]> git.ipfire.org Git - thirdparty/linux.git/blob - include/linux/blkdev.h
block: kill all_q_node in request_queue
[thirdparty/linux.git] / include / linux / blkdev.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_BLKDEV_H
3 #define _LINUX_BLKDEV_H
4
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7
8 #ifdef CONFIG_BLOCK
9
10 #include <linux/major.h>
11 #include <linux/genhd.h>
12 #include <linux/list.h>
13 #include <linux/llist.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev-defs.h>
18 #include <linux/wait.h>
19 #include <linux/mempool.h>
20 #include <linux/pfn.h>
21 #include <linux/bio.h>
22 #include <linux/stringify.h>
23 #include <linux/gfp.h>
24 #include <linux/bsg.h>
25 #include <linux/smp.h>
26 #include <linux/rcupdate.h>
27 #include <linux/percpu-refcount.h>
28 #include <linux/scatterlist.h>
29 #include <linux/blkzoned.h>
30
31 struct module;
32 struct scsi_ioctl_command;
33
34 struct request_queue;
35 struct elevator_queue;
36 struct blk_trace;
37 struct request;
38 struct sg_io_hdr;
39 struct bsg_job;
40 struct blkcg_gq;
41 struct blk_flush_queue;
42 struct pr_ops;
43 struct rq_qos;
44 struct blk_queue_stats;
45 struct blk_stat_callback;
46
47 #define BLKDEV_MIN_RQ 4
48 #define BLKDEV_MAX_RQ 128 /* Default maximum */
49
50 /* Must be consistent with blk_mq_poll_stats_bkt() */
51 #define BLK_MQ_POLL_STATS_BKTS 16
52
53 /* Doing classic polling */
54 #define BLK_MQ_POLL_CLASSIC -1
55
56 /*
57 * Maximum number of blkcg policies allowed to be registered concurrently.
58 * Defined here to simplify include dependency.
59 */
60 #define BLKCG_MAX_POLS 5
61
62 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
63
64 /*
65 * request flags */
66 typedef __u32 __bitwise req_flags_t;
67
68 /* elevator knows about this request */
69 #define RQF_SORTED ((__force req_flags_t)(1 << 0))
70 /* drive already may have started this one */
71 #define RQF_STARTED ((__force req_flags_t)(1 << 1))
72 /* may not be passed by ioscheduler */
73 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3))
74 /* request for flush sequence */
75 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
76 /* merge of different types, fail separately */
77 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
78 /* track inflight for MQ */
79 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6))
80 /* don't call prep for this one */
81 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
82 /* set for "ide_preempt" requests and also for requests for which the SCSI
83 "quiesce" state must be ignored. */
84 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8))
85 /* contains copies of user pages */
86 #define RQF_COPY_USER ((__force req_flags_t)(1 << 9))
87 /* vaguely specified driver internal error. Ignored by the block layer */
88 #define RQF_FAILED ((__force req_flags_t)(1 << 10))
89 /* don't warn about errors */
90 #define RQF_QUIET ((__force req_flags_t)(1 << 11))
91 /* elevator private data attached */
92 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12))
93 /* account into disk and partition IO statistics */
94 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
95 /* request came from our alloc pool */
96 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14))
97 /* runtime pm request */
98 #define RQF_PM ((__force req_flags_t)(1 << 15))
99 /* on IO scheduler merge hash */
100 #define RQF_HASHED ((__force req_flags_t)(1 << 16))
101 /* track IO completion time */
102 #define RQF_STATS ((__force req_flags_t)(1 << 17))
103 /* Look at ->special_vec for the actual data payload instead of the
104 bio chain. */
105 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
106 /* The per-zone write lock is held for this request */
107 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19))
108 /* already slept for hybrid poll */
109 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20))
110 /* ->timeout has been called, don't expire again */
111 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21))
112
113 /* flags that prevent us from merging requests: */
114 #define RQF_NOMERGE_FLAGS \
115 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
116
117 /*
118 * Request state for blk-mq.
119 */
120 enum mq_rq_state {
121 MQ_RQ_IDLE = 0,
122 MQ_RQ_IN_FLIGHT = 1,
123 MQ_RQ_COMPLETE = 2,
124 };
125
126 /*
127 * Try to put the fields that are referenced together in the same cacheline.
128 *
129 * If you modify this structure, make sure to update blk_rq_init() and
130 * especially blk_mq_rq_ctx_init() to take care of the added fields.
131 */
132 struct request {
133 struct request_queue *q;
134 struct blk_mq_ctx *mq_ctx;
135 struct blk_mq_hw_ctx *mq_hctx;
136
137 unsigned int cmd_flags; /* op and common flags */
138 req_flags_t rq_flags;
139
140 int internal_tag;
141
142 /* the following two fields are internal, NEVER access directly */
143 unsigned int __data_len; /* total data len */
144 int tag;
145 sector_t __sector; /* sector cursor */
146
147 struct bio *bio;
148 struct bio *biotail;
149
150 struct list_head queuelist;
151
152 /*
153 * The hash is used inside the scheduler, and killed once the
154 * request reaches the dispatch list. The ipi_list is only used
155 * to queue the request for softirq completion, which is long
156 * after the request has been unhashed (and even removed from
157 * the dispatch list).
158 */
159 union {
160 struct hlist_node hash; /* merge hash */
161 struct list_head ipi_list;
162 };
163
164 /*
165 * The rb_node is only used inside the io scheduler, requests
166 * are pruned when moved to the dispatch queue. So let the
167 * completion_data share space with the rb_node.
168 */
169 union {
170 struct rb_node rb_node; /* sort/lookup */
171 struct bio_vec special_vec;
172 void *completion_data;
173 int error_count; /* for legacy drivers, don't use */
174 };
175
176 /*
177 * Three pointers are available for the IO schedulers, if they need
178 * more they have to dynamically allocate it. Flush requests are
179 * never put on the IO scheduler. So let the flush fields share
180 * space with the elevator data.
