]> git.ipfire.org Git - thirdparty/linux.git/blob - include/linux/blkdev.h
Merge tag 'pidfd-v5.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner...
[thirdparty/linux.git] / include / linux / blkdev.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_BLKDEV_H
3 #define _LINUX_BLKDEV_H
4
5 #include <linux/sched.h>
6 #include <linux/sched/clock.h>
7
8 #ifdef CONFIG_BLOCK
9
10 #include <linux/major.h>
11 #include <linux/genhd.h>
12 #include <linux/list.h>
13 #include <linux/llist.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/pagemap.h>
17 #include <linux/backing-dev-defs.h>
18 #include <linux/wait.h>
19 #include <linux/mempool.h>
20 #include <linux/pfn.h>
21 #include <linux/bio.h>
22 #include <linux/stringify.h>
23 #include <linux/gfp.h>
24 #include <linux/bsg.h>
25 #include <linux/smp.h>
26 #include <linux/rcupdate.h>
27 #include <linux/percpu-refcount.h>
28 #include <linux/scatterlist.h>
29 #include <linux/blkzoned.h>
30
31 struct module;
32 struct scsi_ioctl_command;
33
34 struct request_queue;
35 struct elevator_queue;
36 struct blk_trace;
37 struct request;
38 struct sg_io_hdr;
39 struct bsg_job;
40 struct blkcg_gq;
41 struct blk_flush_queue;
42 struct pr_ops;
43 struct rq_qos;
44 struct blk_queue_stats;
45 struct blk_stat_callback;
46
47 #define BLKDEV_MIN_RQ 4
48 #define BLKDEV_MAX_RQ 128 /* Default maximum */
49
50 /* Must be consistent with blk_mq_poll_stats_bkt() */
51 #define BLK_MQ_POLL_STATS_BKTS 16
52
53 /*
54 * Maximum number of blkcg policies allowed to be registered concurrently.
55 * Defined here to simplify include dependency.
56 */
57 #define BLKCG_MAX_POLS 5
58
59 typedef void (rq_end_io_fn)(struct request *, blk_status_t);
60
61 /*
62 * request flags */
63 typedef __u32 __bitwise req_flags_t;
64
65 /* elevator knows about this request */
66 #define RQF_SORTED ((__force req_flags_t)(1 << 0))
67 /* drive already may have started this one */
68 #define RQF_STARTED ((__force req_flags_t)(1 << 1))
69 /* may not be passed by ioscheduler */
70 #define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3))
71 /* request for flush sequence */
72 #define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4))
73 /* merge of different types, fail separately */
74 #define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5))
75 /* track inflight for MQ */
76 #define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6))
77 /* don't call prep for this one */
78 #define RQF_DONTPREP ((__force req_flags_t)(1 << 7))
79 /* set for "ide_preempt" requests and also for requests for which the SCSI
80 "quiesce" state must be ignored. */
81 #define RQF_PREEMPT ((__force req_flags_t)(1 << 8))
82 /* contains copies of user pages */
83 #define RQF_COPY_USER ((__force req_flags_t)(1 << 9))
84 /* vaguely specified driver internal error. Ignored by the block layer */
85 #define RQF_FAILED ((__force req_flags_t)(1 << 10))
86 /* don't warn about errors */
87 #define RQF_QUIET ((__force req_flags_t)(1 << 11))
88 /* elevator private data attached */
89 #define RQF_ELVPRIV ((__force req_flags_t)(1 << 12))
90 /* account into disk and partition IO statistics */
91 #define RQF_IO_STAT ((__force req_flags_t)(1 << 13))
92 /* request came from our alloc pool */
93 #define RQF_ALLOCED ((__force req_flags_t)(1 << 14))
94 /* runtime pm request */
95 #define RQF_PM ((__force req_flags_t)(1 << 15))
96 /* on IO scheduler merge hash */
97 #define RQF_HASHED ((__force req_flags_t)(1 << 16))
98 /* track IO completion time */
99 #define RQF_STATS ((__force req_flags_t)(1 << 17))
100 /* Look at ->special_vec for the actual data payload instead of the
101 bio chain. */
102 #define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18))
103 /* The per-zone write lock is held for this request */
104 #define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19))
105 /* already slept for hybrid poll */
106 #define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20))
107 /* ->timeout has been called, don't expire again */
108 #define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21))
109
110 /* flags that prevent us from merging requests: */
111 #define RQF_NOMERGE_FLAGS \
112 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD)
113
114 /*
115 * Request state for blk-mq.
116 */
117 enum mq_rq_state {
118 MQ_RQ_IDLE = 0,
119 MQ_RQ_IN_FLIGHT = 1,
120 MQ_RQ_COMPLETE = 2,
121 };
122
123 /*
124 * Try to put the fields that are referenced together in the same cacheline.
125 *
126 * If you modify this structure, make sure to update blk_rq_init() and
127 * especially blk_mq_rq_ctx_init() to take care of the added fields.
128 */
129 struct request {
130 struct request_queue *q;
131 struct blk_mq_ctx *mq_ctx;
132 struct blk_mq_hw_ctx *mq_hctx;
133
134 unsigned int cmd_flags; /* op and common flags */
135 req_flags_t rq_flags;
136
137 int internal_tag;
138
139 /* the following two fields are internal, NEVER access directly */
140 unsigned int __data_len; /* total data len */
141 int tag;
142 sector_t __sector; /* sector cursor */
143
144 struct bio *bio;
145 struct bio *biotail;
146
147 struct list_head queuelist;
148
149 /*
150 * The hash is used inside the scheduler, and killed once the
151 * request reaches the dispatch list. The ipi_list is only used
152 * to queue the request for softirq completion, which is long
153 * after the request has been unhashed (and even removed from
154 * the dispatch list).
155 */
156 union {
157 struct hlist_node hash; /* merge hash */
158 struct list_head ipi_list;
159 };
160
161 /*
162 * The rb_node is only used inside the io scheduler, requests
163 * are pruned when moved to the dispatch queue. So let the
164 * completion_data share space with the rb_node.
165 */
166 union {
167 struct rb_node rb_node; /* sort/lookup */
168 struct bio_vec special_vec;
169 void *completion_data;
170 int error_count; /* for legacy drivers, don't use */
171 };
172
173 /*
174 * Three pointers are available for the IO schedulers, if they need
175 * more they have to dynamically allocate it. Flush requests are
176 * never put on the IO scheduler. So let the flush fields share
177 * space with the elevator data.
178 */
179 union {
180 struct {
181 struct io_cq *icq;
182 void *priv[2];
183 } elv;
184
185 struct {
186 unsigned int seq;
187 struct list_head list;
188 rq_end_io_fn *saved_end_io;
189 } flush;
190 };
191
192 struct gendisk *rq_disk;
193 struct hd_struct *part;
194 /* Time that I/O was submitted to the kernel. */
195 u64 start_time_ns;
196 /* Time that I/O was submitted to the device. */
197 u64 io_start_time_ns;
198
199 #ifdef CONFIG_BLK_WBT
200 unsigned short wbt_flags;
201 #endif
202 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
203 unsigned short throtl_size;
204 #endif
205
206 /*
207 * Number of scatter-gather DMA addr+len pairs after
208 * physical address coalescing is performed.
