]> git.ipfire.org Git - thirdparty/linux.git/blob - lib/iov_iter.c
mm/hotplug: treat CMA pages as unmovable
[thirdparty/linux.git] / lib / iov_iter.c
1 #include <linux/export.h>
2 #include <linux/bvec.h>
3 #include <linux/uio.h>
4 #include <linux/pagemap.h>
5 #include <linux/slab.h>
6 #include <linux/vmalloc.h>
7 #include <linux/splice.h>
8 #include <net/checksum.h>
9 #include <linux/scatterlist.h>
10
11 #define PIPE_PARANOIA /* for now */
12
13 #define iterate_iovec(i, n, __v, __p, skip, STEP) { \
14 size_t left; \
15 size_t wanted = n; \
16 __p = i->iov; \
17 __v.iov_len = min(n, __p->iov_len - skip); \
18 if (likely(__v.iov_len)) { \
19 __v.iov_base = __p->iov_base + skip; \
20 left = (STEP); \
21 __v.iov_len -= left; \
22 skip += __v.iov_len; \
23 n -= __v.iov_len; \
24 } else { \
25 left = 0; \
26 } \
27 while (unlikely(!left && n)) { \
28 __p++; \
29 __v.iov_len = min(n, __p->iov_len); \
30 if (unlikely(!__v.iov_len)) \
31 continue; \
32 __v.iov_base = __p->iov_base; \
33 left = (STEP); \
34 __v.iov_len -= left; \
35 skip = __v.iov_len; \
36 n -= __v.iov_len; \
37 } \
38 n = wanted - n; \
39 }
40
41 #define iterate_kvec(i, n, __v, __p, skip, STEP) { \
42 size_t wanted = n; \
43 __p = i->kvec; \
44 __v.iov_len = min(n, __p->iov_len - skip); \
45 if (likely(__v.iov_len)) { \
46 __v.iov_base = __p->iov_base + skip; \
47 (void)(STEP); \
48 skip += __v.iov_len; \
49 n -= __v.iov_len; \
50 } \
51 while (unlikely(n)) { \
52 __p++; \
53 __v.iov_len = min(n, __p->iov_len); \
54 if (unlikely(!__v.iov_len)) \
55 continue; \
56 __v.iov_base = __p->iov_base; \
57 (void)(STEP); \
58 skip = __v.iov_len; \
59 n -= __v.iov_len; \
60 } \
61 n = wanted; \
62 }
63
64 #define iterate_bvec(i, n, __v, __bi, skip, STEP) { \
65 struct bvec_iter __start; \
66 __start.bi_size = n; \
67 __start.bi_bvec_done = skip; \
68 __start.bi_idx = 0; \
69 for_each_bvec(__v, i->bvec, __bi, __start) { \
70 if (!__v.bv_len) \
71 continue; \
72 (void)(STEP); \
73 } \
74 }
75
76 #define iterate_all_kinds(i, n, v, I, B, K) { \
77 if (likely(n)) { \
78 size_t skip = i->iov_offset; \
79 if (unlikely(i->type & ITER_BVEC)) { \
80 struct bio_vec v; \
81 struct bvec_iter __bi; \
82 iterate_bvec(i, n, v, __bi, skip, (B)) \
83 } else if (unlikely(i->type & ITER_KVEC)) { \
84 const struct kvec *kvec; \
85 struct kvec v; \
86 iterate_kvec(i, n, v, kvec, skip, (K)) \
87 } else if (unlikely(i->type & ITER_DISCARD)) { \
88 } else { \
89 const struct iovec *iov; \
90 struct iovec v; \
91 iterate_iovec(i, n, v, iov, skip, (I)) \
92 } \
93 } \
94 }
95
96 #define iterate_and_advance(i, n, v, I, B, K) { \
97 if (unlikely(i->count < n)) \
98 n = i->count; \
99 if (i->count) { \
100 size_t skip = i->iov_offset; \
101 if (unlikely(i->type & ITER_BVEC)) { \
102 const struct bio_vec *bvec = i->bvec; \
103 struct bio_vec v; \
104 struct bvec_iter __bi; \
105 iterate_bvec(i, n, v, __bi, skip, (B)) \
106 i->bvec = __bvec_iter_bvec(i->bvec, __bi); \
107 i->nr_segs -= i->bvec - bvec; \
108 skip = __bi.bi_bvec_done; \
109 } else if (unlikely(i->type & ITER_KVEC)) { \
110 const struct kvec *kvec; \
111 struct kvec v; \
112 iterate_kvec(i, n, v, kvec, skip, (K)) \
113 if (skip == kvec->iov_len) { \
114 kvec++; \
115 skip = 0; \
116 } \
117 i->nr_segs -= kvec - i->kvec; \
118 i->kvec = kvec; \
119 } else if (unlikely(i->type & ITER_DISCARD)) { \
120 skip += n; \
121 } else { \
122 const struct iovec *iov; \
123 struct iovec v; \
124 iterate_iovec(i, n, v, iov, skip, (I)) \
125 if (skip == iov->iov_len) { \
126 iov++; \
127 skip = 0; \
128 } \
129 i->nr_segs -= iov - i->iov; \
130 i->iov = iov; \
131 } \
132 i->count -= n; \
133 i->iov_offset = skip; \
134 } \
135 }
136
137 static int copyout(void __user *to, const void *from, size_t n)
138 {
139 if (access_ok(to, n)) {
140 kasan_check_read(from, n);
141 n = raw_copy_to_user(to, from, n);
142 }
143 return n;
144 }
145
146 static int copyin(void *to, const void __user *from, size_t n)
147 {
148 if (access_ok(from, n)) {
149 kasan_check_write(to, n);
150 n = raw_copy_from_user(to, from, n);
151 }
152 return n;
153 }
154
155 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
156 struct iov_iter *i)
157 {
158 size_t skip, copy, left, wanted;
159 const struct iovec *iov;
160 char __user *buf;
161 void *kaddr, *from;
162
163 if (unlikely(bytes > i->count))
164 bytes = i->count;
165
166 if (unlikely(!bytes))
167 return 0;
168
169 might_fault();
170 wanted = bytes;
171 iov = i->iov;
172 skip = i->iov_offset;
173 buf = iov->iov_base + skip;
174 copy = min(bytes, iov->iov_len - skip);
175
176 if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
177 kaddr = kmap_atomic(page);
178 from = kaddr + offset;
179
180 /* first chunk, usually the only one */
181 left = copyout(buf, from, copy);
182 copy -= left;
183 skip += copy;
184 from += copy;
185 bytes -= copy;
186
187 while (unlikely(!left && bytes)) {
188 iov++;
189 buf = iov->iov_base;
190 copy = min(bytes, iov->iov_len);
191 left = copyout(buf, from, copy);
192 copy -= left;
193 skip = copy;
194 from += copy;
195 bytes -= copy;
196 }
197 if (likely(!bytes)) {
198 kunmap_atomic(kaddr);
199 goto done;
200 }
