]> git.ipfire.org Git - thirdparty/linux.git/blob - fs/locks.c
Merge tag 'spi-v5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi
[thirdparty/linux.git] / fs / locks.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/locks.c
4 *
5 * Provide support for fcntl()'s F_GETLK, F_SETLK, and F_SETLKW calls.
6 * Doug Evans (dje@spiff.uucp), August 07, 1992
7 *
8 * Deadlock detection added.
9 * FIXME: one thing isn't handled yet:
10 * - mandatory locks (requires lots of changes elsewhere)
11 * Kelly Carmichael (kelly@[142.24.8.65]), September 17, 1994.
12 *
13 * Miscellaneous edits, and a total rewrite of posix_lock_file() code.
14 * Kai Petzke (wpp@marie.physik.tu-berlin.de), 1994
15 *
16 * Converted file_lock_table to a linked list from an array, which eliminates
17 * the limits on how many active file locks are open.
18 * Chad Page (pageone@netcom.com), November 27, 1994
19 *
20 * Removed dependency on file descriptors. dup()'ed file descriptors now
21 * get the same locks as the original file descriptors, and a close() on
22 * any file descriptor removes ALL the locks on the file for the current
23 * process. Since locks still depend on the process id, locks are inherited
24 * after an exec() but not after a fork(). This agrees with POSIX, and both
25 * BSD and SVR4 practice.
26 * Andy Walker (andy@lysaker.kvaerner.no), February 14, 1995
27 *
28 * Scrapped free list which is redundant now that we allocate locks
29 * dynamically with kmalloc()/kfree().
30 * Andy Walker (andy@lysaker.kvaerner.no), February 21, 1995
31 *
32 * Implemented two lock personalities - FL_FLOCK and FL_POSIX.
33 *
34 * FL_POSIX locks are created with calls to fcntl() and lockf() through the
35 * fcntl() system call. They have the semantics described above.
36 *
37 * FL_FLOCK locks are created with calls to flock(), through the flock()
38 * system call, which is new. Old C libraries implement flock() via fcntl()
39 * and will continue to use the old, broken implementation.
40 *
41 * FL_FLOCK locks follow the 4.4 BSD flock() semantics. They are associated
42 * with a file pointer (filp). As a result they can be shared by a parent
43 * process and its children after a fork(). They are removed when the last
44 * file descriptor referring to the file pointer is closed (unless explicitly
45 * unlocked).
46 *
47 * FL_FLOCK locks never deadlock, an existing lock is always removed before
48 * upgrading from shared to exclusive (or vice versa). When this happens
49 * any processes blocked by the current lock are woken up and allowed to
50 * run before the new lock is applied.
51 * Andy Walker (andy@lysaker.kvaerner.no), June 09, 1995
52 *
53 * Removed some race conditions in flock_lock_file(), marked other possible
54 * races. Just grep for FIXME to see them.
55 * Dmitry Gorodchanin (pgmdsg@ibi.com), February 09, 1996.
56 *
57 * Addressed Dmitry's concerns. Deadlock checking no longer recursive.
58 * Lock allocation changed to GFP_ATOMIC as we can't afford to sleep
59 * once we've checked for blocking and deadlocking.
60 * Andy Walker (andy@lysaker.kvaerner.no), April 03, 1996.
61 *
62 * Initial implementation of mandatory locks. SunOS turned out to be
63 * a rotten model, so I implemented the "obvious" semantics.
64 * See 'Documentation/filesystems/mandatory-locking.txt' for details.
65 * Andy Walker (andy@lysaker.kvaerner.no), April 06, 1996.
66 *
67 * Don't allow mandatory locks on mmap()'ed files. Added simple functions to
68 * check if a file has mandatory locks, used by mmap(), open() and creat() to
69 * see if system call should be rejected. Ref. HP-UX/SunOS/Solaris Reference
70 * Manual, Section 2.
71 * Andy Walker (andy@lysaker.kvaerner.no), April 09, 1996.
72 *
73 * Tidied up block list handling. Added '/proc/locks' interface.
74 * Andy Walker (andy@lysaker.kvaerner.no), April 24, 1996.
75 *
76 * Fixed deadlock condition for pathological code that mixes calls to
77 * flock() and fcntl().
78 * Andy Walker (andy@lysaker.kvaerner.no), April 29, 1996.
79 *
80 * Allow only one type of locking scheme (FL_POSIX or FL_FLOCK) to be in use
81 * for a given file at a time. Changed the CONFIG_LOCK_MANDATORY scheme to
82 * guarantee sensible behaviour in the case where file system modules might
83 * be compiled with different options than the kernel itself.
84 * Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996.
85 *
86 * Added a couple of missing wake_up() calls. Thanks to Thomas Meckel
87 * (Thomas.Meckel@mni.fh-giessen.de) for spotting this.
88 * Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996.
89 *
90 * Changed FL_POSIX locks to use the block list in the same way as FL_FLOCK
91 * locks. Changed process synchronisation to avoid dereferencing locks that
92 * have already been freed.
93 * Andy Walker (andy@lysaker.kvaerner.no), Sep 21, 1996.
94 *
95 * Made the block list a circular list to minimise searching in the list.
96 * Andy Walker (andy@lysaker.kvaerner.no), Sep 25, 1996.
97 *
98 * Made mandatory locking a mount option. Default is not to allow mandatory
99 * locking.
100 * Andy Walker (andy@lysaker.kvaerner.no), Oct 04, 1996.
101 *
102 * Some adaptations for NFS support.
103 * Olaf Kirch (okir@monad.swb.de), Dec 1996,
104 *
105 * Fixed /proc/locks interface so that we can't overrun the buffer we are handed.
106 * Andy Walker (andy@lysaker.kvaerner.no), May 12, 1997.
107 *
108 * Use slab allocator instead of kmalloc/kfree.
109 * Use generic list implementation from <linux/list.h>.
110 * Sped up posix_locks_deadlock by only considering blocked locks.
111 * Matthew Wilcox <willy@debian.org>, March, 2000.
112 *
113 * Leases and LOCK_MAND
114 * Matthew Wilcox <willy@debian.org>, June, 2000.
115 * Stephen Rothwell <sfr@canb.auug.org.au>, June, 2000.
116 *
117 * Locking conflicts and dependencies:
118 * If multiple threads attempt to lock the same byte (or flock the same file)
119 * only one can be granted the lock, and other must wait their turn.
120 * The first lock has been "applied" or "granted", the others are "waiting"
121 * and are "blocked" by the "applied" lock..
122 *
123 * Waiting and applied locks are all kept in trees whose properties are:
124 *
125 * - the root of a tree may be an applied or waiting lock.
126 * - every other node in the tree is a waiting lock that
127 * conflicts with every ancestor of that node.
128 *
129 * Every such tree begins life as a waiting singleton which obviously
130 * satisfies the above properties.
131 *
132 * The only ways we modify trees preserve these properties:
133 *
134 * 1. We may add a new leaf node, but only after first verifying that it
135 * conflicts with all of its ancestors.
136 * 2. We may remove the root of a tree, creating a new singleton
137 * tree from the root and N new trees rooted in the immediate
138 * children.
139 * 3. If the root of a tree is not currently an applied lock, we may
140 * apply it (if possible).
141 * 4. We may upgrade the root of the tree (either extend its range,
142 * or upgrade its entire range from read to write).
143 *
144 * When an applied lock is modified in a way that reduces or downgrades any
145 * part of its range, we remove all its children (2 above). This particularly
146 * happens when a lock is unlocked.
147 *
148 * For each of those child trees we "wake up" the thread which is
149 * waiting for the lock so it can continue handling as follows: if the
150 * root of the tree applies, we do so (3). If it doesn't, it must
151 * conflict with some applied lock. We remove (wake up) all of its children
152 * (2), and add it is a new leaf to the tree rooted in the applied
153 * lock (1). We then repeat the process recursively with those
154 * children.
155 *
156 */
157
158 #include <linux/capability.h>
159 #include <linux/file.h>
160 #include <linux/fdtable.h>
161 #include <linux/fs.h>
162 #include <linux/init.h>
163 #include <linux/security.h>
164 #include <linux/slab.h>
165 #include <linux/syscalls.h>
166 #include <linux/time.h>
167 #include <linux/rcupdate.h>
168 #include <linux/pid_namespace.h>
169 #include <linux/hashtable.h>
170 #include <linux/percpu.h>
171
172 #define CREATE_TRACE_POINTS
173 #include <trace/events/filelock.h>
174
175 #include <linux/uaccess.h>
176
177 #define IS_POSIX(fl) (fl->fl_flags & FL_POSIX)
178 #define IS_FLOCK(fl) (fl->fl_flags & FL_FLOCK)
179 #define IS_LEASE(fl) (fl->fl_flags & (FL_LEASE|FL_DELEG|FL_LAYOUT))
180 #define IS_OFDLCK(fl) (fl->fl_flags & FL_OFDLCK)
181 #define IS_REMOTELCK(fl) (fl->fl_pid <= 0)
182
183 static bool lease_breaking(struct file_lock *fl)
184 {
185 return fl->fl_flags & (FL_UNLOCK_PENDING | FL_DOWNGRADE_PENDING);
186 }
187
188 static int target_leasetype(struct file_lock *fl)
189 {
190 if (fl->fl_flags & FL_UNLOCK_PENDING)
191 return F_UNLCK;
192 if (fl->fl_flags & FL_DOWNGRADE_PENDING)
193 return F_RDLCK;
194 return fl->fl_type;
195 }
196
197 int leases_enable = 1;
198 int lease_break_time = 45;
199
200 /*
201 * The global file_lock_list is only used for displaying /proc/locks, so we
202 * keep a list on each CPU, with each list protected by its own spinlock.
203 * Global serialization is done using file_rwsem.
204 *
205 * Note that alterations to the list also require that the relevant flc_lock is
206 * held.
207 */
208 struct file_lock_list_struct {
209 spinlock_t lock;
210 struct hlist_head hlist;
211 };
212 static DEFINE_PER_CPU(struct file_lock_list_struct, file_lock_list);
213 DEFINE_STATIC_PERCPU_RWSEM(file_rwsem);
214
215
216 /*
217 * The blocked_hash is used to find POSIX lock loops for deadlock detection.
218 * It is protected by blocked_lock_lock.
219 *
220 * We hash locks by lockowner in order to optimize searching for the lock a
221 * particular lockowner is waiting on.
222 *
223 * FIXME: make this value scale via some heuristic? We generally will want more
224 * buckets when we have more lockowners holding locks, but that's a little
225 * difficult to determine without knowing what the workload will look like.
226 */
227 #define BLOCKED_HASH_BITS 7
228 static DEFINE_HASHTABLE(blocked_hash, BLOCKED_HASH_BITS);
229
230 /*
231 * This lock protects the blocked_hash. Generally, if you're accessing it, you
232 * want to be holding this lock.
233 *
234 * In addition, it also protects the fl->fl_blocked_requests list, and the
235 * fl->fl_blocker pointer for file_lock structures that are acting as lock
236 * requests (in contrast to those that are acting as records of acquired locks).
237 *
238 * Note that when we acquire this lock in order to change the above fields,
239 * we often hold the flc_lock as well. In certain cases, when reading the fields
240 * protected by this lock, we can skip acquiring it iff we already hold the
241 * flc_lock.
242 */
243 static DEFINE_SPINLOCK(blocked_lock_lock);
244
245 static struct kmem_cache *flctx_cache __read_mostly;
246 static struct kmem_cache *filelock_cache __read_mostly;
247
248 static struct file_lock_context *
249 locks_get_lock_context(struct inode *inode, int type)
250 {
251 struct file_lock_context *ctx;
252
253 /* paired with cmpxchg() below */
254 ctx = smp_load_acquire(&inode->i_flctx);
255 if (likely(ctx) || type == F_UNLCK)
256 goto out;
257
258 ctx = kmem_cache_alloc(flctx_cache, GFP_KERNEL);
259 if (!ctx)
260 goto out;
261
262 spin_lock_init(&ctx->flc_lock);
263 INIT_LIST_HEAD(&ctx->flc_flock);
264 INIT_LIST_HEAD(&ctx->flc_posix);
265 INIT_LIST_HEAD(&ctx->flc_lease);
266
267 /*
268 * Assign the pointer if it's not already assigned. If it is, then
269 * free the context we just allocated.
