit_t
414 * so that the DIO specific endio actions are dealt with after the filesystem
415 * has done it's completion work.
416 */
417 void dio_end_io(struct bio *bio)
418 {
419 struct dio *dio = bio->bi_private;
420
421 if (dio->is_async)
422 dio_bio_end_aio(bio);
423 else
424 dio_bio_end_io(bio);
425 }
426 EXPORT_SYMBOL_GPL(dio_end_io);
427
428 static inline void
429 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
430 struct block_device *bdev,
431 sector_t first_sector, int nr_vecs)
432 {
433 struct bio *bio;
434
435 /*
436 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
437 * we request a valid number of vectors.
438 */
439 bio = bio_alloc(GFP_KERNEL, nr_vecs);
440
441 bio_set_dev(bio, bdev);
442 bio->bi_iter.bi_sector = first_sector;
443 bio_set_op_attrs(bio, dio->op, dio->op_flags);
444 if (dio->is_async)
445 bio->bi_end_io = dio_bio_end_aio;
446 else
447 bio->bi_end_io = dio_bio_end_io;
448
449 bio->bi_write_hint = dio->iocb->ki_hint;
450
451 sdio->bio = bio;
452 sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
453 }
454
455 /*
456 * In the AIO read case we speculatively dirty the pages before starting IO.
457 * During IO completion, any of these pages which happen to have been written
458 * back will be redirtied by bio_check_pages_dirty().
459 *
460 * bios hold a dio reference between submit_bio and ->end_io.
461 */
462 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
463 {
464 struct bio *bio = sdio->bio;
465 unsigned long flags;
466
467 bio->bi_private = dio;
468
469 spin_lock_irqsave(&dio->bio_lock, flags);
470 dio->refcount++;
471 spin_unlock_irqrestore(&dio->bio_lock, flags);
472
473 if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
474 bio_set_pages_dirty(bio);
475
476 dio->bio_disk = bio->bi_disk;
477
478 if (sdio->submit_io) {
479 sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
480 dio->bio_cookie = BLK_QC_T_NONE;
481 } else
482 dio->bio_cookie = submit_bio(bio);
483
484 sdio->bio = NULL;
485 sdio->boundary = 0;
486 sdio->logical_offset_in_bio = 0;
487 }
488
489 /*
490 * Release any resources in case of a failure
491 */
492 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
493 {
494 while (sdio->head < sdio->tail)
495 put_page(dio->pages[sdio->head++]);
496 }
497
498 /*
499 * Wait for the next BIO to complete. Remove it and return it. NULL is
500 * returned once all BIOs have been completed. This must only be called once
501 * all bios have been issued so that dio->refcount can only decrease. This
502 * requires that that the caller hold a reference on the dio.
503 */
504 static struct bio *dio_await_one(struct dio *dio)
505 {
506 unsigned long flags;
507 struct bio *bio = NULL;
508
509 spin_lock_irqsave(&dio->bio_lock, flags);
510
511 /*
512 * Wait as long as the list is empty and there are bios in flight. bio
513 * completion drops the count, maybe adds to the list, and wakes while
514 * holding the bio_lock so we don't need set_current_state()'s barrier
515 * and can call it after testing our condition.
516 */
517 while (dio->refcount > 1 && dio->bio_list == NULL) {
518 __set_current_state(TASK_UNINTERRUPTIBLE);
519 dio->waiter = current;
520 spin_unlock_irqrestore(&dio->bio_lock, flags);
521 if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
522 !blk_poll(dio->bio_disk->queue, dio->bio_cookie, true))
523 io_schedule();
524 /* wake up sets us TASK_RUNNING */
525 spin_lock_irqsave(&dio->bio_lock, flags);
526 dio->waiter = NULL;
527 }
528 if (dio->bio_list) {
529 bio = dio->bio_list;
530 dio->bio_list = bio->bi_private;
531 }
532 spin_unlock_irqrestore(&dio->bio_lock, flags);
533 return bio;
534 }
535
536 /*
537 * Process one completed BIO. No locks are held.
