]> git.ipfire.org Git - thirdparty/linux.git/blob - kernel/sched/core.c
Merge tag 'sched-core-2020-06-02' of git://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/linux.git] / kernel / sched / core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #include "sched.h"
10
11 #include <linux/nospec.h>
12
13 #include <linux/kcov.h>
14 #include <linux/scs.h>
15
16 #include <asm/switch_to.h>
17 #include <asm/tlb.h>
18
19 #include "../workqueue_internal.h"
20 #include "../../fs/io-wq.h"
21 #include "../smpboot.h"
22
23 #include "pelt.h"
24 #include "smp.h"
25
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/sched.h>
28
29 /*
30 * Export tracepoints that act as a bare tracehook (ie: have no trace event
31 * associated with them) to allow external modules to probe them.
32 */
33 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
34 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
35 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
36 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
37 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
39
40 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
41
42 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_JUMP_LABEL)
43 /*
44 * Debugging: various feature bits
45 *
46 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
47 * sysctl_sched_features, defined in sched.h, to allow constants propagation
48 * at compile time and compiler optimization based on features default.
49 */
50 #define SCHED_FEAT(name, enabled) \
51 (1UL << __SCHED_FEAT_##name) * enabled |
52 const_debug unsigned int sysctl_sched_features =
53 #include "features.h"
54 0;
55 #undef SCHED_FEAT
56 #endif
57
58 /*
59 * Number of tasks to iterate in a single balance run.
60 * Limited because this is done with IRQs disabled.
61 */
62 const_debug unsigned int sysctl_sched_nr_migrate = 32;
63
64 /*
65 * period over which we measure -rt task CPU usage in us.
66 * default: 1s
67 */
68 unsigned int sysctl_sched_rt_period = 1000000;
69
70 __read_mostly int scheduler_running;
71
72 /*
73 * part of the period that we allow rt tasks to run in us.
74 * default: 0.95s
75 */
76 int sysctl_sched_rt_runtime = 950000;
77
78 /*
79 * __task_rq_lock - lock the rq @p resides on.
80 */
81 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
82 __acquires(rq->lock)
83 {
84 struct rq *rq;
85
86 lockdep_assert_held(&p->pi_lock);
87
88 for (;;) {
89 rq = task_rq(p);
90 raw_spin_lock(&rq->lock);
91 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
92 rq_pin_lock(rq, rf);
93 return rq;
94 }
95 raw_spin_unlock(&rq->lock);
96
97 while (unlikely(task_on_rq_migrating(p)))
98 cpu_relax();
99 }
100 }
101
102 /*
103 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
104 */
105 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
106 __acquires(p->pi_lock)
107 __acquires(rq->lock)
108 {
109 struct rq *rq;
110
111 for (;;) {
112 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
113 rq = task_rq(p);
114 raw_spin_lock(&rq->lock);
115 /*
116 * move_queued_task() task_rq_lock()
117 *
118 * ACQUIRE (rq->lock)
119 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
120 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
121 * [S] ->cpu = new_cpu [L] task_rq()
122 * [L] ->on_rq
123 * RELEASE (rq->lock)
124 *
125 * If we observe the old CPU in task_rq_lock(), the acquire of
126 * the old rq->lock will fully serialize against the stores.
127 *
128 * If we observe the new CPU in task_rq_lock(), the address
129 * dependency headed by '[L] rq = task_rq()' and the acquire
130 * will pair with the WMB to ensure we then also see migrating.
131 */
132 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
133 rq_pin_lock(rq, rf);
134 return rq;
135 }
136 raw_spin_unlock(&rq->lock);
137 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
138
139 while (unlikely(task_on_rq_migrating(p)))
140 cpu_relax();
141 }
142 }
143
144 /*
145 * RQ-clock updating methods:
146 */
147
148 static void update_rq_clock_task(struct rq *rq, s64 delta)
149 {
150 /*
151 * In theory, the compile should just see 0 here, and optimize out the call
152 * to sched_rt_avg_update. But I don't trust it...
153 */
154 s64 __maybe_unused steal = 0, irq_delta = 0;
155
156 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
157 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
158
159 /*
160 * Since irq_time is only updated on {soft,}irq_exit, we might run into
161 * this case when a previous update_rq_clock() happened inside a
162 * {soft,}irq region.
163 *
164 * When this happens, we stop ->clock_task and only update the
165 * prev_irq_time stamp to account for the part that fit, so that a next
166 * update will consume the rest. This ensures ->clock_task is
167 * monotonic.
168 *
169 * It does however cause some slight miss-attribution of {soft,}irq
170 * time, a more accurate solution would be to update the irq_time using
171 * the current rq->clock timestamp, except that would require using
172 * atomic ops.
173 */
174 if (irq_delta > delta)
175 irq_delta = delta;
176
177 rq->prev_irq_time += irq_delta;
178 delta -= irq_delta;
179 #endif
180 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
181 if (static_key_false((&paravirt_steal_rq_enabled))) {
182 steal = paravirt_steal_clock(cpu_of(rq));
183 steal -= rq->prev_steal_time_rq;
184
185 if (unlikely(steal > delta))
186 steal = delta;
187
188 rq->prev_steal_time_rq += steal;
189 delta -= steal;
190 }
191 #endif
192
193 rq->clock_task += delta;
194
195 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
196 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
197 update_irq_load_avg(rq, irq_delta + steal);
198 #endif
199 update_rq_clock_pelt(rq, delta);
200 }
201
202 void update_rq_clock(struct rq *rq)
203 {
204 s64 delta;
205
206 lockdep_assert_held(&rq->lock);
207
208 if (rq->clock_update_flags & RQCF_ACT_SKIP)
209 return;
210
211 #ifdef CONFIG_SCHED_DEBUG
212 if (sched_feat(WARN_DOUBLE_CLOCK))
213 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
214 rq->clock_update_flags |= RQCF_UPDATED;
215 #endif
216
217 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
218 if (delta < 0)
219 return;
220 rq->clock += delta;
221 update_rq_clock_task(rq, delta);
222 }
223
224 static inline void
225 rq_csd_init(struct rq *rq, call_single_data_t *csd, smp_call_func_t func)
226 {
227 csd->flags = 0;
228 csd->func = func;
229 csd->info = rq;
230 }
231
232 #ifdef CONFIG_SCHED_HRTICK
233 /*
234 * Use HR-timers to deliver accurate preemption points.
235 */
236
237 static void hrtick_clear(struct rq *rq)
238 {
239 if (hrtimer_active(&rq->hrtick_timer))
240 hrtimer_cancel(&rq->hrtick_timer);
241 }
242
243 /*
244 * High-resolution timer tick.
245 * Runs from hardirq context with interrupts disabled.
246 */
247 static enum hrtimer_restart hrtick(struct hrtimer *timer)
248 {
249 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
250 struct rq_flags rf;
251
252 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
253
254 rq_lock(rq, &rf);
255 update_rq_clock(rq);
256 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
257 rq_unlock(rq, &rf);
258
259 return HRTIMER_NORESTART;
260 }
261
262 #ifdef CONFIG_SMP
263
264 static void __hrtick_restart(struct rq *rq)
265 {
266 struct hrtimer *timer = &rq->hrtick_timer;
267
268 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
269 }
270
271 /*
272 * called from hardirq (IPI) context
273 */
274 static void __hrtick_start(void *arg)
275 {
276 struct rq *rq = arg;
277 struct rq_flags rf;
278
279 rq_lock(rq, &rf);
280 __hrtick_restart(rq);
281 rq_unlock(rq, &rf);
282 }
283
284 /*
285 * Called to set the hrtick timer state.
286 *
287 * called with rq->lock held and irqs disabled
288 */
289 void hrtick_start(struct rq *rq, u64 delay)
290 {
291 struct hrtimer *timer = &rq->hrtick_timer;
292 ktime_t time;
293 s64 delta;
294
295 /*
296 * Don't schedule slices shorter than 10000ns, that just
297 * doesn't make sense and can cause timer DoS.
298 */
299 delta = max_t(s64, delay, 10000LL);
300 time = ktime_add_ns(timer->base->get_time(), delta);
301
302 hrtimer_set_expires(timer, time);
303
304 if (rq == this_rq())
305 __hrtick_restart(rq);
306 else
307 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
308 }
309
310 #else
311 /*
312 * Called to set the hrtick timer state.
313 *
314 * called with rq->lock held and irqs disabled
315 */
316 void hrtick_start(struct rq *rq, u64 delay)
317 {
318 /*
319 * Don't schedule slices shorter than 10000ns, that just
320 * doesn't make sense. Rely on vruntime for fairness.
321 */
322 delay = max_t(u64, delay, 10000LL);
323 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
324 HRTIMER_MODE_REL_PINNED_HARD);
325 }
326
327 #endif /* CONFIG_SMP */
328
329 static void hrtick_rq_init(struct rq *rq)
330 {
331 #ifdef CONFIG_SMP
332 rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
333 #endif
334 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
335 rq->hrtick_timer.function = hrtick;
336 }
337 #else /* CONFIG_SCHED_HRTICK */
338 static inline void hrtick_clear(struct rq *rq)
339 {
340 }
341
342 static inline void hrtick_rq_init(struct rq *rq)
343 {
344 }
345 #endif /* CONFIG_SCHED_HRTICK */
346
347 /*
348 * cmpxchg based fetch_or, macro so it works for different integer types
349 */
350 #define fetch_or(ptr, mask) \
351 ({ \
352 typeof(ptr) _ptr = (ptr); \
353 typeof(mask) _mask = (mask); \
354 typeof(*_ptr) _old, _val = *_ptr; \
355 \
356 for (;;) { \
357 _old = cmpxchg(_ptr, _val, _val | _mask); \
358 if (_old == _val) \
359 break; \
360 _val = _old; \
361 } \
362 _old; \
363 })
364
365 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
366 /*
367 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
368 * this avoids any races wrt polling state changes and thereby avoids
369 * spurious IPIs.
370 */
371 static bool set_nr_and_not_polling(struct task_struct *p)
372 {
373 struct thread_info *ti = task_thread_info(p);
374 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
375 }
376
377 /*
378 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
379 *
380 * If this returns true, then the idle task promises to call
381 * sched_ttwu_pending() and reschedule soon.
382 */
383 static bool set_nr_if_polling(struct task_struct *p)
384 {
385 struct thread_info *ti = task_thread_info(p);
386 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
387
388 for (;;) {
389 if (!(val & _TIF_POLLING_NRFLAG))
390 return false;
391 if (val & _TIF_NEED_RESCHED)
392 return true;
393 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
394 if (old == val)
395 break;
396 val = old;
397 }
398 return true;
399 }
400
401 #else
402 static bool set_nr_and_not_polling(struct task_struct *p)
403 {
404 set_tsk_need_resched(p);
405 return true;
406 }
407
408 #ifdef CONFIG_SMP
409 static bool set_nr_if_polling(struct task_struct *p)
410 {
411 return false;
412 }
413 #endif
414 #endif
415
416 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
417 {
418 struct wake_q_node *node = &task->wake_q;
419
420 /*
421 * Atomically grab the task, if ->wake_q is !nil already it means
422 * its already queued (either by us or someone else) and will get the
423 * wakeup due to that.
424 *
425 * In order to ensure that a pending wakeup will observe our pending
426 * state, even in the failed case, an explicit smp_mb() must be used.
427 */
428 smp_mb__before_atomic();
429 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
430 return false;
431
432 /*
433 * The head is context local, there can be no concurrency.
434 */
435 *head->lastp = node;
436 head->lastp = &node->next;
437 return true;
438 }
439
440 /**
441 * wake_q_add() - queue a wakeup for 'later' waking.
442 * @head: the wake_q_head to add @task to
443 * @task: the task to queue for 'later' wakeup
444 *
445 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
446 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
447 * instantly.
448 *
449 * This function must be used as-if it were wake_up_process(); IOW the task
450 * must be ready to be woken at this location.
451 */
452 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
453 {
454 if (__wake_q_add(head, task))
455 get_task_struct(task);
456 }
457
458 /**
459 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
460 * @head: the wake_q_head to add @task to
461 * @task: the task to queue for 'later' wakeup
462 *
463 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
464 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
465 * instantly.
466 *
467 * This function must be used as-if it were wake_up_process(); IOW the task
468 * must be ready to be woken at this location.
469 *
470 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
471 * that already hold reference to @task can call the 'safe' version and trust
472 * wake_q to do the right thing depending whether or not the @task is already
473 * queued for wakeup.
474 */
475 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
476 {
477 if (!__wake_q_add(head, task))
478 put_task_struct(task);
479 }
480
481 void wake_up_q(struct wake_q_head *head)
482 {
483 struct wake_q_node *node = head->first;
484
485 while (node != WAKE_Q_TAIL) {
486 struct task_struct *task;
487
488 task = container_of(node, struct task_struct, wake_q);
489 BUG_ON(!task);
490 /* Task can safely be re-inserted now: */
491 node = node->next;
492 task->wake_q.next = NULL;
493
494 /*
495 * wake_up_process() executes a full barrier, which pairs with
496 * the queueing in wake_q_add() so as not to miss wakeups.
497 */
498 wake_up_process(task);
499 put_task_struct(task);
500 }
501 }
502
503 /*
504 * resched_curr - mark rq's current task 'to be rescheduled now'.
505 *
506 * On UP this means the setting of the need_resched flag, on SMP it
507 * might also involve a cross-CPU call to trigger the scheduler on
508 * the target CPU.
509 */
510 void resched_curr(struct rq *rq)
511 {
512 struct task_struct *curr = rq->curr;
513 int cpu;
514
515 lockdep_assert_held(&rq->lock);
516
517 if (test_tsk_need_resched(curr))
518 return;
519
520 cpu = cpu_of(rq);
521
522 if (cpu == smp_processor_id()) {
523 set_tsk_need_resched(curr);
524 set_preempt_need_resched();
525 return;
526 }
527
528 if (set_nr_and_not_polling(curr))
529 smp_send_reschedule(cpu);
530 else
531 trace_sched_wake_idle_without_ipi(cpu);
532 }
533
534 void resched_cpu(int cpu)
535 {
536 struct rq *rq = cpu_rq(cpu);
537 unsigned long flags;
538
539 raw_spin_lock_irqsave(&rq->lock, flags);
540 if (cpu_online(cpu) || cpu == smp_processor_id())
541 resched_curr(rq);
542 raw_spin_unlock_irqrestore(&rq->lock, flags);
543 }
544
545 #ifdef CONFIG_SMP
546 #ifdef CONFIG_NO_HZ_COMMON
547 /*
548 * In the semi idle case, use the nearest busy CPU for migrating timers
549 * from an idle CPU. This is good for power-savings.
550 *
551 * We don't do similar optimization for completely idle system, as
552 * selecting an idle CPU will add more delays to the timers than intended
553 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
554 */
555 int get_nohz_timer_target(void)
556 {
557 int i, cpu = smp_processor_id(), default_cpu = -1;
558 struct sched_domain *sd;
559
560 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
561 if (!idle_cpu(cpu))
562 return cpu;
563 default_cpu = cpu;
564 }
565
566 rcu_read_lock();
567 for_each_domain(cpu, sd) {
568 for_each_cpu_and(i, sched_domain_span(sd),
569 housekeeping_cpumask(HK_FLAG_TIMER)) {
570 if (cpu == i)
571 continue;
572
573 if (!idle_cpu(i)) {
574 cpu = i;
575 goto unlock;
576 }
577 }
578 }
579
580 if (default_cpu == -1)
581 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
582 cpu = default_cpu;
583 unlock:
584 rcu_read_unlock();
585 return cpu;
586 }
587
588 /*
589 * When add_timer_on() enqueues a timer into the timer wheel of an
590 * idle CPU then this timer might expire before the next timer event
591 * which is scheduled to wake up that CPU. In case of a completely
592 * idle system the next event might even be infinite time into the
593 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
594 * leaves the inner idle loop so the newly added timer is taken into
595 * account when the CPU goes back to idle and evaluates the timer
596 * wheel for the next timer event.
597 */
598 static void wake_up_idle_cpu(int cpu)
599 {
600 struct rq *rq = cpu_rq(cpu);
601
602 if (cpu == smp_processor_id())
603 return;
604
605 if (set_nr_and_not_polling(rq->idle))
606 smp_send_reschedule(cpu);
607 else
608 trace_sched_wake_idle_without_ipi(cpu);
609 }
610
611 static bool wake_up_full_nohz_cpu(int cpu)
612 {
613 /*
614 * We just need the target to call irq_exit() and re-evaluate
615 * the next tick. The nohz full kick at least implies that.
616 * If needed we can still optimize that later with an
617 * empty IRQ.
618 */
619 if (cpu_is_offline(cpu))
620 return true; /* Don't try to wake offline CPUs. */
621 if (tick_nohz_full_cpu(cpu)) {
622 if (cpu != smp_processor_id() ||
623 tick_nohz_tick_stopped())
624 tick_nohz_full_kick_cpu(cpu);
625 return true;
626 }
627
628 return false;
629 }
630
631 /*
632 * Wake up the specified CPU. If the CPU is going offline, it is the
633 * caller's responsibility to deal with the lost wakeup, for example,
634 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
635 */
636 void wake_up_nohz_cpu(int cpu)
637 {
638 if (!wake_up_full_nohz_cpu(cpu))
639 wake_up_idle_cpu(cpu);
640 }
641
642 static void nohz_csd_func(void *info)
643 {
644 struct rq *rq = info;
645 int cpu = cpu_of(rq);
646 unsigned int flags;
647
648 /*
649 * Release the rq::nohz_csd.
650 */
651 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
652 WARN_ON(!(flags & NOHZ_KICK_MASK));
653
654 rq->idle_balance = idle_cpu(cpu);
655 if (rq->idle_balance && !need_resched()) {
656 rq->nohz_idle_balance = flags;
657 raise_softirq_irqoff(SCHED_SOFTIRQ);
658 }
659 }
660
661 #endif /* CONFIG_NO_HZ_COMMON */
662
663 #ifdef CONFIG_NO_HZ_FULL
664 bool sched_can_stop_tick(struct rq *rq)
665 {
666 int fifo_nr_running;
667
668 /* Deadline tasks, even if single, need the tick */
669 if (rq->dl.dl_nr_running)
670 return false;
671
672 /*
673 * If there are more than one RR tasks, we need the tick to effect the
674 * actual RR behaviour.
675 */
676 if (rq->rt.rr_nr_running) {
677 if (rq->rt.rr_nr_running == 1)
678 return true;
679 else
680 return false;
681 }
682
683 /*
684 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
685 * forced preemption between FIFO tasks.
686 */
687 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
688 if (fifo_nr_running)
689 return true;
690
691 /*
692 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
693 * if there's more than one we need the tick for involuntary
694 * preemption.
695 */
696 if (rq->nr_running > 1)
697 return false;
698
699 return true;
700 }
701 #endif /* CONFIG_NO_HZ_FULL */
702 #endif /* CONFIG_SMP */
703
704 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
705 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
706 /*
707 * Iterate task_group tree rooted at *from, calling @down when first entering a
708 * node and @up when leaving it for the final time.
709 *
710 * Caller must hold rcu_lock or sufficient equivalent.
711 */
712 int walk_tg_tree_from(struct task_group *from,
713 tg_visitor down, tg_visitor up, void *data)
714 {
715 struct task_group *parent, *child;
716 int ret;
717
718 parent = from;
719
720 down:
721 ret = (*down)(parent, data);
722 if (ret)
723 goto out;
724 list_for_each_entry_rcu(child, &parent->children, siblings) {
725 parent = child;
726 goto down;
727
728 up:
729 continue;
730 }
731 ret = (*up)(parent, data);
732 if (ret || parent == from)
733 goto out;
734
735 child = parent;
736 parent = parent->parent;
737 if (parent)
738 goto up;
739 out:
740 return ret;
741 }
742
743 int tg_nop(struct task_group *tg, void *data)
744 {
745 return 0;
746 }
747 #endif
748
749 static void set_load_weight(struct task_struct *p, bool update_load)
750 {
751 int prio = p->static_prio - MAX_RT_PRIO;
752 struct load_weight *load = &p->se.load;
753
754 /*
755 * SCHED_IDLE tasks get minimal weight:
756 */
757 if (task_has_idle_policy(p)) {
758 load->weight = scale_load(WEIGHT_IDLEPRIO);
759 load->inv_weight = WMULT_IDLEPRIO;
760 return;
761 }
762
763 /*
764 * SCHED_OTHER tasks have to update their load when changing their
765 * weight
766 */
767 if (update_load && p->sched_class == &fair_sched_class) {
768 reweight_task(p, prio);
769 } else {
770 load->weight = scale_load(sched_prio_to_weight[prio]);
771 load->inv_weight = sched_prio_to_wmult[prio];
772 }
773 }
774
775 #ifdef CONFIG_UCLAMP_TASK
776 /*
777 * Serializes updates of utilization clamp values
778 *
779 * The (slow-path) user-space triggers utilization clamp value updates which
780 * can require updates on (fast-path) scheduler's data structures used to
781 * support enqueue/dequeue operations.
782 * While the per-CPU rq lock protects fast-path update operations, user-space
783 * requests are serialized using a mutex to reduce the risk of conflicting
784 * updates or API abuses.
785 */
786 static DEFINE_MUTEX(uclamp_mutex);
787
788 /* Max allowed minimum utilization */
789 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
790
791 /* Max allowed maximum utilization */
792 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
793
794 /* All clamps are required to be less or equal than these values */
795 static struct uclamp_se uclamp_default[UCLAMP_CNT];
796
797 /* Integer rounded range for each bucket */
798 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
799
800 #define for_each_clamp_id(clamp_id) \
801 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
802
803 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
804 {
805 return clamp_value / UCLAMP_BUCKET_DELTA;
806 }
807
808 static inline unsigned int uclamp_bucket_base_value(unsigned int clamp_value)
809 {
810 return UCLAMP_BUCKET_DELTA * uclamp_bucket_id(clamp_value);
811 }
812
813 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
814 {
815 if (clamp_id == UCLAMP_MIN)
816 return 0;
817 return SCHED_CAPACITY_SCALE;
818 }
819
820 static inline void uclamp_se_set(struct uclamp_se *uc_se,
821 unsigned int value, bool user_defined)
822 {
823 uc_se->value = value;
824 uc_se->bucket_id = uclamp_bucket_id(value);
825 uc_se->user_defined = user_defined;
826 }
827
828 static inline unsigned int
829 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
830 unsigned int clamp_value)
831 {
832 /*
833 * Avoid blocked utilization pushing up the frequency when we go
834 * idle (which drops the max-clamp) by retaining the last known
835 * max-clamp.
836 */
837 if (clamp_id == UCLAMP_MAX) {
838 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
839 return clamp_value;
840 }
841
842 return uclamp_none(UCLAMP_MIN);
843 }
844
845 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
846 unsigned int clamp_value)
847 {
848 /* Reset max-clamp retention only on idle exit */
849 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
850 return;
851
852 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
853 }
854
855 static inline
856 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
857 unsigned int clamp_value)
858 {
859 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
860 int bucket_id = UCLAMP_BUCKETS - 1;
861
862 /*
863 * Since both min and max clamps are max aggregated, find the
864 * top most bucket with tasks in.
865 */
866 for ( ; bucket_id >= 0; bucket_id--) {
867 if (!bucket[bucket_id].tasks)
868 continue;
869 return bucket[bucket_id].value;
870 }
871
872 /* No tasks -- default clamp values */
873 return uclamp_idle_value(rq, clamp_id, clamp_value);
874 }
875
876 static inline struct uclamp_se
877 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
878 {
879 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
880 #ifdef CONFIG_UCLAMP_TASK_GROUP
881 struct uclamp_se uc_max;
882
883 /*
884 * Tasks in autogroups or root task group will be
885 * restricted by system defaults.
886 */
887 if (task_group_is_autogroup(task_group(p)))
888 return uc_req;
889 if (task_group(p) == &root_task_group)
890 return uc_req;
891
892 uc_max = task_group(p)->uclamp[clamp_id];
893 if (uc_req.value > uc_max.value || !uc_req.user_defined)
894 return uc_max;
895 #endif
896
897 return uc_req;
898 }
899
900 /*
901 * The effective clamp bucket index of a task depends on, by increasing
902 * priority:
903 * - the task specific clamp value, when explicitly requested from userspace
904 * - the task group effective clamp value, for tasks not either in the root
905 * group or in an autogroup
906 * - the system default clamp value, defined by the sysadmin
907 */
908 static inline struct uclamp_se
909 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
910 {
911 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
912 struct uclamp_se uc_max = uclamp_default[clamp_id];
913
914 /* System default restrictions always apply */
915 if (unlikely(uc_req.value > uc_max.value))
916 return uc_max;
917
918 return uc_req;
919 }
920
921 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
922 {
923 struct uclamp_se uc_eff;
924
925 /* Task currently refcounted: use back-annotated (effective) value */
926 if (p->uclamp[clamp_id].active)
927 return (unsigned long)p->uclamp[clamp_id].value;
928
929 uc_eff = uclamp_eff_get(p, clamp_id);
930
931 return (unsigned long)uc_eff.value;
932 }
933
934 /*
935 * When a task is enqueued on a rq, the clamp bucket currently defined by the
936 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
937 * updates the rq's clamp value if required.
938 *
939 * Tasks can have a task-specific value requested from user-space, track
940 * within each bucket the maximum value for tasks refcounted in it.
941 * This "local max aggregation" allows to track the exact "requested" value
942 * for each bucket when all its RUNNABLE tasks require the same clamp.
943 */
944 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
945 enum uclamp_id clamp_id)
946 {
947 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
948 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
949 struct uclamp_bucket *bucket;
950
951 lockdep_assert_held(&rq->lock);
952
953 /* Update task effective clamp */
954 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
955
956 bucket = &uc_rq->bucket[uc_se->bucket_id];
957 bucket->tasks++;
958 uc_se->active = true;
959
960 uclamp_idle_reset(rq, clamp_id, uc_se->value);
961
962 /*
963 * Local max aggregation: rq buckets always track the max
964 * "requested" clamp value of its RUNNABLE tasks.
965 */
966 if (bucket->tasks == 1 || uc_se->value > bucket->value)
967 bucket->value = uc_se->value;
968
969 if (uc_se->value > READ_ONCE(uc_rq->value))
970 WRITE_ONCE(uc_rq->value, uc_se->value);
971 }
972
973 /*
974 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
975 * is released. If this is the last task reference counting the rq's max
976 * active clamp value, then the rq's clamp value is updated.
977 *
978 * Both refcounted tasks and rq's cached clamp values are expected to be
979 * always valid. If it's detected they are not, as defensive programming,
980 * enforce the expected state and warn.
981 */
982 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
983 enum uclamp_id clamp_id)
984 {
985 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
986 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
987 struct uclamp_bucket *bucket;
988 unsigned int bkt_clamp;
989 unsigned int rq_clamp;
990
991 lockdep_assert_held(&rq->lock);
992
993 bucket = &uc_rq->bucket[uc_se->bucket_id];
994 SCHED_WARN_ON(!bucket->tasks);
995 if (likely(bucket->tasks))
996 bucket->tasks--;
997 uc_se->active = false;
998
999 /*
1000 * Keep "local max aggregation" simple and accept to (possibly)
1001 * overboost some RUNNABLE tasks in the same bucket.
1002 * The rq clamp bucket value is reset to its base value whenever
1003 * there are no more RUNNABLE tasks refcounting it.
1004 */
1005 if (likely(bucket->tasks))
1006 return;
1007
1008 rq_clamp = READ_ONCE(uc_rq->value);
1009 /*
1010 * Defensive programming: this should never happen. If it happens,
1011 * e.g. due to future modification, warn and fixup the expected value.
1012 */
1013 SCHED_WARN_ON(bucket->value > rq_clamp);
1014 if (bucket->value >= rq_clamp) {
1015 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1016 WRITE_ONCE(uc_rq->value, bkt_clamp);
1017 }
1018 }
1019
1020 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1021 {
1022 enum uclamp_id clamp_id;
1023
1024 if (unlikely(!p->sched_class->uclamp_enabled))
1025 return;
1026
1027 for_each_clamp_id(clamp_id)
1028 uclamp_rq_inc_id(rq, p, clamp_id);
1029
1030 /* Reset clamp idle holding when there is one RUNNABLE task */
1031 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1032 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1033 }
1034
1035 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1036 {
1037 enum uclamp_id clamp_id;
1038
1039 if (unlikely(!p->sched_class->uclamp_enabled))
1040 return;
1041
1042 for_each_clamp_id(clamp_id)
1043 uclamp_rq_dec_id(rq, p, clamp_id);
1044 }
1045
1046 static inline void
1047 uclamp_update_active(struct task_struct *p, enum uclamp_id clamp_id)
1048 {
1049 struct rq_flags rf;
1050 struct rq *rq;
1051
1052 /*
1053 * Lock the task and the rq where the task is (or was) queued.
1054 *
1055 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1056 * price to pay to safely serialize util_{min,max} updates with
1057 * enqueues, dequeues and migration operations.
1058 * This is the same locking schema used by __set_cpus_allowed_ptr().
1059 */
1060 rq = task_rq_lock(p, &rf);
1061
1062 /*
1063 * Setting the clamp bucket is serialized by task_rq_lock().
1064 * If the task is not yet RUNNABLE and its task_struct is not
1065 * affecting a valid clamp bucket, the next time it's enqueued,
1066 * it will already see the updated clamp bucket value.
