]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/compaction.c
Merge tag 'sound-5.1-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[thirdparty/linux.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31 count_vm_event(item);
32 }
33
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36 count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47
48 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
52
53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55 struct page *page, *next;
56 unsigned long high_pfn = 0;
57
58 list_for_each_entry_safe(page, next, freelist, lru) {
59 unsigned long pfn = page_to_pfn(page);
60 list_del(&page->lru);
61 __free_page(page);
62 if (pfn > high_pfn)
63 high_pfn = pfn;
64 }
65
66 return high_pfn;
67 }
68
69 static void split_map_pages(struct list_head *list)
70 {
71 unsigned int i, order, nr_pages;
72 struct page *page, *next;
73 LIST_HEAD(tmp_list);
74
75 list_for_each_entry_safe(page, next, list, lru) {
76 list_del(&page->lru);
77
78 order = page_private(page);
79 nr_pages = 1 << order;
80
81 post_alloc_hook(page, order, __GFP_MOVABLE);
82 if (order)
83 split_page(page, order);
84
85 for (i = 0; i < nr_pages; i++) {
86 list_add(&page->lru, &tmp_list);
87 page++;
88 }
89 }
90
91 list_splice(&tmp_list, list);
92 }
93
94 #ifdef CONFIG_COMPACTION
95
96 int PageMovable(struct page *page)
97 {
98 struct address_space *mapping;
99
100 VM_BUG_ON_PAGE(!PageLocked(page), page);
101 if (!__PageMovable(page))
102 return 0;
103
104 mapping = page_mapping(page);
105 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
106 return 1;
107
108 return 0;
109 }
110 EXPORT_SYMBOL(PageMovable);
111
112 void __SetPageMovable(struct page *page, struct address_space *mapping)
113 {
114 VM_BUG_ON_PAGE(!PageLocked(page), page);
115 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
116 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
117 }
118 EXPORT_SYMBOL(__SetPageMovable);
119
120 void __ClearPageMovable(struct page *page)
121 {
122 VM_BUG_ON_PAGE(!PageLocked(page), page);
123 VM_BUG_ON_PAGE(!PageMovable(page), page);
124 /*
125 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
126 * flag so that VM can catch up released page by driver after isolation.
127 * With it, VM migration doesn't try to put it back.
128 */
129 page->mapping = (void *)((unsigned long)page->mapping &
130 PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__ClearPageMovable);
133
134 /* Do not skip compaction more than 64 times */
135 #define COMPACT_MAX_DEFER_SHIFT 6
136
137 /*
138 * Compaction is deferred when compaction fails to result in a page
139 * allocation success. 1 << compact_defer_limit compactions are skipped up
140 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
141 */
142 void defer_compaction(struct zone *zone, int order)
143 {
144 zone->compact_considered = 0;
145 zone->compact_defer_shift++;
146
147 if (order < zone->compact_order_failed)
148 zone->compact_order_failed = order;
149
150 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
151 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
152
153 trace_mm_compaction_defer_compaction(zone, order);
154 }
155
156 /* Returns true if compaction should be skipped this time */
157 bool compaction_deferred(struct zone *zone, int order)
158 {
159 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
160
161 if (order < zone->compact_order_failed)
162 return false;
163
164 /* Avoid possible overflow */
165 if (++zone->compact_considered > defer_limit)
166 zone->compact_considered = defer_limit;
167
168 if (zone->compact_considered >= defer_limit)
169 return false;
170
171 trace_mm_compaction_deferred(zone, order);
172
173 return true;
174 }
175
176 /*
177 * Update defer tracking counters after successful compaction of given order,
178 * which means an allocation either succeeded (alloc_success == true) or is
179 * expected to succeed.
180 */
181 void compaction_defer_reset(struct zone *zone, int order,
182 bool alloc_success)
183 {
184 if (alloc_success) {
185 zone->compact_considered = 0;
186 zone->compact_defer_shift = 0;
187 }
188 if (order >= zone->compact_order_failed)
189 zone->compact_order_failed = order + 1;
190
191 trace_mm_compaction_defer_reset(zone, order);
192 }
193
194 /* Returns true if restarting compaction after many failures */
195 bool compaction_restarting(struct zone *zone, int order)
196 {
197 if (order < zone->compact_order_failed)
198 return false;
199
200 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
201 zone->compact_considered >= 1UL << zone->compact_defer_shift;
202 }
203
204 /* Returns true if the pageblock should be scanned for pages to isolate. */
205 static inline bool isolation_suitable(struct compact_control *cc,
206 struct page *page)
207 {
208 if (cc->ignore_skip_hint)
209 return true;
210
211 return !get_pageblock_skip(page);
212 }
213
214 static void reset_cached_positions(struct zone *zone)
215 {
216 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
217 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
218 zone->compact_cached_free_pfn =
219 pageblock_start_pfn(zone_end_pfn(zone) - 1);
220 }
221
222 /*
223 * Compound pages of >= pageblock_order should consistenly be skipped until
224 * released. It is always pointless to compact pages of such order (if they are
225 * migratable), and the pageblocks they occupy cannot contain any free pages.
226 */
227 static bool pageblock_skip_persistent(struct page *page)
228 {
229 if (!PageCompound(page))
230 return false;
231
232 page = compound_head(page);
233
234 if (compound_order(page) >= pageblock_order)
235 return true;
236
237 return false;
238 }
239
240 static bool
241 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
242 bool check_target)
243 {
244 struct page *page = pfn_to_online_page(pfn);
245 struct page *block_page;
246 struct page *end_page;
247 unsigned long block_pfn;
248
249 if (!page)
250 return false;
251 if (zone != page_zone(page))
252 return false;
253 if (pageblock_skip_persistent(page))
254 return false;
255
256 /*
257 * If skip is already cleared do no further checking once the
258 * restart points have been set.
259 */
260 if (check_source && check_target && !get_pageblock_skip(page))
261 return true;
262
263 /*
264 * If clearing skip for the target scanner, do not select a
265 * non-movable pageblock as the starting point.
266 */
267 if (!check_source && check_target &&
268 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
269 return false;
270
271 /* Ensure the start of the pageblock or zone is online and valid */
272 block_pfn = pageblock_start_pfn(pfn);
273 block_page = pfn_to_online_page(max(block_pfn, zone->zone_start_pfn));
274 if (block_page) {
275 page = block_page;
276 pfn = block_pfn;
277 }
278
279 /* Ensure the end of the pageblock or zone is online and valid */
280 block_pfn += pageblock_nr_pages;
281 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
282 end_page = pfn_to_online_page(block_pfn);
283 if (!end_page)
284 return false;
285
286 /*
287 * Only clear the hint if a sample indicates there is either a
288 * free page or an LRU page in the block. One or other condition
289 * is necessary for the block to be a migration source/target.
290 */
291 do {
292 if (pfn_valid_within(pfn)) {
293 if (check_source && PageLRU(page)) {
294 clear_pageblock_skip(page);
295 return true;
296 }
297
298 if (check_target && PageBuddy(page)) {
299 clear_pageblock_skip(page);
300 return true;
301 }
302 }
303
304 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
305 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
306 } while (page < end_page);
307
308 return false;
309 }
310
311 /*
312 * This function is called to clear all cached information on pageblocks that
313 * should be skipped for page isolation when the migrate and free page scanner
314 * meet.
315 */
316 static void __reset_isolation_suitable(struct zone *zone)
317 {
318 unsigned long migrate_pfn = zone->zone_start_pfn;
319 unsigned long free_pfn = zone_end_pfn(zone) - 1;
320 unsigned long reset_migrate = free_pfn;
321 unsigned long reset_free = migrate_pfn;
322 bool source_set = false;
323 bool free_set = false;
324
325 if (!zone->compact_blockskip_flush)
326 return;
327
328 zone->compact_blockskip_flush = false;
329
330 /*
331 * Walk the zone and update pageblock skip information. Source looks
332 * for PageLRU while target looks for PageBuddy. When the scanner
333 * is found, both PageBuddy and PageLRU are checked as the pageblock
334 * is suitable as both source and target.
335 */
336 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
337 free_pfn -= pageblock_nr_pages) {
338 cond_resched();
339
340 /* Update the migrate PFN */
341 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
342 migrate_pfn < reset_migrate) {
343 source_set = true;
344 reset_migrate = migrate_pfn;
345 zone->compact_init_migrate_pfn = reset_migrate;
346 zone->compact_cached_migrate_pfn[0] = reset_migrate;
347 zone->compact_cached_migrate_pfn[1] = reset_migrate;
348 }
349
350 /* Update the free PFN */
351 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
352 free_pfn > reset_free) {
353 free_set = true;
354 reset_free = free_pfn;
355 zone->compact_init_free_pfn = reset_free;
356 zone->compact_cached_free_pfn = reset_free;
357 }
358 }
359
360 /* Leave no distance if no suitable block was reset */
361 if (reset_migrate >= reset_free) {
362 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
363 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
364 zone->compact_cached_free_pfn = free_pfn;
365 }
366 }
367
368 void reset_isolation_suitable(pg_data_t *pgdat)
369 {
370 int zoneid;
371
372 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
373 struct zone *zone = &pgdat->node_zones[zoneid];
374 if (!populated_zone(zone))
375 continue;
376
377 /* Only flush if a full compaction finished recently */
378 if (zone->compact_blockskip_flush)
379 __reset_isolation_suitable(zone);
380 }
381 }
382
383 /*
384 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
385 * locks are not required for read/writers. Returns true if it was already set.
386 */
387 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
388 unsigned long pfn)
389 {
390 bool skip;
391
392 /* Do no update if skip hint is being ignored */
393 if (cc->ignore_skip_hint)
394 return false;
395
396 if (!IS_ALIGNED(pfn, pageblock_nr_pages))
397 return false;
398
399 skip = get_pageblock_skip(page);
400 if (!skip && !cc->no_set_skip_hint)
401 set_pageblock_skip(page);
402
403 return skip;
404 }
405
406 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
407 {
408 struct zone *zone = cc->zone;
409
410 pfn = pageblock_end_pfn(pfn);
411
412 /* Set for isolation rather than compaction */
413 if (cc->no_set_skip_hint)
414 return;
415
416 if (pfn > zone->compact_cached_migrate_pfn[0])
417 zone->compact_cached_migrate_pfn[0] = pfn;
418 if (cc->mode != MIGRATE_ASYNC &&
419 pfn > zone->compact_cached_migrate_pfn[1])
420 zone->compact_cached_migrate_pfn[1] = pfn;
421 }
422
423 /*
424 * If no pages were isolated then mark this pageblock to be skipped in the
425 * future. The information is later cleared by __reset_isolation_suitable().
