]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/auditsc.c
Merge branch 'for-5.2-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[thirdparty/linux.git] / kernel / auditsc.c
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78
79 #include "audit.h"
80
81 /* flags stating the success for a syscall */
82 #define AUDITSC_INVALID 0
83 #define AUDITSC_SUCCESS 1
84 #define AUDITSC_FAILURE 2
85
86 /* no execve audit message should be longer than this (userspace limits),
87 * see the note near the top of audit_log_execve_info() about this value */
88 #define MAX_EXECVE_AUDIT_LEN 7500
89
90 /* max length to print of cmdline/proctitle value during audit */
91 #define MAX_PROCTITLE_AUDIT_LEN 128
92
93 /* number of audit rules */
94 int audit_n_rules;
95
96 /* determines whether we collect data for signals sent */
97 int audit_signals;
98
99 struct audit_aux_data {
100 struct audit_aux_data *next;
101 int type;
102 };
103
104 #define AUDIT_AUX_IPCPERM 0
105
106 /* Number of target pids per aux struct. */
107 #define AUDIT_AUX_PIDS 16
108
109 struct audit_aux_data_pids {
110 struct audit_aux_data d;
111 pid_t target_pid[AUDIT_AUX_PIDS];
112 kuid_t target_auid[AUDIT_AUX_PIDS];
113 kuid_t target_uid[AUDIT_AUX_PIDS];
114 unsigned int target_sessionid[AUDIT_AUX_PIDS];
115 u32 target_sid[AUDIT_AUX_PIDS];
116 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
117 int pid_count;
118 };
119
120 struct audit_aux_data_bprm_fcaps {
121 struct audit_aux_data d;
122 struct audit_cap_data fcap;
123 unsigned int fcap_ver;
124 struct audit_cap_data old_pcap;
125 struct audit_cap_data new_pcap;
126 };
127
128 struct audit_tree_refs {
129 struct audit_tree_refs *next;
130 struct audit_chunk *c[31];
131 };
132
133 static int audit_match_perm(struct audit_context *ctx, int mask)
134 {
135 unsigned n;
136 if (unlikely(!ctx))
137 return 0;
138 n = ctx->major;
139
140 switch (audit_classify_syscall(ctx->arch, n)) {
141 case 0: /* native */
142 if ((mask & AUDIT_PERM_WRITE) &&
143 audit_match_class(AUDIT_CLASS_WRITE, n))
144 return 1;
145 if ((mask & AUDIT_PERM_READ) &&
146 audit_match_class(AUDIT_CLASS_READ, n))
147 return 1;
148 if ((mask & AUDIT_PERM_ATTR) &&
149 audit_match_class(AUDIT_CLASS_CHATTR, n))
150 return 1;
151 return 0;
152 case 1: /* 32bit on biarch */
153 if ((mask & AUDIT_PERM_WRITE) &&
154 audit_match_class(AUDIT_CLASS_WRITE_32, n))
155 return 1;
156 if ((mask & AUDIT_PERM_READ) &&
157 audit_match_class(AUDIT_CLASS_READ_32, n))
158 return 1;
159 if ((mask & AUDIT_PERM_ATTR) &&
160 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
161 return 1;
162 return 0;
163 case 2: /* open */
164 return mask & ACC_MODE(ctx->argv[1]);
165 case 3: /* openat */
166 return mask & ACC_MODE(ctx->argv[2]);
167 case 4: /* socketcall */
168 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
169 case 5: /* execve */
170 return mask & AUDIT_PERM_EXEC;
171 default:
172 return 0;
173 }
174 }
175
176 static int audit_match_filetype(struct audit_context *ctx, int val)
177 {
178 struct audit_names *n;
179 umode_t mode = (umode_t)val;
180
181 if (unlikely(!ctx))
182 return 0;
183
184 list_for_each_entry(n, &ctx->names_list, list) {
185 if ((n->ino != AUDIT_INO_UNSET) &&
186 ((n->mode & S_IFMT) == mode))
187 return 1;
188 }
189
190 return 0;
191 }
192
193 /*
194 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195 * ->first_trees points to its beginning, ->trees - to the current end of data.
196 * ->tree_count is the number of free entries in array pointed to by ->trees.
197 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
199 * it's going to remain 1-element for almost any setup) until we free context itself.
200 * References in it _are_ dropped - at the same time we free/drop aux stuff.
201 */
202
203 static void audit_set_auditable(struct audit_context *ctx)
204 {
205 if (!ctx->prio) {
206 ctx->prio = 1;
207 ctx->current_state = AUDIT_RECORD_CONTEXT;
208 }
209 }
210
211 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
212 {
213 struct audit_tree_refs *p = ctx->trees;
214 int left = ctx->tree_count;
215 if (likely(left)) {
216 p->c[--left] = chunk;
217 ctx->tree_count = left;
218 return 1;
219 }
220 if (!p)
221 return 0;
222 p = p->next;
223 if (p) {
224 p->c[30] = chunk;
225 ctx->trees = p;
226 ctx->tree_count = 30;
227 return 1;
228 }
229 return 0;
230 }
231
232 static int grow_tree_refs(struct audit_context *ctx)
233 {
234 struct audit_tree_refs *p = ctx->trees;
235 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
236 if (!ctx->trees) {
237 ctx->trees = p;
238 return 0;
239 }
240 if (p)
241 p->next = ctx->trees;
242 else
243 ctx->first_trees = ctx->trees;
244 ctx->tree_count = 31;
245 return 1;
246 }
247
248 static void unroll_tree_refs(struct audit_context *ctx,
249 struct audit_tree_refs *p, int count)
250 {
251 struct audit_tree_refs *q;
252 int n;
253 if (!p) {
254 /* we started with empty chain */
255 p = ctx->first_trees;
256 count = 31;
257 /* if the very first allocation has failed, nothing to do */
258 if (!p)
259 return;
260 }
261 n = count;
262 for (q = p; q != ctx->trees; q = q->next, n = 31) {
263 while (n--) {
264 audit_put_chunk(q->c[n]);
265 q->c[n] = NULL;
266 }
267 }
268 while (n-- > ctx->tree_count) {
269 audit_put_chunk(q->c[n]);
270 q->c[n] = NULL;
271 }
272 ctx->trees = p;
273 ctx->tree_count = count;
274 }
275
276 static void free_tree_refs(struct audit_context *ctx)
277 {
278 struct audit_tree_refs *p, *q;
279 for (p = ctx->first_trees; p; p = q) {
280 q = p->next;
281 kfree(p);
282 }
283 }
284
285 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
286 {
287 struct audit_tree_refs *p;
288 int n;
289 if (!tree)
290 return 0;
291 /* full ones */
292 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
293 for (n = 0; n < 31; n++)
294 if (audit_tree_match(p->c[n], tree))
295 return 1;
296 }
297 /* partial */
298 if (p) {
299 for (n = ctx->tree_count; n < 31; n++)
300 if (audit_tree_match(p->c[n], tree))
301 return 1;
302 }
303 return 0;
304 }
305
306 static int audit_compare_uid(kuid_t uid,
307 struct audit_names *name,
308 struct audit_field *f,
309 struct audit_context *ctx)
310 {
311 struct audit_names *n;
312 int rc;
313
314 if (name) {
315 rc = audit_uid_comparator(uid, f->op, name->uid);
316 if (rc)
317 return rc;
318 }
319
320 if (ctx) {
321 list_for_each_entry(n, &ctx->names_list, list) {
322 rc = audit_uid_comparator(uid, f->op, n->uid);
323 if (rc)
324 return rc;
325 }
326 }
327 return 0;
328 }
329
330 static int audit_compare_gid(kgid_t gid,
331 struct audit_names *name,
332 struct audit_field *f,
333 struct audit_context *ctx)
334 {
335 struct audit_names *n;
336 int rc;
337
338 if (name) {
339 rc = audit_gid_comparator(gid, f->op, name->gid);
340 if (rc)
341 return rc;
342 }
343
344 if (ctx) {
345 list_for_each_entry(n, &ctx->names_list, list) {
346 rc = audit_gid_comparator(gid, f->op, n->gid);
347 if (rc)
348 return rc;
349 }
350 }
351 return 0;
352 }
353
354 static int audit_field_compare(struct task_struct *tsk,
355 const struct cred *cred,
356 struct audit_field *f,
357 struct audit_context *ctx,
358 struct audit_names *name)
359 {
360 switch (f->val) {
361 /* process to file object comparisons */
362 case AUDIT_COMPARE_UID_TO_OBJ_UID:
363 return audit_compare_uid(cred->uid, name, f, ctx);
364 case AUDIT_COMPARE_GID_TO_OBJ_GID:
365 return audit_compare_gid(cred->gid, name, f, ctx);
366 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
367 return audit_compare_uid(cred->euid, name, f, ctx);
368 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
369 return audit_compare_gid(cred->egid, name, f, ctx);
370 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
371 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
372 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
373 return audit_compare_uid(cred->suid, name, f, ctx);
374 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
375 return audit_compare_gid(cred->sgid, name, f, ctx);
376 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
377 return audit_compare_uid(cred->fsuid, name, f, ctx);
378 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
379 return audit_compare_gid(cred->fsgid, name, f, ctx);
380 /* uid comparisons */
381 case AUDIT_COMPARE_UID_TO_AUID:
382 return audit_uid_comparator(cred->uid, f->op,
383 audit_get_loginuid(tsk));
384 case AUDIT_COMPARE_UID_TO_EUID:
385 return audit_uid_comparator(cred->uid, f->op, cred->euid);
386 case AUDIT_COMPARE_UID_TO_SUID:
387 return audit_uid_comparator(cred->uid, f->op, cred->suid);
388 case AUDIT_COMPARE_UID_TO_FSUID:
389 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
390 /* auid comparisons */
391 case AUDIT_COMPARE_AUID_TO_EUID:
392 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
393 cred->euid);
394 case AUDIT_COMPARE_AUID_TO_SUID:
395 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
396 cred->suid);
397 case AUDIT_COMPARE_AUID_TO_FSUID:
398 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
399 cred->fsuid);
400 /* euid comparisons */
401 case AUDIT_COMPARE_EUID_TO_SUID:
402 return audit_uid_comparator(cred->euid, f->op, cred->suid);
403 case AUDIT_COMPARE_EUID_TO_FSUID:
404 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
405 /* suid comparisons */
406 case AUDIT_COMPARE_SUID_TO_FSUID:
407 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
408 /* gid comparisons */
409 case AUDIT_COMPARE_GID_TO_EGID:
410 return audit_gid_comparator(cred->gid, f->op, cred->egid);
411 case AUDIT_COMPARE_GID_TO_SGID:
412 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
413 case AUDIT_COMPARE_GID_TO_FSGID:
414 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
415 /* egid comparisons */
416 case AUDIT_COMPARE_EGID_TO_SGID:
417 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
418 case AUDIT_COMPARE_EGID_TO_FSGID:
419 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
420 /* sgid comparison */
421 case AUDIT_COMPARE_SGID_TO_FSGID:
422 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
423 default:
424 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
425 return 0;
426 }
427 return 0;
428 }
429
430 /* Determine if any context name data matches a rule's watch data */
431 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
432 * otherwise.