181 */
182 union {
183 struct {
184 struct io_cq *icq;
185 void *priv[2];
186 } elv;
187
188 struct {
189 unsigned int seq;
190 struct list_head list;
191 rq_end_io_fn *saved_end_io;
192 } flush;
193 };
194
195 struct gendisk *rq_disk;
196 struct hd_struct *part;
197 /* Time that I/O was submitted to the kernel. */
198 u64 start_time_ns;
199 /* Time that I/O was submitted to the device. */
200 u64 io_start_time_ns;
201
202 #ifdef CONFIG_BLK_WBT
203 unsigned short wbt_flags;
204 #endif
205 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
206 unsigned short throtl_size;
207 #endif
208
209 /*
210 * Number of scatter-gather DMA addr+len pairs after
211 * physical address coalescing is performed.
212 */
213 unsigned short nr_phys_segments;
214
215 #if defined(CONFIG_BLK_DEV_INTEGRITY)
216 unsigned short nr_integrity_segments;
217 #endif
218
219 unsigned short write_hint;
220 unsigned short ioprio;
221
222 unsigned int extra_len; /* length of alignment and padding */
223
224 enum mq_rq_state state;
225 refcount_t ref;
226
227 unsigned int timeout;
228 unsigned long deadline;
229
230 union {
231 struct __call_single_data csd;
232 u64 fifo_time;
233 };
234
235 /*
236 * completion callback.
237 */
238 rq_end_io_fn *end_io;
239 void *end_io_data;
240 };
241
242 static inline bool blk_op_is_scsi(unsigned int op)
243 {
244 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
245 }
246
247 static inline bool blk_op_is_private(unsigned int op)
248 {
249 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
250 }
251
252 static inline bool blk_rq_is_scsi(struct request *rq)
253 {
254 return blk_op_is_scsi(req_op(rq));
255 }
256
257 static inline bool blk_rq_is_private(struct request *rq)
258 {
259 return blk_op_is_private(req_op(rq));
260 }
261
262 static inline bool blk_rq_is_passthrough(struct request *rq)
263 {
264 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
265 }
266
267 static inline bool bio_is_passthrough(struct bio *bio)
268 {
269 unsigned op = bio_op(bio);
270
271 return blk_op_is_scsi(op) || blk_op_is_private(op);
272 }
273
274 static inline unsigned short req_get_ioprio(struct request *req)
275 {
276 return req->ioprio;
277 }
278
279 #include <linux/elevator.h>
280
281 struct blk_queue_ctx;
282
283 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
284
285 struct bio_vec;
286 typedef int (dma_drain_needed_fn)(struct request *);
287
288 enum blk_eh_timer_return {
289 BLK_EH_DONE, /* drivers has completed the command */
290 BLK_EH_RESET_TIMER, /* reset timer and try again */
291 };
292
293 enum blk_queue_state {
294 Queue_down,
295 Queue_up,
296 };
297
298 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
299 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
300
301 #define BLK_SCSI_MAX_CMDS (256)
302 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
303
304 /*
305 * Zoned block device models (zoned limit).
306 */
307 enum blk_zoned_model {
308 BLK_ZONED_NONE, /* Regular block device */
309 BLK_ZONED_HA, /* Host-aware zoned block device */
310 BLK_ZONED_HM, /* Host-managed zoned block device */
311 };
312
313 struct queue_limits {
314 unsigned long bounce_pfn;
315 unsigned long seg_boundary_mask;
316 unsigned long virt_boundary_mask;
317
318 unsigned int max_hw_sectors;
319 unsigned int max_dev_sectors;
320 unsigned int chunk_sectors;
321 unsigned int max_sectors;
322 unsigned int max_segment_size;
323 unsigned int physical_block_size;
324 unsigned int alignment_offset;
325 unsigned int io_min;
326 unsigned int io_opt;
327 unsigned int max_discard_sectors;
328 unsigned int max_hw_discard_sectors;
329 unsigned int max_write_same_sectors;
330 unsigned int max_write_zeroes_sectors;
331 unsigned int discard_granularity;
332 unsigned int discard_alignment;
333
334 unsigned short logical_block_size;
335 unsigned short max_segments;
336 unsigned short max_integrity_segments;
337 unsigned short max_discard_segments;
338
339 unsigned char misaligned;
340 unsigned char discard_misaligned;
341 unsigned char raid_partial_stripes_expensive;
342 enum blk_zoned_model zoned;
343 };
344
345 #ifdef CONFIG_BLK_DEV_ZONED
346
347 extern unsigned int blkdev_nr_zones(struct block_device *bdev);
348 extern int blkdev_report_zones(struct block_device *bdev,
349 sector_t sector, struct blk_zone *zones,
350 unsigned int *nr_zones, gfp_t gfp_mask);
351 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors,
352 sector_t nr_sectors, gfp_t gfp_mask);
353 extern int blk_revalidate_disk_zones(struct gendisk *disk);
354
355 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
356 unsigned int cmd, unsigned long arg);
357 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode,
358 unsigned int cmd, unsigned long arg);
359
360 #else /* CONFIG_BLK_DEV_ZONED */
361
362 static inline unsigned int blkdev_nr_zones(struct block_device *bdev)
363 {
364 return 0;
365 }
366
367 static inline int blk_revalidate_disk_zones(struct gendisk *disk)
368 {
369 return 0;
370 }
371
372 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
373 fmode_t mode, unsigned int cmd,
374 unsigned long arg)
375 {
376 return -ENOTTY;
377 }
378
379 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev,
380 fmode_t mode, unsigned int cmd,
381 unsigned long arg)
382 {
383 return -ENOTTY;
384 }
385
386 #endif /* CONFIG_BLK_DEV_ZONED */
387
388 struct request_queue {
389 /*
390 * Together with queue_head for cacheline sharing
391 */
392 struct list_head queue_head;
393 struct request *last_merge;
394 struct elevator_queue *elevator;
395
396 struct blk_queue_stats *stats;
397 struct rq_qos *rq_qos;
398
399 make_request_fn *make_request_fn;
400 dma_drain_needed_fn *dma_drain_needed;
401
402 const struct blk_mq_ops *mq_ops;
403
404 /* sw queues */
405 struct blk_mq_ctx __percpu *queue_ctx;
406 unsigned int nr_queues;
407
408 unsigned int queue_depth;
409
410 /* hw dispatch queues */
411 struct blk_mq_hw_ctx **queue_hw_ctx;
412 unsigned int nr_hw_queues;
413
414 struct backing_dev_info *backing_dev_info;
415
416 /*
417 * The queue owner gets to use this for whatever they like.
418 * ll_rw_blk doesn't touch it.
