]> git.ipfire.org Git - thirdparty/linux.git/blob - lib/bitmap.c
mm: remove both instances of __vmalloc_node_flags
[thirdparty/linux.git] / lib / bitmap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * lib/bitmap.c
4 * Helper functions for bitmap.h.
5 */
6 #include <linux/export.h>
7 #include <linux/thread_info.h>
8 #include <linux/ctype.h>
9 #include <linux/errno.h>
10 #include <linux/bitmap.h>
11 #include <linux/bitops.h>
12 #include <linux/bug.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/uaccess.h>
18
19 #include <asm/page.h>
20
21 #include "kstrtox.h"
22
23 /**
24 * DOC: bitmap introduction
25 *
26 * bitmaps provide an array of bits, implemented using an an
27 * array of unsigned longs. The number of valid bits in a
28 * given bitmap does _not_ need to be an exact multiple of
29 * BITS_PER_LONG.
30 *
31 * The possible unused bits in the last, partially used word
32 * of a bitmap are 'don't care'. The implementation makes
33 * no particular effort to keep them zero. It ensures that
34 * their value will not affect the results of any operation.
35 * The bitmap operations that return Boolean (bitmap_empty,
36 * for example) or scalar (bitmap_weight, for example) results
37 * carefully filter out these unused bits from impacting their
38 * results.
39 *
40 * The byte ordering of bitmaps is more natural on little
41 * endian architectures. See the big-endian headers
42 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
43 * for the best explanations of this ordering.
44 */
45
46 int __bitmap_equal(const unsigned long *bitmap1,
47 const unsigned long *bitmap2, unsigned int bits)
48 {
49 unsigned int k, lim = bits/BITS_PER_LONG;
50 for (k = 0; k < lim; ++k)
51 if (bitmap1[k] != bitmap2[k])
52 return 0;
53
54 if (bits % BITS_PER_LONG)
55 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
56 return 0;
57
58 return 1;
59 }
60 EXPORT_SYMBOL(__bitmap_equal);
61
62 bool __bitmap_or_equal(const unsigned long *bitmap1,
63 const unsigned long *bitmap2,
64 const unsigned long *bitmap3,
65 unsigned int bits)
66 {
67 unsigned int k, lim = bits / BITS_PER_LONG;
68 unsigned long tmp;
69
70 for (k = 0; k < lim; ++k) {
71 if ((bitmap1[k] | bitmap2[k]) != bitmap3[k])
72 return false;
73 }
74
75 if (!(bits % BITS_PER_LONG))
76 return true;
77
78 tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k];
79 return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0;
80 }
81
82 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
83 {
84 unsigned int k, lim = BITS_TO_LONGS(bits);
85 for (k = 0; k < lim; ++k)
86 dst[k] = ~src[k];
87 }
88 EXPORT_SYMBOL(__bitmap_complement);
89
90 /**
91 * __bitmap_shift_right - logical right shift of the bits in a bitmap
92 * @dst : destination bitmap
93 * @src : source bitmap
94 * @shift : shift by this many bits
95 * @nbits : bitmap size, in bits
96 *
97 * Shifting right (dividing) means moving bits in the MS -> LS bit
98 * direction. Zeros are fed into the vacated MS positions and the
99 * LS bits shifted off the bottom are lost.
100 */
101 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
102 unsigned shift, unsigned nbits)
103 {
104 unsigned k, lim = BITS_TO_LONGS(nbits);
105 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
106 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
107 for (k = 0; off + k < lim; ++k) {
108 unsigned long upper, lower;
109
110 /*
111 * If shift is not word aligned, take lower rem bits of
112 * word above and make them the top rem bits of result.
113 */
114 if (!rem || off + k + 1 >= lim)
115 upper = 0;
116 else {
117 upper = src[off + k + 1];
118 if (off + k + 1 == lim - 1)
119 upper &= mask;
120 upper <<= (BITS_PER_LONG - rem);
121 }
122 lower = src[off + k];
123 if (off + k == lim - 1)
124 lower &= mask;
125 lower >>= rem;
126 dst[k] = lower | upper;
127 }
128 if (off)
129 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
130 }
131 EXPORT_SYMBOL(__bitmap_shift_right);
132
133
134 /**
135 * __bitmap_shift_left - logical left shift of the bits in a bitmap
136 * @dst : destination bitmap
137 * @src : source bitmap
138 * @shift : shift by this many bits
139 * @nbits : bitmap size, in bits
140 *
141 * Shifting left (multiplying) means moving bits in the LS -> MS
142 * direction. Zeros are fed into the vacated LS bit positions
143 * and those MS bits shifted off the top are lost.
144 */
145
146 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
147 unsigned int shift, unsigned int nbits)
148 {
149 int k;
150 unsigned int lim = BITS_TO_LONGS(nbits);
151 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
152 for (k = lim - off - 1; k >= 0; --k) {
153 unsigned long upper, lower;
154
155 /*
156 * If shift is not word aligned, take upper rem bits of
157 * word below and make them the bottom rem bits of result.