426 */
427 static void update_pageblock_skip(struct compact_control *cc,
428 struct page *page, unsigned long pfn)
429 {
430 struct zone *zone = cc->zone;
431
432 if (cc->no_set_skip_hint)
433 return;
434
435 if (!page)
436 return;
437
438 set_pageblock_skip(page);
439
440 /* Update where async and sync compaction should restart */
441 if (pfn < zone->compact_cached_free_pfn)
442 zone->compact_cached_free_pfn = pfn;
443 }
444 #else
445 static inline bool isolation_suitable(struct compact_control *cc,
446 struct page *page)
447 {
448 return true;
449 }
450
451 static inline bool pageblock_skip_persistent(struct page *page)
452 {
453 return false;
454 }
455
456 static inline void update_pageblock_skip(struct compact_control *cc,
457 struct page *page, unsigned long pfn)
458 {
459 }
460
461 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
462 {
463 }
464
465 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
466 unsigned long pfn)
467 {
468 return false;
469 }
470 #endif /* CONFIG_COMPACTION */
471
472 /*
473 * Compaction requires the taking of some coarse locks that are potentially
474 * very heavily contended. For async compaction, trylock and record if the
475 * lock is contended. The lock will still be acquired but compaction will
476 * abort when the current block is finished regardless of success rate.
477 * Sync compaction acquires the lock.
478 *
479 * Always returns true which makes it easier to track lock state in callers.
480 */
481 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
482 struct compact_control *cc)
483 {
484 /* Track if the lock is contended in async mode */
485 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
486 if (spin_trylock_irqsave(lock, *flags))
487 return true;
488
489 cc->contended = true;
490 }
491
492 spin_lock_irqsave(lock, *flags);
493 return true;
494 }
495
496 /*
497 * Compaction requires the taking of some coarse locks that are potentially
498 * very heavily contended. The lock should be periodically unlocked to avoid
499 * having disabled IRQs for a long time, even when there is nobody waiting on
500 * the lock. It might also be that allowing the IRQs will result in
501 * need_resched() becoming true. If scheduling is needed, async compaction
502 * aborts. Sync compaction schedules.
503 * Either compaction type will also abort if a fatal signal is pending.
504 * In either case if the lock was locked, it is dropped and not regained.
505 *
506 * Returns true if compaction should abort due to fatal signal pending, or
507 * async compaction due to need_resched()
508 * Returns false when compaction can continue (sync compaction might have
509 * scheduled)
510 */
511 static bool compact_unlock_should_abort(spinlock_t *lock,
512 unsigned long flags, bool *locked, struct compact_control *cc)
513 {
514 if (*locked) {
515 spin_unlock_irqrestore(lock, flags);
516 *locked = false;
517 }
518
519 if (fatal_signal_pending(current)) {
520 cc->contended = true;
521 return true;
522 }
523
524 cond_resched();
525
526 return false;
527 }
528
529 /*
530 * Isolate free pages onto a private freelist. If @strict is true, will abort
531 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
532 * (even though it may still end up isolating some pages).
533 */
534 static unsigned long isolate_freepages_block(struct compact_control *cc,
535 unsigned long *start_pfn,
536 unsigned long end_pfn,
537 struct list_head *freelist,
538 unsigned int stride,
539 bool strict)
540 {
541 int nr_scanned = 0, total_isolated = 0;
542 struct page *cursor;
543 unsigned long flags = 0;
544 bool locked = false;
545 unsigned long blockpfn = *start_pfn;
546 unsigned int order;
547
548 /* Strict mode is for isolation, speed is secondary */
549 if (strict)
550 stride = 1;
551
552 cursor = pfn_to_page(blockpfn);
553
554 /* Isolate free pages. */
555 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
556 int isolated;
557 struct page *page = cursor;
558
559 /*
560 * Periodically drop the lock (if held) regardless of its
561 * contention, to give chance to IRQs. Abort if fatal signal
562 * pending or async compaction detects need_resched()
563 */
564 if (!(blockpfn % SWAP_CLUSTER_MAX)
565 && compact_unlock_should_abort(&cc->zone->lock, flags,
566 &locked, cc))
567 break;
568
569 nr_scanned++;
570 if (!pfn_valid_within(blockpfn))
571 goto isolate_fail;
572
573 /*
574 * For compound pages such as THP and hugetlbfs, we can save
575 * potentially a lot of iterations if we skip them at once.
576 * The check is racy, but we can consider only valid values
577 * and the only danger is skipping too much.
578 */
579 if (PageCompound(page)) {
580 const unsigned int order = compound_order(page);
581
582 if (likely(order < MAX_ORDER)) {
583 blockpfn += (1UL << order) - 1;
584 cursor += (1UL << order) - 1;
585 }
586 goto isolate_fail;
587 }
588
589 if (!PageBuddy(page))
590 goto isolate_fail;
591
592 /*
593 * If we already hold the lock, we can skip some rechecking.
594 * Note that if we hold the lock now, checked_pageblock was
595 * already set in some previous iteration (or strict is true),
596 * so it is correct to skip the suitable migration target
597 * recheck as well.
598 */
599 if (!locked) {
600 locked = compact_lock_irqsave(&cc->zone->lock,
601 &flags, cc);
602
603 /* Recheck this is a buddy page under lock */
604 if (!PageBuddy(page))
605 goto isolate_fail;
606 }
607
608 /* Found a free page, will break it into order-0 pages */
609 order = page_order(page);
610 isolated = __isolate_free_page(page, order);
611 if (!isolated)
612 break;
613 set_page_private(page, order);
614
615 total_isolated += isolated;
616 cc->nr_freepages += isolated;
617 list_add_tail(&page->lru, freelist);
618
619 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
620 blockpfn += isolated;
621 break;
622 }
623 /* Advance to the end of split page */
624 blockpfn += isolated - 1;
625 cursor += isolated - 1;
626 continue;
627
628 isolate_fail:
629 if (strict)
630 break;
631 else
632 continue;
633
634 }
635
636 if (locked)
637 spin_unlock_irqrestore(&cc->zone->lock, flags);
638
639 /*
640 * There is a tiny chance that we have read bogus compound_order(),
641 * so be careful to not go outside of the pageblock.
642 */
643 if (unlikely(blockpfn > end_pfn))
644 blockpfn = end_pfn;
645
646 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
647 nr_scanned, total_isolated);
648
649 /* Record how far we have got within the block */
650 *start_pfn = blockpfn;
651
652 /*
653 * If strict isolation is requested by CMA then check that all the
654 * pages requested were isolated. If there were any failures, 0 is
655 * returned and CMA will fail.
656 */
657 if (strict && blockpfn < end_pfn)
658 total_isolated = 0;
659
660 cc->total_free_scanned += nr_scanned;
661 if (total_isolated)
662 count_compact_events(COMPACTISOLATED, total_isolated);
663 return total_isolated;
664 }
665
666 /**
667 * isolate_freepages_range() - isolate free pages.
668 * @cc: Compaction control structure.
669 * @start_pfn: The first PFN to start isolating.
670 * @end_pfn: The one-past-last PFN.
671 *
672 * Non-free pages, invalid PFNs, or zone boundaries within the
673 * [start_pfn, end_pfn) range are considered errors, cause function to
674 * undo its actions and return zero.
675 *
676 * Otherwise, function returns one-past-the-last PFN of isolated page
677 * (which may be greater then end_pfn if end fell in a middle of
678 * a free page).
679 */
680 unsigned long
681 isolate_freepages_range(struct compact_control *cc,
682 unsigned long start_pfn, unsigned long end_pfn)
683 {
684 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
685 LIST_HEAD(freelist);
686
687 pfn = start_pfn;
688 block_start_pfn = pageblock_start_pfn(pfn);
689 if (block_start_pfn < cc->zone->zone_start_pfn)
690 block_start_pfn = cc->zone->zone_start_pfn;
691 block_end_pfn = pageblock_end_pfn(pfn);
692
693 for (; pfn < end_pfn; pfn += isolated,
694 block_start_pfn = block_end_pfn,
695 block_end_pfn += pageblock_nr_pages) {
696 /* Protect pfn from changing by isolate_freepages_block */
697 unsigned long isolate_start_pfn = pfn;
698
699 block_end_pfn = min(block_end_pfn, end_pfn);
700
701 /*
702 * pfn could pass the block_end_pfn if isolated freepage
703 * is more than pageblock order. In this case, we adjust
704 * scanning range to right one.
705 */
706 if (pfn >= block_end_pfn) {
707 block_start_pfn = pageblock_start_pfn(pfn);
708 block_end_pfn = pageblock_end_pfn(pfn);
709 block_end_pfn = min(block_end_pfn, end_pfn);
710 }
711
712 if (!pageblock_pfn_to_page(block_start_pfn,
713 block_end_pfn, cc->zone))
714 break;
715
716 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
717 block_end_pfn, &freelist, 0, true);
718
719 /*
720 * In strict mode, isolate_freepages_block() returns 0 if
721 * there are any holes in the block (ie. invalid PFNs or
722 * non-free pages).
723 */
724 if (!isolated)
725 break;
726
727 /*
728 * If we managed to isolate pages, it is always (1 << n) *
729 * pageblock_nr_pages for some non-negative n. (Max order
730 * page may span two pageblocks).
731 */
732 }
733
734 /* __isolate_free_page() does not map the pages */
735 split_map_pages(&freelist);
736
737 if (pfn < end_pfn) {
738 /* Loop terminated early, cleanup. */
739 release_freepages(&freelist);
740 return 0;
741 }
742
743 /* We don't use freelists for anything. */
744 return pfn;
745 }
746
747 /* Similar to reclaim, but different enough that they don't share logic */
748 static bool too_many_isolated(pg_data_t *pgdat)
749 {
750 unsigned long active, inactive, isolated;
751
752 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
753 node_page_state(pgdat, NR_INACTIVE_ANON);
754 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
755 node_page_state(pgdat, NR_ACTIVE_ANON);
756 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
757 node_page_state(pgdat, NR_ISOLATED_ANON);
758
759 return isolated > (inactive + active) / 2;
760 }
761
762 /**
763 * isolate_migratepages_block() - isolate all migrate-able pages within
764 * a single pageblock
765 * @cc: Compaction control structure.