433 *
434 * If task_creation is true, this is an explicit indication that we are
435 * filtering a task rule at task creation time. This and tsk == current are
436 * the only situations where tsk->cred may be accessed without an rcu read lock.
437 */
438 static int audit_filter_rules(struct task_struct *tsk,
439 struct audit_krule *rule,
440 struct audit_context *ctx,
441 struct audit_names *name,
442 enum audit_state *state,
443 bool task_creation)
444 {
445 const struct cred *cred;
446 int i, need_sid = 1;
447 u32 sid;
448 unsigned int sessionid;
449
450 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
451
452 for (i = 0; i < rule->field_count; i++) {
453 struct audit_field *f = &rule->fields[i];
454 struct audit_names *n;
455 int result = 0;
456 pid_t pid;
457
458 switch (f->type) {
459 case AUDIT_PID:
460 pid = task_tgid_nr(tsk);
461 result = audit_comparator(pid, f->op, f->val);
462 break;
463 case AUDIT_PPID:
464 if (ctx) {
465 if (!ctx->ppid)
466 ctx->ppid = task_ppid_nr(tsk);
467 result = audit_comparator(ctx->ppid, f->op, f->val);
468 }
469 break;
470 case AUDIT_EXE:
471 result = audit_exe_compare(tsk, rule->exe);
472 if (f->op == Audit_not_equal)
473 result = !result;
474 break;
475 case AUDIT_UID:
476 result = audit_uid_comparator(cred->uid, f->op, f->uid);
477 break;
478 case AUDIT_EUID:
479 result = audit_uid_comparator(cred->euid, f->op, f->uid);
480 break;
481 case AUDIT_SUID:
482 result = audit_uid_comparator(cred->suid, f->op, f->uid);
483 break;
484 case AUDIT_FSUID:
485 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
486 break;
487 case AUDIT_GID:
488 result = audit_gid_comparator(cred->gid, f->op, f->gid);
489 if (f->op == Audit_equal) {
490 if (!result)
491 result = groups_search(cred->group_info, f->gid);
492 } else if (f->op == Audit_not_equal) {
493 if (result)
494 result = !groups_search(cred->group_info, f->gid);
495 }
496 break;
497 case AUDIT_EGID:
498 result = audit_gid_comparator(cred->egid, f->op, f->gid);
499 if (f->op == Audit_equal) {
500 if (!result)
501 result = groups_search(cred->group_info, f->gid);
502 } else if (f->op == Audit_not_equal) {
503 if (result)
504 result = !groups_search(cred->group_info, f->gid);
505 }
506 break;
507 case AUDIT_SGID:
508 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
509 break;
510 case AUDIT_FSGID:
511 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
512 break;
513 case AUDIT_SESSIONID:
514 sessionid = audit_get_sessionid(tsk);
515 result = audit_comparator(sessionid, f->op, f->val);
516 break;
517 case AUDIT_PERS:
518 result = audit_comparator(tsk->personality, f->op, f->val);
519 break;
520 case AUDIT_ARCH:
521 if (ctx)
522 result = audit_comparator(ctx->arch, f->op, f->val);
523 break;
524
525 case AUDIT_EXIT:
526 if (ctx && ctx->return_valid)
527 result = audit_comparator(ctx->return_code, f->op, f->val);
528 break;
529 case AUDIT_SUCCESS:
530 if (ctx && ctx->return_valid) {
531 if (f->val)
532 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
533 else
534 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
535 }
536 break;
537 case AUDIT_DEVMAJOR:
538 if (name) {
539 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
540 audit_comparator(MAJOR(name->rdev), f->op, f->val))
541 ++result;
542 } else if (ctx) {
543 list_for_each_entry(n, &ctx->names_list, list) {
544 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
545 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
546 ++result;
547 break;
548 }
549 }
550 }
551 break;
552 case AUDIT_DEVMINOR:
553 if (name) {
554 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
555 audit_comparator(MINOR(name->rdev), f->op, f->val))
556 ++result;
557 } else if (ctx) {
558 list_for_each_entry(n, &ctx->names_list, list) {
559 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
560 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
561 ++result;
562 break;
563 }
564 }
565 }
566 break;
567 case AUDIT_INODE:
568 if (name)
569 result = audit_comparator(name->ino, f->op, f->val);
570 else if (ctx) {
571 list_for_each_entry(n, &ctx->names_list, list) {
572 if (audit_comparator(n->ino, f->op, f->val)) {
573 ++result;
574 break;
575 }
576 }
577 }
578 break;
579 case AUDIT_OBJ_UID:
580 if (name) {
581 result = audit_uid_comparator(name->uid, f->op, f->uid);
582 } else if (ctx) {
583 list_for_each_entry(n, &ctx->names_list, list) {
584 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
585 ++result;
586 break;
587 }
588 }
589 }
590 break;
591 case AUDIT_OBJ_GID:
592 if (name) {
593 result = audit_gid_comparator(name->gid, f->op, f->gid);
594 } else if (ctx) {
595 list_for_each_entry(n, &ctx->names_list, list) {
596 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
597 ++result;
598 break;
599 }
600 }
601 }
602 break;
603 case AUDIT_WATCH:
604 if (name)
605 result = audit_watch_compare(rule->watch, name->ino, name->dev);
606 break;
607 case AUDIT_DIR:
608 if (ctx)
609 result = match_tree_refs(ctx, rule->tree);
610 break;
611 case AUDIT_LOGINUID:
612 result = audit_uid_comparator(audit_get_loginuid(tsk),
613 f->op, f->uid);
614 break;
615 case AUDIT_LOGINUID_SET:
616 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
617 break;
618 case AUDIT_SUBJ_USER:
619 case AUDIT_SUBJ_ROLE:
620 case AUDIT_SUBJ_TYPE:
621 case AUDIT_SUBJ_SEN:
622 case AUDIT_SUBJ_CLR:
623 /* NOTE: this may return negative values indicating
624 a temporary error. We simply treat this as a
625 match for now to avoid losing information that
626 may be wanted. An error message will also be
627 logged upon error */
628 if (f->lsm_rule) {
629 if (need_sid) {
630 security_task_getsecid(tsk, &sid);
631 need_sid = 0;
632 }
633 result = security_audit_rule_match(sid, f->type,
634 f->op,
635 f->lsm_rule);
636 }
637 break;
638 case AUDIT_OBJ_USER:
639 case AUDIT_OBJ_ROLE:
640 case AUDIT_OBJ_TYPE:
641 case AUDIT_OBJ_LEV_LOW:
642 case AUDIT_OBJ_LEV_HIGH:
643 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
644 also applies here */
645 if (f->lsm_rule) {
646 /* Find files that match */
647 if (name) {
648 result = security_audit_rule_match(
649 name->osid,
650 f->type,
651 f->op,
652 f->lsm_rule);
653 } else if (ctx) {
654 list_for_each_entry(n, &ctx->names_list, list) {
655 if (security_audit_rule_match(
656 n->osid,
657 f->type,
658 f->op,
659 f->lsm_rule)) {
660 ++result;
661 break;
662 }
663 }
664 }
665 /* Find ipc objects that match */
666 if (!ctx || ctx->type != AUDIT_IPC)
667 break;
668 if (security_audit_rule_match(ctx->ipc.osid,
669 f->type, f->op,
670 f->lsm_rule))
671 ++result;
672 }
673 break;
674 case AUDIT_ARG0:
675 case AUDIT_ARG1:
676 case AUDIT_ARG2:
677 case AUDIT_ARG3:
678 if (ctx)
679 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
680 break;
681 case AUDIT_FILTERKEY:
682 /* ignore this field for filtering */
683 result = 1;
684 break;
685 case AUDIT_PERM:
686 result = audit_match_perm(ctx, f->val);
687 break;
688 case AUDIT_FILETYPE:
689 result = audit_match_filetype(ctx, f->val);
690 break;
691 case AUDIT_FIELD_COMPARE:
692 result = audit_field_compare(tsk, cred, f, ctx, name);
693 break;
694 }
695 if (!result)
696 return 0;
697 }
698
699 if (ctx) {
700 if (rule->prio <= ctx->prio)
701 return 0;
702 if (rule->filterkey) {
703 kfree(ctx->filterkey);
704 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
705 }
706 ctx->prio = rule->prio;
707 }
708 switch (rule->action) {
709 case AUDIT_NEVER:
710 *state = AUDIT_DISABLED;
711 break;
712 case AUDIT_ALWAYS:
713 *state = AUDIT_RECORD_CONTEXT;
714 break;
715 }
716 return 1;
717 }
718
719 /* At process creation time, we can determine if system-call auditing is
720 * completely disabled for this task. Since we only have the task
721 * structure at this point, we can only check uid and gid.