538 */
539 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
540 {
541 blk_status_t err = bio->bi_status;
542 bool should_dirty = dio->op == REQ_OP_READ && dio->should_dirty;
543
544 if (err) {
545 if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
546 dio->io_error = -EAGAIN;
547 else
548 dio->io_error = -EIO;
549 }
550
551 if (dio->is_async && should_dirty) {
552 bio_check_pages_dirty(bio); /* transfers ownership */
553 } else {
554 bio_release_pages(bio, should_dirty);
555 bio_put(bio);
556 }
557 return err;
558 }
559
560 /*
561 * Wait on and process all in-flight BIOs. This must only be called once
562 * all bios have been issued so that the refcount can only decrease.
563 * This just waits for all bios to make it through dio_bio_complete. IO
564 * errors are propagated through dio->io_error and should be propagated via
565 * dio_complete().
566 */
567 static void dio_await_completion(struct dio *dio)
568 {
569 struct bio *bio;
570 do {
571 bio = dio_await_one(dio);
572 if (bio)
573 dio_bio_complete(dio, bio);
574 } while (bio);
575 }
576
577 /*
578 * A really large O_DIRECT read or write can generate a lot of BIOs. So
579 * to keep the memory consumption sane we periodically reap any completed BIOs
580 * during the BIO generation phase.
581 *
582 * This also helps to limit the peak amount of pinned userspace memory.
583 */
584 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
585 {
586 int ret = 0;
587
588 if (sdio->reap_counter++ >= 64) {
589 while (dio->bio_list) {
590 unsigned long flags;
591 struct bio *bio;
592 int ret2;
593
594 spin_lock_irqsave(&dio->bio_lock, flags);
595 bio = dio->bio_list;
596 dio->bio_list = bio->bi_private;
597 spin_unlock_irqrestore(&dio->bio_lock, flags);
598 ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
599 if (ret == 0)
600 ret = ret2;
601 }
602 sdio->reap_counter = 0;
603 }
604 return ret;
605 }
606
607 /*
608 * Create workqueue for deferred direct IO completions. We allocate the
609 * workqueue when it's first needed. This avoids creating workqueue for
610 * filesystems that don't need it and also allows us to create the workqueue
611 * late enough so the we can include s_id in the name of the workqueue.
612 */
613 int sb_init_dio_done_wq(struct super_block *sb)
614 {
615 struct workqueue_struct *old;
616 struct workqueue_struct *wq = alloc_workqueue("dio/%s",
617 WQ_MEM_RECLAIM, 0,
618 sb->s_id);
619 if (!wq)
620 return -ENOMEM;
621 /*
622 * This has to be atomic as more DIOs can race to create the workqueue
623 */
624 old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
625 /* Someone created workqueue before us? Free ours... */
626 if (old)
627 destroy_workqueue(wq);
628 return 0;
629 }
630
631 static int dio_set_defer_completion(struct dio *dio)
632 {
633 struct super_block *sb = dio->inode->i_sb;
634
635 if (dio->defer_completion)
636 return 0;
637 dio->defer_completion = true;
638 if (!sb->s_dio_done_wq)
639 return sb_init_dio_done_wq(sb);
640 return 0;
641 }
642
643 /*
644 * Call into the fs to map some more disk blocks. We record the current number
645 * of available blocks at sdio->blocks_available. These are in units of the
646 * fs blocksize, i_blocksize(inode).
647 *
648 * The fs is allowed to map lots of blocks at once. If it wants to do that,
649 * it uses the passed inode-relative block number as the file offset, as usual.
650 *
651 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
652 * has remaining to do. The fs should not map more than this number of blocks.
653 *
654 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
655 * indicate how much contiguous disk space has been made available at
656 * bh->b_blocknr.
657 *
658 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
659 * This isn't very efficient...
660 *
661 * In the case of filesystem holes: the fs may return an arbitrarily-large
662 * hole by returning an appropriate value in b_size and by clearing
663 * buffer_mapped(). However the direct-io code will only process holes one
664 * block at a time - it will repeatedly call get_block() as it walks the hole.