766 * @low_pfn: The first PFN to isolate
767 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
768 * @isolate_mode: Isolation mode to be used.
769 *
770 * Isolate all pages that can be migrated from the range specified by
771 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
772 * Returns zero if there is a fatal signal pending, otherwise PFN of the
773 * first page that was not scanned (which may be both less, equal to or more
774 * than end_pfn).
775 *
776 * The pages are isolated on cc->migratepages list (not required to be empty),
777 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
778 * is neither read nor updated.
779 */
780 static unsigned long
781 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
782 unsigned long end_pfn, isolate_mode_t isolate_mode)
783 {
784 pg_data_t *pgdat = cc->zone->zone_pgdat;
785 unsigned long nr_scanned = 0, nr_isolated = 0;
786 struct lruvec *lruvec;
787 unsigned long flags = 0;
788 bool locked = false;
789 struct page *page = NULL, *valid_page = NULL;
790 unsigned long start_pfn = low_pfn;
791 bool skip_on_failure = false;
792 unsigned long next_skip_pfn = 0;
793 bool skip_updated = false;
794
795 /*
796 * Ensure that there are not too many pages isolated from the LRU
797 * list by either parallel reclaimers or compaction. If there are,
798 * delay for some time until fewer pages are isolated
799 */
800 while (unlikely(too_many_isolated(pgdat))) {
801 /* async migration should just abort */
802 if (cc->mode == MIGRATE_ASYNC)
803 return 0;
804
805 congestion_wait(BLK_RW_ASYNC, HZ/10);
806
807 if (fatal_signal_pending(current))
808 return 0;
809 }
810
811 cond_resched();
812
813 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
814 skip_on_failure = true;
815 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
816 }
817
818 /* Time to isolate some pages for migration */
819 for (; low_pfn < end_pfn; low_pfn++) {
820
821 if (skip_on_failure && low_pfn >= next_skip_pfn) {
822 /*
823 * We have isolated all migration candidates in the
824 * previous order-aligned block, and did not skip it due
825 * to failure. We should migrate the pages now and
826 * hopefully succeed compaction.
827 */
828 if (nr_isolated)
829 break;
830
831 /*
832 * We failed to isolate in the previous order-aligned
833 * block. Set the new boundary to the end of the
834 * current block. Note we can't simply increase
835 * next_skip_pfn by 1 << order, as low_pfn might have
836 * been incremented by a higher number due to skipping
837 * a compound or a high-order buddy page in the
838 * previous loop iteration.
839 */
840 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
841 }
842
843 /*
844 * Periodically drop the lock (if held) regardless of its
845 * contention, to give chance to IRQs. Abort async compaction
846 * if contended.
847 */
848 if (!(low_pfn % SWAP_CLUSTER_MAX)
849 && compact_unlock_should_abort(&pgdat->lru_lock,
850 flags, &locked, cc))
851 break;
852
853 if (!pfn_valid_within(low_pfn))
854 goto isolate_fail;
855 nr_scanned++;
856
857 page = pfn_to_page(low_pfn);
858
859 /*
860 * Check if the pageblock has already been marked skipped.
861 * Only the aligned PFN is checked as the caller isolates
862 * COMPACT_CLUSTER_MAX at a time so the second call must
863 * not falsely conclude that the block should be skipped.
864 */
865 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
866 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
867 low_pfn = end_pfn;
868 goto isolate_abort;
869 }
870 valid_page = page;
871 }
872
873 /*
874 * Skip if free. We read page order here without zone lock
875 * which is generally unsafe, but the race window is small and
876 * the worst thing that can happen is that we skip some
877 * potential isolation targets.
878 */
879 if (PageBuddy(page)) {
880 unsigned long freepage_order = page_order_unsafe(page);
881
882 /*
883 * Without lock, we cannot be sure that what we got is
884 * a valid page order. Consider only values in the
885 * valid order range to prevent low_pfn overflow.
886 */
887 if (freepage_order > 0 && freepage_order < MAX_ORDER)
888 low_pfn += (1UL << freepage_order) - 1;
889 continue;
890 }
891
892 /*
893 * Regardless of being on LRU, compound pages such as THP and
894 * hugetlbfs are not to be compacted. We can potentially save
895 * a lot of iterations if we skip them at once. The check is
896 * racy, but we can consider only valid values and the only
897 * danger is skipping too much.
898 */
899 if (PageCompound(page)) {
900 const unsigned int order = compound_order(page);
901
902 if (likely(order < MAX_ORDER))
903 low_pfn += (1UL << order) - 1;
904 goto isolate_fail;
905 }
906
907 /*
908 * Check may be lockless but that's ok as we recheck later.
909 * It's possible to migrate LRU and non-lru movable pages.
910 * Skip any other type of page
911 */
912 if (!PageLRU(page)) {
913 /*
914 * __PageMovable can return false positive so we need
915 * to verify it under page_lock.
916 */
917 if (unlikely(__PageMovable(page)) &&
918 !PageIsolated(page)) {
919 if (locked) {
920 spin_unlock_irqrestore(&pgdat->lru_lock,
921 flags);
922 locked = false;
923 }
924
925 if (!isolate_movable_page(page, isolate_mode))
926 goto isolate_success;
927 }
928
929 goto isolate_fail;
930 }
931
932 /*
933 * Migration will fail if an anonymous page is pinned in memory,
934 * so avoid taking lru_lock and isolating it unnecessarily in an
935 * admittedly racy check.
936 */
937 if (!page_mapping(page) &&
938 page_count(page) > page_mapcount(page))
939 goto isolate_fail;
940
941 /*
942 * Only allow to migrate anonymous pages in GFP_NOFS context
943 * because those do not depend on fs locks.
944 */
945 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
946 goto isolate_fail;
947
948 /* If we already hold the lock, we can skip some rechecking */
949 if (!locked) {
950 locked = compact_lock_irqsave(&pgdat->lru_lock,
951 &flags, cc);
952
953 /* Try get exclusive access under lock */
954 if (!skip_updated) {
955 skip_updated = true;
956 if (test_and_set_skip(cc, page, low_pfn))
957 goto isolate_abort;
958 }
959
960 /* Recheck PageLRU and PageCompound under lock */
961 if (!PageLRU(page))
962 goto isolate_fail;
963
964 /*
965 * Page become compound since the non-locked check,
966 * and it's on LRU. It can only be a THP so the order
967 * is safe to read and it's 0 for tail pages.
968 */
969 if (unlikely(PageCompound(page))) {
970 low_pfn += (1UL << compound_order(page)) - 1;
971 goto isolate_fail;
972 }
973 }
974
975 lruvec = mem_cgroup_page_lruvec(page, pgdat);
976
977 /* Try isolate the page */
978 if (__isolate_lru_page(page, isolate_mode) != 0)
979 goto isolate_fail;
980
981 VM_BUG_ON_PAGE(PageCompound(page), page);
982
983 /* Successfully isolated */
984 del_page_from_lru_list(page, lruvec, page_lru(page));
985 inc_node_page_state(page,
986 NR_ISOLATED_ANON + page_is_file_cache(page));
987
988 isolate_success:
989 list_add(&page->lru, &cc->migratepages);
990 cc->nr_migratepages++;
991 nr_isolated++;
992
993 /*
994 * Avoid isolating too much unless this block is being
995 * rescanned (e.g. dirty/writeback pages, parallel allocation)
996 * or a lock is contended. For contention, isolate quickly to
997 * potentially remove one source of contention.
998 */
999 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
1000 !cc->rescan && !cc->contended) {
1001 ++low_pfn;
1002 break;
1003 }
1004
1005 continue;
1006 isolate_fail:
1007 if (!skip_on_failure)
1008 continue;
1009
1010 /*
1011 * We have isolated some pages, but then failed. Release them
1012 * instead of migrating, as we cannot form the cc->order buddy
1013 * page anyway.
1014 */
1015 if (nr_isolated) {
1016 if (locked) {
1017 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1018 locked = false;
1019 }
1020 putback_movable_pages(&cc->migratepages);
1021 cc->nr_migratepages = 0;
1022 nr_isolated = 0;
1023 }
1024
1025 if (low_pfn < next_skip_pfn) {
1026 low_pfn = next_skip_pfn - 1;
1027 /*
1028 * The check near the loop beginning would have updated
1029 * next_skip_pfn too, but this is a bit simpler.
1030 */
1031 next_skip_pfn += 1UL << cc->order;
1032 }
1033 }
1034
1035 /*
1036 * The PageBuddy() check could have potentially brought us outside
1037 * the range to be scanned.
1038 */
1039 if (unlikely(low_pfn > end_pfn))
1040 low_pfn = end_pfn;
1041
1042 isolate_abort:
1043 if (locked)
1044 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1045
1046 /*
1047 * Updated the cached scanner pfn once the pageblock has been scanned
1048 * Pages will either be migrated in which case there is no point
1049 * scanning in the near future or migration failed in which case the
1050 * failure reason may persist. The block is marked for skipping if
1051 * there were no pages isolated in the block or if the block is
1052 * rescanned twice in a row.
1053 */
1054 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1055 if (valid_page && !skip_updated)
1056 set_pageblock_skip(valid_page);
1057 update_cached_migrate(cc, low_pfn);
1058 }
1059
1060 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1061 nr_scanned, nr_isolated);
1062
1063 cc->total_migrate_scanned += nr_scanned;
1064 if (nr_isolated)
1065 count_compact_events(COMPACTISOLATED, nr_isolated);
1066
1067 return low_pfn;
1068 }
1069
1070 /**
1071 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1072 * @cc: Compaction control structure.
1073 * @start_pfn: The first PFN to start isolating.
1074 * @end_pfn: The one-past-last PFN.
1075 *
1076 * Returns zero if isolation fails fatally due to e.g. pending signal.
1077 * Otherwise, function returns one-past-the-last PFN of isolated page
1078 * (which may be greater than end_pfn if end fell in a middle of a THP page).
