]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/bpf/verifier.c
bpf: Introduce bpf sk local storage
[thirdparty/linux.git] / kernel / bpf / verifier.c
1 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
2 * Copyright (c) 2016 Facebook
3 * Copyright (c) 2018 Covalent IO, Inc. http://covalent.io
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of version 2 of the GNU General Public
7 * License as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
13 */
14 #include <uapi/linux/btf.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/slab.h>
18 #include <linux/bpf.h>
19 #include <linux/btf.h>
20 #include <linux/bpf_verifier.h>
21 #include <linux/filter.h>
22 #include <net/netlink.h>
23 #include <linux/file.h>
24 #include <linux/vmalloc.h>
25 #include <linux/stringify.h>
26 #include <linux/bsearch.h>
27 #include <linux/sort.h>
28 #include <linux/perf_event.h>
29 #include <linux/ctype.h>
30
31 #include "disasm.h"
32
33 static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
34 #define BPF_PROG_TYPE(_id, _name) \
35 [_id] = & _name ## _verifier_ops,
36 #define BPF_MAP_TYPE(_id, _ops)
37 #include <linux/bpf_types.h>
38 #undef BPF_PROG_TYPE
39 #undef BPF_MAP_TYPE
40 };
41
42 /* bpf_check() is a static code analyzer that walks eBPF program
43 * instruction by instruction and updates register/stack state.
44 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
45 *
46 * The first pass is depth-first-search to check that the program is a DAG.
47 * It rejects the following programs:
48 * - larger than BPF_MAXINSNS insns
49 * - if loop is present (detected via back-edge)
50 * - unreachable insns exist (shouldn't be a forest. program = one function)
51 * - out of bounds or malformed jumps
52 * The second pass is all possible path descent from the 1st insn.
53 * Since it's analyzing all pathes through the program, the length of the
54 * analysis is limited to 64k insn, which may be hit even if total number of
55 * insn is less then 4K, but there are too many branches that change stack/regs.
56 * Number of 'branches to be analyzed' is limited to 1k
57 *
58 * On entry to each instruction, each register has a type, and the instruction
59 * changes the types of the registers depending on instruction semantics.
60 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
61 * copied to R1.
62 *
63 * All registers are 64-bit.
64 * R0 - return register
65 * R1-R5 argument passing registers
66 * R6-R9 callee saved registers
67 * R10 - frame pointer read-only
68 *
69 * At the start of BPF program the register R1 contains a pointer to bpf_context
70 * and has type PTR_TO_CTX.
71 *
72 * Verifier tracks arithmetic operations on pointers in case:
73 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
74 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
75 * 1st insn copies R10 (which has FRAME_PTR) type into R1
76 * and 2nd arithmetic instruction is pattern matched to recognize
77 * that it wants to construct a pointer to some element within stack.
78 * So after 2nd insn, the register R1 has type PTR_TO_STACK
79 * (and -20 constant is saved for further stack bounds checking).
80 * Meaning that this reg is a pointer to stack plus known immediate constant.
81 *
82 * Most of the time the registers have SCALAR_VALUE type, which
83 * means the register has some value, but it's not a valid pointer.
84 * (like pointer plus pointer becomes SCALAR_VALUE type)
85 *
86 * When verifier sees load or store instructions the type of base register
87 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK, PTR_TO_SOCKET. These are
88 * four pointer types recognized by check_mem_access() function.
89 *
90 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
91 * and the range of [ptr, ptr + map's value_size) is accessible.
92 *
93 * registers used to pass values to function calls are checked against
94 * function argument constraints.
95 *
96 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
97 * It means that the register type passed to this function must be
98 * PTR_TO_STACK and it will be used inside the function as
99 * 'pointer to map element key'
100 *
101 * For example the argument constraints for bpf_map_lookup_elem():
102 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
103 * .arg1_type = ARG_CONST_MAP_PTR,
104 * .arg2_type = ARG_PTR_TO_MAP_KEY,
105 *
106 * ret_type says that this function returns 'pointer to map elem value or null'
107 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
108 * 2nd argument should be a pointer to stack, which will be used inside
109 * the helper function as a pointer to map element key.
110 *
111 * On the kernel side the helper function looks like:
112 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
113 * {
114 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
115 * void *key = (void *) (unsigned long) r2;
116 * void *value;
117 *
118 * here kernel can access 'key' and 'map' pointers safely, knowing that
119 * [key, key + map->key_size) bytes are valid and were initialized on
120 * the stack of eBPF program.
121 * }
122 *
123 * Corresponding eBPF program may look like:
124 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
125 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
126 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
127 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
128 * here verifier looks at prototype of map_lookup_elem() and sees:
129 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
130 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
131 *
132 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
133 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
134 * and were initialized prior to this call.
135 * If it's ok, then verifier allows this BPF_CALL insn and looks at
136 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
137 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
138 * returns ether pointer to map value or NULL.
139 *
140 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
141 * insn, the register holding that pointer in the true branch changes state to
142 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
143 * branch. See check_cond_jmp_op().
144 *
145 * After the call R0 is set to return type of the function and registers R1-R5
146 * are set to NOT_INIT to indicate that they are no longer readable.
147 *
148 * The following reference types represent a potential reference to a kernel
149 * resource which, after first being allocated, must be checked and freed by
150 * the BPF program:
151 * - PTR_TO_SOCKET_OR_NULL, PTR_TO_SOCKET
152 *
153 * When the verifier sees a helper call return a reference type, it allocates a
154 * pointer id for the reference and stores it in the current function state.
155 * Similar to the way that PTR_TO_MAP_VALUE_OR_NULL is converted into
156 * PTR_TO_MAP_VALUE, PTR_TO_SOCKET_OR_NULL becomes PTR_TO_SOCKET when the type
157 * passes through a NULL-check conditional. For the branch wherein the state is
158 * changed to CONST_IMM, the verifier releases the reference.
159 *
160 * For each helper function that allocates a reference, such as
161 * bpf_sk_lookup_tcp(), there is a corresponding release function, such as
162 * bpf_sk_release(). When a reference type passes into the release function,
163 * the verifier also releases the reference. If any unchecked or unreleased
164 * reference remains at the end of the program, the verifier rejects it.
165 */
166
167 /* verifier_state + insn_idx are pushed to stack when branch is encountered */
168 struct bpf_verifier_stack_elem {
169 /* verifer state is 'st'
170 * before processing instruction 'insn_idx'
171 * and after processing instruction 'prev_insn_idx'
172 */
173 struct bpf_verifier_state st;
174 int insn_idx;
175 int prev_insn_idx;
176 struct bpf_verifier_stack_elem *next;
177 };
178
179 #define BPF_COMPLEXITY_LIMIT_STACK 1024
180 #define BPF_COMPLEXITY_LIMIT_STATES 64
181
182 #define BPF_MAP_PTR_UNPRIV 1UL
183 #define BPF_MAP_PTR_POISON ((void *)((0xeB9FUL << 1) + \
184 POISON_POINTER_DELTA))
185 #define BPF_MAP_PTR(X) ((struct bpf_map *)((X) & ~BPF_MAP_PTR_UNPRIV))
186
187 static bool bpf_map_ptr_poisoned(const struct bpf_insn_aux_data *aux)
188 {
189 return BPF_MAP_PTR(aux->map_state) == BPF_MAP_PTR_POISON;
190 }
191
192 static bool bpf_map_ptr_unpriv(const struct bpf_insn_aux_data *aux)
193 {
194 return aux->map_state & BPF_MAP_PTR_UNPRIV;
195 }
196
197 static void bpf_map_ptr_store(struct bpf_insn_aux_data *aux,
198 const struct bpf_map *map, bool unpriv)
199 {
200 BUILD_BUG_ON((unsigned long)BPF_MAP_PTR_POISON & BPF_MAP_PTR_UNPRIV);
201 unpriv |= bpf_map_ptr_unpriv(aux);
202 aux->map_state = (unsigned long)map |
203 (unpriv ? BPF_MAP_PTR_UNPRIV : 0UL);
204 }
205
206 struct bpf_call_arg_meta {
207 struct bpf_map *map_ptr;
208 bool raw_mode;
209 bool pkt_access;
210 int regno;
211 int access_size;
212 s64 msize_smax_value;
213 u64 msize_umax_value;
214 int ref_obj_id;
215 int func_id;
216 };
217
218 static DEFINE_MUTEX(bpf_verifier_lock);
219
220 static const struct bpf_line_info *
221 find_linfo(const struct bpf_verifier_env *env, u32 insn_off)
222 {
223 const struct bpf_line_info *linfo;
224 const struct bpf_prog *prog;
225 u32 i, nr_linfo;
226
227 prog = env->prog;
228 nr_linfo = prog->aux->nr_linfo;
229
230 if (!nr_linfo || insn_off >= prog->len)
231 return NULL;
232
233 linfo = prog->aux->linfo;
234 for (i = 1; i < nr_linfo; i++)
235 if (insn_off < linfo[i].insn_off)
236 break;
237
238 return &linfo[i - 1];
239 }
240
241 void bpf_verifier_vlog(struct bpf_verifier_log *log, const char *fmt,
242 va_list args)
243 {
244 unsigned int n;
245
246 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
247
248 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
249 "verifier log line truncated - local buffer too short\n");
250
251 n = min(log->len_total - log->len_used - 1, n);
252 log->kbuf[n] = '\0';
253
254 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
255 log->len_used += n;
256 else
257 log->ubuf = NULL;
258 }
259
260 /* log_level controls verbosity level of eBPF verifier.
261 * bpf_verifier_log_write() is used to dump the verification trace to the log,
262 * so the user can figure out what's wrong with the program
263 */
264 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
265 const char *fmt, ...)
266 {
267 va_list args;
268
269 if (!bpf_verifier_log_needed(&env->log))
270 return;
271
272 va_start(args, fmt);
273 bpf_verifier_vlog(&env->log, fmt, args);
274 va_end(args);
275 }
276 EXPORT_SYMBOL_GPL(bpf_verifier_log_write);
277
278 __printf(2, 3) static void verbose(void *private_data, const char *fmt, ...)
279 {
280 struct bpf_verifier_env *env = private_data;
281 va_list args;
282
283 if (!bpf_verifier_log_needed(&env->log))
284 return;
285
286 va_start(args, fmt);
287 bpf_verifier_vlog(&env->log, fmt, args);
288 va_end(args);
289 }
290
291 static const char *ltrim(const char *s)
292 {
293 while (isspace(*s))
294 s++;
295
296 return s;
297 }
298
299 __printf(3, 4) static void verbose_linfo(struct bpf_verifier_env *env,
300 u32 insn_off,
301 const char *prefix_fmt, ...)
302 {
303 const struct bpf_line_info *linfo;
304
305 if (!bpf_verifier_log_needed(&env->log))
306 return;
307
308 linfo = find_linfo(env, insn_off);
309 if (!linfo || linfo == env->prev_linfo)
310 return;
311
312 if (prefix_fmt) {
313 va_list args;
314
315 va_start(args, prefix_fmt);
316 bpf_verifier_vlog(&env->log, prefix_fmt, args);
317 va_end(args);
318 }
319
320 verbose(env, "%s\n",
321 ltrim(btf_name_by_offset(env->prog->aux->btf,
322 linfo->line_off)));
323
324 env->prev_linfo = linfo;
325 }
326
327 static bool type_is_pkt_pointer(enum bpf_reg_type type)
328 {
329 return type == PTR_TO_PACKET ||
330 type == PTR_TO_PACKET_META;
331 }
332
333 static bool type_is_sk_pointer(enum bpf_reg_type type)
334 {
335 return type == PTR_TO_SOCKET ||
336 type == PTR_TO_SOCK_COMMON ||
337 type == PTR_TO_TCP_SOCK;
338 }
339
340 static bool reg_type_may_be_null(enum bpf_reg_type type)
341 {
342 return type == PTR_TO_MAP_VALUE_OR_NULL ||
343 type == PTR_TO_SOCKET_OR_NULL ||
344 type == PTR_TO_SOCK_COMMON_OR_NULL ||
345 type == PTR_TO_TCP_SOCK_OR_NULL;
346 }
347
348 static bool reg_may_point_to_spin_lock(const struct bpf_reg_state *reg)
349 {
350 return reg->type == PTR_TO_MAP_VALUE &&
351 map_value_has_spin_lock(reg->map_ptr);
352 }
353
354 static bool reg_type_may_be_refcounted_or_null(enum bpf_reg_type type)
355 {
356 return type == PTR_TO_SOCKET ||
357 type == PTR_TO_SOCKET_OR_NULL ||
358 type == PTR_TO_TCP_SOCK ||
359 type == PTR_TO_TCP_SOCK_OR_NULL;
360 }
361
362 static bool arg_type_may_be_refcounted(enum bpf_arg_type type)
363 {
364 return type == ARG_PTR_TO_SOCK_COMMON;
365 }
366
367 /* Determine whether the function releases some resources allocated by another
368 * function call. The first reference type argument will be assumed to be
369 * released by release_reference().
370 */
371 static bool is_release_function(enum bpf_func_id func_id)
372 {
373 return func_id == BPF_FUNC_sk_release;
374 }
375
376 static bool is_acquire_function(enum bpf_func_id func_id)
377 {
378 return func_id == BPF_FUNC_sk_lookup_tcp ||
379 func_id == BPF_FUNC_sk_lookup_udp ||
380 func_id == BPF_FUNC_skc_lookup_tcp;
381 }
382
383 static bool is_ptr_cast_function(enum bpf_func_id func_id)
384 {
385 return func_id == BPF_FUNC_tcp_sock ||
386 func_id == BPF_FUNC_sk_fullsock;
387 }
388
389 /* string representation of 'enum bpf_reg_type' */
390 static const char * const reg_type_str[] = {
391 [NOT_INIT] = "?",
392 [SCALAR_VALUE] = "inv",
393 [PTR_TO_CTX] = "ctx",
394 [CONST_PTR_TO_MAP] = "map_ptr",
395 [PTR_TO_MAP_VALUE] = "map_value",
396 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
397 [PTR_TO_STACK] = "fp",
398 [PTR_TO_PACKET] = "pkt",
399 [PTR_TO_PACKET_META] = "pkt_meta",
400 [PTR_TO_PACKET_END] = "pkt_end",
401 [PTR_TO_FLOW_KEYS] = "flow_keys",
402 [PTR_TO_SOCKET] = "sock",
403 [PTR_TO_SOCKET_OR_NULL] = "sock_or_null",
404 [PTR_TO_SOCK_COMMON] = "sock_common",
405 [PTR_TO_SOCK_COMMON_OR_NULL] = "sock_common_or_null",
406 [PTR_TO_TCP_SOCK] = "tcp_sock",
407 [PTR_TO_TCP_SOCK_OR_NULL] = "tcp_sock_or_null",
408 [PTR_TO_TP_BUFFER] = "tp_buffer",
409 };
410
411 static char slot_type_char[] = {
412 [STACK_INVALID] = '?',
413 [STACK_SPILL] = 'r',
414 [STACK_MISC] = 'm',
415 [STACK_ZERO] = '0',
416 };
417
418 static void print_liveness(struct bpf_verifier_env *env,
419 enum bpf_reg_liveness live)
420 {
421 if (live & (REG_LIVE_READ | REG_LIVE_WRITTEN | REG_LIVE_DONE))
422 verbose(env, "_");
423 if (live & REG_LIVE_READ)
424 verbose(env, "r");
425 if (live & REG_LIVE_WRITTEN)
426 verbose(env, "w");
427 if (live & REG_LIVE_DONE)
428 verbose(env, "D");
429 }
430
431 static struct bpf_func_state *func(struct bpf_verifier_env *env,
432 const struct bpf_reg_state *reg)
433 {
434 struct bpf_verifier_state *cur = env->cur_state;
435
436 return cur->frame[reg->frameno];
437 }
438
439 static void print_verifier_state(struct bpf_verifier_env *env,
440 const struct bpf_func_state *state)
441 {
442 const struct bpf_reg_state *reg;
443 enum bpf_reg_type t;
444 int i;
445
446 if (state->frameno)
447 verbose(env, " frame%d:", state->frameno);
448 for (i = 0; i < MAX_BPF_REG; i++) {
449 reg = &state->regs[i];
450 t = reg->type;
451 if (t == NOT_INIT)
452 continue;
453 verbose(env, " R%d", i);
454 print_liveness(env, reg->live);
455 verbose(env, "=%s", reg_type_str[t]);
456 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
457 tnum_is_const(reg->var_off)) {
458 /* reg->off should be 0 for SCALAR_VALUE */
459 verbose(env, "%lld", reg->var_off.value + reg->off);
460 if (t == PTR_TO_STACK)
461 verbose(env, ",call_%d", func(env, reg)->callsite);
462 } else {
463 verbose(env, "(id=%d", reg->id);
464 if (reg_type_may_be_refcounted_or_null(t))
465 verbose(env, ",ref_obj_id=%d", reg->ref_obj_id);
466 if (t != SCALAR_VALUE)
467 verbose(env, ",off=%d", reg->off);
468 if (type_is_pkt_pointer(t))
469 verbose(env, ",r=%d", reg->range);
470 else if (t == CONST_PTR_TO_MAP ||
471 t == PTR_TO_MAP_VALUE ||
472 t == PTR_TO_MAP_VALUE_OR_NULL)
473 verbose(env, ",ks=%d,vs=%d",
474 reg->map_ptr->key_size,
475 reg->map_ptr->value_size);
476 if (tnum_is_const(reg->var_off)) {
477 /* Typically an immediate SCALAR_VALUE, but
478 * could be a pointer whose offset is too big
479 * for reg->off
480 */
481 verbose(env, ",imm=%llx", reg->var_off.value);
482 } else {
483 if (reg->smin_value != reg->umin_value &&
484 reg->smin_value != S64_MIN)
485 verbose(env, ",smin_value=%lld",
486 (long long)reg->smin_value);
487 if (reg->smax_value != reg->umax_value &&
488 reg->smax_value != S64_MAX)
489 verbose(env, ",smax_value=%lld",
490 (long long)reg->smax_value);
491 if (reg->umin_value != 0)
492 verbose(env, ",umin_value=%llu",
493 (unsigned long long)reg->umin_value);
494 if (reg->umax_value != U64_MAX)
495 verbose(env, ",umax_value=%llu",
496 (unsigned long long)reg->umax_value);
497 if (!tnum_is_unknown(reg->var_off)) {
498 char tn_buf[48];
499
500 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
501 verbose(env, ",var_off=%s", tn_buf);
502 }
503 }
504 verbose(env, ")");
505 }
506 }
507 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
508 char types_buf[BPF_REG_SIZE + 1];
509 bool valid = false;
510 int j;
511
512 for (j = 0; j < BPF_REG_SIZE; j++) {
513 if (state->stack[i].slot_type[j] != STACK_INVALID)
514 valid = true;
515 types_buf[j] = slot_type_char[
516 state->stack[i].slot_type[j]];
517 }
518 types_buf[BPF_REG_SIZE] = 0;
519 if (!valid)
520 continue;
521 verbose(env, " fp%d", (-i - 1) * BPF_REG_SIZE);
522 print_liveness(env, state->stack[i].spilled_ptr.live);
523 if (state->stack[i].slot_type[0] == STACK_SPILL)
524 verbose(env, "=%s",
525 reg_type_str[state->stack[i].spilled_ptr.type]);
526 else
527 verbose(env, "=%s", types_buf);
528 }
529 if (state->acquired_refs && state->refs[0].id) {
530 verbose(env, " refs=%d", state->refs[0].id);
531 for (i = 1; i < state->acquired_refs; i++)
532 if (state->refs[i].id)
533 verbose(env, ",%d", state->refs[i].id);
534 }
535 verbose(env, "\n");
536 }
537
538 #define COPY_STATE_FN(NAME, COUNT, FIELD, SIZE) \
539 static int copy_##NAME##_state(struct bpf_func_state *dst, \
540 const struct bpf_func_state *src) \
541 { \
542 if (!src->FIELD) \
543 return 0; \
544 if (WARN_ON_ONCE(dst->COUNT < src->COUNT)) { \
545 /* internal bug, make state invalid to reject the program */ \
546 memset(dst, 0, sizeof(*dst)); \
547 return -EFAULT; \
548 } \
549 memcpy(dst->FIELD, src->FIELD, \
550 sizeof(*src->FIELD) * (src->COUNT / SIZE)); \
551 return 0; \
552 }
553 /* copy_reference_state() */
554 COPY_STATE_FN(reference, acquired_refs, refs, 1)
555 /* copy_stack_state() */
556 COPY_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
557 #undef COPY_STATE_FN
558
559 #define REALLOC_STATE_FN(NAME, COUNT, FIELD, SIZE) \
560 static int realloc_##NAME##_state(struct bpf_func_state *state, int size, \
561 bool copy_old) \
562 { \
563 u32 old_size = state->COUNT; \
564 struct bpf_##NAME##_state *new_##FIELD; \
565 int slot = size / SIZE; \
566 \
567 if (size <= old_size || !size) { \
568 if (copy_old) \
569 return 0; \
570 state->COUNT = slot * SIZE; \
571 if (!size && old_size) { \
572 kfree(state->FIELD); \
573 state->FIELD = NULL; \
574 } \
575 return 0; \
576 } \
577 new_##FIELD = kmalloc_array(slot, sizeof(struct bpf_##NAME##_state), \
578 GFP_KERNEL); \
579 if (!new_##FIELD) \
580 return -ENOMEM; \
581 if (copy_old) { \
582 if (state->FIELD) \
583 memcpy(new_##FIELD, state->FIELD, \
584 sizeof(*new_##FIELD) * (old_size / SIZE)); \
585 memset(new_##FIELD + old_size / SIZE, 0, \
586 sizeof(*new_##FIELD) * (size - old_size) / SIZE); \
587 } \
588 state->COUNT = slot * SIZE; \
589 kfree(state->FIELD); \
590 state->FIELD = new_##FIELD; \
591 return 0; \
592 }
593 /* realloc_reference_state() */
594 REALLOC_STATE_FN(reference, acquired_refs, refs, 1)
595 /* realloc_stack_state() */
596 REALLOC_STATE_FN(stack, allocated_stack, stack, BPF_REG_SIZE)
597 #undef REALLOC_STATE_FN
598
599 /* do_check() starts with zero-sized stack in struct bpf_verifier_state to
600 * make it consume minimal amount of memory. check_stack_write() access from
601 * the program calls into realloc_func_state() to grow the stack size.
602 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
603 * which realloc_stack_state() copies over. It points to previous
604 * bpf_verifier_state which is never reallocated.
605 */
606 static int realloc_func_state(struct bpf_func_state *state, int stack_size,
607 int refs_size, bool copy_old)
608 {
609 int err = realloc_reference_state(state, refs_size, copy_old);
610 if (err)
611 return err;
612 return realloc_stack_state(state, stack_size, copy_old);
613 }
614
615 /* Acquire a pointer id from the env and update the state->refs to include
616 * this new pointer reference.
617 * On success, returns a valid pointer id to associate with the register
618 * On failure, returns a negative errno.
619 */
620 static int acquire_reference_state(struct bpf_verifier_env *env, int insn_idx)
621 {
622 struct bpf_func_state *state = cur_func(env);
623 int new_ofs = state->acquired_refs;
624 int id, err;
625
626 err = realloc_reference_state(state, state->acquired_refs + 1, true);
627 if (err)
628 return err;
629 id = ++env->id_gen;
630 state->refs[new_ofs].id = id;
631 state->refs[new_ofs].insn_idx = insn_idx;
632
633 return id;
634 }
635
636 /* release function corresponding to acquire_reference_state(). Idempotent. */
637 static int release_reference_state(struct bpf_func_state *state, int ptr_id)
638 {
639 int i, last_idx;
640
641 last_idx = state->acquired_refs - 1;
642 for (i = 0; i < state->acquired_refs; i++) {
643 if (state->refs[i].id == ptr_id) {
644 if (last_idx && i != last_idx)
645 memcpy(&state->refs[i], &state->refs[last_idx],
646 sizeof(*state->refs));
647 memset(&state->refs[last_idx], 0, sizeof(*state->refs));
648 state->acquired_refs--;
649 return 0;
650 }
651 }
652 return -EINVAL;
653 }
654
655 static int transfer_reference_state(struct bpf_func_state *dst,
656 struct bpf_func_state *src)
657 {
658 int err = realloc_reference_state(dst, src->acquired_refs, false);
659 if (err)
660 return err;
661 err = copy_reference_state(dst, src);
662 if (err)
663 return err;
664 return 0;
665 }
666
667 static void free_func_state(struct bpf_func_state *state)
668 {
669 if (!state)
670 return;
671 kfree(state->refs);
672 kfree(state->stack);
673 kfree(state);
674 }
675
676 static void free_verifier_state(struct bpf_verifier_state *state,
677 bool free_self)
678 {
679 int i;
680
681 for (i = 0; i <= state->curframe; i++) {
682 free_func_state(state->frame[i]);
683 state->frame[i] = NULL;
684 }
685 if (free_self)
686 kfree(state);
687 }
688
689 /* copy verifier state from src to dst growing dst stack space
690 * when necessary to accommodate larger src stack
691 */
692 static int copy_func_state(struct bpf_func_state *dst,
693 const struct bpf_func_state *src)
694 {
695 int err;
696
697 err = realloc_func_state(dst, src->allocated_stack, src->acquired_refs,
698 false);
699 if (err)
700 return err;
701 memcpy(dst, src, offsetof(struct bpf_func_state, acquired_refs));
702 err = copy_reference_state(dst, src);
703 if (err)
704 return err;
705 return copy_stack_state(dst, src);
706 }
707
708 static int copy_verifier_state(struct bpf_verifier_state *dst_state,
709 const struct bpf_verifier_state *src)
710 {
711 struct bpf_func_state *dst;
712 int i, err;
713
714 /* if dst has more stack frames then src frame, free them */
715 for (i = src->curframe + 1; i <= dst_state->curframe; i++) {
716 free_func_state(dst_state->frame[i]);
717 dst_state->frame[i] = NULL;
718 }
719 dst_state->speculative = src->speculative;
720 dst_state->curframe = src->curframe;
721 dst_state->active_spin_lock = src->active_spin_lock;
722 for (i = 0; i <= src->curframe; i++) {
723 dst = dst_state->frame[i];
724 if (!dst) {
725 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
726 if (!dst)
727 return -ENOMEM;
728 dst_state->frame[i] = dst;
729 }
730 err = copy_func_state(dst, src->frame[i]);
731 if (err)
732 return err;
733 }
734 return 0;
735 }
736
737 static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
738 int *insn_idx)
739 {
740 struct bpf_verifier_state *cur = env->cur_state;
741 struct bpf_verifier_stack_elem *elem, *head = env->head;
742 int err;
743
744 if (env->head == NULL)
745 return -ENOENT;
746
747 if (cur) {
748 err = copy_verifier_state(cur, &head->st);
749 if (err)
750 return err;
751 }
752 if (insn_idx)
753 *insn_idx = head->insn_idx;
754 if (prev_insn_idx)
755 *prev_insn_idx = head->prev_insn_idx;
756 elem = head->next;
757 free_verifier_state(&head->st, false);
758 kfree(head);
759 env->head = elem;
760 env->stack_size--;
761 return 0;
762 }
763
764 static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
765 int insn_idx, int prev_insn_idx,
766 bool speculative)
767 {
768 struct bpf_verifier_state *cur = env->cur_state;
769 struct bpf_verifier_stack_elem *elem;
770 int err;
771
772 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
773 if (!elem)
774 goto err;
775
776 elem->insn_idx = insn_idx;
777 elem->prev_insn_idx = prev_insn_idx;
778 elem->next = env->head;
779 env->head = elem;
780 env->stack_size++;
781 err = copy_verifier_state(&elem->st, cur);
782 if (err)
783 goto err;
784 elem->st.speculative |= speculative;
785 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
786 verbose(env, "BPF program is too complex\n");
787 goto err;
788 }
789 return &elem->st;
790 err:
791 free_verifier_state(env->cur_state, true);
792 env->cur_state = NULL;
793 /* pop all elements and return */
794 while (!pop_stack(env, NULL, NULL));
795 return NULL;
796 }
797
798 #define CALLER_SAVED_REGS 6
799 static const int caller_saved[CALLER_SAVED_REGS] = {
800 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
801 };
802
803 static void __mark_reg_not_init(struct bpf_reg_state *reg);
804
805 /* Mark the unknown part of a register (variable offset or scalar value) as
806 * known to have the value @imm.
807 */
808 static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
809 {
810 /* Clear id, off, and union(map_ptr, range) */
811 memset(((u8 *)reg) + sizeof(reg->type), 0,
812 offsetof(struct bpf_reg_state, var_off) - sizeof(reg->type));
813 reg->var_off = tnum_const(imm);
814 reg->smin_value = (s64)imm;
815 reg->smax_value = (s64)imm;
816 reg->umin_value = imm;
817 reg->umax_value = imm;
818 }
819
820 /* Mark the 'variable offset' part of a register as zero. This should be
821 * used only on registers holding a pointer type.
822 */
823 static void __mark_reg_known_zero(struct bpf_reg_state *reg)
824 {
825 __mark_reg_known(reg, 0);
826 }
827
828 static void __mark_reg_const_zero(struct bpf_reg_state *reg)
829 {
830 __mark_reg_known(reg, 0);
831 reg->type = SCALAR_VALUE;
832 }
833
834 static void mark_reg_known_zero(struct bpf_verifier_env *env,
835 struct bpf_reg_state *regs, u32 regno)
836 {
837 if (WARN_ON(regno >= MAX_BPF_REG)) {
838 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
839 /* Something bad happened, let's kill all regs */
840 for (regno = 0; regno < MAX_BPF_REG; regno++)
841 __mark_reg_not_init(regs + regno);
842 return;
843 }
844 __mark_reg_known_zero(regs + regno);
845 }
846
847 static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
848 {
849 return type_is_pkt_pointer(reg->type);
850 }
851
852 static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
853 {
854 return reg_is_pkt_pointer(reg) ||
855 reg->type == PTR_TO_PACKET_END;
856 }
857
858 /* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
859 static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
860 enum bpf_reg_type which)
861 {
862 /* The register can already have a range from prior markings.
863 * This is fine as long as it hasn't been advanced from its
864 * origin.
865 */
866 return reg->type == which &&
867 reg->id == 0 &&
868 reg->off == 0 &&
869 tnum_equals_const(reg->var_off, 0);
870 }
871
872 /* Attempts to improve min/max values based on var_off information */
873 static void __update_reg_bounds(struct bpf_reg_state *reg)
874 {
875 /* min signed is max(sign bit) | min(other bits) */
876 reg->smin_value = max_t(s64, reg->smin_value,
877 reg->var_off.value | (reg->var_off.mask & S64_MIN));
878 /* max signed is min(sign bit) | max(other bits) */
879 reg->smax_value = min_t(s64, reg->smax_value,
880 reg->var_off.value | (reg->var_off.mask & S64_MAX));
881 reg->umin_value = max(reg->umin_value, reg->var_off.value);
882 reg->umax_value = min(reg->umax_value,
883 reg->var_off.value | reg->var_off.mask);
884 }
885
886 /* Uses signed min/max values to inform unsigned, and vice-versa */
887 static void __reg_deduce_bounds(struct bpf_reg_state *reg)
888 {
889 /* Learn sign from signed bounds.
890 * If we cannot cross the sign boundary, then signed and unsigned bounds
891 * are the same, so combine. This works even in the negative case, e.g.
892 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
893 */
894 if (reg->smin_value >= 0 || reg->smax_value < 0) {
895 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
896 reg->umin_value);
897 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
898 reg->umax_value);
899 return;
900 }
901 /* Learn sign from unsigned bounds. Signed bounds cross the sign
902 * boundary, so we must be careful.
903 */
904 if ((s64)reg->umax_value >= 0) {
905 /* Positive. We can't learn anything from the smin, but smax
906 * is positive, hence safe.
907 */
908 reg->smin_value = reg->umin_value;
909 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
910 reg->umax_value);
911 } else if ((s64)reg->umin_value < 0) {
912 /* Negative. We can't learn anything from the smax, but smin
913 * is negative, hence safe.
914 */
915 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
916 reg->umin_value);
917 reg->smax_value = reg->umax_value;
918 }
919 }
920
921 /* Attempts to improve var_off based on unsigned min/max information */
922 static void __reg_bound_offset(struct bpf_reg_state *reg)
923 {
924 reg->var_off = tnum_intersect(reg->var_off,
925 tnum_range(reg->umin_value,
926 reg->umax_value));
927 }
928
929 /* Reset the min/max bounds of a register */
930 static void __mark_reg_unbounded(struct bpf_reg_state *reg)
931 {
932 reg->smin_value = S64_MIN;
933 reg->smax_value = S64_MAX;
934 reg->umin_value = 0;
935 reg->umax_value = U64_MAX;
936 }
937
938 /* Mark a register as having a completely unknown (scalar) value. */
939 static void __mark_reg_unknown(struct bpf_reg_state *reg)
940 {
941 /*
942 * Clear type, id, off, and union(map_ptr, range) and
943 * padding between 'type' and union
944 */
945 memset(reg, 0, offsetof(struct bpf_reg_state, var_off));
946 reg->type = SCALAR_VALUE;
947 reg->var_off = tnum_unknown;
948 reg->frameno = 0;
949 __mark_reg_unbounded(reg);
950 }
951
952 static void mark_reg_unknown(struct bpf_verifier_env *env,
953 struct bpf_reg_state *regs, u32 regno)
954 {
955 if (WARN_ON(regno >= MAX_BPF_REG)) {
956 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
957 /* Something bad happened, let's kill all regs except FP */
958 for (regno = 0; regno < BPF_REG_FP; regno++)
959 __mark_reg_not_init(regs + regno);
960 return;
961 }
962 __mark_reg_unknown(regs + regno);
963 }
964
965 static void __mark_reg_not_init(struct bpf_reg_state *reg)
966 {
967 __mark_reg_unknown(reg);
968 reg->type = NOT_INIT;
969 }
970
971 static void mark_reg_not_init(struct bpf_verifier_env *env,
972 struct bpf_reg_state *regs, u32 regno)
973 {
974 if (WARN_ON(regno >= MAX_BPF_REG)) {
975 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
976 /* Something bad happened, let's kill all regs except FP */
977 for (regno = 0; regno < BPF_REG_FP; regno++)
978 __mark_reg_not_init(regs + regno);
979 return;
980 }
981 __mark_reg_not_init(regs + regno);
982 }
983
984 static void init_reg_state(struct bpf_verifier_env *env,
985 struct bpf_func_state *state)
986 {
987 struct bpf_reg_state *regs = state->regs;
988 int i;
989
990 for (i = 0; i < MAX_BPF_REG; i++) {
991 mark_reg_not_init(env, regs, i);
992 regs[i].live = REG_LIVE_NONE;
993 regs[i].parent = NULL;
994 }
995
996 /* frame pointer */
997 regs[BPF_REG_FP].type = PTR_TO_STACK;
998 mark_reg_known_zero(env, regs, BPF_REG_FP);
999 regs[BPF_REG_FP].frameno = state->frameno;
1000
1001 /* 1st arg to a function */
1002 regs[BPF_REG_1].type = PTR_TO_CTX;
1003 mark_reg_known_zero(env, regs, BPF_REG_1);
1004 }
1005
1006 #define BPF_MAIN_FUNC (-1)
1007 static void init_func_state(struct bpf_verifier_env *env,
1008 struct bpf_func_state *state,
1009 int callsite, int frameno, int subprogno)
1010 {
1011 state->callsite = callsite;
1012 state->frameno = frameno;
1013 state->subprogno = subprogno;
1014 init_reg_state(env, state);
1015 }
1016
1017 enum reg_arg_type {
1018 SRC_OP, /* register is used as source operand */
1019 DST_OP, /* register is used as destination operand */
1020 DST_OP_NO_MARK /* same as above, check only, don't mark */
1021 };
1022
1023 static int cmp_subprogs(const void *a, const void *b)
1024 {
1025 return ((struct bpf_subprog_info *)a)->start -
1026 ((struct bpf_subprog_info *)b)->start;
1027 }
1028
1029 static int find_subprog(struct bpf_verifier_env *env, int off)
1030 {
1031 struct bpf_subprog_info *p;
1032
1033 p = bsearch(&off, env->subprog_info, env->subprog_cnt,
1034 sizeof(env->subprog_info[0]), cmp_subprogs);
1035 if (!p)
1036 return -ENOENT;
1037 return p - env->subprog_info;
1038
1039 }
1040
1041 static int add_subprog(struct bpf_verifier_env *env, int off)
1042 {
1043 int insn_cnt = env->prog->len;
1044 int ret;
1045
1046 if (off >= insn_cnt || off < 0) {
1047 verbose(env, "call to invalid destination\n");
1048 return -EINVAL;
1049 }
1050 ret = find_subprog(env, off);
1051 if (ret >= 0)
1052 return 0;
1053 if (env->subprog_cnt >= BPF_MAX_SUBPROGS) {
1054 verbose(env, "too many subprograms\n");
1055 return -E2BIG;
1056 }
1057 env->subprog_info[env->subprog_cnt++].start = off;
1058 sort(env->subprog_info, env->subprog_cnt,
1059 sizeof(env->subprog_info[0]), cmp_subprogs, NULL);
1060 return 0;
1061 }
1062
1063 static int check_subprogs(struct bpf_verifier_env *env)
1064 {
1065 int i, ret, subprog_start, subprog_end, off, cur_subprog = 0;
1066 struct bpf_subprog_info *subprog = env->subprog_info;
1067 struct bpf_insn *insn = env->prog->insnsi;
1068 int insn_cnt = env->prog->len;
1069
1070 /* Add entry function. */
1071 ret = add_subprog(env, 0);
1072 if (ret < 0)
1073 return ret;
1074
1075 /* determine subprog starts. The end is one before the next starts */
1076 for (i = 0; i < insn_cnt; i++) {
1077 if (insn[i].code != (BPF_JMP | BPF_CALL))
1078 continue;
1079 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1080 continue;
1081 if (!env->allow_ptr_leaks) {
1082 verbose(env, "function calls to other bpf functions are allowed for root only\n");
1083 return -EPERM;
1084 }
1085 ret = add_subprog(env, i + insn[i].imm + 1);
1086 if (ret < 0)
1087 return ret;
1088 }
1089
1090 /* Add a fake 'exit' subprog which could simplify subprog iteration
1091 * logic. 'subprog_cnt' should not be increased.