270 */
271 if (cmpxchg(&inode->i_flctx, NULL, ctx)) {
272 kmem_cache_free(flctx_cache, ctx);
273 ctx = smp_load_acquire(&inode->i_flctx);
274 }
275 out:
276 trace_locks_get_lock_context(inode, type, ctx);
277 return ctx;
278 }
279
280 static void
281 locks_dump_ctx_list(struct list_head *list, char *list_type)
282 {
283 struct file_lock *fl;
284
285 list_for_each_entry(fl, list, fl_list) {
286 pr_warn("%s: fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", list_type, fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid);
287 }
288 }
289
290 static void
291 locks_check_ctx_lists(struct inode *inode)
292 {
293 struct file_lock_context *ctx = inode->i_flctx;
294
295 if (unlikely(!list_empty(&ctx->flc_flock) ||
296 !list_empty(&ctx->flc_posix) ||
297 !list_empty(&ctx->flc_lease))) {
298 pr_warn("Leaked locks on dev=0x%x:0x%x ino=0x%lx:\n",
299 MAJOR(inode->i_sb->s_dev), MINOR(inode->i_sb->s_dev),
300 inode->i_ino);
301 locks_dump_ctx_list(&ctx->flc_flock, "FLOCK");
302 locks_dump_ctx_list(&ctx->flc_posix, "POSIX");
303 locks_dump_ctx_list(&ctx->flc_lease, "LEASE");
304 }
305 }
306
307 static void
308 locks_check_ctx_file_list(struct file *filp, struct list_head *list,
309 char *list_type)
310 {
311 struct file_lock *fl;
312 struct inode *inode = locks_inode(filp);
313
314 list_for_each_entry(fl, list, fl_list)
315 if (fl->fl_file == filp)
316 pr_warn("Leaked %s lock on dev=0x%x:0x%x ino=0x%lx "
317 " fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n",
318 list_type, MAJOR(inode->i_sb->s_dev),
319 MINOR(inode->i_sb->s_dev), inode->i_ino,
320 fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid);
321 }
322
323 void
324 locks_free_lock_context(struct inode *inode)
325 {
326 struct file_lock_context *ctx = inode->i_flctx;
327
328 if (unlikely(ctx)) {
329 locks_check_ctx_lists(inode);
330 kmem_cache_free(flctx_cache, ctx);
331 }
332 }
333
334 static void locks_init_lock_heads(struct file_lock *fl)
335 {
336 INIT_HLIST_NODE(&fl->fl_link);
337 INIT_LIST_HEAD(&fl->fl_list);
338 INIT_LIST_HEAD(&fl->fl_blocked_requests);
339 INIT_LIST_HEAD(&fl->fl_blocked_member);
340 init_waitqueue_head(&fl->fl_wait);
341 }
342
343 /* Allocate an empty lock structure. */
344 struct file_lock *locks_alloc_lock(void)
345 {
346 struct file_lock *fl = kmem_cache_zalloc(filelock_cache, GFP_KERNEL);
347
348 if (fl)
349 locks_init_lock_heads(fl);
350
351 return fl;
352 }
353 EXPORT_SYMBOL_GPL(locks_alloc_lock);
354
355 void locks_release_private(struct file_lock *fl)
356 {
357 BUG_ON(waitqueue_active(&fl->fl_wait));
358 BUG_ON(!list_empty(&fl->fl_list));
359 BUG_ON(!list_empty(&fl->fl_blocked_requests));
360 BUG_ON(!list_empty(&fl->fl_blocked_member));
361 BUG_ON(!hlist_unhashed(&fl->fl_link));
362
363 if (fl->fl_ops) {
364 if (fl->fl_ops->fl_release_private)
365 fl->fl_ops->fl_release_private(fl);
366 fl->fl_ops = NULL;
367 }
368
369 if (fl->fl_lmops) {
370 if (fl->fl_lmops->lm_put_owner) {
371 fl->fl_lmops->lm_put_owner(fl->fl_owner);
372 fl->fl_owner = NULL;
373 }
374 fl->fl_lmops = NULL;
375 }
376 }
377 EXPORT_SYMBOL_GPL(locks_release_private);
378
379 /* Free a lock which is not in use. */
380 void locks_free_lock(struct file_lock *fl)
381 {
382 locks_release_private(fl);
383 kmem_cache_free(filelock_cache, fl);
384 }
385 EXPORT_SYMBOL(locks_free_lock);
386
387 static void
388 locks_dispose_list(struct list_head *dispose)
389 {
390 struct file_lock *fl;
391
392 while (!list_empty(dispose)) {
393 fl = list_first_entry(dispose, struct file_lock, fl_list);
394 list_del_init(&fl->fl_list);
395 locks_free_lock(fl);
396 }
397 }
398
399 void locks_init_lock(struct file_lock *fl)
400 {
401 memset(fl, 0, sizeof(struct file_lock));
402 locks_init_lock_heads(fl);
403 }
404 EXPORT_SYMBOL(locks_init_lock);
405
406 /*
407 * Initialize a new lock from an existing file_lock structure.
408 */
409 void locks_copy_conflock(struct file_lock *new, struct file_lock *fl)
410 {
411 new->fl_owner = fl->fl_owner;
412 new->fl_pid = fl->fl_pid;
413 new->fl_file = NULL;
414 new->fl_flags = fl->fl_flags;
415 new->fl_type = fl->fl_type;
416 new->fl_start = fl->fl_start;
417 new->fl_end = fl->fl_end;
418 new->fl_lmops = fl->fl_lmops;
419 new->fl_ops = NULL;
420
421 if (fl->fl_lmops) {
422 if (fl->fl_lmops->lm_get_owner)
423 fl->fl_lmops->lm_get_owner(fl->fl_owner);
424 }
425 }
426 EXPORT_SYMBOL(locks_copy_conflock);
427
428 void locks_copy_lock(struct file_lock *new, struct file_lock *fl)
429 {
430 /* "new" must be a freshly-initialized lock */
431 WARN_ON_ONCE(new->fl_ops);
432
433 locks_copy_conflock(new, fl);
434
435 new->fl_file = fl->fl_file;
436 new->fl_ops = fl->fl_ops;
437
438 if (fl->fl_ops) {
439 if (fl->fl_ops->fl_copy_lock)
440 fl->fl_ops->fl_copy_lock(new, fl);
441 }
442 }
443 EXPORT_SYMBOL(locks_copy_lock);
444
445 static void locks_move_blocks(struct file_lock *new, struct file_lock *fl)
446 {
447 struct file_lock *f;
448
449 /*
450 * As ctx->flc_lock is held, new requests cannot be added to
451 * ->fl_blocked_requests, so we don't need a lock to check if it
452 * is empty.
453 */
454 if (list_empty(&fl->fl_blocked_requests))
455 return;
456 spin_lock(&blocked_lock_lock);
457 list_splice_init(&fl->fl_blocked_requests, &new->fl_blocked_requests);
458 list_for_each_entry(f, &new->fl_blocked_requests, fl_blocked_member)
459 f->fl_blocker = new;
460 spin_unlock(&blocked_lock_lock);
461 }
462
463 static inline int flock_translate_cmd(int cmd) {
464 if (cmd & LOCK_MAND)
465 return cmd & (LOCK_MAND | LOCK_RW);
466 switch (cmd) {
467 case LOCK_SH:
468 return F_RDLCK;
469 case LOCK_EX:
470 return F_WRLCK;
471 case LOCK_UN:
472 return F_UNLCK;
473 }
474 return -EINVAL;
475 }
476
477 /* Fill in a file_lock structure with an appropriate FLOCK lock. */
478 static struct file_lock *
479 flock_make_lock(struct file *filp, unsigned int cmd, struct file_lock *fl)
480 {
481 int type = flock_translate_cmd(cmd);
482
483 if (type < 0)
484 return ERR_PTR(type);
485
486 if (fl == NULL) {
487 fl = locks_alloc_lock();
488 if (fl == NULL)
489 return ERR_PTR(-ENOMEM);
490 } else {
491 locks_init_lock(fl);
492 }
493
494 fl->fl_file = filp;
495 fl->fl_owner = filp;
496 fl->fl_pid = current->tgid;
497 fl->fl_flags = FL_FLOCK;
498 fl->fl_type = type;
499 fl->fl_end = OFFSET_MAX;
500
501 return fl;
502 }
503
504 static int assign_type(struct file_lock *fl, long type)
505 {
506 switch (type) {
507 case F_RDLCK:
508 case F_WRLCK:
509 case F_UNLCK:
510 fl->fl_type = type;
511 break;
512 default:
513 return -EINVAL;
514 }
515 return 0;
516 }
517
518 static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl,
519 struct flock64 *l)
520 {
521 switch (l->l_whence) {
522 case SEEK_SET:
523 fl->fl_start = 0;
524 break;
525 case SEEK_CUR:
526 fl->fl_start = filp->f_pos;
527 break;
528 case SEEK_END:
529 fl->fl_start = i_size_read(file_inode(filp));
530 break;
531 default:
532 return -EINVAL;
533 }
534 if (l->l_start > OFFSET_MAX - fl->fl_start)
535 return -EOVERFLOW;
536 fl->fl_start += l->l_start;
537 if (fl->fl_start < 0)
538 return -EINVAL;
539
540 /* POSIX-1996 leaves the case l->l_len < 0 undefined;
541 POSIX-2001 defines it. */
542 if (l->l_len > 0) {
543 if (l->l_len - 1 > OFFSET_MAX - fl->fl_start)
544 return -EOVERFLOW;
545 fl->fl_end = fl->fl_start + l->l_len - 1;
546
547 } else if (l->l_len < 0) {
548 if (fl->fl_start + l->l_len < 0)
549 return -EINVAL;
550 fl->fl_end = fl->fl_start - 1;
551 fl->fl_start += l->l_len;
552 } else
553 fl->fl_end = OFFSET_MAX;
554
555 fl->fl_owner = current->files;
556 fl->fl_pid = current->tgid;
557 fl->fl_file = filp;
558 fl->fl_flags = FL_POSIX;
559 fl->fl_ops = NULL;
560 fl->fl_lmops = NULL;
561
562 return assign_type(fl, l->l_type);
563 }
564
565 /* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX
566 * style lock.
567 */
568 static int flock_to_posix_lock(struct file *filp, struct file_lock *fl,
569 struct flock *l)
570 {
571 struct flock64 ll = {
572 .l_type = l->l_type,
573 .l_whence = l->l_whence,
574 .l_start = l->l_start,
575 .l_len = l->l_len,
576 };
577
578 return flock64_to_posix_lock(filp, fl, &ll);
579 }
580
581 /* default lease lock manager operations */
582 static bool
583 lease_break_callback(struct file_lock *fl)
584 {
585 kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG);
586 return false;
587 }
588
589 static void
590 lease_setup(struct file_lock *fl, void **priv)
591 {
592 struct file *filp = fl->fl_file;
593 struct fasync_struct *fa = *priv;
594
595 /*
596 * fasync_insert_entry() returns the old entry if any. If there was no
597 * old entry, then it used "priv" and inserted it into the fasync list.
598 * Clear the pointer to indicate that it shouldn't be freed.
599 */
600 if (!fasync_insert_entry(fa->fa_fd, filp, &fl->fl_fasync, fa))
601 *priv = NULL;
602
603 __f_setown(filp, task_pid(current), PIDTYPE_TGID, 0);
604 }
605
606 static const struct lock_manager_operations lease_manager_ops = {
607 .lm_break = lease_break_callback,
608 .lm_change = lease_modify,
609 .lm_setup = lease_setup,
610 };
611
612 /*
613 * Initialize a lease, use the default lock manager operations
614 */
615 static int lease_init(struct file *filp, long type, struct file_lock *fl)
616 {
617 if (assign_type(fl, type) != 0)
618 return -EINVAL;
619
620 fl->fl_owner = filp;
621 fl->fl_pid = current->tgid;
622
623 fl->fl_file = filp;
624 fl->fl_flags = FL_LEASE;
625 fl->fl_start = 0;
626 fl->fl_end = OFFSET_MAX;
627 fl->fl_ops = NULL;
628 fl->fl_lmops = &lease_manager_ops;
629 return 0;
630 }
631
632 /* Allocate a file_lock initialised to this type of lease */
633 static struct file_lock *lease_alloc(struct file *filp, long type)
634 {
635 struct file_lock *fl = locks_alloc_lock();
636 int error = -ENOMEM;
637
638 if (fl == NULL)
639 return ERR_PTR(error);
640
641 error = lease_init(filp, type, fl);
642 if (error) {
643 locks_free_lock(fl);
644 return ERR_PTR(error);
645 }
646 return fl;
647 }
648
649 /* Check if two locks overlap each other.
650 */
651 static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2)
652 {
653 return ((fl1->fl_end >= fl2->fl_start) &&
654 (fl2->fl_end >= fl1->fl_start));
655 }
656
657 /*
658 * Check whether two locks have the same owner.
659 */
660 static int posix_same_owner(struct file_lock *fl1, struct file_lock *fl2)
661 {
662 return fl1->fl_owner == fl2->fl_owner;
663 }
664
665 /* Must be called with the flc_lock held! */
666 static void locks_insert_global_locks(struct file_lock *fl)
667 {
668 struct file_lock_list_struct *fll = this_cpu_ptr(&file_lock_list);
669
670 percpu_rwsem_assert_held(&file_rwsem);
671
672 spin_lock(&fll->lock);
673 fl->fl_link_cpu = smp_processor_id();
674 hlist_add_head(&fl->fl_link, &fll->hlist);
675 spin_unlock(&fll->lock);
676 }
677
678 /* Must be called with the flc_lock held! */
679 static void locks_delete_global_locks(struct file_lock *fl)
680 {
681 struct file_lock_list_struct *fll;
682
683 percpu_rwsem_assert_held(&file_rwsem);
684
685 /*
686 * Avoid taking lock if already unhashed. This is safe since this check
687 * is done while holding the flc_lock, and new insertions into the list
688 * also require that it be held.
689 */
690 if (hlist_unhashed(&fl->fl_link))
691 return;
692
693 fll = per_cpu_ptr(&file_lock_list, fl->fl_link_cpu);
694 spin_lock(&fll->lock);
695 hlist_del_init(&fl->fl_link);
696 spin_unlock(&fll->lock);
697 }
698
699 static unsigned long
700 posix_owner_key(struct file_lock *fl)
701 {
702 return (unsigned long)fl->fl_owner;
703 }
704
705 static void locks_insert_global_blocked(struct file_lock *waiter)
706 {
707 lockdep_assert_held(&blocked_lock_lock);
708
709 hash_add(blocked_hash, &waiter->fl_link, posix_owner_key(waiter));
710 }
711
712 static void locks_delete_global_blocked(struct file_lock *waiter)
713 {
714 lockdep_assert_held(&blocked_lock_lock);
715
716 hash_del(&waiter->fl_link);
717 }
718
719 /* Remove waiter from blocker's block list.
720 * When blocker ends up pointing to itself then the list is empty.