201 offset = from - kaddr;
202 buf += copy;
203 kunmap_atomic(kaddr);
204 copy = min(bytes, iov->iov_len - skip);
205 }
206 /* Too bad - revert to non-atomic kmap */
207
208 kaddr = kmap(page);
209 from = kaddr + offset;
210 left = copyout(buf, from, copy);
211 copy -= left;
212 skip += copy;
213 from += copy;
214 bytes -= copy;
215 while (unlikely(!left && bytes)) {
216 iov++;
217 buf = iov->iov_base;
218 copy = min(bytes, iov->iov_len);
219 left = copyout(buf, from, copy);
220 copy -= left;
221 skip = copy;
222 from += copy;
223 bytes -= copy;
224 }
225 kunmap(page);
226
227 done:
228 if (skip == iov->iov_len) {
229 iov++;
230 skip = 0;
231 }
232 i->count -= wanted - bytes;
233 i->nr_segs -= iov - i->iov;
234 i->iov = iov;
235 i->iov_offset = skip;
236 return wanted - bytes;
237 }
238
239 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
240 struct iov_iter *i)
241 {
242 size_t skip, copy, left, wanted;
243 const struct iovec *iov;
244 char __user *buf;
245 void *kaddr, *to;
246
247 if (unlikely(bytes > i->count))
248 bytes = i->count;
249
250 if (unlikely(!bytes))
251 return 0;
252
253 might_fault();
254 wanted = bytes;
255 iov = i->iov;
256 skip = i->iov_offset;
257 buf = iov->iov_base + skip;
258 copy = min(bytes, iov->iov_len - skip);
259
260 if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
261 kaddr = kmap_atomic(page);
262 to = kaddr + offset;
263
264 /* first chunk, usually the only one */
265 left = copyin(to, buf, copy);
266 copy -= left;
267 skip += copy;
268 to += copy;
269 bytes -= copy;
270
271 while (unlikely(!left && bytes)) {
272 iov++;
273 buf = iov->iov_base;
274 copy = min(bytes, iov->iov_len);
275 left = copyin(to, buf, copy);
276 copy -= left;
277 skip = copy;
278 to += copy;
279 bytes -= copy;
280 }
281 if (likely(!bytes)) {
282 kunmap_atomic(kaddr);
283 goto done;
284 }
285 offset = to - kaddr;
286 buf += copy;
287 kunmap_atomic(kaddr);
288 copy = min(bytes, iov->iov_len - skip);
289 }
290 /* Too bad - revert to non-atomic kmap */
291
292 kaddr = kmap(page);
293 to = kaddr + offset;
294 left = copyin(to, buf, copy);
295 copy -= left;
296 skip += copy;
297 to += copy;
298 bytes -= copy;
299 while (unlikely(!left && bytes)) {
300 iov++;
301 buf = iov->iov_base;
302 copy = min(bytes, iov->iov_len);
303 left = copyin(to, buf, copy);
304 copy -= left;
305 skip = copy;
306 to += copy;
307 bytes -= copy;
308 }
309 kunmap(page);
310
311 done:
312 if (skip == iov->iov_len) {
313 iov++;
314 skip = 0;
315 }
316 i->count -= wanted - bytes;
317 i->nr_segs -= iov - i->iov;
318 i->iov = iov;
319 i->iov_offset = skip;
320 return wanted - bytes;
321 }
322
323 #ifdef PIPE_PARANOIA
324 static bool sanity(const struct iov_iter *i)
325 {
326 struct pipe_inode_info *pipe = i->pipe;
327 int idx = i->idx;
328 int next = pipe->curbuf + pipe->nrbufs;
329 if (i->iov_offset) {
330 struct pipe_buffer *p;
331 if (unlikely(!pipe->nrbufs))
332 goto Bad; // pipe must be non-empty
333 if (unlikely(idx != ((next - 1) & (pipe->buffers - 1))))
334 goto Bad; // must be at the last buffer...
335
336 p = &pipe->bufs[idx];
337 if (unlikely(p->offset + p->len != i->iov_offset))
338 goto Bad; // ... at the end of segment
339 } else {
340 if (idx != (next & (pipe->buffers - 1)))
341 goto Bad; // must be right after the last buffer
342 }
343 return true;
344 Bad:
345 printk(KERN_ERR "idx = %d, offset = %zd\n", i->idx, i->iov_offset);
346 printk(KERN_ERR "curbuf = %d, nrbufs = %d, buffers = %d\n",
347 pipe->curbuf, pipe->nrbufs, pipe->buffers);
348 for (idx = 0; idx < pipe->buffers; idx++)
349 printk(KERN_ERR "[%p %p %d %d]\n",
350 pipe->bufs[idx].ops,
351 pipe->bufs[idx].page,
352 pipe->bufs[idx].offset,
353 pipe->bufs[idx].len);
354 WARN_ON(1);
355 return false;
356 }
357 #else
358 #define sanity(i) true
359 #endif
360
361 static inline int next_idx(int idx, struct pipe_inode_info *pipe)
362 {
363 return (idx + 1) & (pipe->buffers - 1);
364 }
365
366 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
367 struct iov_iter *i)
368 {
369 struct pipe_inode_info *pipe = i->pipe;
370 struct pipe_buffer *buf;
371 size_t off;
372 int idx;
373
374 if (unlikely(bytes > i->count))
375 bytes = i->count;
376
377 if (unlikely(!bytes))
378 return 0;
379
380 if (!sanity(i))
381 return 0;
382
383 off = i->iov_offset;
384 idx = i->idx;
385 buf = &pipe->bufs[idx];
386 if (off) {
387 if (offset == off && buf->page == page) {
388 /* merge with the last one */
389 buf->len += bytes;
390 i->iov_offset += bytes;
391 goto out;
392 }
393 idx = next_idx(idx, pipe);
394 buf = &pipe->bufs[idx];
395 }
396 if (idx == pipe->curbuf && pipe->nrbufs)
397 return 0;
398 pipe->nrbufs++;
399 buf->ops = &page_cache_pipe_buf_ops;
400 get_page(buf->page = page);
401 buf->offset = offset;
402 buf->len = bytes;
403 i->iov_offset = offset + bytes;
404 i->idx = idx;
405 out:
406 i->count -= bytes;
407 return bytes;
408 }
409
410 /*
411 * Fault in one or more iovecs of the given iov_iter, to a maximum length of
412 * bytes. For each iovec, fault in each page that constitutes the iovec.
413 *
414 * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
415 * because it is an invalid address).