158 */
159 if (rem && k > 0)
160 lower = src[k - 1] >> (BITS_PER_LONG - rem);
161 else
162 lower = 0;
163 upper = src[k] << rem;
164 dst[k + off] = lower | upper;
165 }
166 if (off)
167 memset(dst, 0, off*sizeof(unsigned long));
168 }
169 EXPORT_SYMBOL(__bitmap_shift_left);
170
171 /**
172 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits
173 * @dst: destination bitmap, might overlap with src
174 * @src: source bitmap
175 * @first: start bit of region to be removed
176 * @cut: number of bits to remove
177 * @nbits: bitmap size, in bits
178 *
179 * Set the n-th bit of @dst iff the n-th bit of @src is set and
180 * n is less than @first, or the m-th bit of @src is set for any
181 * m such that @first <= n < nbits, and m = n + @cut.
182 *
183 * In pictures, example for a big-endian 32-bit architecture:
184 *
185 * @src:
186 * 31 63
187 * | |
188 * 10000000 11000001 11110010 00010101 10000000 11000001 01110010 00010101
189 * | | | |
190 * 16 14 0 32
191 *
192 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is:
193 *
194 * 31 63
195 * | |
196 * 10110000 00011000 00110010 00010101 00010000 00011000 00101110 01000010
197 * | | |
198 * 14 (bit 17 0 32
199 * from @src)
200 *
201 * Note that @dst and @src might overlap partially or entirely.
202 *
203 * This is implemented in the obvious way, with a shift and carry
204 * step for each moved bit. Optimisation is left as an exercise
205 * for the compiler.
206 */
207 void bitmap_cut(unsigned long *dst, const unsigned long *src,
208 unsigned int first, unsigned int cut, unsigned int nbits)
209 {
210 unsigned int len = BITS_TO_LONGS(nbits);
211 unsigned long keep = 0, carry;
212 int i;
213
214 memmove(dst, src, len * sizeof(*dst));
215
216 if (first % BITS_PER_LONG) {
217 keep = src[first / BITS_PER_LONG] &
218 (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG));
219 }
220
221 while (cut--) {
222 for (i = first / BITS_PER_LONG; i < len; i++) {
223 if (i < len - 1)
224 carry = dst[i + 1] & 1UL;
225 else
226 carry = 0;
227
228 dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1));
229 }
230 }
231
232 dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG);
233 dst[first / BITS_PER_LONG] |= keep;
234 }
235 EXPORT_SYMBOL(bitmap_cut);
236
237 int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
238 const unsigned long *bitmap2, unsigned int bits)
239 {
240 unsigned int k;
241 unsigned int lim = bits/BITS_PER_LONG;
242 unsigned long result = 0;
243
244 for (k = 0; k < lim; k++)
245 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
246 if (bits % BITS_PER_LONG)
247 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
248 BITMAP_LAST_WORD_MASK(bits));
249 return result != 0;
250 }
251 EXPORT_SYMBOL(__bitmap_and);
252
253 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
254 const unsigned long *bitmap2, unsigned int bits)
255 {
256 unsigned int k;
257 unsigned int nr = BITS_TO_LONGS(bits);
258
259 for (k = 0; k < nr; k++)
260 dst[k] = bitmap1[k] | bitmap2[k];
261 }
262 EXPORT_SYMBOL(__bitmap_or);
263
264 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
265 const unsigned long *bitmap2, unsigned int bits)
266 {
267 unsigned int k;
268 unsigned int nr = BITS_TO_LONGS(bits);
269
270 for (k = 0; k < nr; k++)
271 dst[k] = bitmap1[k] ^ bitmap2[k];
272 }
273 EXPORT_SYMBOL(__bitmap_xor);
274
275 int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
276 const unsigned long *bitmap2, unsigned int bits)
277 {
278 unsigned int k;
279 unsigned int lim = bits/BITS_PER_LONG;
280 unsigned long result = 0;
281
282 for (k = 0; k < lim; k++)
283 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
284 if (bits % BITS_PER_LONG)
285 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
286 BITMAP_LAST_WORD_MASK(bits));
287 return result != 0;
288 }
289 EXPORT_SYMBOL(__bitmap_andnot);
290
291 void __bitmap_replace(unsigned long *dst,
292 const unsigned long *old, const unsigned long *new,
293 const unsigned long *mask, unsigned int nbits)
294 {
295 unsigned int k;
296 unsigned int nr = BITS_TO_LONGS(nbits);
297
298 for (k = 0; k < nr; k++)
299 dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]);
300 }
301 EXPORT_SYMBOL(__bitmap_replace);
302
303 int __bitmap_intersects(const unsigned long *bitmap1,
304 const unsigned long *bitmap2, unsigned int bits)
305 {
306 unsigned int k, lim = bits/BITS_PER_LONG;
307 for (k = 0; k < lim; ++k)
308 if (bitmap1[k] & bitmap2[k])
309 return 1;
310
311 if (bits % BITS_PER_LONG)
312 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
313 return 1;
314 return 0;
315 }
316 EXPORT_SYMBOL(__bitmap_intersects);
317
318 int __bitmap_subset(const unsigned long *bitmap1,
319 const unsigned long *bitmap2, unsigned int bits)
320 {
321 unsigned int k, lim = bits/BITS_PER_LONG;
322 for (k = 0; k < lim; ++k)
323 if (bitmap1[k] & ~bitmap2[k])
324 return 0;
325
326 if (bits % BITS_PER_LONG)
327 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