1067 */
1068 if (p->uclamp[clamp_id].active) {
1069 uclamp_rq_dec_id(rq, p, clamp_id);
1070 uclamp_rq_inc_id(rq, p, clamp_id);
1071 }
1072
1073 task_rq_unlock(rq, p, &rf);
1074 }
1075
1076 #ifdef CONFIG_UCLAMP_TASK_GROUP
1077 static inline void
1078 uclamp_update_active_tasks(struct cgroup_subsys_state *css,
1079 unsigned int clamps)
1080 {
1081 enum uclamp_id clamp_id;
1082 struct css_task_iter it;
1083 struct task_struct *p;
1084
1085 css_task_iter_start(css, 0, &it);
1086 while ((p = css_task_iter_next(&it))) {
1087 for_each_clamp_id(clamp_id) {
1088 if ((0x1 << clamp_id) & clamps)
1089 uclamp_update_active(p, clamp_id);
1090 }
1091 }
1092 css_task_iter_end(&it);
1093 }
1094
1095 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1096 static void uclamp_update_root_tg(void)
1097 {
1098 struct task_group *tg = &root_task_group;
1099
1100 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1101 sysctl_sched_uclamp_util_min, false);
1102 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1103 sysctl_sched_uclamp_util_max, false);
1104
1105 rcu_read_lock();
1106 cpu_util_update_eff(&root_task_group.css);
1107 rcu_read_unlock();
1108 }
1109 #else
1110 static void uclamp_update_root_tg(void) { }
1111 #endif
1112
1113 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1114 void __user *buffer, size_t *lenp,
1115 loff_t *ppos)
1116 {
1117 bool update_root_tg = false;
1118 int old_min, old_max;
1119 int result;
1120
1121 mutex_lock(&uclamp_mutex);
1122 old_min = sysctl_sched_uclamp_util_min;
1123 old_max = sysctl_sched_uclamp_util_max;
1124
1125 result = proc_dointvec(table, write, buffer, lenp, ppos);
1126 if (result)
1127 goto undo;
1128 if (!write)
1129 goto done;
1130
1131 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1132 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE) {
1133 result = -EINVAL;
1134 goto undo;
1135 }
1136
1137 if (old_min != sysctl_sched_uclamp_util_min) {
1138 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1139 sysctl_sched_uclamp_util_min, false);
1140 update_root_tg = true;
1141 }
1142 if (old_max != sysctl_sched_uclamp_util_max) {
1143 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1144 sysctl_sched_uclamp_util_max, false);
1145 update_root_tg = true;
1146 }
1147
1148 if (update_root_tg)
1149 uclamp_update_root_tg();
1150
1151 /*
1152 * We update all RUNNABLE tasks only when task groups are in use.
1153 * Otherwise, keep it simple and do just a lazy update at each next
1154 * task enqueue time.
1155 */
1156
1157 goto done;
1158
1159 undo:
1160 sysctl_sched_uclamp_util_min = old_min;
1161 sysctl_sched_uclamp_util_max = old_max;
1162 done:
1163 mutex_unlock(&uclamp_mutex);
1164
1165 return result;
1166 }
1167
1168 static int uclamp_validate(struct task_struct *p,
1169 const struct sched_attr *attr)
1170 {
1171 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1172 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1173
1174 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1175 lower_bound = attr->sched_util_min;
1176 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1177 upper_bound = attr->sched_util_max;
1178
1179 if (lower_bound > upper_bound)
1180 return -EINVAL;
1181 if (upper_bound > SCHED_CAPACITY_SCALE)
1182 return -EINVAL;
1183
1184 return 0;
1185 }
1186
1187 static void __setscheduler_uclamp(struct task_struct *p,
1188 const struct sched_attr *attr)
1189 {
1190 enum uclamp_id clamp_id;
1191
1192 /*
1193 * On scheduling class change, reset to default clamps for tasks
1194 * without a task-specific value.
1195 */
1196 for_each_clamp_id(clamp_id) {
1197 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1198 unsigned int clamp_value = uclamp_none(clamp_id);
1199
1200 /* Keep using defined clamps across class changes */
1201 if (uc_se->user_defined)
1202 continue;
1203
1204 /* By default, RT tasks always get 100% boost */
1205 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1206 clamp_value = uclamp_none(UCLAMP_MAX);
1207
1208 uclamp_se_set(uc_se, clamp_value, false);
1209 }
1210
1211 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1212 return;
1213
1214 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1215 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1216 attr->sched_util_min, true);
1217 }
1218
1219 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1220 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1221 attr->sched_util_max, true);
1222 }
1223 }
1224
1225 static void uclamp_fork(struct task_struct *p)
1226 {
1227 enum uclamp_id clamp_id;
1228
1229 for_each_clamp_id(clamp_id)
1230 p->uclamp[clamp_id].active = false;
1231
1232 if (likely(!p->sched_reset_on_fork))
1233 return;
1234
1235 for_each_clamp_id(clamp_id) {
1236 uclamp_se_set(&p->uclamp_req[clamp_id],
1237 uclamp_none(clamp_id), false);
1238 }
1239 }
1240
1241 static void __init init_uclamp(void)
1242 {
1243 struct uclamp_se uc_max = {};
1244 enum uclamp_id clamp_id;
1245 int cpu;
1246
1247 mutex_init(&uclamp_mutex);
1248
1249 for_each_possible_cpu(cpu) {
1250 memset(&cpu_rq(cpu)->uclamp, 0,
1251 sizeof(struct uclamp_rq)*UCLAMP_CNT);
1252 cpu_rq(cpu)->uclamp_flags = 0;
1253 }
1254
1255 for_each_clamp_id(clamp_id) {
1256 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1257 uclamp_none(clamp_id), false);
1258 }
1259
1260 /* System defaults allow max clamp values for both indexes */
1261 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1262 for_each_clamp_id(clamp_id) {
1263 uclamp_default[clamp_id] = uc_max;
1264 #ifdef CONFIG_UCLAMP_TASK_GROUP
1265 root_task_group.uclamp_req[clamp_id] = uc_max;
1266 root_task_group.uclamp[clamp_id] = uc_max;
1267 #endif
1268 }
1269 }
1270
1271 #else /* CONFIG_UCLAMP_TASK */
1272 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
1273 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
1274 static inline int uclamp_validate(struct task_struct *p,
1275 const struct sched_attr *attr)
1276 {
1277 return -EOPNOTSUPP;
1278 }
1279 static void __setscheduler_uclamp(struct task_struct *p,
1280 const struct sched_attr *attr) { }
1281 static inline void uclamp_fork(struct task_struct *p) { }
1282 static inline void init_uclamp(void) { }
1283 #endif /* CONFIG_UCLAMP_TASK */
1284
1285 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1286 {
1287 if (!(flags & ENQUEUE_NOCLOCK))
1288 update_rq_clock(rq);
1289
1290 if (!(flags & ENQUEUE_RESTORE)) {
1291 sched_info_queued(rq, p);
1292 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1293 }
1294
1295 uclamp_rq_inc(rq, p);
1296 p->sched_class->enqueue_task(rq, p, flags);
1297 }
1298
1299 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1300 {
1301 if (!(flags & DEQUEUE_NOCLOCK))
1302 update_rq_clock(rq);
1303
1304 if (!(flags & DEQUEUE_SAVE)) {
1305 sched_info_dequeued(rq, p);
1306 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1307 }
1308
1309 uclamp_rq_dec(rq, p);
1310 p->sched_class->dequeue_task(rq, p, flags);
1311 }
1312
1313 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1314 {
1315 if (task_contributes_to_load(p))
1316 rq->nr_uninterruptible--;
1317
1318 enqueue_task(rq, p, flags);
1319
1320 p->on_rq = TASK_ON_RQ_QUEUED;
1321 }
1322
1323 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1324 {
1325 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1326
1327 if (task_contributes_to_load(p))
1328 rq->nr_uninterruptible++;
1329
1330 dequeue_task(rq, p, flags);
1331 }
1332
1333 /*
1334 * __normal_prio - return the priority that is based on the static prio
1335 */
1336 static inline int __normal_prio(struct task_struct *p)
1337 {
1338 return p->static_prio;
1339 }
1340
1341 /*
1342 * Calculate the expected normal priority: i.e. priority
1343 * without taking RT-inheritance into account. Might be
1344 * boosted by interactivity modifiers. Changes upon fork,
1345 * setprio syscalls, and whenever the interactivity
1346 * estimator recalculates.
1347 */
1348 static inline int normal_prio(struct task_struct *p)
1349 {
1350 int prio;
1351
1352 if (task_has_dl_policy(p))
1353 prio = MAX_DL_PRIO-1;
1354 else if (task_has_rt_policy(p))
1355 prio = MAX_RT_PRIO-1 - p->rt_priority;
1356 else
1357 prio = __normal_prio(p);
1358 return prio;
1359 }
1360
1361 /*
1362 * Calculate the current priority, i.e. the priority
1363 * taken into account by the scheduler. This value might
1364 * be boosted by RT tasks, or might be boosted by
1365 * interactivity modifiers. Will be RT if the task got
1366 * RT-boosted. If not then it returns p->normal_prio.
1367 */
1368 static int effective_prio(struct task_struct *p)
1369 {
1370 p->normal_prio = normal_prio(p);
1371 /*
1372 * If we are RT tasks or we were boosted to RT priority,
1373 * keep the priority unchanged. Otherwise, update priority
1374 * to the normal priority:
1375 */
1376 if (!rt_prio(p->prio))
1377 return p->normal_prio;
1378 return p->prio;
1379 }
1380
1381 /**
1382 * task_curr - is this task currently executing on a CPU?
1383 * @p: the task in question.
1384 *
1385 * Return: 1 if the task is currently executing. 0 otherwise.
1386 */
1387 inline int task_curr(const struct task_struct *p)
1388 {
1389 return cpu_curr(task_cpu(p)) == p;
1390 }
1391
1392 /*
1393 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1394 * use the balance_callback list if you want balancing.
1395 *
1396 * this means any call to check_class_changed() must be followed by a call to
1397 * balance_callback().
1398 */
1399 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1400 const struct sched_class *prev_class,
1401 int oldprio)
1402 {
1403 if (prev_class != p->sched_class) {
1404 if (prev_class->switched_from)
1405 prev_class->switched_from(rq, p);
1406
1407 p->sched_class->switched_to(rq, p);
1408 } else if (oldprio != p->prio || dl_task(p))
1409 p->sched_class->prio_changed(rq, p, oldprio);
1410 }
1411
1412 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1413 {
1414 const struct sched_class *class;
1415
1416 if (p->sched_class == rq->curr->sched_class) {
1417 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1418 } else {
1419 for_each_class(class) {
1420 if (class == rq->curr->sched_class)
1421 break;
1422 if (class == p->sched_class) {
1423 resched_curr(rq);
1424 break;
1425 }
1426 }
1427 }
1428
1429 /*
1430 * A queue event has occurred, and we're going to schedule. In
1431 * this case, we can save a useless back to back clock update.
1432 */
1433 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1434 rq_clock_skip_update(rq);
1435 }
1436
1437 #ifdef CONFIG_SMP
1438
1439 /*
1440 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1441 * __set_cpus_allowed_ptr() and select_fallback_rq().
1442 */
1443 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1444 {
1445 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1446 return false;
1447
1448 if (is_per_cpu_kthread(p))
1449 return cpu_online(cpu);
1450
1451 return cpu_active(cpu);
1452 }
1453
1454 /*
1455 * This is how migration works:
1456 *
1457 * 1) we invoke migration_cpu_stop() on the target CPU using
1458 * stop_one_cpu().
1459 * 2) stopper starts to run (implicitly forcing the migrated thread
1460 * off the CPU)
1461 * 3) it checks whether the migrated task is still in the wrong runqueue.
1462 * 4) if it's in the wrong runqueue then the migration thread removes
1463 * it and puts it into the right queue.
1464 * 5) stopper completes and stop_one_cpu() returns and the migration
1465 * is done.
1466 */
1467
1468 /*
1469 * move_queued_task - move a queued task to new rq.
1470 *
1471 * Returns (locked) new rq. Old rq's lock is released.
1472 */
1473 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1474 struct task_struct *p, int new_cpu)
1475 {
1476 lockdep_assert_held(&rq->lock);
1477
1478 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING);
1479 dequeue_task(rq, p, DEQUEUE_NOCLOCK);
1480 set_task_cpu(p, new_cpu);
1481 rq_unlock(rq, rf);
1482
1483 rq = cpu_rq(new_cpu);
1484
1485 rq_lock(rq, rf);
1486 BUG_ON(task_cpu(p) != new_cpu);
1487 enqueue_task(rq, p, 0);
1488 p->on_rq = TASK_ON_RQ_QUEUED;
1489 check_preempt_curr(rq, p, 0);
1490
1491 return rq;
1492 }
1493
1494 struct migration_arg {
1495 struct task_struct *task;
1496 int dest_cpu;
1497 };
1498
1499 /*
1500 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1501 * this because either it can't run here any more (set_cpus_allowed()
1502 * away from this CPU, or CPU going down), or because we're
1503 * attempting to rebalance this task on exec (sched_exec).
1504 *
1505 * So we race with normal scheduler movements, but that's OK, as long
1506 * as the task is no longer on this CPU.
1507 */
1508 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1509 struct task_struct *p, int dest_cpu)
1510 {
1511 /* Affinity changed (again). */
1512 if (!is_cpu_allowed(p, dest_cpu))
1513 return rq;
1514
1515 update_rq_clock(rq);
1516 rq = move_queued_task(rq, rf, p, dest_cpu);
1517
1518 return rq;
1519 }
1520
1521 /*
1522 * migration_cpu_stop - this will be executed by a highprio stopper thread
1523 * and performs thread migration by bumping thread off CPU then
1524 * 'pushing' onto another runqueue.
1525 */
1526 static int migration_cpu_stop(void *data)
1527 {
1528 struct migration_arg *arg = data;
1529 struct task_struct *p = arg->task;
1530 struct rq *rq = this_rq();
1531 struct rq_flags rf;
1532
1533 /*
1534 * The original target CPU might have gone down and we might
1535 * be on another CPU but it doesn't matter.
1536 */
1537 local_irq_disable();
1538 /*
1539 * We need to explicitly wake pending tasks before running
1540 * __migrate_task() such that we will not miss enforcing cpus_ptr
1541 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1542 */
1543 flush_smp_call_function_from_idle();
1544
1545 raw_spin_lock(&p->pi_lock);
1546 rq_lock(rq, &rf);
1547 /*
1548 * If task_rq(p) != rq, it cannot be migrated here, because we're
1549 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1550 * we're holding p->pi_lock.
1551 */
1552 if (task_rq(p) == rq) {
1553 if (task_on_rq_queued(p))
1554 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1555 else
1556 p->wake_cpu = arg->dest_cpu;
1557 }
1558 rq_unlock(rq, &rf);
1559 raw_spin_unlock(&p->pi_lock);
1560
1561 local_irq_enable();
1562 return 0;
1563 }
1564
1565 /*
1566 * sched_class::set_cpus_allowed must do the below, but is not required to
1567 * actually call this function.
1568 */
1569 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1570 {
1571 cpumask_copy(&p->cpus_mask, new_mask);
1572 p->nr_cpus_allowed = cpumask_weight(new_mask);
1573 }
1574
1575 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1576 {
1577 struct rq *rq = task_rq(p);
1578 bool queued, running;
1579
1580 lockdep_assert_held(&p->pi_lock);
1581
1582 queued = task_on_rq_queued(p);
1583 running = task_current(rq, p);
1584
1585 if (queued) {
1586 /*
1587 * Because __kthread_bind() calls this on blocked tasks without
1588 * holding rq->lock.
1589 */
1590 lockdep_assert_held(&rq->lock);
1591 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1592 }
1593 if (running)
1594 put_prev_task(rq, p);
1595
1596 p->sched_class->set_cpus_allowed(p, new_mask);
1597
1598 if (queued)
1599 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1600 if (running)
1601 set_next_task(rq, p);
1602 }
1603
1604 /*
1605 * Change a given task's CPU affinity. Migrate the thread to a
1606 * proper CPU and schedule it away if the CPU it's executing on
1607 * is removed from the allowed bitmask.
1608 *
1609 * NOTE: the caller must have a valid reference to the task, the
1610 * task must not exit() & deallocate itself prematurely. The
1611 * call is not atomic; no spinlocks may be held.
1612 */
1613 static int __set_cpus_allowed_ptr(struct task_struct *p,
1614 const struct cpumask *new_mask, bool check)
1615 {
1616 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1617 unsigned int dest_cpu;
1618 struct rq_flags rf;
1619 struct rq *rq;
1620 int ret = 0;
1621
1622 rq = task_rq_lock(p, &rf);
1623 update_rq_clock(rq);
1624
1625 if (p->flags & PF_KTHREAD) {
1626 /*
1627 * Kernel threads are allowed on online && !active CPUs
1628 */
1629 cpu_valid_mask = cpu_online_mask;
1630 }
1631
1632 /*
1633 * Must re-check here, to close a race against __kthread_bind(),
1634 * sched_setaffinity() is not guaranteed to observe the flag.
1635 */
1636 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1637 ret = -EINVAL;
1638 goto out;
1639 }
1640
1641 if (cpumask_equal(p->cpus_ptr, new_mask))
1642 goto out;
1643
1644 /*
1645 * Picking a ~random cpu helps in cases where we are changing affinity
1646 * for groups of tasks (ie. cpuset), so that load balancing is not
1647 * immediately required to distribute the tasks within their new mask.
1648 */
1649 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1650 if (dest_cpu >= nr_cpu_ids) {
1651 ret = -EINVAL;
1652 goto out;
1653 }
1654
1655 do_set_cpus_allowed(p, new_mask);
1656
1657 if (p->flags & PF_KTHREAD) {
1658 /*
1659 * For kernel threads that do indeed end up on online &&
1660 * !active we want to ensure they are strict per-CPU threads.
1661 */
1662 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
1663 !cpumask_intersects(new_mask, cpu_active_mask) &&
1664 p->nr_cpus_allowed != 1);
1665 }
1666
1667 /* Can the task run on the task's current CPU? If so, we're done */
1668 if (cpumask_test_cpu(task_cpu(p), new_mask))
1669 goto out;
1670
1671 if (task_running(rq, p) || p->state == TASK_WAKING) {
1672 struct migration_arg arg = { p, dest_cpu };
1673 /* Need help from migration thread: drop lock and wait. */
1674 task_rq_unlock(rq, p, &rf);
1675 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1676 return 0;
1677 } else if (task_on_rq_queued(p)) {
1678 /*
1679 * OK, since we're going to drop the lock immediately
1680 * afterwards anyway.
1681 */
1682 rq = move_queued_task(rq, &rf, p, dest_cpu);
1683 }
1684 out:
1685 task_rq_unlock(rq, p, &rf);
1686
1687 return ret;
1688 }
1689
1690 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1691 {
1692 return __set_cpus_allowed_ptr(p, new_mask, false);
1693 }
1694 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1695
1696 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1697 {
1698 #ifdef CONFIG_SCHED_DEBUG
1699 /*
1700 * We should never call set_task_cpu() on a blocked task,
1701 * ttwu() will sort out the placement.
1702 */
1703 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1704 !p->on_rq);
1705
1706 /*
1707 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1708 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1709 * time relying on p->on_rq.
1710 */
1711 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1712 p->sched_class == &fair_sched_class &&
1713 (p->on_rq && !task_on_rq_migrating(p)));
1714
1715 #ifdef CONFIG_LOCKDEP
1716 /*
1717 * The caller should hold either p->pi_lock or rq->lock, when changing
1718 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1719 *
1720 * sched_move_task() holds both and thus holding either pins the cgroup,
1721 * see task_group().
1722 *
1723 * Furthermore, all task_rq users should acquire both locks, see
1724 * task_rq_lock().
1725 */
1726 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1727 lockdep_is_held(&task_rq(p)->lock)));
1728 #endif
1729 /*
1730 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1731 */
1732 WARN_ON_ONCE(!cpu_online(new_cpu));
1733 #endif
1734
1735 trace_sched_migrate_task(p, new_cpu);
1736
1737 if (task_cpu(p) != new_cpu) {
1738 if (p->sched_class->migrate_task_rq)
1739 p->sched_class->migrate_task_rq(p, new_cpu);
1740 p->se.nr_migrations++;
1741 rseq_migrate(p);
1742 perf_event_task_migrate(p);
1743 }
1744
1745 __set_task_cpu(p, new_cpu);
1746 }
1747
1748 #ifdef CONFIG_NUMA_BALANCING
1749 static void __migrate_swap_task(struct task_struct *p, int cpu)
1750 {
1751 if (task_on_rq_queued(p)) {
1752 struct rq *src_rq, *dst_rq;
1753 struct rq_flags srf, drf;
1754
1755 src_rq = task_rq(p);
1756 dst_rq = cpu_rq(cpu);
1757
1758 rq_pin_lock(src_rq, &srf);
1759 rq_pin_lock(dst_rq, &drf);
1760
1761 deactivate_task(src_rq, p, 0);
1762 set_task_cpu(p, cpu);
1763 activate_task(dst_rq, p, 0);
1764 check_preempt_curr(dst_rq, p, 0);
1765
1766 rq_unpin_lock(dst_rq, &drf);
1767 rq_unpin_lock(src_rq, &srf);
1768
1769 } else {
1770 /*
1771 * Task isn't running anymore; make it appear like we migrated
1772 * it before it went to sleep. This means on wakeup we make the
1773 * previous CPU our target instead of where it really is.
1774 */
1775 p->wake_cpu = cpu;
1776 }
1777 }
1778
1779 struct migration_swap_arg {
1780 struct task_struct *src_task, *dst_task;
1781 int src_cpu, dst_cpu;
1782 };
1783
1784 static int migrate_swap_stop(void *data)
1785 {
1786 struct migration_swap_arg *arg = data;
1787 struct rq *src_rq, *dst_rq;
1788 int ret = -EAGAIN;
1789
1790 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1791 return -EAGAIN;
1792
1793 src_rq = cpu_rq(arg->src_cpu);
1794 dst_rq = cpu_rq(arg->dst_cpu);
1795
1796 double_raw_lock(&arg->src_task->pi_lock,
1797 &arg->dst_task->pi_lock);
1798 double_rq_lock(src_rq, dst_rq);
1799
1800 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1801 goto unlock;
1802
1803 if (task_cpu(arg->src_task) != arg->src_cpu)
1804 goto unlock;
1805
1806 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
1807 goto unlock;
1808
1809 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
1810 goto unlock;
1811
1812 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1813 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1814
1815 ret = 0;
1816
1817 unlock:
1818 double_rq_unlock(src_rq, dst_rq);
1819 raw_spin_unlock(&arg->dst_task->pi_lock);
1820 raw_spin_unlock(&arg->src_task->pi_lock);
1821
1822 return ret;
1823 }
1824
1825 /*
1826 * Cross migrate two tasks
1827 */
1828 int migrate_swap(struct task_struct *cur, struct task_struct *p,
1829 int target_cpu, int curr_cpu)
1830 {
1831 struct migration_swap_arg arg;
1832 int ret = -EINVAL;
1833
1834 arg = (struct migration_swap_arg){
1835 .src_task = cur,
1836 .src_cpu = curr_cpu,
1837 .dst_task = p,
1838 .dst_cpu = target_cpu,
1839 };
1840
1841 if (arg.src_cpu == arg.dst_cpu)
1842 goto out;
1843
1844 /*
1845 * These three tests are all lockless; this is OK since all of them
1846 * will be re-checked with proper locks held further down the line.
1847 */
1848 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1849 goto out;
1850
1851 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
1852 goto out;
1853
1854 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
1855 goto out;
1856
1857 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
1858 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1859
1860 out:
1861 return ret;
1862 }
1863 #endif /* CONFIG_NUMA_BALANCING */
1864
1865 /*
1866 * wait_task_inactive - wait for a thread to unschedule.
1867 *
1868 * If @match_state is nonzero, it's the @p->state value just checked and
1869 * not expected to change. If it changes, i.e. @p might have woken up,
1870 * then return zero. When we succeed in waiting for @p to be off its CPU,
1871 * we return a positive number (its total switch count). If a second call
1872 * a short while later returns the same number, the caller can be sure that
1873 * @p has remained unscheduled the whole time.
1874 *
1875 * The caller must ensure that the task *will* unschedule sometime soon,
1876 * else this function might spin for a *long* time. This function can't
1877 * be called with interrupts off, or it may introduce deadlock with
1878 * smp_call_function() if an IPI is sent by the same process we are
1879 * waiting to become inactive.
1880 */
1881 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1882 {
1883 int running, queued;
1884 struct rq_flags rf;
1885 unsigned long ncsw;
1886 struct rq *rq;
1887
1888 for (;;) {
1889 /*
1890 * We do the initial early heuristics without holding
1891 * any task-queue locks at all. We'll only try to get
1892 * the runqueue lock when things look like they will
1893 * work out!
1894 */
1895 rq = task_rq(p);
1896
1897 /*
1898 * If the task is actively running on another CPU
1899 * still, just relax and busy-wait without holding
1900 * any locks.
1901 *
1902 * NOTE! Since we don't hold any locks, it's not
1903 * even sure that "rq" stays as the right runqueue!
1904 * But we don't care, since "task_running()" will
1905 * return false if the runqueue has changed and p
1906 * is actually now running somewhere else!
1907 */
1908 while (task_running(rq, p)) {
1909 if (match_state && unlikely(p->state != match_state))
1910 return 0;
1911 cpu_relax();
1912 }
1913
1914 /*
1915 * Ok, time to look more closely! We need the rq
1916 * lock now, to be *sure*. If we're wrong, we'll
1917 * just go back and repeat.
1918 */
1919 rq = task_rq_lock(p, &rf);
1920 trace_sched_wait_task(p);
1921 running = task_running(rq, p);
1922 queued = task_on_rq_queued(p);
1923 ncsw = 0;
1924 if (!match_state || p->state == match_state)
1925 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1926 task_rq_unlock(rq, p, &rf);
1927
1928 /*
1929 * If it changed from the expected state, bail out now.
1930 */
1931 if (unlikely(!ncsw))
1932 break;
1933
1934 /*
1935 * Was it really running after all now that we
1936 * checked with the proper locks actually held?
1937 *
1938 * Oops. Go back and try again..
1939 */
1940 if (unlikely(running)) {
1941 cpu_relax();
1942 continue;
1943 }
1944
1945 /*
1946 * It's not enough that it's not actively running,
1947 * it must be off the runqueue _entirely_, and not
1948 * preempted!
1949 *
1950 * So if it was still runnable (but just not actively
1951 * running right now), it's preempted, and we should
1952 * yield - it could be a while.
1953 */
1954 if (unlikely(queued)) {
1955 ktime_t to = NSEC_PER_SEC / HZ;
1956
1957 set_current_state(TASK_UNINTERRUPTIBLE);
1958 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
1959 continue;
1960 }
1961
1962 /*
1963 * Ahh, all good. It wasn't running, and it wasn't
1964 * runnable, which means that it will never become
1965 * running in the future either. We're all done!
1966 */
1967 break;
1968 }
1969
1970 return ncsw;
1971 }
1972
1973 /***
1974 * kick_process - kick a running thread to enter/exit the kernel
1975 * @p: the to-be-kicked thread
1976 *
1977 * Cause a process which is running on another CPU to enter
1978 * kernel-mode, without any delay. (to get signals handled.)
1979 *
1980 * NOTE: this function doesn't have to take the runqueue lock,
1981 * because all it wants to ensure is that the remote task enters
1982 * the kernel. If the IPI races and the task has been migrated
1983 * to another CPU then no harm is done and the purpose has been
1984 * achieved as well.
1985 */
1986 void kick_process(struct task_struct *p)
1987 {
1988 int cpu;
1989
1990 preempt_disable();
1991 cpu = task_cpu(p);
1992 if ((cpu != smp_processor_id()) && task_curr(p))
1993 smp_send_reschedule(cpu);
1994 preempt_enable();
1995 }
1996 EXPORT_SYMBOL_GPL(kick_process);
1997
1998 /*
1999 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2000 *
2001 * A few notes on cpu_active vs cpu_online:
2002 *
2003 * - cpu_active must be a subset of cpu_online
2004 *
2005 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2006 * see __set_cpus_allowed_ptr(). At this point the newly online
2007 * CPU isn't yet part of the sched domains, and balancing will not
2008 * see it.
2009 *
2010 * - on CPU-down we clear cpu_active() to mask the sched domains and
2011 * avoid the load balancer to place new tasks on the to be removed
2012 * CPU. Existing tasks will remain running there and will be taken
2013 * off.
2014 *
2015 * This means that fallback selection must not select !active CPUs.
2016 * And can assume that any active CPU must be online. Conversely
2017 * select_task_rq() below may allow selection of !active CPUs in order
2018 * to satisfy the above rules.
2019 */
2020 static int select_fallback_rq(int cpu, struct task_struct *p)
2021 {
2022 int nid = cpu_to_node(cpu);
2023 const struct cpumask *nodemask = NULL;
2024 enum { cpuset, possible, fail } state = cpuset;
2025 int dest_cpu;
2026
2027 /*
2028 * If the node that the CPU is on has been offlined, cpu_to_node()
2029 * will return -1. There is no CPU on the node, and we should
2030 * select the CPU on the other node.
2031 */
2032 if (nid != -1) {
2033 nodemask = cpumask_of_node(nid);
2034
2035 /* Look for allowed, online CPU in same node. */
2036 for_each_cpu(dest_cpu, nodemask) {
2037 if (!cpu_active(dest_cpu))
2038 continue;
2039 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2040 return dest_cpu;
2041 }
2042 }
2043
2044 for (;;) {
2045 /* Any allowed, online CPU? */
2046 for_each_cpu(dest_cpu, p->cpus_ptr) {
2047 if (!is_cpu_allowed(p, dest_cpu))
2048 continue;
2049
2050 goto out;
2051 }
2052
2053 /* No more Mr. Nice Guy. */
2054 switch (state) {
2055 case cpuset:
2056 if (IS_ENABLED(CONFIG_CPUSETS)) {
2057 cpuset_cpus_allowed_fallback(p);
2058 state = possible;
2059 break;
2060 }
2061 /* Fall-through */
2062 case possible:
2063 do_set_cpus_allowed(p, cpu_possible_mask);
2064 state = fail;
2065 break;
2066
2067 case fail:
2068 BUG();
2069 break;
2070 }
2071 }
2072
2073 out:
2074 if (state != cpuset) {
2075 /*
2076 * Don't tell them about moving exiting tasks or
2077 * kernel threads (both mm NULL), since they never
2078 * leave kernel.