416 */
417 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
418 {
419 size_t skip = i->iov_offset;
420 const struct iovec *iov;
421 int err;
422 struct iovec v;
423
424 if (!(i->type & (ITER_BVEC|ITER_KVEC))) {
425 iterate_iovec(i, bytes, v, iov, skip, ({
426 err = fault_in_pages_readable(v.iov_base, v.iov_len);
427 if (unlikely(err))
428 return err;
429 0;}))
430 }
431 return 0;
432 }
433 EXPORT_SYMBOL(iov_iter_fault_in_readable);
434
435 void iov_iter_init(struct iov_iter *i, unsigned int direction,
436 const struct iovec *iov, unsigned long nr_segs,
437 size_t count)
438 {
439 WARN_ON(direction & ~(READ | WRITE));
440 direction &= READ | WRITE;
441
442 /* It will get better. Eventually... */
443 if (uaccess_kernel()) {
444 i->type = ITER_KVEC | direction;
445 i->kvec = (struct kvec *)iov;
446 } else {
447 i->type = ITER_IOVEC | direction;
448 i->iov = iov;
449 }
450 i->nr_segs = nr_segs;
451 i->iov_offset = 0;
452 i->count = count;
453 }
454 EXPORT_SYMBOL(iov_iter_init);
455
456 static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len)
457 {
458 char *from = kmap_atomic(page);
459 memcpy(to, from + offset, len);
460 kunmap_atomic(from);
461 }
462
463 static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len)
464 {
465 char *to = kmap_atomic(page);
466 memcpy(to + offset, from, len);
467 kunmap_atomic(to);
468 }
469
470 static void memzero_page(struct page *page, size_t offset, size_t len)
471 {
472 char *addr = kmap_atomic(page);
473 memset(addr + offset, 0, len);
474 kunmap_atomic(addr);
475 }
476
477 static inline bool allocated(struct pipe_buffer *buf)
478 {
479 return buf->ops == &default_pipe_buf_ops;
480 }
481
482 static inline void data_start(const struct iov_iter *i, int *idxp, size_t *offp)
483 {
484 size_t off = i->iov_offset;
485 int idx = i->idx;
486 if (off && (!allocated(&i->pipe->bufs[idx]) || off == PAGE_SIZE)) {
487 idx = next_idx(idx, i->pipe);
488 off = 0;
489 }
490 *idxp = idx;
491 *offp = off;
492 }
493
494 static size_t push_pipe(struct iov_iter *i, size_t size,
495 int *idxp, size_t *offp)
496 {
497 struct pipe_inode_info *pipe = i->pipe;
498 size_t off;
499 int idx;
500 ssize_t left;
501
502 if (unlikely(size > i->count))
503 size = i->count;
504 if (unlikely(!size))
505 return 0;
506
507 left = size;
508 data_start(i, &idx, &off);
509 *idxp = idx;
510 *offp = off;
511 if (off) {
512 left -= PAGE_SIZE - off;
513 if (left <= 0) {
514 pipe->bufs[idx].len += size;
515 return size;
516 }
517 pipe->bufs[idx].len = PAGE_SIZE;
518 idx = next_idx(idx, pipe);
519 }
520 while (idx != pipe->curbuf || !pipe->nrbufs) {
521 struct page *page = alloc_page(GFP_USER);
522 if (!page)
523 break;
524 pipe->nrbufs++;
525 pipe->bufs[idx].ops = &default_pipe_buf_ops;
526 pipe->bufs[idx].page = page;
527 pipe->bufs[idx].offset = 0;
528 if (left <= PAGE_SIZE) {
529 pipe->bufs[idx].len = left;
530 return size;
531 }
532 pipe->bufs[idx].len = PAGE_SIZE;
533 left -= PAGE_SIZE;
534 idx = next_idx(idx, pipe);
535 }
536 return size - left;
537 }
538
539 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
540 struct iov_iter *i)
541 {
542 struct pipe_inode_info *pipe = i->pipe;
543 size_t n, off;
544 int idx;
545
546 if (!sanity(i))
547 return 0;
548
549 bytes = n = push_pipe(i, bytes, &idx, &off);
550 if (unlikely(!n))
551 return 0;
552 for ( ; n; idx = next_idx(idx, pipe), off = 0) {
553 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
554 memcpy_to_page(pipe->bufs[idx].page, off, addr, chunk);
555 i->idx = idx;
556 i->iov_offset = off + chunk;
557 n -= chunk;
558 addr += chunk;
559 }
560 i->count -= bytes;
561 return bytes;
562 }
563
564 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
565 __wsum sum, size_t off)
566 {
567 __wsum next = csum_partial_copy_nocheck(from, to, len, 0);
568 return csum_block_add(sum, next, off);
569 }
570
571 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
572 __wsum *csum, struct iov_iter *i)
573 {
574 struct pipe_inode_info *pipe = i->pipe;
575 size_t n, r;
576 size_t off = 0;
577 __wsum sum = *csum;
578 int idx;
579
580 if (!sanity(i))
581 return 0;
582
583 bytes = n = push_pipe(i, bytes, &idx, &r);
584 if (unlikely(!n))
585 return 0;
586 for ( ; n; idx = next_idx(idx, pipe), r = 0) {
587 size_t chunk = min_t(size_t, n, PAGE_SIZE - r);
588 char *p = kmap_atomic(pipe->bufs[idx].page);
589 sum = csum_and_memcpy(p + r, addr, chunk, sum, off);
590 kunmap_atomic(p);
591 i->idx = idx;
592 i->iov_offset = r + chunk;
593 n -= chunk;
594 off += chunk;
595 addr += chunk;
596 }
597 i->count -= bytes;
598 *csum = sum;
599 return bytes;
600 }
601
602 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
603 {
604 const char *from = addr;
605 if (unlikely(iov_iter_is_pipe(i)))
606 return copy_pipe_to_iter(addr, bytes, i);
607 if (iter_is_iovec(i))
608 might_fault();
609 iterate_and_advance(i, bytes, v,
610 copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
611 memcpy_to_page(v.bv_page, v.bv_offset,
612 (from += v.bv_len) - v.bv_len, v.bv_len),
613 memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len)
614 )
615
616 return bytes;
617 }
618 EXPORT_SYMBOL(_copy_to_iter);
619
620 #ifdef CONFIG_ARCH_HAS_UACCESS_MCSAFE
621 static int copyout_mcsafe(void __user *to, const void *from, size_t n)
622 {
623 if (access_ok(to, n)) {
624 kasan_check_read(from, n);
625 n = copy_to_user_mcsafe((__force void *) to, from, n);
626 }
627 return n;
628 }
629
630 static unsigned long memcpy_mcsafe_to_page(struct page *page, size_t offset,
631 const char *from, size_t len)
632 {
633 unsigned long ret;
634 char *to;
635
636 to = kmap_atomic(page);
637 ret = memcpy_mcsafe(to + offset, from, len);
638 kunmap_atomic(to);
639
640 return ret;
641 }
642
643 static size_t copy_pipe_to_iter_mcsafe(const void *addr, size_t bytes,
644 struct iov_iter *i)
645 {
646 struct pipe_inode_info *pipe = i->pipe;
647 size_t n, off, xfer = 0;
648 int idx;
649
650 if (!sanity(i))
651 return 0;
652
653 bytes = n = push_pipe(i, bytes, &idx, &off);
654 if (unlikely(!n))
655 return 0;
656 for ( ; n; idx = next_idx(idx, pipe), off = 0) {
657 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
658 unsigned long rem;
659
660 rem = memcpy_mcsafe_to_page(pipe->bufs[idx].page, off, addr,
661 chunk);
662 i->idx = idx;
663 i->iov_offset = off + chunk - rem;
664 xfer += chunk - rem;
665 if (rem)
666 break;
667 n -= chunk;
668 addr += chunk;
669 }
670 i->count -= xfer;
671 return xfer;
672 }
673
674 /**
675 * _copy_to_iter_mcsafe - copy to user with source-read error exception handling
676 * @addr: source kernel address
677 * @bytes: total transfer length
678 * @iter: destination iterator
679 *
680 * The pmem driver arranges for filesystem-dax to use this facility via
681 * dax_copy_to_iter() for protecting read/write to persistent memory.