721 *
722 * Must be called with blocked_lock_lock held.
723 */
724 static void __locks_delete_block(struct file_lock *waiter)
725 {
726 locks_delete_global_blocked(waiter);
727 list_del_init(&waiter->fl_blocked_member);
728 }
729
730 static void __locks_wake_up_blocks(struct file_lock *blocker)
731 {
732 while (!list_empty(&blocker->fl_blocked_requests)) {
733 struct file_lock *waiter;
734
735 waiter = list_first_entry(&blocker->fl_blocked_requests,
736 struct file_lock, fl_blocked_member);
737 __locks_delete_block(waiter);
738 if (waiter->fl_lmops && waiter->fl_lmops->lm_notify)
739 waiter->fl_lmops->lm_notify(waiter);
740 else
741 wake_up(&waiter->fl_wait);
742
743 /*
744 * The setting of fl_blocker to NULL marks the "done"
745 * point in deleting a block. Paired with acquire at the top
746 * of locks_delete_block().
747 */
748 smp_store_release(&waiter->fl_blocker, NULL);
749 }
750 }
751
752 /**
753 * locks_delete_lock - stop waiting for a file lock
754 * @waiter: the lock which was waiting
755 *
756 * lockd/nfsd need to disconnect the lock while working on it.
757 */
758 int locks_delete_block(struct file_lock *waiter)
759 {
760 int status = -ENOENT;
761
762 /*
763 * If fl_blocker is NULL, it won't be set again as this thread "owns"
764 * the lock and is the only one that might try to claim the lock.
765 *
766 * We use acquire/release to manage fl_blocker so that we can
767 * optimize away taking the blocked_lock_lock in many cases.
768 *
769 * The smp_load_acquire guarantees two things:
770 *
771 * 1/ that fl_blocked_requests can be tested locklessly. If something
772 * was recently added to that list it must have been in a locked region
773 * *before* the locked region when fl_blocker was set to NULL.
774 *
775 * 2/ that no other thread is accessing 'waiter', so it is safe to free
776 * it. __locks_wake_up_blocks is careful not to touch waiter after
777 * fl_blocker is released.
778 *
779 * If a lockless check of fl_blocker shows it to be NULL, we know that
780 * no new locks can be inserted into its fl_blocked_requests list, and
781 * can avoid doing anything further if the list is empty.
782 */
783 if (!smp_load_acquire(&waiter->fl_blocker) &&
784 list_empty(&waiter->fl_blocked_requests))
785 return status;
786
787 spin_lock(&blocked_lock_lock);
788 if (waiter->fl_blocker)
789 status = 0;
790 __locks_wake_up_blocks(waiter);
791 __locks_delete_block(waiter);
792
793 /*
794 * The setting of fl_blocker to NULL marks the "done" point in deleting
795 * a block. Paired with acquire at the top of this function.
796 */
797 smp_store_release(&waiter->fl_blocker, NULL);
798 spin_unlock(&blocked_lock_lock);
799 return status;
800 }
801 EXPORT_SYMBOL(locks_delete_block);
802
803 /* Insert waiter into blocker's block list.
804 * We use a circular list so that processes can be easily woken up in
805 * the order they blocked. The documentation doesn't require this but
806 * it seems like the reasonable thing to do.
807 *
808 * Must be called with both the flc_lock and blocked_lock_lock held. The
809 * fl_blocked_requests list itself is protected by the blocked_lock_lock,
810 * but by ensuring that the flc_lock is also held on insertions we can avoid
811 * taking the blocked_lock_lock in some cases when we see that the
812 * fl_blocked_requests list is empty.
813 *
814 * Rather than just adding to the list, we check for conflicts with any existing
815 * waiters, and add beneath any waiter that blocks the new waiter.
816 * Thus wakeups don't happen until needed.
817 */
818 static void __locks_insert_block(struct file_lock *blocker,
819 struct file_lock *waiter,
820 bool conflict(struct file_lock *,
821 struct file_lock *))
822 {
823 struct file_lock *fl;
824 BUG_ON(!list_empty(&waiter->fl_blocked_member));
825
826 new_blocker:
827 list_for_each_entry(fl, &blocker->fl_blocked_requests, fl_blocked_member)
828 if (conflict(fl, waiter)) {
829 blocker = fl;
830 goto new_blocker;
831 }
832 waiter->fl_blocker = blocker;
833 list_add_tail(&waiter->fl_blocked_member, &blocker->fl_blocked_requests);
834 if (IS_POSIX(blocker) && !IS_OFDLCK(blocker))
835 locks_insert_global_blocked(waiter);
836
837 /* The requests in waiter->fl_blocked are known to conflict with
838 * waiter, but might not conflict with blocker, or the requests
839 * and lock which block it. So they all need to be woken.
840 */
841 __locks_wake_up_blocks(waiter);
842 }
843
844 /* Must be called with flc_lock held. */
845 static void locks_insert_block(struct file_lock *blocker,
846 struct file_lock *waiter,
847 bool conflict(struct file_lock *,
848 struct file_lock *))
849 {
850 spin_lock(&blocked_lock_lock);
851 __locks_insert_block(blocker, waiter, conflict);
852 spin_unlock(&blocked_lock_lock);
853 }
854
855 /*
856 * Wake up processes blocked waiting for blocker.
857 *
858 * Must be called with the inode->flc_lock held!
859 */
860 static void locks_wake_up_blocks(struct file_lock *blocker)
861 {
862 /*
863 * Avoid taking global lock if list is empty. This is safe since new
864 * blocked requests are only added to the list under the flc_lock, and
865 * the flc_lock is always held here. Note that removal from the
866 * fl_blocked_requests list does not require the flc_lock, so we must
867 * recheck list_empty() after acquiring the blocked_lock_lock.
868 */
869 if (list_empty(&blocker->fl_blocked_requests))
870 return;
871
872 spin_lock(&blocked_lock_lock);
873 __locks_wake_up_blocks(blocker);
874 spin_unlock(&blocked_lock_lock);
875 }
876
877 static void
878 locks_insert_lock_ctx(struct file_lock *fl, struct list_head *before)
879 {
880 list_add_tail(&fl->fl_list, before);
881 locks_insert_global_locks(fl);
882 }
883
884 static void
885 locks_unlink_lock_ctx(struct file_lock *fl)
886 {
887 locks_delete_global_locks(fl);
888 list_del_init(&fl->fl_list);
889 locks_wake_up_blocks(fl);
890 }
891
892 static void
893 locks_delete_lock_ctx(struct file_lock *fl, struct list_head *dispose)
894 {
895 locks_unlink_lock_ctx(fl);
896 if (dispose)
897 list_add(&fl->fl_list, dispose);
898 else
899 locks_free_lock(fl);
900 }
901
902 /* Determine if lock sys_fl blocks lock caller_fl. Common functionality
903 * checks for shared/exclusive status of overlapping locks.
904 */
905 static bool locks_conflict(struct file_lock *caller_fl,
906 struct file_lock *sys_fl)
907 {
908 if (sys_fl->fl_type == F_WRLCK)
909 return true;
910 if (caller_fl->fl_type == F_WRLCK)
911 return true;
912 return false;
913 }
914
915 /* Determine if lock sys_fl blocks lock caller_fl. POSIX specific
916 * checking before calling the locks_conflict().
917 */
918 static bool posix_locks_conflict(struct file_lock *caller_fl,
919 struct file_lock *sys_fl)
920 {
921 /* POSIX locks owned by the same process do not conflict with
922 * each other.
923 */
924 if (posix_same_owner(caller_fl, sys_fl))
925 return false;
926
927 /* Check whether they overlap */
928 if (!locks_overlap(caller_fl, sys_fl))
929 return false;
930
931 return locks_conflict(caller_fl, sys_fl);
932 }
933
934 /* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific
935 * checking before calling the locks_conflict().
936 */
937 static bool flock_locks_conflict(struct file_lock *caller_fl,
938 struct file_lock *sys_fl)
939 {
940 /* FLOCK locks referring to the same filp do not conflict with
941 * each other.
942 */
943 if (caller_fl->fl_file == sys_fl->fl_file)
944 return false;
945 if ((caller_fl->fl_type & LOCK_MAND) || (sys_fl->fl_type & LOCK_MAND))
946 return false;
947
948 return locks_conflict(caller_fl, sys_fl);
949 }
950
951 void
952 posix_test_lock(struct file *filp, struct file_lock *fl)
953 {
954 struct file_lock *cfl;
955 struct file_lock_context *ctx;
956 struct inode *inode = locks_inode(filp);
957
958 ctx = smp_load_acquire(&inode->i_flctx);
959 if (!ctx || list_empty_careful(&ctx->flc_posix)) {
960 fl->fl_type = F_UNLCK;
961 return;
962 }
963
964 spin_lock(&ctx->flc_lock);
965 list_for_each_entry(cfl, &ctx->flc_posix, fl_list) {
966 if (posix_locks_conflict(fl, cfl)) {
967 locks_copy_conflock(fl, cfl);
968 goto out;
969 }
970 }
971 fl->fl_type = F_UNLCK;
972 out:
973 spin_unlock(&ctx->flc_lock);
974 return;
975 }
976 EXPORT_SYMBOL(posix_test_lock);
977
978 /*
979 * Deadlock detection:
980 *
981 * We attempt to detect deadlocks that are due purely to posix file
982 * locks.
983 *
984 * We assume that a task can be waiting for at most one lock at a time.
985 * So for any acquired lock, the process holding that lock may be
986 * waiting on at most one other lock. That lock in turns may be held by
987 * someone waiting for at most one other lock. Given a requested lock
988 * caller_fl which is about to wait for a conflicting lock block_fl, we
989 * follow this chain of waiters to ensure we are not about to create a
990 * cycle.
991 *
992 * Since we do this before we ever put a process to sleep on a lock, we
993 * are ensured that there is never a cycle; that is what guarantees that
994 * the while() loop in posix_locks_deadlock() eventually completes.
995 *
996 * Note: the above assumption may not be true when handling lock
997 * requests from a broken NFS client. It may also fail in the presence
998 * of tasks (such as posix threads) sharing the same open file table.
999 * To handle those cases, we just bail out after a few iterations.
1000 *
1001 * For FL_OFDLCK locks, the owner is the filp, not the files_struct.
1002 * Because the owner is not even nominally tied to a thread of
1003 * execution, the deadlock detection below can't reasonably work well. Just
1004 * skip it for those.
1005 *
1006 * In principle, we could do a more limited deadlock detection on FL_OFDLCK
1007 * locks that just checks for the case where two tasks are attempting to
1008 * upgrade from read to write locks on the same inode.
1009 */
1010
1011 #define MAX_DEADLK_ITERATIONS 10
1012
1013 /* Find a lock that the owner of the given block_fl is blocking on. */
1014 static struct file_lock *what_owner_is_waiting_for(struct file_lock *block_fl)
1015 {
1016 struct file_lock *fl;
1017
1018 hash_for_each_possible(blocked_hash, fl, fl_link, posix_owner_key(block_fl)) {
1019 if (posix_same_owner(fl, block_fl)) {
1020 while (fl->fl_blocker)
1021 fl = fl->fl_blocker;
1022 return fl;
1023 }
1024 }
1025 return NULL;
1026 }
1027
1028 /* Must be called with the blocked_lock_lock held! */
1029 static int posix_locks_deadlock(struct file_lock *caller_fl,
1030 struct file_lock *block_fl)
1031 {
1032 int i = 0;
1033
1034 lockdep_assert_held(&blocked_lock_lock);
1035
1036 /*
1037 * This deadlock detector can't reasonably detect deadlocks with
1038 * FL_OFDLCK locks, since they aren't owned by a process, per-se.
1039 */
1040 if (IS_OFDLCK(caller_fl))
1041 return 0;
1042
1043 while ((block_fl = what_owner_is_waiting_for(block_fl))) {
1044 if (i++ > MAX_DEADLK_ITERATIONS)
1045 return 0;
1046 if (posix_same_owner(caller_fl, block_fl))
1047 return 1;
1048 }
1049 return 0;
1050 }
1051
1052 /* Try to create a FLOCK lock on filp. We always insert new FLOCK locks
1053 * after any leases, but before any posix locks.
1054 *
1055 * Note that if called with an FL_EXISTS argument, the caller may determine
1056 * whether or not a lock was successfully freed by testing the return
1057 * value for -ENOENT.