2079 */
2080 if (p->mm && printk_ratelimit()) {
2081 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2082 task_pid_nr(p), p->comm, cpu);
2083 }
2084 }
2085
2086 return dest_cpu;
2087 }
2088
2089 /*
2090 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2091 */
2092 static inline
2093 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2094 {
2095 lockdep_assert_held(&p->pi_lock);
2096
2097 if (p->nr_cpus_allowed > 1)
2098 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2099 else
2100 cpu = cpumask_any(p->cpus_ptr);
2101
2102 /*
2103 * In order not to call set_task_cpu() on a blocking task we need
2104 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2105 * CPU.
2106 *
2107 * Since this is common to all placement strategies, this lives here.
2108 *
2109 * [ this allows ->select_task() to simply return task_cpu(p) and
2110 * not worry about this generic constraint ]
2111 */
2112 if (unlikely(!is_cpu_allowed(p, cpu)))
2113 cpu = select_fallback_rq(task_cpu(p), p);
2114
2115 return cpu;
2116 }
2117
2118 void sched_set_stop_task(int cpu, struct task_struct *stop)
2119 {
2120 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2121 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2122
2123 if (stop) {
2124 /*
2125 * Make it appear like a SCHED_FIFO task, its something
2126 * userspace knows about and won't get confused about.
2127 *
2128 * Also, it will make PI more or less work without too
2129 * much confusion -- but then, stop work should not
2130 * rely on PI working anyway.
2131 */
2132 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2133
2134 stop->sched_class = &stop_sched_class;
2135 }
2136
2137 cpu_rq(cpu)->stop = stop;
2138
2139 if (old_stop) {
2140 /*
2141 * Reset it back to a normal scheduling class so that
2142 * it can die in pieces.
2143 */
2144 old_stop->sched_class = &rt_sched_class;
2145 }
2146 }
2147
2148 #else
2149
2150 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2151 const struct cpumask *new_mask, bool check)
2152 {
2153 return set_cpus_allowed_ptr(p, new_mask);
2154 }
2155
2156 #endif /* CONFIG_SMP */
2157
2158 static void
2159 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2160 {
2161 struct rq *rq;
2162
2163 if (!schedstat_enabled())
2164 return;
2165
2166 rq = this_rq();
2167
2168 #ifdef CONFIG_SMP
2169 if (cpu == rq->cpu) {
2170 __schedstat_inc(rq->ttwu_local);
2171 __schedstat_inc(p->se.statistics.nr_wakeups_local);
2172 } else {
2173 struct sched_domain *sd;
2174
2175 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2176 rcu_read_lock();
2177 for_each_domain(rq->cpu, sd) {
2178 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2179 __schedstat_inc(sd->ttwu_wake_remote);
2180 break;
2181 }
2182 }
2183 rcu_read_unlock();
2184 }
2185
2186 if (wake_flags & WF_MIGRATED)
2187 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2188 #endif /* CONFIG_SMP */
2189
2190 __schedstat_inc(rq->ttwu_count);
2191 __schedstat_inc(p->se.statistics.nr_wakeups);
2192
2193 if (wake_flags & WF_SYNC)
2194 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2195 }
2196
2197 /*
2198 * Mark the task runnable and perform wakeup-preemption.
2199 */
2200 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2201 struct rq_flags *rf)
2202 {
2203 check_preempt_curr(rq, p, wake_flags);
2204 p->state = TASK_RUNNING;
2205 trace_sched_wakeup(p);
2206
2207 #ifdef CONFIG_SMP
2208 if (p->sched_class->task_woken) {
2209 /*
2210 * Our task @p is fully woken up and running; so its safe to
2211 * drop the rq->lock, hereafter rq is only used for statistics.
2212 */
2213 rq_unpin_lock(rq, rf);
2214 p->sched_class->task_woken(rq, p);
2215 rq_repin_lock(rq, rf);
2216 }
2217
2218 if (rq->idle_stamp) {
2219 u64 delta = rq_clock(rq) - rq->idle_stamp;
2220 u64 max = 2*rq->max_idle_balance_cost;
2221
2222 update_avg(&rq->avg_idle, delta);
2223
2224 if (rq->avg_idle > max)
2225 rq->avg_idle = max;
2226
2227 rq->idle_stamp = 0;
2228 }
2229 #endif
2230 }
2231
2232 static void
2233 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2234 struct rq_flags *rf)
2235 {
2236 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2237
2238 lockdep_assert_held(&rq->lock);
2239
2240 #ifdef CONFIG_SMP
2241 if (p->sched_contributes_to_load)
2242 rq->nr_uninterruptible--;
2243
2244 if (wake_flags & WF_MIGRATED)
2245 en_flags |= ENQUEUE_MIGRATED;
2246 #endif
2247
2248 activate_task(rq, p, en_flags);
2249 ttwu_do_wakeup(rq, p, wake_flags, rf);
2250 }
2251
2252 /*
2253 * Called in case the task @p isn't fully descheduled from its runqueue,
2254 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2255 * since all we need to do is flip p->state to TASK_RUNNING, since
2256 * the task is still ->on_rq.
2257 */
2258 static int ttwu_remote(struct task_struct *p, int wake_flags)
2259 {
2260 struct rq_flags rf;
2261 struct rq *rq;
2262 int ret = 0;
2263
2264 rq = __task_rq_lock(p, &rf);
2265 if (task_on_rq_queued(p)) {
2266 /* check_preempt_curr() may use rq clock */
2267 update_rq_clock(rq);
2268 ttwu_do_wakeup(rq, p, wake_flags, &rf);
2269 ret = 1;
2270 }
2271 __task_rq_unlock(rq, &rf);
2272
2273 return ret;
2274 }
2275
2276 #ifdef CONFIG_SMP
2277 void sched_ttwu_pending(void *arg)
2278 {
2279 struct llist_node *llist = arg;
2280 struct rq *rq = this_rq();
2281 struct task_struct *p, *t;
2282 struct rq_flags rf;
2283
2284 if (!llist)
2285 return;
2286
2287 /*
2288 * rq::ttwu_pending racy indication of out-standing wakeups.
2289 * Races such that false-negatives are possible, since they
2290 * are shorter lived that false-positives would be.
2291 */
2292 WRITE_ONCE(rq->ttwu_pending, 0);
2293
2294 rq_lock_irqsave(rq, &rf);
2295 update_rq_clock(rq);
2296
2297 llist_for_each_entry_safe(p, t, llist, wake_entry)
2298 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2299
2300 rq_unlock_irqrestore(rq, &rf);
2301 }
2302
2303 void send_call_function_single_ipi(int cpu)
2304 {
2305 struct rq *rq = cpu_rq(cpu);
2306
2307 if (!set_nr_if_polling(rq->idle))
2308 arch_send_call_function_single_ipi(cpu);
2309 else
2310 trace_sched_wake_idle_without_ipi(cpu);
2311 }
2312
2313 /*
2314 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
2315 * necessary. The wakee CPU on receipt of the IPI will queue the task
2316 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
2317 * of the wakeup instead of the waker.
2318 */
2319 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2320 {
2321 struct rq *rq = cpu_rq(cpu);
2322
2323 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2324
2325 WRITE_ONCE(rq->ttwu_pending, 1);
2326 __smp_call_single_queue(cpu, &p->wake_entry);
2327 }
2328
2329 void wake_up_if_idle(int cpu)
2330 {
2331 struct rq *rq = cpu_rq(cpu);
2332 struct rq_flags rf;
2333
2334 rcu_read_lock();
2335
2336 if (!is_idle_task(rcu_dereference(rq->curr)))
2337 goto out;
2338
2339 if (set_nr_if_polling(rq->idle)) {
2340 trace_sched_wake_idle_without_ipi(cpu);
2341 } else {
2342 rq_lock_irqsave(rq, &rf);
2343 if (is_idle_task(rq->curr))
2344 smp_send_reschedule(cpu);
2345 /* Else CPU is not idle, do nothing here: */
2346 rq_unlock_irqrestore(rq, &rf);
2347 }
2348
2349 out:
2350 rcu_read_unlock();
2351 }
2352
2353 bool cpus_share_cache(int this_cpu, int that_cpu)
2354 {
2355 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2356 }
2357
2358 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
2359 {
2360 /*
2361 * If the CPU does not share cache, then queue the task on the
2362 * remote rqs wakelist to avoid accessing remote data.
2363 */
2364 if (!cpus_share_cache(smp_processor_id(), cpu))
2365 return true;
2366
2367 /*
2368 * If the task is descheduling and the only running task on the
2369 * CPU then use the wakelist to offload the task activation to
2370 * the soon-to-be-idle CPU as the current CPU is likely busy.
2371 * nr_running is checked to avoid unnecessary task stacking.
2372 */
2373 if ((wake_flags & WF_ON_RQ) && cpu_rq(cpu)->nr_running <= 1)
2374 return true;
2375
2376 return false;
2377 }
2378
2379 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2380 {
2381 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
2382 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2383 __ttwu_queue_wakelist(p, cpu, wake_flags);
2384 return true;
2385 }
2386
2387 return false;
2388 }
2389 #endif /* CONFIG_SMP */
2390
2391 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2392 {
2393 struct rq *rq = cpu_rq(cpu);
2394 struct rq_flags rf;
2395
2396 #if defined(CONFIG_SMP)
2397 if (ttwu_queue_wakelist(p, cpu, wake_flags))
2398 return;
2399 #endif
2400
2401 rq_lock(rq, &rf);
2402 update_rq_clock(rq);
2403 ttwu_do_activate(rq, p, wake_flags, &rf);
2404 rq_unlock(rq, &rf);
2405 }
2406
2407 /*
2408 * Notes on Program-Order guarantees on SMP systems.
2409 *
2410 * MIGRATION
2411 *
2412 * The basic program-order guarantee on SMP systems is that when a task [t]
2413 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2414 * execution on its new CPU [c1].
2415 *
2416 * For migration (of runnable tasks) this is provided by the following means:
2417 *
2418 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2419 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2420 * rq(c1)->lock (if not at the same time, then in that order).
2421 * C) LOCK of the rq(c1)->lock scheduling in task
2422 *
2423 * Release/acquire chaining guarantees that B happens after A and C after B.
2424 * Note: the CPU doing B need not be c0 or c1
2425 *
2426 * Example:
2427 *
2428 * CPU0 CPU1 CPU2
2429 *
2430 * LOCK rq(0)->lock
2431 * sched-out X
2432 * sched-in Y
2433 * UNLOCK rq(0)->lock
2434 *
2435 * LOCK rq(0)->lock // orders against CPU0
2436 * dequeue X
2437 * UNLOCK rq(0)->lock
2438 *
2439 * LOCK rq(1)->lock
2440 * enqueue X
2441 * UNLOCK rq(1)->lock
2442 *
2443 * LOCK rq(1)->lock // orders against CPU2
2444 * sched-out Z
2445 * sched-in X
2446 * UNLOCK rq(1)->lock
2447 *
2448 *
2449 * BLOCKING -- aka. SLEEP + WAKEUP
2450 *
2451 * For blocking we (obviously) need to provide the same guarantee as for
2452 * migration. However the means are completely different as there is no lock
2453 * chain to provide order. Instead we do:
2454 *
2455 * 1) smp_store_release(X->on_cpu, 0)
2456 * 2) smp_cond_load_acquire(!X->on_cpu)
2457 *
2458 * Example:
2459 *
2460 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2461 *
2462 * LOCK rq(0)->lock LOCK X->pi_lock
2463 * dequeue X
2464 * sched-out X
2465 * smp_store_release(X->on_cpu, 0);
2466 *
2467 * smp_cond_load_acquire(&X->on_cpu, !VAL);
2468 * X->state = WAKING
2469 * set_task_cpu(X,2)
2470 *
2471 * LOCK rq(2)->lock
2472 * enqueue X
2473 * X->state = RUNNING
2474 * UNLOCK rq(2)->lock
2475 *
2476 * LOCK rq(2)->lock // orders against CPU1
2477 * sched-out Z
2478 * sched-in X
2479 * UNLOCK rq(2)->lock
2480 *
2481 * UNLOCK X->pi_lock
2482 * UNLOCK rq(0)->lock
2483 *
2484 *
2485 * However, for wakeups there is a second guarantee we must provide, namely we
2486 * must ensure that CONDITION=1 done by the caller can not be reordered with
2487 * accesses to the task state; see try_to_wake_up() and set_current_state().
2488 */
2489
2490 /**
2491 * try_to_wake_up - wake up a thread
2492 * @p: the thread to be awakened
2493 * @state: the mask of task states that can be woken
2494 * @wake_flags: wake modifier flags (WF_*)
2495 *
2496 * If (@state & @p->state) @p->state = TASK_RUNNING.
2497 *
2498 * If the task was not queued/runnable, also place it back on a runqueue.
2499 *
2500 * Atomic against schedule() which would dequeue a task, also see
2501 * set_current_state().
2502 *
2503 * This function executes a full memory barrier before accessing the task
2504 * state; see set_current_state().
2505 *
2506 * Return: %true if @p->state changes (an actual wakeup was done),
2507 * %false otherwise.
2508 */
2509 static int
2510 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2511 {
2512 unsigned long flags;
2513 int cpu, success = 0;
2514
2515 preempt_disable();
2516 if (p == current) {
2517 /*
2518 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2519 * == smp_processor_id()'. Together this means we can special
2520 * case the whole 'p->on_rq && ttwu_remote()' case below
2521 * without taking any locks.
2522 *
2523 * In particular:
2524 * - we rely on Program-Order guarantees for all the ordering,
2525 * - we're serialized against set_special_state() by virtue of
2526 * it disabling IRQs (this allows not taking ->pi_lock).
2527 */
2528 if (!(p->state & state))
2529 goto out;
2530
2531 success = 1;
2532 cpu = task_cpu(p);
2533 trace_sched_waking(p);
2534 p->state = TASK_RUNNING;
2535 trace_sched_wakeup(p);
2536 goto out;
2537 }
2538
2539 /*
2540 * If we are going to wake up a thread waiting for CONDITION we
2541 * need to ensure that CONDITION=1 done by the caller can not be
2542 * reordered with p->state check below. This pairs with mb() in
2543 * set_current_state() the waiting thread does.
2544 */
2545 raw_spin_lock_irqsave(&p->pi_lock, flags);
2546 smp_mb__after_spinlock();
2547 if (!(p->state & state))
2548 goto unlock;
2549
2550 trace_sched_waking(p);
2551
2552 /* We're going to change ->state: */
2553 success = 1;
2554 cpu = task_cpu(p);
2555
2556 /*
2557 * Ensure we load p->on_rq _after_ p->state, otherwise it would
2558 * be possible to, falsely, observe p->on_rq == 0 and get stuck
2559 * in smp_cond_load_acquire() below.
2560 *
2561 * sched_ttwu_pending() try_to_wake_up()
2562 * STORE p->on_rq = 1 LOAD p->state
2563 * UNLOCK rq->lock
2564 *
2565 * __schedule() (switch to task 'p')
2566 * LOCK rq->lock smp_rmb();
2567 * smp_mb__after_spinlock();
2568 * UNLOCK rq->lock
2569 *
2570 * [task p]
2571 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
2572 *
2573 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2574 * __schedule(). See the comment for smp_mb__after_spinlock().
2575 *
2576 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
2577 */
2578 smp_rmb();
2579 if (p->on_rq && ttwu_remote(p, wake_flags))
2580 goto unlock;
2581
2582 if (p->in_iowait) {
2583 delayacct_blkio_end(p);
2584 atomic_dec(&task_rq(p)->nr_iowait);
2585 }
2586
2587 #ifdef CONFIG_SMP
2588 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2589 p->state = TASK_WAKING;
2590
2591 /*
2592 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2593 * possible to, falsely, observe p->on_cpu == 0.
2594 *
2595 * One must be running (->on_cpu == 1) in order to remove oneself
2596 * from the runqueue.
2597 *
2598 * __schedule() (switch to task 'p') try_to_wake_up()
2599 * STORE p->on_cpu = 1 LOAD p->on_rq
2600 * UNLOCK rq->lock
2601 *
2602 * __schedule() (put 'p' to sleep)
2603 * LOCK rq->lock smp_rmb();
2604 * smp_mb__after_spinlock();
2605 * STORE p->on_rq = 0 LOAD p->on_cpu
2606 *
2607 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2608 * __schedule(). See the comment for smp_mb__after_spinlock().
2609 */
2610 smp_rmb();
2611
2612 /*
2613 * If the owning (remote) CPU is still in the middle of schedule() with
2614 * this task as prev, considering queueing p on the remote CPUs wake_list
2615 * which potentially sends an IPI instead of spinning on p->on_cpu to
2616 * let the waker make forward progress. This is safe because IRQs are
2617 * disabled and the IPI will deliver after on_cpu is cleared.
2618 */
2619 if (READ_ONCE(p->on_cpu) && ttwu_queue_wakelist(p, cpu, wake_flags | WF_ON_RQ))
2620 goto unlock;
2621
2622 /*
2623 * If the owning (remote) CPU is still in the middle of schedule() with
2624 * this task as prev, wait until its done referencing the task.
2625 *
2626 * Pairs with the smp_store_release() in finish_task().
2627 *
2628 * This ensures that tasks getting woken will be fully ordered against
2629 * their previous state and preserve Program Order.
2630 */
2631 smp_cond_load_acquire(&p->on_cpu, !VAL);
2632
2633 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
2634 if (task_cpu(p) != cpu) {
2635 wake_flags |= WF_MIGRATED;
2636 psi_ttwu_dequeue(p);
2637 set_task_cpu(p, cpu);
2638 }
2639 #endif /* CONFIG_SMP */
2640
2641 ttwu_queue(p, cpu, wake_flags);
2642 unlock:
2643 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2644 out:
2645 if (success)
2646 ttwu_stat(p, cpu, wake_flags);
2647 preempt_enable();
2648
2649 return success;
2650 }
2651
2652 /**
2653 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
2654 * @p: Process for which the function is to be invoked.
2655 * @func: Function to invoke.
2656 * @arg: Argument to function.
2657 *
2658 * If the specified task can be quickly locked into a definite state
2659 * (either sleeping or on a given runqueue), arrange to keep it in that
2660 * state while invoking @func(@arg). This function can use ->on_rq and
2661 * task_curr() to work out what the state is, if required. Given that
2662 * @func can be invoked with a runqueue lock held, it had better be quite
2663 * lightweight.
2664 *
2665 * Returns:
2666 * @false if the task slipped out from under the locks.
2667 * @true if the task was locked onto a runqueue or is sleeping.
2668 * However, @func can override this by returning @false.
2669 */
2670 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
2671 {
2672 bool ret = false;
2673 struct rq_flags rf;
2674 struct rq *rq;
2675
2676 lockdep_assert_irqs_enabled();
2677 raw_spin_lock_irq(&p->pi_lock);
2678 if (p->on_rq) {
2679 rq = __task_rq_lock(p, &rf);
2680 if (task_rq(p) == rq)
2681 ret = func(p, arg);
2682 rq_unlock(rq, &rf);
2683 } else {
2684 switch (p->state) {
2685 case TASK_RUNNING:
2686 case TASK_WAKING:
2687 break;
2688 default:
2689 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
2690 if (!p->on_rq)
2691 ret = func(p, arg);
2692 }
2693 }
2694 raw_spin_unlock_irq(&p->pi_lock);
2695 return ret;
2696 }
2697
2698 /**
2699 * wake_up_process - Wake up a specific process
2700 * @p: The process to be woken up.
2701 *
2702 * Attempt to wake up the nominated process and move it to the set of runnable
2703 * processes.
2704 *
2705 * Return: 1 if the process was woken up, 0 if it was already running.
2706 *
2707 * This function executes a full memory barrier before accessing the task state.
2708 */
2709 int wake_up_process(struct task_struct *p)
2710 {
2711 return try_to_wake_up(p, TASK_NORMAL, 0);
2712 }
2713 EXPORT_SYMBOL(wake_up_process);
2714
2715 int wake_up_state(struct task_struct *p, unsigned int state)
2716 {
2717 return try_to_wake_up(p, state, 0);
2718 }
2719
2720 /*
2721 * Perform scheduler related setup for a newly forked process p.
2722 * p is forked by current.
2723 *
2724 * __sched_fork() is basic setup used by init_idle() too:
2725 */
2726 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
2727 {
2728 p->on_rq = 0;
2729
2730 p->se.on_rq = 0;
2731 p->se.exec_start = 0;
2732 p->se.sum_exec_runtime = 0;
2733 p->se.prev_sum_exec_runtime = 0;
2734 p->se.nr_migrations = 0;
2735 p->se.vruntime = 0;
2736 INIT_LIST_HEAD(&p->se.group_node);
2737
2738 #ifdef CONFIG_FAIR_GROUP_SCHED
2739 p->se.cfs_rq = NULL;
2740 #endif
2741
2742 #ifdef CONFIG_SCHEDSTATS
2743 /* Even if schedstat is disabled, there should not be garbage */
2744 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2745 #endif
2746
2747 RB_CLEAR_NODE(&p->dl.rb_node);
2748 init_dl_task_timer(&p->dl);
2749 init_dl_inactive_task_timer(&p->dl);
2750 __dl_clear_params(p);
2751
2752 INIT_LIST_HEAD(&p->rt.run_list);
2753 p->rt.timeout = 0;
2754 p->rt.time_slice = sched_rr_timeslice;
2755 p->rt.on_rq = 0;
2756 p->rt.on_list = 0;
2757
2758 #ifdef CONFIG_PREEMPT_NOTIFIERS
2759 INIT_HLIST_HEAD(&p->preempt_notifiers);
2760 #endif
2761
2762 #ifdef CONFIG_COMPACTION
2763 p->capture_control = NULL;
2764 #endif
2765 init_numa_balancing(clone_flags, p);
2766 #ifdef CONFIG_SMP
2767 p->wake_entry_type = CSD_TYPE_TTWU;
2768 #endif
2769 }
2770
2771 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2772
2773 #ifdef CONFIG_NUMA_BALANCING
2774
2775 void set_numabalancing_state(bool enabled)
2776 {
2777 if (enabled)
2778 static_branch_enable(&sched_numa_balancing);
2779 else
2780 static_branch_disable(&sched_numa_balancing);
2781 }
2782
2783 #ifdef CONFIG_PROC_SYSCTL
2784 int sysctl_numa_balancing(struct ctl_table *table, int write,
2785 void __user *buffer, size_t *lenp, loff_t *ppos)
2786 {
2787 struct ctl_table t;
2788 int err;
2789 int state = static_branch_likely(&sched_numa_balancing);
2790
2791 if (write && !capable(CAP_SYS_ADMIN))
2792 return -EPERM;
2793
2794 t = *table;
2795 t.data = &state;
2796 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2797 if (err < 0)
2798 return err;
2799 if (write)
2800 set_numabalancing_state(state);
2801 return err;
2802 }
2803 #endif
2804 #endif
2805
2806 #ifdef CONFIG_SCHEDSTATS
2807
2808 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2809 static bool __initdata __sched_schedstats = false;
2810
2811 static void set_schedstats(bool enabled)
2812 {
2813 if (enabled)
2814 static_branch_enable(&sched_schedstats);
2815 else
2816 static_branch_disable(&sched_schedstats);
2817 }
2818
2819 void force_schedstat_enabled(void)
2820 {
2821 if (!schedstat_enabled()) {
2822 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2823 static_branch_enable(&sched_schedstats);
2824 }
2825 }
2826
2827 static int __init setup_schedstats(char *str)
2828 {
2829 int ret = 0;
2830 if (!str)
2831 goto out;
2832
2833 /*
2834 * This code is called before jump labels have been set up, so we can't
2835 * change the static branch directly just yet. Instead set a temporary
2836 * variable so init_schedstats() can do it later.
2837 */
2838 if (!strcmp(str, "enable")) {
2839 __sched_schedstats = true;
2840 ret = 1;
2841 } else if (!strcmp(str, "disable")) {
2842 __sched_schedstats = false;
2843 ret = 1;
2844 }
2845 out:
2846 if (!ret)
2847 pr_warn("Unable to parse schedstats=\n");
2848
2849 return ret;
2850 }
2851 __setup("schedstats=", setup_schedstats);
2852
2853 static void __init init_schedstats(void)
2854 {
2855 set_schedstats(__sched_schedstats);
2856 }
2857
2858 #ifdef CONFIG_PROC_SYSCTL
2859 int sysctl_schedstats(struct ctl_table *table, int write,
2860 void __user *buffer, size_t *lenp, loff_t *ppos)
2861 {
2862 struct ctl_table t;
2863 int err;
2864 int state = static_branch_likely(&sched_schedstats);
2865
2866 if (write && !capable(CAP_SYS_ADMIN))
2867 return -EPERM;
2868
2869 t = *table;
2870 t.data = &state;
2871 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2872 if (err < 0)
2873 return err;
2874 if (write)
2875 set_schedstats(state);
2876 return err;
2877 }
2878 #endif /* CONFIG_PROC_SYSCTL */
2879 #else /* !CONFIG_SCHEDSTATS */
2880 static inline void init_schedstats(void) {}
2881 #endif /* CONFIG_SCHEDSTATS */
2882
2883 /*
2884 * fork()/clone()-time setup:
2885 */
2886 int sched_fork(unsigned long clone_flags, struct task_struct *p)
2887 {
2888 unsigned long flags;
2889
2890 __sched_fork(clone_flags, p);
2891 /*
2892 * We mark the process as NEW here. This guarantees that
2893 * nobody will actually run it, and a signal or other external
2894 * event cannot wake it up and insert it on the runqueue either.
2895 */
2896 p->state = TASK_NEW;
2897
2898 /*
2899 * Make sure we do not leak PI boosting priority to the child.
2900 */
2901 p->prio = current->normal_prio;
2902
2903 uclamp_fork(p);
2904
2905 /*
2906 * Revert to default priority/policy on fork if requested.
2907 */
2908 if (unlikely(p->sched_reset_on_fork)) {
2909 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
2910 p->policy = SCHED_NORMAL;
2911 p->static_prio = NICE_TO_PRIO(0);
2912 p->rt_priority = 0;
2913 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2914 p->static_prio = NICE_TO_PRIO(0);
2915
2916 p->prio = p->normal_prio = __normal_prio(p);
2917 set_load_weight(p, false);
2918
2919 /*
2920 * We don't need the reset flag anymore after the fork. It has
2921 * fulfilled its duty:
2922 */
2923 p->sched_reset_on_fork = 0;
2924 }
2925
2926 if (dl_prio(p->prio))
2927 return -EAGAIN;
2928 else if (rt_prio(p->prio))
2929 p->sched_class = &rt_sched_class;
2930 else
2931 p->sched_class = &fair_sched_class;
2932
2933 init_entity_runnable_average(&p->se);
2934
2935 /*
2936 * The child is not yet in the pid-hash so no cgroup attach races,
2937 * and the cgroup is pinned to this child due to cgroup_fork()
2938 * is ran before sched_fork().
2939 *
2940 * Silence PROVE_RCU.
2941 */
2942 raw_spin_lock_irqsave(&p->pi_lock, flags);
2943 /*
2944 * We're setting the CPU for the first time, we don't migrate,
2945 * so use __set_task_cpu().
2946 */
2947 __set_task_cpu(p, smp_processor_id());
2948 if (p->sched_class->task_fork)
2949 p->sched_class->task_fork(p);
2950 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2951
2952 #ifdef CONFIG_SCHED_INFO
2953 if (likely(sched_info_on()))
2954 memset(&p->sched_info, 0, sizeof(p->sched_info));
2955 #endif
2956 #if defined(CONFIG_SMP)
2957 p->on_cpu = 0;
2958 #endif
2959 init_task_preempt_count(p);
2960 #ifdef CONFIG_SMP
2961 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2962 RB_CLEAR_NODE(&p->pushable_dl_tasks);
2963 #endif
2964 return 0;
2965 }
2966
2967 unsigned long to_ratio(u64 period, u64 runtime)
2968 {
2969 if (runtime == RUNTIME_INF)
2970 return BW_UNIT;
2971
2972 /*
2973 * Doing this here saves a lot of checks in all
2974 * the calling paths, and returning zero seems
2975 * safe for them anyway.
2976 */
2977 if (period == 0)
2978 return 0;
2979
2980 return div64_u64(runtime << BW_SHIFT, period);
2981 }
2982
2983 /*
2984 * wake_up_new_task - wake up a newly created task for the first time.
2985 *
2986 * This function will do some initial scheduler statistics housekeeping
2987 * that must be done for every newly created context, then puts the task
2988 * on the runqueue and wakes it.
2989 */
2990 void wake_up_new_task(struct task_struct *p)
2991 {
2992 struct rq_flags rf;
2993 struct rq *rq;
2994
2995 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
2996 p->state = TASK_RUNNING;
2997 #ifdef CONFIG_SMP
2998 /*
2999 * Fork balancing, do it here and not earlier because:
3000 * - cpus_ptr can change in the fork path
3001 * - any previously selected CPU might disappear through hotplug
3002 *
3003 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3004 * as we're not fully set-up yet.
3005 */
3006 p->recent_used_cpu = task_cpu(p);
3007 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
3008 #endif
3009 rq = __task_rq_lock(p, &rf);
3010 update_rq_clock(rq);
3011 post_init_entity_util_avg(p);
3012
3013 activate_task(rq, p, ENQUEUE_NOCLOCK);
3014 trace_sched_wakeup_new(p);
3015 check_preempt_curr(rq, p, WF_FORK);
3016 #ifdef CONFIG_SMP
3017 if (p->sched_class->task_woken) {
3018 /*
3019 * Nothing relies on rq->lock after this, so its fine to
3020 * drop it.
3021 */
3022 rq_unpin_lock(rq, &rf);
3023 p->sched_class->task_woken(rq, p);
3024 rq_repin_lock(rq, &rf);
3025 }
3026 #endif
3027 task_rq_unlock(rq, p, &rf);
3028 }
3029
3030 #ifdef CONFIG_PREEMPT_NOTIFIERS
3031
3032 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3033
3034 void preempt_notifier_inc(void)
3035 {
3036 static_branch_inc(&preempt_notifier_key);
3037 }
3038 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3039
3040 void preempt_notifier_dec(void)
3041 {
3042 static_branch_dec(&preempt_notifier_key);
3043 }
3044 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3045
3046 /**
3047 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3048 * @notifier: notifier struct to register
3049 */
3050 void preempt_notifier_register(struct preempt_notifier *notifier)
3051 {
3052 if (!static_branch_unlikely(&preempt_notifier_key))
3053 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3054
3055 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3056 }
3057 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3058
3059 /**
3060 * preempt_notifier_unregister - no longer interested in preemption notifications
3061 * @notifier: notifier struct to unregister
3062 *
3063 * This is *not* safe to call from within a preemption notifier.