682 * Unless / until an architecture can guarantee identical performance
683 * between _copy_to_iter_mcsafe() and _copy_to_iter() it would be a
684 * performance regression to switch more users to the mcsafe version.
685 *
686 * Otherwise, the main differences between this and typical _copy_to_iter().
687 *
688 * * Typical tail/residue handling after a fault retries the copy
689 * byte-by-byte until the fault happens again. Re-triggering machine
690 * checks is potentially fatal so the implementation uses source
691 * alignment and poison alignment assumptions to avoid re-triggering
692 * hardware exceptions.
693 *
694 * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
695 * Compare to copy_to_iter() where only ITER_IOVEC attempts might return
696 * a short copy.
697 *
698 * See MCSAFE_TEST for self-test.
699 */
700 size_t _copy_to_iter_mcsafe(const void *addr, size_t bytes, struct iov_iter *i)
701 {
702 const char *from = addr;
703 unsigned long rem, curr_addr, s_addr = (unsigned long) addr;
704
705 if (unlikely(iov_iter_is_pipe(i)))
706 return copy_pipe_to_iter_mcsafe(addr, bytes, i);
707 if (iter_is_iovec(i))
708 might_fault();
709 iterate_and_advance(i, bytes, v,
710 copyout_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
711 ({
712 rem = memcpy_mcsafe_to_page(v.bv_page, v.bv_offset,
713 (from += v.bv_len) - v.bv_len, v.bv_len);
714 if (rem) {
715 curr_addr = (unsigned long) from;
716 bytes = curr_addr - s_addr - rem;
717 return bytes;
718 }
719 }),
720 ({
721 rem = memcpy_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len,
722 v.iov_len);
723 if (rem) {
724 curr_addr = (unsigned long) from;
725 bytes = curr_addr - s_addr - rem;
726 return bytes;
727 }
728 })
729 )
730
731 return bytes;
732 }
733 EXPORT_SYMBOL_GPL(_copy_to_iter_mcsafe);
734 #endif /* CONFIG_ARCH_HAS_UACCESS_MCSAFE */
735
736 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
737 {
738 char *to = addr;
739 if (unlikely(iov_iter_is_pipe(i))) {
740 WARN_ON(1);
741 return 0;
742 }
743 if (iter_is_iovec(i))
744 might_fault();
745 iterate_and_advance(i, bytes, v,
746 copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
747 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
748 v.bv_offset, v.bv_len),
749 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
750 )
751
752 return bytes;
753 }
754 EXPORT_SYMBOL(_copy_from_iter);
755
756 bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
757 {
758 char *to = addr;
759 if (unlikely(iov_iter_is_pipe(i))) {
760 WARN_ON(1);
761 return false;
762 }
763 if (unlikely(i->count < bytes))
764 return false;
765
766 if (iter_is_iovec(i))
767 might_fault();
768 iterate_all_kinds(i, bytes, v, ({
769 if (copyin((to += v.iov_len) - v.iov_len,
770 v.iov_base, v.iov_len))
771 return false;
772 0;}),
773 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
774 v.bv_offset, v.bv_len),
775 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
776 )
777
778 iov_iter_advance(i, bytes);
779 return true;
780 }
781 EXPORT_SYMBOL(_copy_from_iter_full);
782
783 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
784 {
785 char *to = addr;
786 if (unlikely(iov_iter_is_pipe(i))) {
787 WARN_ON(1);
788 return 0;
789 }
790 iterate_and_advance(i, bytes, v,
791 __copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
792 v.iov_base, v.iov_len),
793 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
794 v.bv_offset, v.bv_len),
795 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
796 )
797
798 return bytes;
799 }
800 EXPORT_SYMBOL(_copy_from_iter_nocache);
801
802 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
803 /**
804 * _copy_from_iter_flushcache - write destination through cpu cache
805 * @addr: destination kernel address
806 * @bytes: total transfer length
807 * @iter: source iterator
808 *
809 * The pmem driver arranges for filesystem-dax to use this facility via
810 * dax_copy_from_iter() for ensuring that writes to persistent memory
811 * are flushed through the CPU cache. It is differentiated from
812 * _copy_from_iter_nocache() in that guarantees all data is flushed for
813 * all iterator types. The _copy_from_iter_nocache() only attempts to
814 * bypass the cache for the ITER_IOVEC case, and on some archs may use
815 * instructions that strand dirty-data in the cache.
816 */
817 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
818 {
819 char *to = addr;
820 if (unlikely(iov_iter_is_pipe(i))) {
821 WARN_ON(1);
822 return 0;
823 }
824 iterate_and_advance(i, bytes, v,
825 __copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
826 v.iov_base, v.iov_len),
827 memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
828 v.bv_offset, v.bv_len),
829 memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
830 v.iov_len)
831 )
832
833 return bytes;
834 }
835 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
836 #endif
837
838 bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
839 {
840 char *to = addr;
841 if (unlikely(iov_iter_is_pipe(i))) {
842 WARN_ON(1);
843 return false;
844 }
845 if (unlikely(i->count < bytes))
846 return false;
847 iterate_all_kinds(i, bytes, v, ({
848 if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
849 v.iov_base, v.iov_len))
850 return false;
851 0;}),
852 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
853 v.bv_offset, v.bv_len),
854 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
855 )
856
857 iov_iter_advance(i, bytes);
858 return true;
859 }
860 EXPORT_SYMBOL(_copy_from_iter_full_nocache);
861
862 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
863 {
864 struct page *head;
865 size_t v = n + offset;
866
867 /*
868 * The general case needs to access the page order in order
869 * to compute the page size.
870 * However, we mostly deal with order-0 pages and thus can
871 * avoid a possible cache line miss for requests that fit all
872 * page orders.