1079 */
1080 unsigned long
1081 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1082 unsigned long end_pfn)
1083 {
1084 unsigned long pfn, block_start_pfn, block_end_pfn;
1085
1086 /* Scan block by block. First and last block may be incomplete */
1087 pfn = start_pfn;
1088 block_start_pfn = pageblock_start_pfn(pfn);
1089 if (block_start_pfn < cc->zone->zone_start_pfn)
1090 block_start_pfn = cc->zone->zone_start_pfn;
1091 block_end_pfn = pageblock_end_pfn(pfn);
1092
1093 for (; pfn < end_pfn; pfn = block_end_pfn,
1094 block_start_pfn = block_end_pfn,
1095 block_end_pfn += pageblock_nr_pages) {
1096
1097 block_end_pfn = min(block_end_pfn, end_pfn);
1098
1099 if (!pageblock_pfn_to_page(block_start_pfn,
1100 block_end_pfn, cc->zone))
1101 continue;
1102
1103 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1104 ISOLATE_UNEVICTABLE);
1105
1106 if (!pfn)
1107 break;
1108
1109 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1110 break;
1111 }
1112
1113 return pfn;
1114 }
1115
1116 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1117 #ifdef CONFIG_COMPACTION
1118
1119 static bool suitable_migration_source(struct compact_control *cc,
1120 struct page *page)
1121 {
1122 int block_mt;
1123
1124 if (pageblock_skip_persistent(page))
1125 return false;
1126
1127 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1128 return true;
1129
1130 block_mt = get_pageblock_migratetype(page);
1131
1132 if (cc->migratetype == MIGRATE_MOVABLE)
1133 return is_migrate_movable(block_mt);
1134 else
1135 return block_mt == cc->migratetype;
1136 }
1137
1138 /* Returns true if the page is within a block suitable for migration to */
1139 static bool suitable_migration_target(struct compact_control *cc,
1140 struct page *page)
1141 {
1142 /* If the page is a large free page, then disallow migration */
1143 if (PageBuddy(page)) {
1144 /*
1145 * We are checking page_order without zone->lock taken. But
1146 * the only small danger is that we skip a potentially suitable
1147 * pageblock, so it's not worth to check order for valid range.
1148 */
1149 if (page_order_unsafe(page) >= pageblock_order)
1150 return false;
1151 }
1152
1153 if (cc->ignore_block_suitable)
1154 return true;
1155
1156 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1157 if (is_migrate_movable(get_pageblock_migratetype(page)))
1158 return true;
1159
1160 /* Otherwise skip the block */
1161 return false;
1162 }
1163
1164 static inline unsigned int
1165 freelist_scan_limit(struct compact_control *cc)
1166 {
1167 return (COMPACT_CLUSTER_MAX >> cc->fast_search_fail) + 1;
1168 }
1169
1170 /*
1171 * Test whether the free scanner has reached the same or lower pageblock than
1172 * the migration scanner, and compaction should thus terminate.
1173 */
1174 static inline bool compact_scanners_met(struct compact_control *cc)
1175 {
1176 return (cc->free_pfn >> pageblock_order)
1177 <= (cc->migrate_pfn >> pageblock_order);
1178 }
1179
1180 /*
1181 * Used when scanning for a suitable migration target which scans freelists
1182 * in reverse. Reorders the list such as the unscanned pages are scanned
1183 * first on the next iteration of the free scanner
1184 */
1185 static void
1186 move_freelist_head(struct list_head *freelist, struct page *freepage)
1187 {
1188 LIST_HEAD(sublist);
1189
1190 if (!list_is_last(freelist, &freepage->lru)) {
1191 list_cut_before(&sublist, freelist, &freepage->lru);
1192 if (!list_empty(&sublist))
1193 list_splice_tail(&sublist, freelist);
1194 }
1195 }
1196
1197 /*
1198 * Similar to move_freelist_head except used by the migration scanner
1199 * when scanning forward. It's possible for these list operations to
1200 * move against each other if they search the free list exactly in
1201 * lockstep.
1202 */
1203 static void
1204 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1205 {
1206 LIST_HEAD(sublist);
1207
1208 if (!list_is_first(freelist, &freepage->lru)) {
1209 list_cut_position(&sublist, freelist, &freepage->lru);
1210 if (!list_empty(&sublist))
1211 list_splice_tail(&sublist, freelist);
1212 }
1213 }
1214
1215 static void
1216 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1217 {
1218 unsigned long start_pfn, end_pfn;
1219 struct page *page = pfn_to_page(pfn);
1220
1221 /* Do not search around if there are enough pages already */
1222 if (cc->nr_freepages >= cc->nr_migratepages)
1223 return;
1224
1225 /* Minimise scanning during async compaction */
1226 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1227 return;
1228
1229 /* Pageblock boundaries */
1230 start_pfn = pageblock_start_pfn(pfn);
1231 end_pfn = min(start_pfn + pageblock_nr_pages, zone_end_pfn(cc->zone));
1232
1233 /* Scan before */
1234 if (start_pfn != pfn) {
1235 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1236 if (cc->nr_freepages >= cc->nr_migratepages)
1237 return;
1238 }
1239
1240 /* Scan after */
1241 start_pfn = pfn + nr_isolated;
1242 if (start_pfn != end_pfn)
1243 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1244
1245 /* Skip this pageblock in the future as it's full or nearly full */
1246 if (cc->nr_freepages < cc->nr_migratepages)
1247 set_pageblock_skip(page);
1248 }
1249
1250 /* Search orders in round-robin fashion */
1251 static int next_search_order(struct compact_control *cc, int order)
1252 {
1253 order--;
1254 if (order < 0)
1255 order = cc->order - 1;
1256
1257 /* Search wrapped around? */
1258 if (order == cc->search_order) {
1259 cc->search_order--;
1260 if (cc->search_order < 0)
1261 cc->search_order = cc->order - 1;
1262 return -1;
1263 }
1264
1265 return order;
1266 }
1267
1268 static unsigned long
1269 fast_isolate_freepages(struct compact_control *cc)
1270 {
1271 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1272 unsigned int nr_scanned = 0;
1273 unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1274 unsigned long nr_isolated = 0;
1275 unsigned long distance;
1276 struct page *page = NULL;
1277 bool scan_start = false;
1278 int order;
1279
1280 /* Full compaction passes in a negative order */
1281 if (cc->order <= 0)
1282 return cc->free_pfn;
1283
1284 /*
1285 * If starting the scan, use a deeper search and use the highest
1286 * PFN found if a suitable one is not found.
1287 */
1288 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1289 limit = pageblock_nr_pages >> 1;
1290 scan_start = true;
1291 }
1292
1293 /*
1294 * Preferred point is in the top quarter of the scan space but take
1295 * a pfn from the top half if the search is problematic.
1296 */
1297 distance = (cc->free_pfn - cc->migrate_pfn);
1298 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1299 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1300
1301 if (WARN_ON_ONCE(min_pfn > low_pfn))
1302 low_pfn = min_pfn;
1303
1304 /*
1305 * Search starts from the last successful isolation order or the next
1306 * order to search after a previous failure
1307 */
1308 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1309
1310 for (order = cc->search_order;
1311 !page && order >= 0;
1312 order = next_search_order(cc, order)) {
1313 struct free_area *area = &cc->zone->free_area[order];
1314 struct list_head *freelist;
1315 struct page *freepage;
1316 unsigned long flags;
1317 unsigned int order_scanned = 0;
1318
1319 if (!area->nr_free)
1320 continue;
1321
1322 spin_lock_irqsave(&cc->zone->lock, flags);
1323 freelist = &area->free_list[MIGRATE_MOVABLE];
1324 list_for_each_entry_reverse(freepage, freelist, lru) {
1325 unsigned long pfn;
1326
1327 order_scanned++;
1328 nr_scanned++;
1329 pfn = page_to_pfn(freepage);
1330
1331 if (pfn >= highest)
1332 highest = pageblock_start_pfn(pfn);
1333
1334 if (pfn >= low_pfn) {
1335 cc->fast_search_fail = 0;
1336 cc->search_order = order;
1337 page = freepage;
1338 break;
1339 }
1340
1341 if (pfn >= min_pfn && pfn > high_pfn) {
1342 high_pfn = pfn;
1343
1344 /* Shorten the scan if a candidate is found */
1345 limit >>= 1;
1346 }
1347
1348 if (order_scanned >= limit)
1349 break;
1350 }
1351
1352 /* Use a minimum pfn if a preferred one was not found */
1353 if (!page && high_pfn) {
1354 page = pfn_to_page(high_pfn);
1355
1356 /* Update freepage for the list reorder below */
1357 freepage = page;
1358 }
1359
1360 /* Reorder to so a future search skips recent pages */
1361 move_freelist_head(freelist, freepage);
1362
1363 /* Isolate the page if available */
1364 if (page) {
1365 if (__isolate_free_page(page, order)) {
1366 set_page_private(page, order);
1367 nr_isolated = 1 << order;
1368 cc->nr_freepages += nr_isolated;
1369 list_add_tail(&page->lru, &cc->freepages);
1370 count_compact_events(COMPACTISOLATED, nr_isolated);
1371 } else {
1372 /* If isolation fails, abort the search */
1373 order = cc->search_order + 1;
1374 page = NULL;
1375 }
1376 }
1377
1378 spin_unlock_irqrestore(&cc->zone->lock, flags);
1379
1380 /*
1381 * Smaller scan on next order so the total scan ig related
1382 * to freelist_scan_limit.
1383 */
1384 if (order_scanned >= limit)
1385 limit = min(1U, limit >> 1);
1386 }
1387
1388 if (!page) {
1389 cc->fast_search_fail++;
1390 if (scan_start) {
1391 /*
1392 * Use the highest PFN found above min. If one was
1393 * not found, be pessemistic for direct compaction
1394 * and use the min mark.
1395 */
1396 if (highest) {
1397 page = pfn_to_page(highest);
1398 cc->free_pfn = highest;
1399 } else {
1400 if (cc->direct_compaction) {
1401 page = pfn_to_page(min_pfn);
1402 cc->free_pfn = min_pfn;
1403 }
1404 }
1405 }
1406 }
1407
1408 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1409 highest -= pageblock_nr_pages;
1410 cc->zone->compact_cached_free_pfn = highest;
1411 }
1412
1413 cc->total_free_scanned += nr_scanned;
1414 if (!page)
1415 return cc->free_pfn;
1416
1417 low_pfn = page_to_pfn(page);
1418 fast_isolate_around(cc, low_pfn, nr_isolated);
1419 return low_pfn;
1420 }
1421
1422 /*
1423 * Based on information in the current compact_control, find blocks
1424 * suitable for isolating free pages from and then isolate them.