3064 */
3065 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3066 {
3067 hlist_del(&notifier->link);
3068 }
3069 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3070
3071 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3072 {
3073 struct preempt_notifier *notifier;
3074
3075 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3076 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3077 }
3078
3079 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3080 {
3081 if (static_branch_unlikely(&preempt_notifier_key))
3082 __fire_sched_in_preempt_notifiers(curr);
3083 }
3084
3085 static void
3086 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3087 struct task_struct *next)
3088 {
3089 struct preempt_notifier *notifier;
3090
3091 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3092 notifier->ops->sched_out(notifier, next);
3093 }
3094
3095 static __always_inline void
3096 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3097 struct task_struct *next)
3098 {
3099 if (static_branch_unlikely(&preempt_notifier_key))
3100 __fire_sched_out_preempt_notifiers(curr, next);
3101 }
3102
3103 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3104
3105 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3106 {
3107 }
3108
3109 static inline void
3110 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3111 struct task_struct *next)
3112 {
3113 }
3114
3115 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3116
3117 static inline void prepare_task(struct task_struct *next)
3118 {
3119 #ifdef CONFIG_SMP
3120 /*
3121 * Claim the task as running, we do this before switching to it
3122 * such that any running task will have this set.
3123 */
3124 next->on_cpu = 1;
3125 #endif
3126 }
3127
3128 static inline void finish_task(struct task_struct *prev)
3129 {
3130 #ifdef CONFIG_SMP
3131 /*
3132 * After ->on_cpu is cleared, the task can be moved to a different CPU.
3133 * We must ensure this doesn't happen until the switch is completely
3134 * finished.
3135 *
3136 * In particular, the load of prev->state in finish_task_switch() must
3137 * happen before this.
3138 *
3139 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3140 */
3141 smp_store_release(&prev->on_cpu, 0);
3142 #endif
3143 }
3144
3145 static inline void
3146 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3147 {
3148 /*
3149 * Since the runqueue lock will be released by the next
3150 * task (which is an invalid locking op but in the case
3151 * of the scheduler it's an obvious special-case), so we
3152 * do an early lockdep release here:
3153 */
3154 rq_unpin_lock(rq, rf);
3155 spin_release(&rq->lock.dep_map, _THIS_IP_);
3156 #ifdef CONFIG_DEBUG_SPINLOCK
3157 /* this is a valid case when another task releases the spinlock */
3158 rq->lock.owner = next;
3159 #endif
3160 }
3161
3162 static inline void finish_lock_switch(struct rq *rq)
3163 {
3164 /*
3165 * If we are tracking spinlock dependencies then we have to
3166 * fix up the runqueue lock - which gets 'carried over' from
3167 * prev into current:
3168 */
3169 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3170 raw_spin_unlock_irq(&rq->lock);
3171 }
3172
3173 /*
3174 * NOP if the arch has not defined these:
3175 */
3176
3177 #ifndef prepare_arch_switch
3178 # define prepare_arch_switch(next) do { } while (0)
3179 #endif
3180
3181 #ifndef finish_arch_post_lock_switch
3182 # define finish_arch_post_lock_switch() do { } while (0)
3183 #endif
3184
3185 /**
3186 * prepare_task_switch - prepare to switch tasks
3187 * @rq: the runqueue preparing to switch
3188 * @prev: the current task that is being switched out
3189 * @next: the task we are going to switch to.
3190 *
3191 * This is called with the rq lock held and interrupts off. It must
3192 * be paired with a subsequent finish_task_switch after the context
3193 * switch.
3194 *
3195 * prepare_task_switch sets up locking and calls architecture specific
3196 * hooks.
3197 */
3198 static inline void
3199 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3200 struct task_struct *next)
3201 {
3202 kcov_prepare_switch(prev);
3203 sched_info_switch(rq, prev, next);
3204 perf_event_task_sched_out(prev, next);
3205 rseq_preempt(prev);
3206 fire_sched_out_preempt_notifiers(prev, next);
3207 prepare_task(next);
3208 prepare_arch_switch(next);
3209 }
3210
3211 /**
3212 * finish_task_switch - clean up after a task-switch
3213 * @prev: the thread we just switched away from.
3214 *
3215 * finish_task_switch must be called after the context switch, paired
3216 * with a prepare_task_switch call before the context switch.
3217 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3218 * and do any other architecture-specific cleanup actions.
3219 *
3220 * Note that we may have delayed dropping an mm in context_switch(). If
3221 * so, we finish that here outside of the runqueue lock. (Doing it
3222 * with the lock held can cause deadlocks; see schedule() for
3223 * details.)
3224 *
3225 * The context switch have flipped the stack from under us and restored the
3226 * local variables which were saved when this task called schedule() in the
3227 * past. prev == current is still correct but we need to recalculate this_rq
3228 * because prev may have moved to another CPU.
3229 */
3230 static struct rq *finish_task_switch(struct task_struct *prev)
3231 __releases(rq->lock)
3232 {
3233 struct rq *rq = this_rq();
3234 struct mm_struct *mm = rq->prev_mm;
3235 long prev_state;
3236
3237 /*
3238 * The previous task will have left us with a preempt_count of 2
3239 * because it left us after:
3240 *
3241 * schedule()
3242 * preempt_disable(); // 1
3243 * __schedule()
3244 * raw_spin_lock_irq(&rq->lock) // 2
3245 *
3246 * Also, see FORK_PREEMPT_COUNT.
3247 */
3248 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3249 "corrupted preempt_count: %s/%d/0x%x\n",
3250 current->comm, current->pid, preempt_count()))
3251 preempt_count_set(FORK_PREEMPT_COUNT);
3252
3253 rq->prev_mm = NULL;
3254
3255 /*
3256 * A task struct has one reference for the use as "current".
3257 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3258 * schedule one last time. The schedule call will never return, and
3259 * the scheduled task must drop that reference.
3260 *
3261 * We must observe prev->state before clearing prev->on_cpu (in
3262 * finish_task), otherwise a concurrent wakeup can get prev
3263 * running on another CPU and we could rave with its RUNNING -> DEAD
3264 * transition, resulting in a double drop.
3265 */
3266 prev_state = prev->state;
3267 vtime_task_switch(prev);
3268 perf_event_task_sched_in(prev, current);
3269 finish_task(prev);
3270 finish_lock_switch(rq);
3271 finish_arch_post_lock_switch();
3272 kcov_finish_switch(current);
3273
3274 fire_sched_in_preempt_notifiers(current);
3275 /*
3276 * When switching through a kernel thread, the loop in
3277 * membarrier_{private,global}_expedited() may have observed that
3278 * kernel thread and not issued an IPI. It is therefore possible to
3279 * schedule between user->kernel->user threads without passing though
3280 * switch_mm(). Membarrier requires a barrier after storing to
3281 * rq->curr, before returning to userspace, so provide them here:
3282 *
3283 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3284 * provided by mmdrop(),
3285 * - a sync_core for SYNC_CORE.
3286 */
3287 if (mm) {
3288 membarrier_mm_sync_core_before_usermode(mm);
3289 mmdrop(mm);
3290 }
3291 if (unlikely(prev_state == TASK_DEAD)) {
3292 if (prev->sched_class->task_dead)
3293 prev->sched_class->task_dead(prev);
3294
3295 /*
3296 * Remove function-return probe instances associated with this
3297 * task and put them back on the free list.
3298 */
3299 kprobe_flush_task(prev);
3300
3301 /* Task is done with its stack. */
3302 put_task_stack(prev);
3303
3304 put_task_struct_rcu_user(prev);
3305 }
3306
3307 tick_nohz_task_switch();
3308 return rq;
3309 }
3310
3311 #ifdef CONFIG_SMP
3312
3313 /* rq->lock is NOT held, but preemption is disabled */
3314 static void __balance_callback(struct rq *rq)
3315 {
3316 struct callback_head *head, *next;
3317 void (*func)(struct rq *rq);
3318 unsigned long flags;
3319
3320 raw_spin_lock_irqsave(&rq->lock, flags);
3321 head = rq->balance_callback;
3322 rq->balance_callback = NULL;
3323 while (head) {
3324 func = (void (*)(struct rq *))head->func;
3325 next = head->next;
3326 head->next = NULL;
3327 head = next;
3328
3329 func(rq);
3330 }
3331 raw_spin_unlock_irqrestore(&rq->lock, flags);
3332 }
3333
3334 static inline void balance_callback(struct rq *rq)
3335 {
3336 if (unlikely(rq->balance_callback))
3337 __balance_callback(rq);
3338 }
3339
3340 #else
3341
3342 static inline void balance_callback(struct rq *rq)
3343 {
3344 }
3345
3346 #endif
3347
3348 /**
3349 * schedule_tail - first thing a freshly forked thread must call.
3350 * @prev: the thread we just switched away from.
3351 */
3352 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3353 __releases(rq->lock)
3354 {
3355 struct rq *rq;
3356
3357 /*
3358 * New tasks start with FORK_PREEMPT_COUNT, see there and
3359 * finish_task_switch() for details.
3360 *
3361 * finish_task_switch() will drop rq->lock() and lower preempt_count
3362 * and the preempt_enable() will end up enabling preemption (on
3363 * PREEMPT_COUNT kernels).
3364 */
3365
3366 rq = finish_task_switch(prev);
3367 balance_callback(rq);
3368 preempt_enable();
3369
3370 if (current->set_child_tid)
3371 put_user(task_pid_vnr(current), current->set_child_tid);
3372
3373 calculate_sigpending();
3374 }
3375
3376 /*
3377 * context_switch - switch to the new MM and the new thread's register state.
3378 */
3379 static __always_inline struct rq *
3380 context_switch(struct rq *rq, struct task_struct *prev,
3381 struct task_struct *next, struct rq_flags *rf)
3382 {
3383 prepare_task_switch(rq, prev, next);
3384
3385 /*
3386 * For paravirt, this is coupled with an exit in switch_to to
3387 * combine the page table reload and the switch backend into
3388 * one hypercall.
3389 */
3390 arch_start_context_switch(prev);
3391
3392 /*
3393 * kernel -> kernel lazy + transfer active
3394 * user -> kernel lazy + mmgrab() active
3395 *
3396 * kernel -> user switch + mmdrop() active
3397 * user -> user switch
3398 */
3399 if (!next->mm) { // to kernel
3400 enter_lazy_tlb(prev->active_mm, next);
3401
3402 next->active_mm = prev->active_mm;
3403 if (prev->mm) // from user
3404 mmgrab(prev->active_mm);
3405 else
3406 prev->active_mm = NULL;
3407 } else { // to user
3408 membarrier_switch_mm(rq, prev->active_mm, next->mm);
3409 /*
3410 * sys_membarrier() requires an smp_mb() between setting
3411 * rq->curr / membarrier_switch_mm() and returning to userspace.
3412 *
3413 * The below provides this either through switch_mm(), or in
3414 * case 'prev->active_mm == next->mm' through
3415 * finish_task_switch()'s mmdrop().
3416 */
3417 switch_mm_irqs_off(prev->active_mm, next->mm, next);
3418
3419 if (!prev->mm) { // from kernel
3420 /* will mmdrop() in finish_task_switch(). */
3421 rq->prev_mm = prev->active_mm;
3422 prev->active_mm = NULL;
3423 }
3424 }
3425
3426 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3427
3428 prepare_lock_switch(rq, next, rf);
3429
3430 /* Here we just switch the register state and the stack. */
3431 switch_to(prev, next, prev);
3432 barrier();
3433
3434 return finish_task_switch(prev);
3435 }
3436
3437 /*
3438 * nr_running and nr_context_switches:
3439 *
3440 * externally visible scheduler statistics: current number of runnable
3441 * threads, total number of context switches performed since bootup.
3442 */
3443 unsigned long nr_running(void)
3444 {
3445 unsigned long i, sum = 0;
3446
3447 for_each_online_cpu(i)
3448 sum += cpu_rq(i)->nr_running;
3449
3450 return sum;
3451 }
3452
3453 /*
3454 * Check if only the current task is running on the CPU.
3455 *
3456 * Caution: this function does not check that the caller has disabled
3457 * preemption, thus the result might have a time-of-check-to-time-of-use
3458 * race. The caller is responsible to use it correctly, for example:
3459 *
3460 * - from a non-preemptible section (of course)
3461 *
3462 * - from a thread that is bound to a single CPU
3463 *
3464 * - in a loop with very short iterations (e.g. a polling loop)
3465 */
3466 bool single_task_running(void)
3467 {
3468 return raw_rq()->nr_running == 1;
3469 }
3470 EXPORT_SYMBOL(single_task_running);
3471
3472 unsigned long long nr_context_switches(void)
3473 {
3474 int i;
3475 unsigned long long sum = 0;
3476
3477 for_each_possible_cpu(i)
3478 sum += cpu_rq(i)->nr_switches;
3479
3480 return sum;
3481 }
3482
3483 /*
3484 * Consumers of these two interfaces, like for example the cpuidle menu
3485 * governor, are using nonsensical data. Preferring shallow idle state selection
3486 * for a CPU that has IO-wait which might not even end up running the task when
3487 * it does become runnable.
3488 */
3489
3490 unsigned long nr_iowait_cpu(int cpu)
3491 {
3492 return atomic_read(&cpu_rq(cpu)->nr_iowait);
3493 }
3494
3495 /*
3496 * IO-wait accounting, and how its mostly bollocks (on SMP).
3497 *
3498 * The idea behind IO-wait account is to account the idle time that we could
3499 * have spend running if it were not for IO. That is, if we were to improve the
3500 * storage performance, we'd have a proportional reduction in IO-wait time.
3501 *
3502 * This all works nicely on UP, where, when a task blocks on IO, we account
3503 * idle time as IO-wait, because if the storage were faster, it could've been
3504 * running and we'd not be idle.
3505 *
3506 * This has been extended to SMP, by doing the same for each CPU. This however
3507 * is broken.
3508 *
3509 * Imagine for instance the case where two tasks block on one CPU, only the one
3510 * CPU will have IO-wait accounted, while the other has regular idle. Even
3511 * though, if the storage were faster, both could've ran at the same time,
3512 * utilising both CPUs.
3513 *
3514 * This means, that when looking globally, the current IO-wait accounting on
3515 * SMP is a lower bound, by reason of under accounting.
3516 *
3517 * Worse, since the numbers are provided per CPU, they are sometimes
3518 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
3519 * associated with any one particular CPU, it can wake to another CPU than it
3520 * blocked on. This means the per CPU IO-wait number is meaningless.
3521 *
3522 * Task CPU affinities can make all that even more 'interesting'.
3523 */
3524
3525 unsigned long nr_iowait(void)
3526 {
3527 unsigned long i, sum = 0;
3528
3529 for_each_possible_cpu(i)
3530 sum += nr_iowait_cpu(i);
3531
3532 return sum;
3533 }
3534
3535 #ifdef CONFIG_SMP
3536
3537 /*
3538 * sched_exec - execve() is a valuable balancing opportunity, because at
3539 * this point the task has the smallest effective memory and cache footprint.
3540 */
3541 void sched_exec(void)
3542 {
3543 struct task_struct *p = current;
3544 unsigned long flags;
3545 int dest_cpu;
3546
3547 raw_spin_lock_irqsave(&p->pi_lock, flags);
3548 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
3549 if (dest_cpu == smp_processor_id())
3550 goto unlock;
3551
3552 if (likely(cpu_active(dest_cpu))) {
3553 struct migration_arg arg = { p, dest_cpu };
3554
3555 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3556 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3557 return;
3558 }
3559 unlock:
3560 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3561 }
3562
3563 #endif
3564
3565 DEFINE_PER_CPU(struct kernel_stat, kstat);
3566 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
3567
3568 EXPORT_PER_CPU_SYMBOL(kstat);
3569 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
3570
3571 /*
3572 * The function fair_sched_class.update_curr accesses the struct curr
3573 * and its field curr->exec_start; when called from task_sched_runtime(),
3574 * we observe a high rate of cache misses in practice.
3575 * Prefetching this data results in improved performance.
3576 */
3577 static inline void prefetch_curr_exec_start(struct task_struct *p)
3578 {
3579 #ifdef CONFIG_FAIR_GROUP_SCHED
3580 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
3581 #else
3582 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
3583 #endif
3584 prefetch(curr);
3585 prefetch(&curr->exec_start);
3586 }
3587
3588 /*
3589 * Return accounted runtime for the task.
3590 * In case the task is currently running, return the runtime plus current's
3591 * pending runtime that have not been accounted yet.
3592 */
3593 unsigned long long task_sched_runtime(struct task_struct *p)
3594 {
3595 struct rq_flags rf;
3596 struct rq *rq;
3597 u64 ns;
3598
3599 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3600 /*
3601 * 64-bit doesn't need locks to atomically read a 64-bit value.
3602 * So we have a optimization chance when the task's delta_exec is 0.
3603 * Reading ->on_cpu is racy, but this is ok.
3604 *
3605 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3606 * If we race with it entering CPU, unaccounted time is 0. This is
3607 * indistinguishable from the read occurring a few cycles earlier.
3608 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3609 * been accounted, so we're correct here as well.
3610 */
3611 if (!p->on_cpu || !task_on_rq_queued(p))
3612 return p->se.sum_exec_runtime;
3613 #endif
3614
3615 rq = task_rq_lock(p, &rf);
3616 /*
3617 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3618 * project cycles that may never be accounted to this
3619 * thread, breaking clock_gettime().
3620 */
3621 if (task_current(rq, p) && task_on_rq_queued(p)) {
3622 prefetch_curr_exec_start(p);
3623 update_rq_clock(rq);
3624 p->sched_class->update_curr(rq);
3625 }
3626 ns = p->se.sum_exec_runtime;
3627 task_rq_unlock(rq, p, &rf);
3628
3629 return ns;
3630 }
3631
3632 DEFINE_PER_CPU(unsigned long, thermal_pressure);
3633
3634 void arch_set_thermal_pressure(struct cpumask *cpus,
3635 unsigned long th_pressure)
3636 {
3637 int cpu;
3638
3639 for_each_cpu(cpu, cpus)
3640 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
3641 }
3642
3643 /*
3644 * This function gets called by the timer code, with HZ frequency.
3645 * We call it with interrupts disabled.
3646 */
3647 void scheduler_tick(void)
3648 {
3649 int cpu = smp_processor_id();
3650 struct rq *rq = cpu_rq(cpu);
3651 struct task_struct *curr = rq->curr;
3652 struct rq_flags rf;
3653 unsigned long thermal_pressure;
3654
3655 arch_scale_freq_tick();
3656 sched_clock_tick();
3657
3658 rq_lock(rq, &rf);
3659
3660 update_rq_clock(rq);
3661 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
3662 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
3663 curr->sched_class->task_tick(rq, curr, 0);
3664 calc_global_load_tick(rq);
3665 psi_task_tick(rq);
3666
3667 rq_unlock(rq, &rf);
3668
3669 perf_event_task_tick();
3670
3671 #ifdef CONFIG_SMP
3672 rq->idle_balance = idle_cpu(cpu);
3673 trigger_load_balance(rq);
3674 #endif
3675 }
3676
3677 #ifdef CONFIG_NO_HZ_FULL
3678
3679 struct tick_work {
3680 int cpu;
3681 atomic_t state;
3682 struct delayed_work work;
3683 };
3684 /* Values for ->state, see diagram below. */
3685 #define TICK_SCHED_REMOTE_OFFLINE 0
3686 #define TICK_SCHED_REMOTE_OFFLINING 1
3687 #define TICK_SCHED_REMOTE_RUNNING 2
3688
3689 /*
3690 * State diagram for ->state:
3691 *
3692 *
3693 * TICK_SCHED_REMOTE_OFFLINE
3694 * | ^
3695 * | |
3696 * | | sched_tick_remote()
3697 * | |
3698 * | |
3699 * +--TICK_SCHED_REMOTE_OFFLINING
3700 * | ^
3701 * | |
3702 * sched_tick_start() | | sched_tick_stop()
3703 * | |
3704 * V |
3705 * TICK_SCHED_REMOTE_RUNNING
3706 *
3707 *
3708 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
3709 * and sched_tick_start() are happy to leave the state in RUNNING.
3710 */
3711
3712 static struct tick_work __percpu *tick_work_cpu;
3713
3714 static void sched_tick_remote(struct work_struct *work)
3715 {
3716 struct delayed_work *dwork = to_delayed_work(work);
3717 struct tick_work *twork = container_of(dwork, struct tick_work, work);
3718 int cpu = twork->cpu;
3719 struct rq *rq = cpu_rq(cpu);
3720 struct task_struct *curr;
3721 struct rq_flags rf;
3722 u64 delta;
3723 int os;
3724
3725 /*
3726 * Handle the tick only if it appears the remote CPU is running in full
3727 * dynticks mode. The check is racy by nature, but missing a tick or
3728 * having one too much is no big deal because the scheduler tick updates
3729 * statistics and checks timeslices in a time-independent way, regardless
3730 * of when exactly it is running.
3731 */
3732 if (!tick_nohz_tick_stopped_cpu(cpu))
3733 goto out_requeue;
3734
3735 rq_lock_irq(rq, &rf);
3736 curr = rq->curr;
3737 if (cpu_is_offline(cpu))
3738 goto out_unlock;
3739
3740 update_rq_clock(rq);
3741
3742 if (!is_idle_task(curr)) {
3743 /*
3744 * Make sure the next tick runs within a reasonable
3745 * amount of time.
3746 */
3747 delta = rq_clock_task(rq) - curr->se.exec_start;
3748 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
3749 }
3750 curr->sched_class->task_tick(rq, curr, 0);
3751
3752 calc_load_nohz_remote(rq);
3753 out_unlock:
3754 rq_unlock_irq(rq, &rf);
3755 out_requeue:
3756
3757 /*
3758 * Run the remote tick once per second (1Hz). This arbitrary
3759 * frequency is large enough to avoid overload but short enough
3760 * to keep scheduler internal stats reasonably up to date. But
3761 * first update state to reflect hotplug activity if required.
3762 */
3763 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
3764 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
3765 if (os == TICK_SCHED_REMOTE_RUNNING)
3766 queue_delayed_work(system_unbound_wq, dwork, HZ);
3767 }
3768
3769 static void sched_tick_start(int cpu)
3770 {
3771 int os;
3772 struct tick_work *twork;
3773
3774 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3775 return;
3776
3777 WARN_ON_ONCE(!tick_work_cpu);
3778
3779 twork = per_cpu_ptr(tick_work_cpu, cpu);
3780 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
3781 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
3782 if (os == TICK_SCHED_REMOTE_OFFLINE) {
3783 twork->cpu = cpu;
3784 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
3785 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
3786 }
3787 }
3788
3789 #ifdef CONFIG_HOTPLUG_CPU
3790 static void sched_tick_stop(int cpu)
3791 {
3792 struct tick_work *twork;
3793 int os;
3794
3795 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
3796 return;
3797
3798 WARN_ON_ONCE(!tick_work_cpu);
3799
3800 twork = per_cpu_ptr(tick_work_cpu, cpu);
3801 /* There cannot be competing actions, but don't rely on stop-machine. */
3802 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
3803 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
3804 /* Don't cancel, as this would mess up the state machine. */
3805 }
3806 #endif /* CONFIG_HOTPLUG_CPU */
3807
3808 int __init sched_tick_offload_init(void)
3809 {
3810 tick_work_cpu = alloc_percpu(struct tick_work);
3811 BUG_ON(!tick_work_cpu);
3812 return 0;
3813 }
3814
3815 #else /* !CONFIG_NO_HZ_FULL */
3816 static inline void sched_tick_start(int cpu) { }
3817 static inline void sched_tick_stop(int cpu) { }
3818 #endif
3819
3820 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
3821 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3822 /*
3823 * If the value passed in is equal to the current preempt count
3824 * then we just disabled preemption. Start timing the latency.
3825 */
3826 static inline void preempt_latency_start(int val)
3827 {
3828 if (preempt_count() == val) {
3829 unsigned long ip = get_lock_parent_ip();
3830 #ifdef CONFIG_DEBUG_PREEMPT
3831 current->preempt_disable_ip = ip;
3832 #endif
3833 trace_preempt_off(CALLER_ADDR0, ip);
3834 }
3835 }
3836
3837 void preempt_count_add(int val)
3838 {
3839 #ifdef CONFIG_DEBUG_PREEMPT
3840 /*
3841 * Underflow?
3842 */
3843 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3844 return;
3845 #endif
3846 __preempt_count_add(val);
3847 #ifdef CONFIG_DEBUG_PREEMPT
3848 /*
3849 * Spinlock count overflowing soon?
3850 */
3851 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3852 PREEMPT_MASK - 10);
3853 #endif
3854 preempt_latency_start(val);
3855 }
3856 EXPORT_SYMBOL(preempt_count_add);
3857 NOKPROBE_SYMBOL(preempt_count_add);
3858
3859 /*
3860 * If the value passed in equals to the current preempt count
3861 * then we just enabled preemption. Stop timing the latency.
3862 */
3863 static inline void preempt_latency_stop(int val)
3864 {
3865 if (preempt_count() == val)
3866 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
3867 }
3868
3869 void preempt_count_sub(int val)
3870 {
3871 #ifdef CONFIG_DEBUG_PREEMPT
3872 /*
3873 * Underflow?
3874 */
3875 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3876 return;
3877 /*
3878 * Is the spinlock portion underflowing?
3879 */
3880 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3881 !(preempt_count() & PREEMPT_MASK)))
3882 return;
3883 #endif
3884
3885 preempt_latency_stop(val);
3886 __preempt_count_sub(val);
3887 }
3888 EXPORT_SYMBOL(preempt_count_sub);
3889 NOKPROBE_SYMBOL(preempt_count_sub);
3890
3891 #else
3892 static inline void preempt_latency_start(int val) { }
3893 static inline void preempt_latency_stop(int val) { }
3894 #endif
3895
3896 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
3897 {
3898 #ifdef CONFIG_DEBUG_PREEMPT
3899 return p->preempt_disable_ip;
3900 #else
3901 return 0;
3902 #endif
3903 }
3904
3905 /*
3906 * Print scheduling while atomic bug:
3907 */
3908 static noinline void __schedule_bug(struct task_struct *prev)
3909 {
3910 /* Save this before calling printk(), since that will clobber it */
3911 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
3912
3913 if (oops_in_progress)
3914 return;
3915
3916 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3917 prev->comm, prev->pid, preempt_count());
3918
3919 debug_show_held_locks(prev);
3920 print_modules();
3921 if (irqs_disabled())
3922 print_irqtrace_events(prev);
3923 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
3924 && in_atomic_preempt_off()) {
3925 pr_err("Preemption disabled at:");
3926 print_ip_sym(preempt_disable_ip);
3927 pr_cont("\n");
3928 }
3929 if (panic_on_warn)
3930 panic("scheduling while atomic\n");
3931
3932 dump_stack();
3933 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3934 }
3935
3936 /*
3937 * Various schedule()-time debugging checks and statistics:
3938 */
3939 static inline void schedule_debug(struct task_struct *prev, bool preempt)
3940 {
3941 #ifdef CONFIG_SCHED_STACK_END_CHECK
3942 if (task_stack_end_corrupted(prev))
3943 panic("corrupted stack end detected inside scheduler\n");
3944
3945 if (task_scs_end_corrupted(prev))
3946 panic("corrupted shadow stack detected inside scheduler\n");
3947 #endif
3948
3949 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
3950 if (!preempt && prev->state && prev->non_block_count) {
3951 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
3952 prev->comm, prev->pid, prev->non_block_count);
3953 dump_stack();
3954 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
3955 }
3956 #endif
3957
3958 if (unlikely(in_atomic_preempt_off())) {
3959 __schedule_bug(prev);
3960 preempt_count_set(PREEMPT_DISABLED);
3961 }
3962 rcu_sleep_check();
3963
3964 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3965
3966 schedstat_inc(this_rq()->sched_count);
3967 }
3968
3969 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
3970 struct rq_flags *rf)
3971 {
3972 #ifdef CONFIG_SMP
3973 const struct sched_class *class;
3974 /*
3975 * We must do the balancing pass before put_prev_task(), such
3976 * that when we release the rq->lock the task is in the same
3977 * state as before we took rq->lock.
3978 *
3979 * We can terminate the balance pass as soon as we know there is
3980 * a runnable task of @class priority or higher.
3981 */
3982 for_class_range(class, prev->sched_class, &idle_sched_class) {
3983 if (class->balance(rq, prev, rf))
3984 break;
3985 }
3986 #endif
3987
3988 put_prev_task(rq, prev);
3989 }
3990
3991 /*
3992 * Pick up the highest-prio task:
3993 */
3994 static inline struct task_struct *
3995 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
3996 {
3997 const struct sched_class *class;
3998 struct task_struct *p;
3999
4000 /*
4001 * Optimization: we know that if all tasks are in the fair class we can
4002 * call that function directly, but only if the @prev task wasn't of a
4003 * higher scheduling class, because otherwise those loose the
4004 * opportunity to pull in more work from other CPUs.
4005 */
4006 if (likely((prev->sched_class == &idle_sched_class ||
4007 prev->sched_class == &fair_sched_class) &&
4008 rq->nr_running == rq->cfs.h_nr_running)) {
4009
4010 p = pick_next_task_fair(rq, prev, rf);
4011 if (unlikely(p == RETRY_TASK))
4012 goto restart;
4013
4014 /* Assumes fair_sched_class->next == idle_sched_class */
4015 if (!p) {
4016 put_prev_task(rq, prev);
4017 p = pick_next_task_idle(rq);
4018 }
4019
4020 return p;
4021 }
4022
4023 restart:
4024 put_prev_task_balance(rq, prev, rf);
4025
4026 for_each_class(class) {
4027 p = class->pick_next_task(rq);
4028 if (p)
4029 return p;
4030 }
4031
4032 /* The idle class should always have a runnable task: */
4033 BUG();
4034 }
4035
4036 /*
4037 * __schedule() is the main scheduler function.
