]> git.ipfire.org Git - thirdparty/linux.git/blob - include/linux/blkdev.h
Merge tag 'tty-5.1-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[thirdparty/linux.git] / include / linux / blkdev.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_BLKDEV_H
3 #define _LINUX_BLKDEV_H
4
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7
8 #ifdef CONFIG_BLOCK
9
10 #include <linux/major.h>
11 #include <linux/genhd.h>
12 #include <linux/list.h>
13 #include <linux/llist.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev-defs.h>
18 #include <linux/wait.h>
19 #include <linux/mempool.h>
20 #include <linux/pfn.h>
21 #include <linux/bio.h>
22 #include <linux/stringify.h>
23 #include <linux/gfp.h>
24 #include <linux/bsg.h>
25 #include <linux/smp.h>
26 #include <linux/rcupdate.h>
27 #include <linux/percpu-refcount.h>
28 #include <linux/scatterlist.h>
29 #include <linux/blkzoned.h>
30
31 struct module;
32 struct scsi_ioctl_command;
33
34 struct request_queue;
35 struct elevator_queue;
36 struct blk_trace;
37 struct request;
38 struct sg_io_hdr;
39 struct bsg_job;
40 struct blkcg_gq;
41 struct blk_flush_queue;
42 struct pr_ops;
43 struct rq_qos;
44 struct blk_queue_stats;
45 struct blk_stat_callback;
46
47 #define BLKDEV_MIN_RQ 4
48 #define BLKDEV_MAX_RQ 128 /* Default maximum */
49
50 /* Must be consistent with blk_mq_poll_stats_bkt() */
51 #define BLK_MQ_POLL_STATS_BKTS 16
52
53 /* Doing classic polling */
54 #define BLK_MQ_POLL_CLASSIC -1
55
56 /*
57 * Maximum number of blkcg policies allowed to be registered concurrently.
58 * Defined here to simplify include dependency.
59 */
60 #define BLKCG_MAX_POLS 5
61
62 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
63
64 /*
65 * request flags */
66 typedef __u32 __bitwise req_flags_t;
67
68 /* elevator knows about this request */
69 #define RQF_SORTED ((__force req_flags_t)(1 << 0))
70 /* drive already may have started this one */
71 #define RQF_STARTED ((__force req_flags_t)(1 << 1))
72 /* may not be passed by ioscheduler */
73 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3))
74 /* request for flush sequence */
75 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
76 /* merge of different types, fail separately */
77 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
78 /* track inflight for MQ */
79 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6))
80 /* don't call prep for this one */
81 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
82 /* set for "ide_preempt" requests and also for requests for which the SCSI
83 "quiesce" state must be ignored. */
84 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8))
85 /* contains copies of user pages */
86 #define RQF_COPY_USER ((__force req_flags_t)(1 << 9))
87 /* vaguely specified driver internal error. Ignored by the block layer */
88 #define RQF_FAILED ((__force req_flags_t)(1 << 10))
89 /* don't warn about errors */
90 #define RQF_QUIET ((__force req_flags_t)(1 << 11))
91 /* elevator private data attached */
92 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12))
93 /* account into disk and partition IO statistics */
94 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
95 /* request came from our alloc pool */
96 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14))
97 /* runtime pm request */
98 #define RQF_PM ((__force req_flags_t)(1 << 15))
99 /* on IO scheduler merge hash */
100 #define RQF_HASHED ((__force req_flags_t)(1 << 16))
101 /* track IO completion time */
102 #define RQF_STATS ((__force req_flags_t)(1 << 17))
103 /* Look at ->special_vec for the actual data payload instead of the
104 bio chain. */
105 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
106 /* The per-zone write lock is held for this request */
107 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19))
108 /* already slept for hybrid poll */
109 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20))
110 /* ->timeout has been called, don't expire again */
111 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21))
112
113 /* flags that prevent us from merging requests: */
114 #define RQF_NOMERGE_FLAGS \
115 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
116
117 /*
118 * Request state for blk-mq.
119 */
120 enum mq_rq_state {
121 MQ_RQ_IDLE = 0,
122 MQ_RQ_IN_FLIGHT = 1,
123 MQ_RQ_COMPLETE = 2,
124 };
125
126 /*
127 * Try to put the fields that are referenced together in the same cacheline.
128 *
129 * If you modify this structure, make sure to update blk_rq_init() and
130 * especially blk_mq_rq_ctx_init() to take care of the added fields.
131 */
132 struct request {
133 struct request_queue *q;
134 struct blk_mq_ctx *mq_ctx;
135 struct blk_mq_hw_ctx *mq_hctx;
136
137 unsigned int cmd_flags; /* op and common flags */
138 req_flags_t rq_flags;
139
140 int internal_tag;
141
142 /* the following two fields are internal, NEVER access directly */
143 unsigned int __data_len; /* total data len */
144 int tag;
145 sector_t __sector; /* sector cursor */
146
147 struct bio *bio;
148 struct bio *biotail;
149
150 struct list_head queuelist;
151
152 /*
153 * The hash is used inside the scheduler, and killed once the
154 * request reaches the dispatch list. The ipi_list is only used
155 * to queue the request for softirq completion, which is long
156 * after the request has been unhashed (and even removed from
157 * the dispatch list).
158 */
159 union {
160 struct hlist_node hash; /* merge hash */
161 struct list_head ipi_list;
162 };
163
164 /*
165 * The rb_node is only used inside the io scheduler, requests
166 * are pruned when moved to the dispatch queue. So let the
167 * completion_data share space with the rb_node.
168 */
169 union {
170 struct rb_node rb_node; /* sort/lookup */
171 struct bio_vec special_vec;
172 void *completion_data;
173 int error_count; /* for legacy drivers, don't use */
174 };
175
176 /*
177 * Three pointers are available for the IO schedulers, if they need
178 * more they have to dynamically allocate it. Flush requests are
179 * never put on the IO scheduler. So let the flush fields share
180 * space with the elevator data.