209 */
210 unsigned short nr_phys_segments;
211
212 #if defined(CONFIG_BLK_DEV_INTEGRITY)
213 unsigned short nr_integrity_segments;
214 #endif
215
216 unsigned short write_hint;
217 unsigned short ioprio;
218
219 unsigned int extra_len; /* length of alignment and padding */
220
221 enum mq_rq_state state;
222 refcount_t ref;
223
224 unsigned int timeout;
225 unsigned long deadline;
226
227 union {
228 struct __call_single_data csd;
229 u64 fifo_time;
230 };
231
232 /*
233 * completion callback.
234 */
235 rq_end_io_fn *end_io;
236 void *end_io_data;
237 };
238
239 static inline bool blk_op_is_scsi(unsigned int op)
240 {
241 return op == REQ_OP_SCSI_IN || op == REQ_OP_SCSI_OUT;
242 }
243
244 static inline bool blk_op_is_private(unsigned int op)
245 {
246 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
247 }
248
249 static inline bool blk_rq_is_scsi(struct request *rq)
250 {
251 return blk_op_is_scsi(req_op(rq));
252 }
253
254 static inline bool blk_rq_is_private(struct request *rq)
255 {
256 return blk_op_is_private(req_op(rq));
257 }
258
259 static inline bool blk_rq_is_passthrough(struct request *rq)
260 {
261 return blk_rq_is_scsi(rq) || blk_rq_is_private(rq);
262 }
263
264 static inline bool bio_is_passthrough(struct bio *bio)
265 {
266 unsigned op = bio_op(bio);
267
268 return blk_op_is_scsi(op) || blk_op_is_private(op);
269 }
270
271 static inline unsigned short req_get_ioprio(struct request *req)
272 {
273 return req->ioprio;
274 }
275
276 #include <linux/elevator.h>
277
278 struct blk_queue_ctx;
279
280 typedef blk_qc_t (make_request_fn) (struct request_queue *q, struct bio *bio);
281
282 struct bio_vec;
283 typedef int (dma_drain_needed_fn)(struct request *);
284
285 enum blk_eh_timer_return {
286 BLK_EH_DONE, /* drivers has completed the command */
287 BLK_EH_RESET_TIMER, /* reset timer and try again */
288 };
289
290 enum blk_queue_state {
291 Queue_down,
292 Queue_up,
293 };
294
295 #define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */
296 #define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */
297
298 #define BLK_SCSI_MAX_CMDS (256)
299 #define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8))
300
301 /*
302 * Zoned block device models (zoned limit).
303 */
304 enum blk_zoned_model {
305 BLK_ZONED_NONE, /* Regular block device */
306 BLK_ZONED_HA, /* Host-aware zoned block device */
307 BLK_ZONED_HM, /* Host-managed zoned block device */
308 };
309
310 struct queue_limits {
311 unsigned long bounce_pfn;
312 unsigned long seg_boundary_mask;
313 unsigned long virt_boundary_mask;
314
315 unsigned int max_hw_sectors;
316 unsigned int max_dev_sectors;
317 unsigned int chunk_sectors;
318 unsigned int max_sectors;
319 unsigned int max_segment_size;
320 unsigned int physical_block_size;
321 unsigned int alignment_offset;
322 unsigned int io_min;
323 unsigned int io_opt;
324 unsigned int max_discard_sectors;
325 unsigned int max_hw_discard_sectors;
326 unsigned int max_write_same_sectors;
327 unsigned int max_write_zeroes_sectors;
328 unsigned int discard_granularity;
329 unsigned int discard_alignment;
330
331 unsigned short logical_block_size;
332 unsigned short max_segments;
333 unsigned short max_integrity_segments;
334 unsigned short max_discard_segments;
335
336 unsigned char misaligned;
337 unsigned char discard_misaligned;
338 unsigned char raid_partial_stripes_expensive;
339 enum blk_zoned_model zoned;
340 };
341
342 #ifdef CONFIG_BLK_DEV_ZONED
343
344 extern unsigned int blkdev_nr_zones(struct block_device *bdev);
345 extern int blkdev_report_zones(struct block_device *bdev,
346 sector_t sector, struct blk_zone *zones,
347 unsigned int *nr_zones, gfp_t gfp_mask);
348 extern int blkdev_reset_zones(struct block_device *bdev, sector_t sectors,
349 sector_t nr_sectors, gfp_t gfp_mask);
350 extern int blk_revalidate_disk_zones(struct gendisk *disk);
351
352 extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode,
353 unsigned int cmd, unsigned long arg);
354 extern int blkdev_reset_zones_ioctl(struct block_device *bdev, fmode_t mode,
355 unsigned int cmd, unsigned long arg);
356
357 #else /* CONFIG_BLK_DEV_ZONED */
358
359 static inline unsigned int blkdev_nr_zones(struct block_device *bdev)
360 {
361 return 0;
362 }
363
364 static inline int blk_revalidate_disk_zones(struct gendisk *disk)
365 {
366 return 0;
367 }
368
369 static inline int blkdev_report_zones_ioctl(struct block_device *bdev,
370 fmode_t mode, unsigned int cmd,
371 unsigned long arg)
372 {
373 return -ENOTTY;
374 }
375
376 static inline int blkdev_reset_zones_ioctl(struct block_device *bdev,
377 fmode_t mode, unsigned int cmd,
378 unsigned long arg)
379 {
380 return -ENOTTY;
381 }
382
383 #endif /* CONFIG_BLK_DEV_ZONED */
384
385 struct request_queue {
386 /*
387 * Together with queue_head for cacheline sharing
388 */
389 struct list_head queue_head;
390 struct request *last_merge;
391 struct elevator_queue *elevator;
392
393 struct blk_queue_stats *stats;
394 struct rq_qos *rq_qos;
395
396 make_request_fn *make_request_fn;
397 dma_drain_needed_fn *dma_drain_needed;
398
399 const struct blk_mq_ops *mq_ops;
400
401 /* sw queues */
402 struct blk_mq_ctx __percpu *queue_ctx;
403 unsigned int nr_queues;
404
405 unsigned int queue_depth;
406
407 /* hw dispatch queues */
408 struct blk_mq_hw_ctx **queue_hw_ctx;
409 unsigned int nr_hw_queues;
410
411 struct backing_dev_info *backing_dev_info;
412
413 /*
414 * The queue owner gets to use this for whatever they like.
415 * ll_rw_blk doesn't touch it.
416 */
417 void *queuedata;
418
419 /*
420 * various queue flags, see QUEUE_* below
421 */
422 unsigned long queue_flags;
423 /*
424 * Number of contexts that have called blk_set_pm_only(). If this
425 * counter is above zero then only RQF_PM and RQF_PREEMPT requests are
426 * processed.
427 */
428 atomic_t pm_only;
429
430 /*
431 * ida allocated id for this queue. Used to index queues from
432 * ioctx.