1058 */
1059 static int flock_lock_inode(struct inode *inode, struct file_lock *request)
1060 {
1061 struct file_lock *new_fl = NULL;
1062 struct file_lock *fl;
1063 struct file_lock_context *ctx;
1064 int error = 0;
1065 bool found = false;
1066 LIST_HEAD(dispose);
1067
1068 ctx = locks_get_lock_context(inode, request->fl_type);
1069 if (!ctx) {
1070 if (request->fl_type != F_UNLCK)
1071 return -ENOMEM;
1072 return (request->fl_flags & FL_EXISTS) ? -ENOENT : 0;
1073 }
1074
1075 if (!(request->fl_flags & FL_ACCESS) && (request->fl_type != F_UNLCK)) {
1076 new_fl = locks_alloc_lock();
1077 if (!new_fl)
1078 return -ENOMEM;
1079 }
1080
1081 percpu_down_read(&file_rwsem);
1082 spin_lock(&ctx->flc_lock);
1083 if (request->fl_flags & FL_ACCESS)
1084 goto find_conflict;
1085
1086 list_for_each_entry(fl, &ctx->flc_flock, fl_list) {
1087 if (request->fl_file != fl->fl_file)
1088 continue;
1089 if (request->fl_type == fl->fl_type)
1090 goto out;
1091 found = true;
1092 locks_delete_lock_ctx(fl, &dispose);
1093 break;
1094 }
1095
1096 if (request->fl_type == F_UNLCK) {
1097 if ((request->fl_flags & FL_EXISTS) && !found)
1098 error = -ENOENT;
1099 goto out;
1100 }
1101
1102 find_conflict:
1103 list_for_each_entry(fl, &ctx->flc_flock, fl_list) {
1104 if (!flock_locks_conflict(request, fl))
1105 continue;
1106 error = -EAGAIN;
1107 if (!(request->fl_flags & FL_SLEEP))
1108 goto out;
1109 error = FILE_LOCK_DEFERRED;
1110 locks_insert_block(fl, request, flock_locks_conflict);
1111 goto out;
1112 }
1113 if (request->fl_flags & FL_ACCESS)
1114 goto out;
1115 locks_copy_lock(new_fl, request);
1116 locks_move_blocks(new_fl, request);
1117 locks_insert_lock_ctx(new_fl, &ctx->flc_flock);
1118 new_fl = NULL;
1119 error = 0;
1120
1121 out:
1122 spin_unlock(&ctx->flc_lock);
1123 percpu_up_read(&file_rwsem);
1124 if (new_fl)
1125 locks_free_lock(new_fl);
1126 locks_dispose_list(&dispose);
1127 trace_flock_lock_inode(inode, request, error);
1128 return error;
1129 }
1130
1131 static int posix_lock_inode(struct inode *inode, struct file_lock *request,
1132 struct file_lock *conflock)
1133 {
1134 struct file_lock *fl, *tmp;
1135 struct file_lock *new_fl = NULL;
1136 struct file_lock *new_fl2 = NULL;
1137 struct file_lock *left = NULL;
1138 struct file_lock *right = NULL;
1139 struct file_lock_context *ctx;
1140 int error;
1141 bool added = false;
1142 LIST_HEAD(dispose);
1143
1144 ctx = locks_get_lock_context(inode, request->fl_type);
1145 if (!ctx)
1146 return (request->fl_type == F_UNLCK) ? 0 : -ENOMEM;
1147
1148 /*
1149 * We may need two file_lock structures for this operation,
1150 * so we get them in advance to avoid races.
1151 *
1152 * In some cases we can be sure, that no new locks will be needed
1153 */
1154 if (!(request->fl_flags & FL_ACCESS) &&
1155 (request->fl_type != F_UNLCK ||
1156 request->fl_start != 0 || request->fl_end != OFFSET_MAX)) {
1157 new_fl = locks_alloc_lock();
1158 new_fl2 = locks_alloc_lock();
1159 }
1160
1161 percpu_down_read(&file_rwsem);
1162 spin_lock(&ctx->flc_lock);
1163 /*
1164 * New lock request. Walk all POSIX locks and look for conflicts. If
1165 * there are any, either return error or put the request on the
1166 * blocker's list of waiters and the global blocked_hash.
1167 */
1168 if (request->fl_type != F_UNLCK) {
1169 list_for_each_entry(fl, &ctx->flc_posix, fl_list) {
1170 if (!posix_locks_conflict(request, fl))
1171 continue;
1172 if (conflock)
1173 locks_copy_conflock(conflock, fl);
1174 error = -EAGAIN;
1175 if (!(request->fl_flags & FL_SLEEP))
1176 goto out;
1177 /*
1178 * Deadlock detection and insertion into the blocked
1179 * locks list must be done while holding the same lock!
1180 */
1181 error = -EDEADLK;
1182 spin_lock(&blocked_lock_lock);
1183 /*
1184 * Ensure that we don't find any locks blocked on this
1185 * request during deadlock detection.
1186 */
1187 __locks_wake_up_blocks(request);
1188 if (likely(!posix_locks_deadlock(request, fl))) {
1189 error = FILE_LOCK_DEFERRED;
1190 __locks_insert_block(fl, request,
1191 posix_locks_conflict);
1192 }
1193 spin_unlock(&blocked_lock_lock);
1194 goto out;
1195 }
1196 }
1197
1198 /* If we're just looking for a conflict, we're done. */
1199 error = 0;
1200 if (request->fl_flags & FL_ACCESS)
1201 goto out;
1202
1203 /* Find the first old lock with the same owner as the new lock */
1204 list_for_each_entry(fl, &ctx->flc_posix, fl_list) {
1205 if (posix_same_owner(request, fl))
1206 break;
1207 }
1208
1209 /* Process locks with this owner. */
1210 list_for_each_entry_safe_from(fl, tmp, &ctx->flc_posix, fl_list) {
1211 if (!posix_same_owner(request, fl))
1212 break;
1213
1214 /* Detect adjacent or overlapping regions (if same lock type) */
1215 if (request->fl_type == fl->fl_type) {
1216 /* In all comparisons of start vs end, use
1217 * "start - 1" rather than "end + 1". If end
1218 * is OFFSET_MAX, end + 1 will become negative.
1219 */
1220 if (fl->fl_end < request->fl_start - 1)
1221 continue;
1222 /* If the next lock in the list has entirely bigger
1223 * addresses than the new one, insert the lock here.
1224 */
1225 if (fl->fl_start - 1 > request->fl_end)
1226 break;
1227
1228 /* If we come here, the new and old lock are of the
1229 * same type and adjacent or overlapping. Make one
1230 * lock yielding from the lower start address of both
1231 * locks to the higher end address.
1232 */
1233 if (fl->fl_start > request->fl_start)
1234 fl->fl_start = request->fl_start;
1235 else
1236 request->fl_start = fl->fl_start;
1237 if (fl->fl_end < request->fl_end)
1238 fl->fl_end = request->fl_end;
1239 else
1240 request->fl_end = fl->fl_end;
1241 if (added) {
1242 locks_delete_lock_ctx(fl, &dispose);
1243 continue;
1244 }
1245 request = fl;
1246 added = true;
1247 } else {
1248 /* Processing for different lock types is a bit
1249 * more complex.
1250 */
1251 if (fl->fl_end < request->fl_start)
1252 continue;
1253 if (fl->fl_start > request->fl_end)
1254 break;
1255 if (request->fl_type == F_UNLCK)
1256 added = true;
1257 if (fl->fl_start < request->fl_start)
1258 left = fl;
1259 /* If the next lock in the list has a higher end
1260 * address than the new one, insert the new one here.
1261 */
1262 if (fl->fl_end > request->fl_end) {
1263 right = fl;
1264 break;
1265 }
1266 if (fl->fl_start >= request->fl_start) {
1267 /* The new lock completely replaces an old
1268 * one (This may happen several times).
1269 */
1270 if (added) {
1271 locks_delete_lock_ctx(fl, &dispose);
1272 continue;
1273 }
1274 /*
1275 * Replace the old lock with new_fl, and
1276 * remove the old one. It's safe to do the
1277 * insert here since we know that we won't be
1278 * using new_fl later, and that the lock is
1279 * just replacing an existing lock.
1280 */
1281 error = -ENOLCK;
1282 if (!new_fl)
1283 goto out;
1284 locks_copy_lock(new_fl, request);
1285 request = new_fl;
1286 new_fl = NULL;
1287 locks_insert_lock_ctx(request, &fl->fl_list);
1288 locks_delete_lock_ctx(fl, &dispose);
1289 added = true;
1290 }
1291 }
1292 }
1293
1294 /*
1295 * The above code only modifies existing locks in case of merging or
1296 * replacing. If new lock(s) need to be inserted all modifications are
1297 * done below this, so it's safe yet to bail out.
1298 */
1299 error = -ENOLCK; /* "no luck" */
1300 if (right && left == right && !new_fl2)
1301 goto out;
1302
1303 error = 0;
1304 if (!added) {
1305 if (request->fl_type == F_UNLCK) {
1306 if (request->fl_flags & FL_EXISTS)
1307 error = -ENOENT;
1308 goto out;
1309 }
1310
1311 if (!new_fl) {
1312 error = -ENOLCK;
1313 goto out;
1314 }
1315 locks_copy_lock(new_fl, request);
1316 locks_move_blocks(new_fl, request);
1317 locks_insert_lock_ctx(new_fl, &fl->fl_list);
1318 fl = new_fl;
1319 new_fl = NULL;
1320 }
1321 if (right) {
1322 if (left == right) {
1323 /* The new lock breaks the old one in two pieces,
1324 * so we have to use the second new lock.
1325 */
1326 left = new_fl2;
1327 new_fl2 = NULL;
1328 locks_copy_lock(left, right);
1329 locks_insert_lock_ctx(left, &fl->fl_list);
1330 }
1331 right->fl_start = request->fl_end + 1;
1332 locks_wake_up_blocks(right);
1333 }
1334 if (left) {
1335 left->fl_end = request->fl_start - 1;
1336 locks_wake_up_blocks(left);
1337 }
1338 out:
1339 spin_unlock(&ctx->flc_lock);
1340 percpu_up_read(&file_rwsem);
1341 /*
1342 * Free any unused locks.
1343 */
1344 if (new_fl)
1345 locks_free_lock(new_fl);
1346 if (new_fl2)
1347 locks_free_lock(new_fl2);
1348 locks_dispose_list(&dispose);
1349 trace_posix_lock_inode(inode, request, error);
1350
1351 return error;
1352 }
1353
1354 /**
1355 * posix_lock_file - Apply a POSIX-style lock to a file
1356 * @filp: The file to apply the lock to
1357 * @fl: The lock to be applied
1358 * @conflock: Place to return a copy of the conflicting lock, if found.
1359 *
1360 * Add a POSIX style lock to a file.
1361 * We merge adjacent & overlapping locks whenever possible.
1362 * POSIX locks are sorted by owner task, then by starting address
1363 *
1364 * Note that if called with an FL_EXISTS argument, the caller may determine
1365 * whether or not a lock was successfully freed by testing the return
1366 * value for -ENOENT.
1367 */
1368 int posix_lock_file(struct file *filp, struct file_lock *fl,
1369 struct file_lock *conflock)
1370 {
1371 return posix_lock_inode(locks_inode(filp), fl, conflock);
1372 }
1373 EXPORT_SYMBOL(posix_lock_file);
1374
1375 /**
1376 * posix_lock_inode_wait - Apply a POSIX-style lock to a file
1377 * @inode: inode of file to which lock request should be applied
1378 * @fl: The lock to be applied
1379 *
1380 * Apply a POSIX style lock request to an inode.
1381 */
1382 static int posix_lock_inode_wait(struct inode *inode, struct file_lock *fl)
1383 {
1384 int error;
1385 might_sleep ();
1386 for (;;) {
1387 error = posix_lock_inode(inode, fl, NULL);
1388 if (error != FILE_LOCK_DEFERRED)
1389 break;
1390 error = wait_event_interruptible(fl->fl_wait,
1391 list_empty(&fl->fl_blocked_member));
1392 if (error)
1393 break;
1394 }
1395 locks_delete_block(fl);
1396 return error;
1397 }
1398
1399 #ifdef CONFIG_MANDATORY_FILE_LOCKING
1400 /**
1401 * locks_mandatory_locked - Check for an active lock
1402 * @file: the file to check
1403 *
1404 * Searches the inode's list of locks to find any POSIX locks which conflict.
1405 * This function is called from locks_verify_locked() only.
1406 */
1407 int locks_mandatory_locked(struct file *file)
1408 {
1409 int ret;
1410 struct inode *inode = locks_inode(file);
1411 struct file_lock_context *ctx;
1412 struct file_lock *fl;
1413
1414 ctx = smp_load_acquire(&inode->i_flctx);
1415 if (!ctx || list_empty_careful(&ctx->flc_posix))
1416 return 0;
1417
1418 /*
1419 * Search the lock list for this inode for any POSIX locks.
1420 */
1421 spin_lock(&ctx->flc_lock);
1422 ret = 0;
1423 list_for_each_entry(fl, &ctx->flc_posix, fl_list) {
1424 if (fl->fl_owner != current->files &&
1425 fl->fl_owner != file) {
1426 ret = -EAGAIN;
1427 break;
1428 }
1429 }
1430 spin_unlock(&ctx->flc_lock);
1431 return ret;
1432 }
1433
1434 /**
1435 * locks_mandatory_area - Check for a conflicting lock
1436 * @inode: the file to check
1437 * @filp: how the file was opened (if it was)
1438 * @start: first byte in the file to check
1439 * @end: lastbyte in the file to check
1440 * @type: %F_WRLCK for a write lock, else %F_RDLCK
1441 *
1442 * Searches the inode's list of locks to find any POSIX locks which conflict.
1443 */
1444 int locks_mandatory_area(struct inode *inode, struct file *filp, loff_t start,
1445 loff_t end, unsigned char type)
1446 {
1447 struct file_lock fl;
1448 int error;
1449 bool sleep = false;
1450
1451 locks_init_lock(&fl);
1452 fl.fl_pid = current->tgid;
1453 fl.fl_file = filp;
1454 fl.fl_flags = FL_POSIX | FL_ACCESS;
1455 if (filp && !(filp->f_flags & O_NONBLOCK))
1456 sleep = true;
1457 fl.fl_type = type;
1458 fl.fl_start = start;
1459 fl.fl_end = end;
1460
1461 for (;;) {
1462 if (filp) {
1463 fl.fl_owner = filp;
1464 fl.fl_flags &= ~FL_SLEEP;
1465 error = posix_lock_inode(inode, &fl, NULL);
1466 if (!error)
1467 break;
1468 }
1469
1470 if (sleep)
1471 fl.fl_flags |= FL_SLEEP;
1472 fl.fl_owner = current->files;
1473 error = posix_lock_inode(inode, &fl, NULL);
1474 if (error != FILE_LOCK_DEFERRED)
1475 break;
1476 error = wait_event_interruptible(fl.fl_wait,
1477 list_empty(&fl.fl_blocked_member));
1478 if (!error) {
1479 /*
1480 * If we've been sleeping someone might have
1481 * changed the permissions behind our back.