722 */
723 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
724 {
725 struct audit_entry *e;
726 enum audit_state state;
727
728 rcu_read_lock();
729 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
730 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
731 &state, true)) {
732 if (state == AUDIT_RECORD_CONTEXT)
733 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
734 rcu_read_unlock();
735 return state;
736 }
737 }
738 rcu_read_unlock();
739 return AUDIT_BUILD_CONTEXT;
740 }
741
742 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
743 {
744 int word, bit;
745
746 if (val > 0xffffffff)
747 return false;
748
749 word = AUDIT_WORD(val);
750 if (word >= AUDIT_BITMASK_SIZE)
751 return false;
752
753 bit = AUDIT_BIT(val);
754
755 return rule->mask[word] & bit;
756 }
757
758 /* At syscall entry and exit time, this filter is called if the
759 * audit_state is not low enough that auditing cannot take place, but is
760 * also not high enough that we already know we have to write an audit
761 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
762 */
763 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
764 struct audit_context *ctx,
765 struct list_head *list)
766 {
767 struct audit_entry *e;
768 enum audit_state state;
769
770 if (auditd_test_task(tsk))
771 return AUDIT_DISABLED;
772
773 rcu_read_lock();
774 list_for_each_entry_rcu(e, list, list) {
775 if (audit_in_mask(&e->rule, ctx->major) &&
776 audit_filter_rules(tsk, &e->rule, ctx, NULL,
777 &state, false)) {
778 rcu_read_unlock();
779 ctx->current_state = state;
780 return state;
781 }
782 }
783 rcu_read_unlock();
784 return AUDIT_BUILD_CONTEXT;
785 }
786
787 /*
788 * Given an audit_name check the inode hash table to see if they match.
789 * Called holding the rcu read lock to protect the use of audit_inode_hash
790 */
791 static int audit_filter_inode_name(struct task_struct *tsk,
792 struct audit_names *n,
793 struct audit_context *ctx) {
794 int h = audit_hash_ino((u32)n->ino);
795 struct list_head *list = &audit_inode_hash[h];
796 struct audit_entry *e;
797 enum audit_state state;
798
799 list_for_each_entry_rcu(e, list, list) {
800 if (audit_in_mask(&e->rule, ctx->major) &&
801 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
802 ctx->current_state = state;
803 return 1;
804 }
805 }
806 return 0;
807 }
808
809 /* At syscall exit time, this filter is called if any audit_names have been
810 * collected during syscall processing. We only check rules in sublists at hash
811 * buckets applicable to the inode numbers in audit_names.
812 * Regarding audit_state, same rules apply as for audit_filter_syscall().
813 */
814 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
815 {
816 struct audit_names *n;
817
818 if (auditd_test_task(tsk))
819 return;
820
821 rcu_read_lock();
822
823 list_for_each_entry(n, &ctx->names_list, list) {
824 if (audit_filter_inode_name(tsk, n, ctx))
825 break;
826 }
827 rcu_read_unlock();
828 }
829
830 static inline void audit_proctitle_free(struct audit_context *context)
831 {
832 kfree(context->proctitle.value);
833 context->proctitle.value = NULL;
834 context->proctitle.len = 0;
835 }
836
837 static inline void audit_free_module(struct audit_context *context)
838 {
839 if (context->type == AUDIT_KERN_MODULE) {
840 kfree(context->module.name);
841 context->module.name = NULL;
842 }
843 }
844 static inline void audit_free_names(struct audit_context *context)
845 {
846 struct audit_names *n, *next;
847
848 list_for_each_entry_safe(n, next, &context->names_list, list) {
849 list_del(&n->list);
850 if (n->name)
851 putname(n->name);
852 if (n->should_free)
853 kfree(n);
854 }
855 context->name_count = 0;
856 path_put(&context->pwd);
857 context->pwd.dentry = NULL;
858 context->pwd.mnt = NULL;
859 }
860
861 static inline void audit_free_aux(struct audit_context *context)
862 {
863 struct audit_aux_data *aux;
864
865 while ((aux = context->aux)) {
866 context->aux = aux->next;
867 kfree(aux);
868 }
869 while ((aux = context->aux_pids)) {
870 context->aux_pids = aux->next;
871 kfree(aux);
872 }
873 }
874
875 static inline struct audit_context *audit_alloc_context(enum audit_state state)
876 {
877 struct audit_context *context;
878
879 context = kzalloc(sizeof(*context), GFP_KERNEL);
880 if (!context)
881 return NULL;
882 context->state = state;
883 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
884 INIT_LIST_HEAD(&context->killed_trees);
885 INIT_LIST_HEAD(&context->names_list);
886 return context;
887 }
888
889 /**
890 * audit_alloc - allocate an audit context block for a task
891 * @tsk: task
892 *
893 * Filter on the task information and allocate a per-task audit context
894 * if necessary. Doing so turns on system call auditing for the
895 * specified task. This is called from copy_process, so no lock is
896 * needed.
897 */
898 int audit_alloc(struct task_struct *tsk)
899 {
900 struct audit_context *context;
901 enum audit_state state;
902 char *key = NULL;
903
904 if (likely(!audit_ever_enabled))
905 return 0; /* Return if not auditing. */
906
907 state = audit_filter_task(tsk, &key);
908 if (state == AUDIT_DISABLED) {
909 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
910 return 0;
911 }
912
913 if (!(context = audit_alloc_context(state))) {
914 kfree(key);
915 audit_log_lost("out of memory in audit_alloc");
916 return -ENOMEM;
917 }
918 context->filterkey = key;
919
920 audit_set_context(tsk, context);
921 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
922 return 0;
923 }
924
925 static inline void audit_free_context(struct audit_context *context)
926 {
927 audit_free_module(context);
928 audit_free_names(context);
929 unroll_tree_refs(context, NULL, 0);
930 free_tree_refs(context);
931 audit_free_aux(context);
932 kfree(context->filterkey);
933 kfree(context->sockaddr);
934 audit_proctitle_free(context);
935 kfree(context);
936 }
937
938 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
939 kuid_t auid, kuid_t uid, unsigned int sessionid,
940 u32 sid, char *comm)
941 {
942 struct audit_buffer *ab;
943 char *ctx = NULL;
944 u32 len;
945 int rc = 0;
946
947 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
948 if (!ab)
949 return rc;
950
951 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
952 from_kuid(&init_user_ns, auid),
953 from_kuid(&init_user_ns, uid), sessionid);
954 if (sid) {
955 if (security_secid_to_secctx(sid, &ctx, &len)) {
956 audit_log_format(ab, " obj=(none)");
957 rc = 1;
958 } else {
959 audit_log_format(ab, " obj=%s", ctx);
960 security_release_secctx(ctx, len);
961 }
962 }
963 audit_log_format(ab, " ocomm=");
964 audit_log_untrustedstring(ab, comm);
965 audit_log_end(ab);
966
967 return rc;
968 }
969
970 static void audit_log_execve_info(struct audit_context *context,
971 struct audit_buffer **ab)
972 {
973 long len_max;
974 long len_rem;
975 long len_full;
976 long len_buf;
977 long len_abuf = 0;
978 long len_tmp;
979 bool require_data;
980 bool encode;
981 unsigned int iter;
982 unsigned int arg;
983 char *buf_head;
984 char *buf;
985 const char __user *p = (const char __user *)current->mm->arg_start;
986
987 /* NOTE: this buffer needs to be large enough to hold all the non-arg
988 * data we put in the audit record for this argument (see the
989 * code below) ... at this point in time 96 is plenty */
990 char abuf[96];
991
992 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
993 * current value of 7500 is not as important as the fact that it
994 * is less than 8k, a setting of 7500 gives us plenty of wiggle
995 * room if we go over a little bit in the logging below */
996 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
997 len_max = MAX_EXECVE_AUDIT_LEN;
998
999 /* scratch buffer to hold the userspace args */
1000 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1001 if (!buf_head) {
1002 audit_panic("out of memory for argv string");
1003 return;
1004 }
1005 buf = buf_head;
1006
1007 audit_log_format(*ab, "argc=%d", context->execve.argc);
1008
1009 len_rem = len_max;
1010 len_buf = 0;
1011 len_full = 0;
1012 require_data = true;
1013 encode = false;
1014 iter = 0;
1015 arg = 0;
1016 do {
1017 /* NOTE: we don't ever want to trust this value for anything
1018 * serious, but the audit record format insists we
1019 * provide an argument length for really long arguments,
1020 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1021 * to use strncpy_from_user() to obtain this value for
1022 * recording in the log, although we don't use it
1023 * anywhere here to avoid a double-fetch problem */
1024 if (len_full == 0)
1025 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1026
1027 /* read more data from userspace */
1028 if (require_data) {
1029 /* can we make more room in the buffer? */
1030 if (buf != buf_head) {
1031 memmove(buf_head, buf, len_buf);
1032 buf = buf_head;
1033 }
1034
1035 /* fetch as much as we can of the argument */
1036 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1037 len_max - len_buf);
1038 if (len_tmp == -EFAULT) {
1039 /* unable to copy from userspace */
1040 send_sig(SIGKILL, current, 0);
1041 goto out;
1042 } else if (len_tmp == (len_max - len_buf)) {
1043 /* buffer is not large enough */
1044 require_data = true;
1045 /* NOTE: if we are going to span multiple
1046 * buffers force the encoding so we stand
1047 * a chance at a sane len_full value and
1048 * consistent record encoding */
1049 encode = true;
1050 len_full = len_full * 2;
1051 p += len_tmp;
1052 } else {
1053 require_data = false;
1054 if (!encode)
1055 encode = audit_string_contains_control(
1056 buf, len_tmp);
1057 /* try to use a trusted value for len_full */
1058 if (len_full < len_max)
1059 len_full = (encode ?