433 */
434 int id;
435
436 /*
437 * queue needs bounce pages for pages above this limit
438 */
439 gfp_t bounce_gfp;
440
441 spinlock_t queue_lock;
442
443 /*
444 * queue kobject
445 */
446 struct kobject kobj;
447
448 /*
449 * mq queue kobject
450 */
451 struct kobject *mq_kobj;
452
453 #ifdef CONFIG_BLK_DEV_INTEGRITY
454 struct blk_integrity integrity;
455 #endif /* CONFIG_BLK_DEV_INTEGRITY */
456
457 #ifdef CONFIG_PM
458 struct device *dev;
459 int rpm_status;
460 unsigned int nr_pending;
461 #endif
462
463 /*
464 * queue settings
465 */
466 unsigned long nr_requests; /* Max # of requests */
467
468 unsigned int dma_drain_size;
469 void *dma_drain_buffer;
470 unsigned int dma_pad_mask;
471 unsigned int dma_alignment;
472
473 unsigned int rq_timeout;
474 int poll_nsec;
475
476 struct blk_stat_callback *poll_cb;
477 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS];
478
479 struct timer_list timeout;
480 struct work_struct timeout_work;
481
482 struct list_head icq_list;
483 #ifdef CONFIG_BLK_CGROUP
484 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
485 struct blkcg_gq *root_blkg;
486 struct list_head blkg_list;
487 #endif
488
489 struct queue_limits limits;
490
491 #ifdef CONFIG_BLK_DEV_ZONED
492 /*
493 * Zoned block device information for request dispatch control.
494 * nr_zones is the total number of zones of the device. This is always
495 * 0 for regular block devices. seq_zones_bitmap is a bitmap of nr_zones
496 * bits which indicates if a zone is conventional (bit clear) or
497 * sequential (bit set). seq_zones_wlock is a bitmap of nr_zones
498 * bits which indicates if a zone is write locked, that is, if a write
499 * request targeting the zone was dispatched. All three fields are
500 * initialized by the low level device driver (e.g. scsi/sd.c).
501 * Stacking drivers (device mappers) may or may not initialize
502 * these fields.
503 *
504 * Reads of this information must be protected with blk_queue_enter() /
505 * blk_queue_exit(). Modifying this information is only allowed while
506 * no requests are being processed. See also blk_mq_freeze_queue() and
507 * blk_mq_unfreeze_queue().
508 */
509 unsigned int nr_zones;
510 unsigned long *seq_zones_bitmap;
511 unsigned long *seq_zones_wlock;
512 #endif /* CONFIG_BLK_DEV_ZONED */
513
514 /*
515 * sg stuff
516 */
517 unsigned int sg_timeout;
518 unsigned int sg_reserved_size;
519 int node;
520 #ifdef CONFIG_BLK_DEV_IO_TRACE
521 struct blk_trace *blk_trace;
522 struct mutex blk_trace_mutex;
523 #endif
524 /*
525 * for flush operations
526 */
527 struct blk_flush_queue *fq;
528
529 struct list_head requeue_list;
530 spinlock_t requeue_lock;
531 struct delayed_work requeue_work;
532
533 struct mutex sysfs_lock;
534
535 atomic_t mq_freeze_depth;
536
537 #if defined(CONFIG_BLK_DEV_BSG)
538 struct bsg_class_device bsg_dev;
539 #endif
540
541 #ifdef CONFIG_BLK_DEV_THROTTLING
542 /* Throttle data */
543 struct throtl_data *td;
544 #endif
545 struct rcu_head rcu_head;
546 wait_queue_head_t mq_freeze_wq;
547 struct percpu_ref q_usage_counter;
548 struct list_head all_q_node;
549
550 struct blk_mq_tag_set *tag_set;
551 struct list_head tag_set_list;
552 struct bio_set bio_split;
553
554 #ifdef CONFIG_BLK_DEBUG_FS
555 struct dentry *debugfs_dir;
556 struct dentry *sched_debugfs_dir;
557 struct dentry *rqos_debugfs_dir;
558 #endif
559
560 bool mq_sysfs_init_done;
561
562 size_t cmd_size;
563
564 struct work_struct release_work;
565
566 #define BLK_MAX_WRITE_HINTS 5
567 u64 write_hints[BLK_MAX_WRITE_HINTS];
568 };
569
570 #define QUEUE_FLAG_STOPPED 0 /* queue is stopped */
571 #define QUEUE_FLAG_DYING 1 /* queue being torn down */
572 #define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */
573 #define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */
574 #define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */
575 #define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */
576 #define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */
577 #define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */
578 #define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */
579 #define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */
580 #define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */
581 #define QUEUE_FLAG_SECERASE 11 /* supports secure erase */
582 #define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */
583 #define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */
584 #define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */
585 #define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */
586 #define QUEUE_FLAG_WC 17 /* Write back caching */
587 #define QUEUE_FLAG_FUA 18 /* device supports FUA writes */
588 #define QUEUE_FLAG_DAX 19 /* device supports DAX */
589 #define QUEUE_FLAG_STATS 20 /* track IO start and completion times */
590 #define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */
591 #define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */
592 #define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */
593 #define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */
594 #define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */
595
596 #define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \
597 (1 << QUEUE_FLAG_SAME_COMP))
598
599 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
600 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
601 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q);
602
603 #define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags)
604 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
605 #define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags)
606 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
607 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
608 #define blk_queue_noxmerges(q) \
609 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
610 #define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags)
611 #define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags)
612 #define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags)
613 #define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags)
614 #define blk_queue_secure_erase(q) \
615 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags))
616 #define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags)
617 #define blk_queue_scsi_passthrough(q) \
618 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags)
619 #define blk_queue_pci_p2pdma(q) \
620 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags)
621
622 #define blk_noretry_request(rq) \
623 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
624 REQ_FAILFAST_DRIVER))
625 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
626 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only)
627 #define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags)
628
629 extern void blk_set_pm_only(struct request_queue *q);
630 extern void blk_clear_pm_only(struct request_queue *q);
631
632 static inline bool blk_account_rq(struct request *rq)
633 {
634 return (rq->rq_flags & RQF_STARTED) && !blk_rq_is_passthrough(rq);
635 }
636
637 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
638