873 */
874 if (n <= v && v <= PAGE_SIZE)
875 return true;
876
877 head = compound_head(page);
878 v += (page - head) << PAGE_SHIFT;
879
880 if (likely(n <= v && v <= (PAGE_SIZE << compound_order(head))))
881 return true;
882 WARN_ON(1);
883 return false;
884 }
885
886 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
887 struct iov_iter *i)
888 {
889 if (unlikely(!page_copy_sane(page, offset, bytes)))
890 return 0;
891 if (i->type & (ITER_BVEC|ITER_KVEC)) {
892 void *kaddr = kmap_atomic(page);
893 size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
894 kunmap_atomic(kaddr);
895 return wanted;
896 } else if (unlikely(iov_iter_is_discard(i)))
897 return bytes;
898 else if (likely(!iov_iter_is_pipe(i)))
899 return copy_page_to_iter_iovec(page, offset, bytes, i);
900 else
901 return copy_page_to_iter_pipe(page, offset, bytes, i);
902 }
903 EXPORT_SYMBOL(copy_page_to_iter);
904
905 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
906 struct iov_iter *i)
907 {
908 if (unlikely(!page_copy_sane(page, offset, bytes)))
909 return 0;
910 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
911 WARN_ON(1);
912 return 0;
913 }
914 if (i->type & (ITER_BVEC|ITER_KVEC)) {
915 void *kaddr = kmap_atomic(page);
916 size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
917 kunmap_atomic(kaddr);
918 return wanted;
919 } else
920 return copy_page_from_iter_iovec(page, offset, bytes, i);
921 }
922 EXPORT_SYMBOL(copy_page_from_iter);
923
924 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
925 {
926 struct pipe_inode_info *pipe = i->pipe;
927 size_t n, off;
928 int idx;
929
930 if (!sanity(i))
931 return 0;
932
933 bytes = n = push_pipe(i, bytes, &idx, &off);
934 if (unlikely(!n))
935 return 0;
936
937 for ( ; n; idx = next_idx(idx, pipe), off = 0) {
938 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
939 memzero_page(pipe->bufs[idx].page, off, chunk);
940 i->idx = idx;
941 i->iov_offset = off + chunk;
942 n -= chunk;
943 }
944 i->count -= bytes;
945 return bytes;
946 }
947
948 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
949 {
950 if (unlikely(iov_iter_is_pipe(i)))
951 return pipe_zero(bytes, i);
952 iterate_and_advance(i, bytes, v,
953 clear_user(v.iov_base, v.iov_len),
954 memzero_page(v.bv_page, v.bv_offset, v.bv_len),
955 memset(v.iov_base, 0, v.iov_len)
956 )
957
958 return bytes;
959 }
960 EXPORT_SYMBOL(iov_iter_zero);
961
962 size_t iov_iter_copy_from_user_atomic(struct page *page,
963 struct iov_iter *i, unsigned long offset, size_t bytes)
964 {
965 char *kaddr = kmap_atomic(page), *p = kaddr + offset;
966 if (unlikely(!page_copy_sane(page, offset, bytes))) {
967 kunmap_atomic(kaddr);
968 return 0;
969 }
970 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
971 kunmap_atomic(kaddr);
972 WARN_ON(1);
973 return 0;
974 }
975 iterate_all_kinds(i, bytes, v,
976 copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
977 memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
978 v.bv_offset, v.bv_len),
979 memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)
980 )
981 kunmap_atomic(kaddr);
982 return bytes;
983 }
984 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
985
986 static inline void pipe_truncate(struct iov_iter *i)
987 {
988 struct pipe_inode_info *pipe = i->pipe;
989 if (pipe->nrbufs) {
990 size_t off = i->iov_offset;
991 int idx = i->idx;
992 int nrbufs = (idx - pipe->curbuf) & (pipe->buffers - 1);
993 if (off) {
994 pipe->bufs[idx].len = off - pipe->bufs[idx].offset;
995 idx = next_idx(idx, pipe);
996 nrbufs++;
997 }
998 while (pipe->nrbufs > nrbufs) {
999 pipe_buf_release(pipe, &pipe->bufs[idx]);
1000 idx = next_idx(idx, pipe);
1001 pipe->nrbufs--;
1002 }
1003 }
1004 }
1005
1006 static void pipe_advance(struct iov_iter *i, size_t size)
1007 {
1008 struct pipe_inode_info *pipe = i->pipe;
1009 if (unlikely(i->count < size))
1010 size = i->count;
1011 if (size) {
1012 struct pipe_buffer *buf;
1013 size_t off = i->iov_offset, left = size;
1014 int idx = i->idx;
1015 if (off) /* make it relative to the beginning of buffer */
1016 left += off - pipe->bufs[idx].offset;
1017 while (1) {
1018 buf = &pipe->bufs[idx];
1019 if (left <= buf->len)
1020 break;
1021 left -= buf->len;
1022 idx = next_idx(idx, pipe);
1023 }
1024 i->idx = idx;
1025 i->iov_offset = buf->offset + left;
1026 }
1027 i->count -= size;
1028 /* ... and discard everything past that point */
1029 pipe_truncate(i);
1030 }
1031
1032 void iov_iter_advance(struct iov_iter *i, size_t size)
1033 {
1034 if (unlikely(iov_iter_is_pipe(i))) {
1035 pipe_advance(i, size);
1036 return;
1037 }
1038 if (unlikely(iov_iter_is_discard(i))) {
1039 i->count -= size;
1040 return;
1041 }
1042 iterate_and_advance(i, size, v, 0, 0, 0)
1043 }
1044 EXPORT_SYMBOL(iov_iter_advance);
1045
1046 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1047 {
1048 if (!unroll)
1049 return;
1050 if (WARN_ON(unroll > MAX_RW_COUNT))
1051 return;
1052 i->count += unroll;
1053 if (unlikely(iov_iter_is_pipe(i))) {
1054 struct pipe_inode_info *pipe = i->pipe;
1055 int idx = i->idx;
1056 size_t off = i->iov_offset;
1057 while (1) {
1058 size_t n = off - pipe->bufs[idx].offset;
1059 if (unroll < n) {
1060 off -= unroll;
1061 break;
1062 }
1063 unroll -= n;
1064 if (!unroll && idx == i->start_idx) {
1065 off = 0;
1066 break;
1067 }
1068 if (!idx--)
1069 idx = pipe->buffers - 1;
1070 off = pipe->bufs[idx].offset + pipe->bufs[idx].len;
1071 }
1072 i->iov_offset = off;
1073 i->idx = idx;
1074 pipe_truncate(i);
1075 return;
1076 }
1077 if (unlikely(iov_iter_is_discard(i)))
1078 return;
1079 if (unroll <= i->iov_offset) {
1080 i->iov_offset -= unroll;
1081 return;
1082 }
1083 unroll -= i->iov_offset;
1084 if (iov_iter_is_bvec(i)) {
1085 const struct bio_vec *bvec = i->bvec;
1086 while (1) {
1087 size_t n = (--bvec)->bv_len;
1088 i->nr_segs++;
1089 if (unroll <= n) {
1090 i->bvec = bvec;
1091 i->iov_offset = n - unroll;
1092 return;
1093 }
1094 unroll -= n;
1095 }
1096 } else { /* same logics for iovec and kvec */
1097 const struct iovec *iov = i->iov;
1098 while (1) {
1099 size_t n = (--iov)->iov_len;
1100 i->nr_segs++;
1101 if (unroll <= n) {
1102 i->iov = iov;
1103 i->iov_offset = n - unroll;
1104 return;
1105 }
1106 unroll -= n;
1107 }
1108 }
1109 }
1110 EXPORT_SYMBOL(iov_iter_revert);
1111
1112 /*
1113 * Return the count of just the current iov_iter segment.