1092 */
1093 subprog[env->subprog_cnt].start = insn_cnt;
1094
1095 if (env->log.level & BPF_LOG_LEVEL2)
1096 for (i = 0; i < env->subprog_cnt; i++)
1097 verbose(env, "func#%d @%d\n", i, subprog[i].start);
1098
1099 /* now check that all jumps are within the same subprog */
1100 subprog_start = subprog[cur_subprog].start;
1101 subprog_end = subprog[cur_subprog + 1].start;
1102 for (i = 0; i < insn_cnt; i++) {
1103 u8 code = insn[i].code;
1104
1105 if (BPF_CLASS(code) != BPF_JMP && BPF_CLASS(code) != BPF_JMP32)
1106 goto next;
1107 if (BPF_OP(code) == BPF_EXIT || BPF_OP(code) == BPF_CALL)
1108 goto next;
1109 off = i + insn[i].off + 1;
1110 if (off < subprog_start || off >= subprog_end) {
1111 verbose(env, "jump out of range from insn %d to %d\n", i, off);
1112 return -EINVAL;
1113 }
1114 next:
1115 if (i == subprog_end - 1) {
1116 /* to avoid fall-through from one subprog into another
1117 * the last insn of the subprog should be either exit
1118 * or unconditional jump back
1119 */
1120 if (code != (BPF_JMP | BPF_EXIT) &&
1121 code != (BPF_JMP | BPF_JA)) {
1122 verbose(env, "last insn is not an exit or jmp\n");
1123 return -EINVAL;
1124 }
1125 subprog_start = subprog_end;
1126 cur_subprog++;
1127 if (cur_subprog < env->subprog_cnt)
1128 subprog_end = subprog[cur_subprog + 1].start;
1129 }
1130 }
1131 return 0;
1132 }
1133
1134 /* Parentage chain of this register (or stack slot) should take care of all
1135 * issues like callee-saved registers, stack slot allocation time, etc.
1136 */
1137 static int mark_reg_read(struct bpf_verifier_env *env,
1138 const struct bpf_reg_state *state,
1139 struct bpf_reg_state *parent)
1140 {
1141 bool writes = parent == state->parent; /* Observe write marks */
1142 int cnt = 0;
1143
1144 while (parent) {
1145 /* if read wasn't screened by an earlier write ... */
1146 if (writes && state->live & REG_LIVE_WRITTEN)
1147 break;
1148 if (parent->live & REG_LIVE_DONE) {
1149 verbose(env, "verifier BUG type %s var_off %lld off %d\n",
1150 reg_type_str[parent->type],
1151 parent->var_off.value, parent->off);
1152 return -EFAULT;
1153 }
1154 if (parent->live & REG_LIVE_READ)
1155 /* The parentage chain never changes and
1156 * this parent was already marked as LIVE_READ.
1157 * There is no need to keep walking the chain again and
1158 * keep re-marking all parents as LIVE_READ.
1159 * This case happens when the same register is read
1160 * multiple times without writes into it in-between.
1161 */
1162 break;
1163 /* ... then we depend on parent's value */
1164 parent->live |= REG_LIVE_READ;
1165 state = parent;
1166 parent = state->parent;
1167 writes = true;
1168 cnt++;
1169 }
1170
1171 if (env->longest_mark_read_walk < cnt)
1172 env->longest_mark_read_walk = cnt;
1173 return 0;
1174 }
1175
1176 static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
1177 enum reg_arg_type t)
1178 {
1179 struct bpf_verifier_state *vstate = env->cur_state;
1180 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1181 struct bpf_reg_state *reg, *regs = state->regs;
1182
1183 if (regno >= MAX_BPF_REG) {
1184 verbose(env, "R%d is invalid\n", regno);
1185 return -EINVAL;
1186 }
1187
1188 reg = &regs[regno];
1189 if (t == SRC_OP) {
1190 /* check whether register used as source operand can be read */
1191 if (reg->type == NOT_INIT) {
1192 verbose(env, "R%d !read_ok\n", regno);
1193 return -EACCES;
1194 }
1195 /* We don't need to worry about FP liveness because it's read-only */
1196 if (regno == BPF_REG_FP)
1197 return 0;
1198
1199 return mark_reg_read(env, reg, reg->parent);
1200 } else {
1201 /* check whether register used as dest operand can be written to */
1202 if (regno == BPF_REG_FP) {
1203 verbose(env, "frame pointer is read only\n");
1204 return -EACCES;
1205 }
1206 reg->live |= REG_LIVE_WRITTEN;
1207 if (t == DST_OP)
1208 mark_reg_unknown(env, regs, regno);
1209 }
1210 return 0;
1211 }
1212
1213 static bool is_spillable_regtype(enum bpf_reg_type type)
1214 {
1215 switch (type) {
1216 case PTR_TO_MAP_VALUE:
1217 case PTR_TO_MAP_VALUE_OR_NULL:
1218 case PTR_TO_STACK:
1219 case PTR_TO_CTX:
1220 case PTR_TO_PACKET:
1221 case PTR_TO_PACKET_META:
1222 case PTR_TO_PACKET_END:
1223 case PTR_TO_FLOW_KEYS:
1224 case CONST_PTR_TO_MAP:
1225 case PTR_TO_SOCKET:
1226 case PTR_TO_SOCKET_OR_NULL:
1227 case PTR_TO_SOCK_COMMON:
1228 case PTR_TO_SOCK_COMMON_OR_NULL:
1229 case PTR_TO_TCP_SOCK:
1230 case PTR_TO_TCP_SOCK_OR_NULL:
1231 return true;
1232 default:
1233 return false;
1234 }
1235 }
1236
1237 /* Does this register contain a constant zero? */
1238 static bool register_is_null(struct bpf_reg_state *reg)
1239 {
1240 return reg->type == SCALAR_VALUE && tnum_equals_const(reg->var_off, 0);
1241 }
1242
1243 /* check_stack_read/write functions track spill/fill of registers,
1244 * stack boundary and alignment are checked in check_mem_access()
1245 */
1246 static int check_stack_write(struct bpf_verifier_env *env,
1247 struct bpf_func_state *state, /* func where register points to */
1248 int off, int size, int value_regno, int insn_idx)
1249 {
1250 struct bpf_func_state *cur; /* state of the current function */
1251 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
1252 enum bpf_reg_type type;
1253
1254 err = realloc_func_state(state, round_up(slot + 1, BPF_REG_SIZE),
1255 state->acquired_refs, true);
1256 if (err)
1257 return err;
1258 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
1259 * so it's aligned access and [off, off + size) are within stack limits
1260 */
1261 if (!env->allow_ptr_leaks &&
1262 state->stack[spi].slot_type[0] == STACK_SPILL &&
1263 size != BPF_REG_SIZE) {
1264 verbose(env, "attempt to corrupt spilled pointer on stack\n");
1265 return -EACCES;
1266 }
1267
1268 cur = env->cur_state->frame[env->cur_state->curframe];
1269 if (value_regno >= 0 &&
1270 is_spillable_regtype((type = cur->regs[value_regno].type))) {
1271
1272 /* register containing pointer is being spilled into stack */
1273 if (size != BPF_REG_SIZE) {
1274 verbose(env, "invalid size of register spill\n");
1275 return -EACCES;
1276 }
1277
1278 if (state != cur && type == PTR_TO_STACK) {
1279 verbose(env, "cannot spill pointers to stack into stack frame of the caller\n");
1280 return -EINVAL;
1281 }
1282
1283 /* save register state */
1284 state->stack[spi].spilled_ptr = cur->regs[value_regno];
1285 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1286
1287 for (i = 0; i < BPF_REG_SIZE; i++) {
1288 if (state->stack[spi].slot_type[i] == STACK_MISC &&
1289 !env->allow_ptr_leaks) {
1290 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
1291 int soff = (-spi - 1) * BPF_REG_SIZE;
1292
1293 /* detected reuse of integer stack slot with a pointer
1294 * which means either llvm is reusing stack slot or
1295 * an attacker is trying to exploit CVE-2018-3639
1296 * (speculative store bypass)
1297 * Have to sanitize that slot with preemptive
1298 * store of zero.
1299 */
1300 if (*poff && *poff != soff) {
1301 /* disallow programs where single insn stores
1302 * into two different stack slots, since verifier
1303 * cannot sanitize them
1304 */
1305 verbose(env,
1306 "insn %d cannot access two stack slots fp%d and fp%d",
1307 insn_idx, *poff, soff);
1308 return -EINVAL;
1309 }
1310 *poff = soff;
1311 }
1312 state->stack[spi].slot_type[i] = STACK_SPILL;
1313 }
1314 } else {
1315 u8 type = STACK_MISC;
1316
1317 /* regular write of data into stack destroys any spilled ptr */
1318 state->stack[spi].spilled_ptr.type = NOT_INIT;
1319 /* Mark slots as STACK_MISC if they belonged to spilled ptr. */
1320 if (state->stack[spi].slot_type[0] == STACK_SPILL)
1321 for (i = 0; i < BPF_REG_SIZE; i++)
1322 state->stack[spi].slot_type[i] = STACK_MISC;
1323
1324 /* only mark the slot as written if all 8 bytes were written
1325 * otherwise read propagation may incorrectly stop too soon
1326 * when stack slots are partially written.
1327 * This heuristic means that read propagation will be
1328 * conservative, since it will add reg_live_read marks
1329 * to stack slots all the way to first state when programs
1330 * writes+reads less than 8 bytes
1331 */
1332 if (size == BPF_REG_SIZE)
1333 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
1334
1335 /* when we zero initialize stack slots mark them as such */
1336 if (value_regno >= 0 &&
1337 register_is_null(&cur->regs[value_regno]))
1338 type = STACK_ZERO;
1339
1340 /* Mark slots affected by this stack write. */
1341 for (i = 0; i < size; i++)
1342 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
1343 type;
1344 }
1345 return 0;
1346 }
1347
1348 static int check_stack_read(struct bpf_verifier_env *env,
1349 struct bpf_func_state *reg_state /* func where register points to */,
1350 int off, int size, int value_regno)
1351 {
1352 struct bpf_verifier_state *vstate = env->cur_state;
1353 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1354 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
1355 u8 *stype;
1356
1357 if (reg_state->allocated_stack <= slot) {
1358 verbose(env, "invalid read from stack off %d+0 size %d\n",
1359 off, size);
1360 return -EACCES;
1361 }
1362 stype = reg_state->stack[spi].slot_type;
1363
1364 if (stype[0] == STACK_SPILL) {
1365 if (size != BPF_REG_SIZE) {
1366 verbose(env, "invalid size of register spill\n");
1367 return -EACCES;
1368 }
1369 for (i = 1; i < BPF_REG_SIZE; i++) {
1370 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
1371 verbose(env, "corrupted spill memory\n");
1372 return -EACCES;
1373 }
1374 }
1375
1376 if (value_regno >= 0) {
1377 /* restore register state from stack */
1378 state->regs[value_regno] = reg_state->stack[spi].spilled_ptr;
1379 /* mark reg as written since spilled pointer state likely
1380 * has its liveness marks cleared by is_state_visited()
1381 * which resets stack/reg liveness for state transitions
1382 */
1383 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1384 }
1385 mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1386 reg_state->stack[spi].spilled_ptr.parent);
1387 return 0;
1388 } else {
1389 int zeros = 0;
1390
1391 for (i = 0; i < size; i++) {
1392 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_MISC)
1393 continue;
1394 if (stype[(slot - i) % BPF_REG_SIZE] == STACK_ZERO) {
1395 zeros++;
1396 continue;
1397 }
1398 verbose(env, "invalid read from stack off %d+%d size %d\n",
1399 off, i, size);
1400 return -EACCES;
1401 }
1402 mark_reg_read(env, &reg_state->stack[spi].spilled_ptr,
1403 reg_state->stack[spi].spilled_ptr.parent);
1404 if (value_regno >= 0) {
1405 if (zeros == size) {
1406 /* any size read into register is zero extended,
1407 * so the whole register == const_zero
1408 */
1409 __mark_reg_const_zero(&state->regs[value_regno]);
1410 } else {
1411 /* have read misc data from the stack */
1412 mark_reg_unknown(env, state->regs, value_regno);
1413 }
1414 state->regs[value_regno].live |= REG_LIVE_WRITTEN;
1415 }
1416 return 0;
1417 }
1418 }
1419
1420 static int check_stack_access(struct bpf_verifier_env *env,
1421 const struct bpf_reg_state *reg,
1422 int off, int size)
1423 {
1424 /* Stack accesses must be at a fixed offset, so that we
1425 * can determine what type of data were returned. See
1426 * check_stack_read().
1427 */
1428 if (!tnum_is_const(reg->var_off)) {
1429 char tn_buf[48];
1430
1431 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1432 verbose(env, "variable stack access var_off=%s off=%d size=%d\n",
1433 tn_buf, off, size);
1434 return -EACCES;
1435 }
1436
1437 if (off >= 0 || off < -MAX_BPF_STACK) {
1438 verbose(env, "invalid stack off=%d size=%d\n", off, size);
1439 return -EACCES;
1440 }
1441
1442 return 0;
1443 }
1444
1445 static int check_map_access_type(struct bpf_verifier_env *env, u32 regno,
1446 int off, int size, enum bpf_access_type type)
1447 {
1448 struct bpf_reg_state *regs = cur_regs(env);
1449 struct bpf_map *map = regs[regno].map_ptr;
1450 u32 cap = bpf_map_flags_to_cap(map);
1451
1452 if (type == BPF_WRITE && !(cap & BPF_MAP_CAN_WRITE)) {
1453 verbose(env, "write into map forbidden, value_size=%d off=%d size=%d\n",
1454 map->value_size, off, size);
1455 return -EACCES;
1456 }
1457
1458 if (type == BPF_READ && !(cap & BPF_MAP_CAN_READ)) {
1459 verbose(env, "read from map forbidden, value_size=%d off=%d size=%d\n",
1460 map->value_size, off, size);
1461 return -EACCES;
1462 }
1463
1464 return 0;
1465 }
1466
1467 /* check read/write into map element returned by bpf_map_lookup_elem() */
1468 static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
1469 int size, bool zero_size_allowed)
1470 {
1471 struct bpf_reg_state *regs = cur_regs(env);
1472 struct bpf_map *map = regs[regno].map_ptr;
1473
1474 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1475 off + size > map->value_size) {
1476 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
1477 map->value_size, off, size);
1478 return -EACCES;
1479 }
1480 return 0;
1481 }
1482
1483 /* check read/write into a map element with possible variable offset */
1484 static int check_map_access(struct bpf_verifier_env *env, u32 regno,
1485 int off, int size, bool zero_size_allowed)
1486 {
1487 struct bpf_verifier_state *vstate = env->cur_state;
1488 struct bpf_func_state *state = vstate->frame[vstate->curframe];
1489 struct bpf_reg_state *reg = &state->regs[regno];
1490 int err;
1491
1492 /* We may have adjusted the register to this map value, so we
1493 * need to try adding each of min_value and max_value to off
1494 * to make sure our theoretical access will be safe.
1495 */
1496 if (env->log.level & BPF_LOG_LEVEL)
1497 print_verifier_state(env, state);
1498
1499 /* The minimum value is only important with signed
1500 * comparisons where we can't assume the floor of a
1501 * value is 0. If we are using signed variables for our
1502 * index'es we need to make sure that whatever we use
1503 * will have a set floor within our range.
1504 */
1505 if (reg->smin_value < 0 &&
1506 (reg->smin_value == S64_MIN ||
1507 (off + reg->smin_value != (s64)(s32)(off + reg->smin_value)) ||
1508 reg->smin_value + off < 0)) {
1509 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1510 regno);
1511 return -EACCES;
1512 }
1513 err = __check_map_access(env, regno, reg->smin_value + off, size,
1514 zero_size_allowed);
1515 if (err) {
1516 verbose(env, "R%d min value is outside of the array range\n",
1517 regno);
1518 return err;
1519 }
1520
1521 /* If we haven't set a max value then we need to bail since we can't be
1522 * sure we won't do bad things.
1523 * If reg->umax_value + off could overflow, treat that as unbounded too.
1524 */
1525 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
1526 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
1527 regno);
1528 return -EACCES;
1529 }
1530 err = __check_map_access(env, regno, reg->umax_value + off, size,
1531 zero_size_allowed);
1532 if (err)
1533 verbose(env, "R%d max value is outside of the array range\n",
1534 regno);
1535
1536 if (map_value_has_spin_lock(reg->map_ptr)) {
1537 u32 lock = reg->map_ptr->spin_lock_off;
1538
1539 /* if any part of struct bpf_spin_lock can be touched by
1540 * load/store reject this program.
1541 * To check that [x1, x2) overlaps with [y1, y2)
1542 * it is sufficient to check x1 < y2 && y1 < x2.
1543 */
1544 if (reg->smin_value + off < lock + sizeof(struct bpf_spin_lock) &&
1545 lock < reg->umax_value + off + size) {
1546 verbose(env, "bpf_spin_lock cannot be accessed directly by load/store\n");
1547 return -EACCES;
1548 }
1549 }
1550 return err;
1551 }
1552
1553 #define MAX_PACKET_OFF 0xffff
1554
1555 static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
1556 const struct bpf_call_arg_meta *meta,
1557 enum bpf_access_type t)
1558 {
1559 switch (env->prog->type) {
1560 /* Program types only with direct read access go here! */
1561 case BPF_PROG_TYPE_LWT_IN:
1562 case BPF_PROG_TYPE_LWT_OUT:
1563 case BPF_PROG_TYPE_LWT_SEG6LOCAL:
1564 case BPF_PROG_TYPE_SK_REUSEPORT:
1565 case BPF_PROG_TYPE_FLOW_DISSECTOR:
1566 case BPF_PROG_TYPE_CGROUP_SKB:
1567 if (t == BPF_WRITE)
1568 return false;
1569 /* fallthrough */
1570
1571 /* Program types with direct read + write access go here! */
1572 case BPF_PROG_TYPE_SCHED_CLS:
1573 case BPF_PROG_TYPE_SCHED_ACT:
1574 case BPF_PROG_TYPE_XDP:
1575 case BPF_PROG_TYPE_LWT_XMIT:
1576 case BPF_PROG_TYPE_SK_SKB:
1577 case BPF_PROG_TYPE_SK_MSG:
1578 if (meta)
1579 return meta->pkt_access;
1580
1581 env->seen_direct_write = true;
1582 return true;
1583 default:
1584 return false;
1585 }
1586 }
1587
1588 static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
1589 int off, int size, bool zero_size_allowed)
1590 {
1591 struct bpf_reg_state *regs = cur_regs(env);
1592 struct bpf_reg_state *reg = &regs[regno];
1593
1594 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
1595 (u64)off + size > reg->range) {
1596 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
1597 off, size, regno, reg->id, reg->off, reg->range);
1598 return -EACCES;
1599 }
1600 return 0;
1601 }
1602
1603 static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
1604 int size, bool zero_size_allowed)
1605 {
1606 struct bpf_reg_state *regs = cur_regs(env);
1607 struct bpf_reg_state *reg = &regs[regno];
1608 int err;
1609
1610 /* We may have added a variable offset to the packet pointer; but any
1611 * reg->range we have comes after that. We are only checking the fixed
1612 * offset.
1613 */
1614
1615 /* We don't allow negative numbers, because we aren't tracking enough
1616 * detail to prove they're safe.
1617 */
1618 if (reg->smin_value < 0) {
1619 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1620 regno);
1621 return -EACCES;
1622 }
1623 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
1624 if (err) {
1625 verbose(env, "R%d offset is outside of the packet\n", regno);
1626 return err;
1627 }
1628
1629 /* __check_packet_access has made sure "off + size - 1" is within u16.
1630 * reg->umax_value can't be bigger than MAX_PACKET_OFF which is 0xffff,
1631 * otherwise find_good_pkt_pointers would have refused to set range info
1632 * that __check_packet_access would have rejected this pkt access.
1633 * Therefore, "off + reg->umax_value + size - 1" won't overflow u32.
1634 */
1635 env->prog->aux->max_pkt_offset =
1636 max_t(u32, env->prog->aux->max_pkt_offset,
1637 off + reg->umax_value + size - 1);
1638
1639 return err;
1640 }
1641
1642 /* check access to 'struct bpf_context' fields. Supports fixed offsets only */
1643 static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
1644 enum bpf_access_type t, enum bpf_reg_type *reg_type)
1645 {
1646 struct bpf_insn_access_aux info = {
1647 .reg_type = *reg_type,
1648 };
1649
1650 if (env->ops->is_valid_access &&
1651 env->ops->is_valid_access(off, size, t, env->prog, &info)) {
1652 /* A non zero info.ctx_field_size indicates that this field is a
1653 * candidate for later verifier transformation to load the whole
1654 * field and then apply a mask when accessed with a narrower
1655 * access than actual ctx access size. A zero info.ctx_field_size
1656 * will only allow for whole field access and rejects any other
1657 * type of narrower access.
1658 */
1659 *reg_type = info.reg_type;
1660
1661 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
1662 /* remember the offset of last byte accessed in ctx */
1663 if (env->prog->aux->max_ctx_offset < off + size)
1664 env->prog->aux->max_ctx_offset = off + size;
1665 return 0;
1666 }
1667
1668 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
1669 return -EACCES;
1670 }
1671
1672 static int check_flow_keys_access(struct bpf_verifier_env *env, int off,
1673 int size)
1674 {
1675 if (size < 0 || off < 0 ||
1676 (u64)off + size > sizeof(struct bpf_flow_keys)) {
1677 verbose(env, "invalid access to flow keys off=%d size=%d\n",
1678 off, size);
1679 return -EACCES;
1680 }
1681 return 0;
1682 }
1683
1684 static int check_sock_access(struct bpf_verifier_env *env, int insn_idx,
1685 u32 regno, int off, int size,
1686 enum bpf_access_type t)
1687 {
1688 struct bpf_reg_state *regs = cur_regs(env);
1689 struct bpf_reg_state *reg = &regs[regno];
1690 struct bpf_insn_access_aux info = {};
1691 bool valid;
1692
1693 if (reg->smin_value < 0) {
1694 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
1695 regno);
1696 return -EACCES;
1697 }
1698
1699 switch (reg->type) {
1700 case PTR_TO_SOCK_COMMON:
1701 valid = bpf_sock_common_is_valid_access(off, size, t, &info);
1702 break;
1703 case PTR_TO_SOCKET:
1704 valid = bpf_sock_is_valid_access(off, size, t, &info);
1705 break;
1706 case PTR_TO_TCP_SOCK:
1707 valid = bpf_tcp_sock_is_valid_access(off, size, t, &info);
1708 break;
1709 default:
1710 valid = false;
1711 }
1712
1713
1714 if (valid) {
1715 env->insn_aux_data[insn_idx].ctx_field_size =
1716 info.ctx_field_size;
1717 return 0;
1718 }
1719
1720 verbose(env, "R%d invalid %s access off=%d size=%d\n",
1721 regno, reg_type_str[reg->type], off, size);
1722
1723 return -EACCES;
1724 }
1725
1726 static bool __is_pointer_value(bool allow_ptr_leaks,
1727 const struct bpf_reg_state *reg)
1728 {
1729 if (allow_ptr_leaks)
1730 return false;
1731
1732 return reg->type != SCALAR_VALUE;
1733 }
1734
1735 static struct bpf_reg_state *reg_state(struct bpf_verifier_env *env, int regno)
1736 {
1737 return cur_regs(env) + regno;
1738 }
1739
1740 static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1741 {
1742 return __is_pointer_value(env->allow_ptr_leaks, reg_state(env, regno));
1743 }
1744
1745 static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1746 {
1747 const struct bpf_reg_state *reg = reg_state(env, regno);
1748
1749 return reg->type == PTR_TO_CTX;
1750 }
1751
1752 static bool is_sk_reg(struct bpf_verifier_env *env, int regno)
1753 {
1754 const struct bpf_reg_state *reg = reg_state(env, regno);
1755
1756 return type_is_sk_pointer(reg->type);
1757 }
1758
1759 static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1760 {
1761 const struct bpf_reg_state *reg = reg_state(env, regno);
1762
1763 return type_is_pkt_pointer(reg->type);
1764 }
1765
1766 static bool is_flow_key_reg(struct bpf_verifier_env *env, int regno)
1767 {
1768 const struct bpf_reg_state *reg = reg_state(env, regno);
1769
1770 /* Separate to is_ctx_reg() since we still want to allow BPF_ST here. */
1771 return reg->type == PTR_TO_FLOW_KEYS;
1772 }
1773
1774 static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1775 const struct bpf_reg_state *reg,
1776 int off, int size, bool strict)
1777 {
1778 struct tnum reg_off;
1779 int ip_align;
1780
1781 /* Byte size accesses are always allowed. */
1782 if (!strict || size == 1)
1783 return 0;
1784
1785 /* For platforms that do not have a Kconfig enabling
1786 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1787 * NET_IP_ALIGN is universally set to '2'. And on platforms
1788 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1789 * to this code only in strict mode where we want to emulate
1790 * the NET_IP_ALIGN==2 checking. Therefore use an
1791 * unconditional IP align value of '2'.
1792 */
1793 ip_align = 2;
1794
1795 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1796 if (!tnum_is_aligned(reg_off, size)) {
1797 char tn_buf[48];
1798
1799 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1800 verbose(env,
1801 "misaligned packet access off %d+%s+%d+%d size %d\n",
1802 ip_align, tn_buf, reg->off, off, size);
1803 return -EACCES;
1804 }
1805
1806 return 0;
1807 }
1808
1809 static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1810 const struct bpf_reg_state *reg,
1811 const char *pointer_desc,
1812 int off, int size, bool strict)
1813 {
1814 struct tnum reg_off;
1815
1816 /* Byte size accesses are always allowed. */
1817 if (!strict || size == 1)
1818 return 0;
1819
1820 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1821 if (!tnum_is_aligned(reg_off, size)) {
1822 char tn_buf[48];
1823
1824 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1825 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
1826 pointer_desc, tn_buf, reg->off, off, size);
1827 return -EACCES;
1828 }
1829
1830 return 0;
1831 }
1832
1833 static int check_ptr_alignment(struct bpf_verifier_env *env,
1834 const struct bpf_reg_state *reg, int off,
1835 int size, bool strict_alignment_once)
1836 {
1837 bool strict = env->strict_alignment || strict_alignment_once;
1838 const char *pointer_desc = "";
1839
1840 switch (reg->type) {
1841 case PTR_TO_PACKET:
1842 case PTR_TO_PACKET_META:
1843 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1844 * right in front, treat it the very same way.
1845 */
1846 return check_pkt_ptr_alignment(env, reg, off, size, strict);
1847 case PTR_TO_FLOW_KEYS:
1848 pointer_desc = "flow keys ";
1849 break;
1850 case PTR_TO_MAP_VALUE:
1851 pointer_desc = "value ";
1852 break;
1853 case PTR_TO_CTX:
1854 pointer_desc = "context ";
1855 break;
1856 case PTR_TO_STACK:
1857 pointer_desc = "stack ";
1858 /* The stack spill tracking logic in check_stack_write()
1859 * and check_stack_read() relies on stack accesses being
1860 * aligned.
1861 */
1862 strict = true;
1863 break;
1864 case PTR_TO_SOCKET:
1865 pointer_desc = "sock ";
1866 break;
1867 case PTR_TO_SOCK_COMMON:
1868 pointer_desc = "sock_common ";
1869 break;
1870 case PTR_TO_TCP_SOCK:
1871 pointer_desc = "tcp_sock ";
1872 break;
1873 default:
1874 break;
1875 }
1876 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1877 strict);
1878 }
1879
1880 static int update_stack_depth(struct bpf_verifier_env *env,
1881 const struct bpf_func_state *func,
1882 int off)
1883 {
1884 u16 stack = env->subprog_info[func->subprogno].stack_depth;
1885
1886 if (stack >= -off)
1887 return 0;
1888
1889 /* update known max for given subprogram */
1890 env->subprog_info[func->subprogno].stack_depth = -off;
1891 return 0;
1892 }
1893
1894 /* starting from main bpf function walk all instructions of the function
1895 * and recursively walk all callees that given function can call.
1896 * Ignore jump and exit insns.
1897 * Since recursion is prevented by check_cfg() this algorithm
1898 * only needs a local stack of MAX_CALL_FRAMES to remember callsites
1899 */
1900 static int check_max_stack_depth(struct bpf_verifier_env *env)
1901 {
1902 int depth = 0, frame = 0, idx = 0, i = 0, subprog_end;
1903 struct bpf_subprog_info *subprog = env->subprog_info;
1904 struct bpf_insn *insn = env->prog->insnsi;
1905 int ret_insn[MAX_CALL_FRAMES];
1906 int ret_prog[MAX_CALL_FRAMES];
1907
1908 process_func:
1909 /* round up to 32-bytes, since this is granularity
1910 * of interpreter stack size
1911 */
1912 depth += round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1913 if (depth > MAX_BPF_STACK) {
1914 verbose(env, "combined stack size of %d calls is %d. Too large\n",
1915 frame + 1, depth);
1916 return -EACCES;
1917 }
1918 continue_func:
1919 subprog_end = subprog[idx + 1].start;
1920 for (; i < subprog_end; i++) {
1921 if (insn[i].code != (BPF_JMP | BPF_CALL))
1922 continue;
1923 if (insn[i].src_reg != BPF_PSEUDO_CALL)
1924 continue;
1925 /* remember insn and function to return to */
1926 ret_insn[frame] = i + 1;
1927 ret_prog[frame] = idx;
1928
1929 /* find the callee */
1930 i = i + insn[i].imm + 1;
1931 idx = find_subprog(env, i);
1932 if (idx < 0) {
1933 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1934 i);
1935 return -EFAULT;
1936 }
1937 frame++;
1938 if (frame >= MAX_CALL_FRAMES) {
1939 verbose(env, "the call stack of %d frames is too deep !\n",
1940 frame);
1941 return -E2BIG;
1942 }
1943 goto process_func;
1944 }
1945 /* end of for() loop means the last insn of the 'subprog'
1946 * was reached. Doesn't matter whether it was JA or EXIT
1947 */
1948 if (frame == 0)
1949 return 0;
1950 depth -= round_up(max_t(u32, subprog[idx].stack_depth, 1), 32);
1951 frame--;
1952 i = ret_insn[frame];
1953 idx = ret_prog[frame];
1954 goto continue_func;
1955 }
1956
1957 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
1958 static int get_callee_stack_depth(struct bpf_verifier_env *env,
1959 const struct bpf_insn *insn, int idx)
1960 {
1961 int start = idx + insn->imm + 1, subprog;
1962
1963 subprog = find_subprog(env, start);
1964 if (subprog < 0) {
1965 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
1966 start);
1967 return -EFAULT;
1968 }
1969 return env->subprog_info[subprog].stack_depth;
1970 }
1971 #endif
1972
1973 static int check_ctx_reg(struct bpf_verifier_env *env,
1974 const struct bpf_reg_state *reg, int regno)
1975 {
1976 /* Access to ctx or passing it to a helper is only allowed in
1977 * its original, unmodified form.
1978 */
1979
1980 if (reg->off) {
1981 verbose(env, "dereference of modified ctx ptr R%d off=%d disallowed\n",
1982 regno, reg->off);
1983 return -EACCES;
1984 }
1985
1986 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
1987 char tn_buf[48];
1988
1989 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
1990 verbose(env, "variable ctx access var_off=%s disallowed\n", tn_buf);
1991 return -EACCES;
1992 }
1993
1994 return 0;
1995 }
1996
1997 static int check_tp_buffer_access(struct bpf_verifier_env *env,
1998 const struct bpf_reg_state *reg,
1999 int regno, int off, int size)
2000 {
2001 if (off < 0) {
2002 verbose(env,
2003 "R%d invalid tracepoint buffer access: off=%d, size=%d",
2004 regno, off, size);
2005 return -EACCES;
2006 }
2007 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
2008 char tn_buf[48];
2009
2010 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2011 verbose(env,
2012 "R%d invalid variable buffer offset: off=%d, var_off=%s",
2013 regno, off, tn_buf);
2014 return -EACCES;
2015 }
2016 if (off + size > env->prog->aux->max_tp_access)
2017 env->prog->aux->max_tp_access = off + size;
2018
2019 return 0;
2020 }
2021
2022
2023 /* truncate register to smaller size (in bytes)
2024 * must be called with size < BPF_REG_SIZE
2025 */
2026 static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
2027 {
2028 u64 mask;
2029
2030 /* clear high bits in bit representation */
2031 reg->var_off = tnum_cast(reg->var_off, size);
2032
2033 /* fix arithmetic bounds */
2034 mask = ((u64)1 << (size * 8)) - 1;
2035 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
2036 reg->umin_value &= mask;
2037 reg->umax_value &= mask;
2038 } else {
2039 reg->umin_value = 0;
2040 reg->umax_value = mask;
2041 }
2042 reg->smin_value = reg->umin_value;
2043 reg->smax_value = reg->umax_value;
2044 }
2045
2046 /* check whether memory at (regno + off) is accessible for t = (read | write)
2047 * if t==write, value_regno is a register which value is stored into memory
2048 * if t==read, value_regno is a register which will receive the value from memory
2049 * if t==write && value_regno==-1, some unknown value is stored into memory
2050 * if t==read && value_regno==-1, don't care what we read from memory
2051 */
2052 static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
2053 int off, int bpf_size, enum bpf_access_type t,
2054 int value_regno, bool strict_alignment_once)
2055 {
2056 struct bpf_reg_state *regs = cur_regs(env);
2057 struct bpf_reg_state *reg = regs + regno;
2058 struct bpf_func_state *state;
2059 int size, err = 0;
2060
2061 size = bpf_size_to_bytes(bpf_size);
2062 if (size < 0)
2063 return size;
2064
2065 /* alignment checks will add in reg->off themselves */
2066 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
2067 if (err)
2068 return err;
2069
2070 /* for access checks, reg->off is just part of off */
2071 off += reg->off;
2072
2073 if (reg->type == PTR_TO_MAP_VALUE) {
2074 if (t == BPF_WRITE && value_regno >= 0 &&
2075 is_pointer_value(env, value_regno)) {
2076 verbose(env, "R%d leaks addr into map\n", value_regno);
2077 return -EACCES;
2078 }
2079 err = check_map_access_type(env, regno, off, size, t);
2080 if (err)
2081 return err;
2082 err = check_map_access(env, regno, off, size, false);
2083 if (!err && t == BPF_READ && value_regno >= 0)
2084 mark_reg_unknown(env, regs, value_regno);
2085
2086 } else if (reg->type == PTR_TO_CTX) {
2087 enum bpf_reg_type reg_type = SCALAR_VALUE;
2088
2089 if (t == BPF_WRITE && value_regno >= 0 &&
2090 is_pointer_value(env, value_regno)) {
2091 verbose(env, "R%d leaks addr into ctx\n", value_regno);
2092 return -EACCES;
2093 }
2094
2095 err = check_ctx_reg(env, reg, regno);
2096 if (err < 0)
2097 return err;
2098
2099 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
2100 if (!err && t == BPF_READ && value_regno >= 0) {
2101 /* ctx access returns either a scalar, or a
2102 * PTR_TO_PACKET[_META,_END]. In the latter
2103 * case, we know the offset is zero.