1060 len_tmp * 2 : len_tmp);
1061 p += len_tmp + 1;
1062 }
1063 len_buf += len_tmp;
1064 buf_head[len_buf] = '\0';
1065
1066 /* length of the buffer in the audit record? */
1067 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1068 }
1069
1070 /* write as much as we can to the audit log */
1071 if (len_buf >= 0) {
1072 /* NOTE: some magic numbers here - basically if we
1073 * can't fit a reasonable amount of data into the
1074 * existing audit buffer, flush it and start with
1075 * a new buffer */
1076 if ((sizeof(abuf) + 8) > len_rem) {
1077 len_rem = len_max;
1078 audit_log_end(*ab);
1079 *ab = audit_log_start(context,
1080 GFP_KERNEL, AUDIT_EXECVE);
1081 if (!*ab)
1082 goto out;
1083 }
1084
1085 /* create the non-arg portion of the arg record */
1086 len_tmp = 0;
1087 if (require_data || (iter > 0) ||
1088 ((len_abuf + sizeof(abuf)) > len_rem)) {
1089 if (iter == 0) {
1090 len_tmp += snprintf(&abuf[len_tmp],
1091 sizeof(abuf) - len_tmp,
1092 " a%d_len=%lu",
1093 arg, len_full);
1094 }
1095 len_tmp += snprintf(&abuf[len_tmp],
1096 sizeof(abuf) - len_tmp,
1097 " a%d[%d]=", arg, iter++);
1098 } else
1099 len_tmp += snprintf(&abuf[len_tmp],
1100 sizeof(abuf) - len_tmp,
1101 " a%d=", arg);
1102 WARN_ON(len_tmp >= sizeof(abuf));
1103 abuf[sizeof(abuf) - 1] = '\0';
1104
1105 /* log the arg in the audit record */
1106 audit_log_format(*ab, "%s", abuf);
1107 len_rem -= len_tmp;
1108 len_tmp = len_buf;
1109 if (encode) {
1110 if (len_abuf > len_rem)
1111 len_tmp = len_rem / 2; /* encoding */
1112 audit_log_n_hex(*ab, buf, len_tmp);
1113 len_rem -= len_tmp * 2;
1114 len_abuf -= len_tmp * 2;
1115 } else {
1116 if (len_abuf > len_rem)
1117 len_tmp = len_rem - 2; /* quotes */
1118 audit_log_n_string(*ab, buf, len_tmp);
1119 len_rem -= len_tmp + 2;
1120 /* don't subtract the "2" because we still need
1121 * to add quotes to the remaining string */
1122 len_abuf -= len_tmp;
1123 }
1124 len_buf -= len_tmp;
1125 buf += len_tmp;
1126 }
1127
1128 /* ready to move to the next argument? */
1129 if ((len_buf == 0) && !require_data) {
1130 arg++;
1131 iter = 0;
1132 len_full = 0;
1133 require_data = true;
1134 encode = false;
1135 }
1136 } while (arg < context->execve.argc);
1137
1138 /* NOTE: the caller handles the final audit_log_end() call */
1139
1140 out:
1141 kfree(buf_head);
1142 }
1143
1144 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1145 kernel_cap_t *cap)
1146 {
1147 int i;
1148
1149 if (cap_isclear(*cap)) {
1150 audit_log_format(ab, " %s=0", prefix);
1151 return;
1152 }
1153 audit_log_format(ab, " %s=", prefix);
1154 CAP_FOR_EACH_U32(i)
1155 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1156 }
1157
1158 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1159 {
1160 if (name->fcap_ver == -1) {
1161 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1162 return;
1163 }
1164 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1165 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1166 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1167 name->fcap.fE, name->fcap_ver,
1168 from_kuid(&init_user_ns, name->fcap.rootid));
1169 }
1170
1171 static void show_special(struct audit_context *context, int *call_panic)
1172 {
1173 struct audit_buffer *ab;
1174 int i;
1175
1176 ab = audit_log_start(context, GFP_KERNEL, context->type);
1177 if (!ab)
1178 return;
1179
1180 switch (context->type) {
1181 case AUDIT_SOCKETCALL: {
1182 int nargs = context->socketcall.nargs;
1183 audit_log_format(ab, "nargs=%d", nargs);
1184 for (i = 0; i < nargs; i++)
1185 audit_log_format(ab, " a%d=%lx", i,
1186 context->socketcall.args[i]);
1187 break; }
1188 case AUDIT_IPC: {
1189 u32 osid = context->ipc.osid;
1190
1191 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1192 from_kuid(&init_user_ns, context->ipc.uid),
1193 from_kgid(&init_user_ns, context->ipc.gid),
1194 context->ipc.mode);
1195 if (osid) {
1196 char *ctx = NULL;
1197 u32 len;
1198 if (security_secid_to_secctx(osid, &ctx, &len)) {
1199 audit_log_format(ab, " osid=%u", osid);
1200 *call_panic = 1;
1201 } else {
1202 audit_log_format(ab, " obj=%s", ctx);
1203 security_release_secctx(ctx, len);
1204 }
1205 }
1206 if (context->ipc.has_perm) {
1207 audit_log_end(ab);
1208 ab = audit_log_start(context, GFP_KERNEL,
1209 AUDIT_IPC_SET_PERM);
1210 if (unlikely(!ab))
1211 return;
1212 audit_log_format(ab,
1213 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1214 context->ipc.qbytes,
1215 context->ipc.perm_uid,
1216 context->ipc.perm_gid,
1217 context->ipc.perm_mode);
1218 }
1219 break; }
1220 case AUDIT_MQ_OPEN:
1221 audit_log_format(ab,
1222 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1223 "mq_msgsize=%ld mq_curmsgs=%ld",
1224 context->mq_open.oflag, context->mq_open.mode,
1225 context->mq_open.attr.mq_flags,
1226 context->mq_open.attr.mq_maxmsg,
1227 context->mq_open.attr.mq_msgsize,
1228 context->mq_open.attr.mq_curmsgs);
1229 break;
1230 case AUDIT_MQ_SENDRECV:
1231 audit_log_format(ab,
1232 "mqdes=%d msg_len=%zd msg_prio=%u "
1233 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1234 context->mq_sendrecv.mqdes,
1235 context->mq_sendrecv.msg_len,
1236 context->mq_sendrecv.msg_prio,
1237 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1238 context->mq_sendrecv.abs_timeout.tv_nsec);
1239 break;
1240 case AUDIT_MQ_NOTIFY:
1241 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1242 context->mq_notify.mqdes,
1243 context->mq_notify.sigev_signo);
1244 break;
1245 case AUDIT_MQ_GETSETATTR: {
1246 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1247 audit_log_format(ab,
1248 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1249 "mq_curmsgs=%ld ",
1250 context->mq_getsetattr.mqdes,
1251 attr->mq_flags, attr->mq_maxmsg,
1252 attr->mq_msgsize, attr->mq_curmsgs);
1253 break; }
1254 case AUDIT_CAPSET:
1255 audit_log_format(ab, "pid=%d", context->capset.pid);
1256 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1257 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1258 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1259 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1260 break;
1261 case AUDIT_MMAP:
1262 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1263 context->mmap.flags);
1264 break;
1265 case AUDIT_EXECVE:
1266 audit_log_execve_info(context, &ab);
1267 break;
1268 case AUDIT_KERN_MODULE:
1269 audit_log_format(ab, "name=");
1270 if (context->module.name) {
1271 audit_log_untrustedstring(ab, context->module.name);
1272 } else
1273 audit_log_format(ab, "(null)");
1274
1275 break;
1276 }
1277 audit_log_end(ab);
1278 }
1279
1280 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1281 {
1282 char *end = proctitle + len - 1;
1283 while (end > proctitle && !isprint(*end))
1284 end--;
1285
1286 /* catch the case where proctitle is only 1 non-print character */
1287 len = end - proctitle + 1;
1288 len -= isprint(proctitle[len-1]) == 0;
1289 return len;
1290 }
1291
1292 /*
1293 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1294 * @context: audit_context for the task
1295 * @n: audit_names structure with reportable details
1296 * @path: optional path to report instead of audit_names->name
1297 * @record_num: record number to report when handling a list of names
1298 * @call_panic: optional pointer to int that will be updated if secid fails
1299 */
1300 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1301 const struct path *path, int record_num, int *call_panic)
1302 {
1303 struct audit_buffer *ab;
1304
1305 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1306 if (!ab)
1307 return;
1308
1309 audit_log_format(ab, "item=%d", record_num);
1310
1311 if (path)
1312 audit_log_d_path(ab, " name=", path);
1313 else if (n->name) {
1314 switch (n->name_len) {
1315 case AUDIT_NAME_FULL:
1316 /* log the full path */
1317 audit_log_format(ab, " name=");
1318 audit_log_untrustedstring(ab, n->name->name);
1319 break;
1320 case 0:
1321 /* name was specified as a relative path and the
1322 * directory component is the cwd
1323 */
1324 audit_log_d_path(ab, " name=", &context->pwd);
1325 break;
1326 default:
1327 /* log the name's directory component */
1328 audit_log_format(ab, " name=");
1329 audit_log_n_untrustedstring(ab, n->name->name,
1330 n->name_len);
1331 }
1332 } else
1333 audit_log_format(ab, " name=(null)");
1334
1335 if (n->ino != AUDIT_INO_UNSET)
1336 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1337 n->ino,
1338 MAJOR(n->dev),
1339 MINOR(n->dev),
1340 n->mode,
1341 from_kuid(&init_user_ns, n->uid),
1342 from_kgid(&init_user_ns, n->gid),
1343 MAJOR(n->rdev),
1344 MINOR(n->rdev));
1345 if (n->osid != 0) {
1346 char *ctx = NULL;
1347 u32 len;
1348
1349 if (security_secid_to_secctx(
1350 n->osid, &ctx, &len)) {
1351 audit_log_format(ab, " osid=%u", n->osid);
1352 if (call_panic)
1353 *call_panic = 2;
1354 } else {
1355 audit_log_format(ab, " obj=%s", ctx);
1356 security_release_secctx(ctx, len);
1357 }
1358 }
1359
1360 /* log the audit_names record type */
1361 switch (n->type) {
1362 case AUDIT_TYPE_NORMAL:
1363 audit_log_format(ab, " nametype=NORMAL");