665 */
666 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
667 struct buffer_head *map_bh)
668 {
669 int ret;
670 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
671 sector_t fs_endblk; /* Into file, in filesystem-sized blocks */
672 unsigned long fs_count; /* Number of filesystem-sized blocks */
673 int create;
674 unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
675 loff_t i_size;
676
677 /*
678 * If there was a memory error and we've overwritten all the
679 * mapped blocks then we can now return that memory error
680 */
681 ret = dio->page_errors;
682 if (ret == 0) {
683 BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
684 fs_startblk = sdio->block_in_file >> sdio->blkfactor;
685 fs_endblk = (sdio->final_block_in_request - 1) >>
686 sdio->blkfactor;
687 fs_count = fs_endblk - fs_startblk + 1;
688
689 map_bh->b_state = 0;
690 map_bh->b_size = fs_count << i_blkbits;
691
692 /*
693 * For writes that could fill holes inside i_size on a
694 * DIO_SKIP_HOLES filesystem we forbid block creations: only
695 * overwrites are permitted. We will return early to the caller
696 * once we see an unmapped buffer head returned, and the caller
697 * will fall back to buffered I/O.
698 *
699 * Otherwise the decision is left to the get_blocks method,
700 * which may decide to handle it or also return an unmapped
701 * buffer head.
702 */
703 create = dio->op == REQ_OP_WRITE;
704 if (dio->flags & DIO_SKIP_HOLES) {
705 i_size = i_size_read(dio->inode);
706 if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
707 create = 0;
708 }
709
710 ret = (*sdio->get_block)(dio->inode, fs_startblk,
711 map_bh, create);
712
713 /* Store for completion */
714 dio->private = map_bh->b_private;
715
716 if (ret == 0 && buffer_defer_completion(map_bh))
717 ret = dio_set_defer_completion(dio);
718 }
719 return ret;
720 }
721
722 /*
723 * There is no bio. Make one now.
724 */
725 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
726 sector_t start_sector, struct buffer_head *map_bh)
727 {
728 sector_t sector;
729 int ret, nr_pages;
730
731 ret = dio_bio_reap(dio, sdio);
732 if (ret)
733 goto out;
734 sector = start_sector << (sdio->blkbits - 9);
735 nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
736 BUG_ON(nr_pages <= 0);
737 dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
738 sdio->boundary = 0;
739 out:
740 return ret;
741 }
742
743 /*
744 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
745 * that was successful then update final_block_in_bio and take a ref against
746 * the just-added page.
747 *
748 * Return zero on success. Non-zero means the caller needs to start a new BIO.
749 */
750 static inline int dio_bio_add_page(struct dio_submit *sdio)
751 {
752 int ret;
753
754 ret = bio_add_page(sdio->bio, sdio->cur_page,
755 sdio->cur_page_len, sdio->cur_page_offset);
756 if (ret == sdio->cur_page_len) {
757 /*
758 * Decrement count only, if we are done with this page
759 */
760 if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
761 sdio->pages_in_io--;
762 get_page(sdio->cur_page);
763 sdio->final_block_in_bio = sdio->cur_page_block +
764 (sdio->cur_page_len >> sdio->blkbits);
765 ret = 0;
766 } else {
767 ret = 1;
768 }
769 return ret;
770 }
771
772 /*
773 * Put cur_page under IO. The section of cur_page which is described by
774 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
775 * starts on-disk at cur_page_block.
776 *
777 * We take a ref against the page here (on behalf of its presence in the bio).
778 *
779 * The caller of this function is responsible for removing cur_page from the
780 * dio, and for dropping the refcount which came from that presence.
781 */
782 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
783 struct buffer_head *map_bh)
784 {
785 int ret = 0;
786
787 if (sdio->bio) {
788 loff_t cur_offset = sdio->cur_page_fs_offset;
789 loff_t bio_next_offset = sdio->logical_offset_in_bio +
790 sdio->bio->bi_iter.bi_size;
791
792 /*
793 * See whether this new request is contiguous with the old.
794 *
795 * Btrfs cannot handle having logically non-contiguous requests
796 * submitted. For example if you have
797 *
798 * Logical: [0-4095][HOLE][8192-12287]
799 * Physical: [0-4095] [4096-8191]
800 *
801 * We cannot submit those pages together as one BIO. So if our
802 * current logical offset in the file does not equal what would
803 * be the next logical offset in the bio, submit the bio we
804 * have.