181 */
182 union {
183 struct {
184 struct io_cq *icq;
185 void *priv[2];
186 } elv;
187
188 struct {
189 unsigned int seq;
190 struct list_head list;
191 rq_end_io_fn *saved_end_io;
192 } flush;
193 };
194
195 struct gendisk *rq_disk;
196 struct hd_struct *part;
197 /* Time that I/O was submitted to the kernel. */
198 u64 start_time_ns;
199 /* Time that I/O was submitted to the device. */
200 u64 io_start_time_ns;
201
202 #ifdef CONFIG_BLK_WBT
203 unsigned short wbt_flags;
204 #endif
205 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
206 unsigned short throtl_size;
207 #endif
208
209 /*
210 * Number of scatter-gather DMA addr+len pairs after
211 * physical address coalescing is performed.
212 */
213 unsigned short nr_phys_segments;
214
215 #if defined(CONFIG_BLK_DEV_INTEGRITY)
216 unsigned short nr_integrity_segments;
217 #endif
218
219 unsigned short write_hint;
220 unsigned short ioprio;
221
222 unsigned int extra_len; /* length of alignment and padding */
223
224 enum mq_rq_state state;
225 refcount_t ref;
226
227 unsigned int timeout;
228 unsigned long deadline;
229
230 union {
231 struct __call_single_data csd;
232 u64 fifo_time;
233 };
234
235 /*
236 * completion callback.
237 */
238 rq_end_io_fn *end_io;
239 void *end_io_data;
240 };
241
242 static inline bool blk_op_is_scsi(unsigned int op)
243 {
244 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
245 }
246
247 static inline bool blk_op_is_private(unsigned int op)
248 {
249 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
250 }
251
252 static inline bool blk_rq_is_scsi(struct request *rq)
253 {
254 return blk_op_is_scsi(req_op(rq));
255 }
256
257 static inline bool blk_rq_is_private(struct request *rq)
258 {
259 return blk_op_is_private(req_op(rq));
260 }
261
262 static inline bool blk_rq_is_passthrough(struct request *rq)
263 {
264 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
265 }
266
267 static inline bool bio_is_passthrough(struct bio *bio)
268 {
269 unsigned op = bio_op(bio);
270
271 return blk_op_is_scsi(op) || blk_op_is_private(op);
272 }
273
274 static inline unsigned short req_get_ioprio(struct request *req)
275 {
276 return req->ioprio;
277 }
278
279 #include <linux/elevator.h>
280
281 struct blk_queue_ctx;
282
283 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
284
285 struct bio_vec;
286 typedef int (dma_drain_needed_fn)(struct request *);
287
288 enum blk_eh_timer_return {
289 BLK_EH_DONE, /* drivers has completed the command */
290 BLK_EH_RESET_TIMER, /* reset timer and try again */
291 };
292
293 enum blk_queue_state {
294 Queue_down,
295 Queue_up,
296 };
297
298 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
299 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
300
301 #define BLK_SCSI_MAX_CMDS (256)
302 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
303
304 /*
305 * Zoned block device models (zoned limit).
306 */
307 enum blk_zoned_model {
308 BLK_ZONED_NONE, /* Regular block device */
309 BLK_ZONED_HA, /* Host-aware zoned block device */
310 BLK_ZONED_HM, /* Host-managed zoned block device */
311 };
312
313 struct queue_limits {
314 unsigned long bounce_pfn;
315 unsigned long seg_boundary_mask;
316 unsigned long virt_boundary_mask;
317
318 unsigned int max_hw_sectors;
319 unsigned int max_dev_sectors;
320 unsigned int chunk_sectors;
321 unsigned int max_sectors;
322 unsigned int max_segment_size;
323 unsigned int physical_block_size;
324 unsigned int alignment_offset;
325 unsigned int io_min;
326 unsigned int io_opt;
327 unsigned int max_discard_sectors;
328 unsigned int max_hw_discard_sectors;
329 unsigned int max_write_same_sectors;
330 unsigned int max_write_zeroes_sectors;
331 unsigned int discard_granularity;
332 unsigned int discard_alignment;
333
334 unsigned short logical_block_size;
335 unsigned short max_segments;
336 unsigned short max_integrity_segments;
337 unsigned short max_discard_segments;
338
339 unsigned char misaligned;
340 unsigned char discard_misaligned;
341 unsigned char raid_partial_stripes_expensive;
342 enum blk_zoned_model zoned;
343 };
344
345 #ifdef CONFIG_BLK_DEV_ZONED
346
347 extern unsigned int blkdev_nr_zones(struct block_device *bdev);
348 extern int blkdev_report_zones(struct block_device *bdev,
349 sector_t sector, struct blk_zone *zones,
350 unsigned int *nr_zones, gfp_t gfp_mask);
351 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors,
352 sector_t nr_sectors, gfp_t gfp_mask);
353 extern int blk_revalidate_disk_zones(struct gendisk *disk);
354
355 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
356 unsigned int cmd, unsigned long arg);
357 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode,
358 unsigned int cmd, unsigned long arg);
359
360 #else /* CONFIG_BLK_DEV_ZONED */
361
362 static inline unsigned int blkdev_nr_zones(struct block_device *bdev)
363 {
364 return 0;
365 }
366
367 static inline int blk_revalidate_disk_zones(struct gendisk *disk)
368 {
369 return 0;
370 }
371
372 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
373 fmode_t mode, unsigned int cmd,
374 unsigned long arg)
375 {
376 return -ENOTTY;
377 }
378
379 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev,
380 fmode_t mode, unsigned int cmd,
381 unsigned long arg)
382 {
383 return -ENOTTY;
384 }
385
386 #endif /* CONFIG_BLK_DEV_ZONED */
387
388 struct request_queue {
389 /*
390 * Together with queue_head for cacheline sharing
391 */
392 struct list_head queue_head;
393 struct request *last_merge;
394 struct elevator_queue *elevator;
395
396 struct blk_queue_stats *stats;
397 struct rq_qos *rq_qos;
398
399 make_request_fn *make_request_fn;
400 dma_drain_needed_fn *dma_drain_needed;
401
402 const struct blk_mq_ops *mq_ops;
403
404 /* sw queues */
405 struct blk_mq_ctx __percpu *queue_ctx;
406 unsigned int nr_queues;
407
408 unsigned int queue_depth;
409
410 /* hw dispatch queues */
411 struct blk_mq_hw_ctx **queue_hw_ctx;
412 unsigned int nr_hw_queues;
413
414 struct backing_dev_info *backing_dev_info;
415
416 /*
417 * The queue owner gets to use this for whatever they like.
418 * ll_rw_blk doesn't touch it.