419 */
420 void *queuedata;
421
422 /*
423 * various queue flags, see QUEUE_* below
424 */
425 unsigned long queue_flags;
426 /*
427 * Number of contexts that have called blk_set_pm_only(). If this
428 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are
429 * processed.
430 */
431 atomic_t pm_only;
432
433 /*
434 * ida allocated id for this queue. Used to index queues from
435 * ioctx.
436 */
437 int id;
438
439 /*
440 * queue needs bounce pages for pages above this limit
441 */
442 gfp_t bounce_gfp;
443
444 spinlock_t queue_lock;
445
446 /*
447 * queue kobject
448 */
449 struct kobject kobj;
450
451 /*
452 * mq queue kobject
453 */
454 struct kobject *mq_kobj;
455
456 #ifdef CONFIG_BLK_DEV_INTEGRITY
457 struct blk_integrity integrity;
458 #endif /* CONFIG_BLK_DEV_INTEGRITY */
459
460 #ifdef CONFIG_PM
461 struct device *dev;
462 int rpm_status;
463 unsigned int nr_pending;
464 #endif
465
466 /*
467 * queue settings
468 */
469 unsigned long nr_requests; /* Max # of requests */
470
471 unsigned int dma_drain_size;
472 void *dma_drain_buffer;
473 unsigned int dma_pad_mask;
474 unsigned int dma_alignment;
475
476 unsigned int rq_timeout;
477 int poll_nsec;
478
479 struct blk_stat_callback *poll_cb;
480 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS];
481
482 struct timer_list timeout;
483 struct work_struct timeout_work;
484
485 struct list_head icq_list;
486 #ifdef CONFIG_BLK_CGROUP
487 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
488 struct blkcg_gq *root_blkg;
489 struct list_head blkg_list;
490 #endif
491
492 struct queue_limits limits;
493
494 #ifdef CONFIG_BLK_DEV_ZONED
495 /*
496 * Zoned block device information for request dispatch control.
497 * nr_zones is the total number of zones of the device. This is always
498 * 0 for regular block devices. seq_zones_bitmap is a bitmap of nr_zones
499 * bits which indicates if a zone is conventional (bit clear) or
500 * sequential (bit set). seq_zones_wlock is a bitmap of nr_zones
501 * bits which indicates if a zone is write locked, that is, if a write
502 * request targeting the zone was dispatched. All three fields are
503 * initialized by the low level device driver (e.g. scsi/sd.c).
504 * Stacking drivers (device mappers) may or may not initialize
505 * these fields.
506 *
507 * Reads of this information must be protected with blk_queue_enter() /
508 * blk_queue_exit(). Modifying this information is only allowed while
509 * no requests are being processed. See also blk_mq_freeze_queue() and
510 * blk_mq_unfreeze_queue().
511 */
512 unsigned int nr_zones;
513 unsigned long *seq_zones_bitmap;
514 unsigned long *seq_zones_wlock;
515 #endif /* CONFIG_BLK_DEV_ZONED */
516
517 /*
518 * sg stuff
519 */
520 unsigned int sg_timeout;
521 unsigned int sg_reserved_size;
522 int node;
523 #ifdef CONFIG_BLK_DEV_IO_TRACE
524 struct blk_trace *blk_trace;
525 struct mutex blk_trace_mutex;
526 #endif
527 /*
528 * for flush operations
529 */
530 struct blk_flush_queue *fq;
531
532 struct list_head requeue_list;
533 spinlock_t requeue_lock;
534 struct delayed_work requeue_work;
535
536 struct mutex sysfs_lock;
537
538 atomic_t mq_freeze_depth;
539
540 #if defined(CONFIG_BLK_DEV_BSG)
541 struct bsg_class_device bsg_dev;
542 #endif
543
544 #ifdef CONFIG_BLK_DEV_THROTTLING
545 /* Throttle data */
546 struct throtl_data *td;
547 #endif
548 struct rcu_head rcu_head;
549 wait_queue_head_t mq_freeze_wq;
550 struct percpu_ref q_usage_counter;
551
552 struct blk_mq_tag_set *tag_set;
553 struct list_head tag_set_list;
554 struct bio_set bio_split;
555
556 #ifdef CONFIG_BLK_DEBUG_FS
557 struct dentry *debugfs_dir;
558 struct dentry *sched_debugfs_dir;
559 struct dentry *rqos_debugfs_dir;
560 #endif
561
562 bool mq_sysfs_init_done;
563
564 size_t cmd_size;
565
566 struct work_struct release_work;
567
568 #define BLK_MAX_WRITE_HINTS 5
569 u64 write_hints[BLK_MAX_WRITE_HINTS];
570 };
571
572 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */
573 #define QUEUE_FLAG_DYING 1 /* queue being torn down */
574 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */
575 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */
576 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */
577 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */
578 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */
579 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */
580 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */
581 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */
582 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */
583 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */
584 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */
585 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */
586 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */
587 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */
588 #define QUEUE_FLAG_WC 17 /* Write back caching */
589 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */
590 #define QUEUE_FLAG_DAX 19 /* device supports DAX */
591 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */
592 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */
593 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */
594 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */
595 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */
596 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */
597
598 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
599 (1 << QUEUE_FLAG_SAME_COMP))
600
601 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
602 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
603 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
604
605 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
606 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
607 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
608 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
609 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
610 #define blk_queue_noxmerges(q) \
611 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
612 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
613 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
614 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
615 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
616 #define blk_queue_secure_erase(q) \
617 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
618 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
619 #define blk_queue_scsi_passthrough(q) \
620 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
621 #define blk_queue_pci_p2pdma(q) \
622 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
623
624 #define blk_noretry_request(rq) \
625 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
626 REQ_FAILFAST_DRIVER))
627 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
628 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only)
629 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
630
631 extern void blk_set_pm_only(struct request_queue *q);
632 extern void blk_clear_pm_only(struct request_queue *q);
633
634 static inline bool blk_account_rq(struct request *rq)
635 {