805 */
806 if (sdio->final_block_in_bio != sdio->cur_page_block ||
807 cur_offset != bio_next_offset)
808 dio_bio_submit(dio, sdio);
809 }
810
811 if (sdio->bio == NULL) {
812 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
813 if (ret)
814 goto out;
815 }
816
817 if (dio_bio_add_page(sdio) != 0) {
818 dio_bio_submit(dio, sdio);
819 ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
820 if (ret == 0) {
821 ret = dio_bio_add_page(sdio);
822 BUG_ON(ret != 0);
823 }
824 }
825 out:
826 return ret;
827 }
828
829 /*
830 * An autonomous function to put a chunk of a page under deferred IO.
831 *
832 * The caller doesn't actually know (or care) whether this piece of page is in
833 * a BIO, or is under IO or whatever. We just take care of all possible
834 * situations here. The separation between the logic of do_direct_IO() and
835 * that of submit_page_section() is important for clarity. Please don't break.
836 *
837 * The chunk of page starts on-disk at blocknr.
838 *
839 * We perform deferred IO, by recording the last-submitted page inside our
840 * private part of the dio structure. If possible, we just expand the IO
841 * across that page here.
842 *
843 * If that doesn't work out then we put the old page into the bio and add this
844 * page to the dio instead.
845 */
846 static inline int
847 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
848 unsigned offset, unsigned len, sector_t blocknr,
849 struct buffer_head *map_bh)
850 {
851 int ret = 0;
852
853 if (dio->op == REQ_OP_WRITE) {
854 /*
855 * Read accounting is performed in submit_bio()
856 */
857 task_io_account_write(len);
858 }
859
860 /*
861 * Can we just grow the current page's presence in the dio?
862 */
863 if (sdio->cur_page == page &&
864 sdio->cur_page_offset + sdio->cur_page_len == offset &&
865 sdio->cur_page_block +
866 (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
867 sdio->cur_page_len += len;
868 goto out;
869 }
870
871 /*
872 * If there's a deferred page already there then send it.
873 */
874 if (sdio->cur_page) {
875 ret = dio_send_cur_page(dio, sdio, map_bh);
876 put_page(sdio->cur_page);
877 sdio->cur_page = NULL;
878 if (ret)
879 return ret;
880 }
881
882 get_page(page); /* It is in dio */
883 sdio->cur_page = page;
884 sdio->cur_page_offset = offset;
885 sdio->cur_page_len = len;
886 sdio->cur_page_block = blocknr;
887 sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
888 out:
889 /*
890 * If sdio->boundary then we want to schedule the IO now to
891 * avoid metadata seeks.
892 */
893 if (sdio->boundary) {
894 ret = dio_send_cur_page(dio, sdio, map_bh);
895 if (sdio->bio)
896 dio_bio_submit(dio, sdio);
897 put_page(sdio->cur_page);
898 sdio->cur_page = NULL;
899 }
900 return ret;
901 }
902
903 /*
904 * If we are not writing the entire block and get_block() allocated
905 * the block for us, we need to fill-in the unused portion of the
906 * block with zeros. This happens only if user-buffer, fileoffset or
907 * io length is not filesystem block-size multiple.
908 *
909 * `end' is zero if we're doing the start of the IO, 1 at the end of the
910 * IO.
911 */
912 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
913 int end, struct buffer_head *map_bh)
914 {
915 unsigned dio_blocks_per_fs_block;
916 unsigned this_chunk_blocks; /* In dio_blocks */
917 unsigned this_chunk_bytes;
918 struct page *page;
919
920 sdio->start_zero_done = 1;
921 if (!sdio->blkfactor || !buffer_new(map_bh))
922 return;
923
924 dio_blocks_per_fs_block = 1 << sdio->blkfactor;
925 this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
926
927 if (!this_chunk_blocks)
928 return;
929
930 /*
931 * We need to zero out part of an fs block. It is either at the
932 * beginning or the end of the fs block.