419 */
420 void *queuedata;
421
422 /*
423 * various queue flags, see QUEUE_* below
424 */
425 unsigned long queue_flags;
426 /*
427 * Number of contexts that have called blk_set_pm_only(). If this
428 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are
429 * processed.
430 */
431 atomic_t pm_only;
432
433 /*
434 * ida allocated id for this queue. Used to index queues from
435 * ioctx.
436 */
437 int id;
438
439 /*
440 * queue needs bounce pages for pages above this limit
441 */
442 gfp_t bounce_gfp;
443
444 spinlock_t queue_lock;
445
446 /*
447 * queue kobject
448 */
449 struct kobject kobj;
450
451 /*
452 * mq queue kobject
453 */
454 struct kobject *mq_kobj;
455
456 #ifdef CONFIG_BLK_DEV_INTEGRITY
457 struct blk_integrity integrity;
458 #endif /* CONFIG_BLK_DEV_INTEGRITY */
459
460 #ifdef CONFIG_PM
461 struct device *dev;
462 int rpm_status;
463 unsigned int nr_pending;
464 #endif
465
466 /*
467 * queue settings
468 */
469 unsigned long nr_requests; /* Max # of requests */
470
471 unsigned int dma_drain_size;
472 void *dma_drain_buffer;
473 unsigned int dma_pad_mask;
474 unsigned int dma_alignment;
475
476 unsigned int rq_timeout;
477 int poll_nsec;
478
479 struct blk_stat_callback *poll_cb;
480 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS];
481
482 struct timer_list timeout;
483 struct work_struct timeout_work;
484
485 struct list_head icq_list;
486 #ifdef CONFIG_BLK_CGROUP
487 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
488 struct blkcg_gq *root_blkg;
489 struct list_head blkg_list;
490 #endif
491
492 struct queue_limits limits;
493
494 #ifdef CONFIG_BLK_DEV_ZONED
495 /*
496 * Zoned block device information for request dispatch control.
497 * nr_zones is the total number of zones of the device. This is always
498 * 0 for regular block devices. seq_zones_bitmap is a bitmap of nr_zones
499 * bits which indicates if a zone is conventional (bit clear) or
500 * sequential (bit set). seq_zones_wlock is a bitmap of nr_zones
501 * bits which indicates if a zone is write locked, that is, if a write
502 * request targeting the zone was dispatched. All three fields are
503 * initialized by the low level device driver (e.g. scsi/sd.c).
504 * Stacking drivers (device mappers) may or may not initialize
505 * these fields.
506 *
507 * Reads of this information must be protected with blk_queue_enter() /
508 * blk_queue_exit(). Modifying this information is only allowed while
509 * no requests are being processed. See also blk_mq_freeze_queue() and
510 * blk_mq_unfreeze_queue().
511 */
512 unsigned int nr_zones;
513 unsigned long *seq_zones_bitmap;
514 unsigned long *seq_zones_wlock;
515 #endif /* CONFIG_BLK_DEV_ZONED */
516
517 /*
518 * sg stuff
519 */
520 unsigned int sg_timeout;
521 unsigned int sg_reserved_size;
522 int node;
523 #ifdef CONFIG_BLK_DEV_IO_TRACE
524 struct blk_trace *blk_trace;
525 struct mutex blk_trace_mutex;
526 #endif
527 /*
528 * for flush operations
529 */
530 struct blk_flush_queue *fq;
531
532 struct list_head requeue_list;
533 spinlock_t requeue_lock;
534 struct delayed_work requeue_work;
535
536 struct mutex sysfs_lock;
537
538 atomic_t mq_freeze_depth;
539
540 #if defined(CONFIG_BLK_DEV_BSG)
541 struct bsg_class_device bsg_dev;
542 #endif
543
544 #ifdef CONFIG_BLK_DEV_THROTTLING
545 /* Throttle data */
546 struct throtl_data *td;
547 #endif
548 struct rcu_head rcu_head;
549 wait_queue_head_t mq_freeze_wq;
550 struct percpu_ref q_usage_counter;
551 struct list_head all_q_node;
552
553 struct blk_mq_tag_set *tag_set;
554 struct list_head tag_set_list;
555 struct bio_set bio_split;
556
557 #ifdef CONFIG_BLK_DEBUG_FS
558 struct dentry *debugfs_dir;
559 struct dentry *sched_debugfs_dir;
560 struct dentry *rqos_debugfs_dir;
561 #endif
562
563 bool mq_sysfs_init_done;
564
565 size_t cmd_size;
566
567 struct work_struct release_work;
568
569 #define BLK_MAX_WRITE_HINTS 5
570 u64 write_hints[BLK_MAX_WRITE_HINTS];
571 };
572
573 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */
574 #define QUEUE_FLAG_DYING 1 /* queue being torn down */
575 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */
576 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */
577 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */
578 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */
579 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */
580 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */
581 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */
582 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */
583 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */
584 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */
585 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */
586 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */
587 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */
588 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */
589 #define QUEUE_FLAG_WC 17 /* Write back caching */
590 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */
591 #define QUEUE_FLAG_DAX 19 /* device supports DAX */
592 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */
593 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */
594 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */
595 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */
596 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */
597 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */
598
599 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
600 (1 << QUEUE_FLAG_SAME_COMP))
601
602 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
603 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
604 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
605
606 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
607 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
608 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
609 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
610 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
611 #define blk_queue_noxmerges(q) \
612 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
613 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
614 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
615 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
616 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
617 #define blk_queue_secure_erase(q) \
618 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
619 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
620 #define blk_queue_scsi_passthrough(q) \
621 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
622 #define blk_queue_pci_p2pdma(q) \
623 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
624
625 #define blk_noretry_request(rq) \
626 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
627 REQ_FAILFAST_DRIVER))
628 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
629 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only)
630 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
631
632 extern void blk_set_pm_only(struct request_queue *q);
633 extern void blk_clear_pm_only(struct request_queue *q);
634
635 static inline bool blk_account_rq(struct request *rq)
636 {