1482 */
1483 if (__mandatory_lock(inode))
1484 continue;
1485 }
1486
1487 break;
1488 }
1489 locks_delete_block(&fl);
1490
1491 return error;
1492 }
1493 EXPORT_SYMBOL(locks_mandatory_area);
1494 #endif /* CONFIG_MANDATORY_FILE_LOCKING */
1495
1496 static void lease_clear_pending(struct file_lock *fl, int arg)
1497 {
1498 switch (arg) {
1499 case F_UNLCK:
1500 fl->fl_flags &= ~FL_UNLOCK_PENDING;
1501 /* fall through */
1502 case F_RDLCK:
1503 fl->fl_flags &= ~FL_DOWNGRADE_PENDING;
1504 }
1505 }
1506
1507 /* We already had a lease on this file; just change its type */
1508 int lease_modify(struct file_lock *fl, int arg, struct list_head *dispose)
1509 {
1510 int error = assign_type(fl, arg);
1511
1512 if (error)
1513 return error;
1514 lease_clear_pending(fl, arg);
1515 locks_wake_up_blocks(fl);
1516 if (arg == F_UNLCK) {
1517 struct file *filp = fl->fl_file;
1518
1519 f_delown(filp);
1520 filp->f_owner.signum = 0;
1521 fasync_helper(0, fl->fl_file, 0, &fl->fl_fasync);
1522 if (fl->fl_fasync != NULL) {
1523 printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync);
1524 fl->fl_fasync = NULL;
1525 }
1526 locks_delete_lock_ctx(fl, dispose);
1527 }
1528 return 0;
1529 }
1530 EXPORT_SYMBOL(lease_modify);
1531
1532 static bool past_time(unsigned long then)
1533 {
1534 if (!then)
1535 /* 0 is a special value meaning "this never expires": */
1536 return false;
1537 return time_after(jiffies, then);
1538 }
1539
1540 static void time_out_leases(struct inode *inode, struct list_head *dispose)
1541 {
1542 struct file_lock_context *ctx = inode->i_flctx;
1543 struct file_lock *fl, *tmp;
1544
1545 lockdep_assert_held(&ctx->flc_lock);
1546
1547 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) {
1548 trace_time_out_leases(inode, fl);
1549 if (past_time(fl->fl_downgrade_time))
1550 lease_modify(fl, F_RDLCK, dispose);
1551 if (past_time(fl->fl_break_time))
1552 lease_modify(fl, F_UNLCK, dispose);
1553 }
1554 }
1555
1556 static bool leases_conflict(struct file_lock *lease, struct file_lock *breaker)
1557 {
1558 bool rc;
1559
1560 if ((breaker->fl_flags & FL_LAYOUT) != (lease->fl_flags & FL_LAYOUT)) {
1561 rc = false;
1562 goto trace;
1563 }
1564 if ((breaker->fl_flags & FL_DELEG) && (lease->fl_flags & FL_LEASE)) {
1565 rc = false;
1566 goto trace;
1567 }
1568
1569 rc = locks_conflict(breaker, lease);
1570 trace:
1571 trace_leases_conflict(rc, lease, breaker);
1572 return rc;
1573 }
1574
1575 static bool
1576 any_leases_conflict(struct inode *inode, struct file_lock *breaker)
1577 {
1578 struct file_lock_context *ctx = inode->i_flctx;
1579 struct file_lock *fl;
1580
1581 lockdep_assert_held(&ctx->flc_lock);
1582
1583 list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1584 if (leases_conflict(fl, breaker))
1585 return true;
1586 }
1587 return false;
1588 }
1589
1590 /**
1591 * __break_lease - revoke all outstanding leases on file
1592 * @inode: the inode of the file to return
1593 * @mode: O_RDONLY: break only write leases; O_WRONLY or O_RDWR:
1594 * break all leases
1595 * @type: FL_LEASE: break leases and delegations; FL_DELEG: break
1596 * only delegations
1597 *
1598 * break_lease (inlined for speed) has checked there already is at least
1599 * some kind of lock (maybe a lease) on this file. Leases are broken on
1600 * a call to open() or truncate(). This function can sleep unless you
1601 * specified %O_NONBLOCK to your open().
1602 */
1603 int __break_lease(struct inode *inode, unsigned int mode, unsigned int type)
1604 {
1605 int error = 0;
1606 struct file_lock_context *ctx;
1607 struct file_lock *new_fl, *fl, *tmp;
1608 unsigned long break_time;
1609 int want_write = (mode & O_ACCMODE) != O_RDONLY;
1610 LIST_HEAD(dispose);
1611
1612 new_fl = lease_alloc(NULL, want_write ? F_WRLCK : F_RDLCK);
1613 if (IS_ERR(new_fl))
1614 return PTR_ERR(new_fl);
1615 new_fl->fl_flags = type;
1616
1617 /* typically we will check that ctx is non-NULL before calling */
1618 ctx = smp_load_acquire(&inode->i_flctx);
1619 if (!ctx) {
1620 WARN_ON_ONCE(1);
1621 goto free_lock;
1622 }
1623
1624 percpu_down_read(&file_rwsem);
1625 spin_lock(&ctx->flc_lock);
1626
1627 time_out_leases(inode, &dispose);
1628
1629 if (!any_leases_conflict(inode, new_fl))
1630 goto out;
1631
1632 break_time = 0;
1633 if (lease_break_time > 0) {
1634 break_time = jiffies + lease_break_time * HZ;
1635 if (break_time == 0)
1636 break_time++; /* so that 0 means no break time */
1637 }
1638
1639 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) {
1640 if (!leases_conflict(fl, new_fl))
1641 continue;
1642 if (want_write) {
1643 if (fl->fl_flags & FL_UNLOCK_PENDING)
1644 continue;
1645 fl->fl_flags |= FL_UNLOCK_PENDING;
1646 fl->fl_break_time = break_time;
1647 } else {
1648 if (lease_breaking(fl))
1649 continue;
1650 fl->fl_flags |= FL_DOWNGRADE_PENDING;
1651 fl->fl_downgrade_time = break_time;
1652 }
1653 if (fl->fl_lmops->lm_break(fl))
1654 locks_delete_lock_ctx(fl, &dispose);
1655 }
1656
1657 if (list_empty(&ctx->flc_lease))
1658 goto out;
1659
1660 if (mode & O_NONBLOCK) {
1661 trace_break_lease_noblock(inode, new_fl);
1662 error = -EWOULDBLOCK;
1663 goto out;
1664 }
1665
1666 restart:
1667 fl = list_first_entry(&ctx->flc_lease, struct file_lock, fl_list);
1668 break_time = fl->fl_break_time;
1669 if (break_time != 0)
1670 break_time -= jiffies;
1671 if (break_time == 0)
1672 break_time++;
1673 locks_insert_block(fl, new_fl, leases_conflict);
1674 trace_break_lease_block(inode, new_fl);
1675 spin_unlock(&ctx->flc_lock);
1676 percpu_up_read(&file_rwsem);
1677
1678 locks_dispose_list(&dispose);
1679 error = wait_event_interruptible_timeout(new_fl->fl_wait,
1680 list_empty(&new_fl->fl_blocked_member),
1681 break_time);
1682
1683 percpu_down_read(&file_rwsem);
1684 spin_lock(&ctx->flc_lock);
1685 trace_break_lease_unblock(inode, new_fl);
1686 locks_delete_block(new_fl);
1687 if (error >= 0) {
1688 /*
1689 * Wait for the next conflicting lease that has not been
1690 * broken yet
1691 */
1692 if (error == 0)
1693 time_out_leases(inode, &dispose);
1694 if (any_leases_conflict(inode, new_fl))
1695 goto restart;
1696 error = 0;
1697 }
1698 out:
1699 spin_unlock(&ctx->flc_lock);
1700 percpu_up_read(&file_rwsem);
1701 locks_dispose_list(&dispose);
1702 free_lock:
1703 locks_free_lock(new_fl);
1704 return error;
1705 }
1706 EXPORT_SYMBOL(__break_lease);
1707
1708 /**
1709 * lease_get_mtime - update modified time of an inode with exclusive lease
1710 * @inode: the inode
1711 * @time: pointer to a timespec which contains the last modified time
1712 *
1713 * This is to force NFS clients to flush their caches for files with
1714 * exclusive leases. The justification is that if someone has an
1715 * exclusive lease, then they could be modifying it.
1716 */
1717 void lease_get_mtime(struct inode *inode, struct timespec64 *time)
1718 {
1719 bool has_lease = false;
1720 struct file_lock_context *ctx;
1721 struct file_lock *fl;
1722
1723 ctx = smp_load_acquire(&inode->i_flctx);
1724 if (ctx && !list_empty_careful(&ctx->flc_lease)) {
1725 spin_lock(&ctx->flc_lock);
1726 fl = list_first_entry_or_null(&ctx->flc_lease,
1727 struct file_lock, fl_list);
1728 if (fl && (fl->fl_type == F_WRLCK))
1729 has_lease = true;
1730 spin_unlock(&ctx->flc_lock);
1731 }
1732
1733 if (has_lease)
1734 *time = current_time(inode);
1735 }
1736 EXPORT_SYMBOL(lease_get_mtime);
1737
1738 /**
1739 * fcntl_getlease - Enquire what lease is currently active
1740 * @filp: the file
1741 *
1742 * The value returned by this function will be one of
1743 * (if no lease break is pending):
1744 *
1745 * %F_RDLCK to indicate a shared lease is held.
1746 *
1747 * %F_WRLCK to indicate an exclusive lease is held.
1748 *
1749 * %F_UNLCK to indicate no lease is held.
1750 *
1751 * (if a lease break is pending):
1752 *
1753 * %F_RDLCK to indicate an exclusive lease needs to be
1754 * changed to a shared lease (or removed).
1755 *
1756 * %F_UNLCK to indicate the lease needs to be removed.
1757 *
1758 * XXX: sfr & willy disagree over whether F_INPROGRESS
1759 * should be returned to userspace.
1760 */
1761 int fcntl_getlease(struct file *filp)
1762 {
1763 struct file_lock *fl;
1764 struct inode *inode = locks_inode(filp);
1765 struct file_lock_context *ctx;
1766 int type = F_UNLCK;
1767 LIST_HEAD(dispose);
1768
1769 ctx = smp_load_acquire(&inode->i_flctx);
1770 if (ctx && !list_empty_careful(&ctx->flc_lease)) {
1771 percpu_down_read(&file_rwsem);
1772 spin_lock(&ctx->flc_lock);
1773 time_out_leases(inode, &dispose);
1774 list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1775 if (fl->fl_file != filp)
1776 continue;
1777 type = target_leasetype(fl);
1778 break;
1779 }
1780 spin_unlock(&ctx->flc_lock);
1781 percpu_up_read(&file_rwsem);
1782
1783 locks_dispose_list(&dispose);
1784 }
1785 return type;
1786 }
1787
1788 /**
1789 * check_conflicting_open - see if the given file points to an inode that has
1790 * an existing open that would conflict with the
1791 * desired lease.
1792 * @filp: file to check
1793 * @arg: type of lease that we're trying to acquire
1794 * @flags: current lock flags
1795 *
1796 * Check to see if there's an existing open fd on this file that would
1797 * conflict with the lease we're trying to set.
1798 */
1799 static int
1800 check_conflicting_open(struct file *filp, const long arg, int flags)
1801 {
1802 struct inode *inode = locks_inode(filp);
1803 int self_wcount = 0, self_rcount = 0;
1804
1805 if (flags & FL_LAYOUT)
1806 return 0;
1807
1808 if (arg == F_RDLCK)
1809 return inode_is_open_for_write(inode) ? -EAGAIN : 0;
1810 else if (arg != F_WRLCK)
1811 return 0;
1812
1813 /*
1814 * Make sure that only read/write count is from lease requestor.
1815 * Note that this will result in denying write leases when i_writecount
1816 * is negative, which is what we want. (We shouldn't grant write leases
1817 * on files open for execution.)
1818 */
1819 if (filp->f_mode & FMODE_WRITE)
1820 self_wcount = 1;
1821 else if (filp->f_mode & FMODE_READ)
1822 self_rcount = 1;
1823
1824 if (atomic_read(&inode->i_writecount) != self_wcount ||
1825 atomic_read(&inode->i_readcount) != self_rcount)
1826 return -EAGAIN;
1827
1828 return 0;
1829 }
1830
1831 static int
1832 generic_add_lease(struct file *filp, long arg, struct file_lock **flp, void **priv)
1833 {
1834 struct file_lock *fl, *my_fl = NULL, *lease;
1835 struct inode *inode = locks_inode(filp);
1836 struct file_lock_context *ctx;
1837 bool is_deleg = (*flp)->fl_flags & FL_DELEG;
1838 int error;
1839 LIST_HEAD(dispose);
1840
1841 lease = *flp;
1842 trace_generic_add_lease(inode, lease);
1843
1844 /* Note that arg is never F_UNLCK here */
1845 ctx = locks_get_lock_context(inode, arg);
1846 if (!ctx)
1847 return -ENOMEM;
1848
1849 /*
1850 * In the delegation case we need mutual exclusion with
1851 * a number of operations that take the i_mutex. We trylock
1852 * because delegations are an optional optimization, and if
1853 * there's some chance of a conflict--we'd rather not
1854 * bother, maybe that's a sign this just isn't a good file to
1855 * hand out a delegation on.