328 return 0;
329 return 1;
330 }
331 EXPORT_SYMBOL(__bitmap_subset);
332
333 int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
334 {
335 unsigned int k, lim = bits/BITS_PER_LONG;
336 int w = 0;
337
338 for (k = 0; k < lim; k++)
339 w += hweight_long(bitmap[k]);
340
341 if (bits % BITS_PER_LONG)
342 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
343
344 return w;
345 }
346 EXPORT_SYMBOL(__bitmap_weight);
347
348 void __bitmap_set(unsigned long *map, unsigned int start, int len)
349 {
350 unsigned long *p = map + BIT_WORD(start);
351 const unsigned int size = start + len;
352 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
353 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
354
355 while (len - bits_to_set >= 0) {
356 *p |= mask_to_set;
357 len -= bits_to_set;
358 bits_to_set = BITS_PER_LONG;
359 mask_to_set = ~0UL;
360 p++;
361 }
362 if (len) {
363 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
364 *p |= mask_to_set;
365 }
366 }
367 EXPORT_SYMBOL(__bitmap_set);
368
369 void __bitmap_clear(unsigned long *map, unsigned int start, int len)
370 {
371 unsigned long *p = map + BIT_WORD(start);
372 const unsigned int size = start + len;
373 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
374 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
375
376 while (len - bits_to_clear >= 0) {
377 *p &= ~mask_to_clear;
378 len -= bits_to_clear;
379 bits_to_clear = BITS_PER_LONG;
380 mask_to_clear = ~0UL;
381 p++;
382 }
383 if (len) {
384 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
385 *p &= ~mask_to_clear;
386 }
387 }
388 EXPORT_SYMBOL(__bitmap_clear);
389
390 /**
391 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
392 * @map: The address to base the search on
393 * @size: The bitmap size in bits
394 * @start: The bitnumber to start searching at
395 * @nr: The number of zeroed bits we're looking for
396 * @align_mask: Alignment mask for zero area
397 * @align_offset: Alignment offset for zero area.
398 *
399 * The @align_mask should be one less than a power of 2; the effect is that
400 * the bit offset of all zero areas this function finds plus @align_offset
401 * is multiple of that power of 2.
402 */
403 unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
404 unsigned long size,
405 unsigned long start,
406 unsigned int nr,
407 unsigned long align_mask,
408 unsigned long align_offset)
409 {
410 unsigned long index, end, i;
411 again:
412 index = find_next_zero_bit(map, size, start);
413
414 /* Align allocation */
415 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
416
417 end = index + nr;
418 if (end > size)
419 return end;
420 i = find_next_bit(map, end, index);
421 if (i < end) {
422 start = i + 1;
423 goto again;
424 }
425 return index;
426 }
427 EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
428
429 /*
430 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
431 * second version by Paul Jackson, third by Joe Korty.
432 */
433
434 /**
435 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
436 *
437 * @ubuf: pointer to user buffer containing string.
438 * @ulen: buffer size in bytes. If string is smaller than this
439 * then it must be terminated with a \0.
440 * @maskp: pointer to bitmap array that will contain result.
441 * @nmaskbits: size of bitmap, in bits.
442 */
443 int bitmap_parse_user(const char __user *ubuf,
444 unsigned int ulen, unsigned long *maskp,
445 int nmaskbits)
446 {
447 char *buf;
448 int ret;
449
450 buf = memdup_user_nul(ubuf, ulen);
451 if (IS_ERR(buf))
452 return PTR_ERR(buf);
453
454 ret = bitmap_parse(buf, UINT_MAX, maskp, nmaskbits);
455
456 kfree(buf);
457 return ret;
458 }
459 EXPORT_SYMBOL(bitmap_parse_user);
460
461 /**
462 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
463 * @list: indicates whether the bitmap must be list
464 * @buf: page aligned buffer into which string is placed
465 * @maskp: pointer to bitmap to convert
466 * @nmaskbits: size of bitmap, in bits
467 *
468 * Output format is a comma-separated list of decimal numbers and
469 * ranges if list is specified or hex digits grouped into comma-separated
470 * sets of 8 digits/set. Returns the number of characters written to buf.
471 *
472 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
473 * area and that sufficient storage remains at @buf to accommodate the
474 * bitmap_print_to_pagebuf() output. Returns the number of characters
475 * actually printed to @buf, excluding terminating '\0'.
476 */
477 int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
478 int nmaskbits)
479 {
480 ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
481
482 return list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
483 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
484 }
485 EXPORT_SYMBOL(bitmap_print_to_pagebuf);
486
487 /*
488 * Region 9-38:4/10 describes the following bitmap structure:
489 * 0 9 12 18 38
490 * .........****......****......****......