933 */
934 if (end)
935 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
936
937 this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
938
939 page = ZERO_PAGE(0);
940 if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
941 sdio->next_block_for_io, map_bh))
942 return;
943
944 sdio->next_block_for_io += this_chunk_blocks;
945 }
946
947 /*
948 * Walk the user pages, and the file, mapping blocks to disk and generating
949 * a sequence of (page,offset,len,block) mappings. These mappings are injected
950 * into submit_page_section(), which takes care of the next stage of submission
951 *
952 * Direct IO against a blockdev is different from a file. Because we can
953 * happily perform page-sized but 512-byte aligned IOs. It is important that
954 * blockdev IO be able to have fine alignment and large sizes.
955 *
956 * So what we do is to permit the ->get_block function to populate bh.b_size
957 * with the size of IO which is permitted at this offset and this i_blkbits.
958 *
959 * For best results, the blockdev should be set up with 512-byte i_blkbits and
960 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
961 * fine alignment but still allows this function to work in PAGE_SIZE units.
962 */
963 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
964 struct buffer_head *map_bh)
965 {
966 const unsigned blkbits = sdio->blkbits;
967 const unsigned i_blkbits = blkbits + sdio->blkfactor;
968 int ret = 0;
969
970 while (sdio->block_in_file < sdio->final_block_in_request) {
971 struct page *page;
972 size_t from, to;
973
974 page = dio_get_page(dio, sdio);
975 if (IS_ERR(page)) {
976 ret = PTR_ERR(page);
977 goto out;
978 }
979 from = sdio->head ? 0 : sdio->from;
980 to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
981 sdio->head++;
982
983 while (from < to) {
984 unsigned this_chunk_bytes; /* # of bytes mapped */
985 unsigned this_chunk_blocks; /* # of blocks */
986 unsigned u;
987
988 if (sdio->blocks_available == 0) {
989 /*
990 * Need to go and map some more disk
991 */
992 unsigned long blkmask;
993 unsigned long dio_remainder;
994
995 ret = get_more_blocks(dio, sdio, map_bh);
996 if (ret) {
997 put_page(page);
998 goto out;
999 }
1000 if (!buffer_mapped(map_bh))
1001 goto do_holes;
1002
1003 sdio->blocks_available =
1004 map_bh->b_size >> blkbits;
1005 sdio->next_block_for_io =
1006 map_bh->b_blocknr << sdio->blkfactor;
1007 if (buffer_new(map_bh)) {
1008 clean_bdev_aliases(
1009 map_bh->b_bdev,
1010 map_bh->b_blocknr,
1011 map_bh->b_size >> i_blkbits);
1012 }
1013
1014 if (!sdio->blkfactor)
1015 goto do_holes;
1016
1017 blkmask = (1 << sdio->blkfactor) - 1;
1018 dio_remainder = (sdio->block_in_file & blkmask);
1019
1020 /*
1021 * If we are at the start of IO and that IO
1022 * starts partway into a fs-block,
1023 * dio_remainder will be non-zero. If the IO
1024 * is a read then we can simply advance the IO
1025 * cursor to the first block which is to be
1026 * read. But if the IO is a write and the
1027 * block was newly allocated we cannot do that;
1028 * the start of the fs block must be zeroed out
1029 * on-disk
1030 */
1031 if (!buffer_new(map_bh))
1032 sdio->next_block_for_io += dio_remainder;
1033 sdio->blocks_available -= dio_remainder;
1034 }
1035 do_holes:
1036 /* Handle holes */
1037 if (!buffer_mapped(map_bh)) {
1038 loff_t i_size_aligned;
1039
1040 /* AKPM: eargh, -ENOTBLK is a hack */
1041 if (dio->op == REQ_OP_WRITE) {
1042 put_page(page);
1043 return -ENOTBLK;
1044 }
1045
1046 /*
1047 * Be sure to account for a partial block as the
1048 * last block in the file
1049 */
1050 i_size_aligned = ALIGN(i_size_read(dio->inode),
1051 1 << blkbits);
1052 if (sdio->block_in_file >=
1053 i_size_aligned >> blkbits) {
1054 /* We hit eof */
1055 put_page(page);
1056 goto out;
1057 }
1058 zero_user(page, from, 1 << blkbits);
1059 sdio->block_in_file++;
1060 from += 1 << blkbits;
1061 dio->result += 1 << blkbits;
1062 goto next_block;
1063 }
1064
1065 /*
1066 * If we're performing IO which has an alignment which
1067 * is finer than the underlying fs, go check to see if
1068 * we must zero out the start of this block.