2104 */
2105 if (reg_type == SCALAR_VALUE) {
2106 mark_reg_unknown(env, regs, value_regno);
2107 } else {
2108 mark_reg_known_zero(env, regs,
2109 value_regno);
2110 if (reg_type_may_be_null(reg_type))
2111 regs[value_regno].id = ++env->id_gen;
2112 }
2113 regs[value_regno].type = reg_type;
2114 }
2115
2116 } else if (reg->type == PTR_TO_STACK) {
2117 off += reg->var_off.value;
2118 err = check_stack_access(env, reg, off, size);
2119 if (err)
2120 return err;
2121
2122 state = func(env, reg);
2123 err = update_stack_depth(env, state, off);
2124 if (err)
2125 return err;
2126
2127 if (t == BPF_WRITE)
2128 err = check_stack_write(env, state, off, size,
2129 value_regno, insn_idx);
2130 else
2131 err = check_stack_read(env, state, off, size,
2132 value_regno);
2133 } else if (reg_is_pkt_pointer(reg)) {
2134 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
2135 verbose(env, "cannot write into packet\n");
2136 return -EACCES;
2137 }
2138 if (t == BPF_WRITE && value_regno >= 0 &&
2139 is_pointer_value(env, value_regno)) {
2140 verbose(env, "R%d leaks addr into packet\n",
2141 value_regno);
2142 return -EACCES;
2143 }
2144 err = check_packet_access(env, regno, off, size, false);
2145 if (!err && t == BPF_READ && value_regno >= 0)
2146 mark_reg_unknown(env, regs, value_regno);
2147 } else if (reg->type == PTR_TO_FLOW_KEYS) {
2148 if (t == BPF_WRITE && value_regno >= 0 &&
2149 is_pointer_value(env, value_regno)) {
2150 verbose(env, "R%d leaks addr into flow keys\n",
2151 value_regno);
2152 return -EACCES;
2153 }
2154
2155 err = check_flow_keys_access(env, off, size);
2156 if (!err && t == BPF_READ && value_regno >= 0)
2157 mark_reg_unknown(env, regs, value_regno);
2158 } else if (type_is_sk_pointer(reg->type)) {
2159 if (t == BPF_WRITE) {
2160 verbose(env, "R%d cannot write into %s\n",
2161 regno, reg_type_str[reg->type]);
2162 return -EACCES;
2163 }
2164 err = check_sock_access(env, insn_idx, regno, off, size, t);
2165 if (!err && value_regno >= 0)
2166 mark_reg_unknown(env, regs, value_regno);
2167 } else if (reg->type == PTR_TO_TP_BUFFER) {
2168 err = check_tp_buffer_access(env, reg, regno, off, size);
2169 if (!err && t == BPF_READ && value_regno >= 0)
2170 mark_reg_unknown(env, regs, value_regno);
2171 } else {
2172 verbose(env, "R%d invalid mem access '%s'\n", regno,
2173 reg_type_str[reg->type]);
2174 return -EACCES;
2175 }
2176
2177 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
2178 regs[value_regno].type == SCALAR_VALUE) {
2179 /* b/h/w load zero-extends, mark upper bits as known 0 */
2180 coerce_reg_to_size(&regs[value_regno], size);
2181 }
2182 return err;
2183 }
2184
2185 static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
2186 {
2187 int err;
2188
2189 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
2190 insn->imm != 0) {
2191 verbose(env, "BPF_XADD uses reserved fields\n");
2192 return -EINVAL;
2193 }
2194
2195 /* check src1 operand */
2196 err = check_reg_arg(env, insn->src_reg, SRC_OP);
2197 if (err)
2198 return err;
2199
2200 /* check src2 operand */
2201 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
2202 if (err)
2203 return err;
2204
2205 if (is_pointer_value(env, insn->src_reg)) {
2206 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
2207 return -EACCES;
2208 }
2209
2210 if (is_ctx_reg(env, insn->dst_reg) ||
2211 is_pkt_reg(env, insn->dst_reg) ||
2212 is_flow_key_reg(env, insn->dst_reg) ||
2213 is_sk_reg(env, insn->dst_reg)) {
2214 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
2215 insn->dst_reg,
2216 reg_type_str[reg_state(env, insn->dst_reg)->type]);
2217 return -EACCES;
2218 }
2219
2220 /* check whether atomic_add can read the memory */
2221 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2222 BPF_SIZE(insn->code), BPF_READ, -1, true);
2223 if (err)
2224 return err;
2225
2226 /* check whether atomic_add can write into the same memory */
2227 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
2228 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
2229 }
2230
2231 static int __check_stack_boundary(struct bpf_verifier_env *env, u32 regno,
2232 int off, int access_size,
2233 bool zero_size_allowed)
2234 {
2235 struct bpf_reg_state *reg = reg_state(env, regno);
2236
2237 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
2238 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
2239 if (tnum_is_const(reg->var_off)) {
2240 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
2241 regno, off, access_size);
2242 } else {
2243 char tn_buf[48];
2244
2245 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2246 verbose(env, "invalid stack type R%d var_off=%s access_size=%d\n",
2247 regno, tn_buf, access_size);
2248 }
2249 return -EACCES;
2250 }
2251 return 0;
2252 }
2253
2254 /* when register 'regno' is passed into function that will read 'access_size'
2255 * bytes from that pointer, make sure that it's within stack boundary
2256 * and all elements of stack are initialized.
2257 * Unlike most pointer bounds-checking functions, this one doesn't take an
2258 * 'off' argument, so it has to add in reg->off itself.
2259 */
2260 static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
2261 int access_size, bool zero_size_allowed,
2262 struct bpf_call_arg_meta *meta)
2263 {
2264 struct bpf_reg_state *reg = reg_state(env, regno);
2265 struct bpf_func_state *state = func(env, reg);
2266 int err, min_off, max_off, i, slot, spi;
2267
2268 if (reg->type != PTR_TO_STACK) {
2269 /* Allow zero-byte read from NULL, regardless of pointer type */
2270 if (zero_size_allowed && access_size == 0 &&
2271 register_is_null(reg))
2272 return 0;
2273
2274 verbose(env, "R%d type=%s expected=%s\n", regno,
2275 reg_type_str[reg->type],
2276 reg_type_str[PTR_TO_STACK]);
2277 return -EACCES;
2278 }
2279
2280 if (tnum_is_const(reg->var_off)) {
2281 min_off = max_off = reg->var_off.value + reg->off;
2282 err = __check_stack_boundary(env, regno, min_off, access_size,
2283 zero_size_allowed);
2284 if (err)
2285 return err;
2286 } else {
2287 /* Variable offset is prohibited for unprivileged mode for
2288 * simplicity since it requires corresponding support in
2289 * Spectre masking for stack ALU.
2290 * See also retrieve_ptr_limit().
2291 */
2292 if (!env->allow_ptr_leaks) {
2293 char tn_buf[48];
2294
2295 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2296 verbose(env, "R%d indirect variable offset stack access prohibited for !root, var_off=%s\n",
2297 regno, tn_buf);
2298 return -EACCES;
2299 }
2300 /* Only initialized buffer on stack is allowed to be accessed
2301 * with variable offset. With uninitialized buffer it's hard to
2302 * guarantee that whole memory is marked as initialized on
2303 * helper return since specific bounds are unknown what may
2304 * cause uninitialized stack leaking.
2305 */
2306 if (meta && meta->raw_mode)
2307 meta = NULL;
2308
2309 if (reg->smax_value >= BPF_MAX_VAR_OFF ||
2310 reg->smax_value <= -BPF_MAX_VAR_OFF) {
2311 verbose(env, "R%d unbounded indirect variable offset stack access\n",
2312 regno);
2313 return -EACCES;
2314 }
2315 min_off = reg->smin_value + reg->off;
2316 max_off = reg->smax_value + reg->off;
2317 err = __check_stack_boundary(env, regno, min_off, access_size,
2318 zero_size_allowed);
2319 if (err) {
2320 verbose(env, "R%d min value is outside of stack bound\n",
2321 regno);
2322 return err;
2323 }
2324 err = __check_stack_boundary(env, regno, max_off, access_size,
2325 zero_size_allowed);
2326 if (err) {
2327 verbose(env, "R%d max value is outside of stack bound\n",
2328 regno);
2329 return err;
2330 }
2331 }
2332
2333 if (meta && meta->raw_mode) {
2334 meta->access_size = access_size;
2335 meta->regno = regno;
2336 return 0;
2337 }
2338
2339 for (i = min_off; i < max_off + access_size; i++) {
2340 u8 *stype;
2341
2342 slot = -i - 1;
2343 spi = slot / BPF_REG_SIZE;
2344 if (state->allocated_stack <= slot)
2345 goto err;
2346 stype = &state->stack[spi].slot_type[slot % BPF_REG_SIZE];
2347 if (*stype == STACK_MISC)
2348 goto mark;
2349 if (*stype == STACK_ZERO) {
2350 /* helper can write anything into the stack */
2351 *stype = STACK_MISC;
2352 goto mark;
2353 }
2354 err:
2355 if (tnum_is_const(reg->var_off)) {
2356 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
2357 min_off, i - min_off, access_size);
2358 } else {
2359 char tn_buf[48];
2360
2361 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
2362 verbose(env, "invalid indirect read from stack var_off %s+%d size %d\n",
2363 tn_buf, i - min_off, access_size);
2364 }
2365 return -EACCES;
2366 mark:
2367 /* reading any byte out of 8-byte 'spill_slot' will cause
2368 * the whole slot to be marked as 'read'
2369 */
2370 mark_reg_read(env, &state->stack[spi].spilled_ptr,
2371 state->stack[spi].spilled_ptr.parent);
2372 }
2373 return update_stack_depth(env, state, min_off);
2374 }
2375
2376 static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
2377 int access_size, bool zero_size_allowed,
2378 struct bpf_call_arg_meta *meta)
2379 {
2380 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2381
2382 switch (reg->type) {
2383 case PTR_TO_PACKET:
2384 case PTR_TO_PACKET_META:
2385 return check_packet_access(env, regno, reg->off, access_size,
2386 zero_size_allowed);
2387 case PTR_TO_MAP_VALUE:
2388 if (check_map_access_type(env, regno, reg->off, access_size,
2389 meta && meta->raw_mode ? BPF_WRITE :
2390 BPF_READ))
2391 return -EACCES;
2392 return check_map_access(env, regno, reg->off, access_size,
2393 zero_size_allowed);
2394 default: /* scalar_value|ptr_to_stack or invalid ptr */
2395 return check_stack_boundary(env, regno, access_size,
2396 zero_size_allowed, meta);
2397 }
2398 }
2399
2400 /* Implementation details:
2401 * bpf_map_lookup returns PTR_TO_MAP_VALUE_OR_NULL
2402 * Two bpf_map_lookups (even with the same key) will have different reg->id.
2403 * For traditional PTR_TO_MAP_VALUE the verifier clears reg->id after
2404 * value_or_null->value transition, since the verifier only cares about
2405 * the range of access to valid map value pointer and doesn't care about actual
2406 * address of the map element.
2407 * For maps with 'struct bpf_spin_lock' inside map value the verifier keeps
2408 * reg->id > 0 after value_or_null->value transition. By doing so
2409 * two bpf_map_lookups will be considered two different pointers that
2410 * point to different bpf_spin_locks.
2411 * The verifier allows taking only one bpf_spin_lock at a time to avoid
2412 * dead-locks.
2413 * Since only one bpf_spin_lock is allowed the checks are simpler than
2414 * reg_is_refcounted() logic. The verifier needs to remember only
2415 * one spin_lock instead of array of acquired_refs.
2416 * cur_state->active_spin_lock remembers which map value element got locked
2417 * and clears it after bpf_spin_unlock.
2418 */
2419 static int process_spin_lock(struct bpf_verifier_env *env, int regno,
2420 bool is_lock)
2421 {
2422 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2423 struct bpf_verifier_state *cur = env->cur_state;
2424 bool is_const = tnum_is_const(reg->var_off);
2425 struct bpf_map *map = reg->map_ptr;
2426 u64 val = reg->var_off.value;
2427
2428 if (reg->type != PTR_TO_MAP_VALUE) {
2429 verbose(env, "R%d is not a pointer to map_value\n", regno);
2430 return -EINVAL;
2431 }
2432 if (!is_const) {
2433 verbose(env,
2434 "R%d doesn't have constant offset. bpf_spin_lock has to be at the constant offset\n",
2435 regno);
2436 return -EINVAL;
2437 }
2438 if (!map->btf) {
2439 verbose(env,
2440 "map '%s' has to have BTF in order to use bpf_spin_lock\n",
2441 map->name);
2442 return -EINVAL;
2443 }
2444 if (!map_value_has_spin_lock(map)) {
2445 if (map->spin_lock_off == -E2BIG)
2446 verbose(env,
2447 "map '%s' has more than one 'struct bpf_spin_lock'\n",
2448 map->name);
2449 else if (map->spin_lock_off == -ENOENT)
2450 verbose(env,
2451 "map '%s' doesn't have 'struct bpf_spin_lock'\n",
2452 map->name);
2453 else
2454 verbose(env,
2455 "map '%s' is not a struct type or bpf_spin_lock is mangled\n",
2456 map->name);
2457 return -EINVAL;
2458 }
2459 if (map->spin_lock_off != val + reg->off) {
2460 verbose(env, "off %lld doesn't point to 'struct bpf_spin_lock'\n",
2461 val + reg->off);
2462 return -EINVAL;
2463 }
2464 if (is_lock) {
2465 if (cur->active_spin_lock) {
2466 verbose(env,
2467 "Locking two bpf_spin_locks are not allowed\n");
2468 return -EINVAL;
2469 }
2470 cur->active_spin_lock = reg->id;
2471 } else {
2472 if (!cur->active_spin_lock) {
2473 verbose(env, "bpf_spin_unlock without taking a lock\n");
2474 return -EINVAL;
2475 }
2476 if (cur->active_spin_lock != reg->id) {
2477 verbose(env, "bpf_spin_unlock of different lock\n");
2478 return -EINVAL;
2479 }
2480 cur->active_spin_lock = 0;
2481 }
2482 return 0;
2483 }
2484
2485 static bool arg_type_is_mem_ptr(enum bpf_arg_type type)
2486 {
2487 return type == ARG_PTR_TO_MEM ||
2488 type == ARG_PTR_TO_MEM_OR_NULL ||
2489 type == ARG_PTR_TO_UNINIT_MEM;
2490 }
2491
2492 static bool arg_type_is_mem_size(enum bpf_arg_type type)
2493 {
2494 return type == ARG_CONST_SIZE ||
2495 type == ARG_CONST_SIZE_OR_ZERO;
2496 }
2497
2498 static bool arg_type_is_int_ptr(enum bpf_arg_type type)
2499 {
2500 return type == ARG_PTR_TO_INT ||
2501 type == ARG_PTR_TO_LONG;
2502 }
2503
2504 static int int_ptr_type_to_size(enum bpf_arg_type type)
2505 {
2506 if (type == ARG_PTR_TO_INT)
2507 return sizeof(u32);
2508 else if (type == ARG_PTR_TO_LONG)
2509 return sizeof(u64);
2510
2511 return -EINVAL;
2512 }
2513
2514 static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
2515 enum bpf_arg_type arg_type,
2516 struct bpf_call_arg_meta *meta)
2517 {
2518 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
2519 enum bpf_reg_type expected_type, type = reg->type;
2520 int err = 0;
2521
2522 if (arg_type == ARG_DONTCARE)
2523 return 0;
2524
2525 err = check_reg_arg(env, regno, SRC_OP);
2526 if (err)
2527 return err;
2528
2529 if (arg_type == ARG_ANYTHING) {
2530 if (is_pointer_value(env, regno)) {
2531 verbose(env, "R%d leaks addr into helper function\n",
2532 regno);
2533 return -EACCES;
2534 }
2535 return 0;
2536 }
2537
2538 if (type_is_pkt_pointer(type) &&
2539 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
2540 verbose(env, "helper access to the packet is not allowed\n");
2541 return -EACCES;
2542 }
2543
2544 if (arg_type == ARG_PTR_TO_MAP_KEY ||
2545 arg_type == ARG_PTR_TO_MAP_VALUE ||
2546 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE ||
2547 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL) {
2548 expected_type = PTR_TO_STACK;
2549 if (register_is_null(reg) &&
2550 arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL)
2551 /* final test in check_stack_boundary() */;
2552 else if (!type_is_pkt_pointer(type) &&
2553 type != PTR_TO_MAP_VALUE &&
2554 type != expected_type)
2555 goto err_type;
2556 } else if (arg_type == ARG_CONST_SIZE ||
2557 arg_type == ARG_CONST_SIZE_OR_ZERO) {
2558 expected_type = SCALAR_VALUE;
2559 if (type != expected_type)
2560 goto err_type;
2561 } else if (arg_type == ARG_CONST_MAP_PTR) {
2562 expected_type = CONST_PTR_TO_MAP;
2563 if (type != expected_type)
2564 goto err_type;
2565 } else if (arg_type == ARG_PTR_TO_CTX) {
2566 expected_type = PTR_TO_CTX;
2567 if (type != expected_type)
2568 goto err_type;
2569 err = check_ctx_reg(env, reg, regno);
2570 if (err < 0)
2571 return err;
2572 } else if (arg_type == ARG_PTR_TO_SOCK_COMMON) {
2573 expected_type = PTR_TO_SOCK_COMMON;
2574 /* Any sk pointer can be ARG_PTR_TO_SOCK_COMMON */
2575 if (!type_is_sk_pointer(type))
2576 goto err_type;
2577 if (reg->ref_obj_id) {
2578 if (meta->ref_obj_id) {
2579 verbose(env, "verifier internal error: more than one arg with ref_obj_id R%d %u %u\n",
2580 regno, reg->ref_obj_id,
2581 meta->ref_obj_id);
2582 return -EFAULT;
2583 }
2584 meta->ref_obj_id = reg->ref_obj_id;
2585 }
2586 } else if (arg_type == ARG_PTR_TO_SOCKET) {
2587 expected_type = PTR_TO_SOCKET;
2588 if (type != expected_type)
2589 goto err_type;
2590 } else if (arg_type == ARG_PTR_TO_SPIN_LOCK) {
2591 if (meta->func_id == BPF_FUNC_spin_lock) {
2592 if (process_spin_lock(env, regno, true))
2593 return -EACCES;
2594 } else if (meta->func_id == BPF_FUNC_spin_unlock) {
2595 if (process_spin_lock(env, regno, false))
2596 return -EACCES;
2597 } else {
2598 verbose(env, "verifier internal error\n");
2599 return -EFAULT;
2600 }
2601 } else if (arg_type_is_mem_ptr(arg_type)) {
2602 expected_type = PTR_TO_STACK;
2603 /* One exception here. In case function allows for NULL to be
2604 * passed in as argument, it's a SCALAR_VALUE type. Final test
2605 * happens during stack boundary checking.
2606 */
2607 if (register_is_null(reg) &&
2608 arg_type == ARG_PTR_TO_MEM_OR_NULL)
2609 /* final test in check_stack_boundary() */;
2610 else if (!type_is_pkt_pointer(type) &&
2611 type != PTR_TO_MAP_VALUE &&
2612 type != expected_type)
2613 goto err_type;
2614 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
2615 } else if (arg_type_is_int_ptr(arg_type)) {
2616 expected_type = PTR_TO_STACK;
2617 if (!type_is_pkt_pointer(type) &&
2618 type != PTR_TO_MAP_VALUE &&
2619 type != expected_type)
2620 goto err_type;
2621 } else {
2622 verbose(env, "unsupported arg_type %d\n", arg_type);
2623 return -EFAULT;
2624 }
2625
2626 if (arg_type == ARG_CONST_MAP_PTR) {
2627 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
2628 meta->map_ptr = reg->map_ptr;
2629 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
2630 /* bpf_map_xxx(..., map_ptr, ..., key) call:
2631 * check that [key, key + map->key_size) are within
2632 * stack limits and initialized
2633 */
2634 if (!meta->map_ptr) {
2635 /* in function declaration map_ptr must come before
2636 * map_key, so that it's verified and known before
2637 * we have to check map_key here. Otherwise it means
2638 * that kernel subsystem misconfigured verifier
2639 */
2640 verbose(env, "invalid map_ptr to access map->key\n");
2641 return -EACCES;
2642 }
2643 err = check_helper_mem_access(env, regno,
2644 meta->map_ptr->key_size, false,
2645 NULL);
2646 } else if (arg_type == ARG_PTR_TO_MAP_VALUE ||
2647 (arg_type == ARG_PTR_TO_MAP_VALUE_OR_NULL &&
2648 !register_is_null(reg)) ||
2649 arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE) {
2650 /* bpf_map_xxx(..., map_ptr, ..., value) call:
2651 * check [value, value + map->value_size) validity
2652 */
2653 if (!meta->map_ptr) {
2654 /* kernel subsystem misconfigured verifier */
2655 verbose(env, "invalid map_ptr to access map->value\n");
2656 return -EACCES;
2657 }
2658 meta->raw_mode = (arg_type == ARG_PTR_TO_UNINIT_MAP_VALUE);
2659 err = check_helper_mem_access(env, regno,
2660 meta->map_ptr->value_size, false,
2661 meta);
2662 } else if (arg_type_is_mem_size(arg_type)) {
2663 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
2664
2665 /* remember the mem_size which may be used later
2666 * to refine return values.
2667 */
2668 meta->msize_smax_value = reg->smax_value;
2669 meta->msize_umax_value = reg->umax_value;
2670
2671 /* The register is SCALAR_VALUE; the access check
2672 * happens using its boundaries.
2673 */
2674 if (!tnum_is_const(reg->var_off))
2675 /* For unprivileged variable accesses, disable raw
2676 * mode so that the program is required to
2677 * initialize all the memory that the helper could
2678 * just partially fill up.
2679 */
2680 meta = NULL;
2681
2682 if (reg->smin_value < 0) {
2683 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
2684 regno);
2685 return -EACCES;
2686 }
2687
2688 if (reg->umin_value == 0) {
2689 err = check_helper_mem_access(env, regno - 1, 0,
2690 zero_size_allowed,
2691 meta);
2692 if (err)
2693 return err;
2694 }
2695
2696 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
2697 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
2698 regno);
2699 return -EACCES;
2700 }
2701 err = check_helper_mem_access(env, regno - 1,
2702 reg->umax_value,
2703 zero_size_allowed, meta);
2704 } else if (arg_type_is_int_ptr(arg_type)) {
2705 int size = int_ptr_type_to_size(arg_type);
2706
2707 err = check_helper_mem_access(env, regno, size, false, meta);
2708 if (err)
2709 return err;
2710 err = check_ptr_alignment(env, reg, 0, size, true);
2711 }
2712
2713 return err;
2714 err_type:
2715 verbose(env, "R%d type=%s expected=%s\n", regno,
2716 reg_type_str[type], reg_type_str[expected_type]);
2717 return -EACCES;
2718 }
2719
2720 static int check_map_func_compatibility(struct bpf_verifier_env *env,
2721 struct bpf_map *map, int func_id)
2722 {
2723 if (!map)
2724 return 0;
2725
2726 /* We need a two way check, first is from map perspective ... */
2727 switch (map->map_type) {
2728 case BPF_MAP_TYPE_PROG_ARRAY:
2729 if (func_id != BPF_FUNC_tail_call)
2730 goto error;
2731 break;
2732 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
2733 if (func_id != BPF_FUNC_perf_event_read &&
2734 func_id != BPF_FUNC_perf_event_output &&
2735 func_id != BPF_FUNC_perf_event_read_value)
2736 goto error;
2737 break;
2738 case BPF_MAP_TYPE_STACK_TRACE:
2739 if (func_id != BPF_FUNC_get_stackid)
2740 goto error;
2741 break;
2742 case BPF_MAP_TYPE_CGROUP_ARRAY:
2743 if (func_id != BPF_FUNC_skb_under_cgroup &&
2744 func_id != BPF_FUNC_current_task_under_cgroup)
2745 goto error;
2746 break;
2747 case BPF_MAP_TYPE_CGROUP_STORAGE:
2748 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE:
2749 if (func_id != BPF_FUNC_get_local_storage)
2750 goto error;
2751 break;
2752 /* devmap returns a pointer to a live net_device ifindex that we cannot
2753 * allow to be modified from bpf side. So do not allow lookup elements
2754 * for now.
2755 */
2756 case BPF_MAP_TYPE_DEVMAP:
2757 if (func_id != BPF_FUNC_redirect_map)
2758 goto error;
2759 break;
2760 /* Restrict bpf side of cpumap and xskmap, open when use-cases
2761 * appear.
2762 */
2763 case BPF_MAP_TYPE_CPUMAP:
2764 case BPF_MAP_TYPE_XSKMAP:
2765 if (func_id != BPF_FUNC_redirect_map)
2766 goto error;
2767 break;
2768 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
2769 case BPF_MAP_TYPE_HASH_OF_MAPS:
2770 if (func_id != BPF_FUNC_map_lookup_elem)
2771 goto error;
2772 break;
2773 case BPF_MAP_TYPE_SOCKMAP:
2774 if (func_id != BPF_FUNC_sk_redirect_map &&
2775 func_id != BPF_FUNC_sock_map_update &&
2776 func_id != BPF_FUNC_map_delete_elem &&
2777 func_id != BPF_FUNC_msg_redirect_map)
2778 goto error;
2779 break;
2780 case BPF_MAP_TYPE_SOCKHASH:
2781 if (func_id != BPF_FUNC_sk_redirect_hash &&
2782 func_id != BPF_FUNC_sock_hash_update &&
2783 func_id != BPF_FUNC_map_delete_elem &&
2784 func_id != BPF_FUNC_msg_redirect_hash)
2785 goto error;
2786 break;
2787 case BPF_MAP_TYPE_REUSEPORT_SOCKARRAY:
2788 if (func_id != BPF_FUNC_sk_select_reuseport)
2789 goto error;
2790 break;
2791 case BPF_MAP_TYPE_QUEUE:
2792 case BPF_MAP_TYPE_STACK:
2793 if (func_id != BPF_FUNC_map_peek_elem &&
2794 func_id != BPF_FUNC_map_pop_elem &&
2795 func_id != BPF_FUNC_map_push_elem)
2796 goto error;
2797 break;
2798 case BPF_MAP_TYPE_SK_STORAGE:
2799 if (func_id != BPF_FUNC_sk_storage_get &&
2800 func_id != BPF_FUNC_sk_storage_delete)
2801 goto error;
2802 break;
2803 default:
2804 break;
2805 }
2806
2807 /* ... and second from the function itself. */
2808 switch (func_id) {
2809 case BPF_FUNC_tail_call:
2810 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
2811 goto error;
2812 if (env->subprog_cnt > 1) {
2813 verbose(env, "tail_calls are not allowed in programs with bpf-to-bpf calls\n");
2814 return -EINVAL;
2815 }
2816 break;
2817 case BPF_FUNC_perf_event_read:
2818 case BPF_FUNC_perf_event_output:
2819 case BPF_FUNC_perf_event_read_value:
2820 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
2821 goto error;
2822 break;
2823 case BPF_FUNC_get_stackid:
2824 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
2825 goto error;
2826 break;
2827 case BPF_FUNC_current_task_under_cgroup:
2828 case BPF_FUNC_skb_under_cgroup:
2829 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
2830 goto error;
2831 break;
2832 case BPF_FUNC_redirect_map:
2833 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
2834 map->map_type != BPF_MAP_TYPE_CPUMAP &&
2835 map->map_type != BPF_MAP_TYPE_XSKMAP)
2836 goto error;
2837 break;
2838 case BPF_FUNC_sk_redirect_map:
2839 case BPF_FUNC_msg_redirect_map:
2840 case BPF_FUNC_sock_map_update:
2841 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
2842 goto error;
2843 break;
2844 case BPF_FUNC_sk_redirect_hash:
2845 case BPF_FUNC_msg_redirect_hash:
2846 case BPF_FUNC_sock_hash_update:
2847 if (map->map_type != BPF_MAP_TYPE_SOCKHASH)
2848 goto error;
2849 break;
2850 case BPF_FUNC_get_local_storage:
2851 if (map->map_type != BPF_MAP_TYPE_CGROUP_STORAGE &&
2852 map->map_type != BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE)
2853 goto error;
2854 break;
2855 case BPF_FUNC_sk_select_reuseport:
2856 if (map->map_type != BPF_MAP_TYPE_REUSEPORT_SOCKARRAY)
2857 goto error;
2858 break;
2859 case BPF_FUNC_map_peek_elem:
2860 case BPF_FUNC_map_pop_elem:
2861 case BPF_FUNC_map_push_elem:
2862 if (map->map_type != BPF_MAP_TYPE_QUEUE &&
2863 map->map_type != BPF_MAP_TYPE_STACK)
2864 goto error;
2865 break;
2866 case BPF_FUNC_sk_storage_get:
2867 case BPF_FUNC_sk_storage_delete:
2868 if (map->map_type != BPF_MAP_TYPE_SK_STORAGE)
2869 goto error;
2870 break;
2871 default:
2872 break;
2873 }
2874
2875 return 0;
2876 error:
2877 verbose(env, "cannot pass map_type %d into func %s#%d\n",
2878 map->map_type, func_id_name(func_id), func_id);
2879 return -EINVAL;
2880 }
2881
2882 static bool check_raw_mode_ok(const struct bpf_func_proto *fn)
2883 {
2884 int count = 0;
2885
2886 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
2887 count++;
2888 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
2889 count++;
2890 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
2891 count++;
2892 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
2893 count++;
2894 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
2895 count++;
2896
2897 /* We only support one arg being in raw mode at the moment,
2898 * which is sufficient for the helper functions we have
2899 * right now.
2900 */
2901 return count <= 1;
2902 }
2903
2904 static bool check_args_pair_invalid(enum bpf_arg_type arg_curr,
2905 enum bpf_arg_type arg_next)
2906 {
2907 return (arg_type_is_mem_ptr(arg_curr) &&
2908 !arg_type_is_mem_size(arg_next)) ||
2909 (!arg_type_is_mem_ptr(arg_curr) &&
2910 arg_type_is_mem_size(arg_next));
2911 }
2912
2913 static bool check_arg_pair_ok(const struct bpf_func_proto *fn)
2914 {
2915 /* bpf_xxx(..., buf, len) call will access 'len'
2916 * bytes from memory 'buf'. Both arg types need
2917 * to be paired, so make sure there's no buggy
2918 * helper function specification.
2919 */
2920 if (arg_type_is_mem_size(fn->arg1_type) ||
2921 arg_type_is_mem_ptr(fn->arg5_type) ||
2922 check_args_pair_invalid(fn->arg1_type, fn->arg2_type) ||
2923 check_args_pair_invalid(fn->arg2_type, fn->arg3_type) ||
2924 check_args_pair_invalid(fn->arg3_type, fn->arg4_type) ||
2925 check_args_pair_invalid(fn->arg4_type, fn->arg5_type))
2926 return false;
2927
2928 return true;
2929 }
2930
2931 static bool check_refcount_ok(const struct bpf_func_proto *fn, int func_id)
2932 {
2933 int count = 0;
2934
2935 if (arg_type_may_be_refcounted(fn->arg1_type))
2936 count++;
2937 if (arg_type_may_be_refcounted(fn->arg2_type))
2938 count++;
2939 if (arg_type_may_be_refcounted(fn->arg3_type))
2940 count++;
2941 if (arg_type_may_be_refcounted(fn->arg4_type))
2942 count++;
2943 if (arg_type_may_be_refcounted(fn->arg5_type))
2944 count++;
2945
2946 /* A reference acquiring function cannot acquire
2947 * another refcounted ptr.
2948 */
2949 if (is_acquire_function(func_id) && count)
2950 return false;
2951
2952 /* We only support one arg being unreferenced at the moment,
2953 * which is sufficient for the helper functions we have right now.
2954 */
2955 return count <= 1;
2956 }
2957
2958 static int check_func_proto(const struct bpf_func_proto *fn, int func_id)
2959 {
2960 return check_raw_mode_ok(fn) &&
2961 check_arg_pair_ok(fn) &&
2962 check_refcount_ok(fn, func_id) ? 0 : -EINVAL;
2963 }
2964
2965 /* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
2966 * are now invalid, so turn them into unknown SCALAR_VALUE.
2967 */
2968 static void __clear_all_pkt_pointers(struct bpf_verifier_env *env,
2969 struct bpf_func_state *state)
2970 {
2971 struct bpf_reg_state *regs = state->regs, *reg;
2972 int i;
2973
2974 for (i = 0; i < MAX_BPF_REG; i++)
2975 if (reg_is_pkt_pointer_any(&regs[i]))
2976 mark_reg_unknown(env, regs, i);
2977
2978 bpf_for_each_spilled_reg(i, state, reg) {
2979 if (!reg)
2980 continue;
2981 if (reg_is_pkt_pointer_any(reg))
2982 __mark_reg_unknown(reg);
2983 }
2984 }
2985
2986 static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
2987 {
2988 struct bpf_verifier_state *vstate = env->cur_state;
2989 int i;
2990
2991 for (i = 0; i <= vstate->curframe; i++)
2992 __clear_all_pkt_pointers(env, vstate->frame[i]);
2993 }
2994
2995 static void release_reg_references(struct bpf_verifier_env *env,
2996 struct bpf_func_state *state,
2997 int ref_obj_id)
2998 {
2999 struct bpf_reg_state *regs = state->regs, *reg;
3000 int i;
3001
3002 for (i = 0; i < MAX_BPF_REG; i++)
3003 if (regs[i].ref_obj_id == ref_obj_id)
3004 mark_reg_unknown(env, regs, i);
3005
3006 bpf_for_each_spilled_reg(i, state, reg) {
3007 if (!reg)
3008 continue;
3009 if (reg->ref_obj_id == ref_obj_id)
3010 __mark_reg_unknown(reg);
3011 }
3012 }
3013
3014 /* The pointer with the specified id has released its reference to kernel
3015 * resources. Identify all copies of the same pointer and clear the reference.
3016 */
3017 static int release_reference(struct bpf_verifier_env *env,
3018 int ref_obj_id)
3019 {
3020 struct bpf_verifier_state *vstate = env->cur_state;
3021 int err;
3022 int i;
3023
3024 err = release_reference_state(cur_func(env), ref_obj_id);
3025 if (err)
3026 return err;
3027
3028 for (i = 0; i <= vstate->curframe; i++)
3029 release_reg_references(env, vstate->frame[i], ref_obj_id);
3030
3031 return 0;
3032 }
3033
3034 static int check_func_call(struct bpf_verifier_env *env, struct bpf_insn *insn,
3035 int *insn_idx)
3036 {
3037 struct bpf_verifier_state *state = env->cur_state;
3038 struct bpf_func_state *caller, *callee;
3039 int i, err, subprog, target_insn;
3040
3041 if (state->curframe + 1 >= MAX_CALL_FRAMES) {
3042 verbose(env, "the call stack of %d frames is too deep\n",
3043 state->curframe + 2);
3044 return -E2BIG;
3045 }
3046
3047 target_insn = *insn_idx + insn->imm;
3048 subprog = find_subprog(env, target_insn + 1);
3049 if (subprog < 0) {
3050 verbose(env, "verifier bug. No program starts at insn %d\n",
3051 target_insn + 1);
3052 return -EFAULT;
3053 }
3054
3055 caller = state->frame[state->curframe];
3056 if (state->frame[state->curframe + 1]) {
3057 verbose(env, "verifier bug. Frame %d already allocated\n",
3058 state->curframe + 1);
3059 return -EFAULT;
3060 }
3061
3062 callee = kzalloc(sizeof(*callee), GFP_KERNEL);
3063 if (!callee)
3064 return -ENOMEM;
3065 state->frame[state->curframe + 1] = callee;
3066
3067 /* callee cannot access r0, r6 - r9 for reading and has to write
3068 * into its own stack before reading from it.
3069 * callee can read/write into caller's stack
3070 */
3071 init_func_state(env, callee,
3072 /* remember the callsite, it will be used by bpf_exit */
3073 *insn_idx /* callsite */,
3074 state->curframe + 1 /* frameno within this callchain */,
3075 subprog /* subprog number within this prog */);
3076
3077 /* Transfer references to the callee */
3078 err = transfer_reference_state(callee, caller);
3079 if (err)
3080 return err;
3081
3082 /* copy r1 - r5 args that callee can access. The copy includes parent
3083 * pointers, which connects us up to the liveness chain
3084 */
3085 for (i = BPF_REG_1; i <= BPF_REG_5; i++)
3086 callee->regs[i] = caller->regs[i];
3087
3088 /* after the call registers r0 - r5 were scratched */
3089 for (i = 0; i < CALLER_SAVED_REGS; i++) {
3090 mark_reg_not_init(env, caller->regs, caller_saved[i]);
3091 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3092 }
3093
3094 /* only increment it after check_reg_arg() finished */
3095 state->curframe++;
3096
3097 /* and go analyze first insn of the callee */
3098 *insn_idx = target_insn;
3099
3100 if (env->log.level & BPF_LOG_LEVEL) {
3101 verbose(env, "caller:\n");
3102 print_verifier_state(env, caller);
3103 verbose(env, "callee:\n");
3104 print_verifier_state(env, callee);
3105 }
3106 return 0;
3107 }
3108
3109 static int prepare_func_exit(struct bpf_verifier_env *env, int *insn_idx)
3110 {
3111 struct bpf_verifier_state *state = env->cur_state;
3112 struct bpf_func_state *caller, *callee;
3113 struct bpf_reg_state *r0;
3114 int err;
3115
3116 callee = state->frame[state->curframe];
3117 r0 = &callee->regs[BPF_REG_0];
3118 if (r0->type == PTR_TO_STACK) {
3119 /* technically it's ok to return caller's stack pointer
3120 * (or caller's caller's pointer) back to the caller,
3121 * since these pointers are valid. Only current stack
3122 * pointer will be invalid as soon as function exits,
3123 * but let's be conservative
3124 */
3125 verbose(env, "cannot return stack pointer to the caller\n");
3126 return -EINVAL;
3127 }
3128
3129 state->curframe--;
3130 caller = state->frame[state->curframe];
3131 /* return to the caller whatever r0 had in the callee */
3132 caller->regs[BPF_REG_0] = *r0;
3133
3134 /* Transfer references to the caller */
3135 err = transfer_reference_state(caller, callee);
3136 if (err)
3137 return err;
3138
3139 *insn_idx = callee->callsite + 1;
3140 if (env->log.level & BPF_LOG_LEVEL) {
3141 verbose(env, "returning from callee:\n");
3142 print_verifier_state(env, callee);
3143 verbose(env, "to caller at %d:\n", *insn_idx);
3144 print_verifier_state(env, caller);
3145 }
3146 /* clear everything in the callee */
3147 free_func_state(callee);
3148 state->frame[state->curframe + 1] = NULL;
3149 return 0;
3150 }
3151
3152 static void do_refine_retval_range(struct bpf_reg_state *regs, int ret_type,
3153 int func_id,
3154 struct bpf_call_arg_meta *meta)
3155 {
3156 struct bpf_reg_state *ret_reg = &regs[BPF_REG_0];
3157
3158 if (ret_type != RET_INTEGER ||
3159 (func_id != BPF_FUNC_get_stack &&
3160 func_id != BPF_FUNC_probe_read_str))
3161 return;
3162
3163 ret_reg->smax_value = meta->msize_smax_value;
3164 ret_reg->umax_value = meta->msize_umax_value;
3165 __reg_deduce_bounds(ret_reg);
3166 __reg_bound_offset(ret_reg);
3167 }
3168
3169 static int
3170 record_func_map(struct bpf_verifier_env *env, struct bpf_call_arg_meta *meta,
3171 int func_id, int insn_idx)
3172 {
3173 struct bpf_insn_aux_data *aux = &env->insn_aux_data[insn_idx];
3174 struct bpf_map *map = meta->map_ptr;
3175
3176 if (func_id != BPF_FUNC_tail_call &&
3177 func_id != BPF_FUNC_map_lookup_elem &&
3178 func_id != BPF_FUNC_map_update_elem &&
3179 func_id != BPF_FUNC_map_delete_elem &&
3180 func_id != BPF_FUNC_map_push_elem &&
3181 func_id != BPF_FUNC_map_pop_elem &&
3182 func_id != BPF_FUNC_map_peek_elem)
3183 return 0;
3184
3185 if (map == NULL) {
3186 verbose(env, "kernel subsystem misconfigured verifier\n");
3187 return -EINVAL;
3188 }
3189
3190 /* In case of read-only, some additional restrictions
3191 * need to be applied in order to prevent altering the
3192 * state of the map from program side.