491 * ^ ^ ^ ^
492 * start off group_len end
493 */
494 struct region {
495 unsigned int start;
496 unsigned int off;
497 unsigned int group_len;
498 unsigned int end;
499 };
500
501 static int bitmap_set_region(const struct region *r,
502 unsigned long *bitmap, int nbits)
503 {
504 unsigned int start;
505
506 if (r->end >= nbits)
507 return -ERANGE;
508
509 for (start = r->start; start <= r->end; start += r->group_len)
510 bitmap_set(bitmap, start, min(r->end - start + 1, r->off));
511
512 return 0;
513 }
514
515 static int bitmap_check_region(const struct region *r)
516 {
517 if (r->start > r->end || r->group_len == 0 || r->off > r->group_len)
518 return -EINVAL;
519
520 return 0;
521 }
522
523 static const char *bitmap_getnum(const char *str, unsigned int *num)
524 {
525 unsigned long long n;
526 unsigned int len;
527
528 len = _parse_integer(str, 10, &n);
529 if (!len)
530 return ERR_PTR(-EINVAL);
531 if (len & KSTRTOX_OVERFLOW || n != (unsigned int)n)
532 return ERR_PTR(-EOVERFLOW);
533
534 *num = n;
535 return str + len;
536 }
537
538 static inline bool end_of_str(char c)
539 {
540 return c == '\0' || c == '\n';
541 }
542
543 static inline bool __end_of_region(char c)
544 {
545 return isspace(c) || c == ',';
546 }
547
548 static inline bool end_of_region(char c)
549 {
550 return __end_of_region(c) || end_of_str(c);
551 }
552
553 /*
554 * The format allows commas and whitespases at the beginning
555 * of the region.
556 */
557 static const char *bitmap_find_region(const char *str)
558 {
559 while (__end_of_region(*str))
560 str++;
561
562 return end_of_str(*str) ? NULL : str;
563 }
564
565 static const char *bitmap_find_region_reverse(const char *start, const char *end)
566 {
567 while (start <= end && __end_of_region(*end))
568 end--;
569
570 return end;
571 }
572
573 static const char *bitmap_parse_region(const char *str, struct region *r)
574 {
575 str = bitmap_getnum(str, &r->start);
576 if (IS_ERR(str))
577 return str;
578
579 if (end_of_region(*str))
580 goto no_end;
581
582 if (*str != '-')
583 return ERR_PTR(-EINVAL);
584
585 str = bitmap_getnum(str + 1, &r->end);
586 if (IS_ERR(str))
587 return str;
588
589 if (end_of_region(*str))
590 goto no_pattern;
591
592 if (*str != ':')
593 return ERR_PTR(-EINVAL);
594
595 str = bitmap_getnum(str + 1, &r->off);
596 if (IS_ERR(str))
597 return str;
598
599 if (*str != '/')
600 return ERR_PTR(-EINVAL);
601
602 return bitmap_getnum(str + 1, &r->group_len);
603
604 no_end:
605 r->end = r->start;
606 no_pattern:
607 r->off = r->end + 1;
608 r->group_len = r->end + 1;
609
610 return end_of_str(*str) ? NULL : str;
611 }
612
613 /**
614 * bitmap_parselist - convert list format ASCII string to bitmap
615 * @buf: read user string from this buffer; must be terminated
616 * with a \0 or \n.
617 * @maskp: write resulting mask here
618 * @nmaskbits: number of bits in mask to be written
619 *
620 * Input format is a comma-separated list of decimal numbers and
621 * ranges. Consecutively set bits are shown as two hyphen-separated
622 * decimal numbers, the smallest and largest bit numbers set in
623 * the range.
624 * Optionally each range can be postfixed to denote that only parts of it
625 * should be set. The range will divided to groups of specific size.
626 * From each group will be used only defined amount of bits.
627 * Syntax: range:used_size/group_size
628 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
629 *
630 * Returns: 0 on success, -errno on invalid input strings. Error values:
631 *
632 * - ``-EINVAL``: wrong region format
633 * - ``-EINVAL``: invalid character in string
634 * - ``-ERANGE``: bit number specified too large for mask
635 * - ``-EOVERFLOW``: integer overflow in the input parameters
636 */
637 int bitmap_parselist(const char *buf, unsigned long *maskp, int nmaskbits)
638 {
639 struct region r;
640 long ret;
641
642 bitmap_zero(maskp, nmaskbits);
643
644 while (buf) {
645 buf = bitmap_find_region(buf);
646 if (buf == NULL)
647 return 0;
648
649 buf = bitmap_parse_region(buf, &r);
650 if (IS_ERR(buf))
651 return PTR_ERR(buf);
652
653 ret = bitmap_check_region(&r);
654 if (ret)
655 return ret;
656
657 ret = bitmap_set_region(&r, maskp, nmaskbits);
658 if (ret)
659 return ret;
660 }
661
662 return 0;
663 }
664 EXPORT_SYMBOL(bitmap_parselist);
665
666
667 /**
668 * bitmap_parselist_user()
669 *
670 * @ubuf: pointer to user buffer containing string.
671 * @ulen: buffer size in bytes. If string is smaller than this
672 * then it must be terminated with a \0.
673 * @maskp: pointer to bitmap array that will contain result.
674 * @nmaskbits: size of bitmap, in bits.
675 *
676 * Wrapper for bitmap_parselist(), providing it with user buffer.
677 */
678 int bitmap_parselist_user(const char __user *ubuf,
679 unsigned int ulen, unsigned long *maskp,
680 int nmaskbits)
681 {
682 char *buf;
683 int ret;
684
685 buf = memdup_user_nul(ubuf, ulen);
686 if (IS_ERR(buf))
687 return PTR_ERR(buf);
688
689 ret = bitmap_parselist(buf, maskp, nmaskbits);
690
691 kfree(buf);
692 return ret;
693 }
694 EXPORT_SYMBOL(bitmap_parselist_user);
695
696 static const char *bitmap_get_x32_reverse(const char *start,
697 const char *end, u32 *num)
698 {
699 u32 ret = 0;
700 int c, i;
701
702 for (i = 0; i < 32; i += 4) {
703 c = hex_to_bin(*end--);
704 if (c < 0)
705 return ERR_PTR(-EINVAL);
706
707 ret |= c << i;
708
709 if (start > end || __end_of_region(*end))
710 goto out;
711 }
712
713 if (hex_to_bin(*end--) >= 0)
714 return ERR_PTR(-EOVERFLOW);
715 out:
716 *num = ret;
717 return end;
718 }
719
720 /**
721 * bitmap_parse - convert an ASCII hex string into a bitmap.