1425 */
1426 static void isolate_freepages(struct compact_control *cc)
1427 {
1428 struct zone *zone = cc->zone;
1429 struct page *page;
1430 unsigned long block_start_pfn; /* start of current pageblock */
1431 unsigned long isolate_start_pfn; /* exact pfn we start at */
1432 unsigned long block_end_pfn; /* end of current pageblock */
1433 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1434 struct list_head *freelist = &cc->freepages;
1435 unsigned int stride;
1436
1437 /* Try a small search of the free lists for a candidate */
1438 isolate_start_pfn = fast_isolate_freepages(cc);
1439 if (cc->nr_freepages)
1440 goto splitmap;
1441
1442 /*
1443 * Initialise the free scanner. The starting point is where we last
1444 * successfully isolated from, zone-cached value, or the end of the
1445 * zone when isolating for the first time. For looping we also need
1446 * this pfn aligned down to the pageblock boundary, because we do
1447 * block_start_pfn -= pageblock_nr_pages in the for loop.
1448 * For ending point, take care when isolating in last pageblock of a
1449 * a zone which ends in the middle of a pageblock.
1450 * The low boundary is the end of the pageblock the migration scanner
1451 * is using.
1452 */
1453 isolate_start_pfn = cc->free_pfn;
1454 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1455 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1456 zone_end_pfn(zone));
1457 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1458 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1459
1460 /*
1461 * Isolate free pages until enough are available to migrate the
1462 * pages on cc->migratepages. We stop searching if the migrate
1463 * and free page scanners meet or enough free pages are isolated.
1464 */
1465 for (; block_start_pfn >= low_pfn;
1466 block_end_pfn = block_start_pfn,
1467 block_start_pfn -= pageblock_nr_pages,
1468 isolate_start_pfn = block_start_pfn) {
1469 unsigned long nr_isolated;
1470
1471 /*
1472 * This can iterate a massively long zone without finding any
1473 * suitable migration targets, so periodically check resched.
1474 */
1475 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1476 cond_resched();
1477
1478 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1479 zone);
1480 if (!page)
1481 continue;
1482
1483 /* Check the block is suitable for migration */
1484 if (!suitable_migration_target(cc, page))
1485 continue;
1486
1487 /* If isolation recently failed, do not retry */
1488 if (!isolation_suitable(cc, page))
1489 continue;
1490
1491 /* Found a block suitable for isolating free pages from. */
1492 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1493 block_end_pfn, freelist, stride, false);
1494
1495 /* Update the skip hint if the full pageblock was scanned */
1496 if (isolate_start_pfn == block_end_pfn)
1497 update_pageblock_skip(cc, page, block_start_pfn);
1498
1499 /* Are enough freepages isolated? */
1500 if (cc->nr_freepages >= cc->nr_migratepages) {
1501 if (isolate_start_pfn >= block_end_pfn) {
1502 /*
1503 * Restart at previous pageblock if more
1504 * freepages can be isolated next time.
1505 */
1506 isolate_start_pfn =
1507 block_start_pfn - pageblock_nr_pages;
1508 }
1509 break;
1510 } else if (isolate_start_pfn < block_end_pfn) {
1511 /*
1512 * If isolation failed early, do not continue
1513 * needlessly.
1514 */
1515 break;
1516 }
1517
1518 /* Adjust stride depending on isolation */
1519 if (nr_isolated) {
1520 stride = 1;
1521 continue;
1522 }
1523 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1524 }
1525
1526 /*
1527 * Record where the free scanner will restart next time. Either we
1528 * broke from the loop and set isolate_start_pfn based on the last
1529 * call to isolate_freepages_block(), or we met the migration scanner
1530 * and the loop terminated due to isolate_start_pfn < low_pfn
1531 */
1532 cc->free_pfn = isolate_start_pfn;
1533
1534 splitmap:
1535 /* __isolate_free_page() does not map the pages */
1536 split_map_pages(freelist);
1537 }
1538
1539 /*
1540 * This is a migrate-callback that "allocates" freepages by taking pages
1541 * from the isolated freelists in the block we are migrating to.
1542 */
1543 static struct page *compaction_alloc(struct page *migratepage,
1544 unsigned long data)
1545 {
1546 struct compact_control *cc = (struct compact_control *)data;
1547 struct page *freepage;
1548
1549 if (list_empty(&cc->freepages)) {
1550 isolate_freepages(cc);
1551
1552 if (list_empty(&cc->freepages))
1553 return NULL;
1554 }
1555
1556 freepage = list_entry(cc->freepages.next, struct page, lru);
1557 list_del(&freepage->lru);
1558 cc->nr_freepages--;
1559
1560 return freepage;
1561 }
1562
1563 /*
1564 * This is a migrate-callback that "frees" freepages back to the isolated
1565 * freelist. All pages on the freelist are from the same zone, so there is no
1566 * special handling needed for NUMA.
1567 */
1568 static void compaction_free(struct page *page, unsigned long data)
1569 {
1570 struct compact_control *cc = (struct compact_control *)data;
1571
1572 list_add(&page->lru, &cc->freepages);
1573 cc->nr_freepages++;
1574 }
1575
1576 /* possible outcome of isolate_migratepages */
1577 typedef enum {
1578 ISOLATE_ABORT, /* Abort compaction now */
1579 ISOLATE_NONE, /* No pages isolated, continue scanning */
1580 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1581 } isolate_migrate_t;
1582
1583 /*
1584 * Allow userspace to control policy on scanning the unevictable LRU for
1585 * compactable pages.
1586 */
1587 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1588
1589 static inline void
1590 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1591 {
1592 if (cc->fast_start_pfn == ULONG_MAX)
1593 return;
1594
1595 if (!cc->fast_start_pfn)
1596 cc->fast_start_pfn = pfn;
1597
1598 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1599 }
1600
1601 static inline unsigned long
1602 reinit_migrate_pfn(struct compact_control *cc)
1603 {
1604 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1605 return cc->migrate_pfn;
1606
1607 cc->migrate_pfn = cc->fast_start_pfn;
1608 cc->fast_start_pfn = ULONG_MAX;
1609
1610 return cc->migrate_pfn;
1611 }
1612
1613 /*
1614 * Briefly search the free lists for a migration source that already has
1615 * some free pages to reduce the number of pages that need migration
1616 * before a pageblock is free.
1617 */
1618 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1619 {
1620 unsigned int limit = freelist_scan_limit(cc);
1621 unsigned int nr_scanned = 0;
1622 unsigned long distance;
1623 unsigned long pfn = cc->migrate_pfn;
1624 unsigned long high_pfn;
1625 int order;
1626
1627 /* Skip hints are relied on to avoid repeats on the fast search */
1628 if (cc->ignore_skip_hint)
1629 return pfn;
1630
1631 /*
1632 * If the migrate_pfn is not at the start of a zone or the start
1633 * of a pageblock then assume this is a continuation of a previous
1634 * scan restarted due to COMPACT_CLUSTER_MAX.
1635 */
1636 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1637 return pfn;
1638
1639 /*
1640 * For smaller orders, just linearly scan as the number of pages
1641 * to migrate should be relatively small and does not necessarily
1642 * justify freeing up a large block for a small allocation.
1643 */
1644 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1645 return pfn;
1646
1647 /*
1648 * Only allow kcompactd and direct requests for movable pages to
1649 * quickly clear out a MOVABLE pageblock for allocation. This
1650 * reduces the risk that a large movable pageblock is freed for
1651 * an unmovable/reclaimable small allocation.
1652 */
1653 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1654 return pfn;
1655
1656 /*
1657 * When starting the migration scanner, pick any pageblock within the
1658 * first half of the search space. Otherwise try and pick a pageblock
1659 * within the first eighth to reduce the chances that a migration
1660 * target later becomes a source.
1661 */
1662 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1663 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1664 distance >>= 2;
1665 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1666
1667 for (order = cc->order - 1;
1668 order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1669 order--) {
1670 struct free_area *area = &cc->zone->free_area[order];
1671 struct list_head *freelist;
1672 unsigned long flags;
1673 struct page *freepage;
1674
1675 if (!area->nr_free)
1676 continue;
1677
1678 spin_lock_irqsave(&cc->zone->lock, flags);
1679 freelist = &area->free_list[MIGRATE_MOVABLE];
1680 list_for_each_entry(freepage, freelist, lru) {
1681 unsigned long free_pfn;
1682
1683 nr_scanned++;
1684 free_pfn = page_to_pfn(freepage);
1685 if (free_pfn < high_pfn) {
1686 /*
1687 * Avoid if skipped recently. Ideally it would
1688 * move to the tail but even safe iteration of
1689 * the list assumes an entry is deleted, not
1690 * reordered.
1691 */
1692 if (get_pageblock_skip(freepage)) {
1693 if (list_is_last(freelist, &freepage->lru))
1694 break;
1695
1696 continue;
1697 }
1698
1699 /* Reorder to so a future search skips recent pages */
1700 move_freelist_tail(freelist, freepage);
1701
1702 update_fast_start_pfn(cc, free_pfn);
1703 pfn = pageblock_start_pfn(free_pfn);
1704 cc->fast_search_fail = 0;
1705 set_pageblock_skip(freepage);
1706 break;
1707 }
1708
1709 if (nr_scanned >= limit) {
1710 cc->fast_search_fail++;
1711 move_freelist_tail(freelist, freepage);
1712 break;
1713 }
1714 }
1715 spin_unlock_irqrestore(&cc->zone->lock, flags);
1716 }
1717
1718 cc->total_migrate_scanned += nr_scanned;
1719
1720 /*
1721 * If fast scanning failed then use a cached entry for a page block
1722 * that had free pages as the basis for starting a linear scan.
1723 */
1724 if (pfn == cc->migrate_pfn)
1725 pfn = reinit_migrate_pfn(cc);
1726
1727 return pfn;
1728 }
1729
1730 /*
1731 * Isolate all pages that can be migrated from the first suitable block,
1732 * starting at the block pointed to by the migrate scanner pfn within
1733 * compact_control.
1734 */
1735 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1736 struct compact_control *cc)
1737 {
1738 unsigned long block_start_pfn;
1739 unsigned long block_end_pfn;
1740 unsigned long low_pfn;
1741 struct page *page;
1742 const isolate_mode_t isolate_mode =
1743 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1744 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1745 bool fast_find_block;
1746
1747 /*
1748 * Start at where we last stopped, or beginning of the zone as
1749 * initialized by compact_zone(). The first failure will use
1750 * the lowest PFN as the starting point for linear scanning.