4038 *
4039 * The main means of driving the scheduler and thus entering this function are:
4040 *
4041 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4042 *
4043 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4044 * paths. For example, see arch/x86/entry_64.S.
4045 *
4046 * To drive preemption between tasks, the scheduler sets the flag in timer
4047 * interrupt handler scheduler_tick().
4048 *
4049 * 3. Wakeups don't really cause entry into schedule(). They add a
4050 * task to the run-queue and that's it.
4051 *
4052 * Now, if the new task added to the run-queue preempts the current
4053 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4054 * called on the nearest possible occasion:
4055 *
4056 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4057 *
4058 * - in syscall or exception context, at the next outmost
4059 * preempt_enable(). (this might be as soon as the wake_up()'s
4060 * spin_unlock()!)
4061 *
4062 * - in IRQ context, return from interrupt-handler to
4063 * preemptible context
4064 *
4065 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4066 * then at the next:
4067 *
4068 * - cond_resched() call
4069 * - explicit schedule() call
4070 * - return from syscall or exception to user-space
4071 * - return from interrupt-handler to user-space
4072 *
4073 * WARNING: must be called with preemption disabled!
4074 */
4075 static void __sched notrace __schedule(bool preempt)
4076 {
4077 struct task_struct *prev, *next;
4078 unsigned long *switch_count;
4079 struct rq_flags rf;
4080 struct rq *rq;
4081 int cpu;
4082
4083 cpu = smp_processor_id();
4084 rq = cpu_rq(cpu);
4085 prev = rq->curr;
4086
4087 schedule_debug(prev, preempt);
4088
4089 if (sched_feat(HRTICK))
4090 hrtick_clear(rq);
4091
4092 local_irq_disable();
4093 rcu_note_context_switch(preempt);
4094
4095 /*
4096 * Make sure that signal_pending_state()->signal_pending() below
4097 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4098 * done by the caller to avoid the race with signal_wake_up().
4099 *
4100 * The membarrier system call requires a full memory barrier
4101 * after coming from user-space, before storing to rq->curr.
4102 */
4103 rq_lock(rq, &rf);
4104 smp_mb__after_spinlock();
4105
4106 /* Promote REQ to ACT */
4107 rq->clock_update_flags <<= 1;
4108 update_rq_clock(rq);
4109
4110 switch_count = &prev->nivcsw;
4111 if (!preempt && prev->state) {
4112 if (signal_pending_state(prev->state, prev)) {
4113 prev->state = TASK_RUNNING;
4114 } else {
4115 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4116
4117 if (prev->in_iowait) {
4118 atomic_inc(&rq->nr_iowait);
4119 delayacct_blkio_start();
4120 }
4121 }
4122 switch_count = &prev->nvcsw;
4123 }
4124
4125 next = pick_next_task(rq, prev, &rf);
4126 clear_tsk_need_resched(prev);
4127 clear_preempt_need_resched();
4128
4129 if (likely(prev != next)) {
4130 rq->nr_switches++;
4131 /*
4132 * RCU users of rcu_dereference(rq->curr) may not see
4133 * changes to task_struct made by pick_next_task().
4134 */
4135 RCU_INIT_POINTER(rq->curr, next);
4136 /*
4137 * The membarrier system call requires each architecture
4138 * to have a full memory barrier after updating
4139 * rq->curr, before returning to user-space.
4140 *
4141 * Here are the schemes providing that barrier on the
4142 * various architectures:
4143 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4144 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4145 * - finish_lock_switch() for weakly-ordered
4146 * architectures where spin_unlock is a full barrier,
4147 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4148 * is a RELEASE barrier),
4149 */
4150 ++*switch_count;
4151
4152 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4153
4154 trace_sched_switch(preempt, prev, next);
4155
4156 /* Also unlocks the rq: */
4157 rq = context_switch(rq, prev, next, &rf);
4158 } else {
4159 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4160 rq_unlock_irq(rq, &rf);
4161 }
4162
4163 balance_callback(rq);
4164 }
4165
4166 void __noreturn do_task_dead(void)
4167 {
4168 /* Causes final put_task_struct in finish_task_switch(): */
4169 set_special_state(TASK_DEAD);
4170
4171 /* Tell freezer to ignore us: */
4172 current->flags |= PF_NOFREEZE;
4173
4174 __schedule(false);
4175 BUG();
4176
4177 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4178 for (;;)
4179 cpu_relax();
4180 }
4181
4182 static inline void sched_submit_work(struct task_struct *tsk)
4183 {
4184 if (!tsk->state)
4185 return;
4186
4187 /*
4188 * If a worker went to sleep, notify and ask workqueue whether
4189 * it wants to wake up a task to maintain concurrency.
4190 * As this function is called inside the schedule() context,
4191 * we disable preemption to avoid it calling schedule() again
4192 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4193 * requires it.
4194 */
4195 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4196 preempt_disable();
4197 if (tsk->flags & PF_WQ_WORKER)
4198 wq_worker_sleeping(tsk);
4199 else
4200 io_wq_worker_sleeping(tsk);
4201 preempt_enable_no_resched();
4202 }
4203
4204 if (tsk_is_pi_blocked(tsk))
4205 return;
4206
4207 /*
4208 * If we are going to sleep and we have plugged IO queued,
4209 * make sure to submit it to avoid deadlocks.
4210 */
4211 if (blk_needs_flush_plug(tsk))
4212 blk_schedule_flush_plug(tsk);
4213 }
4214
4215 static void sched_update_worker(struct task_struct *tsk)
4216 {
4217 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4218 if (tsk->flags & PF_WQ_WORKER)
4219 wq_worker_running(tsk);
4220 else
4221 io_wq_worker_running(tsk);
4222 }
4223 }
4224
4225 asmlinkage __visible void __sched schedule(void)
4226 {
4227 struct task_struct *tsk = current;
4228
4229 sched_submit_work(tsk);
4230 do {
4231 preempt_disable();
4232 __schedule(false);
4233 sched_preempt_enable_no_resched();
4234 } while (need_resched());
4235 sched_update_worker(tsk);
4236 }
4237 EXPORT_SYMBOL(schedule);
4238
4239 /*
4240 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4241 * state (have scheduled out non-voluntarily) by making sure that all
4242 * tasks have either left the run queue or have gone into user space.
4243 * As idle tasks do not do either, they must not ever be preempted
4244 * (schedule out non-voluntarily).
4245 *
4246 * schedule_idle() is similar to schedule_preempt_disable() except that it
4247 * never enables preemption because it does not call sched_submit_work().
4248 */
4249 void __sched schedule_idle(void)
4250 {
4251 /*
4252 * As this skips calling sched_submit_work(), which the idle task does
4253 * regardless because that function is a nop when the task is in a
4254 * TASK_RUNNING state, make sure this isn't used someplace that the
4255 * current task can be in any other state. Note, idle is always in the
4256 * TASK_RUNNING state.
4257 */
4258 WARN_ON_ONCE(current->state);
4259 do {
4260 __schedule(false);
4261 } while (need_resched());
4262 }
4263
4264 #ifdef CONFIG_CONTEXT_TRACKING
4265 asmlinkage __visible void __sched schedule_user(void)
4266 {
4267 /*
4268 * If we come here after a random call to set_need_resched(),
4269 * or we have been woken up remotely but the IPI has not yet arrived,
4270 * we haven't yet exited the RCU idle mode. Do it here manually until
4271 * we find a better solution.
4272 *
4273 * NB: There are buggy callers of this function. Ideally we
4274 * should warn if prev_state != CONTEXT_USER, but that will trigger
4275 * too frequently to make sense yet.
4276 */
4277 enum ctx_state prev_state = exception_enter();
4278 schedule();
4279 exception_exit(prev_state);
4280 }
4281 #endif
4282
4283 /**
4284 * schedule_preempt_disabled - called with preemption disabled
4285 *
4286 * Returns with preemption disabled. Note: preempt_count must be 1
4287 */
4288 void __sched schedule_preempt_disabled(void)
4289 {
4290 sched_preempt_enable_no_resched();
4291 schedule();
4292 preempt_disable();
4293 }
4294
4295 static void __sched notrace preempt_schedule_common(void)
4296 {
4297 do {
4298 /*
4299 * Because the function tracer can trace preempt_count_sub()
4300 * and it also uses preempt_enable/disable_notrace(), if
4301 * NEED_RESCHED is set, the preempt_enable_notrace() called
4302 * by the function tracer will call this function again and
4303 * cause infinite recursion.
4304 *
4305 * Preemption must be disabled here before the function
4306 * tracer can trace. Break up preempt_disable() into two
4307 * calls. One to disable preemption without fear of being
4308 * traced. The other to still record the preemption latency,
4309 * which can also be traced by the function tracer.
4310 */
4311 preempt_disable_notrace();
4312 preempt_latency_start(1);
4313 __schedule(true);
4314 preempt_latency_stop(1);
4315 preempt_enable_no_resched_notrace();
4316
4317 /*
4318 * Check again in case we missed a preemption opportunity
4319 * between schedule and now.
4320 */
4321 } while (need_resched());
4322 }
4323
4324 #ifdef CONFIG_PREEMPTION
4325 /*
4326 * This is the entry point to schedule() from in-kernel preemption
4327 * off of preempt_enable.
4328 */
4329 asmlinkage __visible void __sched notrace preempt_schedule(void)
4330 {
4331 /*
4332 * If there is a non-zero preempt_count or interrupts are disabled,
4333 * we do not want to preempt the current task. Just return..
4334 */
4335 if (likely(!preemptible()))
4336 return;
4337
4338 preempt_schedule_common();
4339 }
4340 NOKPROBE_SYMBOL(preempt_schedule);
4341 EXPORT_SYMBOL(preempt_schedule);
4342
4343 /**
4344 * preempt_schedule_notrace - preempt_schedule called by tracing
4345 *
4346 * The tracing infrastructure uses preempt_enable_notrace to prevent
4347 * recursion and tracing preempt enabling caused by the tracing
4348 * infrastructure itself. But as tracing can happen in areas coming
4349 * from userspace or just about to enter userspace, a preempt enable
4350 * can occur before user_exit() is called. This will cause the scheduler
4351 * to be called when the system is still in usermode.
4352 *
4353 * To prevent this, the preempt_enable_notrace will use this function
4354 * instead of preempt_schedule() to exit user context if needed before
4355 * calling the scheduler.
4356 */
4357 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4358 {
4359 enum ctx_state prev_ctx;
4360
4361 if (likely(!preemptible()))
4362 return;
4363
4364 do {
4365 /*
4366 * Because the function tracer can trace preempt_count_sub()
4367 * and it also uses preempt_enable/disable_notrace(), if
4368 * NEED_RESCHED is set, the preempt_enable_notrace() called
4369 * by the function tracer will call this function again and
4370 * cause infinite recursion.
4371 *
4372 * Preemption must be disabled here before the function
4373 * tracer can trace. Break up preempt_disable() into two
4374 * calls. One to disable preemption without fear of being
4375 * traced. The other to still record the preemption latency,
4376 * which can also be traced by the function tracer.
4377 */
4378 preempt_disable_notrace();
4379 preempt_latency_start(1);
4380 /*
4381 * Needs preempt disabled in case user_exit() is traced
4382 * and the tracer calls preempt_enable_notrace() causing
4383 * an infinite recursion.
4384 */
4385 prev_ctx = exception_enter();
4386 __schedule(true);
4387 exception_exit(prev_ctx);
4388
4389 preempt_latency_stop(1);
4390 preempt_enable_no_resched_notrace();
4391 } while (need_resched());
4392 }
4393 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4394
4395 #endif /* CONFIG_PREEMPTION */
4396
4397 /*
4398 * This is the entry point to schedule() from kernel preemption
4399 * off of irq context.
4400 * Note, that this is called and return with irqs disabled. This will
4401 * protect us against recursive calling from irq.
4402 */
4403 asmlinkage __visible void __sched preempt_schedule_irq(void)
4404 {
4405 enum ctx_state prev_state;
4406
4407 /* Catch callers which need to be fixed */
4408 BUG_ON(preempt_count() || !irqs_disabled());
4409
4410 prev_state = exception_enter();
4411
4412 do {
4413 preempt_disable();
4414 local_irq_enable();
4415 __schedule(true);
4416 local_irq_disable();
4417 sched_preempt_enable_no_resched();
4418 } while (need_resched());
4419
4420 exception_exit(prev_state);
4421 }
4422
4423 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
4424 void *key)
4425 {
4426 return try_to_wake_up(curr->private, mode, wake_flags);
4427 }
4428 EXPORT_SYMBOL(default_wake_function);
4429
4430 #ifdef CONFIG_RT_MUTEXES
4431
4432 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
4433 {
4434 if (pi_task)
4435 prio = min(prio, pi_task->prio);
4436
4437 return prio;
4438 }
4439
4440 static inline int rt_effective_prio(struct task_struct *p, int prio)
4441 {
4442 struct task_struct *pi_task = rt_mutex_get_top_task(p);
4443
4444 return __rt_effective_prio(pi_task, prio);
4445 }
4446
4447 /*
4448 * rt_mutex_setprio - set the current priority of a task
4449 * @p: task to boost
4450 * @pi_task: donor task
4451 *
4452 * This function changes the 'effective' priority of a task. It does
4453 * not touch ->normal_prio like __setscheduler().
4454 *
4455 * Used by the rt_mutex code to implement priority inheritance
4456 * logic. Call site only calls if the priority of the task changed.
4457 */
4458 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
4459 {
4460 int prio, oldprio, queued, running, queue_flag =
4461 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4462 const struct sched_class *prev_class;
4463 struct rq_flags rf;
4464 struct rq *rq;
4465
4466 /* XXX used to be waiter->prio, not waiter->task->prio */
4467 prio = __rt_effective_prio(pi_task, p->normal_prio);
4468
4469 /*
4470 * If nothing changed; bail early.
4471 */
4472 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
4473 return;
4474
4475 rq = __task_rq_lock(p, &rf);
4476 update_rq_clock(rq);
4477 /*
4478 * Set under pi_lock && rq->lock, such that the value can be used under
4479 * either lock.
4480 *
4481 * Note that there is loads of tricky to make this pointer cache work
4482 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
4483 * ensure a task is de-boosted (pi_task is set to NULL) before the
4484 * task is allowed to run again (and can exit). This ensures the pointer
4485 * points to a blocked task -- which guaratees the task is present.
4486 */
4487 p->pi_top_task = pi_task;
4488
4489 /*
4490 * For FIFO/RR we only need to set prio, if that matches we're done.
4491 */
4492 if (prio == p->prio && !dl_prio(prio))
4493 goto out_unlock;
4494
4495 /*
4496 * Idle task boosting is a nono in general. There is one
4497 * exception, when PREEMPT_RT and NOHZ is active:
4498 *
4499 * The idle task calls get_next_timer_interrupt() and holds
4500 * the timer wheel base->lock on the CPU and another CPU wants
4501 * to access the timer (probably to cancel it). We can safely
4502 * ignore the boosting request, as the idle CPU runs this code
4503 * with interrupts disabled and will complete the lock
4504 * protected section without being interrupted. So there is no
4505 * real need to boost.
4506 */
4507 if (unlikely(p == rq->idle)) {
4508 WARN_ON(p != rq->curr);
4509 WARN_ON(p->pi_blocked_on);
4510 goto out_unlock;
4511 }
4512
4513 trace_sched_pi_setprio(p, pi_task);
4514 oldprio = p->prio;
4515
4516 if (oldprio == prio)
4517 queue_flag &= ~DEQUEUE_MOVE;
4518
4519 prev_class = p->sched_class;
4520 queued = task_on_rq_queued(p);
4521 running = task_current(rq, p);
4522 if (queued)
4523 dequeue_task(rq, p, queue_flag);
4524 if (running)
4525 put_prev_task(rq, p);
4526
4527 /*
4528 * Boosting condition are:
4529 * 1. -rt task is running and holds mutex A
4530 * --> -dl task blocks on mutex A
4531 *
4532 * 2. -dl task is running and holds mutex A
4533 * --> -dl task blocks on mutex A and could preempt the
4534 * running task
4535 */
4536 if (dl_prio(prio)) {
4537 if (!dl_prio(p->normal_prio) ||
4538 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
4539 p->dl.dl_boosted = 1;
4540 queue_flag |= ENQUEUE_REPLENISH;
4541 } else
4542 p->dl.dl_boosted = 0;
4543 p->sched_class = &dl_sched_class;
4544 } else if (rt_prio(prio)) {
4545 if (dl_prio(oldprio))
4546 p->dl.dl_boosted = 0;
4547 if (oldprio < prio)
4548 queue_flag |= ENQUEUE_HEAD;
4549 p->sched_class = &rt_sched_class;
4550 } else {
4551 if (dl_prio(oldprio))
4552 p->dl.dl_boosted = 0;
4553 if (rt_prio(oldprio))
4554 p->rt.timeout = 0;
4555 p->sched_class = &fair_sched_class;
4556 }
4557
4558 p->prio = prio;
4559
4560 if (queued)
4561 enqueue_task(rq, p, queue_flag);
4562 if (running)
4563 set_next_task(rq, p);
4564
4565 check_class_changed(rq, p, prev_class, oldprio);
4566 out_unlock:
4567 /* Avoid rq from going away on us: */
4568 preempt_disable();
4569 __task_rq_unlock(rq, &rf);
4570
4571 balance_callback(rq);
4572 preempt_enable();
4573 }
4574 #else
4575 static inline int rt_effective_prio(struct task_struct *p, int prio)
4576 {
4577 return prio;
4578 }
4579 #endif
4580
4581 void set_user_nice(struct task_struct *p, long nice)
4582 {
4583 bool queued, running;
4584 int old_prio;
4585 struct rq_flags rf;
4586 struct rq *rq;
4587
4588 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
4589 return;
4590 /*
4591 * We have to be careful, if called from sys_setpriority(),
4592 * the task might be in the middle of scheduling on another CPU.
4593 */
4594 rq = task_rq_lock(p, &rf);
4595 update_rq_clock(rq);
4596
4597 /*
4598 * The RT priorities are set via sched_setscheduler(), but we still
4599 * allow the 'normal' nice value to be set - but as expected
4600 * it wont have any effect on scheduling until the task is
4601 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
4602 */
4603 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4604 p->static_prio = NICE_TO_PRIO(nice);
4605 goto out_unlock;
4606 }
4607 queued = task_on_rq_queued(p);
4608 running = task_current(rq, p);
4609 if (queued)
4610 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
4611 if (running)
4612 put_prev_task(rq, p);
4613
4614 p->static_prio = NICE_TO_PRIO(nice);
4615 set_load_weight(p, true);
4616 old_prio = p->prio;
4617 p->prio = effective_prio(p);
4618
4619 if (queued)
4620 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
4621 if (running)
4622 set_next_task(rq, p);
4623
4624 /*
4625 * If the task increased its priority or is running and
4626 * lowered its priority, then reschedule its CPU:
4627 */
4628 p->sched_class->prio_changed(rq, p, old_prio);
4629
4630 out_unlock:
4631 task_rq_unlock(rq, p, &rf);
4632 }
4633 EXPORT_SYMBOL(set_user_nice);
4634
4635 /*
4636 * can_nice - check if a task can reduce its nice value
4637 * @p: task
4638 * @nice: nice value
4639 */
4640 int can_nice(const struct task_struct *p, const int nice)
4641 {
4642 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
4643 int nice_rlim = nice_to_rlimit(nice);
4644
4645 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4646 capable(CAP_SYS_NICE));
4647 }
4648
4649 #ifdef __ARCH_WANT_SYS_NICE
4650
4651 /*
4652 * sys_nice - change the priority of the current process.
4653 * @increment: priority increment
4654 *
4655 * sys_setpriority is a more generic, but much slower function that
4656 * does similar things.
4657 */
4658 SYSCALL_DEFINE1(nice, int, increment)
4659 {
4660 long nice, retval;
4661
4662 /*
4663 * Setpriority might change our priority at the same moment.
4664 * We don't have to worry. Conceptually one call occurs first
4665 * and we have a single winner.
4666 */
4667 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
4668 nice = task_nice(current) + increment;
4669
4670 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
4671 if (increment < 0 && !can_nice(current, nice))
4672 return -EPERM;
4673
4674 retval = security_task_setnice(current, nice);
4675 if (retval)
4676 return retval;
4677
4678 set_user_nice(current, nice);
4679 return 0;
4680 }
4681
4682 #endif
4683
4684 /**
4685 * task_prio - return the priority value of a given task.
4686 * @p: the task in question.
4687 *
4688 * Return: The priority value as seen by users in /proc.
4689 * RT tasks are offset by -200. Normal tasks are centered
4690 * around 0, value goes from -16 to +15.
4691 */
4692 int task_prio(const struct task_struct *p)
4693 {
4694 return p->prio - MAX_RT_PRIO;
4695 }
4696
4697 /**
4698 * idle_cpu - is a given CPU idle currently?
4699 * @cpu: the processor in question.
4700 *
4701 * Return: 1 if the CPU is currently idle. 0 otherwise.
4702 */
4703 int idle_cpu(int cpu)
4704 {
4705 struct rq *rq = cpu_rq(cpu);
4706
4707 if (rq->curr != rq->idle)
4708 return 0;
4709
4710 if (rq->nr_running)
4711 return 0;
4712
4713 #ifdef CONFIG_SMP
4714 if (rq->ttwu_pending)
4715 return 0;
4716 #endif
4717
4718 return 1;
4719 }
4720
4721 /**
4722 * available_idle_cpu - is a given CPU idle for enqueuing work.
4723 * @cpu: the CPU in question.
4724 *
4725 * Return: 1 if the CPU is currently idle. 0 otherwise.
4726 */
4727 int available_idle_cpu(int cpu)
4728 {
4729 if (!idle_cpu(cpu))
4730 return 0;
4731
4732 if (vcpu_is_preempted(cpu))
4733 return 0;
4734
4735 return 1;
4736 }
4737
4738 /**
4739 * idle_task - return the idle task for a given CPU.
4740 * @cpu: the processor in question.
4741 *
4742 * Return: The idle task for the CPU @cpu.
4743 */
4744 struct task_struct *idle_task(int cpu)
4745 {
4746 return cpu_rq(cpu)->idle;
4747 }
4748
4749 /**
4750 * find_process_by_pid - find a process with a matching PID value.
4751 * @pid: the pid in question.
4752 *
4753 * The task of @pid, if found. %NULL otherwise.
4754 */
4755 static struct task_struct *find_process_by_pid(pid_t pid)
4756 {
4757 return pid ? find_task_by_vpid(pid) : current;
4758 }
4759
4760 /*
4761 * sched_setparam() passes in -1 for its policy, to let the functions
4762 * it calls know not to change it.
4763 */
4764 #define SETPARAM_POLICY -1
4765
4766 static void __setscheduler_params(struct task_struct *p,
4767 const struct sched_attr *attr)
4768 {
4769 int policy = attr->sched_policy;
4770
4771 if (policy == SETPARAM_POLICY)
4772 policy = p->policy;
4773
4774 p->policy = policy;
4775
4776 if (dl_policy(policy))
4777 __setparam_dl(p, attr);
4778 else if (fair_policy(policy))
4779 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
4780
4781 /*
4782 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4783 * !rt_policy. Always setting this ensures that things like
4784 * getparam()/getattr() don't report silly values for !rt tasks.
4785 */
4786 p->rt_priority = attr->sched_priority;
4787 p->normal_prio = normal_prio(p);
4788 set_load_weight(p, true);
4789 }
4790
4791 /* Actually do priority change: must hold pi & rq lock. */
4792 static void __setscheduler(struct rq *rq, struct task_struct *p,
4793 const struct sched_attr *attr, bool keep_boost)
4794 {
4795 /*
4796 * If params can't change scheduling class changes aren't allowed
4797 * either.
4798 */
4799 if (attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)
4800 return;
4801
4802 __setscheduler_params(p, attr);
4803
4804 /*
4805 * Keep a potential priority boosting if called from
4806 * sched_setscheduler().
4807 */
4808 p->prio = normal_prio(p);
4809 if (keep_boost)
4810 p->prio = rt_effective_prio(p, p->prio);
4811
4812 if (dl_prio(p->prio))
4813 p->sched_class = &dl_sched_class;
4814 else if (rt_prio(p->prio))
4815 p->sched_class = &rt_sched_class;
4816 else
4817 p->sched_class = &fair_sched_class;
4818 }
4819
4820 /*
4821 * Check the target process has a UID that matches the current process's:
4822 */
4823 static bool check_same_owner(struct task_struct *p)
4824 {
4825 const struct cred *cred = current_cred(), *pcred;
4826 bool match;
4827
4828 rcu_read_lock();
4829 pcred = __task_cred(p);
4830 match = (uid_eq(cred->euid, pcred->euid) ||
4831 uid_eq(cred->euid, pcred->uid));
4832 rcu_read_unlock();
4833 return match;
4834 }
4835
4836 static int __sched_setscheduler(struct task_struct *p,
4837 const struct sched_attr *attr,
4838 bool user, bool pi)
4839 {
4840 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
4841 MAX_RT_PRIO - 1 - attr->sched_priority;
4842 int retval, oldprio, oldpolicy = -1, queued, running;
4843 int new_effective_prio, policy = attr->sched_policy;
4844 const struct sched_class *prev_class;
4845 struct rq_flags rf;
4846 int reset_on_fork;
4847 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4848 struct rq *rq;
4849
4850 /* The pi code expects interrupts enabled */
4851 BUG_ON(pi && in_interrupt());
4852 recheck:
4853 /* Double check policy once rq lock held: */
4854 if (policy < 0) {
4855 reset_on_fork = p->sched_reset_on_fork;
4856 policy = oldpolicy = p->policy;
4857 } else {
4858 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
4859
4860 if (!valid_policy(policy))
4861 return -EINVAL;
4862 }
4863
4864 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
4865 return -EINVAL;
4866
4867 /*
4868 * Valid priorities for SCHED_FIFO and SCHED_RR are
4869 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4870 * SCHED_BATCH and SCHED_IDLE is 0.
4871 */
4872 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
4873 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
4874 return -EINVAL;
4875 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
4876 (rt_policy(policy) != (attr->sched_priority != 0)))
4877 return -EINVAL;
4878
4879 /*
4880 * Allow unprivileged RT tasks to decrease priority:
4881 */
4882 if (user && !capable(CAP_SYS_NICE)) {
4883 if (fair_policy(policy)) {
4884 if (attr->sched_nice < task_nice(p) &&
4885 !can_nice(p, attr->sched_nice))
4886 return -EPERM;
4887 }
4888
4889 if (rt_policy(policy)) {
4890 unsigned long rlim_rtprio =
4891 task_rlimit(p, RLIMIT_RTPRIO);
4892
4893 /* Can't set/change the rt policy: */
4894 if (policy != p->policy && !rlim_rtprio)
4895 return -EPERM;
4896
4897 /* Can't increase priority: */
4898 if (attr->sched_priority > p->rt_priority &&
4899 attr->sched_priority > rlim_rtprio)
4900 return -EPERM;
4901 }
4902
4903 /*
4904 * Can't set/change SCHED_DEADLINE policy at all for now
4905 * (safest behavior); in the future we would like to allow
4906 * unprivileged DL tasks to increase their relative deadline
4907 * or reduce their runtime (both ways reducing utilization)
4908 */
4909 if (dl_policy(policy))
4910 return -EPERM;
4911
4912 /*
4913 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4914 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4915 */
4916 if (task_has_idle_policy(p) && !idle_policy(policy)) {
4917 if (!can_nice(p, task_nice(p)))
4918 return -EPERM;
4919 }
4920
4921 /* Can't change other user's priorities: */
4922 if (!check_same_owner(p))
4923 return -EPERM;
4924
4925 /* Normal users shall not reset the sched_reset_on_fork flag: */
4926 if (p->sched_reset_on_fork && !reset_on_fork)
4927 return -EPERM;
4928 }
4929
4930 if (user) {
4931 if (attr->sched_flags & SCHED_FLAG_SUGOV)
4932 return -EINVAL;
4933
4934 retval = security_task_setscheduler(p);
4935 if (retval)
4936 return retval;
4937 }
4938
4939 /* Update task specific "requested" clamps */
4940 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
4941 retval = uclamp_validate(p, attr);
4942 if (retval)
4943 return retval;
4944 }
4945
4946 if (pi)
4947 cpuset_read_lock();
4948
4949 /*
4950 * Make sure no PI-waiters arrive (or leave) while we are
4951 * changing the priority of the task:
4952 *
4953 * To be able to change p->policy safely, the appropriate
4954 * runqueue lock must be held.
4955 */
4956 rq = task_rq_lock(p, &rf);
4957 update_rq_clock(rq);
4958
4959 /*
4960 * Changing the policy of the stop threads its a very bad idea:
4961 */
4962 if (p == rq->stop) {
4963 retval = -EINVAL;
4964 goto unlock;
4965 }
4966
4967 /*
4968 * If not changing anything there's no need to proceed further,
4969 * but store a possible modification of reset_on_fork.
4970 */
4971 if (unlikely(policy == p->policy)) {
4972 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
4973 goto change;
4974 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
4975 goto change;
4976 if (dl_policy(policy) && dl_param_changed(p, attr))
4977 goto change;
4978 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
4979 goto change;
4980
4981 p->sched_reset_on_fork = reset_on_fork;
4982 retval = 0;
4983 goto unlock;
4984 }
4985 change:
4986
4987 if (user) {
4988 #ifdef CONFIG_RT_GROUP_SCHED
4989 /*
4990 * Do not allow realtime tasks into groups that have no runtime
4991 * assigned.
4992 */
4993 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4994 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4995 !task_group_is_autogroup(task_group(p))) {
4996 retval = -EPERM;
4997 goto unlock;
4998 }
4999 #endif
5000 #ifdef CONFIG_SMP
5001 if (dl_bandwidth_enabled() && dl_policy(policy) &&
5002 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5003 cpumask_t *span = rq->rd->span;
5004
5005 /*
5006 * Don't allow tasks with an affinity mask smaller than
5007 * the entire root_domain to become SCHED_DEADLINE. We
5008 * will also fail if there's no bandwidth available.