3193 */
3194 if ((map->map_flags & BPF_F_RDONLY_PROG) &&
3195 (func_id == BPF_FUNC_map_delete_elem ||
3196 func_id == BPF_FUNC_map_update_elem ||
3197 func_id == BPF_FUNC_map_push_elem ||
3198 func_id == BPF_FUNC_map_pop_elem)) {
3199 verbose(env, "write into map forbidden\n");
3200 return -EACCES;
3201 }
3202
3203 if (!BPF_MAP_PTR(aux->map_state))
3204 bpf_map_ptr_store(aux, meta->map_ptr,
3205 meta->map_ptr->unpriv_array);
3206 else if (BPF_MAP_PTR(aux->map_state) != meta->map_ptr)
3207 bpf_map_ptr_store(aux, BPF_MAP_PTR_POISON,
3208 meta->map_ptr->unpriv_array);
3209 return 0;
3210 }
3211
3212 static int check_reference_leak(struct bpf_verifier_env *env)
3213 {
3214 struct bpf_func_state *state = cur_func(env);
3215 int i;
3216
3217 for (i = 0; i < state->acquired_refs; i++) {
3218 verbose(env, "Unreleased reference id=%d alloc_insn=%d\n",
3219 state->refs[i].id, state->refs[i].insn_idx);
3220 }
3221 return state->acquired_refs ? -EINVAL : 0;
3222 }
3223
3224 static int check_helper_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
3225 {
3226 const struct bpf_func_proto *fn = NULL;
3227 struct bpf_reg_state *regs;
3228 struct bpf_call_arg_meta meta;
3229 bool changes_data;
3230 int i, err;
3231
3232 /* find function prototype */
3233 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
3234 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
3235 func_id);
3236 return -EINVAL;
3237 }
3238
3239 if (env->ops->get_func_proto)
3240 fn = env->ops->get_func_proto(func_id, env->prog);
3241 if (!fn) {
3242 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
3243 func_id);
3244 return -EINVAL;
3245 }
3246
3247 /* eBPF programs must be GPL compatible to use GPL-ed functions */
3248 if (!env->prog->gpl_compatible && fn->gpl_only) {
3249 verbose(env, "cannot call GPL-restricted function from non-GPL compatible program\n");
3250 return -EINVAL;
3251 }
3252
3253 /* With LD_ABS/IND some JITs save/restore skb from r1. */
3254 changes_data = bpf_helper_changes_pkt_data(fn->func);
3255 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
3256 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
3257 func_id_name(func_id), func_id);
3258 return -EINVAL;
3259 }
3260
3261 memset(&meta, 0, sizeof(meta));
3262 meta.pkt_access = fn->pkt_access;
3263
3264 err = check_func_proto(fn, func_id);
3265 if (err) {
3266 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
3267 func_id_name(func_id), func_id);
3268 return err;
3269 }
3270
3271 meta.func_id = func_id;
3272 /* check args */
3273 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
3274 if (err)
3275 return err;
3276 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
3277 if (err)
3278 return err;
3279 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
3280 if (err)
3281 return err;
3282 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
3283 if (err)
3284 return err;
3285 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
3286 if (err)
3287 return err;
3288
3289 err = record_func_map(env, &meta, func_id, insn_idx);
3290 if (err)
3291 return err;
3292
3293 /* Mark slots with STACK_MISC in case of raw mode, stack offset
3294 * is inferred from register state.
3295 */
3296 for (i = 0; i < meta.access_size; i++) {
3297 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
3298 BPF_WRITE, -1, false);
3299 if (err)
3300 return err;
3301 }
3302
3303 if (func_id == BPF_FUNC_tail_call) {
3304 err = check_reference_leak(env);
3305 if (err) {
3306 verbose(env, "tail_call would lead to reference leak\n");
3307 return err;
3308 }
3309 } else if (is_release_function(func_id)) {
3310 err = release_reference(env, meta.ref_obj_id);
3311 if (err) {
3312 verbose(env, "func %s#%d reference has not been acquired before\n",
3313 func_id_name(func_id), func_id);
3314 return err;
3315 }
3316 }
3317
3318 regs = cur_regs(env);
3319
3320 /* check that flags argument in get_local_storage(map, flags) is 0,
3321 * this is required because get_local_storage() can't return an error.
3322 */
3323 if (func_id == BPF_FUNC_get_local_storage &&
3324 !register_is_null(&regs[BPF_REG_2])) {
3325 verbose(env, "get_local_storage() doesn't support non-zero flags\n");
3326 return -EINVAL;
3327 }
3328
3329 /* reset caller saved regs */
3330 for (i = 0; i < CALLER_SAVED_REGS; i++) {
3331 mark_reg_not_init(env, regs, caller_saved[i]);
3332 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3333 }
3334
3335 /* update return register (already marked as written above) */
3336 if (fn->ret_type == RET_INTEGER) {
3337 /* sets type to SCALAR_VALUE */
3338 mark_reg_unknown(env, regs, BPF_REG_0);
3339 } else if (fn->ret_type == RET_VOID) {
3340 regs[BPF_REG_0].type = NOT_INIT;
3341 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL ||
3342 fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3343 /* There is no offset yet applied, variable or fixed */
3344 mark_reg_known_zero(env, regs, BPF_REG_0);
3345 /* remember map_ptr, so that check_map_access()
3346 * can check 'value_size' boundary of memory access
3347 * to map element returned from bpf_map_lookup_elem()
3348 */
3349 if (meta.map_ptr == NULL) {
3350 verbose(env,
3351 "kernel subsystem misconfigured verifier\n");
3352 return -EINVAL;
3353 }
3354 regs[BPF_REG_0].map_ptr = meta.map_ptr;
3355 if (fn->ret_type == RET_PTR_TO_MAP_VALUE) {
3356 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE;
3357 if (map_value_has_spin_lock(meta.map_ptr))
3358 regs[BPF_REG_0].id = ++env->id_gen;
3359 } else {
3360 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
3361 regs[BPF_REG_0].id = ++env->id_gen;
3362 }
3363 } else if (fn->ret_type == RET_PTR_TO_SOCKET_OR_NULL) {
3364 mark_reg_known_zero(env, regs, BPF_REG_0);
3365 regs[BPF_REG_0].type = PTR_TO_SOCKET_OR_NULL;
3366 regs[BPF_REG_0].id = ++env->id_gen;
3367 } else if (fn->ret_type == RET_PTR_TO_SOCK_COMMON_OR_NULL) {
3368 mark_reg_known_zero(env, regs, BPF_REG_0);
3369 regs[BPF_REG_0].type = PTR_TO_SOCK_COMMON_OR_NULL;
3370 regs[BPF_REG_0].id = ++env->id_gen;
3371 } else if (fn->ret_type == RET_PTR_TO_TCP_SOCK_OR_NULL) {
3372 mark_reg_known_zero(env, regs, BPF_REG_0);
3373 regs[BPF_REG_0].type = PTR_TO_TCP_SOCK_OR_NULL;
3374 regs[BPF_REG_0].id = ++env->id_gen;
3375 } else {
3376 verbose(env, "unknown return type %d of func %s#%d\n",
3377 fn->ret_type, func_id_name(func_id), func_id);
3378 return -EINVAL;
3379 }
3380
3381 if (is_ptr_cast_function(func_id)) {
3382 /* For release_reference() */
3383 regs[BPF_REG_0].ref_obj_id = meta.ref_obj_id;
3384 } else if (is_acquire_function(func_id)) {
3385 int id = acquire_reference_state(env, insn_idx);
3386
3387 if (id < 0)
3388 return id;
3389 /* For mark_ptr_or_null_reg() */
3390 regs[BPF_REG_0].id = id;
3391 /* For release_reference() */
3392 regs[BPF_REG_0].ref_obj_id = id;
3393 }
3394
3395 do_refine_retval_range(regs, fn->ret_type, func_id, &meta);
3396
3397 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
3398 if (err)
3399 return err;
3400
3401 if (func_id == BPF_FUNC_get_stack && !env->prog->has_callchain_buf) {
3402 const char *err_str;
3403
3404 #ifdef CONFIG_PERF_EVENTS
3405 err = get_callchain_buffers(sysctl_perf_event_max_stack);
3406 err_str = "cannot get callchain buffer for func %s#%d\n";
3407 #else
3408 err = -ENOTSUPP;
3409 err_str = "func %s#%d not supported without CONFIG_PERF_EVENTS\n";
3410 #endif
3411 if (err) {
3412 verbose(env, err_str, func_id_name(func_id), func_id);
3413 return err;
3414 }
3415
3416 env->prog->has_callchain_buf = true;
3417 }
3418
3419 if (changes_data)
3420 clear_all_pkt_pointers(env);
3421 return 0;
3422 }
3423
3424 static bool signed_add_overflows(s64 a, s64 b)
3425 {
3426 /* Do the add in u64, where overflow is well-defined */
3427 s64 res = (s64)((u64)a + (u64)b);
3428
3429 if (b < 0)
3430 return res > a;
3431 return res < a;
3432 }
3433
3434 static bool signed_sub_overflows(s64 a, s64 b)
3435 {
3436 /* Do the sub in u64, where overflow is well-defined */
3437 s64 res = (s64)((u64)a - (u64)b);
3438
3439 if (b < 0)
3440 return res < a;
3441 return res > a;
3442 }
3443
3444 static bool check_reg_sane_offset(struct bpf_verifier_env *env,
3445 const struct bpf_reg_state *reg,
3446 enum bpf_reg_type type)
3447 {
3448 bool known = tnum_is_const(reg->var_off);
3449 s64 val = reg->var_off.value;
3450 s64 smin = reg->smin_value;
3451
3452 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
3453 verbose(env, "math between %s pointer and %lld is not allowed\n",
3454 reg_type_str[type], val);
3455 return false;
3456 }
3457
3458 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
3459 verbose(env, "%s pointer offset %d is not allowed\n",
3460 reg_type_str[type], reg->off);
3461 return false;
3462 }
3463
3464 if (smin == S64_MIN) {
3465 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
3466 reg_type_str[type]);
3467 return false;
3468 }
3469
3470 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
3471 verbose(env, "value %lld makes %s pointer be out of bounds\n",
3472 smin, reg_type_str[type]);
3473 return false;
3474 }
3475
3476 return true;
3477 }
3478
3479 static struct bpf_insn_aux_data *cur_aux(struct bpf_verifier_env *env)
3480 {
3481 return &env->insn_aux_data[env->insn_idx];
3482 }
3483
3484 static int retrieve_ptr_limit(const struct bpf_reg_state *ptr_reg,
3485 u32 *ptr_limit, u8 opcode, bool off_is_neg)
3486 {
3487 bool mask_to_left = (opcode == BPF_ADD && off_is_neg) ||
3488 (opcode == BPF_SUB && !off_is_neg);
3489 u32 off;
3490
3491 switch (ptr_reg->type) {
3492 case PTR_TO_STACK:
3493 /* Indirect variable offset stack access is prohibited in
3494 * unprivileged mode so it's not handled here.
3495 */
3496 off = ptr_reg->off + ptr_reg->var_off.value;
3497 if (mask_to_left)
3498 *ptr_limit = MAX_BPF_STACK + off;
3499 else
3500 *ptr_limit = -off;
3501 return 0;
3502 case PTR_TO_MAP_VALUE:
3503 if (mask_to_left) {
3504 *ptr_limit = ptr_reg->umax_value + ptr_reg->off;
3505 } else {
3506 off = ptr_reg->smin_value + ptr_reg->off;
3507 *ptr_limit = ptr_reg->map_ptr->value_size - off;
3508 }
3509 return 0;
3510 default:
3511 return -EINVAL;
3512 }
3513 }
3514
3515 static bool can_skip_alu_sanitation(const struct bpf_verifier_env *env,
3516 const struct bpf_insn *insn)
3517 {
3518 return env->allow_ptr_leaks || BPF_SRC(insn->code) == BPF_K;
3519 }
3520
3521 static int update_alu_sanitation_state(struct bpf_insn_aux_data *aux,
3522 u32 alu_state, u32 alu_limit)
3523 {
3524 /* If we arrived here from different branches with different
3525 * state or limits to sanitize, then this won't work.
3526 */
3527 if (aux->alu_state &&
3528 (aux->alu_state != alu_state ||
3529 aux->alu_limit != alu_limit))
3530 return -EACCES;
3531
3532 /* Corresponding fixup done in fixup_bpf_calls(). */
3533 aux->alu_state = alu_state;
3534 aux->alu_limit = alu_limit;
3535 return 0;
3536 }
3537
3538 static int sanitize_val_alu(struct bpf_verifier_env *env,
3539 struct bpf_insn *insn)
3540 {
3541 struct bpf_insn_aux_data *aux = cur_aux(env);
3542
3543 if (can_skip_alu_sanitation(env, insn))
3544 return 0;
3545
3546 return update_alu_sanitation_state(aux, BPF_ALU_NON_POINTER, 0);
3547 }
3548
3549 static int sanitize_ptr_alu(struct bpf_verifier_env *env,
3550 struct bpf_insn *insn,
3551 const struct bpf_reg_state *ptr_reg,
3552 struct bpf_reg_state *dst_reg,
3553 bool off_is_neg)
3554 {
3555 struct bpf_verifier_state *vstate = env->cur_state;
3556 struct bpf_insn_aux_data *aux = cur_aux(env);
3557 bool ptr_is_dst_reg = ptr_reg == dst_reg;
3558 u8 opcode = BPF_OP(insn->code);
3559 u32 alu_state, alu_limit;
3560 struct bpf_reg_state tmp;
3561 bool ret;
3562
3563 if (can_skip_alu_sanitation(env, insn))
3564 return 0;
3565
3566 /* We already marked aux for masking from non-speculative
3567 * paths, thus we got here in the first place. We only care
3568 * to explore bad access from here.
3569 */
3570 if (vstate->speculative)
3571 goto do_sim;
3572
3573 alu_state = off_is_neg ? BPF_ALU_NEG_VALUE : 0;
3574 alu_state |= ptr_is_dst_reg ?
3575 BPF_ALU_SANITIZE_SRC : BPF_ALU_SANITIZE_DST;
3576
3577 if (retrieve_ptr_limit(ptr_reg, &alu_limit, opcode, off_is_neg))
3578 return 0;
3579 if (update_alu_sanitation_state(aux, alu_state, alu_limit))
3580 return -EACCES;
3581 do_sim:
3582 /* Simulate and find potential out-of-bounds access under
3583 * speculative execution from truncation as a result of
3584 * masking when off was not within expected range. If off
3585 * sits in dst, then we temporarily need to move ptr there
3586 * to simulate dst (== 0) +/-= ptr. Needed, for example,
3587 * for cases where we use K-based arithmetic in one direction
3588 * and truncated reg-based in the other in order to explore
3589 * bad access.
3590 */
3591 if (!ptr_is_dst_reg) {
3592 tmp = *dst_reg;
3593 *dst_reg = *ptr_reg;
3594 }
3595 ret = push_stack(env, env->insn_idx + 1, env->insn_idx, true);
3596 if (!ptr_is_dst_reg && ret)
3597 *dst_reg = tmp;
3598 return !ret ? -EFAULT : 0;
3599 }
3600
3601 /* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
3602 * Caller should also handle BPF_MOV case separately.
3603 * If we return -EACCES, caller may want to try again treating pointer as a
3604 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
3605 */
3606 static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
3607 struct bpf_insn *insn,
3608 const struct bpf_reg_state *ptr_reg,
3609 const struct bpf_reg_state *off_reg)
3610 {
3611 struct bpf_verifier_state *vstate = env->cur_state;
3612 struct bpf_func_state *state = vstate->frame[vstate->curframe];
3613 struct bpf_reg_state *regs = state->regs, *dst_reg;
3614 bool known = tnum_is_const(off_reg->var_off);
3615 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
3616 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
3617 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
3618 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
3619 u32 dst = insn->dst_reg, src = insn->src_reg;
3620 u8 opcode = BPF_OP(insn->code);
3621 int ret;
3622
3623 dst_reg = &regs[dst];
3624
3625 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
3626 smin_val > smax_val || umin_val > umax_val) {
3627 /* Taint dst register if offset had invalid bounds derived from
3628 * e.g. dead branches.
3629 */
3630 __mark_reg_unknown(dst_reg);
3631 return 0;
3632 }
3633
3634 if (BPF_CLASS(insn->code) != BPF_ALU64) {
3635 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
3636 verbose(env,
3637 "R%d 32-bit pointer arithmetic prohibited\n",
3638 dst);
3639 return -EACCES;
3640 }
3641
3642 switch (ptr_reg->type) {
3643 case PTR_TO_MAP_VALUE_OR_NULL:
3644 verbose(env, "R%d pointer arithmetic on %s prohibited, null-check it first\n",
3645 dst, reg_type_str[ptr_reg->type]);
3646 return -EACCES;
3647 case CONST_PTR_TO_MAP:
3648 case PTR_TO_PACKET_END:
3649 case PTR_TO_SOCKET:
3650 case PTR_TO_SOCKET_OR_NULL:
3651 case PTR_TO_SOCK_COMMON:
3652 case PTR_TO_SOCK_COMMON_OR_NULL:
3653 case PTR_TO_TCP_SOCK:
3654 case PTR_TO_TCP_SOCK_OR_NULL:
3655 verbose(env, "R%d pointer arithmetic on %s prohibited\n",
3656 dst, reg_type_str[ptr_reg->type]);
3657 return -EACCES;
3658 case PTR_TO_MAP_VALUE:
3659 if (!env->allow_ptr_leaks && !known && (smin_val < 0) != (smax_val < 0)) {
3660 verbose(env, "R%d has unknown scalar with mixed signed bounds, pointer arithmetic with it prohibited for !root\n",
3661 off_reg == dst_reg ? dst : src);
3662 return -EACCES;
3663 }
3664 /* fall-through */
3665 default:
3666 break;
3667 }
3668
3669 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
3670 * The id may be overwritten later if we create a new variable offset.
3671 */
3672 dst_reg->type = ptr_reg->type;
3673 dst_reg->id = ptr_reg->id;
3674
3675 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
3676 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
3677 return -EINVAL;
3678
3679 switch (opcode) {
3680 case BPF_ADD:
3681 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3682 if (ret < 0) {
3683 verbose(env, "R%d tried to add from different maps or paths\n", dst);
3684 return ret;
3685 }
3686 /* We can take a fixed offset as long as it doesn't overflow
3687 * the s32 'off' field
3688 */
3689 if (known && (ptr_reg->off + smin_val ==
3690 (s64)(s32)(ptr_reg->off + smin_val))) {
3691 /* pointer += K. Accumulate it into fixed offset */
3692 dst_reg->smin_value = smin_ptr;
3693 dst_reg->smax_value = smax_ptr;
3694 dst_reg->umin_value = umin_ptr;
3695 dst_reg->umax_value = umax_ptr;
3696 dst_reg->var_off = ptr_reg->var_off;
3697 dst_reg->off = ptr_reg->off + smin_val;
3698 dst_reg->raw = ptr_reg->raw;
3699 break;
3700 }
3701 /* A new variable offset is created. Note that off_reg->off
3702 * == 0, since it's a scalar.
3703 * dst_reg gets the pointer type and since some positive
3704 * integer value was added to the pointer, give it a new 'id'
3705 * if it's a PTR_TO_PACKET.
3706 * this creates a new 'base' pointer, off_reg (variable) gets
3707 * added into the variable offset, and we copy the fixed offset
3708 * from ptr_reg.
3709 */
3710 if (signed_add_overflows(smin_ptr, smin_val) ||
3711 signed_add_overflows(smax_ptr, smax_val)) {
3712 dst_reg->smin_value = S64_MIN;
3713 dst_reg->smax_value = S64_MAX;
3714 } else {
3715 dst_reg->smin_value = smin_ptr + smin_val;
3716 dst_reg->smax_value = smax_ptr + smax_val;
3717 }
3718 if (umin_ptr + umin_val < umin_ptr ||
3719 umax_ptr + umax_val < umax_ptr) {
3720 dst_reg->umin_value = 0;
3721 dst_reg->umax_value = U64_MAX;
3722 } else {
3723 dst_reg->umin_value = umin_ptr + umin_val;
3724 dst_reg->umax_value = umax_ptr + umax_val;
3725 }
3726 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
3727 dst_reg->off = ptr_reg->off;
3728 dst_reg->raw = ptr_reg->raw;
3729 if (reg_is_pkt_pointer(ptr_reg)) {
3730 dst_reg->id = ++env->id_gen;
3731 /* something was added to pkt_ptr, set range to zero */
3732 dst_reg->raw = 0;
3733 }
3734 break;
3735 case BPF_SUB:
3736 ret = sanitize_ptr_alu(env, insn, ptr_reg, dst_reg, smin_val < 0);
3737 if (ret < 0) {
3738 verbose(env, "R%d tried to sub from different maps or paths\n", dst);
3739 return ret;
3740 }
3741 if (dst_reg == off_reg) {
3742 /* scalar -= pointer. Creates an unknown scalar */
3743 verbose(env, "R%d tried to subtract pointer from scalar\n",
3744 dst);
3745 return -EACCES;
3746 }
3747 /* We don't allow subtraction from FP, because (according to
3748 * test_verifier.c test "invalid fp arithmetic", JITs might not
3749 * be able to deal with it.
3750 */
3751 if (ptr_reg->type == PTR_TO_STACK) {
3752 verbose(env, "R%d subtraction from stack pointer prohibited\n",
3753 dst);
3754 return -EACCES;
3755 }
3756 if (known && (ptr_reg->off - smin_val ==
3757 (s64)(s32)(ptr_reg->off - smin_val))) {
3758 /* pointer -= K. Subtract it from fixed offset */
3759 dst_reg->smin_value = smin_ptr;
3760 dst_reg->smax_value = smax_ptr;
3761 dst_reg->umin_value = umin_ptr;
3762 dst_reg->umax_value = umax_ptr;
3763 dst_reg->var_off = ptr_reg->var_off;
3764 dst_reg->id = ptr_reg->id;
3765 dst_reg->off = ptr_reg->off - smin_val;
3766 dst_reg->raw = ptr_reg->raw;
3767 break;
3768 }
3769 /* A new variable offset is created. If the subtrahend is known
3770 * nonnegative, then any reg->range we had before is still good.
3771 */
3772 if (signed_sub_overflows(smin_ptr, smax_val) ||
3773 signed_sub_overflows(smax_ptr, smin_val)) {
3774 /* Overflow possible, we know nothing */
3775 dst_reg->smin_value = S64_MIN;
3776 dst_reg->smax_value = S64_MAX;
3777 } else {
3778 dst_reg->smin_value = smin_ptr - smax_val;
3779 dst_reg->smax_value = smax_ptr - smin_val;
3780 }
3781 if (umin_ptr < umax_val) {
3782 /* Overflow possible, we know nothing */
3783 dst_reg->umin_value = 0;
3784 dst_reg->umax_value = U64_MAX;
3785 } else {
3786 /* Cannot overflow (as long as bounds are consistent) */
3787 dst_reg->umin_value = umin_ptr - umax_val;
3788 dst_reg->umax_value = umax_ptr - umin_val;
3789 }
3790 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
3791 dst_reg->off = ptr_reg->off;
3792 dst_reg->raw = ptr_reg->raw;
3793 if (reg_is_pkt_pointer(ptr_reg)) {
3794 dst_reg->id = ++env->id_gen;
3795 /* something was added to pkt_ptr, set range to zero */
3796 if (smin_val < 0)
3797 dst_reg->raw = 0;
3798 }
3799 break;
3800 case BPF_AND:
3801 case BPF_OR:
3802 case BPF_XOR:
3803 /* bitwise ops on pointers are troublesome, prohibit. */
3804 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
3805 dst, bpf_alu_string[opcode >> 4]);
3806 return -EACCES;
3807 default:
3808 /* other operators (e.g. MUL,LSH) produce non-pointer results */
3809 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
3810 dst, bpf_alu_string[opcode >> 4]);
3811 return -EACCES;
3812 }
3813
3814 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
3815 return -EINVAL;
3816
3817 __update_reg_bounds(dst_reg);
3818 __reg_deduce_bounds(dst_reg);
3819 __reg_bound_offset(dst_reg);
3820
3821 /* For unprivileged we require that resulting offset must be in bounds
3822 * in order to be able to sanitize access later on.
3823 */
3824 if (!env->allow_ptr_leaks) {
3825 if (dst_reg->type == PTR_TO_MAP_VALUE &&
3826 check_map_access(env, dst, dst_reg->off, 1, false)) {
3827 verbose(env, "R%d pointer arithmetic of map value goes out of range, "
3828 "prohibited for !root\n", dst);
3829 return -EACCES;
3830 } else if (dst_reg->type == PTR_TO_STACK &&
3831 check_stack_access(env, dst_reg, dst_reg->off +
3832 dst_reg->var_off.value, 1)) {
3833 verbose(env, "R%d stack pointer arithmetic goes out of range, "
3834 "prohibited for !root\n", dst);
3835 return -EACCES;
3836 }
3837 }
3838
3839 return 0;
3840 }
3841
3842 /* WARNING: This function does calculations on 64-bit values, but the actual
3843 * execution may occur on 32-bit values. Therefore, things like bitshifts
3844 * need extra checks in the 32-bit case.
3845 */
3846 static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
3847 struct bpf_insn *insn,
3848 struct bpf_reg_state *dst_reg,
3849 struct bpf_reg_state src_reg)
3850 {
3851 struct bpf_reg_state *regs = cur_regs(env);
3852 u8 opcode = BPF_OP(insn->code);
3853 bool src_known, dst_known;
3854 s64 smin_val, smax_val;
3855 u64 umin_val, umax_val;
3856 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
3857 u32 dst = insn->dst_reg;
3858 int ret;
3859
3860 if (insn_bitness == 32) {
3861 /* Relevant for 32-bit RSH: Information can propagate towards
3862 * LSB, so it isn't sufficient to only truncate the output to
3863 * 32 bits.
3864 */
3865 coerce_reg_to_size(dst_reg, 4);
3866 coerce_reg_to_size(&src_reg, 4);
3867 }
3868
3869 smin_val = src_reg.smin_value;
3870 smax_val = src_reg.smax_value;
3871 umin_val = src_reg.umin_value;
3872 umax_val = src_reg.umax_value;
3873 src_known = tnum_is_const(src_reg.var_off);
3874 dst_known = tnum_is_const(dst_reg->var_off);
3875
3876 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
3877 smin_val > smax_val || umin_val > umax_val) {
3878 /* Taint dst register if offset had invalid bounds derived from
3879 * e.g. dead branches.
3880 */
3881 __mark_reg_unknown(dst_reg);
3882 return 0;
3883 }
3884
3885 if (!src_known &&
3886 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
3887 __mark_reg_unknown(dst_reg);
3888 return 0;
3889 }
3890
3891 switch (opcode) {
3892 case BPF_ADD:
3893 ret = sanitize_val_alu(env, insn);
3894 if (ret < 0) {
3895 verbose(env, "R%d tried to add from different pointers or scalars\n", dst);
3896 return ret;
3897 }
3898 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
3899 signed_add_overflows(dst_reg->smax_value, smax_val)) {
3900 dst_reg->smin_value = S64_MIN;
3901 dst_reg->smax_value = S64_MAX;
3902 } else {
3903 dst_reg->smin_value += smin_val;
3904 dst_reg->smax_value += smax_val;
3905 }
3906 if (dst_reg->umin_value + umin_val < umin_val ||
3907 dst_reg->umax_value + umax_val < umax_val) {
3908 dst_reg->umin_value = 0;
3909 dst_reg->umax_value = U64_MAX;
3910 } else {
3911 dst_reg->umin_value += umin_val;
3912 dst_reg->umax_value += umax_val;
3913 }
3914 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
3915 break;
3916 case BPF_SUB:
3917 ret = sanitize_val_alu(env, insn);
3918 if (ret < 0) {
3919 verbose(env, "R%d tried to sub from different pointers or scalars\n", dst);
3920 return ret;
3921 }
3922 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
3923 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
3924 /* Overflow possible, we know nothing */
3925 dst_reg->smin_value = S64_MIN;
3926 dst_reg->smax_value = S64_MAX;
3927 } else {
3928 dst_reg->smin_value -= smax_val;
3929 dst_reg->smax_value -= smin_val;
3930 }
3931 if (dst_reg->umin_value < umax_val) {
3932 /* Overflow possible, we know nothing */
3933 dst_reg->umin_value = 0;
3934 dst_reg->umax_value = U64_MAX;
3935 } else {
3936 /* Cannot overflow (as long as bounds are consistent) */
3937 dst_reg->umin_value -= umax_val;
3938 dst_reg->umax_value -= umin_val;
3939 }
3940 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
3941 break;
3942 case BPF_MUL:
3943 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
3944 if (smin_val < 0 || dst_reg->smin_value < 0) {
3945 /* Ain't nobody got time to multiply that sign */
3946 __mark_reg_unbounded(dst_reg);
3947 __update_reg_bounds(dst_reg);
3948 break;
3949 }
3950 /* Both values are positive, so we can work with unsigned and
3951 * copy the result to signed (unless it exceeds S64_MAX).
3952 */
3953 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
3954 /* Potential overflow, we know nothing */
3955 __mark_reg_unbounded(dst_reg);
3956 /* (except what we can learn from the var_off) */
3957 __update_reg_bounds(dst_reg);
3958 break;
3959 }
3960 dst_reg->umin_value *= umin_val;
3961 dst_reg->umax_value *= umax_val;
3962 if (dst_reg->umax_value > S64_MAX) {
3963 /* Overflow possible, we know nothing */
3964 dst_reg->smin_value = S64_MIN;
3965 dst_reg->smax_value = S64_MAX;
3966 } else {
3967 dst_reg->smin_value = dst_reg->umin_value;
3968 dst_reg->smax_value = dst_reg->umax_value;
3969 }
3970 break;
3971 case BPF_AND:
3972 if (src_known && dst_known) {
3973 __mark_reg_known(dst_reg, dst_reg->var_off.value &
3974 src_reg.var_off.value);
3975 break;
3976 }
3977 /* We get our minimum from the var_off, since that's inherently
3978 * bitwise. Our maximum is the minimum of the operands' maxima.
3979 */
3980 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
3981 dst_reg->umin_value = dst_reg->var_off.value;
3982 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
3983 if (dst_reg->smin_value < 0 || smin_val < 0) {
3984 /* Lose signed bounds when ANDing negative numbers,
3985 * ain't nobody got time for that.
3986 */
3987 dst_reg->smin_value = S64_MIN;
3988 dst_reg->smax_value = S64_MAX;
3989 } else {
3990 /* ANDing two positives gives a positive, so safe to
3991 * cast result into s64.
3992 */
3993 dst_reg->smin_value = dst_reg->umin_value;
3994 dst_reg->smax_value = dst_reg->umax_value;
3995 }
3996 /* We may learn something more from the var_off */
3997 __update_reg_bounds(dst_reg);
3998 break;
3999 case BPF_OR:
4000 if (src_known && dst_known) {
4001 __mark_reg_known(dst_reg, dst_reg->var_off.value |
4002 src_reg.var_off.value);
4003 break;
4004 }
4005 /* We get our maximum from the var_off, and our minimum is the
4006 * maximum of the operands' minima
4007 */
4008 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
4009 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
4010 dst_reg->umax_value = dst_reg->var_off.value |
4011 dst_reg->var_off.mask;
4012 if (dst_reg->smin_value < 0 || smin_val < 0) {
4013 /* Lose signed bounds when ORing negative numbers,
4014 * ain't nobody got time for that.
4015 */
4016 dst_reg->smin_value = S64_MIN;
4017 dst_reg->smax_value = S64_MAX;
4018 } else {
4019 /* ORing two positives gives a positive, so safe to
4020 * cast result into s64.
4021 */
4022 dst_reg->smin_value = dst_reg->umin_value;
4023 dst_reg->smax_value = dst_reg->umax_value;
4024 }
4025 /* We may learn something more from the var_off */
4026 __update_reg_bounds(dst_reg);
4027 break;
4028 case BPF_LSH:
4029 if (umax_val >= insn_bitness) {
4030 /* Shifts greater than 31 or 63 are undefined.
4031 * This includes shifts by a negative number.
4032 */
4033 mark_reg_unknown(env, regs, insn->dst_reg);
4034 break;
4035 }
4036 /* We lose all sign bit information (except what we can pick
4037 * up from var_off)
4038 */
4039 dst_reg->smin_value = S64_MIN;
4040 dst_reg->smax_value = S64_MAX;
4041 /* If we might shift our top bit out, then we know nothing */
4042 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
4043 dst_reg->umin_value = 0;
4044 dst_reg->umax_value = U64_MAX;
4045 } else {
4046 dst_reg->umin_value <<= umin_val;
4047 dst_reg->umax_value <<= umax_val;
4048 }
4049 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
4050 /* We may learn something more from the var_off */
4051 __update_reg_bounds(dst_reg);
4052 break;
4053 case BPF_RSH:
4054 if (umax_val >= insn_bitness) {
4055 /* Shifts greater than 31 or 63 are undefined.
4056 * This includes shifts by a negative number.
4057 */
4058 mark_reg_unknown(env, regs, insn->dst_reg);
4059 break;
4060 }
4061 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
4062 * be negative, then either:
4063 * 1) src_reg might be zero, so the sign bit of the result is
4064 * unknown, so we lose our signed bounds
4065 * 2) it's known negative, thus the unsigned bounds capture the
4066 * signed bounds
4067 * 3) the signed bounds cross zero, so they tell us nothing
4068 * about the result
4069 * If the value in dst_reg is known nonnegative, then again the
4070 * unsigned bounts capture the signed bounds.
4071 * Thus, in all cases it suffices to blow away our signed bounds
4072 * and rely on inferring new ones from the unsigned bounds and
4073 * var_off of the result.
4074 */
4075 dst_reg->smin_value = S64_MIN;
4076 dst_reg->smax_value = S64_MAX;
4077 dst_reg->var_off = tnum_rshift(dst_reg->var_off, umin_val);
4078 dst_reg->umin_value >>= umax_val;
4079 dst_reg->umax_value >>= umin_val;
4080 /* We may learn something more from the var_off */
4081 __update_reg_bounds(dst_reg);
4082 break;
4083 case BPF_ARSH:
4084 if (umax_val >= insn_bitness) {
4085 /* Shifts greater than 31 or 63 are undefined.
4086 * This includes shifts by a negative number.
4087 */
4088 mark_reg_unknown(env, regs, insn->dst_reg);
4089 break;
4090 }
4091
4092 /* Upon reaching here, src_known is true and
4093 * umax_val is equal to umin_val.
4094 */
4095 dst_reg->smin_value >>= umin_val;
4096 dst_reg->smax_value >>= umin_val;
4097 dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val);
4098
4099 /* blow away the dst_reg umin_value/umax_value and rely on
4100 * dst_reg var_off to refine the result.
4101 */
4102 dst_reg->umin_value = 0;
4103 dst_reg->umax_value = U64_MAX;
4104 __update_reg_bounds(dst_reg);
4105 break;
4106 default:
4107 mark_reg_unknown(env, regs, insn->dst_reg);
4108 break;
4109 }
4110
4111 if (BPF_CLASS(insn->code) != BPF_ALU64) {
4112 /* 32-bit ALU ops are (32,32)->32 */
4113 coerce_reg_to_size(dst_reg, 4);
4114 }
4115
4116 __reg_deduce_bounds(dst_reg);
4117 __reg_bound_offset(dst_reg);
4118 return 0;
4119 }
4120
4121 /* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
4122 * and var_off.