1856 */
1857 if (is_deleg && !inode_trylock(inode))
1858 return -EAGAIN;
1859
1860 if (is_deleg && arg == F_WRLCK) {
1861 /* Write delegations are not currently supported: */
1862 inode_unlock(inode);
1863 WARN_ON_ONCE(1);
1864 return -EINVAL;
1865 }
1866
1867 percpu_down_read(&file_rwsem);
1868 spin_lock(&ctx->flc_lock);
1869 time_out_leases(inode, &dispose);
1870 error = check_conflicting_open(filp, arg, lease->fl_flags);
1871 if (error)
1872 goto out;
1873
1874 /*
1875 * At this point, we know that if there is an exclusive
1876 * lease on this file, then we hold it on this filp
1877 * (otherwise our open of this file would have blocked).
1878 * And if we are trying to acquire an exclusive lease,
1879 * then the file is not open by anyone (including us)
1880 * except for this filp.
1881 */
1882 error = -EAGAIN;
1883 list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1884 if (fl->fl_file == filp &&
1885 fl->fl_owner == lease->fl_owner) {
1886 my_fl = fl;
1887 continue;
1888 }
1889
1890 /*
1891 * No exclusive leases if someone else has a lease on
1892 * this file:
1893 */
1894 if (arg == F_WRLCK)
1895 goto out;
1896 /*
1897 * Modifying our existing lease is OK, but no getting a
1898 * new lease if someone else is opening for write:
1899 */
1900 if (fl->fl_flags & FL_UNLOCK_PENDING)
1901 goto out;
1902 }
1903
1904 if (my_fl != NULL) {
1905 lease = my_fl;
1906 error = lease->fl_lmops->lm_change(lease, arg, &dispose);
1907 if (error)
1908 goto out;
1909 goto out_setup;
1910 }
1911
1912 error = -EINVAL;
1913 if (!leases_enable)
1914 goto out;
1915
1916 locks_insert_lock_ctx(lease, &ctx->flc_lease);
1917 /*
1918 * The check in break_lease() is lockless. It's possible for another
1919 * open to race in after we did the earlier check for a conflicting
1920 * open but before the lease was inserted. Check again for a
1921 * conflicting open and cancel the lease if there is one.
1922 *
1923 * We also add a barrier here to ensure that the insertion of the lock
1924 * precedes these checks.
1925 */
1926 smp_mb();
1927 error = check_conflicting_open(filp, arg, lease->fl_flags);
1928 if (error) {
1929 locks_unlink_lock_ctx(lease);
1930 goto out;
1931 }
1932
1933 out_setup:
1934 if (lease->fl_lmops->lm_setup)
1935 lease->fl_lmops->lm_setup(lease, priv);
1936 out:
1937 spin_unlock(&ctx->flc_lock);
1938 percpu_up_read(&file_rwsem);
1939 locks_dispose_list(&dispose);
1940 if (is_deleg)
1941 inode_unlock(inode);
1942 if (!error && !my_fl)
1943 *flp = NULL;
1944 return error;
1945 }
1946
1947 static int generic_delete_lease(struct file *filp, void *owner)
1948 {
1949 int error = -EAGAIN;
1950 struct file_lock *fl, *victim = NULL;
1951 struct inode *inode = locks_inode(filp);
1952 struct file_lock_context *ctx;
1953 LIST_HEAD(dispose);
1954
1955 ctx = smp_load_acquire(&inode->i_flctx);
1956 if (!ctx) {
1957 trace_generic_delete_lease(inode, NULL);
1958 return error;
1959 }
1960
1961 percpu_down_read(&file_rwsem);
1962 spin_lock(&ctx->flc_lock);
1963 list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1964 if (fl->fl_file == filp &&
1965 fl->fl_owner == owner) {
1966 victim = fl;
1967 break;
1968 }
1969 }
1970 trace_generic_delete_lease(inode, victim);
1971 if (victim)
1972 error = fl->fl_lmops->lm_change(victim, F_UNLCK, &dispose);
1973 spin_unlock(&ctx->flc_lock);
1974 percpu_up_read(&file_rwsem);
1975 locks_dispose_list(&dispose);
1976 return error;
1977 }
1978
1979 /**
1980 * generic_setlease - sets a lease on an open file
1981 * @filp: file pointer
1982 * @arg: type of lease to obtain
1983 * @flp: input - file_lock to use, output - file_lock inserted
1984 * @priv: private data for lm_setup (may be NULL if lm_setup
1985 * doesn't require it)
1986 *
1987 * The (input) flp->fl_lmops->lm_break function is required
1988 * by break_lease().
1989 */
1990 int generic_setlease(struct file *filp, long arg, struct file_lock **flp,
1991 void **priv)
1992 {
1993 struct inode *inode = locks_inode(filp);
1994 int error;
1995
1996 if ((!uid_eq(current_fsuid(), inode->i_uid)) && !capable(CAP_LEASE))
1997 return -EACCES;
1998 if (!S_ISREG(inode->i_mode))
1999 return -EINVAL;
2000 error = security_file_lock(filp, arg);
2001 if (error)
2002 return error;
2003
2004 switch (arg) {
2005 case F_UNLCK:
2006 return generic_delete_lease(filp, *priv);
2007 case F_RDLCK:
2008 case F_WRLCK:
2009 if (!(*flp)->fl_lmops->lm_break) {
2010 WARN_ON_ONCE(1);
2011 return -ENOLCK;
2012 }
2013
2014 return generic_add_lease(filp, arg, flp, priv);
2015 default:
2016 return -EINVAL;
2017 }
2018 }
2019 EXPORT_SYMBOL(generic_setlease);
2020
2021 #if IS_ENABLED(CONFIG_SRCU)
2022 /*
2023 * Kernel subsystems can register to be notified on any attempt to set
2024 * a new lease with the lease_notifier_chain. This is used by (e.g.) nfsd
2025 * to close files that it may have cached when there is an attempt to set a
2026 * conflicting lease.
2027 */
2028 static struct srcu_notifier_head lease_notifier_chain;
2029
2030 static inline void
2031 lease_notifier_chain_init(void)
2032 {
2033 srcu_init_notifier_head(&lease_notifier_chain);
2034 }
2035
2036 static inline void
2037 setlease_notifier(long arg, struct file_lock *lease)
2038 {
2039 if (arg != F_UNLCK)
2040 srcu_notifier_call_chain(&lease_notifier_chain, arg, lease);
2041 }
2042
2043 int lease_register_notifier(struct notifier_block *nb)
2044 {
2045 return srcu_notifier_chain_register(&lease_notifier_chain, nb);
2046 }
2047 EXPORT_SYMBOL_GPL(lease_register_notifier);
2048
2049 void lease_unregister_notifier(struct notifier_block *nb)
2050 {
2051 srcu_notifier_chain_unregister(&lease_notifier_chain, nb);
2052 }
2053 EXPORT_SYMBOL_GPL(lease_unregister_notifier);
2054
2055 #else /* !IS_ENABLED(CONFIG_SRCU) */
2056 static inline void
2057 lease_notifier_chain_init(void)
2058 {
2059 }
2060
2061 static inline void
2062 setlease_notifier(long arg, struct file_lock *lease)
2063 {
2064 }
2065
2066 int lease_register_notifier(struct notifier_block *nb)
2067 {
2068 return 0;
2069 }
2070 EXPORT_SYMBOL_GPL(lease_register_notifier);
2071
2072 void lease_unregister_notifier(struct notifier_block *nb)
2073 {
2074 }
2075 EXPORT_SYMBOL_GPL(lease_unregister_notifier);
2076
2077 #endif /* IS_ENABLED(CONFIG_SRCU) */
2078
2079 /**
2080 * vfs_setlease - sets a lease on an open file
2081 * @filp: file pointer
2082 * @arg: type of lease to obtain
2083 * @lease: file_lock to use when adding a lease
2084 * @priv: private info for lm_setup when adding a lease (may be
2085 * NULL if lm_setup doesn't require it)
2086 *
2087 * Call this to establish a lease on the file. The "lease" argument is not
2088 * used for F_UNLCK requests and may be NULL. For commands that set or alter
2089 * an existing lease, the ``(*lease)->fl_lmops->lm_break`` operation must be
2090 * set; if not, this function will return -ENOLCK (and generate a scary-looking
2091 * stack trace).
2092 *
2093 * The "priv" pointer is passed directly to the lm_setup function as-is. It
2094 * may be NULL if the lm_setup operation doesn't require it.
2095 */
2096 int
2097 vfs_setlease(struct file *filp, long arg, struct file_lock **lease, void **priv)
2098 {
2099 if (lease)
2100 setlease_notifier(arg, *lease);
2101 if (filp->f_op->setlease)
2102 return filp->f_op->setlease(filp, arg, lease, priv);
2103 else
2104 return generic_setlease(filp, arg, lease, priv);
2105 }
2106 EXPORT_SYMBOL_GPL(vfs_setlease);
2107
2108 static int do_fcntl_add_lease(unsigned int fd, struct file *filp, long arg)
2109 {
2110 struct file_lock *fl;
2111 struct fasync_struct *new;
2112 int error;
2113
2114 fl = lease_alloc(filp, arg);
2115 if (IS_ERR(fl))
2116 return PTR_ERR(fl);
2117
2118 new = fasync_alloc();
2119 if (!new) {
2120 locks_free_lock(fl);
2121 return -ENOMEM;
2122 }
2123 new->fa_fd = fd;
2124
2125 error = vfs_setlease(filp, arg, &fl, (void **)&new);
2126 if (fl)
2127 locks_free_lock(fl);
2128 if (new)
2129 fasync_free(new);
2130 return error;
2131 }
2132
2133 /**
2134 * fcntl_setlease - sets a lease on an open file
2135 * @fd: open file descriptor
2136 * @filp: file pointer
2137 * @arg: type of lease to obtain
2138 *
2139 * Call this fcntl to establish a lease on the file.
2140 * Note that you also need to call %F_SETSIG to
2141 * receive a signal when the lease is broken.
2142 */
2143 int fcntl_setlease(unsigned int fd, struct file *filp, long arg)
2144 {
2145 if (arg == F_UNLCK)
2146 return vfs_setlease(filp, F_UNLCK, NULL, (void **)&filp);
2147 return do_fcntl_add_lease(fd, filp, arg);
2148 }
2149
2150 /**
2151 * flock_lock_inode_wait - Apply a FLOCK-style lock to a file
2152 * @inode: inode of the file to apply to
2153 * @fl: The lock to be applied
2154 *
2155 * Apply a FLOCK style lock request to an inode.
2156 */
2157 static int flock_lock_inode_wait(struct inode *inode, struct file_lock *fl)
2158 {
2159 int error;
2160 might_sleep();
2161 for (;;) {
2162 error = flock_lock_inode(inode, fl);
2163 if (error != FILE_LOCK_DEFERRED)
2164 break;
2165 error = wait_event_interruptible(fl->fl_wait,
2166 list_empty(&fl->fl_blocked_member));
2167 if (error)
2168 break;
2169 }
2170 locks_delete_block(fl);
2171 return error;
2172 }
2173
2174 /**
2175 * locks_lock_inode_wait - Apply a lock to an inode
2176 * @inode: inode of the file to apply to
2177 * @fl: The lock to be applied
2178 *
2179 * Apply a POSIX or FLOCK style lock request to an inode.
2180 */
2181 int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl)
2182 {
2183 int res = 0;
2184 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
2185 case FL_POSIX:
2186 res = posix_lock_inode_wait(inode, fl);
2187 break;
2188 case FL_FLOCK:
2189 res = flock_lock_inode_wait(inode, fl);
2190 break;
2191 default:
2192 BUG();
2193 }
2194 return res;
2195 }
2196 EXPORT_SYMBOL(locks_lock_inode_wait);
2197
2198 /**
2199 * sys_flock: - flock() system call.
2200 * @fd: the file descriptor to lock.
2201 * @cmd: the type of lock to apply.
2202 *
2203 * Apply a %FL_FLOCK style lock to an open file descriptor.
2204 * The @cmd can be one of:
2205 *
2206 * - %LOCK_SH -- a shared lock.
2207 * - %LOCK_EX -- an exclusive lock.
2208 * - %LOCK_UN -- remove an existing lock.
2209 * - %LOCK_MAND -- a 'mandatory' flock.
2210 * This exists to emulate Windows Share Modes.
2211 *
2212 * %LOCK_MAND can be combined with %LOCK_READ or %LOCK_WRITE to allow other
2213 * processes read and write access respectively.
2214 */
2215 SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd)
2216 {
2217 struct fd f = fdget(fd);
2218 struct file_lock *lock;
2219 int can_sleep, unlock;
2220 int error;
2221
2222 error = -EBADF;
2223 if (!f.file)
2224 goto out;
2225
2226 can_sleep = !(cmd & LOCK_NB);
2227 cmd &= ~LOCK_NB;
2228 unlock = (cmd == LOCK_UN);
2229
2230 if (!unlock && !(cmd & LOCK_MAND) &&
2231 !(f.file->f_mode & (FMODE_READ|FMODE_WRITE)))
2232 goto out_putf;
2233
2234 lock = flock_make_lock(f.file, cmd, NULL);
2235 if (IS_ERR(lock)) {
2236 error = PTR_ERR(lock);
2237 goto out_putf;
2238 }
2239
2240 if (can_sleep)
2241 lock->fl_flags |= FL_SLEEP;
2242
2243 error = security_file_lock(f.file, lock->fl_type);
2244 if (error)
2245 goto out_free;
2246
2247 if (f.file->f_op->flock)
2248 error = f.file->f_op->flock(f.file,
2249 (can_sleep) ? F_SETLKW : F_SETLK,
2250 lock);
2251 else
2252 error = locks_lock_file_wait(f.file, lock);
2253
2254 out_free:
2255 locks_free_lock(lock);
2256
2257 out_putf:
2258 fdput(f);
2259 out:
2260 return error;
2261 }
2262
2263 /**
2264 * vfs_test_lock - test file byte range lock
2265 * @filp: The file to test lock for
2266 * @fl: The lock to test; also used to hold result
2267 *
2268 * Returns -ERRNO on failure. Indicates presence of conflicting lock by
2269 * setting conf->fl_type to something other than F_UNLCK.