1069 */
1070 if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1071 dio_zero_block(dio, sdio, 0, map_bh);
1072
1073 /*
1074 * Work out, in this_chunk_blocks, how much disk we
1075 * can add to this page
1076 */
1077 this_chunk_blocks = sdio->blocks_available;
1078 u = (to - from) >> blkbits;
1079 if (this_chunk_blocks > u)
1080 this_chunk_blocks = u;
1081 u = sdio->final_block_in_request - sdio->block_in_file;
1082 if (this_chunk_blocks > u)
1083 this_chunk_blocks = u;
1084 this_chunk_bytes = this_chunk_blocks << blkbits;
1085 BUG_ON(this_chunk_bytes == 0);
1086
1087 if (this_chunk_blocks == sdio->blocks_available)
1088 sdio->boundary = buffer_boundary(map_bh);
1089 ret = submit_page_section(dio, sdio, page,
1090 from,
1091 this_chunk_bytes,
1092 sdio->next_block_for_io,
1093 map_bh);
1094 if (ret) {
1095 put_page(page);
1096 goto out;
1097 }
1098 sdio->next_block_for_io += this_chunk_blocks;
1099
1100 sdio->block_in_file += this_chunk_blocks;
1101 from += this_chunk_bytes;
1102 dio->result += this_chunk_bytes;
1103 sdio->blocks_available -= this_chunk_blocks;
1104 next_block:
1105 BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1106 if (sdio->block_in_file == sdio->final_block_in_request)
1107 break;
1108 }
1109
1110 /* Drop the ref which was taken in get_user_pages() */
1111 put_page(page);
1112 }
1113 out:
1114 return ret;
1115 }
1116
1117 static inline int drop_refcount(struct dio *dio)
1118 {
1119 int ret2;
1120 unsigned long flags;
1121
1122 /*
1123 * Sync will always be dropping the final ref and completing the
1124 * operation. AIO can if it was a broken operation described above or
1125 * in fact if all the bios race to complete before we get here. In
1126 * that case dio_complete() translates the EIOCBQUEUED into the proper
1127 * return code that the caller will hand to ->complete().
1128 *
1129 * This is managed by the bio_lock instead of being an atomic_t so that
1130 * completion paths can drop their ref and use the remaining count to
1131 * decide to wake the submission path atomically.
1132 */
1133 spin_lock_irqsave(&dio->bio_lock, flags);
1134 ret2 = --dio->refcount;
1135 spin_unlock_irqrestore(&dio->bio_lock, flags);
1136 return ret2;
1137 }
1138
1139 /*
1140 * This is a library function for use by filesystem drivers.
1141 *
1142 * The locking rules are governed by the flags parameter:
1143 * - if the flags value contains DIO_LOCKING we use a fancy locking
1144 * scheme for dumb filesystems.
1145 * For writes this function is called under i_mutex and returns with
1146 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1147 * taken and dropped again before returning.
1148 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1149 * internal locking but rather rely on the filesystem to synchronize
1150 * direct I/O reads/writes versus each other and truncate.
1151 *
1152 * To help with locking against truncate we incremented the i_dio_count
1153 * counter before starting direct I/O, and decrement it once we are done.
1154 * Truncate can wait for it to reach zero to provide exclusion. It is
1155 * expected that filesystem provide exclusion between new direct I/O
1156 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1157 * but other filesystems need to take care of this on their own.
1158 *
1159 * NOTE: if you pass "sdio" to anything by pointer make sure that function
1160 * is always inlined. Otherwise gcc is unable to split the structure into
1161 * individual fields and will generate much worse code. This is important
1162 * for the whole file.
1163 */
1164 static inline ssize_t
1165 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1166 struct block_device *bdev, struct iov_iter *iter,
1167 get_block_t get_block, dio_iodone_t end_io,
1168 dio_submit_t submit_io, int flags)
1169 {
1170 unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1171 unsigned blkbits = i_blkbits;
1172 unsigned blocksize_mask = (1 << blkbits) - 1;
1173 ssize_t retval = -EINVAL;
1174 const size_t count = iov_iter_count(iter);
1175 loff_t offset = iocb->ki_pos;
1176 const loff_t end = offset + count;
1177 struct dio *dio;
1178 struct dio_submit sdio = { 0, };
1179 struct buffer_head map_bh = { 0, };
1180 struct blk_plug plug;
1181 unsigned long align = offset | iov_iter_alignment(iter);
1182
1183 /*
1184 * Avoid references to bdev if not absolutely needed to give
1185 * the early prefetch in the caller enough time.