1364 break;
1365 case AUDIT_TYPE_PARENT:
1366 audit_log_format(ab, " nametype=PARENT");
1367 break;
1368 case AUDIT_TYPE_CHILD_DELETE:
1369 audit_log_format(ab, " nametype=DELETE");
1370 break;
1371 case AUDIT_TYPE_CHILD_CREATE:
1372 audit_log_format(ab, " nametype=CREATE");
1373 break;
1374 default:
1375 audit_log_format(ab, " nametype=UNKNOWN");
1376 break;
1377 }
1378
1379 audit_log_fcaps(ab, n);
1380 audit_log_end(ab);
1381 }
1382
1383 static void audit_log_proctitle(void)
1384 {
1385 int res;
1386 char *buf;
1387 char *msg = "(null)";
1388 int len = strlen(msg);
1389 struct audit_context *context = audit_context();
1390 struct audit_buffer *ab;
1391
1392 if (!context || context->dummy)
1393 return;
1394
1395 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1396 if (!ab)
1397 return; /* audit_panic or being filtered */
1398
1399 audit_log_format(ab, "proctitle=");
1400
1401 /* Not cached */
1402 if (!context->proctitle.value) {
1403 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1404 if (!buf)
1405 goto out;
1406 /* Historically called this from procfs naming */
1407 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1408 if (res == 0) {
1409 kfree(buf);
1410 goto out;
1411 }
1412 res = audit_proctitle_rtrim(buf, res);
1413 if (res == 0) {
1414 kfree(buf);
1415 goto out;
1416 }
1417 context->proctitle.value = buf;
1418 context->proctitle.len = res;
1419 }
1420 msg = context->proctitle.value;
1421 len = context->proctitle.len;
1422 out:
1423 audit_log_n_untrustedstring(ab, msg, len);
1424 audit_log_end(ab);
1425 }
1426
1427 static void audit_log_exit(void)
1428 {
1429 int i, call_panic = 0;
1430 struct audit_context *context = audit_context();
1431 struct audit_buffer *ab;
1432 struct audit_aux_data *aux;
1433 struct audit_names *n;
1434
1435 context->personality = current->personality;
1436
1437 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1438 if (!ab)
1439 return; /* audit_panic has been called */
1440 audit_log_format(ab, "arch=%x syscall=%d",
1441 context->arch, context->major);
1442 if (context->personality != PER_LINUX)
1443 audit_log_format(ab, " per=%lx", context->personality);
1444 if (context->return_valid)
1445 audit_log_format(ab, " success=%s exit=%ld",
1446 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1447 context->return_code);
1448
1449 audit_log_format(ab,
1450 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1451 context->argv[0],
1452 context->argv[1],
1453 context->argv[2],
1454 context->argv[3],
1455 context->name_count);
1456
1457 audit_log_task_info(ab);
1458 audit_log_key(ab, context->filterkey);
1459 audit_log_end(ab);
1460
1461 for (aux = context->aux; aux; aux = aux->next) {
1462
1463 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1464 if (!ab)
1465 continue; /* audit_panic has been called */
1466
1467 switch (aux->type) {
1468
1469 case AUDIT_BPRM_FCAPS: {
1470 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1471 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1472 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1473 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1474 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1475 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1476 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1477 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1478 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1479 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1480 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1481 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1482 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1483 audit_log_format(ab, " frootid=%d",
1484 from_kuid(&init_user_ns,
1485 axs->fcap.rootid));
1486 break; }
1487
1488 }
1489 audit_log_end(ab);
1490 }
1491
1492 if (context->type)
1493 show_special(context, &call_panic);
1494
1495 if (context->fds[0] >= 0) {
1496 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1497 if (ab) {
1498 audit_log_format(ab, "fd0=%d fd1=%d",
1499 context->fds[0], context->fds[1]);
1500 audit_log_end(ab);
1501 }
1502 }
1503
1504 if (context->sockaddr_len) {
1505 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1506 if (ab) {
1507 audit_log_format(ab, "saddr=");
1508 audit_log_n_hex(ab, (void *)context->sockaddr,
1509 context->sockaddr_len);
1510 audit_log_end(ab);
1511 }
1512 }
1513
1514 for (aux = context->aux_pids; aux; aux = aux->next) {
1515 struct audit_aux_data_pids *axs = (void *)aux;
1516
1517 for (i = 0; i < axs->pid_count; i++)
1518 if (audit_log_pid_context(context, axs->target_pid[i],
1519 axs->target_auid[i],
1520 axs->target_uid[i],
1521 axs->target_sessionid[i],
1522 axs->target_sid[i],
1523 axs->target_comm[i]))
1524 call_panic = 1;
1525 }
1526
1527 if (context->target_pid &&
1528 audit_log_pid_context(context, context->target_pid,
1529 context->target_auid, context->target_uid,
1530 context->target_sessionid,
1531 context->target_sid, context->target_comm))
1532 call_panic = 1;
1533
1534 if (context->pwd.dentry && context->pwd.mnt) {
1535 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1536 if (ab) {
1537 audit_log_d_path(ab, "cwd=", &context->pwd);
1538 audit_log_end(ab);
1539 }
1540 }
1541
1542 i = 0;
1543 list_for_each_entry(n, &context->names_list, list) {
1544 if (n->hidden)
1545 continue;
1546 audit_log_name(context, n, NULL, i++, &call_panic);
1547 }
1548
1549 audit_log_proctitle();
1550
1551 /* Send end of event record to help user space know we are finished */
1552 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1553 if (ab)
1554 audit_log_end(ab);
1555 if (call_panic)
1556 audit_panic("error converting sid to string");
1557 }
1558
1559 /**
1560 * __audit_free - free a per-task audit context
1561 * @tsk: task whose audit context block to free
1562 *
1563 * Called from copy_process and do_exit
1564 */
1565 void __audit_free(struct task_struct *tsk)
1566 {
1567 struct audit_context *context = tsk->audit_context;
1568
1569 if (!context)
1570 return;
1571
1572 if (!list_empty(&context->killed_trees))
1573 audit_kill_trees(context);
1574
1575 /* We are called either by do_exit() or the fork() error handling code;
1576 * in the former case tsk == current and in the latter tsk is a
1577 * random task_struct that doesn't doesn't have any meaningful data we
1578 * need to log via audit_log_exit().
1579 */
1580 if (tsk == current && !context->dummy && context->in_syscall) {
1581 context->return_valid = 0;
1582 context->return_code = 0;
1583
1584 audit_filter_syscall(tsk, context,
1585 &audit_filter_list[AUDIT_FILTER_EXIT]);
1586 audit_filter_inodes(tsk, context);
1587 if (context->current_state == AUDIT_RECORD_CONTEXT)
1588 audit_log_exit();
1589 }
1590
1591 audit_set_context(tsk, NULL);
1592 audit_free_context(context);
1593 }
1594
1595 /**
1596 * __audit_syscall_entry - fill in an audit record at syscall entry
1597 * @major: major syscall type (function)
1598 * @a1: additional syscall register 1
1599 * @a2: additional syscall register 2
1600 * @a3: additional syscall register 3
1601 * @a4: additional syscall register 4
1602 *
1603 * Fill in audit context at syscall entry. This only happens if the
1604 * audit context was created when the task was created and the state or
1605 * filters demand the audit context be built. If the state from the
1606 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1607 * then the record will be written at syscall exit time (otherwise, it
1608 * will only be written if another part of the kernel requests that it
1609 * be written).
1610 */
1611 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1612 unsigned long a3, unsigned long a4)
1613 {
1614 struct audit_context *context = audit_context();
1615 enum audit_state state;
1616
1617 if (!audit_enabled || !context)
1618 return;
1619
1620 BUG_ON(context->in_syscall || context->name_count);
1621
1622 state = context->state;
1623 if (state == AUDIT_DISABLED)
1624 return;
1625
1626 context->dummy = !audit_n_rules;
1627 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1628 context->prio = 0;
1629 if (auditd_test_task(current))
1630 return;
1631 }
1632
1633 context->arch = syscall_get_arch(current);
1634 context->major = major;
1635 context->argv[0] = a1;
1636 context->argv[1] = a2;
1637 context->argv[2] = a3;
1638 context->argv[3] = a4;
1639 context->serial = 0;
1640 context->in_syscall = 1;
1641 context->current_state = state;
1642 context->ppid = 0;
1643 ktime_get_coarse_real_ts64(&context->ctime);
1644 }
1645
1646 /**
1647 * __audit_syscall_exit - deallocate audit context after a system call
1648 * @success: success value of the syscall
1649 * @return_code: return value of the syscall
1650 *
1651 * Tear down after system call. If the audit context has been marked as
1652 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1653 * filtering, or because some other part of the kernel wrote an audit
1654 * message), then write out the syscall information. In call cases,
1655 * free the names stored from getname().