1751 */
1752 low_pfn = fast_find_migrateblock(cc);
1753 block_start_pfn = pageblock_start_pfn(low_pfn);
1754 if (block_start_pfn < zone->zone_start_pfn)
1755 block_start_pfn = zone->zone_start_pfn;
1756
1757 /*
1758 * fast_find_migrateblock marks a pageblock skipped so to avoid
1759 * the isolation_suitable check below, check whether the fast
1760 * search was successful.
1761 */
1762 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1763
1764 /* Only scan within a pageblock boundary */
1765 block_end_pfn = pageblock_end_pfn(low_pfn);
1766
1767 /*
1768 * Iterate over whole pageblocks until we find the first suitable.
1769 * Do not cross the free scanner.
1770 */
1771 for (; block_end_pfn <= cc->free_pfn;
1772 fast_find_block = false,
1773 low_pfn = block_end_pfn,
1774 block_start_pfn = block_end_pfn,
1775 block_end_pfn += pageblock_nr_pages) {
1776
1777 /*
1778 * This can potentially iterate a massively long zone with
1779 * many pageblocks unsuitable, so periodically check if we
1780 * need to schedule.
1781 */
1782 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1783 cond_resched();
1784
1785 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1786 zone);
1787 if (!page)
1788 continue;
1789
1790 /*
1791 * If isolation recently failed, do not retry. Only check the
1792 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1793 * to be visited multiple times. Assume skip was checked
1794 * before making it "skip" so other compaction instances do
1795 * not scan the same block.
1796 */
1797 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1798 !fast_find_block && !isolation_suitable(cc, page))
1799 continue;
1800
1801 /*
1802 * For async compaction, also only scan in MOVABLE blocks
1803 * without huge pages. Async compaction is optimistic to see
1804 * if the minimum amount of work satisfies the allocation.
1805 * The cached PFN is updated as it's possible that all
1806 * remaining blocks between source and target are unsuitable
1807 * and the compaction scanners fail to meet.
1808 */
1809 if (!suitable_migration_source(cc, page)) {
1810 update_cached_migrate(cc, block_end_pfn);
1811 continue;
1812 }
1813
1814 /* Perform the isolation */
1815 low_pfn = isolate_migratepages_block(cc, low_pfn,
1816 block_end_pfn, isolate_mode);
1817
1818 if (!low_pfn)
1819 return ISOLATE_ABORT;
1820
1821 /*
1822 * Either we isolated something and proceed with migration. Or
1823 * we failed and compact_zone should decide if we should
1824 * continue or not.
1825 */
1826 break;
1827 }
1828
1829 /* Record where migration scanner will be restarted. */
1830 cc->migrate_pfn = low_pfn;
1831
1832 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1833 }
1834
1835 /*
1836 * order == -1 is expected when compacting via
1837 * /proc/sys/vm/compact_memory
1838 */
1839 static inline bool is_via_compact_memory(int order)
1840 {
1841 return order == -1;
1842 }
1843
1844 static enum compact_result __compact_finished(struct compact_control *cc)
1845 {
1846 unsigned int order;
1847 const int migratetype = cc->migratetype;
1848 int ret;
1849
1850 /* Compaction run completes if the migrate and free scanner meet */
1851 if (compact_scanners_met(cc)) {
1852 /* Let the next compaction start anew. */
1853 reset_cached_positions(cc->zone);
1854
1855 /*
1856 * Mark that the PG_migrate_skip information should be cleared
1857 * by kswapd when it goes to sleep. kcompactd does not set the
1858 * flag itself as the decision to be clear should be directly
1859 * based on an allocation request.
1860 */
1861 if (cc->direct_compaction)
1862 cc->zone->compact_blockskip_flush = true;
1863
1864 if (cc->whole_zone)
1865 return COMPACT_COMPLETE;
1866 else
1867 return COMPACT_PARTIAL_SKIPPED;
1868 }
1869
1870 if (is_via_compact_memory(cc->order))
1871 return COMPACT_CONTINUE;
1872
1873 /*
1874 * Always finish scanning a pageblock to reduce the possibility of
1875 * fallbacks in the future. This is particularly important when
1876 * migration source is unmovable/reclaimable but it's not worth
1877 * special casing.
1878 */
1879 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1880 return COMPACT_CONTINUE;
1881
1882 /* Direct compactor: Is a suitable page free? */
1883 ret = COMPACT_NO_SUITABLE_PAGE;
1884 for (order = cc->order; order < MAX_ORDER; order++) {
1885 struct free_area *area = &cc->zone->free_area[order];
1886 bool can_steal;
1887
1888 /* Job done if page is free of the right migratetype */
1889 if (!list_empty(&area->free_list[migratetype]))
1890 return COMPACT_SUCCESS;
1891
1892 #ifdef CONFIG_CMA
1893 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1894 if (migratetype == MIGRATE_MOVABLE &&
1895 !list_empty(&area->free_list[MIGRATE_CMA]))
1896 return COMPACT_SUCCESS;
1897 #endif
1898 /*
1899 * Job done if allocation would steal freepages from
1900 * other migratetype buddy lists.
1901 */
1902 if (find_suitable_fallback(area, order, migratetype,
1903 true, &can_steal) != -1) {
1904
1905 /* movable pages are OK in any pageblock */
1906 if (migratetype == MIGRATE_MOVABLE)
1907 return COMPACT_SUCCESS;
1908
1909 /*
1910 * We are stealing for a non-movable allocation. Make
1911 * sure we finish compacting the current pageblock
1912 * first so it is as free as possible and we won't
1913 * have to steal another one soon. This only applies
1914 * to sync compaction, as async compaction operates
1915 * on pageblocks of the same migratetype.
1916 */
1917 if (cc->mode == MIGRATE_ASYNC ||
1918 IS_ALIGNED(cc->migrate_pfn,
1919 pageblock_nr_pages)) {
1920 return COMPACT_SUCCESS;
1921 }
1922
1923 ret = COMPACT_CONTINUE;
1924 break;
1925 }
1926 }
1927
1928 if (cc->contended || fatal_signal_pending(current))
1929 ret = COMPACT_CONTENDED;
1930
1931 return ret;
1932 }
1933
1934 static enum compact_result compact_finished(struct compact_control *cc)
1935 {
1936 int ret;
1937
1938 ret = __compact_finished(cc);
1939 trace_mm_compaction_finished(cc->zone, cc->order, ret);
1940 if (ret == COMPACT_NO_SUITABLE_PAGE)
1941 ret = COMPACT_CONTINUE;
1942
1943 return ret;
1944 }
1945
1946 /*
1947 * compaction_suitable: Is this suitable to run compaction on this zone now?
1948 * Returns
1949 * COMPACT_SKIPPED - If there are too few free pages for compaction
1950 * COMPACT_SUCCESS - If the allocation would succeed without compaction
1951 * COMPACT_CONTINUE - If compaction should run now
1952 */
1953 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1954 unsigned int alloc_flags,
1955 int classzone_idx,
1956 unsigned long wmark_target)
1957 {
1958 unsigned long watermark;
1959
1960 if (is_via_compact_memory(order))
1961 return COMPACT_CONTINUE;
1962
1963 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
1964 /*
1965 * If watermarks for high-order allocation are already met, there
1966 * should be no need for compaction at all.
1967 */
1968 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1969 alloc_flags))
1970 return COMPACT_SUCCESS;
1971
1972 /*
1973 * Watermarks for order-0 must be met for compaction to be able to
1974 * isolate free pages for migration targets. This means that the
1975 * watermark and alloc_flags have to match, or be more pessimistic than
1976 * the check in __isolate_free_page(). We don't use the direct
1977 * compactor's alloc_flags, as they are not relevant for freepage
1978 * isolation. We however do use the direct compactor's classzone_idx to
1979 * skip over zones where lowmem reserves would prevent allocation even
1980 * if compaction succeeds.
1981 * For costly orders, we require low watermark instead of min for
1982 * compaction to proceed to increase its chances.
1983 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1984 * suitable migration targets
1985 */
1986 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1987 low_wmark_pages(zone) : min_wmark_pages(zone);
1988 watermark += compact_gap(order);
1989 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1990 ALLOC_CMA, wmark_target))
1991 return COMPACT_SKIPPED;
1992
1993 return COMPACT_CONTINUE;
1994 }
1995
1996 enum compact_result compaction_suitable(struct zone *zone, int order,
1997 unsigned int alloc_flags,
1998 int classzone_idx)
1999 {
2000 enum compact_result ret;
2001 int fragindex;
2002
2003 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
2004 zone_page_state(zone, NR_FREE_PAGES));
2005 /*
2006 * fragmentation index determines if allocation failures are due to
2007 * low memory or external fragmentation
2008 *
2009 * index of -1000 would imply allocations might succeed depending on
2010 * watermarks, but we already failed the high-order watermark check
2011 * index towards 0 implies failure is due to lack of memory
2012 * index towards 1000 implies failure is due to fragmentation
2013 *
2014 * Only compact if a failure would be due to fragmentation. Also
2015 * ignore fragindex for non-costly orders where the alternative to
2016 * a successful reclaim/compaction is OOM. Fragindex and the
2017 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2018 * excessive compaction for costly orders, but it should not be at the
2019 * expense of system stability.
2020 */
2021 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2022 fragindex = fragmentation_index(zone, order);
2023 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2024 ret = COMPACT_NOT_SUITABLE_ZONE;
2025 }
2026
2027 trace_mm_compaction_suitable(zone, order, ret);
2028 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2029 ret = COMPACT_SKIPPED;
2030
2031 return ret;
2032 }
2033
2034 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2035 int alloc_flags)
2036 {
2037 struct zone *zone;
2038 struct zoneref *z;
2039
2040 /*
2041 * Make sure at least one zone would pass __compaction_suitable if we continue
2042 * retrying the reclaim.
2043 */
2044 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2045 ac->nodemask) {
2046 unsigned long available;
2047 enum compact_result compact_result;
2048
2049 /*
2050 * Do not consider all the reclaimable memory because we do not
2051 * want to trash just for a single high order allocation which
2052 * is even not guaranteed to appear even if __compaction_suitable
2053 * is happy about the watermark check.