1186 */
1187
1188 if (align & blocksize_mask) {
1189 if (bdev)
1190 blkbits = blksize_bits(bdev_logical_block_size(bdev));
1191 blocksize_mask = (1 << blkbits) - 1;
1192 if (align & blocksize_mask)
1193 goto out;
1194 }
1195
1196 /* watch out for a 0 len io from a tricksy fs */
1197 if (iov_iter_rw(iter) == READ && !count)
1198 return 0;
1199
1200 dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1201 retval = -ENOMEM;
1202 if (!dio)
1203 goto out;
1204 /*
1205 * Believe it or not, zeroing out the page array caused a .5%
1206 * performance regression in a database benchmark. So, we take
1207 * care to only zero out what's needed.
1208 */
1209 memset(dio, 0, offsetof(struct dio, pages));
1210
1211 dio->flags = flags;
1212 if (dio->flags & DIO_LOCKING) {
1213 if (iov_iter_rw(iter) == READ) {
1214 struct address_space *mapping =
1215 iocb->ki_filp->f_mapping;
1216
1217 /* will be released by direct_io_worker */
1218 inode_lock(inode);
1219
1220 retval = filemap_write_and_wait_range(mapping, offset,
1221 end - 1);
1222 if (retval) {
1223 inode_unlock(inode);
1224 kmem_cache_free(dio_cache, dio);
1225 goto out;
1226 }
1227 }
1228 }
1229
1230 /* Once we sampled i_size check for reads beyond EOF */
1231 dio->i_size = i_size_read(inode);
1232 if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1233 if (dio->flags & DIO_LOCKING)
1234 inode_unlock(inode);
1235 kmem_cache_free(dio_cache, dio);
1236 retval = 0;
1237 goto out;
1238 }
1239
1240 /*
1241 * For file extending writes updating i_size before data writeouts
1242 * complete can expose uninitialized blocks in dumb filesystems.
1243 * In that case we need to wait for I/O completion even if asked
1244 * for an asynchronous write.
1245 */
1246 if (is_sync_kiocb(iocb))
1247 dio->is_async = false;
1248 else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1249 dio->is_async = false;
1250 else
1251 dio->is_async = true;
1252
1253 dio->inode = inode;
1254 if (iov_iter_rw(iter) == WRITE) {
1255 dio->op = REQ_OP_WRITE;
1256 dio->op_flags = REQ_SYNC | REQ_IDLE;
1257 if (iocb->ki_flags & IOCB_NOWAIT)
1258 dio->op_flags |= REQ_NOWAIT;
1259 } else {
1260 dio->op = REQ_OP_READ;
1261 }
1262 if (iocb->ki_flags & IOCB_HIPRI)
1263 dio->op_flags |= REQ_HIPRI;
1264
1265 /*
1266 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1267 * so that we can call ->fsync.
1268 */
1269 if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1270 retval = 0;
1271 if (iocb->ki_flags & IOCB_DSYNC)
1272 retval = dio_set_defer_completion(dio);
1273 else if (!dio->inode->i_sb->s_dio_done_wq) {
1274 /*
1275 * In case of AIO write racing with buffered read we
1276 * need to defer completion. We can't decide this now,
1277 * however the workqueue needs to be initialized here.
1278 */
1279 retval = sb_init_dio_done_wq(dio->inode->i_sb);
1280 }
1281 if (retval) {
1282 /*
1283 * We grab i_mutex only for reads so we don't have
1284 * to release it here
1285 */
1286 kmem_cache_free(dio_cache, dio);
1287 goto out;
1288 }
1289 }
1290
1291 /*
1292 * Will be decremented at I/O completion time.