5009 */
5010 if (!cpumask_subset(span, p->cpus_ptr) ||
5011 rq->rd->dl_bw.bw == 0) {
5012 retval = -EPERM;
5013 goto unlock;
5014 }
5015 }
5016 #endif
5017 }
5018
5019 /* Re-check policy now with rq lock held: */
5020 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5021 policy = oldpolicy = -1;
5022 task_rq_unlock(rq, p, &rf);
5023 if (pi)
5024 cpuset_read_unlock();
5025 goto recheck;
5026 }
5027
5028 /*
5029 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5030 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5031 * is available.
5032 */
5033 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5034 retval = -EBUSY;
5035 goto unlock;
5036 }
5037
5038 p->sched_reset_on_fork = reset_on_fork;
5039 oldprio = p->prio;
5040
5041 if (pi) {
5042 /*
5043 * Take priority boosted tasks into account. If the new
5044 * effective priority is unchanged, we just store the new
5045 * normal parameters and do not touch the scheduler class and
5046 * the runqueue. This will be done when the task deboost
5047 * itself.
5048 */
5049 new_effective_prio = rt_effective_prio(p, newprio);
5050 if (new_effective_prio == oldprio)
5051 queue_flags &= ~DEQUEUE_MOVE;
5052 }
5053
5054 queued = task_on_rq_queued(p);
5055 running = task_current(rq, p);
5056 if (queued)
5057 dequeue_task(rq, p, queue_flags);
5058 if (running)
5059 put_prev_task(rq, p);
5060
5061 prev_class = p->sched_class;
5062
5063 __setscheduler(rq, p, attr, pi);
5064 __setscheduler_uclamp(p, attr);
5065
5066 if (queued) {
5067 /*
5068 * We enqueue to tail when the priority of a task is
5069 * increased (user space view).
5070 */
5071 if (oldprio < p->prio)
5072 queue_flags |= ENQUEUE_HEAD;
5073
5074 enqueue_task(rq, p, queue_flags);
5075 }
5076 if (running)
5077 set_next_task(rq, p);
5078
5079 check_class_changed(rq, p, prev_class, oldprio);
5080
5081 /* Avoid rq from going away on us: */
5082 preempt_disable();
5083 task_rq_unlock(rq, p, &rf);
5084
5085 if (pi) {
5086 cpuset_read_unlock();
5087 rt_mutex_adjust_pi(p);
5088 }
5089
5090 /* Run balance callbacks after we've adjusted the PI chain: */
5091 balance_callback(rq);
5092 preempt_enable();
5093
5094 return 0;
5095
5096 unlock:
5097 task_rq_unlock(rq, p, &rf);
5098 if (pi)
5099 cpuset_read_unlock();
5100 return retval;
5101 }
5102
5103 static int _sched_setscheduler(struct task_struct *p, int policy,
5104 const struct sched_param *param, bool check)
5105 {
5106 struct sched_attr attr = {
5107 .sched_policy = policy,
5108 .sched_priority = param->sched_priority,
5109 .sched_nice = PRIO_TO_NICE(p->static_prio),
5110 };
5111
5112 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5113 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5114 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5115 policy &= ~SCHED_RESET_ON_FORK;
5116 attr.sched_policy = policy;
5117 }
5118
5119 return __sched_setscheduler(p, &attr, check, true);
5120 }
5121 /**
5122 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5123 * @p: the task in question.
5124 * @policy: new policy.
5125 * @param: structure containing the new RT priority.
5126 *
5127 * Return: 0 on success. An error code otherwise.
5128 *
5129 * NOTE that the task may be already dead.
5130 */
5131 int sched_setscheduler(struct task_struct *p, int policy,
5132 const struct sched_param *param)
5133 {
5134 return _sched_setscheduler(p, policy, param, true);
5135 }
5136 EXPORT_SYMBOL_GPL(sched_setscheduler);
5137
5138 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5139 {
5140 return __sched_setscheduler(p, attr, true, true);
5141 }
5142 EXPORT_SYMBOL_GPL(sched_setattr);
5143
5144 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5145 {
5146 return __sched_setscheduler(p, attr, false, true);
5147 }
5148
5149 /**
5150 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5151 * @p: the task in question.
5152 * @policy: new policy.
5153 * @param: structure containing the new RT priority.
5154 *
5155 * Just like sched_setscheduler, only don't bother checking if the
5156 * current context has permission. For example, this is needed in
5157 * stop_machine(): we create temporary high priority worker threads,
5158 * but our caller might not have that capability.
5159 *
5160 * Return: 0 on success. An error code otherwise.
5161 */
5162 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5163 const struct sched_param *param)
5164 {
5165 return _sched_setscheduler(p, policy, param, false);
5166 }
5167 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
5168
5169 static int
5170 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5171 {
5172 struct sched_param lparam;
5173 struct task_struct *p;
5174 int retval;
5175
5176 if (!param || pid < 0)
5177 return -EINVAL;
5178 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5179 return -EFAULT;
5180
5181 rcu_read_lock();
5182 retval = -ESRCH;
5183 p = find_process_by_pid(pid);
5184 if (likely(p))
5185 get_task_struct(p);
5186 rcu_read_unlock();
5187
5188 if (likely(p)) {
5189 retval = sched_setscheduler(p, policy, &lparam);
5190 put_task_struct(p);
5191 }
5192
5193 return retval;
5194 }
5195
5196 /*
5197 * Mimics kernel/events/core.c perf_copy_attr().
5198 */
5199 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5200 {
5201 u32 size;
5202 int ret;
5203
5204 /* Zero the full structure, so that a short copy will be nice: */
5205 memset(attr, 0, sizeof(*attr));
5206
5207 ret = get_user(size, &uattr->size);
5208 if (ret)
5209 return ret;
5210
5211 /* ABI compatibility quirk: */
5212 if (!size)
5213 size = SCHED_ATTR_SIZE_VER0;
5214 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5215 goto err_size;
5216
5217 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5218 if (ret) {
5219 if (ret == -E2BIG)
5220 goto err_size;
5221 return ret;
5222 }
5223
5224 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5225 size < SCHED_ATTR_SIZE_VER1)
5226 return -EINVAL;
5227
5228 /*
5229 * XXX: Do we want to be lenient like existing syscalls; or do we want
5230 * to be strict and return an error on out-of-bounds values?
5231 */
5232 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5233
5234 return 0;
5235
5236 err_size:
5237 put_user(sizeof(*attr), &uattr->size);
5238 return -E2BIG;
5239 }
5240
5241 /**
5242 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5243 * @pid: the pid in question.
5244 * @policy: new policy.
5245 * @param: structure containing the new RT priority.
5246 *
5247 * Return: 0 on success. An error code otherwise.
5248 */
5249 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5250 {
5251 if (policy < 0)
5252 return -EINVAL;
5253
5254 return do_sched_setscheduler(pid, policy, param);
5255 }
5256
5257 /**
5258 * sys_sched_setparam - set/change the RT priority of a thread
5259 * @pid: the pid in question.
5260 * @param: structure containing the new RT priority.
5261 *
5262 * Return: 0 on success. An error code otherwise.
5263 */
5264 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5265 {
5266 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5267 }
5268
5269 /**
5270 * sys_sched_setattr - same as above, but with extended sched_attr
5271 * @pid: the pid in question.
5272 * @uattr: structure containing the extended parameters.
5273 * @flags: for future extension.
5274 */
5275 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5276 unsigned int, flags)
5277 {
5278 struct sched_attr attr;
5279 struct task_struct *p;
5280 int retval;
5281
5282 if (!uattr || pid < 0 || flags)
5283 return -EINVAL;
5284
5285 retval = sched_copy_attr(uattr, &attr);
5286 if (retval)
5287 return retval;
5288
5289 if ((int)attr.sched_policy < 0)
5290 return -EINVAL;
5291 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5292 attr.sched_policy = SETPARAM_POLICY;
5293
5294 rcu_read_lock();
5295 retval = -ESRCH;
5296 p = find_process_by_pid(pid);
5297 if (likely(p))
5298 get_task_struct(p);
5299 rcu_read_unlock();
5300
5301 if (likely(p)) {
5302 retval = sched_setattr(p, &attr);
5303 put_task_struct(p);
5304 }
5305
5306 return retval;
5307 }
5308
5309 /**
5310 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5311 * @pid: the pid in question.
5312 *
5313 * Return: On success, the policy of the thread. Otherwise, a negative error
5314 * code.
5315 */
5316 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5317 {
5318 struct task_struct *p;
5319 int retval;
5320
5321 if (pid < 0)
5322 return -EINVAL;
5323
5324 retval = -ESRCH;
5325 rcu_read_lock();
5326 p = find_process_by_pid(pid);
5327 if (p) {
5328 retval = security_task_getscheduler(p);
5329 if (!retval)
5330 retval = p->policy
5331 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5332 }
5333 rcu_read_unlock();
5334 return retval;
5335 }
5336
5337 /**
5338 * sys_sched_getparam - get the RT priority of a thread
5339 * @pid: the pid in question.
5340 * @param: structure containing the RT priority.
5341 *
5342 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5343 * code.
5344 */
5345 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5346 {
5347 struct sched_param lp = { .sched_priority = 0 };
5348 struct task_struct *p;
5349 int retval;
5350
5351 if (!param || pid < 0)
5352 return -EINVAL;
5353
5354 rcu_read_lock();
5355 p = find_process_by_pid(pid);
5356 retval = -ESRCH;
5357 if (!p)
5358 goto out_unlock;
5359
5360 retval = security_task_getscheduler(p);
5361 if (retval)
5362 goto out_unlock;
5363
5364 if (task_has_rt_policy(p))
5365 lp.sched_priority = p->rt_priority;
5366 rcu_read_unlock();
5367
5368 /*
5369 * This one might sleep, we cannot do it with a spinlock held ...
5370 */
5371 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5372
5373 return retval;
5374
5375 out_unlock:
5376 rcu_read_unlock();
5377 return retval;
5378 }
5379
5380 /*
5381 * Copy the kernel size attribute structure (which might be larger
5382 * than what user-space knows about) to user-space.
5383 *
5384 * Note that all cases are valid: user-space buffer can be larger or
5385 * smaller than the kernel-space buffer. The usual case is that both
5386 * have the same size.
5387 */
5388 static int
5389 sched_attr_copy_to_user(struct sched_attr __user *uattr,
5390 struct sched_attr *kattr,
5391 unsigned int usize)
5392 {
5393 unsigned int ksize = sizeof(*kattr);
5394
5395 if (!access_ok(uattr, usize))
5396 return -EFAULT;
5397
5398 /*
5399 * sched_getattr() ABI forwards and backwards compatibility:
5400 *
5401 * If usize == ksize then we just copy everything to user-space and all is good.
5402 *
5403 * If usize < ksize then we only copy as much as user-space has space for,
5404 * this keeps ABI compatibility as well. We skip the rest.
5405 *
5406 * If usize > ksize then user-space is using a newer version of the ABI,
5407 * which part the kernel doesn't know about. Just ignore it - tooling can
5408 * detect the kernel's knowledge of attributes from the attr->size value
5409 * which is set to ksize in this case.
5410 */
5411 kattr->size = min(usize, ksize);
5412
5413 if (copy_to_user(uattr, kattr, kattr->size))
5414 return -EFAULT;
5415
5416 return 0;
5417 }
5418
5419 /**
5420 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
5421 * @pid: the pid in question.
5422 * @uattr: structure containing the extended parameters.
5423 * @usize: sizeof(attr) for fwd/bwd comp.
5424 * @flags: for future extension.
5425 */
5426 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
5427 unsigned int, usize, unsigned int, flags)
5428 {
5429 struct sched_attr kattr = { };
5430 struct task_struct *p;
5431 int retval;
5432
5433 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
5434 usize < SCHED_ATTR_SIZE_VER0 || flags)
5435 return -EINVAL;
5436
5437 rcu_read_lock();
5438 p = find_process_by_pid(pid);
5439 retval = -ESRCH;
5440 if (!p)
5441 goto out_unlock;
5442
5443 retval = security_task_getscheduler(p);
5444 if (retval)
5445 goto out_unlock;
5446
5447 kattr.sched_policy = p->policy;
5448 if (p->sched_reset_on_fork)
5449 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5450 if (task_has_dl_policy(p))
5451 __getparam_dl(p, &kattr);
5452 else if (task_has_rt_policy(p))
5453 kattr.sched_priority = p->rt_priority;
5454 else
5455 kattr.sched_nice = task_nice(p);
5456
5457 #ifdef CONFIG_UCLAMP_TASK
5458 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
5459 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
5460 #endif
5461
5462 rcu_read_unlock();
5463
5464 return sched_attr_copy_to_user(uattr, &kattr, usize);
5465
5466 out_unlock:
5467 rcu_read_unlock();
5468 return retval;
5469 }
5470
5471 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5472 {
5473 cpumask_var_t cpus_allowed, new_mask;
5474 struct task_struct *p;
5475 int retval;
5476
5477 rcu_read_lock();
5478
5479 p = find_process_by_pid(pid);
5480 if (!p) {
5481 rcu_read_unlock();
5482 return -ESRCH;
5483 }
5484
5485 /* Prevent p going away */
5486 get_task_struct(p);
5487 rcu_read_unlock();
5488
5489 if (p->flags & PF_NO_SETAFFINITY) {
5490 retval = -EINVAL;
5491 goto out_put_task;
5492 }
5493 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5494 retval = -ENOMEM;
5495 goto out_put_task;
5496 }
5497 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5498 retval = -ENOMEM;
5499 goto out_free_cpus_allowed;
5500 }
5501 retval = -EPERM;
5502 if (!check_same_owner(p)) {
5503 rcu_read_lock();
5504 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
5505 rcu_read_unlock();
5506 goto out_free_new_mask;
5507 }
5508 rcu_read_unlock();
5509 }
5510
5511 retval = security_task_setscheduler(p);
5512 if (retval)
5513 goto out_free_new_mask;
5514
5515
5516 cpuset_cpus_allowed(p, cpus_allowed);
5517 cpumask_and(new_mask, in_mask, cpus_allowed);
5518
5519 /*
5520 * Since bandwidth control happens on root_domain basis,
5521 * if admission test is enabled, we only admit -deadline
5522 * tasks allowed to run on all the CPUs in the task's
5523 * root_domain.
5524 */
5525 #ifdef CONFIG_SMP
5526 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
5527 rcu_read_lock();
5528 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
5529 retval = -EBUSY;
5530 rcu_read_unlock();
5531 goto out_free_new_mask;
5532 }
5533 rcu_read_unlock();
5534 }
5535 #endif
5536 again:
5537 retval = __set_cpus_allowed_ptr(p, new_mask, true);
5538
5539 if (!retval) {
5540 cpuset_cpus_allowed(p, cpus_allowed);
5541 if (!cpumask_subset(new_mask, cpus_allowed)) {
5542 /*
5543 * We must have raced with a concurrent cpuset
5544 * update. Just reset the cpus_allowed to the
5545 * cpuset's cpus_allowed
5546 */
5547 cpumask_copy(new_mask, cpus_allowed);
5548 goto again;
5549 }
5550 }
5551 out_free_new_mask:
5552 free_cpumask_var(new_mask);
5553 out_free_cpus_allowed:
5554 free_cpumask_var(cpus_allowed);
5555 out_put_task:
5556 put_task_struct(p);
5557 return retval;
5558 }
5559
5560 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5561 struct cpumask *new_mask)
5562 {
5563 if (len < cpumask_size())
5564 cpumask_clear(new_mask);
5565 else if (len > cpumask_size())
5566 len = cpumask_size();
5567
5568 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5569 }
5570
5571 /**
5572 * sys_sched_setaffinity - set the CPU affinity of a process
5573 * @pid: pid of the process
5574 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5575 * @user_mask_ptr: user-space pointer to the new CPU mask
5576 *
5577 * Return: 0 on success. An error code otherwise.
5578 */
5579 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5580 unsigned long __user *, user_mask_ptr)
5581 {
5582 cpumask_var_t new_mask;
5583 int retval;
5584
5585 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5586 return -ENOMEM;
5587
5588 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5589 if (retval == 0)
5590 retval = sched_setaffinity(pid, new_mask);
5591 free_cpumask_var(new_mask);
5592 return retval;
5593 }
5594
5595 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5596 {
5597 struct task_struct *p;
5598 unsigned long flags;
5599 int retval;
5600
5601 rcu_read_lock();
5602
5603 retval = -ESRCH;
5604 p = find_process_by_pid(pid);
5605 if (!p)
5606 goto out_unlock;
5607
5608 retval = security_task_getscheduler(p);
5609 if (retval)
5610 goto out_unlock;
5611
5612 raw_spin_lock_irqsave(&p->pi_lock, flags);
5613 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
5614 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5615
5616 out_unlock:
5617 rcu_read_unlock();
5618
5619 return retval;
5620 }
5621
5622 /**
5623 * sys_sched_getaffinity - get the CPU affinity of a process
5624 * @pid: pid of the process
5625 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5626 * @user_mask_ptr: user-space pointer to hold the current CPU mask
5627 *
5628 * Return: size of CPU mask copied to user_mask_ptr on success. An
5629 * error code otherwise.
5630 */
5631 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5632 unsigned long __user *, user_mask_ptr)
5633 {
5634 int ret;
5635 cpumask_var_t mask;
5636
5637 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5638 return -EINVAL;
5639 if (len & (sizeof(unsigned long)-1))
5640 return -EINVAL;
5641
5642 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5643 return -ENOMEM;
5644
5645 ret = sched_getaffinity(pid, mask);
5646 if (ret == 0) {
5647 unsigned int retlen = min(len, cpumask_size());
5648
5649 if (copy_to_user(user_mask_ptr, mask, retlen))
5650 ret = -EFAULT;
5651 else
5652 ret = retlen;
5653 }
5654 free_cpumask_var(mask);
5655
5656 return ret;
5657 }
5658
5659 /**
5660 * sys_sched_yield - yield the current processor to other threads.
5661 *
5662 * This function yields the current CPU to other tasks. If there are no
5663 * other threads running on this CPU then this function will return.
5664 *
5665 * Return: 0.
5666 */
5667 static void do_sched_yield(void)
5668 {
5669 struct rq_flags rf;
5670 struct rq *rq;
5671
5672 rq = this_rq_lock_irq(&rf);
5673
5674 schedstat_inc(rq->yld_count);
5675 current->sched_class->yield_task(rq);
5676
5677 /*
5678 * Since we are going to call schedule() anyway, there's
5679 * no need to preempt or enable interrupts:
5680 */
5681 preempt_disable();
5682 rq_unlock(rq, &rf);
5683 sched_preempt_enable_no_resched();
5684
5685 schedule();
5686 }
5687
5688 SYSCALL_DEFINE0(sched_yield)
5689 {
5690 do_sched_yield();
5691 return 0;
5692 }
5693
5694 #ifndef CONFIG_PREEMPTION
5695 int __sched _cond_resched(void)
5696 {
5697 if (should_resched(0)) {
5698 preempt_schedule_common();
5699 return 1;
5700 }
5701 rcu_all_qs();
5702 return 0;
5703 }
5704 EXPORT_SYMBOL(_cond_resched);
5705 #endif
5706
5707 /*
5708 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5709 * call schedule, and on return reacquire the lock.
5710 *
5711 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
5712 * operations here to prevent schedule() from being called twice (once via
5713 * spin_unlock(), once by hand).
5714 */
5715 int __cond_resched_lock(spinlock_t *lock)
5716 {
5717 int resched = should_resched(PREEMPT_LOCK_OFFSET);
5718 int ret = 0;
5719
5720 lockdep_assert_held(lock);
5721
5722 if (spin_needbreak(lock) || resched) {
5723 spin_unlock(lock);
5724 if (resched)
5725 preempt_schedule_common();
5726 else
5727 cpu_relax();
5728 ret = 1;
5729 spin_lock(lock);
5730 }
5731 return ret;
5732 }
5733 EXPORT_SYMBOL(__cond_resched_lock);
5734
5735 /**
5736 * yield - yield the current processor to other threads.
5737 *
5738 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5739 *
5740 * The scheduler is at all times free to pick the calling task as the most
5741 * eligible task to run, if removing the yield() call from your code breaks
5742 * it, its already broken.
5743 *
5744 * Typical broken usage is:
5745 *
5746 * while (!event)
5747 * yield();
5748 *
5749 * where one assumes that yield() will let 'the other' process run that will
5750 * make event true. If the current task is a SCHED_FIFO task that will never
5751 * happen. Never use yield() as a progress guarantee!!
5752 *
5753 * If you want to use yield() to wait for something, use wait_event().
5754 * If you want to use yield() to be 'nice' for others, use cond_resched().
5755 * If you still want to use yield(), do not!
5756 */
5757 void __sched yield(void)
5758 {
5759 set_current_state(TASK_RUNNING);
5760 do_sched_yield();
5761 }
5762 EXPORT_SYMBOL(yield);
5763
5764 /**
5765 * yield_to - yield the current processor to another thread in
5766 * your thread group, or accelerate that thread toward the
5767 * processor it's on.
5768 * @p: target task
5769 * @preempt: whether task preemption is allowed or not
5770 *
5771 * It's the caller's job to ensure that the target task struct
5772 * can't go away on us before we can do any checks.
5773 *
5774 * Return:
5775 * true (>0) if we indeed boosted the target task.
5776 * false (0) if we failed to boost the target.
5777 * -ESRCH if there's no task to yield to.
5778 */
5779 int __sched yield_to(struct task_struct *p, bool preempt)
5780 {
5781 struct task_struct *curr = current;
5782 struct rq *rq, *p_rq;
5783 unsigned long flags;
5784 int yielded = 0;
5785
5786 local_irq_save(flags);
5787 rq = this_rq();
5788
5789 again:
5790 p_rq = task_rq(p);
5791 /*
5792 * If we're the only runnable task on the rq and target rq also
5793 * has only one task, there's absolutely no point in yielding.
5794 */
5795 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
5796 yielded = -ESRCH;
5797 goto out_irq;
5798 }
5799
5800 double_rq_lock(rq, p_rq);
5801 if (task_rq(p) != p_rq) {
5802 double_rq_unlock(rq, p_rq);
5803 goto again;
5804 }
5805
5806 if (!curr->sched_class->yield_to_task)
5807 goto out_unlock;
5808
5809 if (curr->sched_class != p->sched_class)
5810 goto out_unlock;
5811
5812 if (task_running(p_rq, p) || p->state)
5813 goto out_unlock;
5814
5815 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5816 if (yielded) {
5817 schedstat_inc(rq->yld_count);
5818 /*
5819 * Make p's CPU reschedule; pick_next_entity takes care of
5820 * fairness.
5821 */
5822 if (preempt && rq != p_rq)
5823 resched_curr(p_rq);
5824 }
5825
5826 out_unlock:
5827 double_rq_unlock(rq, p_rq);
5828 out_irq:
5829 local_irq_restore(flags);
5830
5831 if (yielded > 0)
5832 schedule();
5833
5834 return yielded;
5835 }
5836 EXPORT_SYMBOL_GPL(yield_to);
5837
5838 int io_schedule_prepare(void)
5839 {
5840 int old_iowait = current->in_iowait;
5841
5842 current->in_iowait = 1;
5843 blk_schedule_flush_plug(current);
5844
5845 return old_iowait;
5846 }
5847
5848 void io_schedule_finish(int token)
5849 {
5850 current->in_iowait = token;
5851 }
5852
5853 /*
5854 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5855 * that process accounting knows that this is a task in IO wait state.
5856 */
5857 long __sched io_schedule_timeout(long timeout)
5858 {
5859 int token;
5860 long ret;
5861
5862 token = io_schedule_prepare();
5863 ret = schedule_timeout(timeout);
5864 io_schedule_finish(token);
5865
5866 return ret;
5867 }
5868 EXPORT_SYMBOL(io_schedule_timeout);
5869
5870 void __sched io_schedule(void)
5871 {
5872 int token;
5873
5874 token = io_schedule_prepare();
5875 schedule();
5876 io_schedule_finish(token);
5877 }
5878 EXPORT_SYMBOL(io_schedule);
5879
5880 /**
5881 * sys_sched_get_priority_max - return maximum RT priority.
5882 * @policy: scheduling class.
5883 *
5884 * Return: On success, this syscall returns the maximum
5885 * rt_priority that can be used by a given scheduling class.
5886 * On failure, a negative error code is returned.
5887 */
5888 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5889 {
5890 int ret = -EINVAL;
5891
5892 switch (policy) {
5893 case SCHED_FIFO:
5894 case SCHED_RR:
5895 ret = MAX_USER_RT_PRIO-1;
5896 break;
5897 case SCHED_DEADLINE:
5898 case SCHED_NORMAL:
5899 case SCHED_BATCH:
5900 case SCHED_IDLE:
5901 ret = 0;
5902 break;
5903 }
5904 return ret;
5905 }
5906
5907 /**
5908 * sys_sched_get_priority_min - return minimum RT priority.
5909 * @policy: scheduling class.
5910 *
5911 * Return: On success, this syscall returns the minimum
5912 * rt_priority that can be used by a given scheduling class.
5913 * On failure, a negative error code is returned.
5914 */
5915 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5916 {
5917 int ret = -EINVAL;
5918
5919 switch (policy) {
5920 case SCHED_FIFO:
5921 case SCHED_RR:
5922 ret = 1;
5923 break;
5924 case SCHED_DEADLINE:
5925 case SCHED_NORMAL:
5926 case SCHED_BATCH:
5927 case SCHED_IDLE:
5928 ret = 0;
5929 }
5930 return ret;
5931 }
5932
5933 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
5934 {
5935 struct task_struct *p;
5936 unsigned int time_slice;
5937 struct rq_flags rf;
5938 struct rq *rq;
5939 int retval;
5940
5941 if (pid < 0)
5942 return -EINVAL;
5943
5944 retval = -ESRCH;
5945 rcu_read_lock();
5946 p = find_process_by_pid(pid);
5947 if (!p)
5948 goto out_unlock;
5949
5950 retval = security_task_getscheduler(p);
5951 if (retval)
5952 goto out_unlock;
5953
5954 rq = task_rq_lock(p, &rf);
5955 time_slice = 0;
5956 if (p->sched_class->get_rr_interval)
5957 time_slice = p->sched_class->get_rr_interval(rq, p);
5958 task_rq_unlock(rq, p, &rf);
5959
5960 rcu_read_unlock();
5961 jiffies_to_timespec64(time_slice, t);
5962 return 0;
5963
5964 out_unlock:
5965 rcu_read_unlock();
5966 return retval;
5967 }
5968
5969 /**
5970 * sys_sched_rr_get_interval - return the default timeslice of a process.
5971 * @pid: pid of the process.
5972 * @interval: userspace pointer to the timeslice value.
5973 *
5974 * this syscall writes the default timeslice value of a given process
5975 * into the user-space timespec buffer. A value of '0' means infinity.
5976 *
5977 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5978 * an error code.
5979 */
5980 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5981 struct __kernel_timespec __user *, interval)
5982 {
5983 struct timespec64 t;
5984 int retval = sched_rr_get_interval(pid, &t);
5985
5986 if (retval == 0)
5987 retval = put_timespec64(&t, interval);
5988
5989 return retval;
5990 }
5991
5992 #ifdef CONFIG_COMPAT_32BIT_TIME
5993 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
5994 struct old_timespec32 __user *, interval)
5995 {
5996 struct timespec64 t;
5997 int retval = sched_rr_get_interval(pid, &t);
5998
5999 if (retval == 0)
6000 retval = put_old_timespec32(&t, interval);
6001 return retval;
6002 }
6003 #endif
6004
6005 void sched_show_task(struct task_struct *p)
6006 {
6007 unsigned long free = 0;
6008 int ppid;
6009
6010 if (!try_get_task_stack(p))
6011 return;
6012
6013 printk(KERN_INFO "%-15.15s %c", p->comm, task_state_to_char(p));
6014
6015 if (p->state == TASK_RUNNING)
6016 printk(KERN_CONT " running task ");
6017 #ifdef CONFIG_DEBUG_STACK_USAGE
6018 free = stack_not_used(p);
6019 #endif
6020 ppid = 0;
6021 rcu_read_lock();
6022 if (pid_alive(p))
6023 ppid = task_pid_nr(rcu_dereference(p->real_parent));
6024 rcu_read_unlock();
6025 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6026 task_pid_nr(p), ppid,
6027 (unsigned long)task_thread_info(p)->flags);
6028
6029 print_worker_info(KERN_INFO, p);
6030 show_stack(p, NULL);
6031 put_task_stack(p);
6032 }
6033 EXPORT_SYMBOL_GPL(sched_show_task);
6034
6035 static inline bool
6036 state_filter_match(unsigned long state_filter, struct task_struct *p)
6037 {
6038 /* no filter, everything matches */
6039 if (!state_filter)
6040 return true;
6041
6042 /* filter, but doesn't match */
6043 if (!(p->state & state_filter))
6044 return false;
6045
6046 /*
6047 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6048 * TASK_KILLABLE).
6049 */
6050 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6051 return false;
6052
6053 return true;
6054 }
6055
6056
6057 void show_state_filter(unsigned long state_filter)
6058 {
6059 struct task_struct *g, *p;
6060
6061 #if BITS_PER_LONG == 32
6062 printk(KERN_INFO
6063 " task PC stack pid father\n");
6064 #else
6065 printk(KERN_INFO
6066 " task PC stack pid father\n");
6067 #endif
6068 rcu_read_lock();
6069 for_each_process_thread(g, p) {
6070 /*
6071 * reset the NMI-timeout, listing all files on a slow
6072 * console might take a lot of time:
6073 * Also, reset softlockup watchdogs on all CPUs, because
6074 * another CPU might be blocked waiting for us to process
6075 * an IPI.