1114 */
1115 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1116 {
1117 if (unlikely(iov_iter_is_pipe(i)))
1118 return i->count; // it is a silly place, anyway
1119 if (i->nr_segs == 1)
1120 return i->count;
1121 if (unlikely(iov_iter_is_discard(i)))
1122 return i->count;
1123 else if (iov_iter_is_bvec(i))
1124 return min(i->count, i->bvec->bv_len - i->iov_offset);
1125 else
1126 return min(i->count, i->iov->iov_len - i->iov_offset);
1127 }
1128 EXPORT_SYMBOL(iov_iter_single_seg_count);
1129
1130 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1131 const struct kvec *kvec, unsigned long nr_segs,
1132 size_t count)
1133 {
1134 WARN_ON(direction & ~(READ | WRITE));
1135 i->type = ITER_KVEC | (direction & (READ | WRITE));
1136 i->kvec = kvec;
1137 i->nr_segs = nr_segs;
1138 i->iov_offset = 0;
1139 i->count = count;
1140 }
1141 EXPORT_SYMBOL(iov_iter_kvec);
1142
1143 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1144 const struct bio_vec *bvec, unsigned long nr_segs,
1145 size_t count)
1146 {
1147 WARN_ON(direction & ~(READ | WRITE));
1148 i->type = ITER_BVEC | (direction & (READ | WRITE));
1149 i->bvec = bvec;
1150 i->nr_segs = nr_segs;
1151 i->iov_offset = 0;
1152 i->count = count;
1153 }
1154 EXPORT_SYMBOL(iov_iter_bvec);
1155
1156 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1157 struct pipe_inode_info *pipe,
1158 size_t count)
1159 {
1160 BUG_ON(direction != READ);
1161 WARN_ON(pipe->nrbufs == pipe->buffers);
1162 i->type = ITER_PIPE | READ;
1163 i->pipe = pipe;
1164 i->idx = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
1165 i->iov_offset = 0;
1166 i->count = count;
1167 i->start_idx = i->idx;
1168 }
1169 EXPORT_SYMBOL(iov_iter_pipe);
1170
1171 /**
1172 * iov_iter_discard - Initialise an I/O iterator that discards data
1173 * @i: The iterator to initialise.
1174 * @direction: The direction of the transfer.
1175 * @count: The size of the I/O buffer in bytes.
1176 *
1177 * Set up an I/O iterator that just discards everything that's written to it.
1178 * It's only available as a READ iterator.
1179 */
1180 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1181 {
1182 BUG_ON(direction != READ);
1183 i->type = ITER_DISCARD | READ;
1184 i->count = count;
1185 i->iov_offset = 0;
1186 }
1187 EXPORT_SYMBOL(iov_iter_discard);
1188
1189 unsigned long iov_iter_alignment(const struct iov_iter *i)
1190 {
1191 unsigned long res = 0;
1192 size_t size = i->count;
1193
1194 if (unlikely(iov_iter_is_pipe(i))) {
1195 if (size && i->iov_offset && allocated(&i->pipe->bufs[i->idx]))
1196 return size | i->iov_offset;
1197 return size;
1198 }
1199 iterate_all_kinds(i, size, v,
1200 (res |= (unsigned long)v.iov_base | v.iov_len, 0),
1201 res |= v.bv_offset | v.bv_len,
1202 res |= (unsigned long)v.iov_base | v.iov_len
1203 )
1204 return res;
1205 }
1206 EXPORT_SYMBOL(iov_iter_alignment);
1207
1208 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1209 {
1210 unsigned long res = 0;
1211 size_t size = i->count;
1212
1213 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1214 WARN_ON(1);
1215 return ~0U;
1216 }
1217
1218 iterate_all_kinds(i, size, v,
1219 (res |= (!res ? 0 : (unsigned long)v.iov_base) |
1220 (size != v.iov_len ? size : 0), 0),
1221 (res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1222 (size != v.bv_len ? size : 0)),
1223 (res |= (!res ? 0 : (unsigned long)v.iov_base) |
1224 (size != v.iov_len ? size : 0))
1225 );
1226 return res;
1227 }
1228 EXPORT_SYMBOL(iov_iter_gap_alignment);
1229
1230 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1231 size_t maxsize,
1232 struct page **pages,
1233 int idx,
1234 size_t *start)
1235 {
1236 struct pipe_inode_info *pipe = i->pipe;
1237 ssize_t n = push_pipe(i, maxsize, &idx, start);
1238 if (!n)
1239 return -EFAULT;
1240
1241 maxsize = n;
1242 n += *start;
1243 while (n > 0) {
1244 get_page(*pages++ = pipe->bufs[idx].page);
1245 idx = next_idx(idx, pipe);
1246 n -= PAGE_SIZE;
1247 }
1248
1249 return maxsize;
1250 }
1251
1252 static ssize_t pipe_get_pages(struct iov_iter *i,
1253 struct page **pages, size_t maxsize, unsigned maxpages,
1254 size_t *start)
1255 {
1256 unsigned npages;
1257 size_t capacity;
1258 int idx;
1259
1260 if (!maxsize)
1261 return 0;
1262
1263 if (!sanity(i))
1264 return -EFAULT;
1265
1266 data_start(i, &idx, start);
1267 /* some of this one + all after this one */
1268 npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1;
1269 capacity = min(npages,maxpages) * PAGE_SIZE - *start;
1270
1271 return __pipe_get_pages(i, min(maxsize, capacity), pages, idx, start);
1272 }
1273
1274 ssize_t iov_iter_get_pages(struct iov_iter *i,
1275 struct page **pages, size_t maxsize, unsigned maxpages,
1276 size_t *start)
1277 {
1278 if (maxsize > i->count)
1279 maxsize = i->count;
1280
1281 if (unlikely(iov_iter_is_pipe(i)))
1282 return pipe_get_pages(i, pages, maxsize, maxpages, start);
1283 if (unlikely(iov_iter_is_discard(i)))
1284 return -EFAULT;
1285
1286 iterate_all_kinds(i, maxsize, v, ({
1287 unsigned long addr = (unsigned long)v.iov_base;
1288 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1289 int n;
1290 int res;
1291
1292 if (len > maxpages * PAGE_SIZE)
1293 len = maxpages * PAGE_SIZE;
1294 addr &= ~(PAGE_SIZE - 1);
1295 n = DIV_ROUND_UP(len, PAGE_SIZE);
1296 res = get_user_pages_fast(addr, n, iov_iter_rw(i) != WRITE, pages);
1297 if (unlikely(res < 0))
1298 return res;
1299 return (res == n ? len : res * PAGE_SIZE) - *start;
1300 0;}),({
1301 /* can't be more than PAGE_SIZE */