636 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
637 }
638
639 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
640
641 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
642
643 static inline bool queue_is_mq(struct request_queue *q)
644 {
645 return q->mq_ops;
646 }
647
648 static inline enum blk_zoned_model
649 blk_queue_zoned_model(struct request_queue *q)
650 {
651 return q->limits.zoned;
652 }
653
654 static inline bool blk_queue_is_zoned(struct request_queue *q)
655 {
656 switch (blk_queue_zoned_model(q)) {
657 case BLK_ZONED_HA:
658 case BLK_ZONED_HM:
659 return true;
660 default:
661 return false;
662 }
663 }
664
665 static inline unsigned int blk_queue_zone_sectors(struct request_queue *q)
666 {
667 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
668 }
669
670 #ifdef CONFIG_BLK_DEV_ZONED
671 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
672 {
673 return blk_queue_is_zoned(q) ? q->nr_zones : 0;
674 }
675
676 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
677 sector_t sector)
678 {
679 if (!blk_queue_is_zoned(q))
680 return 0;
681 return sector >> ilog2(q->limits.chunk_sectors);
682 }
683
684 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
685 sector_t sector)
686 {
687 if (!blk_queue_is_zoned(q) || !q->seq_zones_bitmap)
688 return false;
689 return test_bit(blk_queue_zone_no(q, sector), q->seq_zones_bitmap);
690 }
691 #else /* CONFIG_BLK_DEV_ZONED */
692 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
693 {
694 return 0;
695 }
696 #endif /* CONFIG_BLK_DEV_ZONED */
697
698 static inline bool rq_is_sync(struct request *rq)
699 {
700 return op_is_sync(rq->cmd_flags);
701 }
702
703 static inline bool rq_mergeable(struct request *rq)
704 {
705 if (blk_rq_is_passthrough(rq))
706 return false;
707
708 if (req_op(rq) == REQ_OP_FLUSH)
709 return false;
710
711 if (req_op(rq) == REQ_OP_WRITE_ZEROES)
712 return false;
713
714 if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
715 return false;
716 if (rq->rq_flags & RQF_NOMERGE_FLAGS)
717 return false;
718
719 return true;
720 }
721
722 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
723 {
724 if (bio_page(a) == bio_page(b) &&
725 bio_offset(a) == bio_offset(b))
726 return true;
727
728 return false;
729 }
730
731 static inline unsigned int blk_queue_depth(struct request_queue *q)
732 {
733 if (q->queue_depth)
734 return q->queue_depth;
735
736 return q->nr_requests;
737 }
738
739 extern unsigned long blk_max_low_pfn, blk_max_pfn;
740
741 /*
742 * standard bounce addresses:
743 *
744 * BLK_BOUNCE_HIGH : bounce all highmem pages
745 * BLK_BOUNCE_ANY : don't bounce anything
746 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary
747 */
748
749 #if BITS_PER_LONG == 32
750 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT)
751 #else
752 #define BLK_BOUNCE_HIGH -1ULL
753 #endif
754 #define BLK_BOUNCE_ANY (-1ULL)
755 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24))
756
757 /*
758 * default timeout for SG_IO if none specified
759 */
760 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
761 #define BLK_MIN_SG_TIMEOUT (7 * HZ)
762
763 struct rq_map_data {
764 struct page **pages;
765 int page_order;
766 int nr_entries;
767 unsigned long offset;
768 int null_mapped;
769 int from_user;
770 };
771
772 struct req_iterator {
773 struct bvec_iter iter;
774 struct bio *bio;
775 };
776
777 /* This should not be used directly - use rq_for_each_segment */
778 #define for_each_bio(_bio) \
779 for (; _bio; _bio = _bio->bi_next)
780 #define __rq_for_each_bio(_bio, rq) \
781 if ((rq->bio)) \
782 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
783
784 #define rq_for_each_segment(bvl, _rq, _iter) \
785 __rq_for_each_bio(_iter.bio, _rq) \
786 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
787
788 #define rq_for_each_bvec(bvl, _rq, _iter) \
789 __rq_for_each_bio(_iter.bio, _rq) \
790 bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
791
792 #define rq_iter_last(bvec, _iter) \
793 (_iter.bio->bi_next == NULL && \
794 bio_iter_last(bvec, _iter.iter))
795
796 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
797 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
798 #endif
799 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
800 extern void rq_flush_dcache_pages(struct request *rq);
801 #else
802 static inline void rq_flush_dcache_pages(struct request *rq)
803 {
804 }
805 #endif
806
807 extern int blk_register_queue(struct gendisk *disk);
808 extern void blk_unregister_queue(struct gendisk *disk);
809 extern blk_qc_t generic_make_request(struct bio *bio);
810 extern blk_qc_t direct_make_request(struct bio *bio);
811 extern void blk_rq_init(struct request_queue *q, struct request *rq);
812 extern void blk_init_request_from_bio(struct request *req, struct bio *bio);
813 extern void blk_put_request(struct request *);
814 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
815 blk_mq_req_flags_t flags);
816 extern int blk_lld_busy(struct request_queue *q);
817 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
818 struct bio_set *bs, gfp_t gfp_mask,
819 int (*bio_ctr)(struct bio *, struct bio *, void *),
820 void *data);
821 extern void blk_rq_unprep_clone(struct request *rq);
822 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
823 struct request *rq);
824 extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
825 extern void blk_queue_split(struct request_queue *, struct bio **);
826 extern void blk_recount_segments(struct request_queue *, struct bio *);
827 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
828 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
829 unsigned int, void __user *);
830 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
831 unsigned int, void __user *);
832 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
833 struct scsi_ioctl_command __user *);
834
835 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
836 extern void blk_queue_exit(struct request_queue *q);
837 extern void blk_sync_queue(struct request_queue *q);
838 extern int blk_rq_map_user(struct request_queue *, struct request *,
839 struct rq_map_data *, void __user *, unsigned long,
840 gfp_t);
841 extern int blk_rq_unmap_user(struct bio *);
842 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
843 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
844 struct rq_map_data *, const struct iov_iter *,
845 gfp_t);
846 extern void blk_execute_rq(struct request_queue *, struct gendisk *,
847 struct request *, int);
848 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
849 struct request *, int, rq_end_io_fn *);
850
851 int blk_status_to_errno(blk_status_t status);
852 blk_status_t errno_to_blk_status(int errno);
853
854 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin);
855
856 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
857 {
858 return bdev->bd_disk->queue; /* this is never NULL */
859 }
860
861 /*
862 * The basic unit of block I/O is a sector. It is used in a number of contexts
863 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
864 * bytes. Variables of type sector_t represent an offset or size that is a
865 * multiple of 512 bytes. Hence these two constants.