1656 */
1657 void __audit_syscall_exit(int success, long return_code)
1658 {
1659 struct audit_context *context;
1660
1661 context = audit_context();
1662 if (!context)
1663 return;
1664
1665 if (!list_empty(&context->killed_trees))
1666 audit_kill_trees(context);
1667
1668 if (!context->dummy && context->in_syscall) {
1669 if (success)
1670 context->return_valid = AUDITSC_SUCCESS;
1671 else
1672 context->return_valid = AUDITSC_FAILURE;
1673
1674 /*
1675 * we need to fix up the return code in the audit logs if the
1676 * actual return codes are later going to be fixed up by the
1677 * arch specific signal handlers
1678 *
1679 * This is actually a test for:
1680 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1681 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1682 *
1683 * but is faster than a bunch of ||
1684 */
1685 if (unlikely(return_code <= -ERESTARTSYS) &&
1686 (return_code >= -ERESTART_RESTARTBLOCK) &&
1687 (return_code != -ENOIOCTLCMD))
1688 context->return_code = -EINTR;
1689 else
1690 context->return_code = return_code;
1691
1692 audit_filter_syscall(current, context,
1693 &audit_filter_list[AUDIT_FILTER_EXIT]);
1694 audit_filter_inodes(current, context);
1695 if (context->current_state == AUDIT_RECORD_CONTEXT)
1696 audit_log_exit();
1697 }
1698
1699 context->in_syscall = 0;
1700 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1701
1702 audit_free_module(context);
1703 audit_free_names(context);
1704 unroll_tree_refs(context, NULL, 0);
1705 audit_free_aux(context);
1706 context->aux = NULL;
1707 context->aux_pids = NULL;
1708 context->target_pid = 0;
1709 context->target_sid = 0;
1710 context->sockaddr_len = 0;
1711 context->type = 0;
1712 context->fds[0] = -1;
1713 if (context->state != AUDIT_RECORD_CONTEXT) {
1714 kfree(context->filterkey);
1715 context->filterkey = NULL;
1716 }
1717 }
1718
1719 static inline void handle_one(const struct inode *inode)
1720 {
1721 struct audit_context *context;
1722 struct audit_tree_refs *p;
1723 struct audit_chunk *chunk;
1724 int count;
1725 if (likely(!inode->i_fsnotify_marks))
1726 return;
1727 context = audit_context();
1728 p = context->trees;
1729 count = context->tree_count;
1730 rcu_read_lock();
1731 chunk = audit_tree_lookup(inode);
1732 rcu_read_unlock();
1733 if (!chunk)
1734 return;
1735 if (likely(put_tree_ref(context, chunk)))
1736 return;
1737 if (unlikely(!grow_tree_refs(context))) {
1738 pr_warn("out of memory, audit has lost a tree reference\n");
1739 audit_set_auditable(context);
1740 audit_put_chunk(chunk);
1741 unroll_tree_refs(context, p, count);
1742 return;
1743 }
1744 put_tree_ref(context, chunk);
1745 }
1746
1747 static void handle_path(const struct dentry *dentry)
1748 {
1749 struct audit_context *context;
1750 struct audit_tree_refs *p;
1751 const struct dentry *d, *parent;
1752 struct audit_chunk *drop;
1753 unsigned long seq;
1754 int count;
1755
1756 context = audit_context();
1757 p = context->trees;
1758 count = context->tree_count;
1759 retry:
1760 drop = NULL;
1761 d = dentry;
1762 rcu_read_lock();
1763 seq = read_seqbegin(&rename_lock);
1764 for(;;) {
1765 struct inode *inode = d_backing_inode(d);
1766 if (inode && unlikely(inode->i_fsnotify_marks)) {
1767 struct audit_chunk *chunk;
1768 chunk = audit_tree_lookup(inode);
1769 if (chunk) {
1770 if (unlikely(!put_tree_ref(context, chunk))) {
1771 drop = chunk;
1772 break;
1773 }
1774 }
1775 }
1776 parent = d->d_parent;
1777 if (parent == d)
1778 break;
1779 d = parent;
1780 }
1781 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1782 rcu_read_unlock();
1783 if (!drop) {
1784 /* just a race with rename */
1785 unroll_tree_refs(context, p, count);
1786 goto retry;
1787 }
1788 audit_put_chunk(drop);
1789 if (grow_tree_refs(context)) {
1790 /* OK, got more space */
1791 unroll_tree_refs(context, p, count);
1792 goto retry;
1793 }
1794 /* too bad */
1795 pr_warn("out of memory, audit has lost a tree reference\n");
1796 unroll_tree_refs(context, p, count);
1797 audit_set_auditable(context);
1798 return;
1799 }
1800 rcu_read_unlock();
1801 }
1802
1803 static struct audit_names *audit_alloc_name(struct audit_context *context,
1804 unsigned char type)
1805 {
1806 struct audit_names *aname;
1807
1808 if (context->name_count < AUDIT_NAMES) {
1809 aname = &context->preallocated_names[context->name_count];
1810 memset(aname, 0, sizeof(*aname));
1811 } else {
1812 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1813 if (!aname)
1814 return NULL;
1815 aname->should_free = true;
1816 }
1817
1818 aname->ino = AUDIT_INO_UNSET;
1819 aname->type = type;
1820 list_add_tail(&aname->list, &context->names_list);
1821
1822 context->name_count++;
1823 return aname;
1824 }
1825
1826 /**
1827 * __audit_reusename - fill out filename with info from existing entry
1828 * @uptr: userland ptr to pathname
1829 *
1830 * Search the audit_names list for the current audit context. If there is an
1831 * existing entry with a matching "uptr" then return the filename
1832 * associated with that audit_name. If not, return NULL.
1833 */
1834 struct filename *
1835 __audit_reusename(const __user char *uptr)
1836 {
1837 struct audit_context *context = audit_context();
1838 struct audit_names *n;
1839
1840 list_for_each_entry(n, &context->names_list, list) {
1841 if (!n->name)
1842 continue;
1843 if (n->name->uptr == uptr) {
1844 n->name->refcnt++;
1845 return n->name;
1846 }
1847 }
1848 return NULL;
1849 }
1850
1851 /**
1852 * __audit_getname - add a name to the list
1853 * @name: name to add
1854 *
1855 * Add a name to the list of audit names for this context.
1856 * Called from fs/namei.c:getname().
1857 */
1858 void __audit_getname(struct filename *name)
1859 {
1860 struct audit_context *context = audit_context();
1861 struct audit_names *n;
1862
1863 if (!context->in_syscall)
1864 return;
1865
1866 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1867 if (!n)
1868 return;
1869
1870 n->name = name;
1871 n->name_len = AUDIT_NAME_FULL;
1872 name->aname = n;
1873 name->refcnt++;
1874
1875 if (!context->pwd.dentry)
1876 get_fs_pwd(current->fs, &context->pwd);
1877 }
1878
1879 static inline int audit_copy_fcaps(struct audit_names *name,
1880 const struct dentry *dentry)
1881 {
1882 struct cpu_vfs_cap_data caps;
1883 int rc;
1884
1885 if (!dentry)
1886 return 0;
1887
1888 rc = get_vfs_caps_from_disk(dentry, &caps);
1889 if (rc)
1890 return rc;
1891
1892 name->fcap.permitted = caps.permitted;
1893 name->fcap.inheritable = caps.inheritable;
1894 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1895 name->fcap.rootid = caps.rootid;
1896 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1897 VFS_CAP_REVISION_SHIFT;
1898
1899 return 0;
1900 }
1901
1902 /* Copy inode data into an audit_names. */
1903 static void audit_copy_inode(struct audit_names *name,
1904 const struct dentry *dentry,
1905 struct inode *inode, unsigned int flags)
1906 {
1907 name->ino = inode->i_ino;
1908 name->dev = inode->i_sb->s_dev;
1909 name->mode = inode->i_mode;
1910 name->uid = inode->i_uid;
1911 name->gid = inode->i_gid;
1912 name->rdev = inode->i_rdev;
1913 security_inode_getsecid(inode, &name->osid);
1914 if (flags & AUDIT_INODE_NOEVAL) {
1915 name->fcap_ver = -1;
1916 return;
1917 }
1918 audit_copy_fcaps(name, dentry);
1919 }
1920
1921 /**
1922 * __audit_inode - store the inode and device from a lookup
1923 * @name: name being audited
1924 * @dentry: dentry being audited
1925 * @flags: attributes for this particular entry
1926 */
1927 void __audit_inode(struct filename *name, const struct dentry *dentry,
1928 unsigned int flags)
1929 {
1930 struct audit_context *context = audit_context();
1931 struct inode *inode = d_backing_inode(dentry);
1932 struct audit_names *n;
1933 bool parent = flags & AUDIT_INODE_PARENT;
1934 struct audit_entry *e;
1935 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1936 int i;
1937
1938 if (!context->in_syscall)
1939 return;
1940
1941 rcu_read_lock();
1942 list_for_each_entry_rcu(e, list, list) {
1943 for (i = 0; i < e->rule.field_count; i++) {
1944 struct audit_field *f = &e->rule.fields[i];
1945
1946 if (f->type == AUDIT_FSTYPE
1947 && audit_comparator(inode->i_sb->s_magic,
1948 f->op, f->val)
1949 && e->rule.action == AUDIT_NEVER) {
1950 rcu_read_unlock();
1951 return;
1952 }
1953 }
1954 }
1955 rcu_read_unlock();
1956
1957 if (!name)
1958 goto out_alloc;
1959
1960 /*
1961 * If we have a pointer to an audit_names entry already, then we can
1962 * just use it directly if the type is correct.
1963 */
1964 n = name->aname;
1965 if (n) {
1966 if (parent) {
1967 if (n->type == AUDIT_TYPE_PARENT ||
1968 n->type == AUDIT_TYPE_UNKNOWN)
1969 goto out;
1970 } else {
1971 if (n->type != AUDIT_TYPE_PARENT)
1972 goto out;
1973 }
1974 }
1975
1976 list_for_each_entry_reverse(n, &context->names_list, list) {
1977 if (n->ino) {
1978 /* valid inode number, use that for the comparison */
1979 if (n->ino != inode->i_ino ||
1980 n->dev != inode->i_sb->s_dev)
1981 continue;
1982 } else if (n->name) {
1983 /* inode number has not been set, check the name */
1984 if (strcmp(n->name->name, name->name))
1985 continue;
1986 } else
1987 /* no inode and no name (?!) ... this is odd ... */
1988 continue;
1989
1990 /* match the correct record type */
1991 if (parent) {
1992 if (n->type == AUDIT_TYPE_PARENT ||
1993 n->type == AUDIT_TYPE_UNKNOWN)
1994 goto out;
1995 } else {
1996 if (n->type != AUDIT_TYPE_PARENT)
1997 goto out;
1998 }
1999 }
2000
2001 out_alloc:
2002 /* unable to find an entry with both a matching name and type */
2003 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2004 if (!n)
2005 return;
2006 if (name) {
2007 n->name = name;
2008 name->refcnt++;
2009 }
2010
2011 out:
2012 if (parent) {
2013 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2014 n->type = AUDIT_TYPE_PARENT;
2015 if (flags & AUDIT_INODE_HIDDEN)
2016 n->hidden = true;
2017 } else {
2018 n->name_len = AUDIT_NAME_FULL;
2019 n->type = AUDIT_TYPE_NORMAL;
2020 }
2021 handle_path(dentry);
2022 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2023 }
2024
2025 void __audit_file(const struct file *file)
2026 {
2027 __audit_inode(NULL, file->f_path.dentry, 0);
2028 }
2029
2030 /**
2031 * __audit_inode_child - collect inode info for created/removed objects
2032 * @parent: inode of dentry parent
2033 * @dentry: dentry being audited
2034 * @type: AUDIT_TYPE_* value that we're looking for
2035 *
2036 * For syscalls that create or remove filesystem objects, audit_inode
2037 * can only collect information for the filesystem object's parent.