1302 *start = v.bv_offset;
1303 get_page(*pages = v.bv_page);
1304 return v.bv_len;
1305 }),({
1306 return -EFAULT;
1307 })
1308 )
1309 return 0;
1310 }
1311 EXPORT_SYMBOL(iov_iter_get_pages);
1312
1313 static struct page **get_pages_array(size_t n)
1314 {
1315 return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1316 }
1317
1318 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1319 struct page ***pages, size_t maxsize,
1320 size_t *start)
1321 {
1322 struct page **p;
1323 ssize_t n;
1324 int idx;
1325 int npages;
1326
1327 if (!maxsize)
1328 return 0;
1329
1330 if (!sanity(i))
1331 return -EFAULT;
1332
1333 data_start(i, &idx, start);
1334 /* some of this one + all after this one */
1335 npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1;
1336 n = npages * PAGE_SIZE - *start;
1337 if (maxsize > n)
1338 maxsize = n;
1339 else
1340 npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1341 p = get_pages_array(npages);
1342 if (!p)
1343 return -ENOMEM;
1344 n = __pipe_get_pages(i, maxsize, p, idx, start);
1345 if (n > 0)
1346 *pages = p;
1347 else
1348 kvfree(p);
1349 return n;
1350 }
1351
1352 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1353 struct page ***pages, size_t maxsize,
1354 size_t *start)
1355 {
1356 struct page **p;
1357
1358 if (maxsize > i->count)
1359 maxsize = i->count;
1360
1361 if (unlikely(iov_iter_is_pipe(i)))
1362 return pipe_get_pages_alloc(i, pages, maxsize, start);
1363 if (unlikely(iov_iter_is_discard(i)))
1364 return -EFAULT;
1365
1366 iterate_all_kinds(i, maxsize, v, ({
1367 unsigned long addr = (unsigned long)v.iov_base;
1368 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1369 int n;
1370 int res;
1371
1372 addr &= ~(PAGE_SIZE - 1);
1373 n = DIV_ROUND_UP(len, PAGE_SIZE);
1374 p = get_pages_array(n);
1375 if (!p)
1376 return -ENOMEM;
1377 res = get_user_pages_fast(addr, n, iov_iter_rw(i) != WRITE, p);
1378 if (unlikely(res < 0)) {
1379 kvfree(p);
1380 return res;
1381 }
1382 *pages = p;
1383 return (res == n ? len : res * PAGE_SIZE) - *start;
1384 0;}),({
1385 /* can't be more than PAGE_SIZE */
1386 *start = v.bv_offset;
1387 *pages = p = get_pages_array(1);
1388 if (!p)
1389 return -ENOMEM;
1390 get_page(*p = v.bv_page);
1391 return v.bv_len;
1392 }),({
1393 return -EFAULT;
1394 })
1395 )
1396 return 0;
1397 }
1398 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1399
1400 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1401 struct iov_iter *i)
1402 {
1403 char *to = addr;
1404 __wsum sum, next;
1405 size_t off = 0;
1406 sum = *csum;
1407 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1408 WARN_ON(1);
1409 return 0;
1410 }
1411 iterate_and_advance(i, bytes, v, ({
1412 int err = 0;
1413 next = csum_and_copy_from_user(v.iov_base,
1414 (to += v.iov_len) - v.iov_len,
1415 v.iov_len, 0, &err);
1416 if (!err) {
1417 sum = csum_block_add(sum, next, off);
1418 off += v.iov_len;
1419 }
1420 err ? v.iov_len : 0;
1421 }), ({
1422 char *p = kmap_atomic(v.bv_page);
1423 sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1424 p + v.bv_offset, v.bv_len,
1425 sum, off);
1426 kunmap_atomic(p);
1427 off += v.bv_len;
1428 }),({
1429 sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1430 v.iov_base, v.iov_len,
1431 sum, off);
1432 off += v.iov_len;
1433 })
1434 )
1435 *csum = sum;
1436 return bytes;
1437 }
1438 EXPORT_SYMBOL(csum_and_copy_from_iter);
1439
1440 bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum,
1441 struct iov_iter *i)
1442 {
1443 char *to = addr;
1444 __wsum sum, next;
1445 size_t off = 0;
1446 sum = *csum;
1447 if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1448 WARN_ON(1);
1449 return false;
1450 }
1451 if (unlikely(i->count < bytes))
1452 return false;
1453 iterate_all_kinds(i, bytes, v, ({
1454 int err = 0;
1455 next = csum_and_copy_from_user(v.iov_base,
1456 (to += v.iov_len) - v.iov_len,
1457 v.iov_len, 0, &err);
1458 if (err)
1459 return false;
1460 sum = csum_block_add(sum, next, off);
1461 off += v.iov_len;
1462 0;
1463 }), ({
1464 char *p = kmap_atomic(v.bv_page);
1465 sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1466 p + v.bv_offset, v.bv_len,
1467 sum, off);
1468 kunmap_atomic(p);
1469 off += v.bv_len;
1470 }),({
1471 sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1472 v.iov_base, v.iov_len,
1473 sum, off);
1474 off += v.iov_len;
1475 })
1476 )
1477 *csum = sum;
1478 iov_iter_advance(i, bytes);
1479 return true;
1480 }
1481 EXPORT_SYMBOL(csum_and_copy_from_iter_full);
1482
1483 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *csump,
1484 struct iov_iter *i)
1485 {
1486 const char *from = addr;
1487 __wsum *csum = csump;
1488 __wsum sum, next;
1489 size_t off = 0;
1490
1491 if (unlikely(iov_iter_is_pipe(i)))
1492 return csum_and_copy_to_pipe_iter(addr, bytes, csum, i);
1493
1494 sum = *csum;
1495 if (unlikely(iov_iter_is_discard(i))) {
1496 WARN_ON(1); /* for now */
1497 return 0;
1498 }
1499 iterate_and_advance(i, bytes, v, ({
1500 int err = 0;
1501 next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
1502 v.iov_base,
1503 v.iov_len, 0, &err);
1504 if (!err) {
1505 sum = csum_block_add(sum, next, off);
1506 off += v.iov_len;
1507 }
1508 err ? v.iov_len : 0;
1509 }), ({
1510 char *p = kmap_atomic(v.bv_page);
1511 sum = csum_and_memcpy(p + v.bv_offset,
1512 (from += v.bv_len) - v.bv_len,
1513 v.bv_len, sum, off);
1514 kunmap_atomic(p);
1515 off += v.bv_len;
1516 }),({
1517 sum = csum_and_memcpy(v.iov_base,