637 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
638 }
639
640 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
641
642 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
643
644 static inline bool queue_is_mq(struct request_queue *q)
645 {
646 return q->mq_ops;
647 }
648
649 static inline enum blk_zoned_model
650 blk_queue_zoned_model(struct request_queue *q)
651 {
652 return q->limits.zoned;
653 }
654
655 static inline bool blk_queue_is_zoned(struct request_queue *q)
656 {
657 switch (blk_queue_zoned_model(q)) {
658 case BLK_ZONED_HA:
659 case BLK_ZONED_HM:
660 return true;
661 default:
662 return false;
663 }
664 }
665
666 static inline unsigned int blk_queue_zone_sectors(struct request_queue *q)
667 {
668 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
669 }
670
671 #ifdef CONFIG_BLK_DEV_ZONED
672 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
673 {
674 return blk_queue_is_zoned(q) ? q->nr_zones : 0;
675 }
676
677 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
678 sector_t sector)
679 {
680 if (!blk_queue_is_zoned(q))
681 return 0;
682 return sector >> ilog2(q->limits.chunk_sectors);
683 }
684
685 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
686 sector_t sector)
687 {
688 if (!blk_queue_is_zoned(q) || !q->seq_zones_bitmap)
689 return false;
690 return test_bit(blk_queue_zone_no(q, sector), q->seq_zones_bitmap);
691 }
692 #else /* CONFIG_BLK_DEV_ZONED */
693 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
694 {
695 return 0;
696 }
697 #endif /* CONFIG_BLK_DEV_ZONED */
698
699 static inline bool rq_is_sync(struct request *rq)
700 {
701 return op_is_sync(rq->cmd_flags);
702 }
703
704 static inline bool rq_mergeable(struct request *rq)
705 {
706 if (blk_rq_is_passthrough(rq))
707 return false;
708
709 if (req_op(rq) == REQ_OP_FLUSH)
710 return false;
711
712 if (req_op(rq) == REQ_OP_WRITE_ZEROES)
713 return false;
714
715 if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
716 return false;
717 if (rq->rq_flags & RQF_NOMERGE_FLAGS)
718 return false;
719
720 return true;
721 }
722
723 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
724 {
725 if (bio_page(a) == bio_page(b) &&
726 bio_offset(a) == bio_offset(b))
727 return true;
728
729 return false;
730 }
731
732 static inline unsigned int blk_queue_depth(struct request_queue *q)
733 {
734 if (q->queue_depth)
735 return q->queue_depth;
736
737 return q->nr_requests;
738 }
739
740 extern unsigned long blk_max_low_pfn, blk_max_pfn;
741
742 /*
743 * standard bounce addresses:
744 *
745 * BLK_BOUNCE_HIGH : bounce all highmem pages
746 * BLK_BOUNCE_ANY : don't bounce anything
747 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary
748 */
749
750 #if BITS_PER_LONG == 32
751 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT)
752 #else
753 #define BLK_BOUNCE_HIGH -1ULL
754 #endif
755 #define BLK_BOUNCE_ANY (-1ULL)
756 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24))
757
758 /*
759 * default timeout for SG_IO if none specified
760 */
761 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
762 #define BLK_MIN_SG_TIMEOUT (7 * HZ)
763
764 struct rq_map_data {
765 struct page **pages;
766 int page_order;
767 int nr_entries;
768 unsigned long offset;
769 int null_mapped;
770 int from_user;
771 };
772
773 struct req_iterator {
774 struct bvec_iter iter;
775 struct bio *bio;
776 };
777
778 /* This should not be used directly - use rq_for_each_segment */
779 #define for_each_bio(_bio) \
780 for (; _bio; _bio = _bio->bi_next)
781 #define __rq_for_each_bio(_bio, rq) \
782 if ((rq->bio)) \
783 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
784
785 #define rq_for_each_segment(bvl, _rq, _iter) \
786 __rq_for_each_bio(_iter.bio, _rq) \
787 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
788
789 #define rq_for_each_bvec(bvl, _rq, _iter) \
790 __rq_for_each_bio(_iter.bio, _rq) \
791 bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
792
793 #define rq_iter_last(bvec, _iter) \
794 (_iter.bio->bi_next == NULL && \
795 bio_iter_last(bvec, _iter.iter))
796
797 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
798 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
799 #endif
800 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
801 extern void rq_flush_dcache_pages(struct request *rq);
802 #else
803 static inline void rq_flush_dcache_pages(struct request *rq)
804 {
805 }
806 #endif
807
808 extern int blk_register_queue(struct gendisk *disk);
809 extern void blk_unregister_queue(struct gendisk *disk);
810 extern blk_qc_t generic_make_request(struct bio *bio);
811 extern blk_qc_t direct_make_request(struct bio *bio);
812 extern void blk_rq_init(struct request_queue *q, struct request *rq);
813 extern void blk_init_request_from_bio(struct request *req, struct bio *bio);
814 extern void blk_put_request(struct request *);
815 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
816 blk_mq_req_flags_t flags);
817 extern int blk_lld_busy(struct request_queue *q);
818 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
819 struct bio_set *bs, gfp_t gfp_mask,
820 int (*bio_ctr)(struct bio *, struct bio *, void *),
821 void *data);
822 extern void blk_rq_unprep_clone(struct request *rq);
823 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
824 struct request *rq);
825 extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
826 extern void blk_queue_split(struct request_queue *, struct bio **);
827 extern void blk_recount_segments(struct request_queue *, struct bio *);
828 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
829 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
830 unsigned int, void __user *);
831 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
832 unsigned int, void __user *);
833 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
834 struct scsi_ioctl_command __user *);
835
836 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
837 extern void blk_queue_exit(struct request_queue *q);
838 extern void blk_sync_queue(struct request_queue *q);
839 extern int blk_rq_map_user(struct request_queue *, struct request *,
840 struct rq_map_data *, void __user *, unsigned long,
841 gfp_t);
842 extern int blk_rq_unmap_user(struct bio *);
843 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
844 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
845 struct rq_map_data *, const struct iov_iter *,
846 gfp_t);
847 extern void blk_execute_rq(struct request_queue *, struct gendisk *,
848 struct request *, int);
849 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
850 struct request *, int, rq_end_io_fn *);
851
852 int blk_status_to_errno(blk_status_t status);
853 blk_status_t errno_to_blk_status(int errno);
854
855 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin);
856
857 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
858 {
859 return bdev->bd_disk->queue; /* this is never NULL */
860 }
861
862 /*
863 * The basic unit of block I/O is a sector. It is used in a number of contexts
864 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
865 * bytes. Variables of type sector_t represent an offset or size that is a
866 * multiple of 512 bytes. Hence these two constants.