639 #define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ)
640
641 static inline bool queue_is_mq(struct request_queue *q)
642 {
643 return q->mq_ops;
644 }
645
646 static inline enum blk_zoned_model
647 blk_queue_zoned_model(struct request_queue *q)
648 {
649 return q->limits.zoned;
650 }
651
652 static inline bool blk_queue_is_zoned(struct request_queue *q)
653 {
654 switch (blk_queue_zoned_model(q)) {
655 case BLK_ZONED_HA:
656 case BLK_ZONED_HM:
657 return true;
658 default:
659 return false;
660 }
661 }
662
663 static inline unsigned int blk_queue_zone_sectors(struct request_queue *q)
664 {
665 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0;
666 }
667
668 #ifdef CONFIG_BLK_DEV_ZONED
669 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
670 {
671 return blk_queue_is_zoned(q) ? q->nr_zones : 0;
672 }
673
674 static inline unsigned int blk_queue_zone_no(struct request_queue *q,
675 sector_t sector)
676 {
677 if (!blk_queue_is_zoned(q))
678 return 0;
679 return sector >> ilog2(q->limits.chunk_sectors);
680 }
681
682 static inline bool blk_queue_zone_is_seq(struct request_queue *q,
683 sector_t sector)
684 {
685 if (!blk_queue_is_zoned(q) || !q->seq_zones_bitmap)
686 return false;
687 return test_bit(blk_queue_zone_no(q, sector), q->seq_zones_bitmap);
688 }
689 #else /* CONFIG_BLK_DEV_ZONED */
690 static inline unsigned int blk_queue_nr_zones(struct request_queue *q)
691 {
692 return 0;
693 }
694 #endif /* CONFIG_BLK_DEV_ZONED */
695
696 static inline bool rq_is_sync(struct request *rq)
697 {
698 return op_is_sync(rq->cmd_flags);
699 }
700
701 static inline bool rq_mergeable(struct request *rq)
702 {
703 if (blk_rq_is_passthrough(rq))
704 return false;
705
706 if (req_op(rq) == REQ_OP_FLUSH)
707 return false;
708
709 if (req_op(rq) == REQ_OP_WRITE_ZEROES)
710 return false;
711
712 if (rq->cmd_flags & REQ_NOMERGE_FLAGS)
713 return false;
714 if (rq->rq_flags & RQF_NOMERGE_FLAGS)
715 return false;
716
717 return true;
718 }
719
720 static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b)
721 {
722 if (bio_page(a) == bio_page(b) &&
723 bio_offset(a) == bio_offset(b))
724 return true;
725
726 return false;
727 }
728
729 static inline unsigned int blk_queue_depth(struct request_queue *q)
730 {
731 if (q->queue_depth)
732 return q->queue_depth;
733
734 return q->nr_requests;
735 }
736
737 extern unsigned long blk_max_low_pfn, blk_max_pfn;
738
739 /*
740 * standard bounce addresses:
741 *
742 * BLK_BOUNCE_HIGH : bounce all highmem pages
743 * BLK_BOUNCE_ANY : don't bounce anything
744 * BLK_BOUNCE_ISA : bounce pages above ISA DMA boundary
745 */
746
747 #if BITS_PER_LONG == 32
748 #define BLK_BOUNCE_HIGH ((u64)blk_max_low_pfn << PAGE_SHIFT)
749 #else
750 #define BLK_BOUNCE_HIGH -1ULL
751 #endif
752 #define BLK_BOUNCE_ANY (-1ULL)
753 #define BLK_BOUNCE_ISA (DMA_BIT_MASK(24))
754
755 /*
756 * default timeout for SG_IO if none specified
757 */
758 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
759 #define BLK_MIN_SG_TIMEOUT (7 * HZ)
760
761 struct rq_map_data {
762 struct page **pages;
763 int page_order;
764 int nr_entries;
765 unsigned long offset;
766 int null_mapped;
767 int from_user;
768 };
769
770 struct req_iterator {
771 struct bvec_iter iter;
772 struct bio *bio;
773 };
774
775 /* This should not be used directly - use rq_for_each_segment */
776 #define for_each_bio(_bio) \
777 for (; _bio; _bio = _bio->bi_next)
778 #define __rq_for_each_bio(_bio, rq) \
779 if ((rq->bio)) \
780 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next)
781
782 #define rq_for_each_segment(bvl, _rq, _iter) \
783 __rq_for_each_bio(_iter.bio, _rq) \
784 bio_for_each_segment(bvl, _iter.bio, _iter.iter)
785
786 #define rq_for_each_bvec(bvl, _rq, _iter) \
787 __rq_for_each_bio(_iter.bio, _rq) \
788 bio_for_each_bvec(bvl, _iter.bio, _iter.iter)
789
790 #define rq_iter_last(bvec, _iter) \
791 (_iter.bio->bi_next == NULL && \
792 bio_iter_last(bvec, _iter.iter))
793
794 #ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
795 # error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform"
796 #endif
797 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
798 extern void rq_flush_dcache_pages(struct request *rq);
799 #else
800 static inline void rq_flush_dcache_pages(struct request *rq)
801 {
802 }
803 #endif
804
805 extern int blk_register_queue(struct gendisk *disk);
806 extern void blk_unregister_queue(struct gendisk *disk);
807 extern blk_qc_t generic_make_request(struct bio *bio);
808 extern blk_qc_t direct_make_request(struct bio *bio);
809 extern void blk_rq_init(struct request_queue *q, struct request *rq);
810 extern void blk_init_request_from_bio(struct request *req, struct bio *bio);
811 extern void blk_put_request(struct request *);
812 extern struct request *blk_get_request(struct request_queue *, unsigned int op,
813 blk_mq_req_flags_t flags);
814 extern int blk_lld_busy(struct request_queue *q);
815 extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
816 struct bio_set *bs, gfp_t gfp_mask,
817 int (*bio_ctr)(struct bio *, struct bio *, void *),
818 void *data);
819 extern void blk_rq_unprep_clone(struct request *rq);
820 extern blk_status_t blk_insert_cloned_request(struct request_queue *q,
821 struct request *rq);
822 extern int blk_rq_append_bio(struct request *rq, struct bio **bio);
823 extern void blk_queue_split(struct request_queue *, struct bio **);
824 extern void blk_recount_segments(struct request_queue *, struct bio *);
825 extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int);
826 extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t,
827 unsigned int, void __user *);
828 extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t,
829 unsigned int, void __user *);
830 extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t,
831 struct scsi_ioctl_command __user *);
832
833 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
834 extern void blk_queue_exit(struct request_queue *q);
835 extern void blk_sync_queue(struct request_queue *q);
836 extern int blk_rq_map_user(struct request_queue *, struct request *,
837 struct rq_map_data *, void __user *, unsigned long,
838 gfp_t);
839 extern int blk_rq_unmap_user(struct bio *);
840 extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t);
841 extern int blk_rq_map_user_iov(struct request_queue *, struct request *,
842 struct rq_map_data *, const struct iov_iter *,
843 gfp_t);
844 extern void blk_execute_rq(struct request_queue *, struct gendisk *,
845 struct request *, int);
846 extern void blk_execute_rq_nowait(struct request_queue *, struct gendisk *,
847 struct request *, int, rq_end_io_fn *);
848
849 int blk_status_to_errno(blk_status_t status);
850 blk_status_t errno_to_blk_status(int errno);
851
852 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin);
853
854 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
855 {
856 return bdev->bd_disk->queue; /* this is never NULL */
857 }
858
859 /*
860 * The basic unit of block I/O is a sector. It is used in a number of contexts
861 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9
862 * bytes. Variables of type sector_t represent an offset or size that is a
863 * multiple of 512 bytes. Hence these two constants.