4123 */
4124 static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
4125 struct bpf_insn *insn)
4126 {
4127 struct bpf_verifier_state *vstate = env->cur_state;
4128 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4129 struct bpf_reg_state *regs = state->regs, *dst_reg, *src_reg;
4130 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
4131 u8 opcode = BPF_OP(insn->code);
4132
4133 dst_reg = &regs[insn->dst_reg];
4134 src_reg = NULL;
4135 if (dst_reg->type != SCALAR_VALUE)
4136 ptr_reg = dst_reg;
4137 if (BPF_SRC(insn->code) == BPF_X) {
4138 src_reg = &regs[insn->src_reg];
4139 if (src_reg->type != SCALAR_VALUE) {
4140 if (dst_reg->type != SCALAR_VALUE) {
4141 /* Combining two pointers by any ALU op yields
4142 * an arbitrary scalar. Disallow all math except
4143 * pointer subtraction
4144 */
4145 if (opcode == BPF_SUB && env->allow_ptr_leaks) {
4146 mark_reg_unknown(env, regs, insn->dst_reg);
4147 return 0;
4148 }
4149 verbose(env, "R%d pointer %s pointer prohibited\n",
4150 insn->dst_reg,
4151 bpf_alu_string[opcode >> 4]);
4152 return -EACCES;
4153 } else {
4154 /* scalar += pointer
4155 * This is legal, but we have to reverse our
4156 * src/dest handling in computing the range
4157 */
4158 return adjust_ptr_min_max_vals(env, insn,
4159 src_reg, dst_reg);
4160 }
4161 } else if (ptr_reg) {
4162 /* pointer += scalar */
4163 return adjust_ptr_min_max_vals(env, insn,
4164 dst_reg, src_reg);
4165 }
4166 } else {
4167 /* Pretend the src is a reg with a known value, since we only
4168 * need to be able to read from this state.
4169 */
4170 off_reg.type = SCALAR_VALUE;
4171 __mark_reg_known(&off_reg, insn->imm);
4172 src_reg = &off_reg;
4173 if (ptr_reg) /* pointer += K */
4174 return adjust_ptr_min_max_vals(env, insn,
4175 ptr_reg, src_reg);
4176 }
4177
4178 /* Got here implies adding two SCALAR_VALUEs */
4179 if (WARN_ON_ONCE(ptr_reg)) {
4180 print_verifier_state(env, state);
4181 verbose(env, "verifier internal error: unexpected ptr_reg\n");
4182 return -EINVAL;
4183 }
4184 if (WARN_ON(!src_reg)) {
4185 print_verifier_state(env, state);
4186 verbose(env, "verifier internal error: no src_reg\n");
4187 return -EINVAL;
4188 }
4189 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
4190 }
4191
4192 /* check validity of 32-bit and 64-bit arithmetic operations */
4193 static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
4194 {
4195 struct bpf_reg_state *regs = cur_regs(env);
4196 u8 opcode = BPF_OP(insn->code);
4197 int err;
4198
4199 if (opcode == BPF_END || opcode == BPF_NEG) {
4200 if (opcode == BPF_NEG) {
4201 if (BPF_SRC(insn->code) != 0 ||
4202 insn->src_reg != BPF_REG_0 ||
4203 insn->off != 0 || insn->imm != 0) {
4204 verbose(env, "BPF_NEG uses reserved fields\n");
4205 return -EINVAL;
4206 }
4207 } else {
4208 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
4209 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
4210 BPF_CLASS(insn->code) == BPF_ALU64) {
4211 verbose(env, "BPF_END uses reserved fields\n");
4212 return -EINVAL;
4213 }
4214 }
4215
4216 /* check src operand */
4217 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4218 if (err)
4219 return err;
4220
4221 if (is_pointer_value(env, insn->dst_reg)) {
4222 verbose(env, "R%d pointer arithmetic prohibited\n",
4223 insn->dst_reg);
4224 return -EACCES;
4225 }
4226
4227 /* check dest operand */
4228 err = check_reg_arg(env, insn->dst_reg, DST_OP);
4229 if (err)
4230 return err;
4231
4232 } else if (opcode == BPF_MOV) {
4233
4234 if (BPF_SRC(insn->code) == BPF_X) {
4235 if (insn->imm != 0 || insn->off != 0) {
4236 verbose(env, "BPF_MOV uses reserved fields\n");
4237 return -EINVAL;
4238 }
4239
4240 /* check src operand */
4241 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4242 if (err)
4243 return err;
4244 } else {
4245 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4246 verbose(env, "BPF_MOV uses reserved fields\n");
4247 return -EINVAL;
4248 }
4249 }
4250
4251 /* check dest operand, mark as required later */
4252 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4253 if (err)
4254 return err;
4255
4256 if (BPF_SRC(insn->code) == BPF_X) {
4257 struct bpf_reg_state *src_reg = regs + insn->src_reg;
4258 struct bpf_reg_state *dst_reg = regs + insn->dst_reg;
4259
4260 if (BPF_CLASS(insn->code) == BPF_ALU64) {
4261 /* case: R1 = R2
4262 * copy register state to dest reg
4263 */
4264 *dst_reg = *src_reg;
4265 dst_reg->live |= REG_LIVE_WRITTEN;
4266 } else {
4267 /* R1 = (u32) R2 */
4268 if (is_pointer_value(env, insn->src_reg)) {
4269 verbose(env,
4270 "R%d partial copy of pointer\n",
4271 insn->src_reg);
4272 return -EACCES;
4273 } else if (src_reg->type == SCALAR_VALUE) {
4274 *dst_reg = *src_reg;
4275 dst_reg->live |= REG_LIVE_WRITTEN;
4276 } else {
4277 mark_reg_unknown(env, regs,
4278 insn->dst_reg);
4279 }
4280 coerce_reg_to_size(dst_reg, 4);
4281 }
4282 } else {
4283 /* case: R = imm
4284 * remember the value we stored into this reg
4285 */
4286 /* clear any state __mark_reg_known doesn't set */
4287 mark_reg_unknown(env, regs, insn->dst_reg);
4288 regs[insn->dst_reg].type = SCALAR_VALUE;
4289 if (BPF_CLASS(insn->code) == BPF_ALU64) {
4290 __mark_reg_known(regs + insn->dst_reg,
4291 insn->imm);
4292 } else {
4293 __mark_reg_known(regs + insn->dst_reg,
4294 (u32)insn->imm);
4295 }
4296 }
4297
4298 } else if (opcode > BPF_END) {
4299 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
4300 return -EINVAL;
4301
4302 } else { /* all other ALU ops: and, sub, xor, add, ... */
4303
4304 if (BPF_SRC(insn->code) == BPF_X) {
4305 if (insn->imm != 0 || insn->off != 0) {
4306 verbose(env, "BPF_ALU uses reserved fields\n");
4307 return -EINVAL;
4308 }
4309 /* check src1 operand */
4310 err = check_reg_arg(env, insn->src_reg, SRC_OP);
4311 if (err)
4312 return err;
4313 } else {
4314 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
4315 verbose(env, "BPF_ALU uses reserved fields\n");
4316 return -EINVAL;
4317 }
4318 }
4319
4320 /* check src2 operand */
4321 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
4322 if (err)
4323 return err;
4324
4325 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
4326 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
4327 verbose(env, "div by zero\n");
4328 return -EINVAL;
4329 }
4330
4331 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
4332 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
4333 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
4334
4335 if (insn->imm < 0 || insn->imm >= size) {
4336 verbose(env, "invalid shift %d\n", insn->imm);
4337 return -EINVAL;
4338 }
4339 }
4340
4341 /* check dest operand */
4342 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
4343 if (err)
4344 return err;
4345
4346 return adjust_reg_min_max_vals(env, insn);
4347 }
4348
4349 return 0;
4350 }
4351
4352 static void find_good_pkt_pointers(struct bpf_verifier_state *vstate,
4353 struct bpf_reg_state *dst_reg,
4354 enum bpf_reg_type type,
4355 bool range_right_open)
4356 {
4357 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4358 struct bpf_reg_state *regs = state->regs, *reg;
4359 u16 new_range;
4360 int i, j;
4361
4362 if (dst_reg->off < 0 ||
4363 (dst_reg->off == 0 && range_right_open))
4364 /* This doesn't give us any range */
4365 return;
4366
4367 if (dst_reg->umax_value > MAX_PACKET_OFF ||
4368 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
4369 /* Risk of overflow. For instance, ptr + (1<<63) may be less
4370 * than pkt_end, but that's because it's also less than pkt.
4371 */
4372 return;
4373
4374 new_range = dst_reg->off;
4375 if (range_right_open)
4376 new_range--;
4377
4378 /* Examples for register markings:
4379 *
4380 * pkt_data in dst register:
4381 *
4382 * r2 = r3;
4383 * r2 += 8;
4384 * if (r2 > pkt_end) goto <handle exception>
4385 * <access okay>
4386 *
4387 * r2 = r3;
4388 * r2 += 8;
4389 * if (r2 < pkt_end) goto <access okay>
4390 * <handle exception>
4391 *
4392 * Where:
4393 * r2 == dst_reg, pkt_end == src_reg
4394 * r2=pkt(id=n,off=8,r=0)
4395 * r3=pkt(id=n,off=0,r=0)
4396 *
4397 * pkt_data in src register:
4398 *
4399 * r2 = r3;
4400 * r2 += 8;
4401 * if (pkt_end >= r2) goto <access okay>
4402 * <handle exception>
4403 *
4404 * r2 = r3;
4405 * r2 += 8;
4406 * if (pkt_end <= r2) goto <handle exception>
4407 * <access okay>
4408 *
4409 * Where:
4410 * pkt_end == dst_reg, r2 == src_reg
4411 * r2=pkt(id=n,off=8,r=0)
4412 * r3=pkt(id=n,off=0,r=0)
4413 *
4414 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
4415 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
4416 * and [r3, r3 + 8-1) respectively is safe to access depending on
4417 * the check.
4418 */
4419
4420 /* If our ids match, then we must have the same max_value. And we
4421 * don't care about the other reg's fixed offset, since if it's too big
4422 * the range won't allow anything.
4423 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
4424 */
4425 for (i = 0; i < MAX_BPF_REG; i++)
4426 if (regs[i].type == type && regs[i].id == dst_reg->id)
4427 /* keep the maximum range already checked */
4428 regs[i].range = max(regs[i].range, new_range);
4429
4430 for (j = 0; j <= vstate->curframe; j++) {
4431 state = vstate->frame[j];
4432 bpf_for_each_spilled_reg(i, state, reg) {
4433 if (!reg)
4434 continue;
4435 if (reg->type == type && reg->id == dst_reg->id)
4436 reg->range = max(reg->range, new_range);
4437 }
4438 }
4439 }
4440
4441 /* compute branch direction of the expression "if (reg opcode val) goto target;"
4442 * and return:
4443 * 1 - branch will be taken and "goto target" will be executed
4444 * 0 - branch will not be taken and fall-through to next insn
4445 * -1 - unknown. Example: "if (reg < 5)" is unknown when register value range [0,10]
4446 */
4447 static int is_branch_taken(struct bpf_reg_state *reg, u64 val, u8 opcode,
4448 bool is_jmp32)
4449 {
4450 struct bpf_reg_state reg_lo;
4451 s64 sval;
4452
4453 if (__is_pointer_value(false, reg))
4454 return -1;
4455
4456 if (is_jmp32) {
4457 reg_lo = *reg;
4458 reg = &reg_lo;
4459 /* For JMP32, only low 32 bits are compared, coerce_reg_to_size
4460 * could truncate high bits and update umin/umax according to
4461 * information of low bits.
4462 */
4463 coerce_reg_to_size(reg, 4);
4464 /* smin/smax need special handling. For example, after coerce,
4465 * if smin_value is 0x00000000ffffffffLL, the value is -1 when
4466 * used as operand to JMP32. It is a negative number from s32's
4467 * point of view, while it is a positive number when seen as
4468 * s64. The smin/smax are kept as s64, therefore, when used with
4469 * JMP32, they need to be transformed into s32, then sign
4470 * extended back to s64.
4471 *
4472 * Also, smin/smax were copied from umin/umax. If umin/umax has
4473 * different sign bit, then min/max relationship doesn't
4474 * maintain after casting into s32, for this case, set smin/smax
4475 * to safest range.
4476 */
4477 if ((reg->umax_value ^ reg->umin_value) &
4478 (1ULL << 31)) {
4479 reg->smin_value = S32_MIN;
4480 reg->smax_value = S32_MAX;
4481 }
4482 reg->smin_value = (s64)(s32)reg->smin_value;
4483 reg->smax_value = (s64)(s32)reg->smax_value;
4484
4485 val = (u32)val;
4486 sval = (s64)(s32)val;
4487 } else {
4488 sval = (s64)val;
4489 }
4490
4491 switch (opcode) {
4492 case BPF_JEQ:
4493 if (tnum_is_const(reg->var_off))
4494 return !!tnum_equals_const(reg->var_off, val);
4495 break;
4496 case BPF_JNE:
4497 if (tnum_is_const(reg->var_off))
4498 return !tnum_equals_const(reg->var_off, val);
4499 break;
4500 case BPF_JSET:
4501 if ((~reg->var_off.mask & reg->var_off.value) & val)
4502 return 1;
4503 if (!((reg->var_off.mask | reg->var_off.value) & val))
4504 return 0;
4505 break;
4506 case BPF_JGT:
4507 if (reg->umin_value > val)
4508 return 1;
4509 else if (reg->umax_value <= val)
4510 return 0;
4511 break;
4512 case BPF_JSGT:
4513 if (reg->smin_value > sval)
4514 return 1;
4515 else if (reg->smax_value < sval)
4516 return 0;
4517 break;
4518 case BPF_JLT:
4519 if (reg->umax_value < val)
4520 return 1;
4521 else if (reg->umin_value >= val)
4522 return 0;
4523 break;
4524 case BPF_JSLT:
4525 if (reg->smax_value < sval)
4526 return 1;
4527 else if (reg->smin_value >= sval)
4528 return 0;
4529 break;
4530 case BPF_JGE:
4531 if (reg->umin_value >= val)
4532 return 1;
4533 else if (reg->umax_value < val)
4534 return 0;
4535 break;
4536 case BPF_JSGE:
4537 if (reg->smin_value >= sval)
4538 return 1;
4539 else if (reg->smax_value < sval)
4540 return 0;
4541 break;
4542 case BPF_JLE:
4543 if (reg->umax_value <= val)
4544 return 1;
4545 else if (reg->umin_value > val)
4546 return 0;
4547 break;
4548 case BPF_JSLE:
4549 if (reg->smax_value <= sval)
4550 return 1;
4551 else if (reg->smin_value > sval)
4552 return 0;
4553 break;
4554 }
4555
4556 return -1;
4557 }
4558
4559 /* Generate min value of the high 32-bit from TNUM info. */
4560 static u64 gen_hi_min(struct tnum var)
4561 {
4562 return var.value & ~0xffffffffULL;
4563 }
4564
4565 /* Generate max value of the high 32-bit from TNUM info. */
4566 static u64 gen_hi_max(struct tnum var)
4567 {
4568 return (var.value | var.mask) & ~0xffffffffULL;
4569 }
4570
4571 /* Return true if VAL is compared with a s64 sign extended from s32, and they
4572 * are with the same signedness.
4573 */
4574 static bool cmp_val_with_extended_s64(s64 sval, struct bpf_reg_state *reg)
4575 {
4576 return ((s32)sval >= 0 &&
4577 reg->smin_value >= 0 && reg->smax_value <= S32_MAX) ||
4578 ((s32)sval < 0 &&
4579 reg->smax_value <= 0 && reg->smin_value >= S32_MIN);
4580 }
4581
4582 /* Adjusts the register min/max values in the case that the dst_reg is the
4583 * variable register that we are working on, and src_reg is a constant or we're
4584 * simply doing a BPF_K check.
4585 * In JEQ/JNE cases we also adjust the var_off values.
4586 */
4587 static void reg_set_min_max(struct bpf_reg_state *true_reg,
4588 struct bpf_reg_state *false_reg, u64 val,
4589 u8 opcode, bool is_jmp32)
4590 {
4591 s64 sval;
4592
4593 /* If the dst_reg is a pointer, we can't learn anything about its
4594 * variable offset from the compare (unless src_reg were a pointer into
4595 * the same object, but we don't bother with that.
4596 * Since false_reg and true_reg have the same type by construction, we
4597 * only need to check one of them for pointerness.
4598 */
4599 if (__is_pointer_value(false, false_reg))
4600 return;
4601
4602 val = is_jmp32 ? (u32)val : val;
4603 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
4604
4605 switch (opcode) {
4606 case BPF_JEQ:
4607 case BPF_JNE:
4608 {
4609 struct bpf_reg_state *reg =
4610 opcode == BPF_JEQ ? true_reg : false_reg;
4611
4612 /* For BPF_JEQ, if this is false we know nothing Jon Snow, but
4613 * if it is true we know the value for sure. Likewise for
4614 * BPF_JNE.
4615 */
4616 if (is_jmp32) {
4617 u64 old_v = reg->var_off.value;
4618 u64 hi_mask = ~0xffffffffULL;
4619
4620 reg->var_off.value = (old_v & hi_mask) | val;
4621 reg->var_off.mask &= hi_mask;
4622 } else {
4623 __mark_reg_known(reg, val);
4624 }
4625 break;
4626 }
4627 case BPF_JSET:
4628 false_reg->var_off = tnum_and(false_reg->var_off,
4629 tnum_const(~val));
4630 if (is_power_of_2(val))
4631 true_reg->var_off = tnum_or(true_reg->var_off,
4632 tnum_const(val));
4633 break;
4634 case BPF_JGE:
4635 case BPF_JGT:
4636 {
4637 u64 false_umax = opcode == BPF_JGT ? val : val - 1;
4638 u64 true_umin = opcode == BPF_JGT ? val + 1 : val;
4639
4640 if (is_jmp32) {
4641 false_umax += gen_hi_max(false_reg->var_off);
4642 true_umin += gen_hi_min(true_reg->var_off);
4643 }
4644 false_reg->umax_value = min(false_reg->umax_value, false_umax);
4645 true_reg->umin_value = max(true_reg->umin_value, true_umin);
4646 break;
4647 }
4648 case BPF_JSGE:
4649 case BPF_JSGT:
4650 {
4651 s64 false_smax = opcode == BPF_JSGT ? sval : sval - 1;
4652 s64 true_smin = opcode == BPF_JSGT ? sval + 1 : sval;
4653
4654 /* If the full s64 was not sign-extended from s32 then don't
4655 * deduct further info.
4656 */
4657 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4658 break;
4659 false_reg->smax_value = min(false_reg->smax_value, false_smax);
4660 true_reg->smin_value = max(true_reg->smin_value, true_smin);
4661 break;
4662 }
4663 case BPF_JLE:
4664 case BPF_JLT:
4665 {
4666 u64 false_umin = opcode == BPF_JLT ? val : val + 1;
4667 u64 true_umax = opcode == BPF_JLT ? val - 1 : val;
4668
4669 if (is_jmp32) {
4670 false_umin += gen_hi_min(false_reg->var_off);
4671 true_umax += gen_hi_max(true_reg->var_off);
4672 }
4673 false_reg->umin_value = max(false_reg->umin_value, false_umin);
4674 true_reg->umax_value = min(true_reg->umax_value, true_umax);
4675 break;
4676 }
4677 case BPF_JSLE:
4678 case BPF_JSLT:
4679 {
4680 s64 false_smin = opcode == BPF_JSLT ? sval : sval + 1;
4681 s64 true_smax = opcode == BPF_JSLT ? sval - 1 : sval;
4682
4683 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4684 break;
4685 false_reg->smin_value = max(false_reg->smin_value, false_smin);
4686 true_reg->smax_value = min(true_reg->smax_value, true_smax);
4687 break;
4688 }
4689 default:
4690 break;
4691 }
4692
4693 __reg_deduce_bounds(false_reg);
4694 __reg_deduce_bounds(true_reg);
4695 /* We might have learned some bits from the bounds. */
4696 __reg_bound_offset(false_reg);
4697 __reg_bound_offset(true_reg);
4698 /* Intersecting with the old var_off might have improved our bounds
4699 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4700 * then new var_off is (0; 0x7f...fc) which improves our umax.
4701 */
4702 __update_reg_bounds(false_reg);
4703 __update_reg_bounds(true_reg);
4704 }
4705
4706 /* Same as above, but for the case that dst_reg holds a constant and src_reg is
4707 * the variable reg.
4708 */
4709 static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
4710 struct bpf_reg_state *false_reg, u64 val,
4711 u8 opcode, bool is_jmp32)
4712 {
4713 s64 sval;
4714
4715 if (__is_pointer_value(false, false_reg))
4716 return;
4717
4718 val = is_jmp32 ? (u32)val : val;
4719 sval = is_jmp32 ? (s64)(s32)val : (s64)val;
4720
4721 switch (opcode) {
4722 case BPF_JEQ:
4723 case BPF_JNE:
4724 {
4725 struct bpf_reg_state *reg =
4726 opcode == BPF_JEQ ? true_reg : false_reg;
4727
4728 if (is_jmp32) {
4729 u64 old_v = reg->var_off.value;
4730 u64 hi_mask = ~0xffffffffULL;
4731
4732 reg->var_off.value = (old_v & hi_mask) | val;
4733 reg->var_off.mask &= hi_mask;
4734 } else {
4735 __mark_reg_known(reg, val);
4736 }
4737 break;
4738 }
4739 case BPF_JSET:
4740 false_reg->var_off = tnum_and(false_reg->var_off,
4741 tnum_const(~val));
4742 if (is_power_of_2(val))
4743 true_reg->var_off = tnum_or(true_reg->var_off,
4744 tnum_const(val));
4745 break;
4746 case BPF_JGE:
4747 case BPF_JGT:
4748 {
4749 u64 false_umin = opcode == BPF_JGT ? val : val + 1;
4750 u64 true_umax = opcode == BPF_JGT ? val - 1 : val;
4751
4752 if (is_jmp32) {
4753 false_umin += gen_hi_min(false_reg->var_off);
4754 true_umax += gen_hi_max(true_reg->var_off);
4755 }
4756 false_reg->umin_value = max(false_reg->umin_value, false_umin);
4757 true_reg->umax_value = min(true_reg->umax_value, true_umax);
4758 break;
4759 }
4760 case BPF_JSGE:
4761 case BPF_JSGT:
4762 {
4763 s64 false_smin = opcode == BPF_JSGT ? sval : sval + 1;
4764 s64 true_smax = opcode == BPF_JSGT ? sval - 1 : sval;
4765
4766 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4767 break;
4768 false_reg->smin_value = max(false_reg->smin_value, false_smin);
4769 true_reg->smax_value = min(true_reg->smax_value, true_smax);
4770 break;
4771 }
4772 case BPF_JLE:
4773 case BPF_JLT:
4774 {
4775 u64 false_umax = opcode == BPF_JLT ? val : val - 1;
4776 u64 true_umin = opcode == BPF_JLT ? val + 1 : val;
4777
4778 if (is_jmp32) {
4779 false_umax += gen_hi_max(false_reg->var_off);
4780 true_umin += gen_hi_min(true_reg->var_off);
4781 }
4782 false_reg->umax_value = min(false_reg->umax_value, false_umax);
4783 true_reg->umin_value = max(true_reg->umin_value, true_umin);
4784 break;
4785 }
4786 case BPF_JSLE:
4787 case BPF_JSLT:
4788 {
4789 s64 false_smax = opcode == BPF_JSLT ? sval : sval - 1;
4790 s64 true_smin = opcode == BPF_JSLT ? sval + 1 : sval;
4791
4792 if (is_jmp32 && !cmp_val_with_extended_s64(sval, false_reg))
4793 break;
4794 false_reg->smax_value = min(false_reg->smax_value, false_smax);
4795 true_reg->smin_value = max(true_reg->smin_value, true_smin);
4796 break;
4797 }
4798 default:
4799 break;
4800 }
4801
4802 __reg_deduce_bounds(false_reg);
4803 __reg_deduce_bounds(true_reg);
4804 /* We might have learned some bits from the bounds. */
4805 __reg_bound_offset(false_reg);
4806 __reg_bound_offset(true_reg);
4807 /* Intersecting with the old var_off might have improved our bounds
4808 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4809 * then new var_off is (0; 0x7f...fc) which improves our umax.
4810 */
4811 __update_reg_bounds(false_reg);
4812 __update_reg_bounds(true_reg);
4813 }
4814
4815 /* Regs are known to be equal, so intersect their min/max/var_off */
4816 static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
4817 struct bpf_reg_state *dst_reg)
4818 {
4819 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
4820 dst_reg->umin_value);
4821 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
4822 dst_reg->umax_value);
4823 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
4824 dst_reg->smin_value);
4825 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
4826 dst_reg->smax_value);
4827 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
4828 dst_reg->var_off);
4829 /* We might have learned new bounds from the var_off. */
4830 __update_reg_bounds(src_reg);
4831 __update_reg_bounds(dst_reg);
4832 /* We might have learned something about the sign bit. */
4833 __reg_deduce_bounds(src_reg);
4834 __reg_deduce_bounds(dst_reg);
4835 /* We might have learned some bits from the bounds. */
4836 __reg_bound_offset(src_reg);
4837 __reg_bound_offset(dst_reg);
4838 /* Intersecting with the old var_off might have improved our bounds
4839 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
4840 * then new var_off is (0; 0x7f...fc) which improves our umax.
4841 */
4842 __update_reg_bounds(src_reg);
4843 __update_reg_bounds(dst_reg);
4844 }
4845
4846 static void reg_combine_min_max(struct bpf_reg_state *true_src,
4847 struct bpf_reg_state *true_dst,
4848 struct bpf_reg_state *false_src,
4849 struct bpf_reg_state *false_dst,
4850 u8 opcode)
4851 {
4852 switch (opcode) {
4853 case BPF_JEQ:
4854 __reg_combine_min_max(true_src, true_dst);
4855 break;
4856 case BPF_JNE:
4857 __reg_combine_min_max(false_src, false_dst);
4858 break;
4859 }
4860 }
4861
4862 static void mark_ptr_or_null_reg(struct bpf_func_state *state,
4863 struct bpf_reg_state *reg, u32 id,
4864 bool is_null)
4865 {
4866 if (reg_type_may_be_null(reg->type) && reg->id == id) {
4867 /* Old offset (both fixed and variable parts) should
4868 * have been known-zero, because we don't allow pointer
4869 * arithmetic on pointers that might be NULL.
4870 */
4871 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
4872 !tnum_equals_const(reg->var_off, 0) ||
4873 reg->off)) {
4874 __mark_reg_known_zero(reg);
4875 reg->off = 0;
4876 }
4877 if (is_null) {
4878 reg->type = SCALAR_VALUE;
4879 } else if (reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
4880 if (reg->map_ptr->inner_map_meta) {
4881 reg->type = CONST_PTR_TO_MAP;
4882 reg->map_ptr = reg->map_ptr->inner_map_meta;
4883 } else {
4884 reg->type = PTR_TO_MAP_VALUE;
4885 }
4886 } else if (reg->type == PTR_TO_SOCKET_OR_NULL) {
4887 reg->type = PTR_TO_SOCKET;
4888 } else if (reg->type == PTR_TO_SOCK_COMMON_OR_NULL) {
4889 reg->type = PTR_TO_SOCK_COMMON;
4890 } else if (reg->type == PTR_TO_TCP_SOCK_OR_NULL) {
4891 reg->type = PTR_TO_TCP_SOCK;
4892 }
4893 if (is_null) {
4894 /* We don't need id and ref_obj_id from this point
4895 * onwards anymore, thus we should better reset it,
4896 * so that state pruning has chances to take effect.
4897 */
4898 reg->id = 0;
4899 reg->ref_obj_id = 0;
4900 } else if (!reg_may_point_to_spin_lock(reg)) {
4901 /* For not-NULL ptr, reg->ref_obj_id will be reset
4902 * in release_reg_references().
4903 *
4904 * reg->id is still used by spin_lock ptr. Other
4905 * than spin_lock ptr type, reg->id can be reset.
4906 */
4907 reg->id = 0;
4908 }
4909 }
4910 }
4911
4912 /* The logic is similar to find_good_pkt_pointers(), both could eventually
4913 * be folded together at some point.
4914 */
4915 static void mark_ptr_or_null_regs(struct bpf_verifier_state *vstate, u32 regno,
4916 bool is_null)
4917 {
4918 struct bpf_func_state *state = vstate->frame[vstate->curframe];
4919 struct bpf_reg_state *reg, *regs = state->regs;
4920 u32 ref_obj_id = regs[regno].ref_obj_id;
4921 u32 id = regs[regno].id;
4922 int i, j;
4923
4924 if (ref_obj_id && ref_obj_id == id && is_null)
4925 /* regs[regno] is in the " == NULL" branch.
4926 * No one could have freed the reference state before
4927 * doing the NULL check.
4928 */
4929 WARN_ON_ONCE(release_reference_state(state, id));
4930
4931 for (i = 0; i < MAX_BPF_REG; i++)
4932 mark_ptr_or_null_reg(state, &regs[i], id, is_null);
4933
4934 for (j = 0; j <= vstate->curframe; j++) {
4935 state = vstate->frame[j];
4936 bpf_for_each_spilled_reg(i, state, reg) {
4937 if (!reg)
4938 continue;
4939 mark_ptr_or_null_reg(state, reg, id, is_null);
4940 }
4941 }
4942 }
4943
4944 static bool try_match_pkt_pointers(const struct bpf_insn *insn,
4945 struct bpf_reg_state *dst_reg,
4946 struct bpf_reg_state *src_reg,
4947 struct bpf_verifier_state *this_branch,
4948 struct bpf_verifier_state *other_branch)
4949 {
4950 if (BPF_SRC(insn->code) != BPF_X)
4951 return false;
4952
4953 /* Pointers are always 64-bit. */
4954 if (BPF_CLASS(insn->code) == BPF_JMP32)
4955 return false;
4956
4957 switch (BPF_OP(insn->code)) {
4958 case BPF_JGT:
4959 if ((dst_reg->type == PTR_TO_PACKET &&
4960 src_reg->type == PTR_TO_PACKET_END) ||
4961 (dst_reg->type == PTR_TO_PACKET_META &&
4962 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4963 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
4964 find_good_pkt_pointers(this_branch, dst_reg,
4965 dst_reg->type, false);
4966 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4967 src_reg->type == PTR_TO_PACKET) ||
4968 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4969 src_reg->type == PTR_TO_PACKET_META)) {
4970 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
4971 find_good_pkt_pointers(other_branch, src_reg,
4972 src_reg->type, true);
4973 } else {
4974 return false;
4975 }
4976 break;
4977 case BPF_JLT:
4978 if ((dst_reg->type == PTR_TO_PACKET &&
4979 src_reg->type == PTR_TO_PACKET_END) ||
4980 (dst_reg->type == PTR_TO_PACKET_META &&
4981 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
4982 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
4983 find_good_pkt_pointers(other_branch, dst_reg,
4984 dst_reg->type, true);
4985 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
4986 src_reg->type == PTR_TO_PACKET) ||
4987 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
4988 src_reg->type == PTR_TO_PACKET_META)) {
4989 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
4990 find_good_pkt_pointers(this_branch, src_reg,
4991 src_reg->type, false);
4992 } else {
4993 return false;
4994 }
4995 break;
4996 case BPF_JGE:
4997 if ((dst_reg->type == PTR_TO_PACKET &&
4998 src_reg->type == PTR_TO_PACKET_END) ||
4999 (dst_reg->type == PTR_TO_PACKET_META &&
5000 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5001 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
5002 find_good_pkt_pointers(this_branch, dst_reg,
5003 dst_reg->type, true);
5004 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5005 src_reg->type == PTR_TO_PACKET) ||
5006 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5007 src_reg->type == PTR_TO_PACKET_META)) {
5008 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
5009 find_good_pkt_pointers(other_branch, src_reg,
5010 src_reg->type, false);
5011 } else {
5012 return false;
5013 }
5014 break;
5015 case BPF_JLE:
5016 if ((dst_reg->type == PTR_TO_PACKET &&
5017 src_reg->type == PTR_TO_PACKET_END) ||
5018 (dst_reg->type == PTR_TO_PACKET_META &&
5019 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
5020 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
5021 find_good_pkt_pointers(other_branch, dst_reg,
5022 dst_reg->type, false);
5023 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
5024 src_reg->type == PTR_TO_PACKET) ||
5025 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
5026 src_reg->type == PTR_TO_PACKET_META)) {
5027 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
5028 find_good_pkt_pointers(this_branch, src_reg,
5029 src_reg->type, true);
5030 } else {
5031 return false;
5032 }
5033 break;
5034 default:
5035 return false;
5036 }
5037
5038 return true;
5039 }
5040
5041 static int check_cond_jmp_op(struct bpf_verifier_env *env,
5042 struct bpf_insn *insn, int *insn_idx)
5043 {
5044 struct bpf_verifier_state *this_branch = env->cur_state;
5045 struct bpf_verifier_state *other_branch;
5046 struct bpf_reg_state *regs = this_branch->frame[this_branch->curframe]->regs;
5047 struct bpf_reg_state *dst_reg, *other_branch_regs;
5048 u8 opcode = BPF_OP(insn->code);
5049 bool is_jmp32;
5050 int err;
5051
5052 /* Only conditional jumps are expected to reach here. */
5053 if (opcode == BPF_JA || opcode > BPF_JSLE) {
5054 verbose(env, "invalid BPF_JMP/JMP32 opcode %x\n", opcode);
5055 return -EINVAL;
5056 }
5057
5058 if (BPF_SRC(insn->code) == BPF_X) {
5059 if (insn->imm != 0) {
5060 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
5061 return -EINVAL;
5062 }
5063
5064 /* check src1 operand */
5065 err = check_reg_arg(env, insn->src_reg, SRC_OP);
5066 if (err)
5067 return err;
5068
5069 if (is_pointer_value(env, insn->src_reg)) {
5070 verbose(env, "R%d pointer comparison prohibited\n",
5071 insn->src_reg);
5072 return -EACCES;
5073 }
5074 } else {
5075 if (insn->src_reg != BPF_REG_0) {
5076 verbose(env, "BPF_JMP/JMP32 uses reserved fields\n");
5077 return -EINVAL;
5078 }
5079 }
5080
5081 /* check src2 operand */
5082 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
5083 if (err)
5084 return err;
5085
5086 dst_reg = &regs[insn->dst_reg];
5087 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
5088
5089 if (BPF_SRC(insn->code) == BPF_K) {
5090 int pred = is_branch_taken(dst_reg, insn->imm, opcode,
5091 is_jmp32);
5092
5093 if (pred == 1) {
5094 /* only follow the goto, ignore fall-through */
5095 *insn_idx += insn->off;
5096 return 0;
5097 } else if (pred == 0) {
5098 /* only follow fall-through branch, since
5099 * that's where the program will go
5100 */
5101 return 0;
5102 }
5103 }
5104
5105 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx,
5106 false);
5107 if (!other_branch)
5108 return -EFAULT;
5109 other_branch_regs = other_branch->frame[other_branch->curframe]->regs;
5110
5111 /* detect if we are comparing against a constant value so we can adjust
5112 * our min/max values for our dst register.
5113 * this is only legit if both are scalars (or pointers to the same
5114 * object, I suppose, but we don't support that right now), because
5115 * otherwise the different base pointers mean the offsets aren't
5116 * comparable.
5117 */
5118 if (BPF_SRC(insn->code) == BPF_X) {
5119 struct bpf_reg_state *src_reg = &regs[insn->src_reg];
5120 struct bpf_reg_state lo_reg0 = *dst_reg;
5121 struct bpf_reg_state lo_reg1 = *src_reg;
5122 struct bpf_reg_state *src_lo, *dst_lo;
5123
5124 dst_lo = &lo_reg0;
5125 src_lo = &lo_reg1;
5126 coerce_reg_to_size(dst_lo, 4);
5127 coerce_reg_to_size(src_lo, 4);
5128
5129 if (dst_reg->type == SCALAR_VALUE &&
5130 src_reg->type == SCALAR_VALUE) {
5131 if (tnum_is_const(src_reg->var_off) ||
5132 (is_jmp32 && tnum_is_const(src_lo->var_off)))
5133 reg_set_min_max(&other_branch_regs[insn->dst_reg],
5134 dst_reg,
5135 is_jmp32
5136 ? src_lo->var_off.value
5137 : src_reg->var_off.value,
5138 opcode, is_jmp32);
5139 else if (tnum_is_const(dst_reg->var_off) ||
5140 (is_jmp32 && tnum_is_const(dst_lo->var_off)))
5141 reg_set_min_max_inv(&other_branch_regs[insn->src_reg],
5142 src_reg,
5143 is_jmp32
5144 ? dst_lo->var_off.value
5145 : dst_reg->var_off.value,
5146 opcode, is_jmp32);
5147 else if (!is_jmp32 &&
5148 (opcode == BPF_JEQ || opcode == BPF_JNE))
5149 /* Comparing for equality, we can combine knowledge */
5150 reg_combine_min_max(&other_branch_regs[insn->src_reg],
5151 &other_branch_regs[insn->dst_reg],
5152 src_reg, dst_reg, opcode);
5153 }
5154 } else if (dst_reg->type == SCALAR_VALUE) {
5155 reg_set_min_max(&other_branch_regs[insn->dst_reg],
5156 dst_reg, insn->imm, opcode, is_jmp32);
5157 }
5158
5159 /* detect if R == 0 where R is returned from bpf_map_lookup_elem().
5160 * NOTE: these optimizations below are related with pointer comparison
5161 * which will never be JMP32.
5162 */
5163 if (!is_jmp32 && BPF_SRC(insn->code) == BPF_K &&
5164 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
5165 reg_type_may_be_null(dst_reg->type)) {
5166 /* Mark all identical registers in each branch as either
5167 * safe or unknown depending R == 0 or R != 0 conditional.
