]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/dma/mapping.c
Merge tag 'iio-fixes-for-5.3b' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[thirdparty/linux.git] / kernel / dma / mapping.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * arch-independent dma-mapping routines
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-direct.h>
11 #include <linux/dma-noncoherent.h>
12 #include <linux/export.h>
13 #include <linux/gfp.h>
14 #include <linux/of_device.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
17
18 /*
19 * Managed DMA API
20 */
21 struct dma_devres {
22 size_t size;
23 void *vaddr;
24 dma_addr_t dma_handle;
25 unsigned long attrs;
26 };
27
28 static void dmam_release(struct device *dev, void *res)
29 {
30 struct dma_devres *this = res;
31
32 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
33 this->attrs);
34 }
35
36 static int dmam_match(struct device *dev, void *res, void *match_data)
37 {
38 struct dma_devres *this = res, *match = match_data;
39
40 if (this->vaddr == match->vaddr) {
41 WARN_ON(this->size != match->size ||
42 this->dma_handle != match->dma_handle);
43 return 1;
44 }
45 return 0;
46 }
47
48 /**
49 * dmam_free_coherent - Managed dma_free_coherent()
50 * @dev: Device to free coherent memory for
51 * @size: Size of allocation
52 * @vaddr: Virtual address of the memory to free
53 * @dma_handle: DMA handle of the memory to free
54 *
55 * Managed dma_free_coherent().
56 */
57 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
58 dma_addr_t dma_handle)
59 {
60 struct dma_devres match_data = { size, vaddr, dma_handle };
61
62 dma_free_coherent(dev, size, vaddr, dma_handle);
63 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
64 }
65 EXPORT_SYMBOL(dmam_free_coherent);
66
67 /**
68 * dmam_alloc_attrs - Managed dma_alloc_attrs()
69 * @dev: Device to allocate non_coherent memory for
70 * @size: Size of allocation
71 * @dma_handle: Out argument for allocated DMA handle
72 * @gfp: Allocation flags
73 * @attrs: Flags in the DMA_ATTR_* namespace.
74 *
75 * Managed dma_alloc_attrs(). Memory allocated using this function will be
76 * automatically released on driver detach.
77 *
78 * RETURNS:
79 * Pointer to allocated memory on success, NULL on failure.
80 */
81 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
82 gfp_t gfp, unsigned long attrs)
83 {
84 struct dma_devres *dr;
85 void *vaddr;
86
87 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
88 if (!dr)
89 return NULL;
90
91 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
92 if (!vaddr) {
93 devres_free(dr);
94 return NULL;
95 }
96
97 dr->vaddr = vaddr;
98 dr->dma_handle = *dma_handle;
99 dr->size = size;
100 dr->attrs = attrs;
101
102 devres_add(dev, dr);
103
104 return vaddr;
105 }
106 EXPORT_SYMBOL(dmam_alloc_attrs);
107
108 /*
109 * Create scatter-list for the already allocated DMA buffer.
110 */
111 int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
112 void *cpu_addr, dma_addr_t dma_addr, size_t size,
113 unsigned long attrs)
114 {
115 struct page *page;
116 int ret;
117
118 if (!dev_is_dma_coherent(dev)) {
119 unsigned long pfn;
120
121 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
122 return -ENXIO;
123
124 /* If the PFN is not valid, we do not have a struct page */
125 pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
126 if (!pfn_valid(pfn))
127 return -ENXIO;
128 page = pfn_to_page(pfn);
129 } else {
130 page = virt_to_page(cpu_addr);
131 }
132
133 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
134 if (!ret)
135 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
136 return ret;
137 }
138
139 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
140 void *cpu_addr, dma_addr_t dma_addr, size_t size,
141 unsigned long attrs)
142 {
143 const struct dma_map_ops *ops = get_dma_ops(dev);
144
145 if (!dma_is_direct(ops) && ops->get_sgtable)
146 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size,
147 attrs);
148 return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr, size,
149 attrs);
150 }
151 EXPORT_SYMBOL(dma_get_sgtable_attrs);
152
153 /*
154 * Create userspace mapping for the DMA-coherent memory.
155 */
156 int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
157 void *cpu_addr, dma_addr_t dma_addr, size_t size,
158 unsigned long attrs)
159 {
160 #ifndef CONFIG_ARCH_NO_COHERENT_DMA_MMAP
161 unsigned long user_count = vma_pages(vma);
162 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
163 unsigned long off = vma->vm_pgoff;
164 unsigned long pfn;
165 int ret = -ENXIO;
166
167 vma->vm_page_prot = arch_dma_mmap_pgprot(dev, vma->vm_page_prot, attrs);
168
169 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
170 return ret;
171
172 if (off >= count || user_count > count - off)
173 return -ENXIO;
174
175 if (!dev_is_dma_coherent(dev)) {
176 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN))
177 return -ENXIO;
178
179 /* If the PFN is not valid, we do not have a struct page */
180 pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr);
181 if (!pfn_valid(pfn))
182 return -ENXIO;
183 } else {
184 pfn = page_to_pfn(virt_to_page(cpu_addr));
185 }
186
187 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
188 user_count << PAGE_SHIFT, vma->vm_page_prot);
189 #else
190 return -ENXIO;
191 #endif /* !CONFIG_ARCH_NO_COHERENT_DMA_MMAP */
192 }
193
194 /**
195 * dma_mmap_attrs - map a coherent DMA allocation into user space
196 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
197 * @vma: vm_area_struct describing requested user mapping
198 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
199 * @dma_addr: device-view address returned from dma_alloc_attrs
200 * @size: size of memory originally requested in dma_alloc_attrs
201 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
202 *
203 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
204 * space. The coherent DMA buffer must not be freed by the driver until the
205 * user space mapping has been released.