864 */
865 #ifndef SECTOR_SHIFT
866 #define SECTOR_SHIFT 9
867 #endif
868 #ifndef SECTOR_SIZE
869 #define SECTOR_SIZE (1 << SECTOR_SHIFT)
870 #endif
871
872 /*
873 * blk_rq_pos() : the current sector
874 * blk_rq_bytes() : bytes left in the entire request
875 * blk_rq_cur_bytes() : bytes left in the current segment
876 * blk_rq_err_bytes() : bytes left till the next error boundary
877 * blk_rq_sectors() : sectors left in the entire request
878 * blk_rq_cur_sectors() : sectors left in the current segment
879 */
880 static inline sector_t blk_rq_pos(const struct request *rq)
881 {
882 return rq->__sector;
883 }
884
885 static inline unsigned int blk_rq_bytes(const struct request *rq)
886 {
887 return rq->__data_len;
888 }
889
890 static inline int blk_rq_cur_bytes(const struct request *rq)
891 {
892 return rq->bio ? bio_cur_bytes(rq->bio) : 0;
893 }
894
895 extern unsigned int blk_rq_err_bytes(const struct request *rq);
896
897 static inline unsigned int blk_rq_sectors(const struct request *rq)
898 {
899 return blk_rq_bytes(rq) >> SECTOR_SHIFT;
900 }
901
902 static inline unsigned int blk_rq_cur_sectors(const struct request *rq)
903 {
904 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT;
905 }
906
907 #ifdef CONFIG_BLK_DEV_ZONED
908 static inline unsigned int blk_rq_zone_no(struct request *rq)
909 {
910 return blk_queue_zone_no(rq->q, blk_rq_pos(rq));
911 }
912
913 static inline unsigned int blk_rq_zone_is_seq(struct request *rq)
914 {
915 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq));
916 }
917 #endif /* CONFIG_BLK_DEV_ZONED */
918
919 /*
920 * Some commands like WRITE SAME have a payload or data transfer size which
921 * is different from the size of the request. Any driver that supports such
922 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to
923 * calculate the data transfer size.
924 */
925 static inline unsigned int blk_rq_payload_bytes(struct request *rq)
926 {
927 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
928 return rq->special_vec.bv_len;
929 return blk_rq_bytes(rq);
930 }
931
932 static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q,
933 int op)
934 {
935 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE))
936 return min(q->limits.max_discard_sectors,
937 UINT_MAX >> SECTOR_SHIFT);
938
939 if (unlikely(op == REQ_OP_WRITE_SAME))
940 return q->limits.max_write_same_sectors;
941
942 if (unlikely(op == REQ_OP_WRITE_ZEROES))
943 return q->limits.max_write_zeroes_sectors;
944
945 return q->limits.max_sectors;
946 }
947
948 /*
949 * Return maximum size of a request at given offset. Only valid for
950 * file system requests.
951 */
952 static inline unsigned int blk_max_size_offset(struct request_queue *q,
953 sector_t offset)
954 {
955 if (!q->limits.chunk_sectors)
956 return q->limits.max_sectors;
957
958 return min(q->limits.max_sectors, (unsigned int)(q->limits.chunk_sectors -
959 (offset & (q->limits.chunk_sectors - 1))));
960 }
961
962 static inline unsigned int blk_rq_get_max_sectors(struct request *rq,
963 sector_t offset)
964 {
965 struct request_queue *q = rq->q;
966
967 if (blk_rq_is_passthrough(rq))
968 return q->limits.max_hw_sectors;
969
970 if (!q->limits.chunk_sectors ||
971 req_op(rq) == REQ_OP_DISCARD ||
972 req_op(rq) == REQ_OP_SECURE_ERASE)
973 return blk_queue_get_max_sectors(q, req_op(rq));
974
975 return min(blk_max_size_offset(q, offset),
976 blk_queue_get_max_sectors(q, req_op(rq)));
977 }
978
979 static inline unsigned int blk_rq_count_bios(struct request *rq)
980 {
981 unsigned int nr_bios = 0;
982 struct bio *bio;
983
984 __rq_for_each_bio(bio, rq)
985 nr_bios++;
986
987 return nr_bios;
988 }
989
990 void blk_steal_bios(struct bio_list *list, struct request *rq);
991
992 /*
993 * Request completion related functions.
994 *
995 * blk_update_request() completes given number of bytes and updates
996 * the request without completing it.
997 *
998 * blk_end_request() and friends. __blk_end_request() must be called
999 * with the request queue spinlock acquired.
1000 *
1001 * Several drivers define their own end_request and call
1002 * blk_end_request() for parts of the original function.
1003 * This prevents code duplication in drivers.
1004 */
1005 extern bool blk_update_request(struct request *rq, blk_status_t error,
1006 unsigned int nr_bytes);
1007 extern void blk_end_request_all(struct request *rq, blk_status_t error);
1008 extern bool __blk_end_request(struct request *rq, blk_status_t error,
1009 unsigned int nr_bytes);
1010 extern void __blk_end_request_all(struct request *rq, blk_status_t error);
1011 extern bool __blk_end_request_cur(struct request *rq, blk_status_t error);
1012
1013 extern void __blk_complete_request(struct request *);
1014 extern void blk_abort_request(struct request *);
1015
1016 /*
1017 * Access functions for manipulating queue properties
1018 */
1019 extern void blk_cleanup_queue(struct request_queue *);
1020 extern void blk_queue_make_request(struct request_queue *, make_request_fn *);
1021 extern void blk_queue_bounce_limit(struct request_queue *, u64);
1022 extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int);
1023 extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int);
1024 extern void blk_queue_max_segments(struct request_queue *, unsigned short);
1025 extern void blk_queue_max_discard_segments(struct request_queue *,
1026 unsigned short);
1027 extern void blk_queue_max_segment_size(struct request_queue *, unsigned int);
1028 extern void blk_queue_max_discard_sectors(struct request_queue *q,
1029 unsigned int max_discard_sectors);
1030 extern void blk_queue_max_write_same_sectors(struct request_queue *q,
1031 unsigned int max_write_same_sectors);
1032 extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q,
1033 unsigned int max_write_same_sectors);
1034 extern void blk_queue_logical_block_size(struct request_queue *, unsigned short);
1035 extern void blk_queue_physical_block_size(struct request_queue *, unsigned int);
1036 extern void blk_queue_alignment_offset(struct request_queue *q,
1037 unsigned int alignment);
1038 extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min);
1039 extern void blk_queue_io_min(struct request_queue *q, unsigned int min);
1040 extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt);
1041 extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt);
1042 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1043 extern void blk_set_default_limits(struct queue_limits *lim);
1044 extern void blk_set_stacking_limits(struct queue_limits *lim);
1045 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1046 sector_t offset);
1047 extern int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
1048 sector_t offset);
1049 extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
1050 sector_t offset);
1051 extern void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b);
1052 extern void blk_queue_dma_pad(struct request_queue *, unsigned int);
1053 extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int);
1054 extern int blk_queue_dma_drain(struct request_queue *q,
1055 dma_drain_needed_fn *dma_drain_needed,
1056 void *buf, unsigned int size);
1057 extern void blk_queue_segment_boundary(struct request_queue *, unsigned long);
1058 extern void blk_queue_virt_boundary(struct request_queue *, unsigned long);
1059 extern void blk_queue_dma_alignment(struct request_queue *, int);
1060 extern void blk_queue_update_dma_alignment(struct request_queue *, int);
1061 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1062 extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua);
1063
1064 /*
1065 * Number of physical segments as sent to the device.
1066 *
1067 * Normally this is the number of discontiguous data segments sent by the
1068 * submitter. But for data-less command like discard we might have no
1069 * actual data segments submitted, but the driver might have to add it's
1070 * own special payload. In that case we still return 1 here so that this
1071 * special payload will be mapped.