867 */
868 #ifndef SECTOR_SHIFT
869 #define SECTOR_SHIFT 9
870 #endif
871 #ifndef SECTOR_SIZE
872 #define SECTOR_SIZE (1 << SECTOR_SHIFT)
873 #endif
874
875 /*
876 * blk_rq_pos() : the current sector
877 * blk_rq_bytes() : bytes left in the entire request
878 * blk_rq_cur_bytes() : bytes left in the current segment
879 * blk_rq_err_bytes() : bytes left till the next error boundary
880 * blk_rq_sectors() : sectors left in the entire request
881 * blk_rq_cur_sectors() : sectors left in the current segment
882 */
883 static inline sector_t blk_rq_pos(const struct request *rq)
884 {
885 return rq->__sector;
886 }
887
888 static inline unsigned int blk_rq_bytes(const struct request *rq)
889 {
890 return rq->__data_len;
891 }
892
893 static inline int blk_rq_cur_bytes(const struct request *rq)
894 {
895 return rq->bio ? bio_cur_bytes(rq->bio) : 0;
896 }
897
898 extern unsigned int blk_rq_err_bytes(const struct request *rq);
899
900 static inline unsigned int blk_rq_sectors(const struct request *rq)
901 {
902 return blk_rq_bytes(rq) >> SECTOR_SHIFT;
903 }
904
905 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
906 {
907 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
908 }
909
910 #ifdef CONFIG_BLK_DEV_ZONED
911 static inline unsigned int blk_rq_zone_no(struct request *rq)
912 {
913 return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
914 }
915
916 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
917 {
918 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
919 }
920 #endif /* CONFIG_BLK_DEV_ZONED */
921
922 /*
923 * Some commands like WRITE SAME have a payload or data transfer size which
924 * is different from the size of the request. Any driver that supports such
925 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
926 * calculate the data transfer size.
927 */
928 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
929 {
930 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
931 return rq->special_vec.bv_len;
932 return blk_rq_bytes(rq);
933 }
934
935 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
936 int op)
937 {
938 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
939 return min(q->limits.max_discard_sectors,
940 UINT_MAX >> SECTOR_SHIFT);
941
942 if (unlikely(op == REQ_OP_WRITE_SAME))
943 return q->limits.max_write_same_sectors;
944
945 if (unlikely(op == REQ_OP_WRITE_ZEROES))
946 return q->limits.max_write_zeroes_sectors;
947
948 return q->limits.max_sectors;
949 }
950
951 /*
952 * Return maximum size of a request at given offset. Only valid for
953 * file system requests.
954 */
955 static inline unsigned int blk_max_size_offset(struct request_queue *q,
956 sector_t offset)
957 {
958 if (!q->limits.chunk_sectors)
959 return q->limits.max_sectors;
960
961 return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors -
962 (offset & (q->limits.chunk_sectors - 1))));
963 }
964
965 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
966 sector_t offset)
967 {
968 struct request_queue *q = rq->q;
969
970 if (blk_rq_is_passthrough(rq))
971 return q->limits.max_hw_sectors;
972
973 if (!q->limits.chunk_sectors ||
974 req_op(rq) == REQ_OP_DISCARD ||
975 req_op(rq) == REQ_OP_SECURE_ERASE)
976 return blk_queue_get_max_sectors(q, req_op(rq));
977
978 return min(blk_max_size_offset(q, offset),
979 blk_queue_get_max_sectors(q, req_op(rq)));
980 }
981
982 static inline unsigned int blk_rq_count_bios(struct request *rq)
983 {
984 unsigned int nr_bios = 0;
985 struct bio *bio;
986
987 __rq_for_each_bio(bio, rq)
988 nr_bios++;
989
990 return nr_bios;
991 }
992
993 void blk_steal_bios(struct bio_list *list, struct request *rq);
994
995 /*
996 * Request completion related functions.
997 *
998 * blk_update_request() completes given number of bytes and updates
999 * the request without completing it.
1000 *
1001 * blk_end_request() and friends. __blk_end_request() must be called
1002 * with the request queue spinlock acquired.
1003 *
1004 * Several drivers define their own end_request and call
1005 * blk_end_request() for parts of the original function.
1006 * This prevents code duplication in drivers.
1007 */
1008 extern bool blk_update_request(struct request *rq, blk_status_t error,
1009 unsigned int nr_bytes);
1010 extern void blk_end_request_all(struct request *rq, blk_status_t error);
1011 extern bool __blk_end_request(struct request *rq, blk_status_t error,
1012 unsigned int nr_bytes);
1013 extern void __blk_end_request_all(struct request *rq, blk_status_t error);
1014 extern bool __blk_end_request_cur(struct request *rq, blk_status_t error);
1015
1016 extern void __blk_complete_request(struct request *);
1017 extern void blk_abort_request(struct request *);
1018
1019 /*
1020 * Access functions for manipulating queue properties
1021 */
1022 extern void blk_cleanup_queue(struct request_queue *);
1023 extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
1024 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1025 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1026 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1027 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1028 extern void blk_queue_max_discard_segments(struct request_queue *,
1029 unsigned short);
1030 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1031 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1032 unsigned int max_discard_sectors);
1033 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1034 unsigned int max_write_same_sectors);
1035 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1036 unsigned int max_write_same_sectors);
1037 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short);
1038 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1039 extern void blk_queue_alignment_offset(struct request_queue *q,
1040 unsigned int alignment);
1041 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1042 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1043 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1044 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1045 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1046 extern void blk_set_default_limits(struct queue_limits *lim);
1047 extern void blk_set_stacking_limits(struct queue_limits *lim);
1048 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1049 sector_t offset);
1050 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
1051 sector_t offset);
1052 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1053 sector_t offset);
1054 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
1055 extern void blk_queue_dma_pad(struct request_queue *, unsigned int);
1056 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1057 extern int blk_queue_dma_drain(struct request_queue *q,
1058 dma_drain_needed_fn *dma_drain_needed,
1059 void *buf, unsigned int size);
1060 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1061 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1062 extern void blk_queue_dma_alignment(struct request_queue *, int);
1063 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1064 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1065 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1066
1067 /*
1068 * Number of physical segments as sent to the device.
1069 *
1070 * Normally this is the number of discontiguous data segments sent by the
1071 * submitter. But for data-less command like discard we might have no
1072 * actual data segments submitted, but the driver might have to add it's
1073 * own special payload. In that case we still return 1 here so that this
1074 * special payload will be mapped.