6076 */
6077 touch_nmi_watchdog();
6078 touch_all_softlockup_watchdogs();
6079 if (state_filter_match(state_filter, p))
6080 sched_show_task(p);
6081 }
6082
6083 #ifdef CONFIG_SCHED_DEBUG
6084 if (!state_filter)
6085 sysrq_sched_debug_show();
6086 #endif
6087 rcu_read_unlock();
6088 /*
6089 * Only show locks if all tasks are dumped:
6090 */
6091 if (!state_filter)
6092 debug_show_all_locks();
6093 }
6094
6095 /**
6096 * init_idle - set up an idle thread for a given CPU
6097 * @idle: task in question
6098 * @cpu: CPU the idle task belongs to
6099 *
6100 * NOTE: this function does not set the idle thread's NEED_RESCHED
6101 * flag, to make booting more robust.
6102 */
6103 void init_idle(struct task_struct *idle, int cpu)
6104 {
6105 struct rq *rq = cpu_rq(cpu);
6106 unsigned long flags;
6107
6108 __sched_fork(0, idle);
6109
6110 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6111 raw_spin_lock(&rq->lock);
6112
6113 idle->state = TASK_RUNNING;
6114 idle->se.exec_start = sched_clock();
6115 idle->flags |= PF_IDLE;
6116
6117 scs_task_reset(idle);
6118 kasan_unpoison_task_stack(idle);
6119
6120 #ifdef CONFIG_SMP
6121 /*
6122 * Its possible that init_idle() gets called multiple times on a task,
6123 * in that case do_set_cpus_allowed() will not do the right thing.
6124 *
6125 * And since this is boot we can forgo the serialization.
6126 */
6127 set_cpus_allowed_common(idle, cpumask_of(cpu));
6128 #endif
6129 /*
6130 * We're having a chicken and egg problem, even though we are
6131 * holding rq->lock, the CPU isn't yet set to this CPU so the
6132 * lockdep check in task_group() will fail.
6133 *
6134 * Similar case to sched_fork(). / Alternatively we could
6135 * use task_rq_lock() here and obtain the other rq->lock.
6136 *
6137 * Silence PROVE_RCU
6138 */
6139 rcu_read_lock();
6140 __set_task_cpu(idle, cpu);
6141 rcu_read_unlock();
6142
6143 rq->idle = idle;
6144 rcu_assign_pointer(rq->curr, idle);
6145 idle->on_rq = TASK_ON_RQ_QUEUED;
6146 #ifdef CONFIG_SMP
6147 idle->on_cpu = 1;
6148 #endif
6149 raw_spin_unlock(&rq->lock);
6150 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6151
6152 /* Set the preempt count _outside_ the spinlocks! */
6153 init_idle_preempt_count(idle, cpu);
6154
6155 /*
6156 * The idle tasks have their own, simple scheduling class:
6157 */
6158 idle->sched_class = &idle_sched_class;
6159 ftrace_graph_init_idle_task(idle, cpu);
6160 vtime_init_idle(idle, cpu);
6161 #ifdef CONFIG_SMP
6162 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6163 #endif
6164 }
6165
6166 #ifdef CONFIG_SMP
6167
6168 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6169 const struct cpumask *trial)
6170 {
6171 int ret = 1;
6172
6173 if (!cpumask_weight(cur))
6174 return ret;
6175
6176 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6177
6178 return ret;
6179 }
6180
6181 int task_can_attach(struct task_struct *p,
6182 const struct cpumask *cs_cpus_allowed)
6183 {
6184 int ret = 0;
6185
6186 /*
6187 * Kthreads which disallow setaffinity shouldn't be moved
6188 * to a new cpuset; we don't want to change their CPU
6189 * affinity and isolating such threads by their set of
6190 * allowed nodes is unnecessary. Thus, cpusets are not
6191 * applicable for such threads. This prevents checking for
6192 * success of set_cpus_allowed_ptr() on all attached tasks
6193 * before cpus_mask may be changed.
6194 */
6195 if (p->flags & PF_NO_SETAFFINITY) {
6196 ret = -EINVAL;
6197 goto out;
6198 }
6199
6200 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
6201 cs_cpus_allowed))
6202 ret = dl_task_can_attach(p, cs_cpus_allowed);
6203
6204 out:
6205 return ret;
6206 }
6207
6208 bool sched_smp_initialized __read_mostly;
6209
6210 #ifdef CONFIG_NUMA_BALANCING
6211 /* Migrate current task p to target_cpu */
6212 int migrate_task_to(struct task_struct *p, int target_cpu)
6213 {
6214 struct migration_arg arg = { p, target_cpu };
6215 int curr_cpu = task_cpu(p);
6216
6217 if (curr_cpu == target_cpu)
6218 return 0;
6219
6220 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6221 return -EINVAL;
6222
6223 /* TODO: This is not properly updating schedstats */
6224
6225 trace_sched_move_numa(p, curr_cpu, target_cpu);
6226 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6227 }
6228
6229 /*
6230 * Requeue a task on a given node and accurately track the number of NUMA
6231 * tasks on the runqueues
6232 */
6233 void sched_setnuma(struct task_struct *p, int nid)
6234 {
6235 bool queued, running;
6236 struct rq_flags rf;
6237 struct rq *rq;
6238
6239 rq = task_rq_lock(p, &rf);
6240 queued = task_on_rq_queued(p);
6241 running = task_current(rq, p);
6242
6243 if (queued)
6244 dequeue_task(rq, p, DEQUEUE_SAVE);
6245 if (running)
6246 put_prev_task(rq, p);
6247
6248 p->numa_preferred_nid = nid;
6249
6250 if (queued)
6251 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6252 if (running)
6253 set_next_task(rq, p);
6254 task_rq_unlock(rq, p, &rf);
6255 }
6256 #endif /* CONFIG_NUMA_BALANCING */
6257
6258 #ifdef CONFIG_HOTPLUG_CPU
6259 /*
6260 * Ensure that the idle task is using init_mm right before its CPU goes
6261 * offline.
6262 */
6263 void idle_task_exit(void)
6264 {
6265 struct mm_struct *mm = current->active_mm;
6266
6267 BUG_ON(cpu_online(smp_processor_id()));
6268 BUG_ON(current != this_rq()->idle);
6269
6270 if (mm != &init_mm) {
6271 switch_mm(mm, &init_mm, current);
6272 finish_arch_post_lock_switch();
6273 }
6274
6275 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
6276 }
6277
6278 /*
6279 * Since this CPU is going 'away' for a while, fold any nr_active delta
6280 * we might have. Assumes we're called after migrate_tasks() so that the
6281 * nr_active count is stable. We need to take the teardown thread which
6282 * is calling this into account, so we hand in adjust = 1 to the load
6283 * calculation.
6284 *
6285 * Also see the comment "Global load-average calculations".
6286 */
6287 static void calc_load_migrate(struct rq *rq)
6288 {
6289 long delta = calc_load_fold_active(rq, 1);
6290 if (delta)
6291 atomic_long_add(delta, &calc_load_tasks);
6292 }
6293
6294 static struct task_struct *__pick_migrate_task(struct rq *rq)
6295 {
6296 const struct sched_class *class;
6297 struct task_struct *next;
6298
6299 for_each_class(class) {
6300 next = class->pick_next_task(rq);
6301 if (next) {
6302 next->sched_class->put_prev_task(rq, next);
6303 return next;
6304 }
6305 }
6306
6307 /* The idle class should always have a runnable task */
6308 BUG();
6309 }
6310
6311 /*
6312 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6313 * try_to_wake_up()->select_task_rq().
6314 *
6315 * Called with rq->lock held even though we'er in stop_machine() and
6316 * there's no concurrency possible, we hold the required locks anyway
6317 * because of lock validation efforts.
6318 */
6319 static void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf)
6320 {
6321 struct rq *rq = dead_rq;
6322 struct task_struct *next, *stop = rq->stop;
6323 struct rq_flags orf = *rf;
6324 int dest_cpu;
6325
6326 /*
6327 * Fudge the rq selection such that the below task selection loop
6328 * doesn't get stuck on the currently eligible stop task.
6329 *
6330 * We're currently inside stop_machine() and the rq is either stuck
6331 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6332 * either way we should never end up calling schedule() until we're
6333 * done here.
6334 */
6335 rq->stop = NULL;
6336
6337 /*
6338 * put_prev_task() and pick_next_task() sched
6339 * class method both need to have an up-to-date
6340 * value of rq->clock[_task]
6341 */
6342 update_rq_clock(rq);
6343
6344 for (;;) {
6345 /*
6346 * There's this thread running, bail when that's the only
6347 * remaining thread:
6348 */
6349 if (rq->nr_running == 1)
6350 break;
6351
6352 next = __pick_migrate_task(rq);
6353
6354 /*
6355 * Rules for changing task_struct::cpus_mask are holding
6356 * both pi_lock and rq->lock, such that holding either
6357 * stabilizes the mask.
6358 *
6359 * Drop rq->lock is not quite as disastrous as it usually is
6360 * because !cpu_active at this point, which means load-balance
6361 * will not interfere. Also, stop-machine.
6362 */
6363 rq_unlock(rq, rf);
6364 raw_spin_lock(&next->pi_lock);
6365 rq_relock(rq, rf);
6366
6367 /*
6368 * Since we're inside stop-machine, _nothing_ should have
6369 * changed the task, WARN if weird stuff happened, because in
6370 * that case the above rq->lock drop is a fail too.
6371 */
6372 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
6373 raw_spin_unlock(&next->pi_lock);
6374 continue;
6375 }
6376
6377 /* Find suitable destination for @next, with force if needed. */
6378 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
6379 rq = __migrate_task(rq, rf, next, dest_cpu);
6380 if (rq != dead_rq) {
6381 rq_unlock(rq, rf);
6382 rq = dead_rq;
6383 *rf = orf;
6384 rq_relock(rq, rf);
6385 }
6386 raw_spin_unlock(&next->pi_lock);
6387 }
6388
6389 rq->stop = stop;
6390 }
6391 #endif /* CONFIG_HOTPLUG_CPU */
6392
6393 void set_rq_online(struct rq *rq)
6394 {
6395 if (!rq->online) {
6396 const struct sched_class *class;
6397
6398 cpumask_set_cpu(rq->cpu, rq->rd->online);
6399 rq->online = 1;
6400
6401 for_each_class(class) {
6402 if (class->rq_online)
6403 class->rq_online(rq);
6404 }
6405 }
6406 }
6407
6408 void set_rq_offline(struct rq *rq)
6409 {
6410 if (rq->online) {
6411 const struct sched_class *class;
6412
6413 for_each_class(class) {
6414 if (class->rq_offline)
6415 class->rq_offline(rq);
6416 }
6417
6418 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6419 rq->online = 0;
6420 }
6421 }
6422
6423 /*
6424 * used to mark begin/end of suspend/resume:
6425 */
6426 static int num_cpus_frozen;
6427
6428 /*
6429 * Update cpusets according to cpu_active mask. If cpusets are
6430 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6431 * around partition_sched_domains().
6432 *
6433 * If we come here as part of a suspend/resume, don't touch cpusets because we
6434 * want to restore it back to its original state upon resume anyway.
6435 */
6436 static void cpuset_cpu_active(void)
6437 {
6438 if (cpuhp_tasks_frozen) {
6439 /*
6440 * num_cpus_frozen tracks how many CPUs are involved in suspend
6441 * resume sequence. As long as this is not the last online
6442 * operation in the resume sequence, just build a single sched
6443 * domain, ignoring cpusets.
6444 */
6445 partition_sched_domains(1, NULL, NULL);
6446 if (--num_cpus_frozen)
6447 return;
6448 /*
6449 * This is the last CPU online operation. So fall through and
6450 * restore the original sched domains by considering the
6451 * cpuset configurations.
6452 */
6453 cpuset_force_rebuild();
6454 }
6455 cpuset_update_active_cpus();
6456 }
6457
6458 static int cpuset_cpu_inactive(unsigned int cpu)
6459 {
6460 if (!cpuhp_tasks_frozen) {
6461 if (dl_cpu_busy(cpu))
6462 return -EBUSY;
6463 cpuset_update_active_cpus();
6464 } else {
6465 num_cpus_frozen++;
6466 partition_sched_domains(1, NULL, NULL);
6467 }
6468 return 0;
6469 }
6470
6471 int sched_cpu_activate(unsigned int cpu)
6472 {
6473 struct rq *rq = cpu_rq(cpu);
6474 struct rq_flags rf;
6475
6476 #ifdef CONFIG_SCHED_SMT
6477 /*
6478 * When going up, increment the number of cores with SMT present.
6479 */
6480 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6481 static_branch_inc_cpuslocked(&sched_smt_present);
6482 #endif
6483 set_cpu_active(cpu, true);
6484
6485 if (sched_smp_initialized) {
6486 sched_domains_numa_masks_set(cpu);
6487 cpuset_cpu_active();
6488 }
6489
6490 /*
6491 * Put the rq online, if not already. This happens:
6492 *
6493 * 1) In the early boot process, because we build the real domains
6494 * after all CPUs have been brought up.
6495 *
6496 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
6497 * domains.
6498 */
6499 rq_lock_irqsave(rq, &rf);
6500 if (rq->rd) {
6501 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6502 set_rq_online(rq);
6503 }
6504 rq_unlock_irqrestore(rq, &rf);
6505
6506 return 0;
6507 }
6508
6509 int sched_cpu_deactivate(unsigned int cpu)
6510 {
6511 int ret;
6512
6513 set_cpu_active(cpu, false);
6514 /*
6515 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
6516 * users of this state to go away such that all new such users will
6517 * observe it.
6518 *
6519 * Do sync before park smpboot threads to take care the rcu boost case.
6520 */
6521 synchronize_rcu();
6522
6523 #ifdef CONFIG_SCHED_SMT
6524 /*
6525 * When going down, decrement the number of cores with SMT present.
6526 */
6527 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
6528 static_branch_dec_cpuslocked(&sched_smt_present);
6529 #endif
6530
6531 if (!sched_smp_initialized)
6532 return 0;
6533
6534 ret = cpuset_cpu_inactive(cpu);
6535 if (ret) {
6536 set_cpu_active(cpu, true);
6537 return ret;
6538 }
6539 sched_domains_numa_masks_clear(cpu);
6540 return 0;
6541 }
6542
6543 static void sched_rq_cpu_starting(unsigned int cpu)
6544 {
6545 struct rq *rq = cpu_rq(cpu);
6546
6547 rq->calc_load_update = calc_load_update;
6548 update_max_interval();
6549 }
6550
6551 int sched_cpu_starting(unsigned int cpu)
6552 {
6553 sched_rq_cpu_starting(cpu);
6554 sched_tick_start(cpu);
6555 return 0;
6556 }
6557
6558 #ifdef CONFIG_HOTPLUG_CPU
6559 int sched_cpu_dying(unsigned int cpu)
6560 {
6561 struct rq *rq = cpu_rq(cpu);
6562 struct rq_flags rf;
6563
6564 /* Handle pending wakeups and then migrate everything off */
6565 sched_tick_stop(cpu);
6566
6567 rq_lock_irqsave(rq, &rf);
6568 if (rq->rd) {
6569 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6570 set_rq_offline(rq);
6571 }
6572 migrate_tasks(rq, &rf);
6573 BUG_ON(rq->nr_running != 1);
6574 rq_unlock_irqrestore(rq, &rf);
6575
6576 calc_load_migrate(rq);
6577 update_max_interval();
6578 nohz_balance_exit_idle(rq);
6579 hrtick_clear(rq);
6580 return 0;
6581 }
6582 #endif
6583
6584 void __init sched_init_smp(void)
6585 {
6586 sched_init_numa();
6587
6588 /*
6589 * There's no userspace yet to cause hotplug operations; hence all the
6590 * CPU masks are stable and all blatant races in the below code cannot
6591 * happen.
6592 */
6593 mutex_lock(&sched_domains_mutex);
6594 sched_init_domains(cpu_active_mask);
6595 mutex_unlock(&sched_domains_mutex);
6596
6597 /* Move init over to a non-isolated CPU */
6598 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
6599 BUG();
6600 sched_init_granularity();
6601
6602 init_sched_rt_class();
6603 init_sched_dl_class();
6604
6605 sched_smp_initialized = true;
6606 }
6607
6608 static int __init migration_init(void)
6609 {
6610 sched_cpu_starting(smp_processor_id());
6611 return 0;
6612 }
6613 early_initcall(migration_init);
6614
6615 #else
6616 void __init sched_init_smp(void)
6617 {
6618 sched_init_granularity();
6619 }
6620 #endif /* CONFIG_SMP */
6621
6622 int in_sched_functions(unsigned long addr)
6623 {
6624 return in_lock_functions(addr) ||
6625 (addr >= (unsigned long)__sched_text_start
6626 && addr < (unsigned long)__sched_text_end);
6627 }
6628
6629 #ifdef CONFIG_CGROUP_SCHED
6630 /*
6631 * Default task group.
6632 * Every task in system belongs to this group at bootup.
6633 */
6634 struct task_group root_task_group;
6635 LIST_HEAD(task_groups);
6636
6637 /* Cacheline aligned slab cache for task_group */
6638 static struct kmem_cache *task_group_cache __read_mostly;
6639 #endif
6640
6641 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6642 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
6643
6644 void __init sched_init(void)
6645 {
6646 unsigned long ptr = 0;
6647 int i;
6648
6649 wait_bit_init();
6650
6651 #ifdef CONFIG_FAIR_GROUP_SCHED
6652 ptr += 2 * nr_cpu_ids * sizeof(void **);
6653 #endif
6654 #ifdef CONFIG_RT_GROUP_SCHED
6655 ptr += 2 * nr_cpu_ids * sizeof(void **);
6656 #endif
6657 if (ptr) {
6658 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
6659
6660 #ifdef CONFIG_FAIR_GROUP_SCHED
6661 root_task_group.se = (struct sched_entity **)ptr;
6662 ptr += nr_cpu_ids * sizeof(void **);
6663
6664 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
6665 ptr += nr_cpu_ids * sizeof(void **);
6666
6667 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6668 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
6669 #endif /* CONFIG_FAIR_GROUP_SCHED */
6670 #ifdef CONFIG_RT_GROUP_SCHED
6671 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
6672 ptr += nr_cpu_ids * sizeof(void **);
6673
6674 root_task_group.rt_rq = (struct rt_rq **)ptr;
6675 ptr += nr_cpu_ids * sizeof(void **);
6676
6677 #endif /* CONFIG_RT_GROUP_SCHED */
6678 }
6679 #ifdef CONFIG_CPUMASK_OFFSTACK
6680 for_each_possible_cpu(i) {
6681 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
6682 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6683 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
6684 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
6685 }
6686 #endif /* CONFIG_CPUMASK_OFFSTACK */
6687
6688 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
6689 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
6690
6691 #ifdef CONFIG_SMP
6692 init_defrootdomain();
6693 #endif
6694
6695 #ifdef CONFIG_RT_GROUP_SCHED
6696 init_rt_bandwidth(&root_task_group.rt_bandwidth,
6697 global_rt_period(), global_rt_runtime());
6698 #endif /* CONFIG_RT_GROUP_SCHED */
6699
6700 #ifdef CONFIG_CGROUP_SCHED
6701 task_group_cache = KMEM_CACHE(task_group, 0);
6702
6703 list_add(&root_task_group.list, &task_groups);
6704 INIT_LIST_HEAD(&root_task_group.children);
6705 INIT_LIST_HEAD(&root_task_group.siblings);
6706 autogroup_init(&init_task);
6707 #endif /* CONFIG_CGROUP_SCHED */
6708
6709 for_each_possible_cpu(i) {
6710 struct rq *rq;
6711
6712 rq = cpu_rq(i);
6713 raw_spin_lock_init(&rq->lock);
6714 rq->nr_running = 0;
6715 rq->calc_load_active = 0;
6716 rq->calc_load_update = jiffies + LOAD_FREQ;
6717 init_cfs_rq(&rq->cfs);
6718 init_rt_rq(&rq->rt);
6719 init_dl_rq(&rq->dl);
6720 #ifdef CONFIG_FAIR_GROUP_SCHED
6721 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6722 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
6723 /*
6724 * How much CPU bandwidth does root_task_group get?
6725 *
6726 * In case of task-groups formed thr' the cgroup filesystem, it
6727 * gets 100% of the CPU resources in the system. This overall
6728 * system CPU resource is divided among the tasks of
6729 * root_task_group and its child task-groups in a fair manner,
6730 * based on each entity's (task or task-group's) weight
6731 * (se->load.weight).
6732 *
6733 * In other words, if root_task_group has 10 tasks of weight
6734 * 1024) and two child groups A0 and A1 (of weight 1024 each),
6735 * then A0's share of the CPU resource is:
6736 *
6737 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6738 *
6739 * We achieve this by letting root_task_group's tasks sit
6740 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6741 */
6742 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
6743 #endif /* CONFIG_FAIR_GROUP_SCHED */
6744
6745 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
6746 #ifdef CONFIG_RT_GROUP_SCHED
6747 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
6748 #endif
6749 #ifdef CONFIG_SMP
6750 rq->sd = NULL;
6751 rq->rd = NULL;
6752 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
6753 rq->balance_callback = NULL;
6754 rq->active_balance = 0;
6755 rq->next_balance = jiffies;
6756 rq->push_cpu = 0;
6757 rq->cpu = i;
6758 rq->online = 0;
6759 rq->idle_stamp = 0;
6760 rq->avg_idle = 2*sysctl_sched_migration_cost;
6761 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
6762
6763 INIT_LIST_HEAD(&rq->cfs_tasks);
6764
6765 rq_attach_root(rq, &def_root_domain);
6766 #ifdef CONFIG_NO_HZ_COMMON
6767 rq->last_blocked_load_update_tick = jiffies;
6768 atomic_set(&rq->nohz_flags, 0);
6769
6770 rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
6771 #endif
6772 #endif /* CONFIG_SMP */
6773 hrtick_rq_init(rq);
6774 atomic_set(&rq->nr_iowait, 0);
6775 }
6776
6777 set_load_weight(&init_task, false);
6778
6779 /*
6780 * The boot idle thread does lazy MMU switching as well:
6781 */
6782 mmgrab(&init_mm);
6783 enter_lazy_tlb(&init_mm, current);
6784
6785 /*
6786 * Make us the idle thread. Technically, schedule() should not be
6787 * called from this thread, however somewhere below it might be,
6788 * but because we are the idle thread, we just pick up running again
6789 * when this runqueue becomes "idle".
6790 */
6791 init_idle(current, smp_processor_id());
6792
6793 calc_load_update = jiffies + LOAD_FREQ;
6794
6795 #ifdef CONFIG_SMP
6796 idle_thread_set_boot_cpu();
6797 #endif
6798 init_sched_fair_class();
6799
6800 init_schedstats();
6801
6802 psi_init();
6803
6804 init_uclamp();
6805
6806 scheduler_running = 1;
6807 }
6808
6809 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6810 static inline int preempt_count_equals(int preempt_offset)
6811 {
6812 int nested = preempt_count() + rcu_preempt_depth();
6813
6814 return (nested == preempt_offset);
6815 }
6816
6817 void __might_sleep(const char *file, int line, int preempt_offset)
6818 {
6819 /*
6820 * Blocking primitives will set (and therefore destroy) current->state,
6821 * since we will exit with TASK_RUNNING make sure we enter with it,
6822 * otherwise we will destroy state.
6823 */
6824 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
6825 "do not call blocking ops when !TASK_RUNNING; "
6826 "state=%lx set at [<%p>] %pS\n",
6827 current->state,
6828 (void *)current->task_state_change,
6829 (void *)current->task_state_change);
6830
6831 ___might_sleep(file, line, preempt_offset);
6832 }
6833 EXPORT_SYMBOL(__might_sleep);
6834
6835 void ___might_sleep(const char *file, int line, int preempt_offset)
6836 {
6837 /* Ratelimiting timestamp: */
6838 static unsigned long prev_jiffy;
6839
6840 unsigned long preempt_disable_ip;
6841
6842 /* WARN_ON_ONCE() by default, no rate limit required: */
6843 rcu_sleep_check();
6844
6845 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
6846 !is_idle_task(current) && !current->non_block_count) ||
6847 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
6848 oops_in_progress)
6849 return;
6850
6851 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6852 return;
6853 prev_jiffy = jiffies;
6854
6855 /* Save this before calling printk(), since that will clobber it: */
6856 preempt_disable_ip = get_preempt_disable_ip(current);
6857
6858 printk(KERN_ERR
6859 "BUG: sleeping function called from invalid context at %s:%d\n",
6860 file, line);
6861 printk(KERN_ERR
6862 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
6863 in_atomic(), irqs_disabled(), current->non_block_count,
6864 current->pid, current->comm);
6865
6866 if (task_stack_end_corrupted(current))
6867 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
6868
6869 debug_show_held_locks(current);
6870 if (irqs_disabled())
6871 print_irqtrace_events(current);
6872 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
6873 && !preempt_count_equals(preempt_offset)) {
6874 pr_err("Preemption disabled at:");
6875 print_ip_sym(preempt_disable_ip);
6876 pr_cont("\n");
6877 }
6878 dump_stack();
6879 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6880 }
6881 EXPORT_SYMBOL(___might_sleep);
6882
6883 void __cant_sleep(const char *file, int line, int preempt_offset)
6884 {
6885 static unsigned long prev_jiffy;
6886
6887 if (irqs_disabled())
6888 return;
6889
6890 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
6891 return;
6892
6893 if (preempt_count() > preempt_offset)
6894 return;
6895
6896 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6897 return;
6898 prev_jiffy = jiffies;
6899
6900 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
6901 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6902 in_atomic(), irqs_disabled(),
6903 current->pid, current->comm);
6904
6905 debug_show_held_locks(current);
6906 dump_stack();
6907 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
6908 }
6909 EXPORT_SYMBOL_GPL(__cant_sleep);
6910 #endif
6911
6912 #ifdef CONFIG_MAGIC_SYSRQ
6913 void normalize_rt_tasks(void)
6914 {
6915 struct task_struct *g, *p;
6916 struct sched_attr attr = {
6917 .sched_policy = SCHED_NORMAL,
6918 };
6919
6920 read_lock(&tasklist_lock);
6921 for_each_process_thread(g, p) {
6922 /*
6923 * Only normalize user tasks:
6924 */
6925 if (p->flags & PF_KTHREAD)
6926 continue;
6927
6928 p->se.exec_start = 0;
6929 schedstat_set(p->se.statistics.wait_start, 0);
6930 schedstat_set(p->se.statistics.sleep_start, 0);
6931 schedstat_set(p->se.statistics.block_start, 0);
6932
6933 if (!dl_task(p) && !rt_task(p)) {
6934 /*
6935 * Renice negative nice level userspace
6936 * tasks back to 0:
6937 */
6938 if (task_nice(p) < 0)
6939 set_user_nice(p, 0);
6940 continue;
6941 }
6942
6943 __sched_setscheduler(p, &attr, false, false);
6944 }
6945 read_unlock(&tasklist_lock);
6946 }
6947
6948 #endif /* CONFIG_MAGIC_SYSRQ */
6949
6950 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6951 /*
6952 * These functions are only useful for the IA64 MCA handling, or kdb.
6953 *
6954 * They can only be called when the whole system has been
6955 * stopped - every CPU needs to be quiescent, and no scheduling
6956 * activity can take place. Using them for anything else would
6957 * be a serious bug, and as a result, they aren't even visible
6958 * under any other configuration.
6959 */
6960
6961 /**
6962 * curr_task - return the current task for a given CPU.
6963 * @cpu: the processor in question.
6964 *
6965 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6966 *
6967 * Return: The current task for @cpu.
6968 */
6969 struct task_struct *curr_task(int cpu)
6970 {
6971 return cpu_curr(cpu);
6972 }
6973
6974 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6975
6976 #ifdef CONFIG_IA64
6977 /**
6978 * ia64_set_curr_task - set the current task for a given CPU.
6979 * @cpu: the processor in question.
6980 * @p: the task pointer to set.
6981 *
6982 * Description: This function must only be used when non-maskable interrupts
6983 * are serviced on a separate stack. It allows the architecture to switch the
6984 * notion of the current task on a CPU in a non-blocking manner. This function
6985 * must be called with all CPU's synchronized, and interrupts disabled, the
6986 * and caller must save the original value of the current task (see
6987 * curr_task() above) and restore that value before reenabling interrupts and
6988 * re-starting the system.
6989 *
6990 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6991 */
6992 void ia64_set_curr_task(int cpu, struct task_struct *p)
6993 {
6994 cpu_curr(cpu) = p;
6995 }
6996
6997 #endif
6998
6999 #ifdef CONFIG_CGROUP_SCHED
7000 /* task_group_lock serializes the addition/removal of task groups */
7001 static DEFINE_SPINLOCK(task_group_lock);
7002
7003 static inline void alloc_uclamp_sched_group(struct task_group *tg,
7004 struct task_group *parent)
7005 {
7006 #ifdef CONFIG_UCLAMP_TASK_GROUP
7007 enum uclamp_id clamp_id;
7008
7009 for_each_clamp_id(clamp_id) {
7010 uclamp_se_set(&tg->uclamp_req[clamp_id],
7011 uclamp_none(clamp_id), false);
7012 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
7013 }
7014 #endif
7015 }
7016
7017 static void sched_free_group(struct task_group *tg)
7018 {
7019 free_fair_sched_group(tg);
7020 free_rt_sched_group(tg);
7021 autogroup_free(tg);
7022 kmem_cache_free(task_group_cache, tg);
7023 }
7024
7025 /* allocate runqueue etc for a new task group */
7026 struct task_group *sched_create_group(struct task_group *parent)
7027 {
7028 struct task_group *tg;
7029
7030 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
7031 if (!tg)
7032 return ERR_PTR(-ENOMEM);
7033
7034 if (!alloc_fair_sched_group(tg, parent))
7035 goto err;
7036
7037 if (!alloc_rt_sched_group(tg, parent))
7038 goto err;
7039
7040 alloc_uclamp_sched_group(tg, parent);
7041
7042 return tg;
7043
7044 err:
7045 sched_free_group(tg);
7046 return ERR_PTR(-ENOMEM);
7047 }
7048
7049 void sched_online_group(struct task_group *tg, struct task_group *parent)
7050 {
7051 unsigned long flags;
7052
7053 spin_lock_irqsave(&task_group_lock, flags);
7054 list_add_rcu(&tg->list, &task_groups);
7055
7056 /* Root should already exist: */
7057 WARN_ON(!parent);
7058
7059 tg->parent = parent;
7060 INIT_LIST_HEAD(&tg->children);
7061 list_add_rcu(&tg->siblings, &parent->children);
7062 spin_unlock_irqrestore(&task_group_lock, flags);
7063
7064 online_fair_sched_group(tg);
7065 }
7066
7067 /* rcu callback to free various structures associated with a task group */
7068 static void sched_free_group_rcu(struct rcu_head *rhp)
7069 {
7070 /* Now it should be safe to free those cfs_rqs: */
7071 sched_free_group(container_of(rhp, struct task_group, rcu));
7072 }
7073
7074 void sched_destroy_group(struct task_group *tg)
7075 {
7076 /* Wait for possible concurrent references to cfs_rqs complete: */
7077 call_rcu(&tg->rcu, sched_free_group_rcu);
7078 }
7079
7080 void sched_offline_group(struct task_group *tg)
7081 {
7082 unsigned long flags;
7083
7084 /* End participation in shares distribution: */
7085 unregister_fair_sched_group(tg);
7086
7087 spin_lock_irqsave(&task_group_lock, flags);
7088 list_del_rcu(&tg->list);
7089 list_del_rcu(&tg->siblings);
7090 spin_unlock_irqrestore(&task_group_lock, flags);
7091 }
7092
7093 static void sched_change_group(struct task_struct *tsk, int type)
7094 {
7095 struct task_group *tg;
7096
7097 /*
7098 * All callers are synchronized by task_rq_lock(); we do not use RCU
7099 * which is pointless here. Thus, we pass "true" to task_css_check()
7100 * to prevent lockdep warnings.