2038 * This call updates the audit context with the child's information.
2039 * Syscalls that create a new filesystem object must be hooked after
2040 * the object is created. Syscalls that remove a filesystem object
2041 * must be hooked prior, in order to capture the target inode during
2042 * unsuccessful attempts.
2043 */
2044 void __audit_inode_child(struct inode *parent,
2045 const struct dentry *dentry,
2046 const unsigned char type)
2047 {
2048 struct audit_context *context = audit_context();
2049 struct inode *inode = d_backing_inode(dentry);
2050 const struct qstr *dname = &dentry->d_name;
2051 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2052 struct audit_entry *e;
2053 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2054 int i;
2055
2056 if (!context->in_syscall)
2057 return;
2058
2059 rcu_read_lock();
2060 list_for_each_entry_rcu(e, list, list) {
2061 for (i = 0; i < e->rule.field_count; i++) {
2062 struct audit_field *f = &e->rule.fields[i];
2063
2064 if (f->type == AUDIT_FSTYPE
2065 && audit_comparator(parent->i_sb->s_magic,
2066 f->op, f->val)
2067 && e->rule.action == AUDIT_NEVER) {
2068 rcu_read_unlock();
2069 return;
2070 }
2071 }
2072 }
2073 rcu_read_unlock();
2074
2075 if (inode)
2076 handle_one(inode);
2077
2078 /* look for a parent entry first */
2079 list_for_each_entry(n, &context->names_list, list) {
2080 if (!n->name ||
2081 (n->type != AUDIT_TYPE_PARENT &&
2082 n->type != AUDIT_TYPE_UNKNOWN))
2083 continue;
2084
2085 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2086 !audit_compare_dname_path(dname,
2087 n->name->name, n->name_len)) {
2088 if (n->type == AUDIT_TYPE_UNKNOWN)
2089 n->type = AUDIT_TYPE_PARENT;
2090 found_parent = n;
2091 break;
2092 }
2093 }
2094
2095 /* is there a matching child entry? */
2096 list_for_each_entry(n, &context->names_list, list) {
2097 /* can only match entries that have a name */
2098 if (!n->name ||
2099 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2100 continue;
2101
2102 if (!strcmp(dname->name, n->name->name) ||
2103 !audit_compare_dname_path(dname, n->name->name,
2104 found_parent ?
2105 found_parent->name_len :
2106 AUDIT_NAME_FULL)) {
2107 if (n->type == AUDIT_TYPE_UNKNOWN)
2108 n->type = type;
2109 found_child = n;
2110 break;
2111 }
2112 }
2113
2114 if (!found_parent) {
2115 /* create a new, "anonymous" parent record */
2116 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2117 if (!n)
2118 return;
2119 audit_copy_inode(n, NULL, parent, 0);
2120 }
2121
2122 if (!found_child) {
2123 found_child = audit_alloc_name(context, type);
2124 if (!found_child)
2125 return;
2126
2127 /* Re-use the name belonging to the slot for a matching parent
2128 * directory. All names for this context are relinquished in
2129 * audit_free_names() */
2130 if (found_parent) {
2131 found_child->name = found_parent->name;
2132 found_child->name_len = AUDIT_NAME_FULL;
2133 found_child->name->refcnt++;
2134 }
2135 }
2136
2137 if (inode)
2138 audit_copy_inode(found_child, dentry, inode, 0);
2139 else
2140 found_child->ino = AUDIT_INO_UNSET;
2141 }
2142 EXPORT_SYMBOL_GPL(__audit_inode_child);
2143
2144 /**
2145 * auditsc_get_stamp - get local copies of audit_context values
2146 * @ctx: audit_context for the task
2147 * @t: timespec64 to store time recorded in the audit_context
2148 * @serial: serial value that is recorded in the audit_context
2149 *
2150 * Also sets the context as auditable.
2151 */
2152 int auditsc_get_stamp(struct audit_context *ctx,
2153 struct timespec64 *t, unsigned int *serial)
2154 {
2155 if (!ctx->in_syscall)
2156 return 0;
2157 if (!ctx->serial)
2158 ctx->serial = audit_serial();
2159 t->tv_sec = ctx->ctime.tv_sec;
2160 t->tv_nsec = ctx->ctime.tv_nsec;
2161 *serial = ctx->serial;
2162 if (!ctx->prio) {
2163 ctx->prio = 1;
2164 ctx->current_state = AUDIT_RECORD_CONTEXT;
2165 }
2166 return 1;
2167 }
2168
2169 /**
2170 * __audit_mq_open - record audit data for a POSIX MQ open
2171 * @oflag: open flag
2172 * @mode: mode bits
2173 * @attr: queue attributes
2174 *
2175 */
2176 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2177 {
2178 struct audit_context *context = audit_context();
2179
2180 if (attr)
2181 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2182 else
2183 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2184
2185 context->mq_open.oflag = oflag;
2186 context->mq_open.mode = mode;
2187
2188 context->type = AUDIT_MQ_OPEN;
2189 }
2190
2191 /**
2192 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2193 * @mqdes: MQ descriptor
2194 * @msg_len: Message length
2195 * @msg_prio: Message priority
2196 * @abs_timeout: Message timeout in absolute time
2197 *
2198 */
2199 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2200 const struct timespec64 *abs_timeout)
2201 {
2202 struct audit_context *context = audit_context();
2203 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2204
2205 if (abs_timeout)
2206 memcpy(p, abs_timeout, sizeof(*p));
2207 else
2208 memset(p, 0, sizeof(*p));
2209
2210 context->mq_sendrecv.mqdes = mqdes;
2211 context->mq_sendrecv.msg_len = msg_len;
2212 context->mq_sendrecv.msg_prio = msg_prio;
2213
2214 context->type = AUDIT_MQ_SENDRECV;
2215 }
2216
2217 /**
2218 * __audit_mq_notify - record audit data for a POSIX MQ notify
2219 * @mqdes: MQ descriptor
2220 * @notification: Notification event
2221 *
2222 */
2223
2224 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2225 {
2226 struct audit_context *context = audit_context();
2227
2228 if (notification)
2229 context->mq_notify.sigev_signo = notification->sigev_signo;
2230 else
2231 context->mq_notify.sigev_signo = 0;
2232
2233 context->mq_notify.mqdes = mqdes;
2234 context->type = AUDIT_MQ_NOTIFY;
2235 }
2236
2237 /**
2238 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2239 * @mqdes: MQ descriptor
2240 * @mqstat: MQ flags
2241 *
2242 */
2243 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2244 {
2245 struct audit_context *context = audit_context();
2246 context->mq_getsetattr.mqdes = mqdes;
2247 context->mq_getsetattr.mqstat = *mqstat;
2248 context->type = AUDIT_MQ_GETSETATTR;
2249 }
2250
2251 /**
2252 * __audit_ipc_obj - record audit data for ipc object
2253 * @ipcp: ipc permissions
2254 *
2255 */
2256 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2257 {
2258 struct audit_context *context = audit_context();
2259 context->ipc.uid = ipcp->uid;
2260 context->ipc.gid = ipcp->gid;
2261 context->ipc.mode = ipcp->mode;
2262 context->ipc.has_perm = 0;
2263 security_ipc_getsecid(ipcp, &context->ipc.osid);
2264 context->type = AUDIT_IPC;
2265 }
2266
2267 /**
2268 * __audit_ipc_set_perm - record audit data for new ipc permissions
2269 * @qbytes: msgq bytes
2270 * @uid: msgq user id
2271 * @gid: msgq group id
2272 * @mode: msgq mode (permissions)
2273 *
2274 * Called only after audit_ipc_obj().
2275 */
2276 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2277 {
2278 struct audit_context *context = audit_context();
2279
2280 context->ipc.qbytes = qbytes;
2281 context->ipc.perm_uid = uid;
2282 context->ipc.perm_gid = gid;
2283 context->ipc.perm_mode = mode;
2284 context->ipc.has_perm = 1;
2285 }
2286
2287 void __audit_bprm(struct linux_binprm *bprm)
2288 {
2289 struct audit_context *context = audit_context();
2290
2291 context->type = AUDIT_EXECVE;
2292 context->execve.argc = bprm->argc;
2293 }
2294
2295
2296 /**
2297 * __audit_socketcall - record audit data for sys_socketcall
2298 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2299 * @args: args array
2300 *
2301 */
2302 int __audit_socketcall(int nargs, unsigned long *args)
2303 {
2304 struct audit_context *context = audit_context();
2305
2306 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2307 return -EINVAL;
2308 context->type = AUDIT_SOCKETCALL;
2309 context->socketcall.nargs = nargs;
2310 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2311 return 0;
2312 }
2313
2314 /**
2315 * __audit_fd_pair - record audit data for pipe and socketpair
2316 * @fd1: the first file descriptor
2317 * @fd2: the second file descriptor
2318 *
2319 */
2320 void __audit_fd_pair(int fd1, int fd2)
2321 {
2322 struct audit_context *context = audit_context();
2323 context->fds[0] = fd1;
2324 context->fds[1] = fd2;
2325 }
2326
2327 /**
2328 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2329 * @len: data length in user space
2330 * @a: data address in kernel space
2331 *
2332 * Returns 0 for success or NULL context or < 0 on error.