866 */
867 #ifndef SECTOR_SHIFT
868 #define SECTOR_SHIFT 9
869 #endif
870 #ifndef SECTOR_SIZE
871 #define SECTOR_SIZE (1 << SECTOR_SHIFT)
872 #endif
873
874 /*
875 * blk_rq_pos() : the current sector
876 * blk_rq_bytes() : bytes left in the entire request
877 * blk_rq_cur_bytes() : bytes left in the current segment
878 * blk_rq_err_bytes() : bytes left till the next error boundary
879 * blk_rq_sectors() : sectors left in the entire request
880 * blk_rq_cur_sectors() : sectors left in the current segment
881 */
882 static inline sector_t blk_rq_pos(const struct request *rq)
883 {
884 return rq->__sector;
885 }
886
887 static inline unsigned int blk_rq_bytes(const struct request *rq)
888 {
889 return rq->__data_len;
890 }
891
892 static inline int blk_rq_cur_bytes(const struct request *rq)
893 {
894 return rq->bio ? bio_cur_bytes(rq->bio) : 0;
895 }
896
897 extern unsigned int blk_rq_err_bytes(const struct request *rq);
898
899 static inline unsigned int blk_rq_sectors(const struct request *rq)
900 {
901 return blk_rq_bytes(rq) >> SECTOR_SHIFT;
902 }
903
904 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
905 {
906 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
907 }
908
909 #ifdef CONFIG_BLK_DEV_ZONED
910 static inline unsigned int blk_rq_zone_no(struct request *rq)
911 {
912 return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
913 }
914
915 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
916 {
917 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
918 }
919 #endif /* CONFIG_BLK_DEV_ZONED */
920
921 /*
922 * Some commands like WRITE SAME have a payload or data transfer size which
923 * is different from the size of the request. Any driver that supports such
924 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
925 * calculate the data transfer size.
926 */
927 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
928 {
929 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
930 return rq->special_vec.bv_len;
931 return blk_rq_bytes(rq);
932 }
933
934 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
935 int op)
936 {
937 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
938 return min(q->limits.max_discard_sectors,
939 UINT_MAX >> SECTOR_SHIFT);
940
941 if (unlikely(op == REQ_OP_WRITE_SAME))
942 return q->limits.max_write_same_sectors;
943
944 if (unlikely(op == REQ_OP_WRITE_ZEROES))
945 return q->limits.max_write_zeroes_sectors;
946
947 return q->limits.max_sectors;
948 }
949
950 /*
951 * Return maximum size of a request at given offset. Only valid for
952 * file system requests.
953 */
954 static inline unsigned int blk_max_size_offset(struct request_queue *q,
955 sector_t offset)
956 {
957 if (!q->limits.chunk_sectors)
958 return q->limits.max_sectors;
959
960 return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors -
961 (offset & (q->limits.chunk_sectors - 1))));
962 }
963
964 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
965 sector_t offset)
966 {
967 struct request_queue *q = rq->q;
968
969 if (blk_rq_is_passthrough(rq))
970 return q->limits.max_hw_sectors;
971
972 if (!q->limits.chunk_sectors ||
973 req_op(rq) == REQ_OP_DISCARD ||
974 req_op(rq) == REQ_OP_SECURE_ERASE)
975 return blk_queue_get_max_sectors(q, req_op(rq));
976
977 return min(blk_max_size_offset(q, offset),
978 blk_queue_get_max_sectors(q, req_op(rq)));
979 }
980
981 static inline unsigned int blk_rq_count_bios(struct request *rq)
982 {
983 unsigned int nr_bios = 0;
984 struct bio *bio;
985
986 __rq_for_each_bio(bio, rq)
987 nr_bios++;
988
989 return nr_bios;
990 }
991
992 void blk_steal_bios(struct bio_list *list, struct request *rq);
993
994 /*
995 * Request completion related functions.
996 *
997 * blk_update_request() completes given number of bytes and updates
998 * the request without completing it.
999 *
1000 * blk_end_request() and friends. __blk_end_request() must be called
1001 * with the request queue spinlock acquired.
1002 *
1003 * Several drivers define their own end_request and call
1004 * blk_end_request() for parts of the original function.
1005 * This prevents code duplication in drivers.
1006 */
1007 extern bool blk_update_request(struct request *rq, blk_status_t error,
1008 unsigned int nr_bytes);
1009 extern void blk_end_request_all(struct request *rq, blk_status_t error);
1010 extern bool __blk_end_request(struct request *rq, blk_status_t error,
1011 unsigned int nr_bytes);
1012 extern void __blk_end_request_all(struct request *rq, blk_status_t error);
1013 extern bool __blk_end_request_cur(struct request *rq, blk_status_t error);
1014
1015 extern void __blk_complete_request(struct request *);
1016 extern void blk_abort_request(struct request *);
1017
1018 /*
1019 * Access functions for manipulating queue properties
1020 */
1021 extern void blk_cleanup_queue(struct request_queue *);
1022 extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
1023 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1024 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1025 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1026 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1027 extern void blk_queue_max_discard_segments(struct request_queue *,
1028 unsigned short);
1029 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1030 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1031 unsigned int max_discard_sectors);
1032 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1033 unsigned int max_write_same_sectors);
1034 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1035 unsigned int max_write_same_sectors);
1036 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short);
1037 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1038 extern void blk_queue_alignment_offset(struct request_queue *q,
1039 unsigned int alignment);
1040 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1041 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1042 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1043 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1044 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1045 extern void blk_set_default_limits(struct queue_limits *lim);
1046 extern void blk_set_stacking_limits(struct queue_limits *lim);
1047 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1048 sector_t offset);
1049 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
1050 sector_t offset);
1051 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1052 sector_t offset);
1053 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
1054 extern void blk_queue_dma_pad(struct request_queue *, unsigned int);
1055 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1056 extern int blk_queue_dma_drain(struct request_queue *q,
1057 dma_drain_needed_fn *dma_drain_needed,
1058 void *buf, unsigned int size);
1059 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1060 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1061 extern void blk_queue_dma_alignment(struct request_queue *, int);
1062 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1063 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1064 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1065
1066 /*
1067 * Number of physical segments as sent to the device.
1068 *
1069 * Normally this is the number of discontiguous data segments sent by the
1070 * submitter. But for data-less command like discard we might have no
1071 * actual data segments submitted, but the driver might have to add it's
1072 * own special payload. In that case we still return 1 here so that this
1073 * special payload will be mapped.