722 * @start: pointer to buffer containing string.
723 * @buflen: buffer size in bytes. If string is smaller than this
724 * then it must be terminated with a \0 or \n. In that case,
725 * UINT_MAX may be provided instead of string length.
726 * @maskp: pointer to bitmap array that will contain result.
727 * @nmaskbits: size of bitmap, in bits.
728 *
729 * Commas group hex digits into chunks. Each chunk defines exactly 32
730 * bits of the resultant bitmask. No chunk may specify a value larger
731 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
732 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
733 * characters. Grouping such as "1,,5", ",44", "," or "" is allowed.
734 * Leading, embedded and trailing whitespace accepted.
735 */
736 int bitmap_parse(const char *start, unsigned int buflen,
737 unsigned long *maskp, int nmaskbits)
738 {
739 const char *end = strnchrnul(start, buflen, '\n') - 1;
740 int chunks = BITS_TO_U32(nmaskbits);
741 u32 *bitmap = (u32 *)maskp;
742 int unset_bit;
743
744 while (1) {
745 end = bitmap_find_region_reverse(start, end);
746 if (start > end)
747 break;
748
749 if (!chunks--)
750 return -EOVERFLOW;
751
752 end = bitmap_get_x32_reverse(start, end, bitmap++);
753 if (IS_ERR(end))
754 return PTR_ERR(end);
755 }
756
757 unset_bit = (BITS_TO_U32(nmaskbits) - chunks) * 32;
758 if (unset_bit < nmaskbits) {
759 bitmap_clear(maskp, unset_bit, nmaskbits - unset_bit);
760 return 0;
761 }
762
763 if (find_next_bit(maskp, unset_bit, nmaskbits) != unset_bit)
764 return -EOVERFLOW;
765
766 return 0;
767 }
768 EXPORT_SYMBOL(bitmap_parse);
769
770
771 #ifdef CONFIG_NUMA
772 /**
773 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
774 * @buf: pointer to a bitmap
775 * @pos: a bit position in @buf (0 <= @pos < @nbits)
776 * @nbits: number of valid bit positions in @buf
777 *
778 * Map the bit at position @pos in @buf (of length @nbits) to the
779 * ordinal of which set bit it is. If it is not set or if @pos
780 * is not a valid bit position, map to -1.
781 *
782 * If for example, just bits 4 through 7 are set in @buf, then @pos
783 * values 4 through 7 will get mapped to 0 through 3, respectively,
784 * and other @pos values will get mapped to -1. When @pos value 7
785 * gets mapped to (returns) @ord value 3 in this example, that means
786 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
787 *
788 * The bit positions 0 through @bits are valid positions in @buf.
789 */
790 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
791 {
792 if (pos >= nbits || !test_bit(pos, buf))
793 return -1;
794
795 return __bitmap_weight(buf, pos);
796 }
797
798 /**
799 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
800 * @buf: pointer to bitmap
801 * @ord: ordinal bit position (n-th set bit, n >= 0)
802 * @nbits: number of valid bit positions in @buf
803 *
804 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
805 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
806 * >= weight(buf), returns @nbits.
807 *
808 * If for example, just bits 4 through 7 are set in @buf, then @ord
809 * values 0 through 3 will get mapped to 4 through 7, respectively,
810 * and all other @ord values returns @nbits. When @ord value 3
811 * gets mapped to (returns) @pos value 7 in this example, that means
812 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
813 *
814 * The bit positions 0 through @nbits-1 are valid positions in @buf.
815 */
816 unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
817 {
818 unsigned int pos;
819
820 for (pos = find_first_bit(buf, nbits);
821 pos < nbits && ord;
822 pos = find_next_bit(buf, nbits, pos + 1))
823 ord--;
824
825 return pos;
826 }
827
828 /**
829 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
830 * @dst: remapped result
831 * @src: subset to be remapped
832 * @old: defines domain of map
833 * @new: defines range of map
834 * @nbits: number of bits in each of these bitmaps
835 *
836 * Let @old and @new define a mapping of bit positions, such that
837 * whatever position is held by the n-th set bit in @old is mapped
838 * to the n-th set bit in @new. In the more general case, allowing
839 * for the possibility that the weight 'w' of @new is less than the
840 * weight of @old, map the position of the n-th set bit in @old to
841 * the position of the m-th set bit in @new, where m == n % w.
842 *
843 * If either of the @old and @new bitmaps are empty, or if @src and
844 * @dst point to the same location, then this routine copies @src
845 * to @dst.
846 *
847 * The positions of unset bits in @old are mapped to themselves
848 * (the identify map).
849 *
850 * Apply the above specified mapping to @src, placing the result in
851 * @dst, clearing any bits previously set in @dst.