5168 */
5169 mark_ptr_or_null_regs(this_branch, insn->dst_reg,
5170 opcode == BPF_JNE);
5171 mark_ptr_or_null_regs(other_branch, insn->dst_reg,
5172 opcode == BPF_JEQ);
5173 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
5174 this_branch, other_branch) &&
5175 is_pointer_value(env, insn->dst_reg)) {
5176 verbose(env, "R%d pointer comparison prohibited\n",
5177 insn->dst_reg);
5178 return -EACCES;
5179 }
5180 if (env->log.level & BPF_LOG_LEVEL)
5181 print_verifier_state(env, this_branch->frame[this_branch->curframe]);
5182 return 0;
5183 }
5184
5185 /* verify BPF_LD_IMM64 instruction */
5186 static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
5187 {
5188 struct bpf_insn_aux_data *aux = cur_aux(env);
5189 struct bpf_reg_state *regs = cur_regs(env);
5190 struct bpf_map *map;
5191 int err;
5192
5193 if (BPF_SIZE(insn->code) != BPF_DW) {
5194 verbose(env, "invalid BPF_LD_IMM insn\n");
5195 return -EINVAL;
5196 }
5197 if (insn->off != 0) {
5198 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
5199 return -EINVAL;
5200 }
5201
5202 err = check_reg_arg(env, insn->dst_reg, DST_OP);
5203 if (err)
5204 return err;
5205
5206 if (insn->src_reg == 0) {
5207 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
5208
5209 regs[insn->dst_reg].type = SCALAR_VALUE;
5210 __mark_reg_known(&regs[insn->dst_reg], imm);
5211 return 0;
5212 }
5213
5214 map = env->used_maps[aux->map_index];
5215 mark_reg_known_zero(env, regs, insn->dst_reg);
5216 regs[insn->dst_reg].map_ptr = map;
5217
5218 if (insn->src_reg == BPF_PSEUDO_MAP_VALUE) {
5219 regs[insn->dst_reg].type = PTR_TO_MAP_VALUE;
5220 regs[insn->dst_reg].off = aux->map_off;
5221 if (map_value_has_spin_lock(map))
5222 regs[insn->dst_reg].id = ++env->id_gen;
5223 } else if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
5224 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
5225 } else {
5226 verbose(env, "bpf verifier is misconfigured\n");
5227 return -EINVAL;
5228 }
5229
5230 return 0;
5231 }
5232
5233 static bool may_access_skb(enum bpf_prog_type type)
5234 {
5235 switch (type) {
5236 case BPF_PROG_TYPE_SOCKET_FILTER:
5237 case BPF_PROG_TYPE_SCHED_CLS:
5238 case BPF_PROG_TYPE_SCHED_ACT:
5239 return true;
5240 default:
5241 return false;
5242 }
5243 }
5244
5245 /* verify safety of LD_ABS|LD_IND instructions:
5246 * - they can only appear in the programs where ctx == skb
5247 * - since they are wrappers of function calls, they scratch R1-R5 registers,
5248 * preserve R6-R9, and store return value into R0
5249 *
5250 * Implicit input:
5251 * ctx == skb == R6 == CTX
5252 *
5253 * Explicit input:
5254 * SRC == any register
5255 * IMM == 32-bit immediate
5256 *
5257 * Output:
5258 * R0 - 8/16/32-bit skb data converted to cpu endianness
5259 */
5260 static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
5261 {
5262 struct bpf_reg_state *regs = cur_regs(env);
5263 u8 mode = BPF_MODE(insn->code);
5264 int i, err;
5265
5266 if (!may_access_skb(env->prog->type)) {
5267 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
5268 return -EINVAL;
5269 }
5270
5271 if (!env->ops->gen_ld_abs) {
5272 verbose(env, "bpf verifier is misconfigured\n");
5273 return -EINVAL;
5274 }
5275
5276 if (env->subprog_cnt > 1) {
5277 /* when program has LD_ABS insn JITs and interpreter assume
5278 * that r1 == ctx == skb which is not the case for callees
5279 * that can have arbitrary arguments. It's problematic
5280 * for main prog as well since JITs would need to analyze
5281 * all functions in order to make proper register save/restore
5282 * decisions in the main prog. Hence disallow LD_ABS with calls
5283 */
5284 verbose(env, "BPF_LD_[ABS|IND] instructions cannot be mixed with bpf-to-bpf calls\n");
5285 return -EINVAL;
5286 }
5287
5288 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
5289 BPF_SIZE(insn->code) == BPF_DW ||
5290 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
5291 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
5292 return -EINVAL;
5293 }
5294
5295 /* check whether implicit source operand (register R6) is readable */
5296 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
5297 if (err)
5298 return err;
5299
5300 /* Disallow usage of BPF_LD_[ABS|IND] with reference tracking, as
5301 * gen_ld_abs() may terminate the program at runtime, leading to
5302 * reference leak.
5303 */
5304 err = check_reference_leak(env);
5305 if (err) {
5306 verbose(env, "BPF_LD_[ABS|IND] cannot be mixed with socket references\n");
5307 return err;
5308 }
5309
5310 if (env->cur_state->active_spin_lock) {
5311 verbose(env, "BPF_LD_[ABS|IND] cannot be used inside bpf_spin_lock-ed region\n");
5312 return -EINVAL;
5313 }
5314
5315 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
5316 verbose(env,
5317 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
5318 return -EINVAL;
5319 }
5320
5321 if (mode == BPF_IND) {
5322 /* check explicit source operand */
5323 err = check_reg_arg(env, insn->src_reg, SRC_OP);
5324 if (err)
5325 return err;
5326 }
5327
5328 /* reset caller saved regs to unreadable */
5329 for (i = 0; i < CALLER_SAVED_REGS; i++) {
5330 mark_reg_not_init(env, regs, caller_saved[i]);
5331 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
5332 }
5333
5334 /* mark destination R0 register as readable, since it contains
5335 * the value fetched from the packet.
5336 * Already marked as written above.
5337 */
5338 mark_reg_unknown(env, regs, BPF_REG_0);
5339 return 0;
5340 }
5341
5342 static int check_return_code(struct bpf_verifier_env *env)
5343 {
5344 struct bpf_reg_state *reg;
5345 struct tnum range = tnum_range(0, 1);
5346
5347 switch (env->prog->type) {
5348 case BPF_PROG_TYPE_CGROUP_SKB:
5349 case BPF_PROG_TYPE_CGROUP_SOCK:
5350 case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
5351 case BPF_PROG_TYPE_SOCK_OPS:
5352 case BPF_PROG_TYPE_CGROUP_DEVICE:
5353 case BPF_PROG_TYPE_CGROUP_SYSCTL:
5354 break;
5355 default:
5356 return 0;
5357 }
5358
5359 reg = cur_regs(env) + BPF_REG_0;
5360 if (reg->type != SCALAR_VALUE) {
5361 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
5362 reg_type_str[reg->type]);
5363 return -EINVAL;
5364 }
5365
5366 if (!tnum_in(range, reg->var_off)) {
5367 verbose(env, "At program exit the register R0 ");
5368 if (!tnum_is_unknown(reg->var_off)) {
5369 char tn_buf[48];
5370
5371 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
5372 verbose(env, "has value %s", tn_buf);
5373 } else {
5374 verbose(env, "has unknown scalar value");
5375 }
5376 verbose(env, " should have been 0 or 1\n");
5377 return -EINVAL;
5378 }
5379 return 0;
5380 }
5381
5382 /* non-recursive DFS pseudo code
5383 * 1 procedure DFS-iterative(G,v):
5384 * 2 label v as discovered
5385 * 3 let S be a stack
5386 * 4 S.push(v)
5387 * 5 while S is not empty
5388 * 6 t <- S.pop()
5389 * 7 if t is what we're looking for:
5390 * 8 return t
5391 * 9 for all edges e in G.adjacentEdges(t) do
5392 * 10 if edge e is already labelled
5393 * 11 continue with the next edge
5394 * 12 w <- G.adjacentVertex(t,e)
5395 * 13 if vertex w is not discovered and not explored
5396 * 14 label e as tree-edge
5397 * 15 label w as discovered
5398 * 16 S.push(w)
5399 * 17 continue at 5
5400 * 18 else if vertex w is discovered
5401 * 19 label e as back-edge
5402 * 20 else
5403 * 21 // vertex w is explored
5404 * 22 label e as forward- or cross-edge
5405 * 23 label t as explored
5406 * 24 S.pop()
5407 *
5408 * convention:
5409 * 0x10 - discovered
5410 * 0x11 - discovered and fall-through edge labelled
5411 * 0x12 - discovered and fall-through and branch edges labelled
5412 * 0x20 - explored
5413 */
5414
5415 enum {
5416 DISCOVERED = 0x10,
5417 EXPLORED = 0x20,
5418 FALLTHROUGH = 1,
5419 BRANCH = 2,
5420 };
5421
5422 #define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
5423
5424 /* t, w, e - match pseudo-code above:
5425 * t - index of current instruction
5426 * w - next instruction
5427 * e - edge
5428 */
5429 static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
5430 {
5431 int *insn_stack = env->cfg.insn_stack;
5432 int *insn_state = env->cfg.insn_state;
5433
5434 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
5435 return 0;
5436
5437 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
5438 return 0;
5439
5440 if (w < 0 || w >= env->prog->len) {
5441 verbose_linfo(env, t, "%d: ", t);
5442 verbose(env, "jump out of range from insn %d to %d\n", t, w);
5443 return -EINVAL;
5444 }
5445
5446 if (e == BRANCH)
5447 /* mark branch target for state pruning */
5448 env->explored_states[w] = STATE_LIST_MARK;
5449
5450 if (insn_state[w] == 0) {
5451 /* tree-edge */
5452 insn_state[t] = DISCOVERED | e;
5453 insn_state[w] = DISCOVERED;
5454 if (env->cfg.cur_stack >= env->prog->len)
5455 return -E2BIG;
5456 insn_stack[env->cfg.cur_stack++] = w;
5457 return 1;
5458 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
5459 verbose_linfo(env, t, "%d: ", t);
5460 verbose_linfo(env, w, "%d: ", w);
5461 verbose(env, "back-edge from insn %d to %d\n", t, w);
5462 return -EINVAL;
5463 } else if (insn_state[w] == EXPLORED) {
5464 /* forward- or cross-edge */
5465 insn_state[t] = DISCOVERED | e;
5466 } else {
5467 verbose(env, "insn state internal bug\n");
5468 return -EFAULT;
5469 }
5470 return 0;
5471 }
5472
5473 /* non-recursive depth-first-search to detect loops in BPF program
5474 * loop == back-edge in directed graph
5475 */
5476 static int check_cfg(struct bpf_verifier_env *env)
5477 {
5478 struct bpf_insn *insns = env->prog->insnsi;
5479 int insn_cnt = env->prog->len;
5480 int *insn_stack, *insn_state;
5481 int ret = 0;
5482 int i, t;
5483
5484 insn_state = env->cfg.insn_state = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5485 if (!insn_state)
5486 return -ENOMEM;
5487
5488 insn_stack = env->cfg.insn_stack = kvcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
5489 if (!insn_stack) {
5490 kvfree(insn_state);
5491 return -ENOMEM;
5492 }
5493
5494 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
5495 insn_stack[0] = 0; /* 0 is the first instruction */
5496 env->cfg.cur_stack = 1;
5497
5498 peek_stack:
5499 if (env->cfg.cur_stack == 0)
5500 goto check_state;
5501 t = insn_stack[env->cfg.cur_stack - 1];
5502
5503 if (BPF_CLASS(insns[t].code) == BPF_JMP ||
5504 BPF_CLASS(insns[t].code) == BPF_JMP32) {
5505 u8 opcode = BPF_OP(insns[t].code);
5506
5507 if (opcode == BPF_EXIT) {
5508 goto mark_explored;
5509 } else if (opcode == BPF_CALL) {
5510 ret = push_insn(t, t + 1, FALLTHROUGH, env);
5511 if (ret == 1)
5512 goto peek_stack;
5513 else if (ret < 0)
5514 goto err_free;
5515 if (t + 1 < insn_cnt)
5516 env->explored_states[t + 1] = STATE_LIST_MARK;
5517 if (insns[t].src_reg == BPF_PSEUDO_CALL) {
5518 env->explored_states[t] = STATE_LIST_MARK;
5519 ret = push_insn(t, t + insns[t].imm + 1, BRANCH, env);
5520 if (ret == 1)
5521 goto peek_stack;
5522 else if (ret < 0)
5523 goto err_free;
5524 }
5525 } else if (opcode == BPF_JA) {
5526 if (BPF_SRC(insns[t].code) != BPF_K) {
5527 ret = -EINVAL;
5528 goto err_free;
5529 }
5530 /* unconditional jump with single edge */
5531 ret = push_insn(t, t + insns[t].off + 1,
5532 FALLTHROUGH, env);
5533 if (ret == 1)
5534 goto peek_stack;
5535 else if (ret < 0)
5536 goto err_free;
5537 /* tell verifier to check for equivalent states
5538 * after every call and jump
5539 */
5540 if (t + 1 < insn_cnt)
5541 env->explored_states[t + 1] = STATE_LIST_MARK;
5542 } else {
5543 /* conditional jump with two edges */
5544 env->explored_states[t] = STATE_LIST_MARK;
5545 ret = push_insn(t, t + 1, FALLTHROUGH, env);
5546 if (ret == 1)
5547 goto peek_stack;
5548 else if (ret < 0)
5549 goto err_free;
5550
5551 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
5552 if (ret == 1)
5553 goto peek_stack;
5554 else if (ret < 0)
5555 goto err_free;
5556 }
5557 } else {
5558 /* all other non-branch instructions with single
5559 * fall-through edge
5560 */
5561 ret = push_insn(t, t + 1, FALLTHROUGH, env);
5562 if (ret == 1)
5563 goto peek_stack;
5564 else if (ret < 0)
5565 goto err_free;
5566 }
5567
5568 mark_explored:
5569 insn_state[t] = EXPLORED;
5570 if (env->cfg.cur_stack-- <= 0) {
5571 verbose(env, "pop stack internal bug\n");
5572 ret = -EFAULT;
5573 goto err_free;
5574 }
5575 goto peek_stack;
5576
5577 check_state:
5578 for (i = 0; i < insn_cnt; i++) {
5579 if (insn_state[i] != EXPLORED) {
5580 verbose(env, "unreachable insn %d\n", i);
5581 ret = -EINVAL;
5582 goto err_free;
5583 }
5584 }
5585 ret = 0; /* cfg looks good */
5586
5587 err_free:
5588 kvfree(insn_state);
5589 kvfree(insn_stack);
5590 env->cfg.insn_state = env->cfg.insn_stack = NULL;
5591 return ret;
5592 }
5593
5594 /* The minimum supported BTF func info size */
5595 #define MIN_BPF_FUNCINFO_SIZE 8
5596 #define MAX_FUNCINFO_REC_SIZE 252
5597
5598 static int check_btf_func(struct bpf_verifier_env *env,
5599 const union bpf_attr *attr,
5600 union bpf_attr __user *uattr)
5601 {
5602 u32 i, nfuncs, urec_size, min_size;
5603 u32 krec_size = sizeof(struct bpf_func_info);
5604 struct bpf_func_info *krecord;
5605 const struct btf_type *type;
5606 struct bpf_prog *prog;
5607 const struct btf *btf;
5608 void __user *urecord;
5609 u32 prev_offset = 0;
5610 int ret = 0;
5611
5612 nfuncs = attr->func_info_cnt;
5613 if (!nfuncs)
5614 return 0;
5615
5616 if (nfuncs != env->subprog_cnt) {
5617 verbose(env, "number of funcs in func_info doesn't match number of subprogs\n");
5618 return -EINVAL;
5619 }
5620
5621 urec_size = attr->func_info_rec_size;
5622 if (urec_size < MIN_BPF_FUNCINFO_SIZE ||
5623 urec_size > MAX_FUNCINFO_REC_SIZE ||
5624 urec_size % sizeof(u32)) {
5625 verbose(env, "invalid func info rec size %u\n", urec_size);
5626 return -EINVAL;
5627 }
5628
5629 prog = env->prog;
5630 btf = prog->aux->btf;
5631
5632 urecord = u64_to_user_ptr(attr->func_info);
5633 min_size = min_t(u32, krec_size, urec_size);
5634
5635 krecord = kvcalloc(nfuncs, krec_size, GFP_KERNEL | __GFP_NOWARN);
5636 if (!krecord)
5637 return -ENOMEM;
5638
5639 for (i = 0; i < nfuncs; i++) {
5640 ret = bpf_check_uarg_tail_zero(urecord, krec_size, urec_size);
5641 if (ret) {
5642 if (ret == -E2BIG) {
5643 verbose(env, "nonzero tailing record in func info");
5644 /* set the size kernel expects so loader can zero
5645 * out the rest of the record.
5646 */
5647 if (put_user(min_size, &uattr->func_info_rec_size))
5648 ret = -EFAULT;
5649 }
5650 goto err_free;
5651 }
5652
5653 if (copy_from_user(&krecord[i], urecord, min_size)) {
5654 ret = -EFAULT;
5655 goto err_free;
5656 }
5657
5658 /* check insn_off */
5659 if (i == 0) {
5660 if (krecord[i].insn_off) {
5661 verbose(env,
5662 "nonzero insn_off %u for the first func info record",
5663 krecord[i].insn_off);
5664 ret = -EINVAL;
5665 goto err_free;
5666 }
5667 } else if (krecord[i].insn_off <= prev_offset) {
5668 verbose(env,
5669 "same or smaller insn offset (%u) than previous func info record (%u)",
5670 krecord[i].insn_off, prev_offset);
5671 ret = -EINVAL;
5672 goto err_free;
5673 }
5674
5675 if (env->subprog_info[i].start != krecord[i].insn_off) {
5676 verbose(env, "func_info BTF section doesn't match subprog layout in BPF program\n");
5677 ret = -EINVAL;
5678 goto err_free;
5679 }
5680
5681 /* check type_id */
5682 type = btf_type_by_id(btf, krecord[i].type_id);
5683 if (!type || BTF_INFO_KIND(type->info) != BTF_KIND_FUNC) {
5684 verbose(env, "invalid type id %d in func info",
5685 krecord[i].type_id);
5686 ret = -EINVAL;
5687 goto err_free;
5688 }
5689
5690 prev_offset = krecord[i].insn_off;
5691 urecord += urec_size;
5692 }
5693
5694 prog->aux->func_info = krecord;
5695 prog->aux->func_info_cnt = nfuncs;
5696 return 0;
5697
5698 err_free:
5699 kvfree(krecord);
5700 return ret;
5701 }
5702
5703 static void adjust_btf_func(struct bpf_verifier_env *env)
5704 {
5705 int i;
5706
5707 if (!env->prog->aux->func_info)
5708 return;
5709
5710 for (i = 0; i < env->subprog_cnt; i++)
5711 env->prog->aux->func_info[i].insn_off = env->subprog_info[i].start;
5712 }
5713
5714 #define MIN_BPF_LINEINFO_SIZE (offsetof(struct bpf_line_info, line_col) + \
5715 sizeof(((struct bpf_line_info *)(0))->line_col))
5716 #define MAX_LINEINFO_REC_SIZE MAX_FUNCINFO_REC_SIZE
5717
5718 static int check_btf_line(struct bpf_verifier_env *env,
5719 const union bpf_attr *attr,
5720 union bpf_attr __user *uattr)
5721 {
5722 u32 i, s, nr_linfo, ncopy, expected_size, rec_size, prev_offset = 0;
5723 struct bpf_subprog_info *sub;
5724 struct bpf_line_info *linfo;
5725 struct bpf_prog *prog;
5726 const struct btf *btf;
5727 void __user *ulinfo;
5728 int err;
5729
5730 nr_linfo = attr->line_info_cnt;
5731 if (!nr_linfo)
5732 return 0;
5733
5734 rec_size = attr->line_info_rec_size;
5735 if (rec_size < MIN_BPF_LINEINFO_SIZE ||
5736 rec_size > MAX_LINEINFO_REC_SIZE ||
5737 rec_size & (sizeof(u32) - 1))
5738 return -EINVAL;
5739
5740 /* Need to zero it in case the userspace may
5741 * pass in a smaller bpf_line_info object.
5742 */
5743 linfo = kvcalloc(nr_linfo, sizeof(struct bpf_line_info),
5744 GFP_KERNEL | __GFP_NOWARN);
5745 if (!linfo)
5746 return -ENOMEM;
5747
5748 prog = env->prog;
5749 btf = prog->aux->btf;
5750
5751 s = 0;
5752 sub = env->subprog_info;
5753 ulinfo = u64_to_user_ptr(attr->line_info);
5754 expected_size = sizeof(struct bpf_line_info);
5755 ncopy = min_t(u32, expected_size, rec_size);
5756 for (i = 0; i < nr_linfo; i++) {
5757 err = bpf_check_uarg_tail_zero(ulinfo, expected_size, rec_size);
5758 if (err) {
5759 if (err == -E2BIG) {
5760 verbose(env, "nonzero tailing record in line_info");
5761 if (put_user(expected_size,
5762 &uattr->line_info_rec_size))
5763 err = -EFAULT;
5764 }
5765 goto err_free;
5766 }
5767
5768 if (copy_from_user(&linfo[i], ulinfo, ncopy)) {
5769 err = -EFAULT;
5770 goto err_free;
5771 }
5772
5773 /*
5774 * Check insn_off to ensure
5775 * 1) strictly increasing AND
5776 * 2) bounded by prog->len
5777 *
5778 * The linfo[0].insn_off == 0 check logically falls into
5779 * the later "missing bpf_line_info for func..." case
5780 * because the first linfo[0].insn_off must be the
5781 * first sub also and the first sub must have
5782 * subprog_info[0].start == 0.
5783 */
5784 if ((i && linfo[i].insn_off <= prev_offset) ||
5785 linfo[i].insn_off >= prog->len) {
5786 verbose(env, "Invalid line_info[%u].insn_off:%u (prev_offset:%u prog->len:%u)\n",
5787 i, linfo[i].insn_off, prev_offset,
5788 prog->len);
5789 err = -EINVAL;
5790 goto err_free;
5791 }
5792
5793 if (!prog->insnsi[linfo[i].insn_off].code) {
5794 verbose(env,
5795 "Invalid insn code at line_info[%u].insn_off\n",
5796 i);
5797 err = -EINVAL;
5798 goto err_free;
5799 }
5800
5801 if (!btf_name_by_offset(btf, linfo[i].line_off) ||
5802 !btf_name_by_offset(btf, linfo[i].file_name_off)) {
5803 verbose(env, "Invalid line_info[%u].line_off or .file_name_off\n", i);
5804 err = -EINVAL;
5805 goto err_free;
5806 }
5807
5808 if (s != env->subprog_cnt) {
5809 if (linfo[i].insn_off == sub[s].start) {
5810 sub[s].linfo_idx = i;
5811 s++;
5812 } else if (sub[s].start < linfo[i].insn_off) {
5813 verbose(env, "missing bpf_line_info for func#%u\n", s);
5814 err = -EINVAL;
5815 goto err_free;
5816 }
5817 }
5818
5819 prev_offset = linfo[i].insn_off;
5820 ulinfo += rec_size;
5821 }
5822
5823 if (s != env->subprog_cnt) {
5824 verbose(env, "missing bpf_line_info for %u funcs starting from func#%u\n",
5825 env->subprog_cnt - s, s);
5826 err = -EINVAL;
5827 goto err_free;
5828 }
5829
5830 prog->aux->linfo = linfo;
5831 prog->aux->nr_linfo = nr_linfo;
5832
5833 return 0;
5834
5835 err_free:
5836 kvfree(linfo);
5837 return err;
5838 }
5839
5840 static int check_btf_info(struct bpf_verifier_env *env,
5841 const union bpf_attr *attr,
5842 union bpf_attr __user *uattr)
5843 {
5844 struct btf *btf;
5845 int err;
5846
5847 if (!attr->func_info_cnt && !attr->line_info_cnt)
5848 return 0;
5849
5850 btf = btf_get_by_fd(attr->prog_btf_fd);
5851 if (IS_ERR(btf))
5852 return PTR_ERR(btf);
5853 env->prog->aux->btf = btf;
5854
5855 err = check_btf_func(env, attr, uattr);
5856 if (err)
5857 return err;
5858
5859 err = check_btf_line(env, attr, uattr);
5860 if (err)
5861 return err;
5862
5863 return 0;
5864 }
5865
5866 /* check %cur's range satisfies %old's */
5867 static bool range_within(struct bpf_reg_state *old,
5868 struct bpf_reg_state *cur)
5869 {
5870 return old->umin_value <= cur->umin_value &&
5871 old->umax_value >= cur->umax_value &&
5872 old->smin_value <= cur->smin_value &&
5873 old->smax_value >= cur->smax_value;
5874 }
5875
5876 /* Maximum number of register states that can exist at once */
5877 #define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
5878 struct idpair {
5879 u32 old;
5880 u32 cur;
5881 };
5882
5883 /* If in the old state two registers had the same id, then they need to have
5884 * the same id in the new state as well. But that id could be different from
5885 * the old state, so we need to track the mapping from old to new ids.
5886 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
5887 * regs with old id 5 must also have new id 9 for the new state to be safe. But
5888 * regs with a different old id could still have new id 9, we don't care about
5889 * that.
5890 * So we look through our idmap to see if this old id has been seen before. If
5891 * so, we require the new id to match; otherwise, we add the id pair to the map.
5892 */
5893 static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
5894 {
5895 unsigned int i;
5896
5897 for (i = 0; i < ID_MAP_SIZE; i++) {
5898 if (!idmap[i].old) {
5899 /* Reached an empty slot; haven't seen this id before */
5900 idmap[i].old = old_id;
5901 idmap[i].cur = cur_id;
5902 return true;
5903 }
5904 if (idmap[i].old == old_id)
5905 return idmap[i].cur == cur_id;
5906 }
5907 /* We ran out of idmap slots, which should be impossible */
5908 WARN_ON_ONCE(1);
5909 return false;
5910 }
5911
5912 static void clean_func_state(struct bpf_verifier_env *env,
5913 struct bpf_func_state *st)
5914 {
5915 enum bpf_reg_liveness live;
5916 int i, j;
5917
5918 for (i = 0; i < BPF_REG_FP; i++) {
5919 live = st->regs[i].live;
5920 /* liveness must not touch this register anymore */
5921 st->regs[i].live |= REG_LIVE_DONE;
5922 if (!(live & REG_LIVE_READ))
5923 /* since the register is unused, clear its state
5924 * to make further comparison simpler
5925 */
5926 __mark_reg_not_init(&st->regs[i]);
5927 }
5928
5929 for (i = 0; i < st->allocated_stack / BPF_REG_SIZE; i++) {
5930 live = st->stack[i].spilled_ptr.live;
5931 /* liveness must not touch this stack slot anymore */
5932 st->stack[i].spilled_ptr.live |= REG_LIVE_DONE;
5933 if (!(live & REG_LIVE_READ)) {
5934 __mark_reg_not_init(&st->stack[i].spilled_ptr);
5935 for (j = 0; j < BPF_REG_SIZE; j++)
5936 st->stack[i].slot_type[j] = STACK_INVALID;
5937 }
5938 }
5939 }
5940
5941 static void clean_verifier_state(struct bpf_verifier_env *env,
5942 struct bpf_verifier_state *st)
5943 {
5944 int i;
5945
5946 if (st->frame[0]->regs[0].live & REG_LIVE_DONE)
5947 /* all regs in this state in all frames were already marked */
5948 return;
5949
5950 for (i = 0; i <= st->curframe; i++)
5951 clean_func_state(env, st->frame[i]);
5952 }
5953
5954 /* the parentage chains form a tree.
5955 * the verifier states are added to state lists at given insn and
5956 * pushed into state stack for future exploration.
5957 * when the verifier reaches bpf_exit insn some of the verifer states
5958 * stored in the state lists have their final liveness state already,
5959 * but a lot of states will get revised from liveness point of view when
5960 * the verifier explores other branches.
5961 * Example:
5962 * 1: r0 = 1
5963 * 2: if r1 == 100 goto pc+1
5964 * 3: r0 = 2
5965 * 4: exit
5966 * when the verifier reaches exit insn the register r0 in the state list of
5967 * insn 2 will be seen as !REG_LIVE_READ. Then the verifier pops the other_branch
5968 * of insn 2 and goes exploring further. At the insn 4 it will walk the
5969 * parentage chain from insn 4 into insn 2 and will mark r0 as REG_LIVE_READ.
5970 *
5971 * Since the verifier pushes the branch states as it sees them while exploring
5972 * the program the condition of walking the branch instruction for the second
5973 * time means that all states below this branch were already explored and
5974 * their final liveness markes are already propagated.
5975 * Hence when the verifier completes the search of state list in is_state_visited()
5976 * we can call this clean_live_states() function to mark all liveness states
5977 * as REG_LIVE_DONE to indicate that 'parent' pointers of 'struct bpf_reg_state'
5978 * will not be used.
5979 * This function also clears the registers and stack for states that !READ
5980 * to simplify state merging.
5981 *
5982 * Important note here that walking the same branch instruction in the callee
5983 * doesn't meant that the states are DONE. The verifier has to compare
5984 * the callsites
5985 */
5986 static void clean_live_states(struct bpf_verifier_env *env, int insn,
5987 struct bpf_verifier_state *cur)
5988 {
5989 struct bpf_verifier_state_list *sl;
5990 int i;
5991
5992 sl = env->explored_states[insn];
5993 if (!sl)
5994 return;
5995
5996 while (sl != STATE_LIST_MARK) {
5997 if (sl->state.curframe != cur->curframe)
5998 goto next;
5999 for (i = 0; i <= cur->curframe; i++)
6000 if (sl->state.frame[i]->callsite != cur->frame[i]->callsite)
6001 goto next;
6002 clean_verifier_state(env, &sl->state);
6003 next:
6004 sl = sl->next;
6005 }
6006 }
6007
6008 /* Returns true if (rold safe implies rcur safe) */
6009 static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
6010 struct idpair *idmap)
6011 {
6012 bool equal;
6013
6014 if (!(rold->live & REG_LIVE_READ))
6015 /* explored state didn't use this */
6016 return true;
6017
6018 equal = memcmp(rold, rcur, offsetof(struct bpf_reg_state, parent)) == 0;
6019
6020 if (rold->type == PTR_TO_STACK)
6021 /* two stack pointers are equal only if they're pointing to
6022 * the same stack frame, since fp-8 in foo != fp-8 in bar
6023 */
6024 return equal && rold->frameno == rcur->frameno;
6025
6026 if (equal)
6027 return true;
6028
6029 if (rold->type == NOT_INIT)
6030 /* explored state can't have used this */
6031 return true;
6032 if (rcur->type == NOT_INIT)
6033 return false;
6034 switch (rold->type) {
6035 case SCALAR_VALUE:
6036 if (rcur->type == SCALAR_VALUE) {
6037 /* new val must satisfy old val knowledge */
6038 return range_within(rold, rcur) &&
6039 tnum_in(rold->var_off, rcur->var_off);
6040 } else {
6041 /* We're trying to use a pointer in place of a scalar.
6042 * Even if the scalar was unbounded, this could lead to
6043 * pointer leaks because scalars are allowed to leak
6044 * while pointers are not. We could make this safe in
6045 * special cases if root is calling us, but it's
6046 * probably not worth the hassle.
6047 */
6048 return false;
6049 }
6050 case PTR_TO_MAP_VALUE:
6051 /* If the new min/max/var_off satisfy the old ones and
6052 * everything else matches, we are OK.
6053 * 'id' is not compared, since it's only used for maps with
6054 * bpf_spin_lock inside map element and in such cases if
6055 * the rest of the prog is valid for one map element then
6056 * it's valid for all map elements regardless of the key
6057 * used in bpf_map_lookup()
6058 */
6059 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
6060 range_within(rold, rcur) &&
6061 tnum_in(rold->var_off, rcur->var_off);
6062 case PTR_TO_MAP_VALUE_OR_NULL:
6063 /* a PTR_TO_MAP_VALUE could be safe to use as a
6064 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
6065 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
6066 * checked, doing so could have affected others with the same
6067 * id, and we can't check for that because we lost the id when
6068 * we converted to a PTR_TO_MAP_VALUE.
6069 */
6070 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
6071 return false;
6072 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
6073 return false;
6074 /* Check our ids match any regs they're supposed to */
6075 return check_ids(rold->id, rcur->id, idmap);
6076 case PTR_TO_PACKET_META:
6077 case PTR_TO_PACKET:
6078 if (rcur->type != rold->type)
6079 return false;
6080 /* We must have at least as much range as the old ptr
6081 * did, so that any accesses which were safe before are
6082 * still safe. This is true even if old range < old off,
6083 * since someone could have accessed through (ptr - k), or
6084 * even done ptr -= k in a register, to get a safe access.
6085 */
6086 if (rold->range > rcur->range)
6087 return false;
6088 /* If the offsets don't match, we can't trust our alignment;
6089 * nor can we be sure that we won't fall out of range.
6090 */
6091 if (rold->off != rcur->off)
6092 return false;
6093 /* id relations must be preserved */
6094 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
6095 return false;
6096 /* new val must satisfy old val knowledge */
6097 return range_within(rold, rcur) &&
6098 tnum_in(rold->var_off, rcur->var_off);
6099 case PTR_TO_CTX:
6100 case CONST_PTR_TO_MAP:
6101 case PTR_TO_PACKET_END:
6102 case PTR_TO_FLOW_KEYS:
6103 case PTR_TO_SOCKET:
6104 case PTR_TO_SOCKET_OR_NULL:
6105 case PTR_TO_SOCK_COMMON:
6106 case PTR_TO_SOCK_COMMON_OR_NULL:
6107 case PTR_TO_TCP_SOCK:
6108 case PTR_TO_TCP_SOCK_OR_NULL:
6109 /* Only valid matches are exact, which memcmp() above
6110 * would have accepted
6111 */
6112 default:
6113 /* Don't know what's going on, just say it's not safe */
6114 return false;
6115 }
6116
6117 /* Shouldn't get here; if we do, say it's not safe */
6118 WARN_ON_ONCE(1);
6119 return false;
6120 }
6121
6122 static bool stacksafe(struct bpf_func_state *old,
6123 struct bpf_func_state *cur,
6124 struct idpair *idmap)
6125 {
6126 int i, spi;
6127
6128 /* walk slots of the explored stack and ignore any additional
6129 * slots in the current stack, since explored(safe) state
6130 * didn't use them
6131 */
6132 for (i = 0; i < old->allocated_stack; i++) {
6133 spi = i / BPF_REG_SIZE;
6134
6135 if (!(old->stack[spi].spilled_ptr.live & REG_LIVE_READ)) {
6136 i += BPF_REG_SIZE - 1;
6137 /* explored state didn't use this */
6138 continue;
6139 }
6140
6141 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
6142 continue;
6143
6144 /* explored stack has more populated slots than current stack
6145 * and these slots were used
6146 */
6147 if (i >= cur->allocated_stack)
6148 return false;
6149
6150 /* if old state was safe with misc data in the stack
6151 * it will be safe with zero-initialized stack.
6152 * The opposite is not true
6153 */
6154 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_MISC &&
6155 cur->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_ZERO)
6156 continue;
6157 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
6158 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
6159 /* Ex: old explored (safe) state has STACK_SPILL in
6160 * this stack slot, but current has has STACK_MISC ->
6161 * this verifier states are not equivalent,
6162 * return false to continue verification of this path
6163 */
6164 return false;
6165 if (i % BPF_REG_SIZE)
6166 continue;
6167 if (old->stack[spi].slot_type[0] != STACK_SPILL)
6168 continue;
6169 if (!regsafe(&old->stack[spi].spilled_ptr,
6170 &cur->stack[spi].spilled_ptr,
6171 idmap))
6172 /* when explored and current stack slot are both storing
6173 * spilled registers, check that stored pointers types
6174 * are the same as well.
6175 * Ex: explored safe path could have stored
6176 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
6177 * but current path has stored:
6178 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
6179 * such verifier states are not equivalent.
6180 * return false to continue verification of this path
6181 */
6182 return false;
6183 }
6184 return true;
6185 }
6186
6187 static bool refsafe(struct bpf_func_state *old, struct bpf_func_state *cur)
6188 {
6189 if (old->acquired_refs != cur->acquired_refs)
6190 return false;
6191 return !memcmp(old->refs, cur->refs,
6192 sizeof(*old->refs) * old->acquired_refs);
6193 }
6194
6195 /* compare two verifier states
6196 *
6197 * all states stored in state_list are known to be valid, since
6198 * verifier reached 'bpf_exit' instruction through them
6199 *
6200 * this function is called when verifier exploring different branches of
6201 * execution popped from the state stack. If it sees an old state that has
6202 * more strict register state and more strict stack state then this execution
6203 * branch doesn't need to be explored further, since verifier already
6204 * concluded that more strict state leads to valid finish.
6205 *
6206 * Therefore two states are equivalent if register state is more conservative
6207 * and explored stack state is more conservative than the current one.
6208 * Example:
6209 * explored current
6210 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
6211 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
6212 *
6213 * In other words if current stack state (one being explored) has more
6214 * valid slots than old one that already passed validation, it means
6215 * the verifier can stop exploring and conclude that current state is valid too
6216 *
6217 * Similarly with registers. If explored state has register type as invalid
6218 * whereas register type in current state is meaningful, it means that
6219 * the current state will reach 'bpf_exit' instruction safely
6220 */
6221 static bool func_states_equal(struct bpf_func_state *old,
6222 struct bpf_func_state *cur)
6223 {
6224 struct idpair *idmap;
6225 bool ret = false;
6226 int i;
6227
6228 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
6229 /* If we failed to allocate the idmap, just say it's not safe */
6230 if (!idmap)
6231 return false;
6232
6233 for (i = 0; i < MAX_BPF_REG; i++) {
6234 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
6235 goto out_free;
6236 }
6237
6238 if (!stacksafe(old, cur, idmap))
6239 goto out_free;
6240
6241 if (!refsafe(old, cur))
6242 goto out_free;
6243 ret = true;
6244 out_free:
6245 kfree(idmap);
6246 return ret;
6247 }
6248
6249 static bool states_equal(struct bpf_verifier_env *env,
6250 struct bpf_verifier_state *old,
6251 struct bpf_verifier_state *cur)
6252 {
6253 int i;
6254
6255 if (old->curframe != cur->curframe)
6256 return false;
6257
6258 /* Verification state from speculative execution simulation
6259 * must never prune a non-speculative execution one.