1074 */
1075 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1076 {
1077 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1078 return 1;
1079 return rq->nr_phys_segments;
1080 }
1081
1082 /*
1083 * Number of discard segments (or ranges) the driver needs to fill in.
1084 * Each discard bio merged into a request is counted as one segment.
1085 */
1086 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1087 {
1088 return max_t(unsigned short, rq->nr_phys_segments, 1);
1089 }
1090
1091 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
1092 extern void blk_dump_rq_flags(struct request *, char *);
1093 extern long nr_blockdev_pages(void);
1094
1095 bool __must_check blk_get_queue(struct request_queue *);
1096 struct request_queue *blk_alloc_queue(gfp_t);
1097 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id);
1098 extern void blk_put_queue(struct request_queue *);
1099 extern void blk_set_queue_dying(struct request_queue *);
1100
1101 /*
1102 * blk_plug permits building a queue of related requests by holding the I/O
1103 * fragments for a short period. This allows merging of sequential requests
1104 * into single larger request. As the requests are moved from a per-task list to
1105 * the device's request_queue in a batch, this results in improved scalability
1106 * as the lock contention for request_queue lock is reduced.
1107 *
1108 * It is ok not to disable preemption when adding the request to the plug list
1109 * or when attempting a merge, because blk_schedule_flush_list() will only flush
1110 * the plug list when the task sleeps by itself. For details, please see
1111 * schedule() where blk_schedule_flush_plug() is called.
1112 */
1113 struct blk_plug {
1114 struct list_head mq_list; /* blk-mq requests */
1115 struct list_head cb_list; /* md requires an unplug callback */
1116 unsigned short rq_count;
1117 bool multiple_queues;
1118 };
1119 #define BLK_MAX_REQUEST_COUNT 16
1120 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1121
1122 struct blk_plug_cb;
1123 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1124 struct blk_plug_cb {
1125 struct list_head list;
1126 blk_plug_cb_fn callback;
1127 void *data;
1128 };
1129 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1130 void *data, int size);
1131 extern void blk_start_plug(struct blk_plug *);
1132 extern void blk_finish_plug(struct blk_plug *);
1133 extern void blk_flush_plug_list(struct blk_plug *, bool);
1134
1135 static inline void blk_flush_plug(struct task_struct *tsk)
1136 {
1137 struct blk_plug *plug = tsk->plug;
1138
1139 if (plug)
1140 blk_flush_plug_list(plug, false);
1141 }
1142
1143 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1144 {
1145 struct blk_plug *plug = tsk->plug;
1146
1147 if (plug)
1148 blk_flush_plug_list(plug, true);
1149 }
1150
1151 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1152 {
1153 struct blk_plug *plug = tsk->plug;
1154
1155 return plug &&
1156 (!list_empty(&plug->mq_list) ||
1157 !list_empty(&plug->cb_list));
1158 }
1159
1160 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
1161 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1162 sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1163
1164 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */
1165
1166 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1167 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1168 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1169 sector_t nr_sects, gfp_t gfp_mask, int flags,
1170 struct bio **biop);
1171
1172 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1173 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1174
1175 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1176 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1177 unsigned flags);
1178 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1179 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1180
1181 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1182 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1183 {
1184 return blkdev_issue_discard(sb->s_bdev,
1185 block << (sb->s_blocksize_bits -
1186 SECTOR_SHIFT),
1187 nr_blocks << (sb->s_blocksize_bits -
1188 SECTOR_SHIFT),
1189 gfp_mask, flags);
1190 }
1191 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1192 sector_t nr_blocks, gfp_t gfp_mask)
1193 {
1194 return blkdev_issue_zeroout(sb->s_bdev,
1195 block << (sb->s_blocksize_bits -
1196 SECTOR_SHIFT),
1197 nr_blocks << (sb->s_blocksize_bits -
1198 SECTOR_SHIFT),
1199 gfp_mask, 0);
1200 }
1201
1202 extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
1203
1204 enum blk_default_limits {
1205 BLK_MAX_SEGMENTS = 128,
1206 BLK_SAFE_MAX_SECTORS = 255,
1207 BLK_DEF_MAX_SECTORS = 2560,
1208 BLK_MAX_SEGMENT_SIZE = 65536,
1209 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1210 };
1211
1212 static inline unsigned long queue_segment_boundary(struct request_queue *q)
1213 {
1214 return q->limits.seg_boundary_mask;
1215 }
1216
1217 static inline unsigned long queue_virt_boundary(struct request_queue *q)
1218 {
1219 return q->limits.virt_boundary_mask;
1220 }
1221
1222 static inline unsigned int queue_max_sectors(struct request_queue *q)
1223 {
1224 return q->limits.max_sectors;
1225 }
1226
1227 static inline unsigned int queue_max_hw_sectors(struct request_queue *q)
1228 {
1229 return q->limits.max_hw_sectors;
1230 }
1231
1232 static inline unsigned short queue_max_segments(struct request_queue *q)
1233 {
1234 return q->limits.max_segments;
1235 }
1236
1237 static inline unsigned short queue_max_discard_segments(struct request_queue *q)
1238 {
1239 return q->limits.max_discard_segments;
1240 }
1241
1242 static inline unsigned int queue_max_segment_size(struct request_queue *q)
1243 {
1244 return q->limits.max_segment_size;
1245 }
1246
1247 static inline unsigned short queue_logical_block_size(struct request_queue *q)
1248 {
1249 int retval = 512;
1250
1251 if (q && q->limits.logical_block_size)
1252 retval = q->limits.logical_block_size;
1253
1254 return retval;
1255 }
1256
1257 static inline unsigned short bdev_logical_block_size(struct block_device *bdev)
1258 {
1259 return queue_logical_block_size(bdev_get_queue(bdev));
1260 }
1261
1262 static inline unsigned int queue_physical_block_size(struct request_queue *q)
1263 {
1264 return q->limits.physical_block_size;
1265 }
1266
1267 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1268 {
1269 return queue_physical_block_size(bdev_get_queue(bdev));
1270 }
1271
1272 static inline unsigned int queue_io_min(struct request_queue *q)
1273 {
1274 return q->limits.io_min;
1275 }
1276
1277 static inline int bdev_io_min(struct block_device *bdev)
1278 {
1279 return queue_io_min(bdev_get_queue(bdev));
1280 }
1281
1282 static inline unsigned int queue_io_opt(struct request_queue *q)
1283 {
1284 return q->limits.io_opt;
1285 }
1286
1287 static inline int bdev_io_opt(struct block_device *bdev)
1288 {