206 */
207 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
208 void *cpu_addr, dma_addr_t dma_addr, size_t size,
209 unsigned long attrs)
210 {
211 const struct dma_map_ops *ops = get_dma_ops(dev);
212
213 if (!dma_is_direct(ops) && ops->mmap)
214 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
215 return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
216 }
217 EXPORT_SYMBOL(dma_mmap_attrs);
218
219 static u64 dma_default_get_required_mask(struct device *dev)
220 {
221 u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT);
222 u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT));
223 u64 mask;
224
225 if (!high_totalram) {
226 /* convert to mask just covering totalram */
227 low_totalram = (1 << (fls(low_totalram) - 1));
228 low_totalram += low_totalram - 1;
229 mask = low_totalram;
230 } else {
231 high_totalram = (1 << (fls(high_totalram) - 1));
232 high_totalram += high_totalram - 1;
233 mask = (((u64)high_totalram) << 32) + 0xffffffff;
234 }
235 return mask;
236 }
237
238 u64 dma_get_required_mask(struct device *dev)
239 {
240 const struct dma_map_ops *ops = get_dma_ops(dev);
241
242 if (dma_is_direct(ops))
243 return dma_direct_get_required_mask(dev);
244 if (ops->get_required_mask)
245 return ops->get_required_mask(dev);
246 return dma_default_get_required_mask(dev);
247 }
248 EXPORT_SYMBOL_GPL(dma_get_required_mask);
249
250 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
251 gfp_t flag, unsigned long attrs)
252 {
253 const struct dma_map_ops *ops = get_dma_ops(dev);
254 void *cpu_addr;
255
256 WARN_ON_ONCE(!dev->coherent_dma_mask);
257
258 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
259 return cpu_addr;
260
261 /* let the implementation decide on the zone to allocate from: */
262 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
263
264 if (dma_is_direct(ops))
265 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
266 else if (ops->alloc)
267 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
268 else
269 return NULL;
270
271 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
272 return cpu_addr;
273 }
274 EXPORT_SYMBOL(dma_alloc_attrs);
275
276 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
277 dma_addr_t dma_handle, unsigned long attrs)
278 {
279 const struct dma_map_ops *ops = get_dma_ops(dev);
280
281 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
282 return;
283 /*
284 * On non-coherent platforms which implement DMA-coherent buffers via
285 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
286 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
287 * sleep on some machines, and b) an indication that the driver is
288 * probably misusing the coherent API anyway.
289 */
290 WARN_ON(irqs_disabled());
291
292 if (!cpu_addr)
293 return;
294
295 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
296 if (dma_is_direct(ops))
297 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
298 else if (ops->free)
299 ops->free(dev, size, cpu_addr, dma_handle, attrs);
300 }
301 EXPORT_SYMBOL(dma_free_attrs);
302
303 static inline void dma_check_mask(struct device *dev, u64 mask)
304 {
305 if (sme_active() && (mask < (((u64)sme_get_me_mask() << 1) - 1)))
306 dev_warn(dev, "SME is active, device will require DMA bounce buffers\n");
307 }
308
309 int dma_supported(struct device *dev, u64 mask)
310 {
311 const struct dma_map_ops *ops = get_dma_ops(dev);
312
313 if (dma_is_direct(ops))
314 return dma_direct_supported(dev, mask);
315 if (!ops->dma_supported)
316 return 1;
317 return ops->dma_supported(dev, mask);
318 }
319 EXPORT_SYMBOL(dma_supported);
320
321 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
322 void arch_dma_set_mask(struct device *dev, u64 mask);
323 #else
324 #define arch_dma_set_mask(dev, mask) do { } while (0)
325 #endif
326
327 int dma_set_mask(struct device *dev, u64 mask)
328 {
329 /*
330 * Truncate the mask to the actually supported dma_addr_t width to
331 * avoid generating unsupportable addresses.
332 */
333 mask = (dma_addr_t)mask;
334
335 if (!dev->dma_mask || !dma_supported(dev, mask))
336 return -EIO;
337
338 arch_dma_set_mask(dev, mask);
339 dma_check_mask(dev, mask);
340 *dev->dma_mask = mask;
341 return 0;
342 }
343 EXPORT_SYMBOL(dma_set_mask);
344
345 #ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
346 int dma_set_coherent_mask(struct device *dev, u64 mask)
347 {
348 /*
349 * Truncate the mask to the actually supported dma_addr_t width to
350 * avoid generating unsupportable addresses.
351 */
352 mask = (dma_addr_t)mask;
353
354 if (!dma_supported(dev, mask))
355 return -EIO;
356
357 dma_check_mask(dev, mask);
358 dev->coherent_dma_mask = mask;
359 return 0;
360 }
361 EXPORT_SYMBOL(dma_set_coherent_mask);
362 #endif
363
364 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
365 enum dma_data_direction dir)
366 {
367 const struct dma_map_ops *ops = get_dma_ops(dev);
368
369 BUG_ON(!valid_dma_direction(dir));
370
371 if (dma_is_direct(ops))
372 arch_dma_cache_sync(dev, vaddr, size, dir);
373 else if (ops->cache_sync)
374 ops->cache_sync(dev, vaddr, size, dir);
375 }
376 EXPORT_SYMBOL(dma_cache_sync);
377
378 size_t dma_max_mapping_size(struct device *dev)
379 {
380 const struct dma_map_ops *ops = get_dma_ops(dev);
381 size_t size = SIZE_MAX;
382
383 if (dma_is_direct(ops))
384 size = dma_direct_max_mapping_size(dev);
385 else if (ops && ops->max_mapping_size)
386 size = ops->max_mapping_size(dev);
387
388 return size;
389 }
390 EXPORT_SYMBOL_GPL(dma_max_mapping_size);