1293 */
1294 inode_dio_begin(inode);
1295
1296 retval = 0;
1297 sdio.blkbits = blkbits;
1298 sdio.blkfactor = i_blkbits - blkbits;
1299 sdio.block_in_file = offset >> blkbits;
1300
1301 sdio.get_block = get_block;
1302 dio->end_io = end_io;
1303 sdio.submit_io = submit_io;
1304 sdio.final_block_in_bio = -1;
1305 sdio.next_block_for_io = -1;
1306
1307 dio->iocb = iocb;
1308
1309 spin_lock_init(&dio->bio_lock);
1310 dio->refcount = 1;
1311
1312 dio->should_dirty = iter_is_iovec(iter) && iov_iter_rw(iter) == READ;
1313 sdio.iter = iter;
1314 sdio.final_block_in_request = end >> blkbits;
1315
1316 /*
1317 * In case of non-aligned buffers, we may need 2 more
1318 * pages since we need to zero out first and last block.
1319 */
1320 if (unlikely(sdio.blkfactor))
1321 sdio.pages_in_io = 2;
1322
1323 sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1324
1325 blk_start_plug(&plug);
1326
1327 retval = do_direct_IO(dio, &sdio, &map_bh);
1328 if (retval)
1329 dio_cleanup(dio, &sdio);
1330
1331 if (retval == -ENOTBLK) {
1332 /*
1333 * The remaining part of the request will be
1334 * be handled by buffered I/O when we return
1335 */
1336 retval = 0;
1337 }
1338 /*
1339 * There may be some unwritten disk at the end of a part-written
1340 * fs-block-sized block. Go zero that now.
1341 */
1342 dio_zero_block(dio, &sdio, 1, &map_bh);
1343
1344 if (sdio.cur_page) {
1345 ssize_t ret2;
1346
1347 ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1348 if (retval == 0)
1349 retval = ret2;
1350 put_page(sdio.cur_page);
1351 sdio.cur_page = NULL;
1352 }
1353 if (sdio.bio)
1354 dio_bio_submit(dio, &sdio);
1355
1356 blk_finish_plug(&plug);
1357
1358 /*
1359 * It is possible that, we return short IO due to end of file.
1360 * In that case, we need to release all the pages we got hold on.
1361 */
1362 dio_cleanup(dio, &sdio);
1363
1364 /*
1365 * All block lookups have been performed. For READ requests
1366 * we can let i_mutex go now that its achieved its purpose
1367 * of protecting us from looking up uninitialized blocks.
1368 */
1369 if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1370 inode_unlock(dio->inode);
1371
1372 /*
1373 * The only time we want to leave bios in flight is when a successful
1374 * partial aio read or full aio write have been setup. In that case
1375 * bio completion will call aio_complete. The only time it's safe to
1376 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1377 * This had *better* be the only place that raises -EIOCBQUEUED.
1378 */
1379 BUG_ON(retval == -EIOCBQUEUED);
1380 if (dio->is_async && retval == 0 && dio->result &&
1381 (iov_iter_rw(iter) == READ || dio->result == count))
1382 retval = -EIOCBQUEUED;
1383 else
1384 dio_await_completion(dio);
1385
1386 if (drop_refcount(dio) == 0) {
1387 retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1388 } else
1389 BUG_ON(retval != -EIOCBQUEUED);
1390
1391 out:
1392 return retval;
1393 }
1394
1395 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1396 struct block_device *bdev, struct iov_iter *iter,
1397 get_block_t get_block,
1398 dio_iodone_t end_io, dio_submit_t submit_io,
1399 int flags)
1400 {
1401 /*
1402 * The block device state is needed in the end to finally
1403 * submit everything. Since it's likely to be cache cold
1404 * prefetch it here as first thing to hide some of the
1405 * latency.
1406 *
1407 * Attempt to prefetch the pieces we likely need later.
1408 */
1409 prefetch(&bdev->bd_disk->part_tbl);
1410 prefetch(bdev->bd_queue);
1411 prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1412
1413 return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1414 end_io, submit_io, flags);
1415 }
1416
1417 EXPORT_SYMBOL(__blockdev_direct_IO);
1418
1419 static __init int dio_init(void)
1420 {
1421 dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1422 return 0;
1423 }
1424 module_init(dio_init)