1289 return queue_io_opt(bdev_get_queue(bdev));
1290 }
1291
1292 static inline int queue_alignment_offset(struct request_queue *q)
1293 {
1294 if (q->limits.misaligned)
1295 return -1;
1296
1297 return q->limits.alignment_offset;
1298 }
1299
1300 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1301 {
1302 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1303 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
1304 << SECTOR_SHIFT;
1305
1306 return (granularity + lim->alignment_offset - alignment) % granularity;
1307 }
1308
1309 static inline int bdev_alignment_offset(struct block_device *bdev)
1310 {
1311 struct request_queue *q = bdev_get_queue(bdev);
1312
1313 if (q->limits.misaligned)
1314 return -1;
1315
1316 if (bdev != bdev->bd_contains)
1317 return bdev->bd_part->alignment_offset;
1318
1319 return q->limits.alignment_offset;
1320 }
1321
1322 static inline int queue_discard_alignment(struct request_queue *q)
1323 {
1324 if (q->limits.discard_misaligned)
1325 return -1;
1326
1327 return q->limits.discard_alignment;
1328 }
1329
1330 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1331 {
1332 unsigned int alignment, granularity, offset;
1333
1334 if (!lim->max_discard_sectors)
1335 return 0;
1336
1337 /* Why are these in bytes, not sectors? */
1338 alignment = lim->discard_alignment >> SECTOR_SHIFT;
1339 granularity = lim->discard_granularity >> SECTOR_SHIFT;
1340 if (!granularity)
1341 return 0;
1342
1343 /* Offset of the partition start in 'granularity' sectors */
1344 offset = sector_div(sector, granularity);
1345
1346 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
1347 offset = (granularity + alignment - offset) % granularity;
1348
1349 /* Turn it back into bytes, gaah */
1350 return offset << SECTOR_SHIFT;
1351 }
1352
1353 static inline int bdev_discard_alignment(struct block_device *bdev)
1354 {
1355 struct request_queue *q = bdev_get_queue(bdev);
1356
1357 if (bdev != bdev->bd_contains)
1358 return bdev->bd_part->discard_alignment;
1359
1360 return q->limits.discard_alignment;
1361 }
1362
1363 static inline unsigned int bdev_write_same(struct block_device *bdev)
1364 {
1365 struct request_queue *q = bdev_get_queue(bdev);
1366
1367 if (q)
1368 return q->limits.max_write_same_sectors;
1369
1370 return 0;
1371 }
1372
1373 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1374 {
1375 struct request_queue *q = bdev_get_queue(bdev);
1376
1377 if (q)
1378 return q->limits.max_write_zeroes_sectors;
1379
1380 return 0;
1381 }
1382
1383 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1384 {
1385 struct request_queue *q = bdev_get_queue(bdev);
1386
1387 if (q)
1388 return blk_queue_zoned_model(q);
1389
1390 return BLK_ZONED_NONE;
1391 }
1392
1393 static inline bool bdev_is_zoned(struct block_device *bdev)
1394 {
1395 struct request_queue *q = bdev_get_queue(bdev);
1396
1397 if (q)
1398 return blk_queue_is_zoned(q);
1399
1400 return false;
1401 }
1402
1403 static inline unsigned int bdev_zone_sectors(struct block_device *bdev)
1404 {
1405 struct request_queue *q = bdev_get_queue(bdev);
1406
1407 if (q)
1408 return blk_queue_zone_sectors(q);
1409 return 0;
1410 }
1411
1412 static inline int queue_dma_alignment(struct request_queue *q)
1413 {
1414 return q ? q->dma_alignment : 511;
1415 }
1416
1417 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1418 unsigned int len)
1419 {
1420 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1421 return !(addr & alignment) && !(len & alignment);
1422 }
1423
1424 /* assumes size > 256 */
1425 static inline unsigned int blksize_bits(unsigned int size)
1426 {
1427 unsigned int bits = 8;
1428 do {
1429 bits++;
1430 size >>= 1;
1431 } while (size > 256);
1432 return bits;
1433 }
1434
1435 static inline unsigned int block_size(struct block_device *bdev)
1436 {
1437 return bdev->bd_block_size;
1438 }
1439
1440 typedef struct {struct page *v;} Sector;
1441
1442 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
1443
1444 static inline void put_dev_sector(Sector p)
1445 {
1446 put_page(p.v);
1447 }
1448
1449 int kblockd_schedule_work(struct work_struct *work);
1450 int kblockd_schedule_work_on(int cpu, struct work_struct *work);
1451 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1452
1453 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1454 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1455 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1456 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1457
1458 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1459
1460 enum blk_integrity_flags {
1461 BLK_INTEGRITY_VERIFY = 1 << 0,
1462 BLK_INTEGRITY_GENERATE = 1 << 1,
1463 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2,
1464 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3,
1465 };
1466
1467 struct blk_integrity_iter {
1468 void *prot_buf;
1469 void *data_buf;
1470 sector_t seed;
1471 unsigned int data_size;
1472 unsigned short interval;
1473 const char *disk_name;
1474 };
1475
1476 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1477
1478 struct blk_integrity_profile {
1479 integrity_processing_fn *generate_fn;
1480 integrity_processing_fn *verify_fn;
1481 const char *name;
1482 };
1483
1484 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1485 extern void blk_integrity_unregister(struct gendisk *);
1486 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1487 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1488 struct scatterlist *);
1489 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1490 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1491 struct request *);
1492 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1493 struct bio *);
1494
1495 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1496 {
1497 struct blk_integrity *bi = &disk->queue->integrity;
1498
1499 if (!bi->profile)
1500 return NULL;
1501
1502 return bi;
1503 }
1504
1505 static inline
1506 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1507 {
1508 return blk_get_integrity(bdev->bd_disk);
1509 }
1510
1511 static inline bool blk_integrity_rq(struct request *rq)
1512 {
1513 return rq->cmd_flags & REQ_INTEGRITY;
1514 }
1515
1516 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1517 unsigned int segs)
1518 {
1519 q->limits.max_integrity_segments = segs;
1520 }
1521
1522 static inline unsigned short
1523 queue_max_integrity_segments(struct request_queue *q)
1524 {
1525 return q->limits.max_integrity_segments;
1526 }
1527
1528 /**
1529 * bio_integrity_intervals - Return number of integrity intervals for a bio
1530 * @bi: blk_integrity profile for device
1531 * @sectors: Size of the bio in 512-byte sectors
1532 *
1533 * Description: The block layer calculates everything in 512 byte
1534 * sectors but integrity metadata is done in terms of the data integrity
1535 * interval size of the storage device. Convert the block layer sectors
1536 * to the appropriate number of integrity intervals.