1072 */
1073 static inline unsigned short blk_rq_nr_phys_segments(struct request *rq)
1074 {
1075 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD)
1076 return 1;
1077 return rq->nr_phys_segments;
1078 }
1079
1080 /*
1081 * Number of discard segments (or ranges) the driver needs to fill in.
1082 * Each discard bio merged into a request is counted as one segment.
1083 */
1084 static inline unsigned short blk_rq_nr_discard_segments(struct request *rq)
1085 {
1086 return max_t(unsigned short, rq->nr_phys_segments, 1);
1087 }
1088
1089 extern int blk_rq_map_sg(struct request_queue *, struct request *, struct scatterlist *);
1090 extern void blk_dump_rq_flags(struct request *, char *);
1091 extern long nr_blockdev_pages(void);
1092
1093 bool __must_check blk_get_queue(struct request_queue *);
1094 struct request_queue *blk_alloc_queue(gfp_t);
1095 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id);
1096 extern void blk_put_queue(struct request_queue *);
1097 extern void blk_set_queue_dying(struct request_queue *);
1098
1099 /*
1100 * blk_plug permits building a queue of related requests by holding the I/O
1101 * fragments for a short period. This allows merging of sequential requests
1102 * into single larger request. As the requests are moved from a per-task list to
1103 * the device's request_queue in a batch, this results in improved scalability
1104 * as the lock contention for request_queue lock is reduced.
1105 *
1106 * It is ok not to disable preemption when adding the request to the plug list
1107 * or when attempting a merge, because blk_schedule_flush_list() will only flush
1108 * the plug list when the task sleeps by itself. For details, please see
1109 * schedule() where blk_schedule_flush_plug() is called.
1110 */
1111 struct blk_plug {
1112 struct list_head mq_list; /* blk-mq requests */
1113 struct list_head cb_list; /* md requires an unplug callback */
1114 unsigned short rq_count;
1115 bool multiple_queues;
1116 };
1117 #define BLK_MAX_REQUEST_COUNT 16
1118 #define BLK_PLUG_FLUSH_SIZE (128 * 1024)
1119
1120 struct blk_plug_cb;
1121 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1122 struct blk_plug_cb {
1123 struct list_head list;
1124 blk_plug_cb_fn callback;
1125 void *data;
1126 };
1127 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1128 void *data, int size);
1129 extern void blk_start_plug(struct blk_plug *);
1130 extern void blk_finish_plug(struct blk_plug *);
1131 extern void blk_flush_plug_list(struct blk_plug *, bool);
1132
1133 static inline void blk_flush_plug(struct task_struct *tsk)
1134 {
1135 struct blk_plug *plug = tsk->plug;
1136
1137 if (plug)
1138 blk_flush_plug_list(plug, false);
1139 }
1140
1141 static inline void blk_schedule_flush_plug(struct task_struct *tsk)
1142 {
1143 struct blk_plug *plug = tsk->plug;
1144
1145 if (plug)
1146 blk_flush_plug_list(plug, true);
1147 }
1148
1149 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1150 {
1151 struct blk_plug *plug = tsk->plug;
1152
1153 return plug &&
1154 (!list_empty(&plug->mq_list) ||
1155 !list_empty(&plug->cb_list));
1156 }
1157
1158 extern int blkdev_issue_flush(struct block_device *, gfp_t, sector_t *);
1159 extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector,
1160 sector_t nr_sects, gfp_t gfp_mask, struct page *page);
1161
1162 #define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */
1163
1164 extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1165 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags);
1166 extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1167 sector_t nr_sects, gfp_t gfp_mask, int flags,
1168 struct bio **biop);
1169
1170 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1171 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1172
1173 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1174 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1175 unsigned flags);
1176 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1177 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1178
1179 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1180 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1181 {
1182 return blkdev_issue_discard(sb->s_bdev,
1183 block << (sb->s_blocksize_bits -
1184 SECTOR_SHIFT),
1185 nr_blocks << (sb->s_blocksize_bits -
1186 SECTOR_SHIFT),
1187 gfp_mask, flags);
1188 }
1189 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1190 sector_t nr_blocks, gfp_t gfp_mask)
1191 {
1192 return blkdev_issue_zeroout(sb->s_bdev,
1193 block << (sb->s_blocksize_bits -
1194 SECTOR_SHIFT),
1195 nr_blocks << (sb->s_blocksize_bits -
1196 SECTOR_SHIFT),
1197 gfp_mask, 0);
1198 }
1199
1200 extern int blk_verify_command(unsigned char *cmd, fmode_t mode);
1201
1202 enum blk_default_limits {
1203 BLK_MAX_SEGMENTS = 128,
1204 BLK_SAFE_MAX_SECTORS = 255,
1205 BLK_DEF_MAX_SECTORS = 2560,
1206 BLK_MAX_SEGMENT_SIZE = 65536,
1207 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1208 };
1209
1210 static inline unsigned long queue_segment_boundary(struct request_queue *q)
1211 {
1212 return q->limits.seg_boundary_mask;
1213 }
1214
1215 static inline unsigned long queue_virt_boundary(struct request_queue *q)
1216 {
1217 return q->limits.virt_boundary_mask;
1218 }
1219
1220 static inline unsigned int queue_max_sectors(struct request_queue *q)
1221 {
1222 return q->limits.max_sectors;
1223 }
1224
1225 static inline unsigned int queue_max_hw_sectors(struct request_queue *q)
1226 {
1227 return q->limits.max_hw_sectors;
1228 }
1229
1230 static inline unsigned short queue_max_segments(struct request_queue *q)
1231 {
1232 return q->limits.max_segments;
1233 }
1234
1235 static inline unsigned short queue_max_discard_segments(struct request_queue *q)
1236 {
1237 return q->limits.max_discard_segments;
1238 }
1239
1240 static inline unsigned int queue_max_segment_size(struct request_queue *q)
1241 {
1242 return q->limits.max_segment_size;
1243 }
1244
1245 static inline unsigned short queue_logical_block_size(struct request_queue *q)
1246 {
1247 int retval = 512;
1248
1249 if (q && q->limits.logical_block_size)
1250 retval = q->limits.logical_block_size;
1251
1252 return retval;
1253 }
1254
1255 static inline unsigned short bdev_logical_block_size(struct block_device *bdev)
1256 {
1257 return queue_logical_block_size(bdev_get_queue(bdev));
1258 }
1259
1260 static inline unsigned int queue_physical_block_size(struct request_queue *q)
1261 {
1262 return q->limits.physical_block_size;
1263 }
1264
1265 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1266 {
1267 return queue_physical_block_size(bdev_get_queue(bdev));
1268 }
1269
1270 static inline unsigned int queue_io_min(struct request_queue *q)
1271 {
1272 return q->limits.io_min;
1273 }
1274
1275 static inline int bdev_io_min(struct block_device *bdev)
1276 {
1277 return queue_io_min(bdev_get_queue(bdev));
1278 }
1279
1280 static inline unsigned int queue_io_opt(struct request_queue *q)
1281 {
1282 return q->limits.io_opt;
1283 }
1284
1285 static inline int bdev_io_opt(struct block_device *bdev)
1286 {
1287 return queue_io_opt(bdev_get_queue(bdev));