1075 */
1076 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1077 {
1078 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1079 return 1;
1080 return rq->nr_phys_segments;
1081 }
1082
1083 /*
1084 * Number of discard segments (or ranges) the driver needs to fill in.
1085 * Each discard bio merged into a request is counted as one segment.
1086 */
1087 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1088 {
1089 return max_t(unsigned short, rq->nr_phys_segments, 1);
1090 }
1091
1092 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
1093 extern void blk_dump_rq_flags(struct request *, char *);
1094 extern long nr_blockdev_pages(void);
1095
1096 bool __must_check blk_get_queue(struct request_queue *);
1097 struct request_queue *blk_alloc_queue(gfp_t);
1098 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id);
1099 extern void blk_put_queue(struct request_queue *);
1100 extern void blk_set_queue_dying(struct request_queue *);
1101
1102 /*
1103 * blk_plug permits building a queue of related requests by holding the I/O
1104 * fragments for a short period. This allows merging of sequential requests
1105 * into single larger request. As the requests are moved from a per-task list to
1106 * the device's request_queue in a batch, this results in improved scalability
1107 * as the lock contention for request_queue lock is reduced.
1108 *
1109 * It is ok not to disable preemption when adding the request to the plug list
1110 * or when attempting a merge, because blk_schedule_flush_list() will only flush
1111 * the plug list when the task sleeps by itself. For details, please see
1112 * schedule() where blk_schedule_flush_plug() is called.
1113 */
1114 struct blk_plug {
1115 struct list_head mq_list; /* blk-mq requests */
1116 struct list_head cb_list; /* md requires an unplug callback */
1117 unsigned short rq_count;
1118 bool multiple_queues;
1119 };
1120 #define BLK_MAX_REQUEST_COUNT 16
1121 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1122
1123 struct blk_plug_cb;
1124 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1125 struct blk_plug_cb {
1126 struct list_head list;
1127 blk_plug_cb_fn callback;
1128 void *data;
1129 };
1130 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1131 void *data, int size);
1132 extern void blk_start_plug(struct blk_plug *);
1133 extern void blk_finish_plug(struct blk_plug *);
1134 extern void blk_flush_plug_list(struct blk_plug *, bool);
1135
1136 static inline void blk_flush_plug(struct task_struct *tsk)
1137 {
1138 struct blk_plug *plug = tsk->plug;
1139
1140 if (plug)
1141 blk_flush_plug_list(plug, false);
1142 }
1143
1144 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1145 {
1146 struct blk_plug *plug = tsk->plug;
1147
1148 if (plug)
1149 blk_flush_plug_list(plug, true);
1150 }
1151
1152 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1153 {
1154 struct blk_plug *plug = tsk->plug;
1155
1156 return plug &&
1157 (!list_empty(&plug->mq_list) ||
1158 !list_empty(&plug->cb_list));
1159 }
1160
1161 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
1162 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1163 sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1164
1165 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */
1166
1167 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1168 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1169 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1170 sector_t nr_sects, gfp_t gfp_mask, int flags,
1171 struct bio **biop);
1172
1173 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1174 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1175
1176 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1177 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1178 unsigned flags);
1179 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1180 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1181
1182 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1183 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1184 {
1185 return blkdev_issue_discard(sb->s_bdev,
1186 block << (sb->s_blocksize_bits -
1187 SECTOR_SHIFT),
1188 nr_blocks << (sb->s_blocksize_bits -
1189 SECTOR_SHIFT),
1190 gfp_mask, flags);
1191 }
1192 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1193 sector_t nr_blocks, gfp_t gfp_mask)
1194 {
1195 return blkdev_issue_zeroout(sb->s_bdev,
1196 block << (sb->s_blocksize_bits -
1197 SECTOR_SHIFT),
1198 nr_blocks << (sb->s_blocksize_bits -
1199 SECTOR_SHIFT),
1200 gfp_mask, 0);
1201 }
1202
1203 extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
1204
1205 enum blk_default_limits {
1206 BLK_MAX_SEGMENTS = 128,
1207 BLK_SAFE_MAX_SECTORS = 255,
1208 BLK_DEF_MAX_SECTORS = 2560,
1209 BLK_MAX_SEGMENT_SIZE = 65536,
1210 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1211 };
1212
1213 static inline unsigned long queue_segment_boundary(struct request_queue *q)
1214 {
1215 return q->limits.seg_boundary_mask;
1216 }
1217
1218 static inline unsigned long queue_virt_boundary(struct request_queue *q)
1219 {
1220 return q->limits.virt_boundary_mask;
1221 }
1222
1223 static inline unsigned int queue_max_sectors(struct request_queue *q)
1224 {
1225 return q->limits.max_sectors;
1226 }
1227
1228 static inline unsigned int queue_max_hw_sectors(struct request_queue *q)
1229 {
1230 return q->limits.max_hw_sectors;
1231 }
1232
1233 static inline unsigned short queue_max_segments(struct request_queue *q)
1234 {
1235 return q->limits.max_segments;
1236 }
1237
1238 static inline unsigned short queue_max_discard_segments(struct request_queue *q)
1239 {
1240 return q->limits.max_discard_segments;
1241 }
1242
1243 static inline unsigned int queue_max_segment_size(struct request_queue *q)
1244 {
1245 return q->limits.max_segment_size;
1246 }
1247
1248 static inline unsigned short queue_logical_block_size(struct request_queue *q)
1249 {
1250 int retval = 512;
1251
1252 if (q && q->limits.logical_block_size)
1253 retval = q->limits.logical_block_size;
1254
1255 return retval;
1256 }
1257
1258 static inline unsigned short bdev_logical_block_size(struct block_device *bdev)
1259 {
1260 return queue_logical_block_size(bdev_get_queue(bdev));
1261 }
1262
1263 static inline unsigned int queue_physical_block_size(struct request_queue *q)
1264 {
1265 return q->limits.physical_block_size;
1266 }
1267
1268 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1269 {
1270 return queue_physical_block_size(bdev_get_queue(bdev));
1271 }
1272
1273 static inline unsigned int queue_io_min(struct request_queue *q)
1274 {
1275 return q->limits.io_min;
1276 }
1277
1278 static inline int bdev_io_min(struct block_device *bdev)
1279 {
1280 return queue_io_min(bdev_get_queue(bdev));
1281 }
1282
1283 static inline unsigned int queue_io_opt(struct request_queue *q)
1284 {
1285 return q->limits.io_opt;
1286 }
1287
1288 static inline int bdev_io_opt(struct block_device *bdev)
1289 {