1537 */
1538 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1539 unsigned int sectors)
1540 {
1541 return sectors >> (bi->interval_exp - 9);
1542 }
1543
1544 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1545 unsigned int sectors)
1546 {
1547 return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
1548 }
1549
1550 #else /* CONFIG_BLK_DEV_INTEGRITY */
1551
1552 struct bio;
1553 struct block_device;
1554 struct gendisk;
1555 struct blk_integrity;
1556
1557 static inline int blk_integrity_rq(struct request *rq)
1558 {
1559 return 0;
1560 }
1561 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1562 struct bio *b)
1563 {
1564 return 0;
1565 }
1566 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1567 struct bio *b,
1568 struct scatterlist *s)
1569 {
1570 return 0;
1571 }
1572 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1573 {
1574 return NULL;
1575 }
1576 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1577 {
1578 return NULL;
1579 }
1580 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1581 {
1582 return 0;
1583 }
1584 static inline void blk_integrity_register(struct gendisk *d,
1585 struct blk_integrity *b)
1586 {
1587 }
1588 static inline void blk_integrity_unregister(struct gendisk *d)
1589 {
1590 }
1591 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1592 unsigned int segs)
1593 {
1594 }
1595 static inline unsigned short queue_max_integrity_segments(struct request_queue *q)
1596 {
1597 return 0;
1598 }
1599 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
1600 struct request *r1,
1601 struct request *r2)
1602 {
1603 return true;
1604 }
1605 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
1606 struct request *r,
1607 struct bio *b)
1608 {
1609 return true;
1610 }
1611
1612 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1613 unsigned int sectors)
1614 {
1615 return 0;
1616 }
1617
1618 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1619 unsigned int sectors)
1620 {
1621 return 0;
1622 }
1623
1624 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1625
1626 struct block_device_operations {
1627 int (*open) (struct block_device *, fmode_t);
1628 void (*release) (struct gendisk *, fmode_t);
1629 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int);
1630 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1631 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1632 unsigned int (*check_events) (struct gendisk *disk,
1633 unsigned int clearing);
1634 /* ->media_changed() is DEPRECATED, use ->check_events() instead */
1635 int (*media_changed) (struct gendisk *);
1636 void (*unlock_native_capacity) (struct gendisk *);
1637 int (*revalidate_disk) (struct gendisk *);
1638 int (*getgeo)(struct block_device *, struct hd_geometry *);
1639 /* this callback is with swap_lock and sometimes page table lock held */
1640 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1641 int (*report_zones)(struct gendisk *, sector_t sector,
1642 struct blk_zone *zones, unsigned int *nr_zones,
1643 gfp_t gfp_mask);
1644 struct module *owner;
1645 const struct pr_ops *pr_ops;
1646 };
1647
1648 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1649 unsigned long);
1650 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1651 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1652 struct writeback_control *);
1653
1654 #ifdef CONFIG_BLK_DEV_ZONED
1655 bool blk_req_needs_zone_write_lock(struct request *rq);
1656 void __blk_req_zone_write_lock(struct request *rq);
1657 void __blk_req_zone_write_unlock(struct request *rq);
1658
1659 static inline void blk_req_zone_write_lock(struct request *rq)
1660 {
1661 if (blk_req_needs_zone_write_lock(rq))
1662 __blk_req_zone_write_lock(rq);
1663 }
1664
1665 static inline void blk_req_zone_write_unlock(struct request *rq)
1666 {
1667 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1668 __blk_req_zone_write_unlock(rq);
1669 }
1670
1671 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1672 {
1673 return rq->q->seq_zones_wlock &&
1674 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
1675 }
1676
1677 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1678 {
1679 if (!blk_req_needs_zone_write_lock(rq))
1680 return true;
1681 return !blk_req_zone_is_write_locked(rq);
1682 }
1683 #else
1684 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1685 {
1686 return false;
1687 }
1688
1689 static inline void blk_req_zone_write_lock(struct request *rq)
1690 {
1691 }
1692
1693 static inline void blk_req_zone_write_unlock(struct request *rq)
1694 {
1695 }
1696 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1697 {
1698 return false;
1699 }
1700
1701 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1702 {
1703 return true;
1704 }
1705 #endif /* CONFIG_BLK_DEV_ZONED */
1706
1707 #else /* CONFIG_BLOCK */
1708
1709 struct block_device;
1710
1711 /*
1712 * stubs for when the block layer is configured out
1713 */
1714 #define buffer_heads_over_limit 0
1715
1716 static inline long nr_blockdev_pages(void)
1717 {
1718 return 0;
1719 }
1720
1721 struct blk_plug {
1722 };
1723
1724 static inline void blk_start_plug(struct blk_plug *plug)
1725 {
1726 }
1727
1728 static inline void blk_finish_plug(struct blk_plug *plug)
1729 {
1730 }
1731
1732 static inline void blk_flush_plug(struct task_struct *task)
1733 {
1734 }
1735
1736 static inline void blk_schedule_flush_plug(struct task_struct *task)
1737 {
1738 }
1739
1740
1741 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1742 {
1743 return false;
1744 }
1745
1746 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
1747 sector_t *error_sector)
1748 {
1749 return 0;
1750 }
1751
1752 #endif /* CONFIG_BLOCK */
1753
1754 static inline void blk_wake_io_task(struct task_struct *waiter)
1755 {
1756 /*
1757 * If we're polling, the task itself is doing the completions. For
1758 * that case, we don't need to signal a wakeup, it's enough to just
1759 * mark us as RUNNING.
1760 */
1761 if (waiter == current)
1762 __set_current_state(TASK_RUNNING);
1763 else
1764 wake_up_process(waiter);
1765 }
1766
1767 #endif