1288 }
1289
1290 static inline int queue_alignment_offset(struct request_queue *q)
1291 {
1292 if (q->limits.misaligned)
1293 return -1;
1294
1295 return q->limits.alignment_offset;
1296 }
1297
1298 static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector)
1299 {
1300 unsigned int granularity = max(lim->physical_block_size, lim->io_min);
1301 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
1302 << SECTOR_SHIFT;
1303
1304 return (granularity + lim->alignment_offset - alignment) % granularity;
1305 }
1306
1307 static inline int bdev_alignment_offset(struct block_device *bdev)
1308 {
1309 struct request_queue *q = bdev_get_queue(bdev);
1310
1311 if (q->limits.misaligned)
1312 return -1;
1313
1314 if (bdev != bdev->bd_contains)
1315 return bdev->bd_part->alignment_offset;
1316
1317 return q->limits.alignment_offset;
1318 }
1319
1320 static inline int queue_discard_alignment(struct request_queue *q)
1321 {
1322 if (q->limits.discard_misaligned)
1323 return -1;
1324
1325 return q->limits.discard_alignment;
1326 }
1327
1328 static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector)
1329 {
1330 unsigned int alignment, granularity, offset;
1331
1332 if (!lim->max_discard_sectors)
1333 return 0;
1334
1335 /* Why are these in bytes, not sectors? */
1336 alignment = lim->discard_alignment >> SECTOR_SHIFT;
1337 granularity = lim->discard_granularity >> SECTOR_SHIFT;
1338 if (!granularity)
1339 return 0;
1340
1341 /* Offset of the partition start in 'granularity' sectors */
1342 offset = sector_div(sector, granularity);
1343
1344 /* And why do we do this modulus *again* in blkdev_issue_discard()? */
1345 offset = (granularity + alignment - offset) % granularity;
1346
1347 /* Turn it back into bytes, gaah */
1348 return offset << SECTOR_SHIFT;
1349 }
1350
1351 static inline int bdev_discard_alignment(struct block_device *bdev)
1352 {
1353 struct request_queue *q = bdev_get_queue(bdev);
1354
1355 if (bdev != bdev->bd_contains)
1356 return bdev->bd_part->discard_alignment;
1357
1358 return q->limits.discard_alignment;
1359 }
1360
1361 static inline unsigned int bdev_write_same(struct block_device *bdev)
1362 {
1363 struct request_queue *q = bdev_get_queue(bdev);
1364
1365 if (q)
1366 return q->limits.max_write_same_sectors;
1367
1368 return 0;
1369 }
1370
1371 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1372 {
1373 struct request_queue *q = bdev_get_queue(bdev);
1374
1375 if (q)
1376 return q->limits.max_write_zeroes_sectors;
1377
1378 return 0;
1379 }
1380
1381 static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev)
1382 {
1383 struct request_queue *q = bdev_get_queue(bdev);
1384
1385 if (q)
1386 return blk_queue_zoned_model(q);
1387
1388 return BLK_ZONED_NONE;
1389 }
1390
1391 static inline bool bdev_is_zoned(struct block_device *bdev)
1392 {
1393 struct request_queue *q = bdev_get_queue(bdev);
1394
1395 if (q)
1396 return blk_queue_is_zoned(q);
1397
1398 return false;
1399 }
1400
1401 static inline unsigned int bdev_zone_sectors(struct block_device *bdev)
1402 {
1403 struct request_queue *q = bdev_get_queue(bdev);
1404
1405 if (q)
1406 return blk_queue_zone_sectors(q);
1407 return 0;
1408 }
1409
1410 static inline int queue_dma_alignment(struct request_queue *q)
1411 {
1412 return q ? q->dma_alignment : 511;
1413 }
1414
1415 static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr,
1416 unsigned int len)
1417 {
1418 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask;
1419 return !(addr & alignment) && !(len & alignment);
1420 }
1421
1422 /* assumes size > 256 */
1423 static inline unsigned int blksize_bits(unsigned int size)
1424 {
1425 unsigned int bits = 8;
1426 do {
1427 bits++;
1428 size >>= 1;
1429 } while (size > 256);
1430 return bits;
1431 }
1432
1433 static inline unsigned int block_size(struct block_device *bdev)
1434 {
1435 return bdev->bd_block_size;
1436 }
1437
1438 typedef struct {struct page *v;} Sector;
1439
1440 unsigned char *read_dev_sector(struct block_device *, sector_t, Sector *);
1441
1442 static inline void put_dev_sector(Sector p)
1443 {
1444 put_page(p.v);
1445 }
1446
1447 int kblockd_schedule_work(struct work_struct *work);
1448 int kblockd_schedule_work_on(int cpu, struct work_struct *work);
1449 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1450
1451 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1452 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1453 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1454 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1455
1456 #if defined(CONFIG_BLK_DEV_INTEGRITY)
1457
1458 enum blk_integrity_flags {
1459 BLK_INTEGRITY_VERIFY = 1 << 0,
1460 BLK_INTEGRITY_GENERATE = 1 << 1,
1461 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2,
1462 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3,
1463 };
1464
1465 struct blk_integrity_iter {
1466 void *prot_buf;
1467 void *data_buf;
1468 sector_t seed;
1469 unsigned int data_size;
1470 unsigned short interval;
1471 const char *disk_name;
1472 };
1473
1474 typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *);
1475
1476 struct blk_integrity_profile {
1477 integrity_processing_fn *generate_fn;
1478 integrity_processing_fn *verify_fn;
1479 const char *name;
1480 };
1481
1482 extern void blk_integrity_register(struct gendisk *, struct blk_integrity *);
1483 extern void blk_integrity_unregister(struct gendisk *);
1484 extern int blk_integrity_compare(struct gendisk *, struct gendisk *);
1485 extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *,
1486 struct scatterlist *);
1487 extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *);
1488 extern bool blk_integrity_merge_rq(struct request_queue *, struct request *,
1489 struct request *);
1490 extern bool blk_integrity_merge_bio(struct request_queue *, struct request *,
1491 struct bio *);
1492
1493 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1494 {
1495 struct blk_integrity *bi = &disk->queue->integrity;
1496
1497 if (!bi->profile)
1498 return NULL;
1499
1500 return bi;
1501 }
1502
1503 static inline
1504 struct blk_integrity *bdev_get_integrity(struct block_device *bdev)
1505 {
1506 return blk_get_integrity(bdev->bd_disk);
1507 }
1508
1509 static inline bool blk_integrity_rq(struct request *rq)
1510 {
1511 return rq->cmd_flags & REQ_INTEGRITY;
1512 }
1513
1514 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1515 unsigned int segs)
1516 {
1517 q->limits.max_integrity_segments = segs;
1518 }
1519
1520 static inline unsigned short
1521 queue_max_integrity_segments(struct request_queue *q)
1522 {
1523 return q->limits.max_integrity_segments;
1524 }
1525
1526 /**
1527 * bio_integrity_intervals - Return number of integrity intervals for a bio
1528 * @bi: blk_integrity profile for device
1529 * @sectors: Size of the bio in 512-byte sectors
1530 *
1531 * Description: The block layer calculates everything in 512 byte
1532 * sectors but integrity metadata is done in terms of the data integrity
1533 * interval size of the storage device. Convert the block layer sectors
1534 * to the appropriate number of integrity intervals.