1290 return queue_io_opt(bdev_get_queue(bdev));
1291 }
1292
1293 static inline int queue_alignment_offset(struct request_queue *q)
1294 {
1295 if (q->limits.misaligned)
1296 return -1;
1297
1298 return q->limits.alignment_offset;
1299 }
1300
1301 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1302 {
1303 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1304 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
1305 << SECTOR_SHIFT;
1306
1307 return (granularity + lim->alignment_offset - alignment) % granularity;
1308 }
1309
1310 static inline int bdev_alignment_offset(struct block_device *bdev)
1311 {
1312 struct request_queue *q = bdev_get_queue(bdev);
1313
1314 if (q->limits.misaligned)
1315 return -1;
1316
1317 if (bdev != bdev->bd_contains)
1318 return bdev->bd_part->alignment_offset;
1319
1320 return q->limits.alignment_offset;
1321 }
1322
1323 static inline int queue_discard_alignment(struct request_queue *q)
1324 {
1325 if (q->limits.discard_misaligned)
1326 return -1;
1327
1328 return q->limits.discard_alignment;
1329 }
1330
1331 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1332 {
1333 unsigned int alignment, granularity, offset;
1334
1335 if (!lim->max_discard_sectors)
1336 return 0;
1337
1338 /* Why are these in bytes, not sectors? */
1339 alignment = lim->discard_alignment >> SECTOR_SHIFT;
1340 granularity = lim->discard_granularity >> SECTOR_SHIFT;
1341 if (!granularity)
1342 return 0;
1343
1344 /* Offset of the partition start in 'granularity' sectors */
1345 offset = sector_div(sector, granularity);
1346
1347 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
1348 offset = (granularity + alignment - offset) % granularity;
1349
1350 /* Turn it back into bytes, gaah */
1351 return offset << SECTOR_SHIFT;
1352 }
1353
1354 static inline int bdev_discard_alignment(struct block_device *bdev)
1355 {
1356 struct request_queue *q = bdev_get_queue(bdev);
1357
1358 if (bdev != bdev->bd_contains)
1359 return bdev->bd_part->discard_alignment;
1360
1361 return q->limits.discard_alignment;
1362 }
1363
1364 static inline unsigned int bdev_write_same(struct block_device *bdev)
1365 {
1366 struct request_queue *q = bdev_get_queue(bdev);
1367
1368 if (q)
1369 return q->limits.max_write_same_sectors;
1370
1371 return 0;
1372 }
1373
1374 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1375 {
1376 struct request_queue *q = bdev_get_queue(bdev);
1377
1378 if (q)
1379 return q->limits.max_write_zeroes_sectors;
1380
1381 return 0;
1382 }
1383
1384 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1385 {
1386 struct request_queue *q = bdev_get_queue(bdev);
1387
1388 if (q)
1389 return blk_queue_zoned_model(q);
1390
1391 return BLK_ZONED_NONE;
1392 }
1393
1394 static inline bool bdev_is_zoned(struct block_device *bdev)
1395 {
1396 struct request_queue *q = bdev_get_queue(bdev);
1397
1398 if (q)
1399 return blk_queue_is_zoned(q);
1400
1401 return false;
1402 }
1403
1404 static inline unsigned int bdev_zone_sectors(struct block_device *bdev)
1405 {
1406 struct request_queue *q = bdev_get_queue(bdev);
1407
1408 if (q)
1409 return blk_queue_zone_sectors(q);
1410 return 0;
1411 }
1412
1413 static inline int queue_dma_alignment(struct request_queue *q)
1414 {
1415 return q ? q->dma_alignment : 511;
1416 }
1417
1418 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1419 unsigned int len)
1420 {
1421 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1422 return !(addr & alignment) && !(len & alignment);
1423 }
1424
1425 /* assumes size > 256 */
1426 static inline unsigned int blksize_bits(unsigned int size)
1427 {
1428 unsigned int bits = 8;
1429 do {
1430 bits++;
1431 size >>= 1;
1432 } while (size > 256);
1433 return bits;
1434 }
1435
1436 static inline unsigned int block_size(struct block_device *bdev)
1437 {
1438 return bdev->bd_block_size;
1439 }
1440
1441 typedef struct {struct page *v;} Sector;
1442
1443 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
1444
1445 static inline void put_dev_sector(Sector p)
1446 {
1447 put_page(p.v);
1448 }
1449
1450 int kblockd_schedule_work(struct work_struct *work);
1451 int kblockd_schedule_work_on(int cpu, struct work_struct *work);
1452 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1453
1454 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1455 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1456 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1457 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1458
1459 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1460
1461 enum blk_integrity_flags {
1462 BLK_INTEGRITY_VERIFY = 1 << 0,
1463 BLK_INTEGRITY_GENERATE = 1 << 1,
1464 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2,
1465 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3,
1466 };
1467
1468 struct blk_integrity_iter {
1469 void *prot_buf;
1470 void *data_buf;
1471 sector_t seed;
1472 unsigned int data_size;
1473 unsigned short interval;
1474 const char *disk_name;
1475 };
1476
1477 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1478
1479 struct blk_integrity_profile {
1480 integrity_processing_fn *generate_fn;
1481 integrity_processing_fn *verify_fn;
1482 const char *name;
1483 };
1484
1485 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1486 extern void blk_integrity_unregister(struct gendisk *);
1487 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1488 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1489 struct scatterlist *);
1490 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1491 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1492 struct request *);
1493 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1494 struct bio *);
1495
1496 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1497 {
1498 struct blk_integrity *bi = &disk->queue->integrity;
1499
1500 if (!bi->profile)
1501 return NULL;
1502
1503 return bi;
1504 }
1505
1506 static inline
1507 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1508 {
1509 return blk_get_integrity(bdev->bd_disk);
1510 }
1511
1512 static inline bool blk_integrity_rq(struct request *rq)
1513 {
1514 return rq->cmd_flags & REQ_INTEGRITY;
1515 }
1516
1517 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1518 unsigned int segs)
1519 {
1520 q->limits.max_integrity_segments = segs;
1521 }
1522
1523 static inline unsigned short
1524 queue_max_integrity_segments(struct request_queue *q)
1525 {
1526 return q->limits.max_integrity_segments;
1527 }
1528
1529 /**
1530 * bio_integrity_intervals - Return number of integrity intervals for a bio
1531 * @bi: blk_integrity profile for device
1532 * @sectors: Size of the bio in 512-byte sectors
1533 *
1534 * Description: The block layer calculates everything in 512 byte
1535 * sectors but integrity metadata is done in terms of the data integrity
1536 * interval size of the storage device. Convert the block layer sectors
1537 * to the appropriate number of integrity intervals.