6260 */
6261 if (old->speculative && !cur->speculative)
6262 return false;
6263
6264 if (old->active_spin_lock != cur->active_spin_lock)
6265 return false;
6266
6267 /* for states to be equal callsites have to be the same
6268 * and all frame states need to be equivalent
6269 */
6270 for (i = 0; i <= old->curframe; i++) {
6271 if (old->frame[i]->callsite != cur->frame[i]->callsite)
6272 return false;
6273 if (!func_states_equal(old->frame[i], cur->frame[i]))
6274 return false;
6275 }
6276 return true;
6277 }
6278
6279 static int propagate_liveness_reg(struct bpf_verifier_env *env,
6280 struct bpf_reg_state *reg,
6281 struct bpf_reg_state *parent_reg)
6282 {
6283 int err;
6284
6285 if (parent_reg->live & REG_LIVE_READ || !(reg->live & REG_LIVE_READ))
6286 return 0;
6287
6288 err = mark_reg_read(env, reg, parent_reg);
6289 if (err)
6290 return err;
6291
6292 return 0;
6293 }
6294
6295 /* A write screens off any subsequent reads; but write marks come from the
6296 * straight-line code between a state and its parent. When we arrive at an
6297 * equivalent state (jump target or such) we didn't arrive by the straight-line
6298 * code, so read marks in the state must propagate to the parent regardless
6299 * of the state's write marks. That's what 'parent == state->parent' comparison
6300 * in mark_reg_read() is for.
6301 */
6302 static int propagate_liveness(struct bpf_verifier_env *env,
6303 const struct bpf_verifier_state *vstate,
6304 struct bpf_verifier_state *vparent)
6305 {
6306 struct bpf_reg_state *state_reg, *parent_reg;
6307 struct bpf_func_state *state, *parent;
6308 int i, frame, err = 0;
6309
6310 if (vparent->curframe != vstate->curframe) {
6311 WARN(1, "propagate_live: parent frame %d current frame %d\n",
6312 vparent->curframe, vstate->curframe);
6313 return -EFAULT;
6314 }
6315 /* Propagate read liveness of registers... */
6316 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
6317 for (frame = 0; frame <= vstate->curframe; frame++) {
6318 parent = vparent->frame[frame];
6319 state = vstate->frame[frame];
6320 parent_reg = parent->regs;
6321 state_reg = state->regs;
6322 /* We don't need to worry about FP liveness, it's read-only */
6323 for (i = frame < vstate->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++) {
6324 err = propagate_liveness_reg(env, &state_reg[i],
6325 &parent_reg[i]);
6326 if (err)
6327 return err;
6328 }
6329
6330 /* Propagate stack slots. */
6331 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
6332 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
6333 parent_reg = &parent->stack[i].spilled_ptr;
6334 state_reg = &state->stack[i].spilled_ptr;
6335 err = propagate_liveness_reg(env, state_reg,
6336 parent_reg);
6337 if (err)
6338 return err;
6339 }
6340 }
6341 return err;
6342 }
6343
6344 static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
6345 {
6346 struct bpf_verifier_state_list *new_sl;
6347 struct bpf_verifier_state_list *sl, **pprev;
6348 struct bpf_verifier_state *cur = env->cur_state, *new;
6349 int i, j, err, states_cnt = 0;
6350
6351 pprev = &env->explored_states[insn_idx];
6352 sl = *pprev;
6353
6354 if (!sl)
6355 /* this 'insn_idx' instruction wasn't marked, so we will not
6356 * be doing state search here
6357 */
6358 return 0;
6359
6360 clean_live_states(env, insn_idx, cur);
6361
6362 while (sl != STATE_LIST_MARK) {
6363 if (states_equal(env, &sl->state, cur)) {
6364 sl->hit_cnt++;
6365 /* reached equivalent register/stack state,
6366 * prune the search.
6367 * Registers read by the continuation are read by us.
6368 * If we have any write marks in env->cur_state, they
6369 * will prevent corresponding reads in the continuation
6370 * from reaching our parent (an explored_state). Our
6371 * own state will get the read marks recorded, but
6372 * they'll be immediately forgotten as we're pruning
6373 * this state and will pop a new one.
6374 */
6375 err = propagate_liveness(env, &sl->state, cur);
6376 if (err)
6377 return err;
6378 return 1;
6379 }
6380 states_cnt++;
6381 sl->miss_cnt++;
6382 /* heuristic to determine whether this state is beneficial
6383 * to keep checking from state equivalence point of view.
6384 * Higher numbers increase max_states_per_insn and verification time,
6385 * but do not meaningfully decrease insn_processed.
6386 */
6387 if (sl->miss_cnt > sl->hit_cnt * 3 + 3) {
6388 /* the state is unlikely to be useful. Remove it to
6389 * speed up verification
6390 */
6391 *pprev = sl->next;
6392 if (sl->state.frame[0]->regs[0].live & REG_LIVE_DONE) {
6393 free_verifier_state(&sl->state, false);
6394 kfree(sl);
6395 env->peak_states--;
6396 } else {
6397 /* cannot free this state, since parentage chain may
6398 * walk it later. Add it for free_list instead to
6399 * be freed at the end of verification
6400 */
6401 sl->next = env->free_list;
6402 env->free_list = sl;
6403 }
6404 sl = *pprev;
6405 continue;
6406 }
6407 pprev = &sl->next;
6408 sl = *pprev;
6409 }
6410
6411 if (env->max_states_per_insn < states_cnt)
6412 env->max_states_per_insn = states_cnt;
6413
6414 if (!env->allow_ptr_leaks && states_cnt > BPF_COMPLEXITY_LIMIT_STATES)
6415 return 0;
6416
6417 /* there were no equivalent states, remember current one.
6418 * technically the current state is not proven to be safe yet,
6419 * but it will either reach outer most bpf_exit (which means it's safe)
6420 * or it will be rejected. Since there are no loops, we won't be
6421 * seeing this tuple (frame[0].callsite, frame[1].callsite, .. insn_idx)
6422 * again on the way to bpf_exit
6423 */
6424 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
6425 if (!new_sl)
6426 return -ENOMEM;
6427 env->total_states++;
6428 env->peak_states++;
6429
6430 /* add new state to the head of linked list */
6431 new = &new_sl->state;
6432 err = copy_verifier_state(new, cur);
6433 if (err) {
6434 free_verifier_state(new, false);
6435 kfree(new_sl);
6436 return err;
6437 }
6438 new_sl->next = env->explored_states[insn_idx];
6439 env->explored_states[insn_idx] = new_sl;
6440 /* connect new state to parentage chain. Current frame needs all
6441 * registers connected. Only r6 - r9 of the callers are alive (pushed
6442 * to the stack implicitly by JITs) so in callers' frames connect just
6443 * r6 - r9 as an optimization. Callers will have r1 - r5 connected to
6444 * the state of the call instruction (with WRITTEN set), and r0 comes
6445 * from callee with its full parentage chain, anyway.
6446 */
6447 for (j = 0; j <= cur->curframe; j++)
6448 for (i = j < cur->curframe ? BPF_REG_6 : 0; i < BPF_REG_FP; i++)
6449 cur->frame[j]->regs[i].parent = &new->frame[j]->regs[i];
6450 /* clear write marks in current state: the writes we did are not writes
6451 * our child did, so they don't screen off its reads from us.
6452 * (There are no read marks in current state, because reads always mark
6453 * their parent and current state never has children yet. Only
6454 * explored_states can get read marks.)
6455 */
6456 for (i = 0; i < BPF_REG_FP; i++)
6457 cur->frame[cur->curframe]->regs[i].live = REG_LIVE_NONE;
6458
6459 /* all stack frames are accessible from callee, clear them all */
6460 for (j = 0; j <= cur->curframe; j++) {
6461 struct bpf_func_state *frame = cur->frame[j];
6462 struct bpf_func_state *newframe = new->frame[j];
6463
6464 for (i = 0; i < frame->allocated_stack / BPF_REG_SIZE; i++) {
6465 frame->stack[i].spilled_ptr.live = REG_LIVE_NONE;
6466 frame->stack[i].spilled_ptr.parent =
6467 &newframe->stack[i].spilled_ptr;
6468 }
6469 }
6470 return 0;
6471 }
6472
6473 /* Return true if it's OK to have the same insn return a different type. */
6474 static bool reg_type_mismatch_ok(enum bpf_reg_type type)
6475 {
6476 switch (type) {
6477 case PTR_TO_CTX:
6478 case PTR_TO_SOCKET:
6479 case PTR_TO_SOCKET_OR_NULL:
6480 case PTR_TO_SOCK_COMMON:
6481 case PTR_TO_SOCK_COMMON_OR_NULL:
6482 case PTR_TO_TCP_SOCK:
6483 case PTR_TO_TCP_SOCK_OR_NULL:
6484 return false;
6485 default:
6486 return true;
6487 }
6488 }
6489
6490 /* If an instruction was previously used with particular pointer types, then we
6491 * need to be careful to avoid cases such as the below, where it may be ok
6492 * for one branch accessing the pointer, but not ok for the other branch:
6493 *
6494 * R1 = sock_ptr
6495 * goto X;
6496 * ...
6497 * R1 = some_other_valid_ptr;
6498 * goto X;
6499 * ...
6500 * R2 = *(u32 *)(R1 + 0);
6501 */
6502 static bool reg_type_mismatch(enum bpf_reg_type src, enum bpf_reg_type prev)
6503 {
6504 return src != prev && (!reg_type_mismatch_ok(src) ||
6505 !reg_type_mismatch_ok(prev));
6506 }
6507
6508 static int do_check(struct bpf_verifier_env *env)
6509 {
6510 struct bpf_verifier_state *state;
6511 struct bpf_insn *insns = env->prog->insnsi;
6512 struct bpf_reg_state *regs;
6513 int insn_cnt = env->prog->len;
6514 bool do_print_state = false;
6515
6516 env->prev_linfo = NULL;
6517
6518 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
6519 if (!state)
6520 return -ENOMEM;
6521 state->curframe = 0;
6522 state->speculative = false;
6523 state->frame[0] = kzalloc(sizeof(struct bpf_func_state), GFP_KERNEL);
6524 if (!state->frame[0]) {
6525 kfree(state);
6526 return -ENOMEM;
6527 }
6528 env->cur_state = state;
6529 init_func_state(env, state->frame[0],
6530 BPF_MAIN_FUNC /* callsite */,
6531 0 /* frameno */,
6532 0 /* subprogno, zero == main subprog */);
6533
6534 for (;;) {
6535 struct bpf_insn *insn;
6536 u8 class;
6537 int err;
6538
6539 if (env->insn_idx >= insn_cnt) {
6540 verbose(env, "invalid insn idx %d insn_cnt %d\n",
6541 env->insn_idx, insn_cnt);
6542 return -EFAULT;
6543 }
6544
6545 insn = &insns[env->insn_idx];
6546 class = BPF_CLASS(insn->code);
6547
6548 if (++env->insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
6549 verbose(env,
6550 "BPF program is too large. Processed %d insn\n",
6551 env->insn_processed);
6552 return -E2BIG;
6553 }
6554
6555 err = is_state_visited(env, env->insn_idx);
6556 if (err < 0)
6557 return err;
6558 if (err == 1) {
6559 /* found equivalent state, can prune the search */
6560 if (env->log.level & BPF_LOG_LEVEL) {
6561 if (do_print_state)
6562 verbose(env, "\nfrom %d to %d%s: safe\n",
6563 env->prev_insn_idx, env->insn_idx,
6564 env->cur_state->speculative ?
6565 " (speculative execution)" : "");
6566 else
6567 verbose(env, "%d: safe\n", env->insn_idx);
6568 }
6569 goto process_bpf_exit;
6570 }
6571
6572 if (signal_pending(current))
6573 return -EAGAIN;
6574
6575 if (need_resched())
6576 cond_resched();
6577
6578 if (env->log.level & BPF_LOG_LEVEL2 ||
6579 (env->log.level & BPF_LOG_LEVEL && do_print_state)) {
6580 if (env->log.level & BPF_LOG_LEVEL2)
6581 verbose(env, "%d:", env->insn_idx);
6582 else
6583 verbose(env, "\nfrom %d to %d%s:",
6584 env->prev_insn_idx, env->insn_idx,
6585 env->cur_state->speculative ?
6586 " (speculative execution)" : "");
6587 print_verifier_state(env, state->frame[state->curframe]);
6588 do_print_state = false;
6589 }
6590
6591 if (env->log.level & BPF_LOG_LEVEL) {
6592 const struct bpf_insn_cbs cbs = {
6593 .cb_print = verbose,
6594 .private_data = env,
6595 };
6596
6597 verbose_linfo(env, env->insn_idx, "; ");
6598 verbose(env, "%d: ", env->insn_idx);
6599 print_bpf_insn(&cbs, insn, env->allow_ptr_leaks);
6600 }
6601
6602 if (bpf_prog_is_dev_bound(env->prog->aux)) {
6603 err = bpf_prog_offload_verify_insn(env, env->insn_idx,
6604 env->prev_insn_idx);
6605 if (err)
6606 return err;
6607 }
6608
6609 regs = cur_regs(env);
6610 env->insn_aux_data[env->insn_idx].seen = true;
6611
6612 if (class == BPF_ALU || class == BPF_ALU64) {
6613 err = check_alu_op(env, insn);
6614 if (err)
6615 return err;
6616
6617 } else if (class == BPF_LDX) {
6618 enum bpf_reg_type *prev_src_type, src_reg_type;
6619
6620 /* check for reserved fields is already done */
6621
6622 /* check src operand */
6623 err = check_reg_arg(env, insn->src_reg, SRC_OP);
6624 if (err)
6625 return err;
6626
6627 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
6628 if (err)
6629 return err;
6630
6631 src_reg_type = regs[insn->src_reg].type;
6632
6633 /* check that memory (src_reg + off) is readable,
6634 * the state of dst_reg will be updated by this func
6635 */
6636 err = check_mem_access(env, env->insn_idx, insn->src_reg,
6637 insn->off, BPF_SIZE(insn->code),
6638 BPF_READ, insn->dst_reg, false);
6639 if (err)
6640 return err;
6641
6642 prev_src_type = &env->insn_aux_data[env->insn_idx].ptr_type;
6643
6644 if (*prev_src_type == NOT_INIT) {
6645 /* saw a valid insn
6646 * dst_reg = *(u32 *)(src_reg + off)
6647 * save type to validate intersecting paths
6648 */
6649 *prev_src_type = src_reg_type;
6650
6651 } else if (reg_type_mismatch(src_reg_type, *prev_src_type)) {
6652 /* ABuser program is trying to use the same insn
6653 * dst_reg = *(u32*) (src_reg + off)
6654 * with different pointer types:
6655 * src_reg == ctx in one branch and
6656 * src_reg == stack|map in some other branch.
6657 * Reject it.
6658 */
6659 verbose(env, "same insn cannot be used with different pointers\n");
6660 return -EINVAL;
6661 }
6662
6663 } else if (class == BPF_STX) {
6664 enum bpf_reg_type *prev_dst_type, dst_reg_type;
6665
6666 if (BPF_MODE(insn->code) == BPF_XADD) {
6667 err = check_xadd(env, env->insn_idx, insn);
6668 if (err)
6669 return err;
6670 env->insn_idx++;
6671 continue;
6672 }
6673
6674 /* check src1 operand */
6675 err = check_reg_arg(env, insn->src_reg, SRC_OP);
6676 if (err)
6677 return err;
6678 /* check src2 operand */
6679 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6680 if (err)
6681 return err;
6682
6683 dst_reg_type = regs[insn->dst_reg].type;
6684
6685 /* check that memory (dst_reg + off) is writeable */
6686 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6687 insn->off, BPF_SIZE(insn->code),
6688 BPF_WRITE, insn->src_reg, false);
6689 if (err)
6690 return err;
6691
6692 prev_dst_type = &env->insn_aux_data[env->insn_idx].ptr_type;
6693
6694 if (*prev_dst_type == NOT_INIT) {
6695 *prev_dst_type = dst_reg_type;
6696 } else if (reg_type_mismatch(dst_reg_type, *prev_dst_type)) {
6697 verbose(env, "same insn cannot be used with different pointers\n");
6698 return -EINVAL;
6699 }
6700
6701 } else if (class == BPF_ST) {
6702 if (BPF_MODE(insn->code) != BPF_MEM ||
6703 insn->src_reg != BPF_REG_0) {
6704 verbose(env, "BPF_ST uses reserved fields\n");
6705 return -EINVAL;
6706 }
6707 /* check src operand */
6708 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
6709 if (err)
6710 return err;
6711
6712 if (is_ctx_reg(env, insn->dst_reg)) {
6713 verbose(env, "BPF_ST stores into R%d %s is not allowed\n",
6714 insn->dst_reg,
6715 reg_type_str[reg_state(env, insn->dst_reg)->type]);
6716 return -EACCES;
6717 }
6718
6719 /* check that memory (dst_reg + off) is writeable */
6720 err = check_mem_access(env, env->insn_idx, insn->dst_reg,
6721 insn->off, BPF_SIZE(insn->code),
6722 BPF_WRITE, -1, false);
6723 if (err)
6724 return err;
6725
6726 } else if (class == BPF_JMP || class == BPF_JMP32) {
6727 u8 opcode = BPF_OP(insn->code);
6728
6729 if (opcode == BPF_CALL) {
6730 if (BPF_SRC(insn->code) != BPF_K ||
6731 insn->off != 0 ||
6732 (insn->src_reg != BPF_REG_0 &&
6733 insn->src_reg != BPF_PSEUDO_CALL) ||
6734 insn->dst_reg != BPF_REG_0 ||
6735 class == BPF_JMP32) {
6736 verbose(env, "BPF_CALL uses reserved fields\n");
6737 return -EINVAL;
6738 }
6739
6740 if (env->cur_state->active_spin_lock &&
6741 (insn->src_reg == BPF_PSEUDO_CALL ||
6742 insn->imm != BPF_FUNC_spin_unlock)) {
6743 verbose(env, "function calls are not allowed while holding a lock\n");
6744 return -EINVAL;
6745 }
6746 if (insn->src_reg == BPF_PSEUDO_CALL)
6747 err = check_func_call(env, insn, &env->insn_idx);
6748 else
6749 err = check_helper_call(env, insn->imm, env->insn_idx);
6750 if (err)
6751 return err;
6752
6753 } else if (opcode == BPF_JA) {
6754 if (BPF_SRC(insn->code) != BPF_K ||
6755 insn->imm != 0 ||
6756 insn->src_reg != BPF_REG_0 ||
6757 insn->dst_reg != BPF_REG_0 ||
6758 class == BPF_JMP32) {
6759 verbose(env, "BPF_JA uses reserved fields\n");
6760 return -EINVAL;
6761 }
6762
6763 env->insn_idx += insn->off + 1;
6764 continue;
6765
6766 } else if (opcode == BPF_EXIT) {
6767 if (BPF_SRC(insn->code) != BPF_K ||
6768 insn->imm != 0 ||
6769 insn->src_reg != BPF_REG_0 ||
6770 insn->dst_reg != BPF_REG_0 ||
6771 class == BPF_JMP32) {
6772 verbose(env, "BPF_EXIT uses reserved fields\n");
6773 return -EINVAL;
6774 }
6775
6776 if (env->cur_state->active_spin_lock) {
6777 verbose(env, "bpf_spin_unlock is missing\n");
6778 return -EINVAL;
6779 }
6780
6781 if (state->curframe) {
6782 /* exit from nested function */
6783 env->prev_insn_idx = env->insn_idx;
6784 err = prepare_func_exit(env, &env->insn_idx);
6785 if (err)
6786 return err;
6787 do_print_state = true;
6788 continue;
6789 }
6790
6791 err = check_reference_leak(env);
6792 if (err)
6793 return err;
6794
6795 /* eBPF calling convetion is such that R0 is used
6796 * to return the value from eBPF program.
6797 * Make sure that it's readable at this time
6798 * of bpf_exit, which means that program wrote
6799 * something into it earlier
6800 */
6801 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
6802 if (err)
6803 return err;
6804
6805 if (is_pointer_value(env, BPF_REG_0)) {
6806 verbose(env, "R0 leaks addr as return value\n");
6807 return -EACCES;
6808 }
6809
6810 err = check_return_code(env);
6811 if (err)
6812 return err;
6813 process_bpf_exit:
6814 err = pop_stack(env, &env->prev_insn_idx,
6815 &env->insn_idx);
6816 if (err < 0) {
6817 if (err != -ENOENT)
6818 return err;
6819 break;
6820 } else {
6821 do_print_state = true;
6822 continue;
6823 }
6824 } else {
6825 err = check_cond_jmp_op(env, insn, &env->insn_idx);
6826 if (err)
6827 return err;
6828 }
6829 } else if (class == BPF_LD) {
6830 u8 mode = BPF_MODE(insn->code);
6831
6832 if (mode == BPF_ABS || mode == BPF_IND) {
6833 err = check_ld_abs(env, insn);
6834 if (err)
6835 return err;
6836
6837 } else if (mode == BPF_IMM) {
6838 err = check_ld_imm(env, insn);
6839 if (err)
6840 return err;
6841
6842 env->insn_idx++;
6843 env->insn_aux_data[env->insn_idx].seen = true;
6844 } else {
6845 verbose(env, "invalid BPF_LD mode\n");
6846 return -EINVAL;
6847 }
6848 } else {
6849 verbose(env, "unknown insn class %d\n", class);
6850 return -EINVAL;
6851 }
6852
6853 env->insn_idx++;
6854 }
6855
6856 env->prog->aux->stack_depth = env->subprog_info[0].stack_depth;
6857 return 0;
6858 }
6859
6860 static int check_map_prealloc(struct bpf_map *map)
6861 {
6862 return (map->map_type != BPF_MAP_TYPE_HASH &&
6863 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
6864 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
6865 !(map->map_flags & BPF_F_NO_PREALLOC);
6866 }
6867
6868 static bool is_tracing_prog_type(enum bpf_prog_type type)
6869 {
6870 switch (type) {
6871 case BPF_PROG_TYPE_KPROBE:
6872 case BPF_PROG_TYPE_TRACEPOINT:
6873 case BPF_PROG_TYPE_PERF_EVENT:
6874 case BPF_PROG_TYPE_RAW_TRACEPOINT:
6875 return true;
6876 default:
6877 return false;
6878 }
6879 }
6880
6881 static int check_map_prog_compatibility(struct bpf_verifier_env *env,
6882 struct bpf_map *map,
6883 struct bpf_prog *prog)
6884
6885 {
6886 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
6887 * preallocated hash maps, since doing memory allocation
6888 * in overflow_handler can crash depending on where nmi got
6889 * triggered.
6890 */
6891 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
6892 if (!check_map_prealloc(map)) {
6893 verbose(env, "perf_event programs can only use preallocated hash map\n");
6894 return -EINVAL;
6895 }
6896 if (map->inner_map_meta &&
6897 !check_map_prealloc(map->inner_map_meta)) {
6898 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
6899 return -EINVAL;
6900 }
6901 }
6902
6903 if ((is_tracing_prog_type(prog->type) ||
6904 prog->type == BPF_PROG_TYPE_SOCKET_FILTER) &&
6905 map_value_has_spin_lock(map)) {
6906 verbose(env, "tracing progs cannot use bpf_spin_lock yet\n");
6907 return -EINVAL;
6908 }
6909
6910 if ((bpf_prog_is_dev_bound(prog->aux) || bpf_map_is_dev_bound(map)) &&
6911 !bpf_offload_prog_map_match(prog, map)) {
6912 verbose(env, "offload device mismatch between prog and map\n");
6913 return -EINVAL;
6914 }
6915
6916 return 0;
6917 }
6918
6919 static bool bpf_map_is_cgroup_storage(struct bpf_map *map)
6920 {
6921 return (map->map_type == BPF_MAP_TYPE_CGROUP_STORAGE ||
6922 map->map_type == BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE);
6923 }
6924
6925 /* look for pseudo eBPF instructions that access map FDs and
6926 * replace them with actual map pointers
6927 */
6928 static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
6929 {
6930 struct bpf_insn *insn = env->prog->insnsi;
6931 int insn_cnt = env->prog->len;
6932 int i, j, err;
6933
6934 err = bpf_prog_calc_tag(env->prog);
6935 if (err)
6936 return err;
6937
6938 for (i = 0; i < insn_cnt; i++, insn++) {
6939 if (BPF_CLASS(insn->code) == BPF_LDX &&
6940 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
6941 verbose(env, "BPF_LDX uses reserved fields\n");
6942 return -EINVAL;
6943 }
6944
6945 if (BPF_CLASS(insn->code) == BPF_STX &&
6946 ((BPF_MODE(insn->code) != BPF_MEM &&
6947 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
6948 verbose(env, "BPF_STX uses reserved fields\n");
6949 return -EINVAL;
6950 }
6951
6952 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
6953 struct bpf_insn_aux_data *aux;
6954 struct bpf_map *map;
6955 struct fd f;
6956 u64 addr;
6957
6958 if (i == insn_cnt - 1 || insn[1].code != 0 ||
6959 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
6960 insn[1].off != 0) {
6961 verbose(env, "invalid bpf_ld_imm64 insn\n");
6962 return -EINVAL;
6963 }
6964
6965 if (insn[0].src_reg == 0)
6966 /* valid generic load 64-bit imm */
6967 goto next_insn;
6968
6969 /* In final convert_pseudo_ld_imm64() step, this is
6970 * converted into regular 64-bit imm load insn.
6971 */
6972 if ((insn[0].src_reg != BPF_PSEUDO_MAP_FD &&
6973 insn[0].src_reg != BPF_PSEUDO_MAP_VALUE) ||
6974 (insn[0].src_reg == BPF_PSEUDO_MAP_FD &&
6975 insn[1].imm != 0)) {
6976 verbose(env,
6977 "unrecognized bpf_ld_imm64 insn\n");
6978 return -EINVAL;
6979 }
6980
6981 f = fdget(insn[0].imm);
6982 map = __bpf_map_get(f);
6983 if (IS_ERR(map)) {
6984 verbose(env, "fd %d is not pointing to valid bpf_map\n",
6985 insn[0].imm);
6986 return PTR_ERR(map);
6987 }
6988
6989 err = check_map_prog_compatibility(env, map, env->prog);
6990 if (err) {
6991 fdput(f);
6992 return err;
6993 }
6994
6995 aux = &env->insn_aux_data[i];
6996 if (insn->src_reg == BPF_PSEUDO_MAP_FD) {
6997 addr = (unsigned long)map;
6998 } else {
6999 u32 off = insn[1].imm;
7000
7001 if (off >= BPF_MAX_VAR_OFF) {
7002 verbose(env, "direct value offset of %u is not allowed\n", off);
7003 fdput(f);
7004 return -EINVAL;
7005 }
7006
7007 if (!map->ops->map_direct_value_addr) {
7008 verbose(env, "no direct value access support for this map type\n");
7009 fdput(f);
7010 return -EINVAL;
7011 }
7012
7013 err = map->ops->map_direct_value_addr(map, &addr, off);
7014 if (err) {
7015 verbose(env, "invalid access to map value pointer, value_size=%u off=%u\n",
7016 map->value_size, off);
7017 fdput(f);
7018 return err;
7019 }
7020
7021 aux->map_off = off;
7022 addr += off;
7023 }
7024
7025 insn[0].imm = (u32)addr;
7026 insn[1].imm = addr >> 32;
7027
7028 /* check whether we recorded this map already */
7029 for (j = 0; j < env->used_map_cnt; j++) {
7030 if (env->used_maps[j] == map) {
7031 aux->map_index = j;
7032 fdput(f);
7033 goto next_insn;
7034 }
7035 }
7036
7037 if (env->used_map_cnt >= MAX_USED_MAPS) {
7038 fdput(f);
7039 return -E2BIG;
7040 }
7041
7042 /* hold the map. If the program is rejected by verifier,
7043 * the map will be released by release_maps() or it
7044 * will be used by the valid program until it's unloaded
7045 * and all maps are released in free_used_maps()
7046 */
7047 map = bpf_map_inc(map, false);
7048 if (IS_ERR(map)) {
7049 fdput(f);
7050 return PTR_ERR(map);
7051 }
7052
7053 aux->map_index = env->used_map_cnt;
7054 env->used_maps[env->used_map_cnt++] = map;
7055
7056 if (bpf_map_is_cgroup_storage(map) &&
7057 bpf_cgroup_storage_assign(env->prog, map)) {
7058 verbose(env, "only one cgroup storage of each type is allowed\n");
7059 fdput(f);
7060 return -EBUSY;
7061 }
7062
7063 fdput(f);
7064 next_insn:
7065 insn++;
7066 i++;
7067 continue;
7068 }
7069
7070 /* Basic sanity check before we invest more work here. */
7071 if (!bpf_opcode_in_insntable(insn->code)) {
7072 verbose(env, "unknown opcode %02x\n", insn->code);
7073 return -EINVAL;
7074 }
7075 }
7076
7077 /* now all pseudo BPF_LD_IMM64 instructions load valid
7078 * 'struct bpf_map *' into a register instead of user map_fd.
7079 * These pointers will be used later by verifier to validate map access.
7080 */
7081 return 0;
7082 }
7083
7084 /* drop refcnt of maps used by the rejected program */
7085 static void release_maps(struct bpf_verifier_env *env)
7086 {
7087 enum bpf_cgroup_storage_type stype;
7088 int i;
7089
7090 for_each_cgroup_storage_type(stype) {
7091 if (!env->prog->aux->cgroup_storage[stype])
7092 continue;
7093 bpf_cgroup_storage_release(env->prog,
7094 env->prog->aux->cgroup_storage[stype]);
7095 }
7096
7097 for (i = 0; i < env->used_map_cnt; i++)
7098 bpf_map_put(env->used_maps[i]);
7099 }
7100
7101 /* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
7102 static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
7103 {
7104 struct bpf_insn *insn = env->prog->insnsi;
7105 int insn_cnt = env->prog->len;
7106 int i;
7107
7108 for (i = 0; i < insn_cnt; i++, insn++)
7109 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
7110 insn->src_reg = 0;
7111 }
7112
7113 /* single env->prog->insni[off] instruction was replaced with the range
7114 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
7115 * [0, off) and [off, end) to new locations, so the patched range stays zero
7116 */
7117 static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
7118 u32 off, u32 cnt)
7119 {
7120 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
7121 int i;
7122
7123 if (cnt == 1)
7124 return 0;
7125 new_data = vzalloc(array_size(prog_len,
7126 sizeof(struct bpf_insn_aux_data)));
7127 if (!new_data)
7128 return -ENOMEM;
7129 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
7130 memcpy(new_data + off + cnt - 1, old_data + off,
7131 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
7132 for (i = off; i < off + cnt - 1; i++)
7133 new_data[i].seen = true;
7134 env->insn_aux_data = new_data;
7135 vfree(old_data);
7136 return 0;
7137 }
7138
7139 static void adjust_subprog_starts(struct bpf_verifier_env *env, u32 off, u32 len)
7140 {
7141 int i;
7142
7143 if (len == 1)
7144 return;
7145 /* NOTE: fake 'exit' subprog should be updated as well. */
7146 for (i = 0; i <= env->subprog_cnt; i++) {
7147 if (env->subprog_info[i].start <= off)
7148 continue;
7149 env->subprog_info[i].start += len - 1;
7150 }
7151 }
7152
7153 static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
7154 const struct bpf_insn *patch, u32 len)
7155 {
7156 struct bpf_prog *new_prog;
7157
7158 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
7159 if (IS_ERR(new_prog)) {
7160 if (PTR_ERR(new_prog) == -ERANGE)
7161 verbose(env,
7162 "insn %d cannot be patched due to 16-bit range\n",
7163 env->insn_aux_data[off].orig_idx);
7164 return NULL;
7165 }
7166 if (adjust_insn_aux_data(env, new_prog->len, off, len))
7167 return NULL;
7168 adjust_subprog_starts(env, off, len);
7169 return new_prog;
7170 }
7171
7172 static int adjust_subprog_starts_after_remove(struct bpf_verifier_env *env,
7173 u32 off, u32 cnt)
7174 {
7175 int i, j;
7176
7177 /* find first prog starting at or after off (first to remove) */
7178 for (i = 0; i < env->subprog_cnt; i++)
7179 if (env->subprog_info[i].start >= off)
7180 break;
7181 /* find first prog starting at or after off + cnt (first to stay) */
7182 for (j = i; j < env->subprog_cnt; j++)
7183 if (env->subprog_info[j].start >= off + cnt)
7184 break;
7185 /* if j doesn't start exactly at off + cnt, we are just removing
7186 * the front of previous prog
7187 */
7188 if (env->subprog_info[j].start != off + cnt)
7189 j--;
7190
7191 if (j > i) {
7192 struct bpf_prog_aux *aux = env->prog->aux;
7193 int move;
7194
7195 /* move fake 'exit' subprog as well */
7196 move = env->subprog_cnt + 1 - j;
7197
7198 memmove(env->subprog_info + i,
7199 env->subprog_info + j,
7200 sizeof(*env->subprog_info) * move);
7201 env->subprog_cnt -= j - i;
7202
7203 /* remove func_info */
7204 if (aux->func_info) {
7205 move = aux->func_info_cnt - j;
7206
7207 memmove(aux->func_info + i,
7208 aux->func_info + j,
7209 sizeof(*aux->func_info) * move);
7210 aux->func_info_cnt -= j - i;
7211 /* func_info->insn_off is set after all code rewrites,
7212 * in adjust_btf_func() - no need to adjust
7213 */
7214 }
7215 } else {
7216 /* convert i from "first prog to remove" to "first to adjust" */
7217 if (env->subprog_info[i].start == off)
7218 i++;
7219 }
7220
7221 /* update fake 'exit' subprog as well */
7222 for (; i <= env->subprog_cnt; i++)
7223 env->subprog_info[i].start -= cnt;
7224
7225 return 0;
7226 }
7227
7228 static int bpf_adj_linfo_after_remove(struct bpf_verifier_env *env, u32 off,
7229 u32 cnt)
7230 {
7231 struct bpf_prog *prog = env->prog;
7232 u32 i, l_off, l_cnt, nr_linfo;
7233 struct bpf_line_info *linfo;
7234
7235 nr_linfo = prog->aux->nr_linfo;
7236 if (!nr_linfo)
7237 return 0;
7238
7239 linfo = prog->aux->linfo;
7240
7241 /* find first line info to remove, count lines to be removed */
7242 for (i = 0; i < nr_linfo; i++)
7243 if (linfo[i].insn_off >= off)
7244 break;
7245
7246 l_off = i;
7247 l_cnt = 0;
7248 for (; i < nr_linfo; i++)
7249 if (linfo[i].insn_off < off + cnt)
7250 l_cnt++;
7251 else
7252 break;
7253
7254 /* First live insn doesn't match first live linfo, it needs to "inherit"
7255 * last removed linfo. prog is already modified, so prog->len == off
7256 * means no live instructions after (tail of the program was removed).
7257 */
7258 if (prog->len != off && l_cnt &&
7259 (i == nr_linfo || linfo[i].insn_off != off + cnt)) {
7260 l_cnt--;
7261 linfo[--i].insn_off = off + cnt;
7262 }
7263
7264 /* remove the line info which refer to the removed instructions */
7265 if (l_cnt) {
7266 memmove(linfo + l_off, linfo + i,
7267 sizeof(*linfo) * (nr_linfo - i));
7268
7269 prog->aux->nr_linfo -= l_cnt;
7270 nr_linfo = prog->aux->nr_linfo;
7271 }
7272
7273 /* pull all linfo[i].insn_off >= off + cnt in by cnt */
7274 for (i = l_off; i < nr_linfo; i++)
7275 linfo[i].insn_off -= cnt;
7276
7277 /* fix up all subprogs (incl. 'exit') which start >= off */
7278 for (i = 0; i <= env->subprog_cnt; i++)
7279 if (env->subprog_info[i].linfo_idx > l_off) {
7280 /* program may have started in the removed region but
7281 * may not be fully removed
7282 */
7283 if (env->subprog_info[i].linfo_idx >= l_off + l_cnt)
7284 env->subprog_info[i].linfo_idx -= l_cnt;
7285 else
7286 env->subprog_info[i].linfo_idx = l_off;
7287 }
7288
7289 return 0;
7290 }
7291
7292 static int verifier_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt)
7293 {
7294 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7295 unsigned int orig_prog_len = env->prog->len;
7296 int err;
7297
7298 if (bpf_prog_is_dev_bound(env->prog->aux))
7299 bpf_prog_offload_remove_insns(env, off, cnt);
7300
7301 err = bpf_remove_insns(env->prog, off, cnt);
7302 if (err)
7303 return err;
7304
7305 err = adjust_subprog_starts_after_remove(env, off, cnt);
7306 if (err)
7307 return err;
7308
7309 err = bpf_adj_linfo_after_remove(env, off, cnt);
7310 if (err)
7311 return err;
7312
7313 memmove(aux_data + off, aux_data + off + cnt,
7314 sizeof(*aux_data) * (orig_prog_len - off - cnt));
7315
7316 return 0;
7317 }
7318
7319 /* The verifier does more data flow analysis than llvm and will not
7320 * explore branches that are dead at run time. Malicious programs can
7321 * have dead code too. Therefore replace all dead at-run-time code
7322 * with 'ja -1'.