2054 */
2055 available = zone_reclaimable_pages(zone) / order;
2056 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2057 compact_result = __compaction_suitable(zone, order, alloc_flags,
2058 ac_classzone_idx(ac), available);
2059 if (compact_result != COMPACT_SKIPPED)
2060 return true;
2061 }
2062
2063 return false;
2064 }
2065
2066 static enum compact_result
2067 compact_zone(struct compact_control *cc, struct capture_control *capc)
2068 {
2069 enum compact_result ret;
2070 unsigned long start_pfn = cc->zone->zone_start_pfn;
2071 unsigned long end_pfn = zone_end_pfn(cc->zone);
2072 unsigned long last_migrated_pfn;
2073 const bool sync = cc->mode != MIGRATE_ASYNC;
2074 bool update_cached;
2075
2076 cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
2077 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2078 cc->classzone_idx);
2079 /* Compaction is likely to fail */
2080 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2081 return ret;
2082
2083 /* huh, compaction_suitable is returning something unexpected */
2084 VM_BUG_ON(ret != COMPACT_CONTINUE);
2085
2086 /*
2087 * Clear pageblock skip if there were failures recently and compaction
2088 * is about to be retried after being deferred.
2089 */
2090 if (compaction_restarting(cc->zone, cc->order))
2091 __reset_isolation_suitable(cc->zone);
2092
2093 /*
2094 * Setup to move all movable pages to the end of the zone. Used cached
2095 * information on where the scanners should start (unless we explicitly
2096 * want to compact the whole zone), but check that it is initialised
2097 * by ensuring the values are within zone boundaries.
2098 */
2099 cc->fast_start_pfn = 0;
2100 if (cc->whole_zone) {
2101 cc->migrate_pfn = start_pfn;
2102 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2103 } else {
2104 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2105 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2106 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2107 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2108 cc->zone->compact_cached_free_pfn = cc->free_pfn;
2109 }
2110 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2111 cc->migrate_pfn = start_pfn;
2112 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2113 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2114 }
2115
2116 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2117 cc->whole_zone = true;
2118 }
2119
2120 last_migrated_pfn = 0;
2121
2122 /*
2123 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2124 * the basis that some migrations will fail in ASYNC mode. However,
2125 * if the cached PFNs match and pageblocks are skipped due to having
2126 * no isolation candidates, then the sync state does not matter.
2127 * Until a pageblock with isolation candidates is found, keep the
2128 * cached PFNs in sync to avoid revisiting the same blocks.
2129 */
2130 update_cached = !sync &&
2131 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2132
2133 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2134 cc->free_pfn, end_pfn, sync);
2135
2136 migrate_prep_local();
2137
2138 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2139 int err;
2140 unsigned long start_pfn = cc->migrate_pfn;
2141
2142 /*
2143 * Avoid multiple rescans which can happen if a page cannot be
2144 * isolated (dirty/writeback in async mode) or if the migrated
2145 * pages are being allocated before the pageblock is cleared.
2146 * The first rescan will capture the entire pageblock for
2147 * migration. If it fails, it'll be marked skip and scanning
2148 * will proceed as normal.
2149 */
2150 cc->rescan = false;
2151 if (pageblock_start_pfn(last_migrated_pfn) ==
2152 pageblock_start_pfn(start_pfn)) {
2153 cc->rescan = true;
2154 }
2155
2156 switch (isolate_migratepages(cc->zone, cc)) {
2157 case ISOLATE_ABORT:
2158 ret = COMPACT_CONTENDED;
2159 putback_movable_pages(&cc->migratepages);
2160 cc->nr_migratepages = 0;
2161 last_migrated_pfn = 0;
2162 goto out;
2163 case ISOLATE_NONE:
2164 if (update_cached) {
2165 cc->zone->compact_cached_migrate_pfn[1] =
2166 cc->zone->compact_cached_migrate_pfn[0];
2167 }
2168
2169 /*
2170 * We haven't isolated and migrated anything, but
2171 * there might still be unflushed migrations from
2172 * previous cc->order aligned block.
2173 */
2174 goto check_drain;
2175 case ISOLATE_SUCCESS:
2176 update_cached = false;
2177 last_migrated_pfn = start_pfn;
2178 ;
2179 }
2180
2181 err = migrate_pages(&cc->migratepages, compaction_alloc,
2182 compaction_free, (unsigned long)cc, cc->mode,
2183 MR_COMPACTION);
2184
2185 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2186 &cc->migratepages);
2187
2188 /* All pages were either migrated or will be released */
2189 cc->nr_migratepages = 0;
2190 if (err) {
2191 putback_movable_pages(&cc->migratepages);
2192 /*
2193 * migrate_pages() may return -ENOMEM when scanners meet
2194 * and we want compact_finished() to detect it
2195 */
2196 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2197 ret = COMPACT_CONTENDED;
2198 goto out;
2199 }
2200 /*
2201 * We failed to migrate at least one page in the current
2202 * order-aligned block, so skip the rest of it.
2203 */
2204 if (cc->direct_compaction &&
2205 (cc->mode == MIGRATE_ASYNC)) {
2206 cc->migrate_pfn = block_end_pfn(
2207 cc->migrate_pfn - 1, cc->order);
2208 /* Draining pcplists is useless in this case */
2209 last_migrated_pfn = 0;
2210 }
2211 }
2212
2213 check_drain:
2214 /*
2215 * Has the migration scanner moved away from the previous
2216 * cc->order aligned block where we migrated from? If yes,
2217 * flush the pages that were freed, so that they can merge and
2218 * compact_finished() can detect immediately if allocation
2219 * would succeed.
2220 */
2221 if (cc->order > 0 && last_migrated_pfn) {
2222 int cpu;
2223 unsigned long current_block_start =
2224 block_start_pfn(cc->migrate_pfn, cc->order);
2225
2226 if (last_migrated_pfn < current_block_start) {
2227 cpu = get_cpu();
2228 lru_add_drain_cpu(cpu);
2229 drain_local_pages(cc->zone);
2230 put_cpu();
2231 /* No more flushing until we migrate again */
2232 last_migrated_pfn = 0;
2233 }
2234 }
2235
2236 /* Stop if a page has been captured */
2237 if (capc && capc->page) {
2238 ret = COMPACT_SUCCESS;
2239 break;
2240 }
2241 }
2242
2243 out:
2244 /*
2245 * Release free pages and update where the free scanner should restart,
2246 * so we don't leave any returned pages behind in the next attempt.
2247 */
2248 if (cc->nr_freepages > 0) {
2249 unsigned long free_pfn = release_freepages(&cc->freepages);
2250
2251 cc->nr_freepages = 0;
2252 VM_BUG_ON(free_pfn == 0);
2253 /* The cached pfn is always the first in a pageblock */
2254 free_pfn = pageblock_start_pfn(free_pfn);
2255 /*
2256 * Only go back, not forward. The cached pfn might have been
2257 * already reset to zone end in compact_finished()
2258 */
2259 if (free_pfn > cc->zone->compact_cached_free_pfn)
2260 cc->zone->compact_cached_free_pfn = free_pfn;
2261 }
2262
2263 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2264 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2265
2266 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2267 cc->free_pfn, end_pfn, sync, ret);
2268
2269 return ret;
2270 }
2271
2272 static enum compact_result compact_zone_order(struct zone *zone, int order,
2273 gfp_t gfp_mask, enum compact_priority prio,
2274 unsigned int alloc_flags, int classzone_idx,
2275 struct page **capture)
2276 {
2277 enum compact_result ret;
2278 struct compact_control cc = {
2279 .nr_freepages = 0,
2280 .nr_migratepages = 0,
2281 .total_migrate_scanned = 0,
2282 .total_free_scanned = 0,
2283 .order = order,
2284 .search_order = order,
2285 .gfp_mask = gfp_mask,
2286 .zone = zone,
2287 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2288 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2289 .alloc_flags = alloc_flags,
2290 .classzone_idx = classzone_idx,
2291 .direct_compaction = true,
2292 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2293 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2294 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2295 };
2296 struct capture_control capc = {
2297 .cc = &cc,
2298 .page = NULL,
2299 };
2300
2301 if (capture)
2302 current->capture_control = &capc;
2303 INIT_LIST_HEAD(&cc.freepages);
2304 INIT_LIST_HEAD(&cc.migratepages);
2305
2306 ret = compact_zone(&cc, &capc);
2307
2308 VM_BUG_ON(!list_empty(&cc.freepages));
2309 VM_BUG_ON(!list_empty(&cc.migratepages));
2310
2311 *capture = capc.page;
2312 current->capture_control = NULL;
2313
2314 return ret;
2315 }
2316
2317 int sysctl_extfrag_threshold = 500;
2318
2319 /**
2320 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2321 * @gfp_mask: The GFP mask of the current allocation
2322 * @order: The order of the current allocation
2323 * @alloc_flags: The allocation flags of the current allocation
2324 * @ac: The context of current allocation
2325 * @prio: Determines how hard direct compaction should try to succeed
2326 *
2327 * This is the main entry point for direct page compaction.
2328 */
2329 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2330 unsigned int alloc_flags, const struct alloc_context *ac,
2331 enum compact_priority prio, struct page **capture)
2332 {
2333 int may_perform_io = gfp_mask & __GFP_IO;
2334 struct zoneref *z;
2335 struct zone *zone;
2336 enum compact_result rc = COMPACT_SKIPPED;
2337
2338 /*
2339 * Check if the GFP flags allow compaction - GFP_NOIO is really
2340 * tricky context because the migration might require IO
2341 */
2342 if (!may_perform_io)
2343 return COMPACT_SKIPPED;
2344
2345 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2346
2347 /* Compact each zone in the list */
2348 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2349 ac->nodemask) {
2350 enum compact_result status;
2351
2352 if (prio > MIN_COMPACT_PRIORITY
2353 && compaction_deferred(zone, order)) {
2354 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2355 continue;
2356 }
2357
2358 status = compact_zone_order(zone, order, gfp_mask, prio,
2359 alloc_flags, ac_classzone_idx(ac), capture);
2360 rc = max(status, rc);
2361
2362 /* The allocation should succeed, stop compacting */
2363 if (status == COMPACT_SUCCESS) {
2364 /*
2365 * We think the allocation will succeed in this zone,
2366 * but it is not certain, hence the false. The caller
2367 * will repeat this with true if allocation indeed
2368 * succeeds in this zone.