1538 */
1539 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1540 unsigned int sectors)
1541 {
1542 return sectors >> (bi->interval_exp - 9);
1543 }
1544
1545 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1546 unsigned int sectors)
1547 {
1548 return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
1549 }
1550
1551 #else /* CONFIG_BLK_DEV_INTEGRITY */
1552
1553 struct bio;
1554 struct block_device;
1555 struct gendisk;
1556 struct blk_integrity;
1557
1558 static inline int blk_integrity_rq(struct request *rq)
1559 {
1560 return 0;
1561 }
1562 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1563 struct bio *b)
1564 {
1565 return 0;
1566 }
1567 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1568 struct bio *b,
1569 struct scatterlist *s)
1570 {
1571 return 0;
1572 }
1573 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1574 {
1575 return NULL;
1576 }
1577 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1578 {
1579 return NULL;
1580 }
1581 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1582 {
1583 return 0;
1584 }
1585 static inline void blk_integrity_register(struct gendisk *d,
1586 struct blk_integrity *b)
1587 {
1588 }
1589 static inline void blk_integrity_unregister(struct gendisk *d)
1590 {
1591 }
1592 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1593 unsigned int segs)
1594 {
1595 }
1596 static inline unsigned short queue_max_integrity_segments(struct request_queue *q)
1597 {
1598 return 0;
1599 }
1600 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
1601 struct request *r1,
1602 struct request *r2)
1603 {
1604 return true;
1605 }
1606 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
1607 struct request *r,
1608 struct bio *b)
1609 {
1610 return true;
1611 }
1612
1613 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1614 unsigned int sectors)
1615 {
1616 return 0;
1617 }
1618
1619 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1620 unsigned int sectors)
1621 {
1622 return 0;
1623 }
1624
1625 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1626
1627 struct block_device_operations {
1628 int (*open) (struct block_device *, fmode_t);
1629 void (*release) (struct gendisk *, fmode_t);
1630 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int);
1631 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1632 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1633 unsigned int (*check_events) (struct gendisk *disk,
1634 unsigned int clearing);
1635 /* ->media_changed() is DEPRECATED, use ->check_events() instead */
1636 int (*media_changed) (struct gendisk *);
1637 void (*unlock_native_capacity) (struct gendisk *);
1638 int (*revalidate_disk) (struct gendisk *);
1639 int (*getgeo)(struct block_device *, struct hd_geometry *);
1640 /* this callback is with swap_lock and sometimes page table lock held */
1641 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1642 int (*report_zones)(struct gendisk *, sector_t sector,
1643 struct blk_zone *zones, unsigned int *nr_zones,
1644 gfp_t gfp_mask);
1645 struct module *owner;
1646 const struct pr_ops *pr_ops;
1647 };
1648
1649 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1650 unsigned long);
1651 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1652 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1653 struct writeback_control *);
1654
1655 #ifdef CONFIG_BLK_DEV_ZONED
1656 bool blk_req_needs_zone_write_lock(struct request *rq);
1657 void __blk_req_zone_write_lock(struct request *rq);
1658 void __blk_req_zone_write_unlock(struct request *rq);
1659
1660 static inline void blk_req_zone_write_lock(struct request *rq)
1661 {
1662 if (blk_req_needs_zone_write_lock(rq))
1663 __blk_req_zone_write_lock(rq);
1664 }
1665
1666 static inline void blk_req_zone_write_unlock(struct request *rq)
1667 {
1668 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1669 __blk_req_zone_write_unlock(rq);
1670 }
1671
1672 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1673 {
1674 return rq->q->seq_zones_wlock &&
1675 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
1676 }
1677
1678 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1679 {
1680 if (!blk_req_needs_zone_write_lock(rq))
1681 return true;
1682 return !blk_req_zone_is_write_locked(rq);
1683 }
1684 #else
1685 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1686 {
1687 return false;
1688 }
1689
1690 static inline void blk_req_zone_write_lock(struct request *rq)
1691 {
1692 }
1693
1694 static inline void blk_req_zone_write_unlock(struct request *rq)
1695 {
1696 }
1697 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1698 {
1699 return false;
1700 }
1701
1702 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1703 {
1704 return true;
1705 }
1706 #endif /* CONFIG_BLK_DEV_ZONED */
1707
1708 #else /* CONFIG_BLOCK */
1709
1710 struct block_device;
1711
1712 /*
1713 * stubs for when the block layer is configured out
1714 */
1715 #define buffer_heads_over_limit 0
1716
1717 static inline long nr_blockdev_pages(void)
1718 {
1719 return 0;
1720 }
1721
1722 struct blk_plug {
1723 };
1724
1725 static inline void blk_start_plug(struct blk_plug *plug)
1726 {
1727 }
1728
1729 static inline void blk_finish_plug(struct blk_plug *plug)
1730 {
1731 }
1732
1733 static inline void blk_flush_plug(struct task_struct *task)
1734 {
1735 }
1736
1737 static inline void blk_schedule_flush_plug(struct task_struct *task)
1738 {
1739 }
1740
1741
1742 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1743 {
1744 return false;
1745 }
1746
1747 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
1748 sector_t *error_sector)
1749 {
1750 return 0;
1751 }
1752
1753 #endif /* CONFIG_BLOCK */
1754
1755 static inline void blk_wake_io_task(struct task_struct *waiter)
1756 {
1757 /*
1758 * If we're polling, the task itself is doing the completions. For
1759 * that case, we don't need to signal a wakeup, it's enough to just
1760 * mark us as RUNNING.
1761 */
1762 if (waiter == current)
1763 __set_current_state(TASK_RUNNING);
1764 else
1765 wake_up_process(waiter);
1766 }
1767
1768 #endif