852 *
853 * For example, lets say that @old has bits 4 through 7 set, and
854 * @new has bits 12 through 15 set. This defines the mapping of bit
855 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
856 * bit positions unchanged. So if say @src comes into this routine
857 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
858 * 13 and 15 set.
859 */
860 void bitmap_remap(unsigned long *dst, const unsigned long *src,
861 const unsigned long *old, const unsigned long *new,
862 unsigned int nbits)
863 {
864 unsigned int oldbit, w;
865
866 if (dst == src) /* following doesn't handle inplace remaps */
867 return;
868 bitmap_zero(dst, nbits);
869
870 w = bitmap_weight(new, nbits);
871 for_each_set_bit(oldbit, src, nbits) {
872 int n = bitmap_pos_to_ord(old, oldbit, nbits);
873
874 if (n < 0 || w == 0)
875 set_bit(oldbit, dst); /* identity map */
876 else
877 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
878 }
879 }
880
881 /**
882 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
883 * @oldbit: bit position to be mapped
884 * @old: defines domain of map
885 * @new: defines range of map
886 * @bits: number of bits in each of these bitmaps
887 *
888 * Let @old and @new define a mapping of bit positions, such that
889 * whatever position is held by the n-th set bit in @old is mapped
890 * to the n-th set bit in @new. In the more general case, allowing
891 * for the possibility that the weight 'w' of @new is less than the
892 * weight of @old, map the position of the n-th set bit in @old to
893 * the position of the m-th set bit in @new, where m == n % w.
894 *
895 * The positions of unset bits in @old are mapped to themselves
896 * (the identify map).
897 *
898 * Apply the above specified mapping to bit position @oldbit, returning
899 * the new bit position.
900 *
901 * For example, lets say that @old has bits 4 through 7 set, and
902 * @new has bits 12 through 15 set. This defines the mapping of bit
903 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
904 * bit positions unchanged. So if say @oldbit is 5, then this routine
905 * returns 13.
906 */
907 int bitmap_bitremap(int oldbit, const unsigned long *old,
908 const unsigned long *new, int bits)
909 {
910 int w = bitmap_weight(new, bits);
911 int n = bitmap_pos_to_ord(old, oldbit, bits);
912 if (n < 0 || w == 0)
913 return oldbit;
914 else
915 return bitmap_ord_to_pos(new, n % w, bits);
916 }
917
918 /**
919 * bitmap_onto - translate one bitmap relative to another
920 * @dst: resulting translated bitmap
921 * @orig: original untranslated bitmap
922 * @relmap: bitmap relative to which translated
923 * @bits: number of bits in each of these bitmaps
924 *
925 * Set the n-th bit of @dst iff there exists some m such that the
926 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
927 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
928 * (If you understood the previous sentence the first time your
929 * read it, you're overqualified for your current job.)
930 *
931 * In other words, @orig is mapped onto (surjectively) @dst,
932 * using the map { <n, m> | the n-th bit of @relmap is the
933 * m-th set bit of @relmap }.
934 *
935 * Any set bits in @orig above bit number W, where W is the
936 * weight of (number of set bits in) @relmap are mapped nowhere.
937 * In particular, if for all bits m set in @orig, m >= W, then
938 * @dst will end up empty. In situations where the possibility
939 * of such an empty result is not desired, one way to avoid it is
940 * to use the bitmap_fold() operator, below, to first fold the
941 * @orig bitmap over itself so that all its set bits x are in the
942 * range 0 <= x < W. The bitmap_fold() operator does this by
943 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
944 *
945 * Example [1] for bitmap_onto():
946 * Let's say @relmap has bits 30-39 set, and @orig has bits
947 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
948 * @dst will have bits 31, 33, 35, 37 and 39 set.
949 *
950 * When bit 0 is set in @orig, it means turn on the bit in
951 * @dst corresponding to whatever is the first bit (if any)
952 * that is turned on in @relmap. Since bit 0 was off in the
953 * above example, we leave off that bit (bit 30) in @dst.
954 *
955 * When bit 1 is set in @orig (as in the above example), it
956 * means turn on the bit in @dst corresponding to whatever
957 * is the second bit that is turned on in @relmap. The second
958 * bit in @relmap that was turned on in the above example was
959 * bit 31, so we turned on bit 31 in @dst.
960 *
961 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
962 * because they were the 4th, 6th, 8th and 10th set bits
963 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
964 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
965 *
966 * When bit 11 is set in @orig, it means turn on the bit in
967 * @dst corresponding to whatever is the twelfth bit that is
968 * turned on in @relmap. In the above example, there were
969 * only ten bits turned on in @relmap (30..39), so that bit
970 * 11 was set in @orig had no affect on @dst.
971 *
972 * Example [2] for bitmap_fold() + bitmap_onto():
973 * Let's say @relmap has these ten bits set::
974 *
975 * 40 41 42 43 45 48 53 61 74 95
976 *
977 * (for the curious, that's 40 plus the first ten terms of the
978 * Fibonacci sequence.)
979 *
980 * Further lets say we use the following code, invoking
981 * bitmap_fold() then bitmap_onto, as suggested above to
982 * avoid the possibility of an empty @dst result::
983 *
984 * unsigned long *tmp; // a temporary bitmap's bits
985 *
986 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
987 * bitmap_onto(dst, tmp, relmap, bits);
988 *
989 * Then this table shows what various values of @dst would be, for
990 * various @orig's. I list the zero-based positions of each set bit.