1535 */
1536 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1537 unsigned int sectors)
1538 {
1539 return sectors >> (bi->interval_exp - 9);
1540 }
1541
1542 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1543 unsigned int sectors)
1544 {
1545 return bio_integrity_intervals(bi, sectors) * bi->tuple_size;
1546 }
1547
1548 #else /* CONFIG_BLK_DEV_INTEGRITY */
1549
1550 struct bio;
1551 struct block_device;
1552 struct gendisk;
1553 struct blk_integrity;
1554
1555 static inline int blk_integrity_rq(struct request *rq)
1556 {
1557 return 0;
1558 }
1559 static inline int blk_rq_count_integrity_sg(struct request_queue *q,
1560 struct bio *b)
1561 {
1562 return 0;
1563 }
1564 static inline int blk_rq_map_integrity_sg(struct request_queue *q,
1565 struct bio *b,
1566 struct scatterlist *s)
1567 {
1568 return 0;
1569 }
1570 static inline struct blk_integrity *bdev_get_integrity(struct block_device *b)
1571 {
1572 return NULL;
1573 }
1574 static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk)
1575 {
1576 return NULL;
1577 }
1578 static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b)
1579 {
1580 return 0;
1581 }
1582 static inline void blk_integrity_register(struct gendisk *d,
1583 struct blk_integrity *b)
1584 {
1585 }
1586 static inline void blk_integrity_unregister(struct gendisk *d)
1587 {
1588 }
1589 static inline void blk_queue_max_integrity_segments(struct request_queue *q,
1590 unsigned int segs)
1591 {
1592 }
1593 static inline unsigned short queue_max_integrity_segments(struct request_queue *q)
1594 {
1595 return 0;
1596 }
1597 static inline bool blk_integrity_merge_rq(struct request_queue *rq,
1598 struct request *r1,
1599 struct request *r2)
1600 {
1601 return true;
1602 }
1603 static inline bool blk_integrity_merge_bio(struct request_queue *rq,
1604 struct request *r,
1605 struct bio *b)
1606 {
1607 return true;
1608 }
1609
1610 static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi,
1611 unsigned int sectors)
1612 {
1613 return 0;
1614 }
1615
1616 static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi,
1617 unsigned int sectors)
1618 {
1619 return 0;
1620 }
1621
1622 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1623
1624 struct block_device_operations {
1625 int (*open) (struct block_device *, fmode_t);
1626 void (*release) (struct gendisk *, fmode_t);
1627 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int);
1628 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1629 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
1630 unsigned int (*check_events) (struct gendisk *disk,
1631 unsigned int clearing);
1632 /* ->media_changed() is DEPRECATED, use ->check_events() instead */
1633 int (*media_changed) (struct gendisk *);
1634 void (*unlock_native_capacity) (struct gendisk *);
1635 int (*revalidate_disk) (struct gendisk *);
1636 int (*getgeo)(struct block_device *, struct hd_geometry *);
1637 /* this callback is with swap_lock and sometimes page table lock held */
1638 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1639 int (*report_zones)(struct gendisk *, sector_t sector,
1640 struct blk_zone *zones, unsigned int *nr_zones,
1641 gfp_t gfp_mask);
1642 struct module *owner;
1643 const struct pr_ops *pr_ops;
1644 };
1645
1646 extern int __blkdev_driver_ioctl(struct block_device *, fmode_t, unsigned int,
1647 unsigned long);
1648 extern int bdev_read_page(struct block_device *, sector_t, struct page *);
1649 extern int bdev_write_page(struct block_device *, sector_t, struct page *,
1650 struct writeback_control *);
1651
1652 #ifdef CONFIG_BLK_DEV_ZONED
1653 bool blk_req_needs_zone_write_lock(struct request *rq);
1654 void __blk_req_zone_write_lock(struct request *rq);
1655 void __blk_req_zone_write_unlock(struct request *rq);
1656
1657 static inline void blk_req_zone_write_lock(struct request *rq)
1658 {
1659 if (blk_req_needs_zone_write_lock(rq))
1660 __blk_req_zone_write_lock(rq);
1661 }
1662
1663 static inline void blk_req_zone_write_unlock(struct request *rq)
1664 {
1665 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED)
1666 __blk_req_zone_write_unlock(rq);
1667 }
1668
1669 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1670 {
1671 return rq->q->seq_zones_wlock &&
1672 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock);
1673 }
1674
1675 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1676 {
1677 if (!blk_req_needs_zone_write_lock(rq))
1678 return true;
1679 return !blk_req_zone_is_write_locked(rq);
1680 }
1681 #else
1682 static inline bool blk_req_needs_zone_write_lock(struct request *rq)
1683 {
1684 return false;
1685 }
1686
1687 static inline void blk_req_zone_write_lock(struct request *rq)
1688 {
1689 }
1690
1691 static inline void blk_req_zone_write_unlock(struct request *rq)
1692 {
1693 }
1694 static inline bool blk_req_zone_is_write_locked(struct request *rq)
1695 {
1696 return false;
1697 }
1698
1699 static inline bool blk_req_can_dispatch_to_zone(struct request *rq)
1700 {
1701 return true;
1702 }
1703 #endif /* CONFIG_BLK_DEV_ZONED */
1704
1705 #else /* CONFIG_BLOCK */
1706
1707 struct block_device;
1708
1709 /*
1710 * stubs for when the block layer is configured out
1711 */
1712 #define buffer_heads_over_limit 0
1713
1714 static inline long nr_blockdev_pages(void)
1715 {
1716 return 0;
1717 }
1718
1719 struct blk_plug {
1720 };
1721
1722 static inline void blk_start_plug(struct blk_plug *plug)
1723 {
1724 }
1725
1726 static inline void blk_finish_plug(struct blk_plug *plug)
1727 {
1728 }
1729
1730 static inline void blk_flush_plug(struct task_struct *task)
1731 {
1732 }
1733
1734 static inline void blk_schedule_flush_plug(struct task_struct *task)
1735 {
1736 }
1737
1738
1739 static inline bool blk_needs_flush_plug(struct task_struct *tsk)
1740 {
1741 return false;
1742 }
1743
1744 static inline int blkdev_issue_flush(struct block_device *bdev, gfp_t gfp_mask,
1745 sector_t *error_sector)
1746 {
1747 return 0;
1748 }
1749
1750 #endif /* CONFIG_BLOCK */
1751
1752 static inline void blk_wake_io_task(struct task_struct *waiter)
1753 {
1754 /*
1755 * If we're polling, the task itself is doing the completions. For
1756 * that case, we don't need to signal a wakeup, it's enough to just
1757 * mark us as RUNNING.
1758 */
1759 if (waiter == current)
1760 __set_current_state(TASK_RUNNING);
1761 else
1762 wake_up_process(waiter);
1763 }
1764
1765 #endif