7323 *
7324 * Just nops are not optimal, e.g. if they would sit at the end of the
7325 * program and through another bug we would manage to jump there, then
7326 * we'd execute beyond program memory otherwise. Returning exception
7327 * code also wouldn't work since we can have subprogs where the dead
7328 * code could be located.
7329 */
7330 static void sanitize_dead_code(struct bpf_verifier_env *env)
7331 {
7332 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7333 struct bpf_insn trap = BPF_JMP_IMM(BPF_JA, 0, 0, -1);
7334 struct bpf_insn *insn = env->prog->insnsi;
7335 const int insn_cnt = env->prog->len;
7336 int i;
7337
7338 for (i = 0; i < insn_cnt; i++) {
7339 if (aux_data[i].seen)
7340 continue;
7341 memcpy(insn + i, &trap, sizeof(trap));
7342 }
7343 }
7344
7345 static bool insn_is_cond_jump(u8 code)
7346 {
7347 u8 op;
7348
7349 if (BPF_CLASS(code) == BPF_JMP32)
7350 return true;
7351
7352 if (BPF_CLASS(code) != BPF_JMP)
7353 return false;
7354
7355 op = BPF_OP(code);
7356 return op != BPF_JA && op != BPF_EXIT && op != BPF_CALL;
7357 }
7358
7359 static void opt_hard_wire_dead_code_branches(struct bpf_verifier_env *env)
7360 {
7361 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7362 struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7363 struct bpf_insn *insn = env->prog->insnsi;
7364 const int insn_cnt = env->prog->len;
7365 int i;
7366
7367 for (i = 0; i < insn_cnt; i++, insn++) {
7368 if (!insn_is_cond_jump(insn->code))
7369 continue;
7370
7371 if (!aux_data[i + 1].seen)
7372 ja.off = insn->off;
7373 else if (!aux_data[i + 1 + insn->off].seen)
7374 ja.off = 0;
7375 else
7376 continue;
7377
7378 if (bpf_prog_is_dev_bound(env->prog->aux))
7379 bpf_prog_offload_replace_insn(env, i, &ja);
7380
7381 memcpy(insn, &ja, sizeof(ja));
7382 }
7383 }
7384
7385 static int opt_remove_dead_code(struct bpf_verifier_env *env)
7386 {
7387 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
7388 int insn_cnt = env->prog->len;
7389 int i, err;
7390
7391 for (i = 0; i < insn_cnt; i++) {
7392 int j;
7393
7394 j = 0;
7395 while (i + j < insn_cnt && !aux_data[i + j].seen)
7396 j++;
7397 if (!j)
7398 continue;
7399
7400 err = verifier_remove_insns(env, i, j);
7401 if (err)
7402 return err;
7403 insn_cnt = env->prog->len;
7404 }
7405
7406 return 0;
7407 }
7408
7409 static int opt_remove_nops(struct bpf_verifier_env *env)
7410 {
7411 const struct bpf_insn ja = BPF_JMP_IMM(BPF_JA, 0, 0, 0);
7412 struct bpf_insn *insn = env->prog->insnsi;
7413 int insn_cnt = env->prog->len;
7414 int i, err;
7415
7416 for (i = 0; i < insn_cnt; i++) {
7417 if (memcmp(&insn[i], &ja, sizeof(ja)))
7418 continue;
7419
7420 err = verifier_remove_insns(env, i, 1);
7421 if (err)
7422 return err;
7423 insn_cnt--;
7424 i--;
7425 }
7426
7427 return 0;
7428 }
7429
7430 /* convert load instructions that access fields of a context type into a
7431 * sequence of instructions that access fields of the underlying structure:
7432 * struct __sk_buff -> struct sk_buff
7433 * struct bpf_sock_ops -> struct sock
7434 */
7435 static int convert_ctx_accesses(struct bpf_verifier_env *env)
7436 {
7437 const struct bpf_verifier_ops *ops = env->ops;
7438 int i, cnt, size, ctx_field_size, delta = 0;
7439 const int insn_cnt = env->prog->len;
7440 struct bpf_insn insn_buf[16], *insn;
7441 u32 target_size, size_default, off;
7442 struct bpf_prog *new_prog;
7443 enum bpf_access_type type;
7444 bool is_narrower_load;
7445
7446 if (ops->gen_prologue || env->seen_direct_write) {
7447 if (!ops->gen_prologue) {
7448 verbose(env, "bpf verifier is misconfigured\n");
7449 return -EINVAL;
7450 }
7451 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
7452 env->prog);
7453 if (cnt >= ARRAY_SIZE(insn_buf)) {
7454 verbose(env, "bpf verifier is misconfigured\n");
7455 return -EINVAL;
7456 } else if (cnt) {
7457 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
7458 if (!new_prog)
7459 return -ENOMEM;
7460
7461 env->prog = new_prog;
7462 delta += cnt - 1;
7463 }
7464 }
7465
7466 if (bpf_prog_is_dev_bound(env->prog->aux))
7467 return 0;
7468
7469 insn = env->prog->insnsi + delta;
7470
7471 for (i = 0; i < insn_cnt; i++, insn++) {
7472 bpf_convert_ctx_access_t convert_ctx_access;
7473
7474 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
7475 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
7476 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
7477 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
7478 type = BPF_READ;
7479 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
7480 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
7481 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
7482 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
7483 type = BPF_WRITE;
7484 else
7485 continue;
7486
7487 if (type == BPF_WRITE &&
7488 env->insn_aux_data[i + delta].sanitize_stack_off) {
7489 struct bpf_insn patch[] = {
7490 /* Sanitize suspicious stack slot with zero.
7491 * There are no memory dependencies for this store,
7492 * since it's only using frame pointer and immediate
7493 * constant of zero
7494 */
7495 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
7496 env->insn_aux_data[i + delta].sanitize_stack_off,
7497 0),
7498 /* the original STX instruction will immediately
7499 * overwrite the same stack slot with appropriate value
7500 */
7501 *insn,
7502 };
7503
7504 cnt = ARRAY_SIZE(patch);
7505 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
7506 if (!new_prog)
7507 return -ENOMEM;
7508
7509 delta += cnt - 1;
7510 env->prog = new_prog;
7511 insn = new_prog->insnsi + i + delta;
7512 continue;
7513 }
7514
7515 switch (env->insn_aux_data[i + delta].ptr_type) {
7516 case PTR_TO_CTX:
7517 if (!ops->convert_ctx_access)
7518 continue;
7519 convert_ctx_access = ops->convert_ctx_access;
7520 break;
7521 case PTR_TO_SOCKET:
7522 case PTR_TO_SOCK_COMMON:
7523 convert_ctx_access = bpf_sock_convert_ctx_access;
7524 break;
7525 case PTR_TO_TCP_SOCK:
7526 convert_ctx_access = bpf_tcp_sock_convert_ctx_access;
7527 break;
7528 default:
7529 continue;
7530 }
7531
7532 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
7533 size = BPF_LDST_BYTES(insn);
7534
7535 /* If the read access is a narrower load of the field,
7536 * convert to a 4/8-byte load, to minimum program type specific
7537 * convert_ctx_access changes. If conversion is successful,
7538 * we will apply proper mask to the result.
7539 */
7540 is_narrower_load = size < ctx_field_size;
7541 size_default = bpf_ctx_off_adjust_machine(ctx_field_size);
7542 off = insn->off;
7543 if (is_narrower_load) {
7544 u8 size_code;
7545
7546 if (type == BPF_WRITE) {
7547 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
7548 return -EINVAL;
7549 }
7550
7551 size_code = BPF_H;
7552 if (ctx_field_size == 4)
7553 size_code = BPF_W;
7554 else if (ctx_field_size == 8)
7555 size_code = BPF_DW;
7556
7557 insn->off = off & ~(size_default - 1);
7558 insn->code = BPF_LDX | BPF_MEM | size_code;
7559 }
7560
7561 target_size = 0;
7562 cnt = convert_ctx_access(type, insn, insn_buf, env->prog,
7563 &target_size);
7564 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
7565 (ctx_field_size && !target_size)) {
7566 verbose(env, "bpf verifier is misconfigured\n");
7567 return -EINVAL;
7568 }
7569
7570 if (is_narrower_load && size < target_size) {
7571 u8 shift = (off & (size_default - 1)) * 8;
7572
7573 if (ctx_field_size <= 4) {
7574 if (shift)
7575 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_RSH,
7576 insn->dst_reg,
7577 shift);
7578 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
7579 (1 << size * 8) - 1);
7580 } else {
7581 if (shift)
7582 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_RSH,
7583 insn->dst_reg,
7584 shift);
7585 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
7586 (1 << size * 8) - 1);
7587 }
7588 }
7589
7590 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7591 if (!new_prog)
7592 return -ENOMEM;
7593
7594 delta += cnt - 1;
7595
7596 /* keep walking new program and skip insns we just inserted */
7597 env->prog = new_prog;
7598 insn = new_prog->insnsi + i + delta;
7599 }
7600
7601 return 0;
7602 }
7603
7604 static int jit_subprogs(struct bpf_verifier_env *env)
7605 {
7606 struct bpf_prog *prog = env->prog, **func, *tmp;
7607 int i, j, subprog_start, subprog_end = 0, len, subprog;
7608 struct bpf_insn *insn;
7609 void *old_bpf_func;
7610 int err;
7611
7612 if (env->subprog_cnt <= 1)
7613 return 0;
7614
7615 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7616 if (insn->code != (BPF_JMP | BPF_CALL) ||
7617 insn->src_reg != BPF_PSEUDO_CALL)
7618 continue;
7619 /* Upon error here we cannot fall back to interpreter but
7620 * need a hard reject of the program. Thus -EFAULT is
7621 * propagated in any case.
7622 */
7623 subprog = find_subprog(env, i + insn->imm + 1);
7624 if (subprog < 0) {
7625 WARN_ONCE(1, "verifier bug. No program starts at insn %d\n",
7626 i + insn->imm + 1);
7627 return -EFAULT;
7628 }
7629 /* temporarily remember subprog id inside insn instead of
7630 * aux_data, since next loop will split up all insns into funcs
7631 */
7632 insn->off = subprog;
7633 /* remember original imm in case JIT fails and fallback
7634 * to interpreter will be needed
7635 */
7636 env->insn_aux_data[i].call_imm = insn->imm;
7637 /* point imm to __bpf_call_base+1 from JITs point of view */
7638 insn->imm = 1;
7639 }
7640
7641 err = bpf_prog_alloc_jited_linfo(prog);
7642 if (err)
7643 goto out_undo_insn;
7644
7645 err = -ENOMEM;
7646 func = kcalloc(env->subprog_cnt, sizeof(prog), GFP_KERNEL);
7647 if (!func)
7648 goto out_undo_insn;
7649
7650 for (i = 0; i < env->subprog_cnt; i++) {
7651 subprog_start = subprog_end;
7652 subprog_end = env->subprog_info[i + 1].start;
7653
7654 len = subprog_end - subprog_start;
7655 /* BPF_PROG_RUN doesn't call subprogs directly,
7656 * hence main prog stats include the runtime of subprogs.
7657 * subprogs don't have IDs and not reachable via prog_get_next_id
7658 * func[i]->aux->stats will never be accessed and stays NULL
7659 */
7660 func[i] = bpf_prog_alloc_no_stats(bpf_prog_size(len), GFP_USER);
7661 if (!func[i])
7662 goto out_free;
7663 memcpy(func[i]->insnsi, &prog->insnsi[subprog_start],
7664 len * sizeof(struct bpf_insn));
7665 func[i]->type = prog->type;
7666 func[i]->len = len;
7667 if (bpf_prog_calc_tag(func[i]))
7668 goto out_free;
7669 func[i]->is_func = 1;
7670 func[i]->aux->func_idx = i;
7671 /* the btf and func_info will be freed only at prog->aux */
7672 func[i]->aux->btf = prog->aux->btf;
7673 func[i]->aux->func_info = prog->aux->func_info;
7674
7675 /* Use bpf_prog_F_tag to indicate functions in stack traces.
7676 * Long term would need debug info to populate names
7677 */
7678 func[i]->aux->name[0] = 'F';
7679 func[i]->aux->stack_depth = env->subprog_info[i].stack_depth;
7680 func[i]->jit_requested = 1;
7681 func[i]->aux->linfo = prog->aux->linfo;
7682 func[i]->aux->nr_linfo = prog->aux->nr_linfo;
7683 func[i]->aux->jited_linfo = prog->aux->jited_linfo;
7684 func[i]->aux->linfo_idx = env->subprog_info[i].linfo_idx;
7685 func[i] = bpf_int_jit_compile(func[i]);
7686 if (!func[i]->jited) {
7687 err = -ENOTSUPP;
7688 goto out_free;
7689 }
7690 cond_resched();
7691 }
7692 /* at this point all bpf functions were successfully JITed
7693 * now populate all bpf_calls with correct addresses and
7694 * run last pass of JIT
7695 */
7696 for (i = 0; i < env->subprog_cnt; i++) {
7697 insn = func[i]->insnsi;
7698 for (j = 0; j < func[i]->len; j++, insn++) {
7699 if (insn->code != (BPF_JMP | BPF_CALL) ||
7700 insn->src_reg != BPF_PSEUDO_CALL)
7701 continue;
7702 subprog = insn->off;
7703 insn->imm = BPF_CAST_CALL(func[subprog]->bpf_func) -
7704 __bpf_call_base;
7705 }
7706
7707 /* we use the aux data to keep a list of the start addresses
7708 * of the JITed images for each function in the program
7709 *
7710 * for some architectures, such as powerpc64, the imm field
7711 * might not be large enough to hold the offset of the start
7712 * address of the callee's JITed image from __bpf_call_base
7713 *
7714 * in such cases, we can lookup the start address of a callee
7715 * by using its subprog id, available from the off field of
7716 * the call instruction, as an index for this list
7717 */
7718 func[i]->aux->func = func;
7719 func[i]->aux->func_cnt = env->subprog_cnt;
7720 }
7721 for (i = 0; i < env->subprog_cnt; i++) {
7722 old_bpf_func = func[i]->bpf_func;
7723 tmp = bpf_int_jit_compile(func[i]);
7724 if (tmp != func[i] || func[i]->bpf_func != old_bpf_func) {
7725 verbose(env, "JIT doesn't support bpf-to-bpf calls\n");
7726 err = -ENOTSUPP;
7727 goto out_free;
7728 }
7729 cond_resched();
7730 }
7731
7732 /* finally lock prog and jit images for all functions and
7733 * populate kallsysm
7734 */
7735 for (i = 0; i < env->subprog_cnt; i++) {
7736 bpf_prog_lock_ro(func[i]);
7737 bpf_prog_kallsyms_add(func[i]);
7738 }
7739
7740 /* Last step: make now unused interpreter insns from main
7741 * prog consistent for later dump requests, so they can
7742 * later look the same as if they were interpreted only.
7743 */
7744 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7745 if (insn->code != (BPF_JMP | BPF_CALL) ||
7746 insn->src_reg != BPF_PSEUDO_CALL)
7747 continue;
7748 insn->off = env->insn_aux_data[i].call_imm;
7749 subprog = find_subprog(env, i + insn->off + 1);
7750 insn->imm = subprog;
7751 }
7752
7753 prog->jited = 1;
7754 prog->bpf_func = func[0]->bpf_func;
7755 prog->aux->func = func;
7756 prog->aux->func_cnt = env->subprog_cnt;
7757 bpf_prog_free_unused_jited_linfo(prog);
7758 return 0;
7759 out_free:
7760 for (i = 0; i < env->subprog_cnt; i++)
7761 if (func[i])
7762 bpf_jit_free(func[i]);
7763 kfree(func);
7764 out_undo_insn:
7765 /* cleanup main prog to be interpreted */
7766 prog->jit_requested = 0;
7767 for (i = 0, insn = prog->insnsi; i < prog->len; i++, insn++) {
7768 if (insn->code != (BPF_JMP | BPF_CALL) ||
7769 insn->src_reg != BPF_PSEUDO_CALL)
7770 continue;
7771 insn->off = 0;
7772 insn->imm = env->insn_aux_data[i].call_imm;
7773 }
7774 bpf_prog_free_jited_linfo(prog);
7775 return err;
7776 }
7777
7778 static int fixup_call_args(struct bpf_verifier_env *env)
7779 {
7780 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
7781 struct bpf_prog *prog = env->prog;
7782 struct bpf_insn *insn = prog->insnsi;
7783 int i, depth;
7784 #endif
7785 int err = 0;
7786
7787 if (env->prog->jit_requested &&
7788 !bpf_prog_is_dev_bound(env->prog->aux)) {
7789 err = jit_subprogs(env);
7790 if (err == 0)
7791 return 0;
7792 if (err == -EFAULT)
7793 return err;
7794 }
7795 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
7796 for (i = 0; i < prog->len; i++, insn++) {
7797 if (insn->code != (BPF_JMP | BPF_CALL) ||
7798 insn->src_reg != BPF_PSEUDO_CALL)
7799 continue;
7800 depth = get_callee_stack_depth(env, insn, i);
7801 if (depth < 0)
7802 return depth;
7803 bpf_patch_call_args(insn, depth);
7804 }
7805 err = 0;
7806 #endif
7807 return err;
7808 }
7809
7810 /* fixup insn->imm field of bpf_call instructions
7811 * and inline eligible helpers as explicit sequence of BPF instructions
7812 *
7813 * this function is called after eBPF program passed verification
7814 */
7815 static int fixup_bpf_calls(struct bpf_verifier_env *env)
7816 {
7817 struct bpf_prog *prog = env->prog;
7818 struct bpf_insn *insn = prog->insnsi;
7819 const struct bpf_func_proto *fn;
7820 const int insn_cnt = prog->len;
7821 const struct bpf_map_ops *ops;
7822 struct bpf_insn_aux_data *aux;
7823 struct bpf_insn insn_buf[16];
7824 struct bpf_prog *new_prog;
7825 struct bpf_map *map_ptr;
7826 int i, cnt, delta = 0;
7827
7828 for (i = 0; i < insn_cnt; i++, insn++) {
7829 if (insn->code == (BPF_ALU64 | BPF_MOD | BPF_X) ||
7830 insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
7831 insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
7832 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
7833 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64;
7834 struct bpf_insn mask_and_div[] = {
7835 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
7836 /* Rx div 0 -> 0 */
7837 BPF_JMP_IMM(BPF_JNE, insn->src_reg, 0, 2),
7838 BPF_ALU32_REG(BPF_XOR, insn->dst_reg, insn->dst_reg),
7839 BPF_JMP_IMM(BPF_JA, 0, 0, 1),
7840 *insn,
7841 };
7842 struct bpf_insn mask_and_mod[] = {
7843 BPF_MOV32_REG(insn->src_reg, insn->src_reg),
7844 /* Rx mod 0 -> Rx */
7845 BPF_JMP_IMM(BPF_JEQ, insn->src_reg, 0, 1),
7846 *insn,
7847 };
7848 struct bpf_insn *patchlet;
7849
7850 if (insn->code == (BPF_ALU64 | BPF_DIV | BPF_X) ||
7851 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
7852 patchlet = mask_and_div + (is64 ? 1 : 0);
7853 cnt = ARRAY_SIZE(mask_and_div) - (is64 ? 1 : 0);
7854 } else {
7855 patchlet = mask_and_mod + (is64 ? 1 : 0);
7856 cnt = ARRAY_SIZE(mask_and_mod) - (is64 ? 1 : 0);
7857 }
7858
7859 new_prog = bpf_patch_insn_data(env, i + delta, patchlet, cnt);
7860 if (!new_prog)
7861 return -ENOMEM;
7862
7863 delta += cnt - 1;
7864 env->prog = prog = new_prog;
7865 insn = new_prog->insnsi + i + delta;
7866 continue;
7867 }
7868
7869 if (BPF_CLASS(insn->code) == BPF_LD &&
7870 (BPF_MODE(insn->code) == BPF_ABS ||
7871 BPF_MODE(insn->code) == BPF_IND)) {
7872 cnt = env->ops->gen_ld_abs(insn, insn_buf);
7873 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
7874 verbose(env, "bpf verifier is misconfigured\n");
7875 return -EINVAL;
7876 }
7877
7878 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7879 if (!new_prog)
7880 return -ENOMEM;
7881
7882 delta += cnt - 1;
7883 env->prog = prog = new_prog;
7884 insn = new_prog->insnsi + i + delta;
7885 continue;
7886 }
7887
7888 if (insn->code == (BPF_ALU64 | BPF_ADD | BPF_X) ||
7889 insn->code == (BPF_ALU64 | BPF_SUB | BPF_X)) {
7890 const u8 code_add = BPF_ALU64 | BPF_ADD | BPF_X;
7891 const u8 code_sub = BPF_ALU64 | BPF_SUB | BPF_X;
7892 struct bpf_insn insn_buf[16];
7893 struct bpf_insn *patch = &insn_buf[0];
7894 bool issrc, isneg;
7895 u32 off_reg;
7896
7897 aux = &env->insn_aux_data[i + delta];
7898 if (!aux->alu_state ||
7899 aux->alu_state == BPF_ALU_NON_POINTER)
7900 continue;
7901
7902 isneg = aux->alu_state & BPF_ALU_NEG_VALUE;
7903 issrc = (aux->alu_state & BPF_ALU_SANITIZE) ==
7904 BPF_ALU_SANITIZE_SRC;
7905
7906 off_reg = issrc ? insn->src_reg : insn->dst_reg;
7907 if (isneg)
7908 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
7909 *patch++ = BPF_MOV32_IMM(BPF_REG_AX, aux->alu_limit - 1);
7910 *patch++ = BPF_ALU64_REG(BPF_SUB, BPF_REG_AX, off_reg);
7911 *patch++ = BPF_ALU64_REG(BPF_OR, BPF_REG_AX, off_reg);
7912 *patch++ = BPF_ALU64_IMM(BPF_NEG, BPF_REG_AX, 0);
7913 *patch++ = BPF_ALU64_IMM(BPF_ARSH, BPF_REG_AX, 63);
7914 if (issrc) {
7915 *patch++ = BPF_ALU64_REG(BPF_AND, BPF_REG_AX,
7916 off_reg);
7917 insn->src_reg = BPF_REG_AX;
7918 } else {
7919 *patch++ = BPF_ALU64_REG(BPF_AND, off_reg,
7920 BPF_REG_AX);
7921 }
7922 if (isneg)
7923 insn->code = insn->code == code_add ?
7924 code_sub : code_add;
7925 *patch++ = *insn;
7926 if (issrc && isneg)
7927 *patch++ = BPF_ALU64_IMM(BPF_MUL, off_reg, -1);
7928 cnt = patch - insn_buf;
7929
7930 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7931 if (!new_prog)
7932 return -ENOMEM;
7933
7934 delta += cnt - 1;
7935 env->prog = prog = new_prog;
7936 insn = new_prog->insnsi + i + delta;
7937 continue;
7938 }
7939
7940 if (insn->code != (BPF_JMP | BPF_CALL))
7941 continue;
7942 if (insn->src_reg == BPF_PSEUDO_CALL)
7943 continue;
7944
7945 if (insn->imm == BPF_FUNC_get_route_realm)
7946 prog->dst_needed = 1;
7947 if (insn->imm == BPF_FUNC_get_prandom_u32)
7948 bpf_user_rnd_init_once();
7949 if (insn->imm == BPF_FUNC_override_return)
7950 prog->kprobe_override = 1;
7951 if (insn->imm == BPF_FUNC_tail_call) {
7952 /* If we tail call into other programs, we
7953 * cannot make any assumptions since they can
7954 * be replaced dynamically during runtime in
7955 * the program array.
7956 */
7957 prog->cb_access = 1;
7958 env->prog->aux->stack_depth = MAX_BPF_STACK;
7959 env->prog->aux->max_pkt_offset = MAX_PACKET_OFF;
7960
7961 /* mark bpf_tail_call as different opcode to avoid
7962 * conditional branch in the interpeter for every normal
7963 * call and to prevent accidental JITing by JIT compiler
7964 * that doesn't support bpf_tail_call yet
7965 */
7966 insn->imm = 0;
7967 insn->code = BPF_JMP | BPF_TAIL_CALL;
7968
7969 aux = &env->insn_aux_data[i + delta];
7970 if (!bpf_map_ptr_unpriv(aux))
7971 continue;
7972
7973 /* instead of changing every JIT dealing with tail_call
7974 * emit two extra insns:
7975 * if (index >= max_entries) goto out;
7976 * index &= array->index_mask;
7977 * to avoid out-of-bounds cpu speculation
7978 */
7979 if (bpf_map_ptr_poisoned(aux)) {
7980 verbose(env, "tail_call abusing map_ptr\n");
7981 return -EINVAL;
7982 }
7983
7984 map_ptr = BPF_MAP_PTR(aux->map_state);
7985 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
7986 map_ptr->max_entries, 2);
7987 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
7988 container_of(map_ptr,
7989 struct bpf_array,
7990 map)->index_mask);
7991 insn_buf[2] = *insn;
7992 cnt = 3;
7993 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
7994 if (!new_prog)
7995 return -ENOMEM;
7996
7997 delta += cnt - 1;
7998 env->prog = prog = new_prog;
7999 insn = new_prog->insnsi + i + delta;
8000 continue;
8001 }
8002
8003 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
8004 * and other inlining handlers are currently limited to 64 bit
8005 * only.
8006 */
8007 if (prog->jit_requested && BITS_PER_LONG == 64 &&
8008 (insn->imm == BPF_FUNC_map_lookup_elem ||
8009 insn->imm == BPF_FUNC_map_update_elem ||
8010 insn->imm == BPF_FUNC_map_delete_elem ||
8011 insn->imm == BPF_FUNC_map_push_elem ||
8012 insn->imm == BPF_FUNC_map_pop_elem ||
8013 insn->imm == BPF_FUNC_map_peek_elem)) {
8014 aux = &env->insn_aux_data[i + delta];
8015 if (bpf_map_ptr_poisoned(aux))
8016 goto patch_call_imm;
8017
8018 map_ptr = BPF_MAP_PTR(aux->map_state);
8019 ops = map_ptr->ops;
8020 if (insn->imm == BPF_FUNC_map_lookup_elem &&
8021 ops->map_gen_lookup) {
8022 cnt = ops->map_gen_lookup(map_ptr, insn_buf);
8023 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
8024 verbose(env, "bpf verifier is misconfigured\n");
8025 return -EINVAL;
8026 }
8027
8028 new_prog = bpf_patch_insn_data(env, i + delta,
8029 insn_buf, cnt);
8030 if (!new_prog)
8031 return -ENOMEM;
8032
8033 delta += cnt - 1;
8034 env->prog = prog = new_prog;
8035 insn = new_prog->insnsi + i + delta;
8036 continue;
8037 }
8038
8039 BUILD_BUG_ON(!__same_type(ops->map_lookup_elem,
8040 (void *(*)(struct bpf_map *map, void *key))NULL));
8041 BUILD_BUG_ON(!__same_type(ops->map_delete_elem,
8042 (int (*)(struct bpf_map *map, void *key))NULL));
8043 BUILD_BUG_ON(!__same_type(ops->map_update_elem,
8044 (int (*)(struct bpf_map *map, void *key, void *value,
8045 u64 flags))NULL));
8046 BUILD_BUG_ON(!__same_type(ops->map_push_elem,
8047 (int (*)(struct bpf_map *map, void *value,
8048 u64 flags))NULL));
8049 BUILD_BUG_ON(!__same_type(ops->map_pop_elem,
8050 (int (*)(struct bpf_map *map, void *value))NULL));
8051 BUILD_BUG_ON(!__same_type(ops->map_peek_elem,
8052 (int (*)(struct bpf_map *map, void *value))NULL));
8053
8054 switch (insn->imm) {
8055 case BPF_FUNC_map_lookup_elem:
8056 insn->imm = BPF_CAST_CALL(ops->map_lookup_elem) -
8057 __bpf_call_base;
8058 continue;
8059 case BPF_FUNC_map_update_elem:
8060 insn->imm = BPF_CAST_CALL(ops->map_update_elem) -
8061 __bpf_call_base;
8062 continue;
8063 case BPF_FUNC_map_delete_elem:
8064 insn->imm = BPF_CAST_CALL(ops->map_delete_elem) -
8065 __bpf_call_base;
8066 continue;
8067 case BPF_FUNC_map_push_elem:
8068 insn->imm = BPF_CAST_CALL(ops->map_push_elem) -
8069 __bpf_call_base;
8070 continue;
8071 case BPF_FUNC_map_pop_elem:
8072 insn->imm = BPF_CAST_CALL(ops->map_pop_elem) -
8073 __bpf_call_base;
8074 continue;
8075 case BPF_FUNC_map_peek_elem:
8076 insn->imm = BPF_CAST_CALL(ops->map_peek_elem) -
8077 __bpf_call_base;
8078 continue;
8079 }
8080
8081 goto patch_call_imm;
8082 }
8083
8084 patch_call_imm:
8085 fn = env->ops->get_func_proto(insn->imm, env->prog);
8086 /* all functions that have prototype and verifier allowed
8087 * programs to call them, must be real in-kernel functions
8088 */
8089 if (!fn->func) {
8090 verbose(env,
8091 "kernel subsystem misconfigured func %s#%d\n",
8092 func_id_name(insn->imm), insn->imm);
8093 return -EFAULT;
8094 }
8095 insn->imm = fn->func - __bpf_call_base;
8096 }
8097
8098 return 0;
8099 }
8100
8101 static void free_states(struct bpf_verifier_env *env)
8102 {
8103 struct bpf_verifier_state_list *sl, *sln;
8104 int i;
8105
8106 sl = env->free_list;
8107 while (sl) {
8108 sln = sl->next;
8109 free_verifier_state(&sl->state, false);
8110 kfree(sl);
8111 sl = sln;
8112 }
8113
8114 if (!env->explored_states)
8115 return;
8116
8117 for (i = 0; i < env->prog->len; i++) {
8118 sl = env->explored_states[i];
8119
8120 if (sl)
8121 while (sl != STATE_LIST_MARK) {
8122 sln = sl->next;
8123 free_verifier_state(&sl->state, false);
8124 kfree(sl);
8125 sl = sln;
8126 }
8127 }
8128
8129 kvfree(env->explored_states);
8130 }
8131
8132 static void print_verification_stats(struct bpf_verifier_env *env)
8133 {
8134 int i;
8135
8136 if (env->log.level & BPF_LOG_STATS) {
8137 verbose(env, "verification time %lld usec\n",
8138 div_u64(env->verification_time, 1000));
8139 verbose(env, "stack depth ");
8140 for (i = 0; i < env->subprog_cnt; i++) {
8141 u32 depth = env->subprog_info[i].stack_depth;
8142
8143 verbose(env, "%d", depth);
8144 if (i + 1 < env->subprog_cnt)
8145 verbose(env, "+");
8146 }
8147 verbose(env, "\n");
8148 }
8149 verbose(env, "processed %d insns (limit %d) max_states_per_insn %d "
8150 "total_states %d peak_states %d mark_read %d\n",
8151 env->insn_processed, BPF_COMPLEXITY_LIMIT_INSNS,
8152 env->max_states_per_insn, env->total_states,
8153 env->peak_states, env->longest_mark_read_walk);
8154 }
8155
8156 int bpf_check(struct bpf_prog **prog, union bpf_attr *attr,
8157 union bpf_attr __user *uattr)
8158 {
8159 u64 start_time = ktime_get_ns();
8160 struct bpf_verifier_env *env;
8161 struct bpf_verifier_log *log;
8162 int i, len, ret = -EINVAL;
8163 bool is_priv;
8164
8165 /* no program is valid */
8166 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
8167 return -EINVAL;
8168
8169 /* 'struct bpf_verifier_env' can be global, but since it's not small,
8170 * allocate/free it every time bpf_check() is called
8171 */
8172 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
8173 if (!env)
8174 return -ENOMEM;
8175 log = &env->log;
8176
8177 len = (*prog)->len;
8178 env->insn_aux_data =
8179 vzalloc(array_size(sizeof(struct bpf_insn_aux_data), len));
8180 ret = -ENOMEM;
8181 if (!env->insn_aux_data)
8182 goto err_free_env;
8183 for (i = 0; i < len; i++)
8184 env->insn_aux_data[i].orig_idx = i;
8185 env->prog = *prog;
8186 env->ops = bpf_verifier_ops[env->prog->type];
8187 is_priv = capable(CAP_SYS_ADMIN);
8188
8189 /* grab the mutex to protect few globals used by verifier */
8190 if (!is_priv)
8191 mutex_lock(&bpf_verifier_lock);
8192
8193 if (attr->log_level || attr->log_buf || attr->log_size) {
8194 /* user requested verbose verifier output
8195 * and supplied buffer to store the verification trace
8196 */
8197 log->level = attr->log_level;
8198 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
8199 log->len_total = attr->log_size;
8200
8201 ret = -EINVAL;
8202 /* log attributes have to be sane */
8203 if (log->len_total < 128 || log->len_total > UINT_MAX >> 2 ||
8204 !log->level || !log->ubuf || log->level & ~BPF_LOG_MASK)
8205 goto err_unlock;
8206 }
8207
8208 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
8209 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
8210 env->strict_alignment = true;
8211 if (attr->prog_flags & BPF_F_ANY_ALIGNMENT)
8212 env->strict_alignment = false;
8213
8214 env->allow_ptr_leaks = is_priv;
8215
8216 ret = replace_map_fd_with_map_ptr(env);
8217 if (ret < 0)
8218 goto skip_full_check;
8219
8220 if (bpf_prog_is_dev_bound(env->prog->aux)) {
8221 ret = bpf_prog_offload_verifier_prep(env->prog);
8222 if (ret)
8223 goto skip_full_check;
8224 }
8225
8226 env->explored_states = kvcalloc(env->prog->len,
8227 sizeof(struct bpf_verifier_state_list *),
8228 GFP_USER);
8229 ret = -ENOMEM;
8230 if (!env->explored_states)
8231 goto skip_full_check;
8232
8233 ret = check_subprogs(env);
8234 if (ret < 0)
8235 goto skip_full_check;
8236
8237 ret = check_btf_info(env, attr, uattr);
8238 if (ret < 0)
8239 goto skip_full_check;
8240
8241 ret = check_cfg(env);
8242 if (ret < 0)
8243 goto skip_full_check;
8244
8245 ret = do_check(env);
8246 if (env->cur_state) {
8247 free_verifier_state(env->cur_state, true);
8248 env->cur_state = NULL;
8249 }
8250
8251 if (ret == 0 && bpf_prog_is_dev_bound(env->prog->aux))
8252 ret = bpf_prog_offload_finalize(env);
8253
8254 skip_full_check:
8255 while (!pop_stack(env, NULL, NULL));
8256 free_states(env);
8257
8258 if (ret == 0)
8259 ret = check_max_stack_depth(env);
8260
8261 /* instruction rewrites happen after this point */
8262 if (is_priv) {
8263 if (ret == 0)
8264 opt_hard_wire_dead_code_branches(env);
8265 if (ret == 0)
8266 ret = opt_remove_dead_code(env);
8267 if (ret == 0)
8268 ret = opt_remove_nops(env);
8269 } else {
8270 if (ret == 0)
8271 sanitize_dead_code(env);
8272 }
8273
8274 if (ret == 0)
8275 /* program is valid, convert *(u32*)(ctx + off) accesses */
8276 ret = convert_ctx_accesses(env);
8277
8278 if (ret == 0)
8279 ret = fixup_bpf_calls(env);
8280
8281 if (ret == 0)
8282 ret = fixup_call_args(env);
8283
8284 env->verification_time = ktime_get_ns() - start_time;
8285 print_verification_stats(env);
8286
8287 if (log->level && bpf_verifier_log_full(log))
8288 ret = -ENOSPC;
8289 if (log->level && !log->ubuf) {
8290 ret = -EFAULT;
8291 goto err_release_maps;
8292 }
8293
8294 if (ret == 0 && env->used_map_cnt) {
8295 /* if program passed verifier, update used_maps in bpf_prog_info */
8296 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
8297 sizeof(env->used_maps[0]),
8298 GFP_KERNEL);
8299
8300 if (!env->prog->aux->used_maps) {
8301 ret = -ENOMEM;
8302 goto err_release_maps;
8303 }
8304
8305 memcpy(env->prog->aux->used_maps, env->used_maps,
8306 sizeof(env->used_maps[0]) * env->used_map_cnt);
8307 env->prog->aux->used_map_cnt = env->used_map_cnt;
8308
8309 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
8310 * bpf_ld_imm64 instructions
8311 */
8312 convert_pseudo_ld_imm64(env);
8313 }
8314
8315 if (ret == 0)
8316 adjust_btf_func(env);
8317
8318 err_release_maps:
8319 if (!env->prog->aux->used_maps)
8320 /* if we didn't copy map pointers into bpf_prog_info, release
8321 * them now. Otherwise free_used_maps() will release them.
8322 */
8323 release_maps(env);
8324 *prog = env->prog;
8325 err_unlock:
8326 if (!is_priv)
8327 mutex_unlock(&bpf_verifier_lock);
8328 vfree(env->insn_aux_data);
8329 err_free_env:
8330 kfree(env);
8331 return ret;
8332 }