991 * The tmp column shows the intermediate result, as computed by
992 * using bitmap_fold() to fold the @orig bitmap modulo ten
993 * (the weight of @relmap):
994 *
995 * =============== ============== =================
996 * @orig tmp @dst
997 * 0 0 40
998 * 1 1 41
999 * 9 9 95
1000 * 10 0 40 [#f1]_
1001 * 1 3 5 7 1 3 5 7 41 43 48 61
1002 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
1003 * 0 9 18 27 0 9 8 7 40 61 74 95
1004 * 0 10 20 30 0 40
1005 * 0 11 22 33 0 1 2 3 40 41 42 43
1006 * 0 12 24 36 0 2 4 6 40 42 45 53
1007 * 78 102 211 1 2 8 41 42 74 [#f1]_
1008 * =============== ============== =================
1009 *
1010 * .. [#f1]
1011 *
1012 * For these marked lines, if we hadn't first done bitmap_fold()
1013 * into tmp, then the @dst result would have been empty.
1014 *
1015 * If either of @orig or @relmap is empty (no set bits), then @dst
1016 * will be returned empty.
1017 *
1018 * If (as explained above) the only set bits in @orig are in positions
1019 * m where m >= W, (where W is the weight of @relmap) then @dst will
1020 * once again be returned empty.
1021 *
1022 * All bits in @dst not set by the above rule are cleared.
1023 */
1024 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
1025 const unsigned long *relmap, unsigned int bits)
1026 {
1027 unsigned int n, m; /* same meaning as in above comment */
1028
1029 if (dst == orig) /* following doesn't handle inplace mappings */
1030 return;
1031 bitmap_zero(dst, bits);
1032
1033 /*
1034 * The following code is a more efficient, but less
1035 * obvious, equivalent to the loop:
1036 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
1037 * n = bitmap_ord_to_pos(orig, m, bits);
1038 * if (test_bit(m, orig))
1039 * set_bit(n, dst);
1040 * }
1041 */
1042
1043 m = 0;
1044 for_each_set_bit(n, relmap, bits) {
1045 /* m == bitmap_pos_to_ord(relmap, n, bits) */
1046 if (test_bit(m, orig))
1047 set_bit(n, dst);
1048 m++;
1049 }
1050 }
1051
1052 /**
1053 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
1054 * @dst: resulting smaller bitmap
1055 * @orig: original larger bitmap
1056 * @sz: specified size
1057 * @nbits: number of bits in each of these bitmaps
1058 *
1059 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
1060 * Clear all other bits in @dst. See further the comment and
1061 * Example [2] for bitmap_onto() for why and how to use this.
1062 */
1063 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
1064 unsigned int sz, unsigned int nbits)
1065 {
1066 unsigned int oldbit;
1067
1068 if (dst == orig) /* following doesn't handle inplace mappings */
1069 return;
1070 bitmap_zero(dst, nbits);
1071
1072 for_each_set_bit(oldbit, orig, nbits)
1073 set_bit(oldbit % sz, dst);
1074 }
1075 #endif /* CONFIG_NUMA */
1076
1077 /*
1078 * Common code for bitmap_*_region() routines.
1079 * bitmap: array of unsigned longs corresponding to the bitmap
1080 * pos: the beginning of the region
1081 * order: region size (log base 2 of number of bits)
1082 * reg_op: operation(s) to perform on that region of bitmap
1083 *
1084 * Can set, verify and/or release a region of bits in a bitmap,
1085 * depending on which combination of REG_OP_* flag bits is set.
1086 *
1087 * A region of a bitmap is a sequence of bits in the bitmap, of
1088 * some size '1 << order' (a power of two), aligned to that same
1089 * '1 << order' power of two.
1090 *
1091 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
1092 * Returns 0 in all other cases and reg_ops.
1093 */
1094
1095 enum {
1096 REG_OP_ISFREE, /* true if region is all zero bits */
1097 REG_OP_ALLOC, /* set all bits in region */
1098 REG_OP_RELEASE, /* clear all bits in region */
1099 };
1100
1101 static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1102 {
1103 int nbits_reg; /* number of bits in region */
1104 int index; /* index first long of region in bitmap */
1105 int offset; /* bit offset region in bitmap[index] */
1106 int nlongs_reg; /* num longs spanned by region in bitmap */
1107 int nbitsinlong; /* num bits of region in each spanned long */
1108 unsigned long mask; /* bitmask for one long of region */
1109 int i; /* scans bitmap by longs */
1110 int ret = 0; /* return value */
1111
1112 /*
1113 * Either nlongs_reg == 1 (for small orders that fit in one long)
1114 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1115 */
1116 nbits_reg = 1 << order;
1117 index = pos / BITS_PER_LONG;
1118 offset = pos - (index * BITS_PER_LONG);
1119 nlongs_reg = BITS_TO_LONGS(nbits_reg);
1120 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1121
1122 /*
1123 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1124 * overflows if nbitsinlong == BITS_PER_LONG.