2270 */
2271 int vfs_test_lock(struct file *filp, struct file_lock *fl)
2272 {
2273 if (filp->f_op->lock)
2274 return filp->f_op->lock(filp, F_GETLK, fl);
2275 posix_test_lock(filp, fl);
2276 return 0;
2277 }
2278 EXPORT_SYMBOL_GPL(vfs_test_lock);
2279
2280 /**
2281 * locks_translate_pid - translate a file_lock's fl_pid number into a namespace
2282 * @fl: The file_lock who's fl_pid should be translated
2283 * @ns: The namespace into which the pid should be translated
2284 *
2285 * Used to tranlate a fl_pid into a namespace virtual pid number
2286 */
2287 static pid_t locks_translate_pid(struct file_lock *fl, struct pid_namespace *ns)
2288 {
2289 pid_t vnr;
2290 struct pid *pid;
2291
2292 if (IS_OFDLCK(fl))
2293 return -1;
2294 if (IS_REMOTELCK(fl))
2295 return fl->fl_pid;
2296 /*
2297 * If the flock owner process is dead and its pid has been already
2298 * freed, the translation below won't work, but we still want to show
2299 * flock owner pid number in init pidns.
2300 */
2301 if (ns == &init_pid_ns)
2302 return (pid_t)fl->fl_pid;
2303
2304 rcu_read_lock();
2305 pid = find_pid_ns(fl->fl_pid, &init_pid_ns);
2306 vnr = pid_nr_ns(pid, ns);
2307 rcu_read_unlock();
2308 return vnr;
2309 }
2310
2311 static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl)
2312 {
2313 flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current));
2314 #if BITS_PER_LONG == 32
2315 /*
2316 * Make sure we can represent the posix lock via
2317 * legacy 32bit flock.
2318 */
2319 if (fl->fl_start > OFFT_OFFSET_MAX)
2320 return -EOVERFLOW;
2321 if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX)
2322 return -EOVERFLOW;
2323 #endif
2324 flock->l_start = fl->fl_start;
2325 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
2326 fl->fl_end - fl->fl_start + 1;
2327 flock->l_whence = 0;
2328 flock->l_type = fl->fl_type;
2329 return 0;
2330 }
2331
2332 #if BITS_PER_LONG == 32
2333 static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl)
2334 {
2335 flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current));
2336 flock->l_start = fl->fl_start;
2337 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
2338 fl->fl_end - fl->fl_start + 1;
2339 flock->l_whence = 0;
2340 flock->l_type = fl->fl_type;
2341 }
2342 #endif
2343
2344 /* Report the first existing lock that would conflict with l.
2345 * This implements the F_GETLK command of fcntl().
2346 */
2347 int fcntl_getlk(struct file *filp, unsigned int cmd, struct flock *flock)
2348 {
2349 struct file_lock *fl;
2350 int error;
2351
2352 fl = locks_alloc_lock();
2353 if (fl == NULL)
2354 return -ENOMEM;
2355 error = -EINVAL;
2356 if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK)
2357 goto out;
2358
2359 error = flock_to_posix_lock(filp, fl, flock);
2360 if (error)
2361 goto out;
2362
2363 if (cmd == F_OFD_GETLK) {
2364 error = -EINVAL;
2365 if (flock->l_pid != 0)
2366 goto out;
2367
2368 cmd = F_GETLK;
2369 fl->fl_flags |= FL_OFDLCK;
2370 fl->fl_owner = filp;
2371 }
2372
2373 error = vfs_test_lock(filp, fl);
2374 if (error)
2375 goto out;
2376
2377 flock->l_type = fl->fl_type;
2378 if (fl->fl_type != F_UNLCK) {
2379 error = posix_lock_to_flock(flock, fl);
2380 if (error)
2381 goto out;
2382 }
2383 out:
2384 locks_free_lock(fl);
2385 return error;
2386 }
2387
2388 /**
2389 * vfs_lock_file - file byte range lock
2390 * @filp: The file to apply the lock to
2391 * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.)
2392 * @fl: The lock to be applied
2393 * @conf: Place to return a copy of the conflicting lock, if found.
2394 *
2395 * A caller that doesn't care about the conflicting lock may pass NULL
2396 * as the final argument.
2397 *
2398 * If the filesystem defines a private ->lock() method, then @conf will
2399 * be left unchanged; so a caller that cares should initialize it to
2400 * some acceptable default.
2401 *
2402 * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX
2403 * locks, the ->lock() interface may return asynchronously, before the lock has
2404 * been granted or denied by the underlying filesystem, if (and only if)
2405 * lm_grant is set. Callers expecting ->lock() to return asynchronously
2406 * will only use F_SETLK, not F_SETLKW; they will set FL_SLEEP if (and only if)
2407 * the request is for a blocking lock. When ->lock() does return asynchronously,
2408 * it must return FILE_LOCK_DEFERRED, and call ->lm_grant() when the lock
2409 * request completes.
2410 * If the request is for non-blocking lock the file system should return
2411 * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine
2412 * with the result. If the request timed out the callback routine will return a
2413 * nonzero return code and the file system should release the lock. The file
2414 * system is also responsible to keep a corresponding posix lock when it
2415 * grants a lock so the VFS can find out which locks are locally held and do
2416 * the correct lock cleanup when required.
2417 * The underlying filesystem must not drop the kernel lock or call
2418 * ->lm_grant() before returning to the caller with a FILE_LOCK_DEFERRED
2419 * return code.
2420 */
2421 int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf)
2422 {
2423 if (filp->f_op->lock)
2424 return filp->f_op->lock(filp, cmd, fl);
2425 else
2426 return posix_lock_file(filp, fl, conf);
2427 }
2428 EXPORT_SYMBOL_GPL(vfs_lock_file);
2429
2430 static int do_lock_file_wait(struct file *filp, unsigned int cmd,
2431 struct file_lock *fl)
2432 {
2433 int error;
2434
2435 error = security_file_lock(filp, fl->fl_type);
2436 if (error)
2437 return error;
2438
2439 for (;;) {
2440 error = vfs_lock_file(filp, cmd, fl, NULL);
2441 if (error != FILE_LOCK_DEFERRED)
2442 break;
2443 error = wait_event_interruptible(fl->fl_wait,
2444 list_empty(&fl->fl_blocked_member));
2445 if (error)
2446 break;
2447 }
2448 locks_delete_block(fl);
2449
2450 return error;
2451 }
2452
2453 /* Ensure that fl->fl_file has compatible f_mode for F_SETLK calls */
2454 static int
2455 check_fmode_for_setlk(struct file_lock *fl)
2456 {
2457 switch (fl->fl_type) {
2458 case F_RDLCK:
2459 if (!(fl->fl_file->f_mode & FMODE_READ))
2460 return -EBADF;
2461 break;
2462 case F_WRLCK:
2463 if (!(fl->fl_file->f_mode & FMODE_WRITE))
2464 return -EBADF;
2465 }
2466 return 0;
2467 }
2468
2469 /* Apply the lock described by l to an open file descriptor.
2470 * This implements both the F_SETLK and F_SETLKW commands of fcntl().
2471 */
2472 int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd,
2473 struct flock *flock)
2474 {
2475 struct file_lock *file_lock = locks_alloc_lock();
2476 struct inode *inode = locks_inode(filp);
2477 struct file *f;
2478 int error;
2479
2480 if (file_lock == NULL)
2481 return -ENOLCK;
2482
2483 /* Don't allow mandatory locks on files that may be memory mapped
2484 * and shared.
2485 */
2486 if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) {
2487 error = -EAGAIN;
2488 goto out;
2489 }
2490
2491 error = flock_to_posix_lock(filp, file_lock, flock);
2492 if (error)
2493 goto out;
2494
2495 error = check_fmode_for_setlk(file_lock);
2496 if (error)
2497 goto out;
2498
2499 /*
2500 * If the cmd is requesting file-private locks, then set the
2501 * FL_OFDLCK flag and override the owner.
2502 */
2503 switch (cmd) {
2504 case F_OFD_SETLK:
2505 error = -EINVAL;
2506 if (flock->l_pid != 0)
2507 goto out;
2508
2509 cmd = F_SETLK;
2510 file_lock->fl_flags |= FL_OFDLCK;
2511 file_lock->fl_owner = filp;
2512 break;
2513 case F_OFD_SETLKW:
2514 error = -EINVAL;
2515 if (flock->l_pid != 0)
2516 goto out;
2517
2518 cmd = F_SETLKW;
2519 file_lock->fl_flags |= FL_OFDLCK;
2520 file_lock->fl_owner = filp;
2521 /* Fallthrough */
2522 case F_SETLKW:
2523 file_lock->fl_flags |= FL_SLEEP;
2524 }
2525
2526 error = do_lock_file_wait(filp, cmd, file_lock);
2527
2528 /*
2529 * Attempt to detect a close/fcntl race and recover by releasing the
2530 * lock that was just acquired. There is no need to do that when we're
2531 * unlocking though, or for OFD locks.
2532 */
2533 if (!error && file_lock->fl_type != F_UNLCK &&
2534 !(file_lock->fl_flags & FL_OFDLCK)) {
2535 /*
2536 * We need that spin_lock here - it prevents reordering between
2537 * update of i_flctx->flc_posix and check for it done in
2538 * close(). rcu_read_lock() wouldn't do.
2539 */
2540 spin_lock(&current->files->file_lock);
2541 f = fcheck(fd);
2542 spin_unlock(&current->files->file_lock);
2543 if (f != filp) {
2544 file_lock->fl_type = F_UNLCK;
2545 error = do_lock_file_wait(filp, cmd, file_lock);
2546 WARN_ON_ONCE(error);
2547 error = -EBADF;
2548 }
2549 }
2550 out:
2551 trace_fcntl_setlk(inode, file_lock, error);
2552 locks_free_lock(file_lock);
2553 return error;
2554 }
2555
2556 #if BITS_PER_LONG == 32
2557 /* Report the first existing lock that would conflict with l.
2558 * This implements the F_GETLK command of fcntl().
2559 */
2560 int fcntl_getlk64(struct file *filp, unsigned int cmd, struct flock64 *flock)
2561 {
2562 struct file_lock *fl;
2563 int error;
2564
2565 fl = locks_alloc_lock();
2566 if (fl == NULL)
2567 return -ENOMEM;
2568
2569 error = -EINVAL;
2570 if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK)
2571 goto out;
2572
2573 error = flock64_to_posix_lock(filp, fl, flock);
2574 if (error)
2575 goto out;
2576
2577 if (cmd == F_OFD_GETLK) {
2578 error = -EINVAL;
2579 if (flock->l_pid != 0)
2580 goto out;
2581
2582 cmd = F_GETLK64;
2583 fl->fl_flags |= FL_OFDLCK;
2584 fl->fl_owner = filp;
2585 }
2586
2587 error = vfs_test_lock(filp, fl);
2588 if (error)
2589 goto out;
2590
2591 flock->l_type = fl->fl_type;
2592 if (fl->fl_type != F_UNLCK)
2593 posix_lock_to_flock64(flock, fl);
2594
2595 out:
2596 locks_free_lock(fl);
2597 return error;
2598 }
2599
2600 /* Apply the lock described by l to an open file descriptor.
2601 * This implements both the F_SETLK and F_SETLKW commands of fcntl().
2602 */
2603 int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd,
2604 struct flock64 *flock)
2605 {
2606 struct file_lock *file_lock = locks_alloc_lock();
2607 struct inode *inode = locks_inode(filp);
2608 struct file *f;
2609 int error;
2610
2611 if (file_lock == NULL)
2612 return -ENOLCK;
2613
2614 /* Don't allow mandatory locks on files that may be memory mapped
2615 * and shared.
2616 */
2617 if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) {
2618 error = -EAGAIN;
2619 goto out;
2620 }
2621
2622 error = flock64_to_posix_lock(filp, file_lock, flock);
2623 if (error)
2624 goto out;
2625
2626 error = check_fmode_for_setlk(file_lock);
2627 if (error)
2628 goto out;
2629
2630 /*
2631 * If the cmd is requesting file-private locks, then set the
2632 * FL_OFDLCK flag and override the owner.
2633 */
2634 switch (cmd) {
2635 case F_OFD_SETLK:
2636 error = -EINVAL;
2637 if (flock->l_pid != 0)
2638 goto out;
2639
2640 cmd = F_SETLK64;
2641 file_lock->fl_flags |= FL_OFDLCK;
2642 file_lock->fl_owner = filp;
2643 break;
2644 case F_OFD_SETLKW:
2645 error = -EINVAL;
2646 if (flock->l_pid != 0)
2647 goto out;
2648
2649 cmd = F_SETLKW64;
2650 file_lock->fl_flags |= FL_OFDLCK;
2651 file_lock->fl_owner = filp;
2652 /* Fallthrough */
2653 case F_SETLKW64:
2654 file_lock->fl_flags |= FL_SLEEP;
2655 }
2656
2657 error = do_lock_file_wait(filp, cmd, file_lock);
2658
2659 /*
2660 * Attempt to detect a close/fcntl race and recover by releasing the
2661 * lock that was just acquired. There is no need to do that when we're
2662 * unlocking though, or for OFD locks.