1518 (from += v.iov_len) - v.iov_len,
1519 v.iov_len, sum, off);
1520 off += v.iov_len;
1521 })
1522 )
1523 *csum = sum;
1524 return bytes;
1525 }
1526 EXPORT_SYMBOL(csum_and_copy_to_iter);
1527
1528 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1529 struct iov_iter *i)
1530 {
1531 #ifdef CONFIG_CRYPTO
1532 struct ahash_request *hash = hashp;
1533 struct scatterlist sg;
1534 size_t copied;
1535
1536 copied = copy_to_iter(addr, bytes, i);
1537 sg_init_one(&sg, addr, copied);
1538 ahash_request_set_crypt(hash, &sg, NULL, copied);
1539 crypto_ahash_update(hash);
1540 return copied;
1541 #else
1542 return 0;
1543 #endif
1544 }
1545 EXPORT_SYMBOL(hash_and_copy_to_iter);
1546
1547 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1548 {
1549 size_t size = i->count;
1550 int npages = 0;
1551
1552 if (!size)
1553 return 0;
1554 if (unlikely(iov_iter_is_discard(i)))
1555 return 0;
1556
1557 if (unlikely(iov_iter_is_pipe(i))) {
1558 struct pipe_inode_info *pipe = i->pipe;
1559 size_t off;
1560 int idx;
1561
1562 if (!sanity(i))
1563 return 0;
1564
1565 data_start(i, &idx, &off);
1566 /* some of this one + all after this one */
1567 npages = ((pipe->curbuf - idx - 1) & (pipe->buffers - 1)) + 1;
1568 if (npages >= maxpages)
1569 return maxpages;
1570 } else iterate_all_kinds(i, size, v, ({
1571 unsigned long p = (unsigned long)v.iov_base;
1572 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1573 - p / PAGE_SIZE;
1574 if (npages >= maxpages)
1575 return maxpages;
1576 0;}),({
1577 npages++;
1578 if (npages >= maxpages)
1579 return maxpages;
1580 }),({
1581 unsigned long p = (unsigned long)v.iov_base;
1582 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1583 - p / PAGE_SIZE;
1584 if (npages >= maxpages)
1585 return maxpages;
1586 })
1587 )
1588 return npages;
1589 }
1590 EXPORT_SYMBOL(iov_iter_npages);
1591
1592 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1593 {
1594 *new = *old;
1595 if (unlikely(iov_iter_is_pipe(new))) {
1596 WARN_ON(1);
1597 return NULL;
1598 }
1599 if (unlikely(iov_iter_is_discard(new)))
1600 return NULL;
1601 if (iov_iter_is_bvec(new))
1602 return new->bvec = kmemdup(new->bvec,
1603 new->nr_segs * sizeof(struct bio_vec),
1604 flags);
1605 else
1606 /* iovec and kvec have identical layout */
1607 return new->iov = kmemdup(new->iov,
1608 new->nr_segs * sizeof(struct iovec),
1609 flags);
1610 }
1611 EXPORT_SYMBOL(dup_iter);
1612
1613 /**
1614 * import_iovec() - Copy an array of &struct iovec from userspace
1615 * into the kernel, check that it is valid, and initialize a new
1616 * &struct iov_iter iterator to access it.
1617 *
1618 * @type: One of %READ or %WRITE.
1619 * @uvector: Pointer to the userspace array.
1620 * @nr_segs: Number of elements in userspace array.
1621 * @fast_segs: Number of elements in @iov.
1622 * @iov: (input and output parameter) Pointer to pointer to (usually small
1623 * on-stack) kernel array.
1624 * @i: Pointer to iterator that will be initialized on success.
1625 *
1626 * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1627 * then this function places %NULL in *@iov on return. Otherwise, a new
1628 * array will be allocated and the result placed in *@iov. This means that
1629 * the caller may call kfree() on *@iov regardless of whether the small
1630 * on-stack array was used or not (and regardless of whether this function
1631 * returns an error or not).
1632 *
1633 * Return: 0 on success or negative error code on error.
1634 */
1635 int import_iovec(int type, const struct iovec __user * uvector,
1636 unsigned nr_segs, unsigned fast_segs,
1637 struct iovec **iov, struct iov_iter *i)
1638 {
1639 ssize_t n;
1640 struct iovec *p;
1641 n = rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1642 *iov, &p);
1643 if (n < 0) {
1644 if (p != *iov)
1645 kfree(p);
1646 *iov = NULL;
1647 return n;
1648 }
1649 iov_iter_init(i, type, p, nr_segs, n);
1650 *iov = p == *iov ? NULL : p;
1651 return 0;
1652 }
1653 EXPORT_SYMBOL(import_iovec);
1654
1655 #ifdef CONFIG_COMPAT
1656 #include <linux/compat.h>
1657
1658 int compat_import_iovec(int type, const struct compat_iovec __user * uvector,
1659 unsigned nr_segs, unsigned fast_segs,
1660 struct iovec **iov, struct iov_iter *i)
1661 {
1662 ssize_t n;
1663 struct iovec *p;
1664 n = compat_rw_copy_check_uvector(type, uvector, nr_segs, fast_segs,
1665 *iov, &p);
1666 if (n < 0) {
1667 if (p != *iov)
1668 kfree(p);
1669 *iov = NULL;
1670 return n;
1671 }
1672 iov_iter_init(i, type, p, nr_segs, n);
1673 *iov = p == *iov ? NULL : p;
1674 return 0;
1675 }
1676 #endif
1677
1678 int import_single_range(int rw, void __user *buf, size_t len,
1679 struct iovec *iov, struct iov_iter *i)
1680 {
1681 if (len > MAX_RW_COUNT)
1682 len = MAX_RW_COUNT;
1683 if (unlikely(!access_ok(buf, len)))
1684 return -EFAULT;
1685
1686 iov->iov_base = buf;
1687 iov->iov_len = len;
1688 iov_iter_init(i, rw, iov, 1, len);
1689 return 0;
1690 }
1691 EXPORT_SYMBOL(import_single_range);
1692
1693 int iov_iter_for_each_range(struct iov_iter *i, size_t bytes,
1694 int (*f)(struct kvec *vec, void *context),
1695 void *context)
1696 {
1697 struct kvec w;
1698 int err = -EINVAL;
1699 if (!bytes)
1700 return 0;
1701
1702 iterate_all_kinds(i, bytes, v, -EINVAL, ({
1703 w.iov_base = kmap(v.bv_page) + v.bv_offset;
1704 w.iov_len = v.bv_len;
1705 err = f(&w, context);
1706 kunmap(v.bv_page);
1707 err;}), ({
1708 w = v;
1709 err = f(&w, context);})
1710 )
1711 return err;
1712 }
1713 EXPORT_SYMBOL(iov_iter_for_each_range);