2369 */
2370 compaction_defer_reset(zone, order, false);
2371
2372 break;
2373 }
2374
2375 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2376 status == COMPACT_PARTIAL_SKIPPED))
2377 /*
2378 * We think that allocation won't succeed in this zone
2379 * so we defer compaction there. If it ends up
2380 * succeeding after all, it will be reset.
2381 */
2382 defer_compaction(zone, order);
2383
2384 /*
2385 * We might have stopped compacting due to need_resched() in
2386 * async compaction, or due to a fatal signal detected. In that
2387 * case do not try further zones
2388 */
2389 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2390 || fatal_signal_pending(current))
2391 break;
2392 }
2393
2394 return rc;
2395 }
2396
2397
2398 /* Compact all zones within a node */
2399 static void compact_node(int nid)
2400 {
2401 pg_data_t *pgdat = NODE_DATA(nid);
2402 int zoneid;
2403 struct zone *zone;
2404 struct compact_control cc = {
2405 .order = -1,
2406 .total_migrate_scanned = 0,
2407 .total_free_scanned = 0,
2408 .mode = MIGRATE_SYNC,
2409 .ignore_skip_hint = true,
2410 .whole_zone = true,
2411 .gfp_mask = GFP_KERNEL,
2412 };
2413
2414
2415 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2416
2417 zone = &pgdat->node_zones[zoneid];
2418 if (!populated_zone(zone))
2419 continue;
2420
2421 cc.nr_freepages = 0;
2422 cc.nr_migratepages = 0;
2423 cc.zone = zone;
2424 INIT_LIST_HEAD(&cc.freepages);
2425 INIT_LIST_HEAD(&cc.migratepages);
2426
2427 compact_zone(&cc, NULL);
2428
2429 VM_BUG_ON(!list_empty(&cc.freepages));
2430 VM_BUG_ON(!list_empty(&cc.migratepages));
2431 }
2432 }
2433
2434 /* Compact all nodes in the system */
2435 static void compact_nodes(void)
2436 {
2437 int nid;
2438
2439 /* Flush pending updates to the LRU lists */
2440 lru_add_drain_all();
2441
2442 for_each_online_node(nid)
2443 compact_node(nid);
2444 }
2445
2446 /* The written value is actually unused, all memory is compacted */
2447 int sysctl_compact_memory;
2448
2449 /*
2450 * This is the entry point for compacting all nodes via
2451 * /proc/sys/vm/compact_memory
2452 */
2453 int sysctl_compaction_handler(struct ctl_table *table, int write,
2454 void __user *buffer, size_t *length, loff_t *ppos)
2455 {
2456 if (write)
2457 compact_nodes();
2458
2459 return 0;
2460 }
2461
2462 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2463 static ssize_t sysfs_compact_node(struct device *dev,
2464 struct device_attribute *attr,
2465 const char *buf, size_t count)
2466 {
2467 int nid = dev->id;
2468
2469 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2470 /* Flush pending updates to the LRU lists */
2471 lru_add_drain_all();
2472
2473 compact_node(nid);
2474 }
2475
2476 return count;
2477 }
2478 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2479
2480 int compaction_register_node(struct node *node)
2481 {
2482 return device_create_file(&node->dev, &dev_attr_compact);
2483 }
2484
2485 void compaction_unregister_node(struct node *node)
2486 {
2487 return device_remove_file(&node->dev, &dev_attr_compact);
2488 }
2489 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2490
2491 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2492 {
2493 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2494 }
2495
2496 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2497 {
2498 int zoneid;
2499 struct zone *zone;
2500 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
2501
2502 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
2503 zone = &pgdat->node_zones[zoneid];
2504
2505 if (!populated_zone(zone))
2506 continue;
2507
2508 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2509 classzone_idx) == COMPACT_CONTINUE)
2510 return true;
2511 }
2512
2513 return false;
2514 }
2515
2516 static void kcompactd_do_work(pg_data_t *pgdat)
2517 {
2518 /*
2519 * With no special task, compact all zones so that a page of requested
2520 * order is allocatable.
2521 */
2522 int zoneid;
2523 struct zone *zone;
2524 struct compact_control cc = {
2525 .order = pgdat->kcompactd_max_order,
2526 .search_order = pgdat->kcompactd_max_order,
2527 .total_migrate_scanned = 0,
2528 .total_free_scanned = 0,
2529 .classzone_idx = pgdat->kcompactd_classzone_idx,
2530 .mode = MIGRATE_SYNC_LIGHT,
2531 .ignore_skip_hint = false,
2532 .gfp_mask = GFP_KERNEL,
2533 };
2534 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2535 cc.classzone_idx);
2536 count_compact_event(KCOMPACTD_WAKE);
2537
2538 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
2539 int status;
2540
2541 zone = &pgdat->node_zones[zoneid];
2542 if (!populated_zone(zone))
2543 continue;
2544
2545 if (compaction_deferred(zone, cc.order))
2546 continue;
2547
2548 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2549 COMPACT_CONTINUE)
2550 continue;
2551
2552 cc.nr_freepages = 0;
2553 cc.nr_migratepages = 0;
2554 cc.total_migrate_scanned = 0;
2555 cc.total_free_scanned = 0;
2556 cc.zone = zone;
2557 INIT_LIST_HEAD(&cc.freepages);
2558 INIT_LIST_HEAD(&cc.migratepages);
2559
2560 if (kthread_should_stop())
2561 return;
2562 status = compact_zone(&cc, NULL);
2563
2564 if (status == COMPACT_SUCCESS) {
2565 compaction_defer_reset(zone, cc.order, false);
2566 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2567 /*
2568 * Buddy pages may become stranded on pcps that could
2569 * otherwise coalesce on the zone's free area for
2570 * order >= cc.order. This is ratelimited by the
2571 * upcoming deferral.
2572 */
2573 drain_all_pages(zone);
2574
2575 /*
2576 * We use sync migration mode here, so we defer like
2577 * sync direct compaction does.
2578 */
2579 defer_compaction(zone, cc.order);
2580 }
2581
2582 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2583 cc.total_migrate_scanned);
2584 count_compact_events(KCOMPACTD_FREE_SCANNED,
2585 cc.total_free_scanned);
2586
2587 VM_BUG_ON(!list_empty(&cc.freepages));
2588 VM_BUG_ON(!list_empty(&cc.migratepages));
2589 }
2590
2591 /*
2592 * Regardless of success, we are done until woken up next. But remember
2593 * the requested order/classzone_idx in case it was higher/tighter than
2594 * our current ones
2595 */
2596 if (pgdat->kcompactd_max_order <= cc.order)
2597 pgdat->kcompactd_max_order = 0;
2598 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2599 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2600 }
2601
2602 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2603 {
2604 if (!order)
2605 return;
2606
2607 if (pgdat->kcompactd_max_order < order)
2608 pgdat->kcompactd_max_order = order;
2609
2610 if (pgdat->kcompactd_classzone_idx > classzone_idx)
2611 pgdat->kcompactd_classzone_idx = classzone_idx;
2612
2613 /*
2614 * Pairs with implicit barrier in wait_event_freezable()
2615 * such that wakeups are not missed.
2616 */
2617 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2618 return;
2619
2620 if (!kcompactd_node_suitable(pgdat))
2621 return;
2622
2623 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2624 classzone_idx);
2625 wake_up_interruptible(&pgdat->kcompactd_wait);
2626 }
2627
2628 /*
2629 * The background compaction daemon, started as a kernel thread
2630 * from the init process.
2631 */
2632 static int kcompactd(void *p)
2633 {
2634 pg_data_t *pgdat = (pg_data_t*)p;
2635 struct task_struct *tsk = current;
2636
2637 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2638
2639 if (!cpumask_empty(cpumask))
2640 set_cpus_allowed_ptr(tsk, cpumask);
2641
2642 set_freezable();
2643
2644 pgdat->kcompactd_max_order = 0;
2645 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2646
2647 while (!kthread_should_stop()) {
2648 unsigned long pflags;
2649
2650 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2651 wait_event_freezable(pgdat->kcompactd_wait,
2652 kcompactd_work_requested(pgdat));
2653
2654 psi_memstall_enter(&pflags);
2655 kcompactd_do_work(pgdat);
2656 psi_memstall_leave(&pflags);
2657 }
2658
2659 return 0;
2660 }
2661
2662 /*
2663 * This kcompactd start function will be called by init and node-hot-add.
2664 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2665 */
2666 int kcompactd_run(int nid)
2667 {
2668 pg_data_t *pgdat = NODE_DATA(nid);
2669 int ret = 0;
2670
2671 if (pgdat->kcompactd)
2672 return 0;
2673
2674 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2675 if (IS_ERR(pgdat->kcompactd)) {
2676 pr_err("Failed to start kcompactd on node %d\n", nid);
2677 ret = PTR_ERR(pgdat->kcompactd);
2678 pgdat->kcompactd = NULL;
2679 }
2680 return ret;
2681 }
2682
2683 /*
2684 * Called by memory hotplug when all memory in a node is offlined. Caller must
2685 * hold mem_hotplug_begin/end().
2686 */
2687 void kcompactd_stop(int nid)
2688 {
2689 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2690
2691 if (kcompactd) {
2692 kthread_stop(kcompactd);
2693 NODE_DATA(nid)->kcompactd = NULL;
2694 }
2695 }
2696
2697 /*
2698 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2699 * not required for correctness. So if the last cpu in a node goes
2700 * away, we get changed to run anywhere: as the first one comes back,
2701 * restore their cpu bindings.
2702 */
2703 static int kcompactd_cpu_online(unsigned int cpu)
2704 {
2705 int nid;
2706
2707 for_each_node_state(nid, N_MEMORY) {
2708 pg_data_t *pgdat = NODE_DATA(nid);
2709 const struct cpumask *mask;
2710
2711 mask = cpumask_of_node(pgdat->node_id);
2712
2713 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2714 /* One of our CPUs online: restore mask */
2715 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2716 }
2717 return 0;
2718 }
2719
2720 static int __init kcompactd_init(void)
2721 {
2722 int nid;
2723 int ret;
2724
2725 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2726 "mm/compaction:online",
2727 kcompactd_cpu_online, NULL);
2728 if (ret < 0) {
2729 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2730 return ret;
2731 }
2732
2733 for_each_node_state(nid, N_MEMORY)
2734 kcompactd_run(nid);
2735 return 0;
2736 }
2737 subsys_initcall(kcompactd_init)
2738
2739 #endif /* CONFIG_COMPACTION */