7101 */
7102 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
7103 struct task_group, css);
7104 tg = autogroup_task_group(tsk, tg);
7105 tsk->sched_task_group = tg;
7106
7107 #ifdef CONFIG_FAIR_GROUP_SCHED
7108 if (tsk->sched_class->task_change_group)
7109 tsk->sched_class->task_change_group(tsk, type);
7110 else
7111 #endif
7112 set_task_rq(tsk, task_cpu(tsk));
7113 }
7114
7115 /*
7116 * Change task's runqueue when it moves between groups.
7117 *
7118 * The caller of this function should have put the task in its new group by
7119 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
7120 * its new group.
7121 */
7122 void sched_move_task(struct task_struct *tsk)
7123 {
7124 int queued, running, queue_flags =
7125 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7126 struct rq_flags rf;
7127 struct rq *rq;
7128
7129 rq = task_rq_lock(tsk, &rf);
7130 update_rq_clock(rq);
7131
7132 running = task_current(rq, tsk);
7133 queued = task_on_rq_queued(tsk);
7134
7135 if (queued)
7136 dequeue_task(rq, tsk, queue_flags);
7137 if (running)
7138 put_prev_task(rq, tsk);
7139
7140 sched_change_group(tsk, TASK_MOVE_GROUP);
7141
7142 if (queued)
7143 enqueue_task(rq, tsk, queue_flags);
7144 if (running) {
7145 set_next_task(rq, tsk);
7146 /*
7147 * After changing group, the running task may have joined a
7148 * throttled one but it's still the running task. Trigger a
7149 * resched to make sure that task can still run.
7150 */
7151 resched_curr(rq);
7152 }
7153
7154 task_rq_unlock(rq, tsk, &rf);
7155 }
7156
7157 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
7158 {
7159 return css ? container_of(css, struct task_group, css) : NULL;
7160 }
7161
7162 static struct cgroup_subsys_state *
7163 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
7164 {
7165 struct task_group *parent = css_tg(parent_css);
7166 struct task_group *tg;
7167
7168 if (!parent) {
7169 /* This is early initialization for the top cgroup */
7170 return &root_task_group.css;
7171 }
7172
7173 tg = sched_create_group(parent);
7174 if (IS_ERR(tg))
7175 return ERR_PTR(-ENOMEM);
7176
7177 return &tg->css;
7178 }
7179
7180 /* Expose task group only after completing cgroup initialization */
7181 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
7182 {
7183 struct task_group *tg = css_tg(css);
7184 struct task_group *parent = css_tg(css->parent);
7185
7186 if (parent)
7187 sched_online_group(tg, parent);
7188
7189 #ifdef CONFIG_UCLAMP_TASK_GROUP
7190 /* Propagate the effective uclamp value for the new group */
7191 cpu_util_update_eff(css);
7192 #endif
7193
7194 return 0;
7195 }
7196
7197 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
7198 {
7199 struct task_group *tg = css_tg(css);
7200
7201 sched_offline_group(tg);
7202 }
7203
7204 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
7205 {
7206 struct task_group *tg = css_tg(css);
7207
7208 /*
7209 * Relies on the RCU grace period between css_released() and this.
7210 */
7211 sched_free_group(tg);
7212 }
7213
7214 /*
7215 * This is called before wake_up_new_task(), therefore we really only
7216 * have to set its group bits, all the other stuff does not apply.
7217 */
7218 static void cpu_cgroup_fork(struct task_struct *task)
7219 {
7220 struct rq_flags rf;
7221 struct rq *rq;
7222
7223 rq = task_rq_lock(task, &rf);
7224
7225 update_rq_clock(rq);
7226 sched_change_group(task, TASK_SET_GROUP);
7227
7228 task_rq_unlock(rq, task, &rf);
7229 }
7230
7231 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
7232 {
7233 struct task_struct *task;
7234 struct cgroup_subsys_state *css;
7235 int ret = 0;
7236
7237 cgroup_taskset_for_each(task, css, tset) {
7238 #ifdef CONFIG_RT_GROUP_SCHED
7239 if (!sched_rt_can_attach(css_tg(css), task))
7240 return -EINVAL;
7241 #endif
7242 /*
7243 * Serialize against wake_up_new_task() such that if its
7244 * running, we're sure to observe its full state.
7245 */
7246 raw_spin_lock_irq(&task->pi_lock);
7247 /*
7248 * Avoid calling sched_move_task() before wake_up_new_task()
7249 * has happened. This would lead to problems with PELT, due to
7250 * move wanting to detach+attach while we're not attached yet.
7251 */
7252 if (task->state == TASK_NEW)
7253 ret = -EINVAL;
7254 raw_spin_unlock_irq(&task->pi_lock);
7255
7256 if (ret)
7257 break;
7258 }
7259 return ret;
7260 }
7261
7262 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
7263 {
7264 struct task_struct *task;
7265 struct cgroup_subsys_state *css;
7266
7267 cgroup_taskset_for_each(task, css, tset)
7268 sched_move_task(task);
7269 }
7270
7271 #ifdef CONFIG_UCLAMP_TASK_GROUP
7272 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
7273 {
7274 struct cgroup_subsys_state *top_css = css;
7275 struct uclamp_se *uc_parent = NULL;
7276 struct uclamp_se *uc_se = NULL;
7277 unsigned int eff[UCLAMP_CNT];
7278 enum uclamp_id clamp_id;
7279 unsigned int clamps;
7280
7281 css_for_each_descendant_pre(css, top_css) {
7282 uc_parent = css_tg(css)->parent
7283 ? css_tg(css)->parent->uclamp : NULL;
7284
7285 for_each_clamp_id(clamp_id) {
7286 /* Assume effective clamps matches requested clamps */
7287 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
7288 /* Cap effective clamps with parent's effective clamps */
7289 if (uc_parent &&
7290 eff[clamp_id] > uc_parent[clamp_id].value) {
7291 eff[clamp_id] = uc_parent[clamp_id].value;
7292 }
7293 }
7294 /* Ensure protection is always capped by limit */
7295 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
7296
7297 /* Propagate most restrictive effective clamps */
7298 clamps = 0x0;
7299 uc_se = css_tg(css)->uclamp;
7300 for_each_clamp_id(clamp_id) {
7301 if (eff[clamp_id] == uc_se[clamp_id].value)
7302 continue;
7303 uc_se[clamp_id].value = eff[clamp_id];
7304 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
7305 clamps |= (0x1 << clamp_id);
7306 }
7307 if (!clamps) {
7308 css = css_rightmost_descendant(css);
7309 continue;
7310 }
7311
7312 /* Immediately update descendants RUNNABLE tasks */
7313 uclamp_update_active_tasks(css, clamps);
7314 }
7315 }
7316
7317 /*
7318 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
7319 * C expression. Since there is no way to convert a macro argument (N) into a
7320 * character constant, use two levels of macros.
7321 */
7322 #define _POW10(exp) ((unsigned int)1e##exp)
7323 #define POW10(exp) _POW10(exp)
7324
7325 struct uclamp_request {
7326 #define UCLAMP_PERCENT_SHIFT 2
7327 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
7328 s64 percent;
7329 u64 util;
7330 int ret;
7331 };
7332
7333 static inline struct uclamp_request
7334 capacity_from_percent(char *buf)
7335 {
7336 struct uclamp_request req = {
7337 .percent = UCLAMP_PERCENT_SCALE,
7338 .util = SCHED_CAPACITY_SCALE,
7339 .ret = 0,
7340 };
7341
7342 buf = strim(buf);
7343 if (strcmp(buf, "max")) {
7344 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
7345 &req.percent);
7346 if (req.ret)
7347 return req;
7348 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
7349 req.ret = -ERANGE;
7350 return req;
7351 }
7352
7353 req.util = req.percent << SCHED_CAPACITY_SHIFT;
7354 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
7355 }
7356
7357 return req;
7358 }
7359
7360 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
7361 size_t nbytes, loff_t off,
7362 enum uclamp_id clamp_id)
7363 {
7364 struct uclamp_request req;
7365 struct task_group *tg;
7366
7367 req = capacity_from_percent(buf);
7368 if (req.ret)
7369 return req.ret;
7370
7371 mutex_lock(&uclamp_mutex);
7372 rcu_read_lock();
7373
7374 tg = css_tg(of_css(of));
7375 if (tg->uclamp_req[clamp_id].value != req.util)
7376 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
7377
7378 /*
7379 * Because of not recoverable conversion rounding we keep track of the
7380 * exact requested value
7381 */
7382 tg->uclamp_pct[clamp_id] = req.percent;
7383
7384 /* Update effective clamps to track the most restrictive value */
7385 cpu_util_update_eff(of_css(of));
7386
7387 rcu_read_unlock();
7388 mutex_unlock(&uclamp_mutex);
7389
7390 return nbytes;
7391 }
7392
7393 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
7394 char *buf, size_t nbytes,
7395 loff_t off)
7396 {
7397 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
7398 }
7399
7400 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
7401 char *buf, size_t nbytes,
7402 loff_t off)
7403 {
7404 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
7405 }
7406
7407 static inline void cpu_uclamp_print(struct seq_file *sf,
7408 enum uclamp_id clamp_id)
7409 {
7410 struct task_group *tg;
7411 u64 util_clamp;
7412 u64 percent;
7413 u32 rem;
7414
7415 rcu_read_lock();
7416 tg = css_tg(seq_css(sf));
7417 util_clamp = tg->uclamp_req[clamp_id].value;
7418 rcu_read_unlock();
7419
7420 if (util_clamp == SCHED_CAPACITY_SCALE) {
7421 seq_puts(sf, "max\n");
7422 return;
7423 }
7424
7425 percent = tg->uclamp_pct[clamp_id];
7426 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
7427 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
7428 }
7429
7430 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
7431 {
7432 cpu_uclamp_print(sf, UCLAMP_MIN);
7433 return 0;
7434 }
7435
7436 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
7437 {
7438 cpu_uclamp_print(sf, UCLAMP_MAX);
7439 return 0;
7440 }
7441 #endif /* CONFIG_UCLAMP_TASK_GROUP */
7442
7443 #ifdef CONFIG_FAIR_GROUP_SCHED
7444 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
7445 struct cftype *cftype, u64 shareval)
7446 {
7447 if (shareval > scale_load_down(ULONG_MAX))
7448 shareval = MAX_SHARES;
7449 return sched_group_set_shares(css_tg(css), scale_load(shareval));
7450 }
7451
7452 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
7453 struct cftype *cft)
7454 {
7455 struct task_group *tg = css_tg(css);
7456
7457 return (u64) scale_load_down(tg->shares);
7458 }
7459
7460 #ifdef CONFIG_CFS_BANDWIDTH
7461 static DEFINE_MUTEX(cfs_constraints_mutex);
7462
7463 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7464 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7465 /* More than 203 days if BW_SHIFT equals 20. */
7466 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
7467
7468 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7469
7470 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7471 {
7472 int i, ret = 0, runtime_enabled, runtime_was_enabled;
7473 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7474
7475 if (tg == &root_task_group)
7476 return -EINVAL;
7477
7478 /*
7479 * Ensure we have at some amount of bandwidth every period. This is
7480 * to prevent reaching a state of large arrears when throttled via
7481 * entity_tick() resulting in prolonged exit starvation.
7482 */
7483 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7484 return -EINVAL;
7485
7486 /*
7487 * Likewise, bound things on the otherside by preventing insane quota
7488 * periods. This also allows us to normalize in computing quota
7489 * feasibility.
7490 */
7491 if (period > max_cfs_quota_period)
7492 return -EINVAL;
7493
7494 /*
7495 * Bound quota to defend quota against overflow during bandwidth shift.
7496 */
7497 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
7498 return -EINVAL;
7499
7500 /*
7501 * Prevent race between setting of cfs_rq->runtime_enabled and
7502 * unthrottle_offline_cfs_rqs().
7503 */
7504 get_online_cpus();
7505 mutex_lock(&cfs_constraints_mutex);
7506 ret = __cfs_schedulable(tg, period, quota);
7507 if (ret)
7508 goto out_unlock;
7509
7510 runtime_enabled = quota != RUNTIME_INF;
7511 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7512 /*
7513 * If we need to toggle cfs_bandwidth_used, off->on must occur
7514 * before making related changes, and on->off must occur afterwards
7515 */
7516 if (runtime_enabled && !runtime_was_enabled)
7517 cfs_bandwidth_usage_inc();
7518 raw_spin_lock_irq(&cfs_b->lock);
7519 cfs_b->period = ns_to_ktime(period);
7520 cfs_b->quota = quota;
7521
7522 __refill_cfs_bandwidth_runtime(cfs_b);
7523
7524 /* Restart the period timer (if active) to handle new period expiry: */
7525 if (runtime_enabled)
7526 start_cfs_bandwidth(cfs_b);
7527
7528 raw_spin_unlock_irq(&cfs_b->lock);
7529
7530 for_each_online_cpu(i) {
7531 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
7532 struct rq *rq = cfs_rq->rq;
7533 struct rq_flags rf;
7534
7535 rq_lock_irq(rq, &rf);
7536 cfs_rq->runtime_enabled = runtime_enabled;
7537 cfs_rq->runtime_remaining = 0;
7538
7539 if (cfs_rq->throttled)
7540 unthrottle_cfs_rq(cfs_rq);
7541 rq_unlock_irq(rq, &rf);
7542 }
7543 if (runtime_was_enabled && !runtime_enabled)
7544 cfs_bandwidth_usage_dec();
7545 out_unlock:
7546 mutex_unlock(&cfs_constraints_mutex);
7547 put_online_cpus();
7548
7549 return ret;
7550 }
7551
7552 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7553 {
7554 u64 quota, period;
7555
7556 period = ktime_to_ns(tg->cfs_bandwidth.period);
7557 if (cfs_quota_us < 0)
7558 quota = RUNTIME_INF;
7559 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
7560 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7561 else
7562 return -EINVAL;
7563
7564 return tg_set_cfs_bandwidth(tg, period, quota);
7565 }
7566
7567 static long tg_get_cfs_quota(struct task_group *tg)
7568 {
7569 u64 quota_us;
7570
7571 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
7572 return -1;
7573
7574 quota_us = tg->cfs_bandwidth.quota;
7575 do_div(quota_us, NSEC_PER_USEC);
7576
7577 return quota_us;
7578 }
7579
7580 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7581 {
7582 u64 quota, period;
7583
7584 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
7585 return -EINVAL;
7586
7587 period = (u64)cfs_period_us * NSEC_PER_USEC;
7588 quota = tg->cfs_bandwidth.quota;
7589
7590 return tg_set_cfs_bandwidth(tg, period, quota);
7591 }
7592
7593 static long tg_get_cfs_period(struct task_group *tg)
7594 {
7595 u64 cfs_period_us;
7596
7597 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
7598 do_div(cfs_period_us, NSEC_PER_USEC);
7599
7600 return cfs_period_us;
7601 }
7602
7603 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
7604 struct cftype *cft)
7605 {
7606 return tg_get_cfs_quota(css_tg(css));
7607 }
7608
7609 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
7610 struct cftype *cftype, s64 cfs_quota_us)
7611 {
7612 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
7613 }
7614
7615 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
7616 struct cftype *cft)
7617 {
7618 return tg_get_cfs_period(css_tg(css));
7619 }
7620
7621 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
7622 struct cftype *cftype, u64 cfs_period_us)
7623 {
7624 return tg_set_cfs_period(css_tg(css), cfs_period_us);
7625 }
7626
7627 struct cfs_schedulable_data {
7628 struct task_group *tg;
7629 u64 period, quota;
7630 };
7631
7632 /*
7633 * normalize group quota/period to be quota/max_period
7634 * note: units are usecs
7635 */
7636 static u64 normalize_cfs_quota(struct task_group *tg,
7637 struct cfs_schedulable_data *d)
7638 {
7639 u64 quota, period;
7640
7641 if (tg == d->tg) {
7642 period = d->period;
7643 quota = d->quota;
7644 } else {
7645 period = tg_get_cfs_period(tg);
7646 quota = tg_get_cfs_quota(tg);
7647 }
7648
7649 /* note: these should typically be equivalent */
7650 if (quota == RUNTIME_INF || quota == -1)
7651 return RUNTIME_INF;
7652
7653 return to_ratio(period, quota);
7654 }
7655
7656 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7657 {
7658 struct cfs_schedulable_data *d = data;
7659 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7660 s64 quota = 0, parent_quota = -1;
7661
7662 if (!tg->parent) {
7663 quota = RUNTIME_INF;
7664 } else {
7665 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
7666
7667 quota = normalize_cfs_quota(tg, d);
7668 parent_quota = parent_b->hierarchical_quota;
7669
7670 /*
7671 * Ensure max(child_quota) <= parent_quota. On cgroup2,
7672 * always take the min. On cgroup1, only inherit when no
7673 * limit is set:
7674 */
7675 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
7676 quota = min(quota, parent_quota);
7677 } else {
7678 if (quota == RUNTIME_INF)
7679 quota = parent_quota;
7680 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7681 return -EINVAL;
7682 }
7683 }
7684 cfs_b->hierarchical_quota = quota;
7685
7686 return 0;
7687 }
7688
7689 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7690 {
7691 int ret;
7692 struct cfs_schedulable_data data = {
7693 .tg = tg,
7694 .period = period,
7695 .quota = quota,
7696 };
7697
7698 if (quota != RUNTIME_INF) {
7699 do_div(data.period, NSEC_PER_USEC);
7700 do_div(data.quota, NSEC_PER_USEC);
7701 }
7702
7703 rcu_read_lock();
7704 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
7705 rcu_read_unlock();
7706
7707 return ret;
7708 }
7709
7710 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
7711 {
7712 struct task_group *tg = css_tg(seq_css(sf));
7713 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7714
7715 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
7716 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
7717 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
7718
7719 if (schedstat_enabled() && tg != &root_task_group) {
7720 u64 ws = 0;
7721 int i;
7722
7723 for_each_possible_cpu(i)
7724 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
7725
7726 seq_printf(sf, "wait_sum %llu\n", ws);
7727 }
7728
7729 return 0;
7730 }
7731 #endif /* CONFIG_CFS_BANDWIDTH */
7732 #endif /* CONFIG_FAIR_GROUP_SCHED */
7733
7734 #ifdef CONFIG_RT_GROUP_SCHED
7735 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
7736 struct cftype *cft, s64 val)
7737 {
7738 return sched_group_set_rt_runtime(css_tg(css), val);
7739 }
7740
7741 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
7742 struct cftype *cft)
7743 {
7744 return sched_group_rt_runtime(css_tg(css));
7745 }
7746
7747 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
7748 struct cftype *cftype, u64 rt_period_us)
7749 {
7750 return sched_group_set_rt_period(css_tg(css), rt_period_us);
7751 }
7752
7753 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
7754 struct cftype *cft)
7755 {
7756 return sched_group_rt_period(css_tg(css));
7757 }
7758 #endif /* CONFIG_RT_GROUP_SCHED */
7759
7760 static struct cftype cpu_legacy_files[] = {
7761 #ifdef CONFIG_FAIR_GROUP_SCHED
7762 {
7763 .name = "shares",
7764 .read_u64 = cpu_shares_read_u64,
7765 .write_u64 = cpu_shares_write_u64,
7766 },
7767 #endif
7768 #ifdef CONFIG_CFS_BANDWIDTH
7769 {
7770 .name = "cfs_quota_us",
7771 .read_s64 = cpu_cfs_quota_read_s64,
7772 .write_s64 = cpu_cfs_quota_write_s64,
7773 },
7774 {
7775 .name = "cfs_period_us",
7776 .read_u64 = cpu_cfs_period_read_u64,
7777 .write_u64 = cpu_cfs_period_write_u64,
7778 },
7779 {
7780 .name = "stat",
7781 .seq_show = cpu_cfs_stat_show,
7782 },
7783 #endif
7784 #ifdef CONFIG_RT_GROUP_SCHED
7785 {
7786 .name = "rt_runtime_us",
7787 .read_s64 = cpu_rt_runtime_read,
7788 .write_s64 = cpu_rt_runtime_write,
7789 },
7790 {
7791 .name = "rt_period_us",
7792 .read_u64 = cpu_rt_period_read_uint,
7793 .write_u64 = cpu_rt_period_write_uint,
7794 },
7795 #endif
7796 #ifdef CONFIG_UCLAMP_TASK_GROUP
7797 {
7798 .name = "uclamp.min",
7799 .flags = CFTYPE_NOT_ON_ROOT,
7800 .seq_show = cpu_uclamp_min_show,
7801 .write = cpu_uclamp_min_write,
7802 },
7803 {
7804 .name = "uclamp.max",
7805 .flags = CFTYPE_NOT_ON_ROOT,
7806 .seq_show = cpu_uclamp_max_show,
7807 .write = cpu_uclamp_max_write,
7808 },
7809 #endif
7810 { } /* Terminate */
7811 };
7812
7813 static int cpu_extra_stat_show(struct seq_file *sf,
7814 struct cgroup_subsys_state *css)
7815 {
7816 #ifdef CONFIG_CFS_BANDWIDTH
7817 {
7818 struct task_group *tg = css_tg(css);
7819 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
7820 u64 throttled_usec;
7821
7822 throttled_usec = cfs_b->throttled_time;
7823 do_div(throttled_usec, NSEC_PER_USEC);
7824
7825 seq_printf(sf, "nr_periods %d\n"
7826 "nr_throttled %d\n"
7827 "throttled_usec %llu\n",
7828 cfs_b->nr_periods, cfs_b->nr_throttled,
7829 throttled_usec);
7830 }
7831 #endif
7832 return 0;
7833 }
7834
7835 #ifdef CONFIG_FAIR_GROUP_SCHED
7836 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
7837 struct cftype *cft)
7838 {
7839 struct task_group *tg = css_tg(css);
7840 u64 weight = scale_load_down(tg->shares);
7841
7842 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
7843 }
7844
7845 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
7846 struct cftype *cft, u64 weight)
7847 {
7848 /*
7849 * cgroup weight knobs should use the common MIN, DFL and MAX
7850 * values which are 1, 100 and 10000 respectively. While it loses
7851 * a bit of range on both ends, it maps pretty well onto the shares
7852 * value used by scheduler and the round-trip conversions preserve
7853 * the original value over the entire range.
7854 */
7855 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
7856 return -ERANGE;
7857
7858 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
7859
7860 return sched_group_set_shares(css_tg(css), scale_load(weight));
7861 }
7862
7863 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
7864 struct cftype *cft)
7865 {
7866 unsigned long weight = scale_load_down(css_tg(css)->shares);
7867 int last_delta = INT_MAX;
7868 int prio, delta;
7869
7870 /* find the closest nice value to the current weight */
7871 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
7872 delta = abs(sched_prio_to_weight[prio] - weight);
7873 if (delta >= last_delta)
7874 break;
7875 last_delta = delta;
7876 }
7877
7878 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
7879 }
7880
7881 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
7882 struct cftype *cft, s64 nice)
7883 {
7884 unsigned long weight;
7885 int idx;
7886
7887 if (nice < MIN_NICE || nice > MAX_NICE)
7888 return -ERANGE;
7889
7890 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
7891 idx = array_index_nospec(idx, 40);
7892 weight = sched_prio_to_weight[idx];
7893
7894 return sched_group_set_shares(css_tg(css), scale_load(weight));
7895 }
7896 #endif
7897
7898 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
7899 long period, long quota)
7900 {
7901 if (quota < 0)
7902 seq_puts(sf, "max");
7903 else
7904 seq_printf(sf, "%ld", quota);
7905
7906 seq_printf(sf, " %ld\n", period);
7907 }
7908
7909 /* caller should put the current value in *@periodp before calling */
7910 static int __maybe_unused cpu_period_quota_parse(char *buf,
7911 u64 *periodp, u64 *quotap)
7912 {
7913 char tok[21]; /* U64_MAX */
7914
7915 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
7916 return -EINVAL;
7917
7918 *periodp *= NSEC_PER_USEC;
7919
7920 if (sscanf(tok, "%llu", quotap))
7921 *quotap *= NSEC_PER_USEC;
7922 else if (!strcmp(tok, "max"))
7923 *quotap = RUNTIME_INF;
7924 else
7925 return -EINVAL;
7926
7927 return 0;
7928 }
7929
7930 #ifdef CONFIG_CFS_BANDWIDTH
7931 static int cpu_max_show(struct seq_file *sf, void *v)
7932 {
7933 struct task_group *tg = css_tg(seq_css(sf));
7934
7935 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
7936 return 0;
7937 }
7938
7939 static ssize_t cpu_max_write(struct kernfs_open_file *of,
7940 char *buf, size_t nbytes, loff_t off)
7941 {
7942 struct task_group *tg = css_tg(of_css(of));
7943 u64 period = tg_get_cfs_period(tg);
7944 u64 quota;
7945 int ret;
7946
7947 ret = cpu_period_quota_parse(buf, &period, &quota);
7948 if (!ret)
7949 ret = tg_set_cfs_bandwidth(tg, period, quota);
7950 return ret ?: nbytes;
7951 }
7952 #endif
7953
7954 static struct cftype cpu_files[] = {
7955 #ifdef CONFIG_FAIR_GROUP_SCHED
7956 {
7957 .name = "weight",
7958 .flags = CFTYPE_NOT_ON_ROOT,
7959 .read_u64 = cpu_weight_read_u64,
7960 .write_u64 = cpu_weight_write_u64,
7961 },
7962 {
7963 .name = "weight.nice",
7964 .flags = CFTYPE_NOT_ON_ROOT,
7965 .read_s64 = cpu_weight_nice_read_s64,
7966 .write_s64 = cpu_weight_nice_write_s64,
7967 },
7968 #endif
7969 #ifdef CONFIG_CFS_BANDWIDTH
7970 {
7971 .name = "max",
7972 .flags = CFTYPE_NOT_ON_ROOT,
7973 .seq_show = cpu_max_show,
7974 .write = cpu_max_write,
7975 },
7976 #endif
7977 #ifdef CONFIG_UCLAMP_TASK_GROUP
7978 {
7979 .name = "uclamp.min",
7980 .flags = CFTYPE_NOT_ON_ROOT,
7981 .seq_show = cpu_uclamp_min_show,
7982 .write = cpu_uclamp_min_write,
7983 },
7984 {
7985 .name = "uclamp.max",
7986 .flags = CFTYPE_NOT_ON_ROOT,
7987 .seq_show = cpu_uclamp_max_show,
7988 .write = cpu_uclamp_max_write,
7989 },
7990 #endif
7991 { } /* terminate */
7992 };
7993
7994 struct cgroup_subsys cpu_cgrp_subsys = {
7995 .css_alloc = cpu_cgroup_css_alloc,
7996 .css_online = cpu_cgroup_css_online,
7997 .css_released = cpu_cgroup_css_released,
7998 .css_free = cpu_cgroup_css_free,
7999 .css_extra_stat_show = cpu_extra_stat_show,
8000 .fork = cpu_cgroup_fork,
8001 .can_attach = cpu_cgroup_can_attach,
8002 .attach = cpu_cgroup_attach,
8003 .legacy_cftypes = cpu_legacy_files,
8004 .dfl_cftypes = cpu_files,
8005 .early_init = true,
8006 .threaded = true,
8007 };
8008
8009 #endif /* CONFIG_CGROUP_SCHED */
8010
8011 void dump_cpu_task(int cpu)
8012 {
8013 pr_info("Task dump for CPU %d:\n", cpu);
8014 sched_show_task(cpu_curr(cpu));
8015 }
8016
8017 /*
8018 * Nice levels are multiplicative, with a gentle 10% change for every
8019 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8020 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8021 * that remained on nice 0.
8022 *
8023 * The "10% effect" is relative and cumulative: from _any_ nice level,
8024 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8025 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8026 * If a task goes up by ~10% and another task goes down by ~10% then
8027 * the relative distance between them is ~25%.)
8028 */
8029 const int sched_prio_to_weight[40] = {
8030 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8031 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8032 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8033 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8034 /* 0 */ 1024, 820, 655, 526, 423,
8035 /* 5 */ 335, 272, 215, 172, 137,
8036 /* 10 */ 110, 87, 70, 56, 45,
8037 /* 15 */ 36, 29, 23, 18, 15,
8038 };
8039
8040 /*
8041 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8042 *
8043 * In cases where the weight does not change often, we can use the
8044 * precalculated inverse to speed up arithmetics by turning divisions
8045 * into multiplications:
8046 */
8047 const u32 sched_prio_to_wmult[40] = {
8048 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8049 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8050 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8051 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8052 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8053 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8054 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8055 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8056 };
8057
8058 #undef CREATE_TRACE_POINTS