1125 */
1126 mask = (1UL << (nbitsinlong - 1));
1127 mask += mask - 1;
1128 mask <<= offset;
1129
1130 switch (reg_op) {
1131 case REG_OP_ISFREE:
1132 for (i = 0; i < nlongs_reg; i++) {
1133 if (bitmap[index + i] & mask)
1134 goto done;
1135 }
1136 ret = 1; /* all bits in region free (zero) */
1137 break;
1138
1139 case REG_OP_ALLOC:
1140 for (i = 0; i < nlongs_reg; i++)
1141 bitmap[index + i] |= mask;
1142 break;
1143
1144 case REG_OP_RELEASE:
1145 for (i = 0; i < nlongs_reg; i++)
1146 bitmap[index + i] &= ~mask;
1147 break;
1148 }
1149 done:
1150 return ret;
1151 }
1152
1153 /**
1154 * bitmap_find_free_region - find a contiguous aligned mem region
1155 * @bitmap: array of unsigned longs corresponding to the bitmap
1156 * @bits: number of bits in the bitmap
1157 * @order: region size (log base 2 of number of bits) to find
1158 *
1159 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1160 * allocate them (set them to one). Only consider regions of length
1161 * a power (@order) of two, aligned to that power of two, which
1162 * makes the search algorithm much faster.
1163 *
1164 * Return the bit offset in bitmap of the allocated region,
1165 * or -errno on failure.
1166 */
1167 int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1168 {
1169 unsigned int pos, end; /* scans bitmap by regions of size order */
1170
1171 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1172 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1173 continue;
1174 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1175 return pos;
1176 }
1177 return -ENOMEM;
1178 }
1179 EXPORT_SYMBOL(bitmap_find_free_region);
1180
1181 /**
1182 * bitmap_release_region - release allocated bitmap region
1183 * @bitmap: array of unsigned longs corresponding to the bitmap
1184 * @pos: beginning of bit region to release
1185 * @order: region size (log base 2 of number of bits) to release
1186 *
1187 * This is the complement to __bitmap_find_free_region() and releases
1188 * the found region (by clearing it in the bitmap).
1189 *
1190 * No return value.
1191 */
1192 void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1193 {
1194 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1195 }
1196 EXPORT_SYMBOL(bitmap_release_region);
1197
1198 /**
1199 * bitmap_allocate_region - allocate bitmap region
1200 * @bitmap: array of unsigned longs corresponding to the bitmap
1201 * @pos: beginning of bit region to allocate
1202 * @order: region size (log base 2 of number of bits) to allocate
1203 *
1204 * Allocate (set bits in) a specified region of a bitmap.
1205 *
1206 * Return 0 on success, or %-EBUSY if specified region wasn't
1207 * free (not all bits were zero).
1208 */
1209 int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1210 {
1211 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1212 return -EBUSY;
1213 return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1214 }
1215 EXPORT_SYMBOL(bitmap_allocate_region);
1216
1217 /**
1218 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1219 * @dst: destination buffer
1220 * @src: bitmap to copy
1221 * @nbits: number of bits in the bitmap
1222 *
1223 * Require nbits % BITS_PER_LONG == 0.
1224 */
1225 #ifdef __BIG_ENDIAN
1226 void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1227 {
1228 unsigned int i;
1229
1230 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1231 if (BITS_PER_LONG == 64)
1232 dst[i] = cpu_to_le64(src[i]);
1233 else
1234 dst[i] = cpu_to_le32(src[i]);
1235 }
1236 }
1237 EXPORT_SYMBOL(bitmap_copy_le);
1238 #endif
1239
1240 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1241 {
1242 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1243 flags);
1244 }
1245 EXPORT_SYMBOL(bitmap_alloc);
1246
1247 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1248 {
1249 return bitmap_alloc(nbits, flags | __GFP_ZERO);
1250 }
1251 EXPORT_SYMBOL(bitmap_zalloc);
1252
1253 void bitmap_free(const unsigned long *bitmap)
1254 {
1255 kfree(bitmap);
1256 }
1257 EXPORT_SYMBOL(bitmap_free);
1258
1259 #if BITS_PER_LONG == 64
1260 /**
1261 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1262 * @bitmap: array of unsigned longs, the destination bitmap
1263 * @buf: array of u32 (in host byte order), the source bitmap
1264 * @nbits: number of bits in @bitmap
1265 */
1266 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
1267 {
1268 unsigned int i, halfwords;
1269
1270 halfwords = DIV_ROUND_UP(nbits, 32);
1271 for (i = 0; i < halfwords; i++) {
1272 bitmap[i/2] = (unsigned long) buf[i];
1273 if (++i < halfwords)
1274 bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1275 }
1276
1277 /* Clear tail bits in last word beyond nbits. */
1278 if (nbits % BITS_PER_LONG)
1279 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1280 }
1281 EXPORT_SYMBOL(bitmap_from_arr32);
1282
1283 /**
1284 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1285 * @buf: array of u32 (in host byte order), the dest bitmap
1286 * @bitmap: array of unsigned longs, the source bitmap
1287 * @nbits: number of bits in @bitmap
1288 */
1289 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1290 {
1291 unsigned int i, halfwords;
1292
1293 halfwords = DIV_ROUND_UP(nbits, 32);
1294 for (i = 0; i < halfwords; i++) {
1295 buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1296 if (++i < halfwords)
1297 buf[i] = (u32) (bitmap[i/2] >> 32);
1298 }
1299
1300 /* Clear tail bits in last element of array beyond nbits. */
1301 if (nbits % BITS_PER_LONG)
1302 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1303 }
1304 EXPORT_SYMBOL(bitmap_to_arr32);
1305
1306 #endif