2663 */
2664 if (!error && file_lock->fl_type != F_UNLCK &&
2665 !(file_lock->fl_flags & FL_OFDLCK)) {
2666 /*
2667 * We need that spin_lock here - it prevents reordering between
2668 * update of i_flctx->flc_posix and check for it done in
2669 * close(). rcu_read_lock() wouldn't do.
2670 */
2671 spin_lock(&current->files->file_lock);
2672 f = fcheck(fd);
2673 spin_unlock(&current->files->file_lock);
2674 if (f != filp) {
2675 file_lock->fl_type = F_UNLCK;
2676 error = do_lock_file_wait(filp, cmd, file_lock);
2677 WARN_ON_ONCE(error);
2678 error = -EBADF;
2679 }
2680 }
2681 out:
2682 locks_free_lock(file_lock);
2683 return error;
2684 }
2685 #endif /* BITS_PER_LONG == 32 */
2686
2687 /*
2688 * This function is called when the file is being removed
2689 * from the task's fd array. POSIX locks belonging to this task
2690 * are deleted at this time.
2691 */
2692 void locks_remove_posix(struct file *filp, fl_owner_t owner)
2693 {
2694 int error;
2695 struct inode *inode = locks_inode(filp);
2696 struct file_lock lock;
2697 struct file_lock_context *ctx;
2698
2699 /*
2700 * If there are no locks held on this file, we don't need to call
2701 * posix_lock_file(). Another process could be setting a lock on this
2702 * file at the same time, but we wouldn't remove that lock anyway.
2703 */
2704 ctx = smp_load_acquire(&inode->i_flctx);
2705 if (!ctx || list_empty(&ctx->flc_posix))
2706 return;
2707
2708 locks_init_lock(&lock);
2709 lock.fl_type = F_UNLCK;
2710 lock.fl_flags = FL_POSIX | FL_CLOSE;
2711 lock.fl_start = 0;
2712 lock.fl_end = OFFSET_MAX;
2713 lock.fl_owner = owner;
2714 lock.fl_pid = current->tgid;
2715 lock.fl_file = filp;
2716 lock.fl_ops = NULL;
2717 lock.fl_lmops = NULL;
2718
2719 error = vfs_lock_file(filp, F_SETLK, &lock, NULL);
2720
2721 if (lock.fl_ops && lock.fl_ops->fl_release_private)
2722 lock.fl_ops->fl_release_private(&lock);
2723 trace_locks_remove_posix(inode, &lock, error);
2724 }
2725 EXPORT_SYMBOL(locks_remove_posix);
2726
2727 /* The i_flctx must be valid when calling into here */
2728 static void
2729 locks_remove_flock(struct file *filp, struct file_lock_context *flctx)
2730 {
2731 struct file_lock fl;
2732 struct inode *inode = locks_inode(filp);
2733
2734 if (list_empty(&flctx->flc_flock))
2735 return;
2736
2737 flock_make_lock(filp, LOCK_UN, &fl);
2738 fl.fl_flags |= FL_CLOSE;
2739
2740 if (filp->f_op->flock)
2741 filp->f_op->flock(filp, F_SETLKW, &fl);
2742 else
2743 flock_lock_inode(inode, &fl);
2744
2745 if (fl.fl_ops && fl.fl_ops->fl_release_private)
2746 fl.fl_ops->fl_release_private(&fl);
2747 }
2748
2749 /* The i_flctx must be valid when calling into here */
2750 static void
2751 locks_remove_lease(struct file *filp, struct file_lock_context *ctx)
2752 {
2753 struct file_lock *fl, *tmp;
2754 LIST_HEAD(dispose);
2755
2756 if (list_empty(&ctx->flc_lease))
2757 return;
2758
2759 percpu_down_read(&file_rwsem);
2760 spin_lock(&ctx->flc_lock);
2761 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list)
2762 if (filp == fl->fl_file)
2763 lease_modify(fl, F_UNLCK, &dispose);
2764 spin_unlock(&ctx->flc_lock);
2765 percpu_up_read(&file_rwsem);
2766
2767 locks_dispose_list(&dispose);
2768 }
2769
2770 /*
2771 * This function is called on the last close of an open file.
2772 */
2773 void locks_remove_file(struct file *filp)
2774 {
2775 struct file_lock_context *ctx;
2776
2777 ctx = smp_load_acquire(&locks_inode(filp)->i_flctx);
2778 if (!ctx)
2779 return;
2780
2781 /* remove any OFD locks */
2782 locks_remove_posix(filp, filp);
2783
2784 /* remove flock locks */
2785 locks_remove_flock(filp, ctx);
2786
2787 /* remove any leases */
2788 locks_remove_lease(filp, ctx);
2789
2790 spin_lock(&ctx->flc_lock);
2791 locks_check_ctx_file_list(filp, &ctx->flc_posix, "POSIX");
2792 locks_check_ctx_file_list(filp, &ctx->flc_flock, "FLOCK");
2793 locks_check_ctx_file_list(filp, &ctx->flc_lease, "LEASE");
2794 spin_unlock(&ctx->flc_lock);
2795 }
2796
2797 /**
2798 * vfs_cancel_lock - file byte range unblock lock
2799 * @filp: The file to apply the unblock to
2800 * @fl: The lock to be unblocked
2801 *
2802 * Used by lock managers to cancel blocked requests
2803 */
2804 int vfs_cancel_lock(struct file *filp, struct file_lock *fl)
2805 {
2806 if (filp->f_op->lock)
2807 return filp->f_op->lock(filp, F_CANCELLK, fl);
2808 return 0;
2809 }
2810 EXPORT_SYMBOL_GPL(vfs_cancel_lock);
2811
2812 #ifdef CONFIG_PROC_FS
2813 #include <linux/proc_fs.h>
2814 #include <linux/seq_file.h>
2815
2816 struct locks_iterator {
2817 int li_cpu;
2818 loff_t li_pos;
2819 };
2820
2821 static void lock_get_status(struct seq_file *f, struct file_lock *fl,
2822 loff_t id, char *pfx)
2823 {
2824 struct inode *inode = NULL;
2825 unsigned int fl_pid;
2826 struct pid_namespace *proc_pidns = file_inode(f->file)->i_sb->s_fs_info;
2827
2828 fl_pid = locks_translate_pid(fl, proc_pidns);
2829 /*
2830 * If lock owner is dead (and pid is freed) or not visible in current
2831 * pidns, zero is shown as a pid value. Check lock info from
2832 * init_pid_ns to get saved lock pid value.
2833 */
2834
2835 if (fl->fl_file != NULL)
2836 inode = locks_inode(fl->fl_file);
2837
2838 seq_printf(f, "%lld:%s ", id, pfx);
2839 if (IS_POSIX(fl)) {
2840 if (fl->fl_flags & FL_ACCESS)
2841 seq_puts(f, "ACCESS");
2842 else if (IS_OFDLCK(fl))
2843 seq_puts(f, "OFDLCK");
2844 else
2845 seq_puts(f, "POSIX ");
2846
2847 seq_printf(f, " %s ",
2848 (inode == NULL) ? "*NOINODE*" :
2849 mandatory_lock(inode) ? "MANDATORY" : "ADVISORY ");
2850 } else if (IS_FLOCK(fl)) {
2851 if (fl->fl_type & LOCK_MAND) {
2852 seq_puts(f, "FLOCK MSNFS ");
2853 } else {
2854 seq_puts(f, "FLOCK ADVISORY ");
2855 }
2856 } else if (IS_LEASE(fl)) {
2857 if (fl->fl_flags & FL_DELEG)
2858 seq_puts(f, "DELEG ");
2859 else
2860 seq_puts(f, "LEASE ");
2861
2862 if (lease_breaking(fl))
2863 seq_puts(f, "BREAKING ");
2864 else if (fl->fl_file)
2865 seq_puts(f, "ACTIVE ");
2866 else
2867 seq_puts(f, "BREAKER ");
2868 } else {
2869 seq_puts(f, "UNKNOWN UNKNOWN ");
2870 }
2871 if (fl->fl_type & LOCK_MAND) {
2872 seq_printf(f, "%s ",
2873 (fl->fl_type & LOCK_READ)
2874 ? (fl->fl_type & LOCK_WRITE) ? "RW " : "READ "
2875 : (fl->fl_type & LOCK_WRITE) ? "WRITE" : "NONE ");
2876 } else {
2877 int type = IS_LEASE(fl) ? target_leasetype(fl) : fl->fl_type;
2878
2879 seq_printf(f, "%s ", (type == F_WRLCK) ? "WRITE" :
2880 (type == F_RDLCK) ? "READ" : "UNLCK");
2881 }
2882 if (inode) {
2883 /* userspace relies on this representation of dev_t */
2884 seq_printf(f, "%d %02x:%02x:%lu ", fl_pid,
2885 MAJOR(inode->i_sb->s_dev),
2886 MINOR(inode->i_sb->s_dev), inode->i_ino);
2887 } else {
2888 seq_printf(f, "%d <none>:0 ", fl_pid);
2889 }
2890 if (IS_POSIX(fl)) {
2891 if (fl->fl_end == OFFSET_MAX)
2892 seq_printf(f, "%Ld EOF\n", fl->fl_start);
2893 else
2894 seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end);
2895 } else {
2896 seq_puts(f, "0 EOF\n");
2897 }
2898 }
2899
2900 static int locks_show(struct seq_file *f, void *v)
2901 {
2902 struct locks_iterator *iter = f->private;
2903 struct file_lock *fl, *bfl;
2904 struct pid_namespace *proc_pidns = file_inode(f->file)->i_sb->s_fs_info;
2905
2906 fl = hlist_entry(v, struct file_lock, fl_link);
2907
2908 if (locks_translate_pid(fl, proc_pidns) == 0)
2909 return 0;
2910
2911 lock_get_status(f, fl, iter->li_pos, "");
2912
2913 list_for_each_entry(bfl, &fl->fl_blocked_requests, fl_blocked_member)
2914 lock_get_status(f, bfl, iter->li_pos, " ->");
2915
2916 return 0;
2917 }
2918
2919 static void __show_fd_locks(struct seq_file *f,
2920 struct list_head *head, int *id,
2921 struct file *filp, struct files_struct *files)
2922 {
2923 struct file_lock *fl;
2924
2925 list_for_each_entry(fl, head, fl_list) {
2926
2927 if (filp != fl->fl_file)
2928 continue;
2929 if (fl->fl_owner != files &&
2930 fl->fl_owner != filp)
2931 continue;
2932
2933 (*id)++;
2934 seq_puts(f, "lock:\t");
2935 lock_get_status(f, fl, *id, "");
2936 }
2937 }
2938
2939 void show_fd_locks(struct seq_file *f,
2940 struct file *filp, struct files_struct *files)
2941 {
2942 struct inode *inode = locks_inode(filp);
2943 struct file_lock_context *ctx;
2944 int id = 0;
2945
2946 ctx = smp_load_acquire(&inode->i_flctx);
2947 if (!ctx)
2948 return;
2949
2950 spin_lock(&ctx->flc_lock);
2951 __show_fd_locks(f, &ctx->flc_flock, &id, filp, files);
2952 __show_fd_locks(f, &ctx->flc_posix, &id, filp, files);
2953 __show_fd_locks(f, &ctx->flc_lease, &id, filp, files);
2954 spin_unlock(&ctx->flc_lock);
2955 }
2956
2957 static void *locks_start(struct seq_file *f, loff_t *pos)
2958 __acquires(&blocked_lock_lock)
2959 {
2960 struct locks_iterator *iter = f->private;
2961
2962 iter->li_pos = *pos + 1;
2963 percpu_down_write(&file_rwsem);
2964 spin_lock(&blocked_lock_lock);
2965 return seq_hlist_start_percpu(&file_lock_list.hlist, &iter->li_cpu, *pos);
2966 }
2967
2968 static void *locks_next(struct seq_file *f, void *v, loff_t *pos)
2969 {
2970 struct locks_iterator *iter = f->private;
2971
2972 ++iter->li_pos;
2973 return seq_hlist_next_percpu(v, &file_lock_list.hlist, &iter->li_cpu, pos);
2974 }
2975
2976 static void locks_stop(struct seq_file *f, void *v)
2977 __releases(&blocked_lock_lock)
2978 {
2979 spin_unlock(&blocked_lock_lock);
2980 percpu_up_write(&file_rwsem);
2981 }
2982
2983 static const struct seq_operations locks_seq_operations = {
2984 .start = locks_start,
2985 .next = locks_next,
2986 .stop = locks_stop,
2987 .show = locks_show,
2988 };
2989
2990 static int __init proc_locks_init(void)
2991 {
2992 proc_create_seq_private("locks", 0, NULL, &locks_seq_operations,
2993 sizeof(struct locks_iterator), NULL);
2994 return 0;
2995 }
2996 fs_initcall(proc_locks_init);
2997 #endif
2998
2999 static int __init filelock_init(void)
3000 {
3001 int i;
3002
3003 flctx_cache = kmem_cache_create("file_lock_ctx",
3004 sizeof(struct file_lock_context), 0, SLAB_PANIC, NULL);
3005
3006 filelock_cache = kmem_cache_create("file_lock_cache",
3007 sizeof(struct file_lock), 0, SLAB_PANIC, NULL);
3008
3009 for_each_possible_cpu(i) {
3010 struct file_lock_list_struct *fll = per_cpu_ptr(&file_lock_list, i);
3011
3012 spin_lock_init(&fll->lock);
3013 INIT_HLIST_HEAD(&fll->hlist);
3014 }
3015
3016 lease_notifier_chain_init();
3017 return 0;
3018 }
3019 core_initcall(filelock_init);