2333 */
2334 int __audit_sockaddr(int len, void *a)
2335 {
2336 struct audit_context *context = audit_context();
2337
2338 if (!context->sockaddr) {
2339 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2340 if (!p)
2341 return -ENOMEM;
2342 context->sockaddr = p;
2343 }
2344
2345 context->sockaddr_len = len;
2346 memcpy(context->sockaddr, a, len);
2347 return 0;
2348 }
2349
2350 void __audit_ptrace(struct task_struct *t)
2351 {
2352 struct audit_context *context = audit_context();
2353
2354 context->target_pid = task_tgid_nr(t);
2355 context->target_auid = audit_get_loginuid(t);
2356 context->target_uid = task_uid(t);
2357 context->target_sessionid = audit_get_sessionid(t);
2358 security_task_getsecid(t, &context->target_sid);
2359 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2360 }
2361
2362 /**
2363 * audit_signal_info - record signal info for shutting down audit subsystem
2364 * @sig: signal value
2365 * @t: task being signaled
2366 *
2367 * If the audit subsystem is being terminated, record the task (pid)
2368 * and uid that is doing that.
2369 */
2370 int audit_signal_info(int sig, struct task_struct *t)
2371 {
2372 struct audit_aux_data_pids *axp;
2373 struct audit_context *ctx = audit_context();
2374 kuid_t uid = current_uid(), auid, t_uid = task_uid(t);
2375
2376 if (auditd_test_task(t) &&
2377 (sig == SIGTERM || sig == SIGHUP ||
2378 sig == SIGUSR1 || sig == SIGUSR2)) {
2379 audit_sig_pid = task_tgid_nr(current);
2380 auid = audit_get_loginuid(current);
2381 if (uid_valid(auid))
2382 audit_sig_uid = auid;
2383 else
2384 audit_sig_uid = uid;
2385 security_task_getsecid(current, &audit_sig_sid);
2386 }
2387
2388 if (!audit_signals || audit_dummy_context())
2389 return 0;
2390
2391 /* optimize the common case by putting first signal recipient directly
2392 * in audit_context */
2393 if (!ctx->target_pid) {
2394 ctx->target_pid = task_tgid_nr(t);
2395 ctx->target_auid = audit_get_loginuid(t);
2396 ctx->target_uid = t_uid;
2397 ctx->target_sessionid = audit_get_sessionid(t);
2398 security_task_getsecid(t, &ctx->target_sid);
2399 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2400 return 0;
2401 }
2402
2403 axp = (void *)ctx->aux_pids;
2404 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2405 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2406 if (!axp)
2407 return -ENOMEM;
2408
2409 axp->d.type = AUDIT_OBJ_PID;
2410 axp->d.next = ctx->aux_pids;
2411 ctx->aux_pids = (void *)axp;
2412 }
2413 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2414
2415 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2416 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2417 axp->target_uid[axp->pid_count] = t_uid;
2418 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2419 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2420 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2421 axp->pid_count++;
2422
2423 return 0;
2424 }
2425
2426 /**
2427 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2428 * @bprm: pointer to the bprm being processed
2429 * @new: the proposed new credentials
2430 * @old: the old credentials
2431 *
2432 * Simply check if the proc already has the caps given by the file and if not
2433 * store the priv escalation info for later auditing at the end of the syscall
2434 *
2435 * -Eric
2436 */
2437 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2438 const struct cred *new, const struct cred *old)
2439 {
2440 struct audit_aux_data_bprm_fcaps *ax;
2441 struct audit_context *context = audit_context();
2442 struct cpu_vfs_cap_data vcaps;
2443
2444 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2445 if (!ax)
2446 return -ENOMEM;
2447
2448 ax->d.type = AUDIT_BPRM_FCAPS;
2449 ax->d.next = context->aux;
2450 context->aux = (void *)ax;
2451
2452 get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2453
2454 ax->fcap.permitted = vcaps.permitted;
2455 ax->fcap.inheritable = vcaps.inheritable;
2456 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2457 ax->fcap.rootid = vcaps.rootid;
2458 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2459
2460 ax->old_pcap.permitted = old->cap_permitted;
2461 ax->old_pcap.inheritable = old->cap_inheritable;
2462 ax->old_pcap.effective = old->cap_effective;
2463 ax->old_pcap.ambient = old->cap_ambient;
2464
2465 ax->new_pcap.permitted = new->cap_permitted;
2466 ax->new_pcap.inheritable = new->cap_inheritable;
2467 ax->new_pcap.effective = new->cap_effective;
2468 ax->new_pcap.ambient = new->cap_ambient;
2469 return 0;
2470 }
2471
2472 /**
2473 * __audit_log_capset - store information about the arguments to the capset syscall
2474 * @new: the new credentials
2475 * @old: the old (current) credentials
2476 *
2477 * Record the arguments userspace sent to sys_capset for later printing by the
2478 * audit system if applicable
2479 */
2480 void __audit_log_capset(const struct cred *new, const struct cred *old)
2481 {
2482 struct audit_context *context = audit_context();
2483 context->capset.pid = task_tgid_nr(current);
2484 context->capset.cap.effective = new->cap_effective;
2485 context->capset.cap.inheritable = new->cap_effective;
2486 context->capset.cap.permitted = new->cap_permitted;
2487 context->capset.cap.ambient = new->cap_ambient;
2488 context->type = AUDIT_CAPSET;
2489 }
2490
2491 void __audit_mmap_fd(int fd, int flags)
2492 {
2493 struct audit_context *context = audit_context();
2494 context->mmap.fd = fd;
2495 context->mmap.flags = flags;
2496 context->type = AUDIT_MMAP;
2497 }
2498
2499 void __audit_log_kern_module(char *name)
2500 {
2501 struct audit_context *context = audit_context();
2502
2503 context->module.name = kstrdup(name, GFP_KERNEL);
2504 if (!context->module.name)
2505 audit_log_lost("out of memory in __audit_log_kern_module");
2506 context->type = AUDIT_KERN_MODULE;
2507 }
2508
2509 void __audit_fanotify(unsigned int response)
2510 {
2511 audit_log(audit_context(), GFP_KERNEL,
2512 AUDIT_FANOTIFY, "resp=%u", response);
2513 }
2514
2515 void __audit_tk_injoffset(struct timespec64 offset)
2516 {
2517 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2518 "sec=%lli nsec=%li",
2519 (long long)offset.tv_sec, offset.tv_nsec);
2520 }
2521
2522 static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2523 const char *op, enum audit_ntp_type type)
2524 {
2525 const struct audit_ntp_val *val = &ad->vals[type];
2526
2527 if (val->newval == val->oldval)
2528 return;
2529
2530 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2531 "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2532 }
2533
2534 void __audit_ntp_log(const struct audit_ntp_data *ad)
2535 {
2536 audit_log_ntp_val(ad, "offset", AUDIT_NTP_OFFSET);
2537 audit_log_ntp_val(ad, "freq", AUDIT_NTP_FREQ);
2538 audit_log_ntp_val(ad, "status", AUDIT_NTP_STATUS);
2539 audit_log_ntp_val(ad, "tai", AUDIT_NTP_TAI);
2540 audit_log_ntp_val(ad, "tick", AUDIT_NTP_TICK);
2541 audit_log_ntp_val(ad, "adjust", AUDIT_NTP_ADJUST);
2542 }
2543
2544 static void audit_log_task(struct audit_buffer *ab)
2545 {
2546 kuid_t auid, uid;
2547 kgid_t gid;
2548 unsigned int sessionid;
2549 char comm[sizeof(current->comm)];
2550
2551 auid = audit_get_loginuid(current);
2552 sessionid = audit_get_sessionid(current);
2553 current_uid_gid(&uid, &gid);
2554
2555 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2556 from_kuid(&init_user_ns, auid),
2557 from_kuid(&init_user_ns, uid),
2558 from_kgid(&init_user_ns, gid),
2559 sessionid);
2560 audit_log_task_context(ab);
2561 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2562 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2563 audit_log_d_path_exe(ab, current->mm);
2564 }
2565
2566 /**
2567 * audit_core_dumps - record information about processes that end abnormally
2568 * @signr: signal value
2569 *
2570 * If a process ends with a core dump, something fishy is going on and we
2571 * should record the event for investigation.
2572 */
2573 void audit_core_dumps(long signr)
2574 {
2575 struct audit_buffer *ab;
2576
2577 if (!audit_enabled)
2578 return;
2579
2580 if (signr == SIGQUIT) /* don't care for those */
2581 return;
2582
2583 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2584 if (unlikely(!ab))
2585 return;
2586 audit_log_task(ab);
2587 audit_log_format(ab, " sig=%ld res=1", signr);
2588 audit_log_end(ab);
2589 }
2590
2591 /**
2592 * audit_seccomp - record information about a seccomp action
2593 * @syscall: syscall number
2594 * @signr: signal value
2595 * @code: the seccomp action
2596 *
2597 * Record the information associated with a seccomp action. Event filtering for
2598 * seccomp actions that are not to be logged is done in seccomp_log().
2599 * Therefore, this function forces auditing independent of the audit_enabled
2600 * and dummy context state because seccomp actions should be logged even when
2601 * audit is not in use.
2602 */
2603 void audit_seccomp(unsigned long syscall, long signr, int code)
2604 {
2605 struct audit_buffer *ab;
2606
2607 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2608 if (unlikely(!ab))
2609 return;
2610 audit_log_task(ab);
2611 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2612 signr, syscall_get_arch(current), syscall,
2613 in_compat_syscall(), KSTK_EIP(current), code);
2614 audit_log_end(ab);
2615 }
2616
2617 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2618 int res)
2619 {
2620 struct audit_buffer *ab;
2621
2622 if (!audit_enabled)
2623 return;
2624
2625 ab = audit_log_start(audit_context(), GFP_KERNEL,
2626 AUDIT_CONFIG_CHANGE);
2627 if (unlikely(!ab))
2628 return;
2629
2630 audit_log_format(ab,
2631 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2632 names, old_names, res);
2633 audit_log_end(ab);
2634 }
2635
2636 struct list_head *audit_killed_trees(void)
2637 {
2638 struct audit_context *ctx = audit_context();
2639 if (likely(!ctx || !ctx->in_syscall))
2640 return NULL;
2641 return &ctx->killed_trees;
2642 }