]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/memcontrol.c
mm/memcg: move cgroup high memory limit setting into struct page_counter
[thirdparty/linux.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66
67 #include <linux/uaccess.h>
68
69 #include <trace/events/vmscan.h>
70
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75
76 #define MEM_CGROUP_RECLAIM_RETRIES 5
77
78 /* Socket memory accounting disabled? */
79 static bool cgroup_memory_nosocket;
80
81 /* Kernel memory accounting disabled? */
82 static bool cgroup_memory_nokmem;
83
84 /* Whether the swap controller is active */
85 #ifdef CONFIG_MEMCG_SWAP
86 int do_swap_account __read_mostly;
87 #else
88 #define do_swap_account 0
89 #endif
90
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 #define THRESHOLDS_EVENTS_TARGET 128
102 #define SOFTLIMIT_EVENTS_TARGET 1024
103
104 /*
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
107 */
108
109 struct mem_cgroup_tree_per_node {
110 struct rb_root rb_root;
111 struct rb_node *rb_rightmost;
112 spinlock_t lock;
113 };
114
115 struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117 };
118
119 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120
121 /* for OOM */
122 struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
125 };
126
127 /*
128 * cgroup_event represents events which userspace want to receive.
129 */
130 struct mem_cgroup_event {
131 /*
132 * memcg which the event belongs to.
133 */
134 struct mem_cgroup *memcg;
135 /*
136 * eventfd to signal userspace about the event.
137 */
138 struct eventfd_ctx *eventfd;
139 /*
140 * Each of these stored in a list by the cgroup.
141 */
142 struct list_head list;
143 /*
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
147 */
148 int (*register_event)(struct mem_cgroup *memcg,
149 struct eventfd_ctx *eventfd, const char *args);
150 /*
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
154 */
155 void (*unregister_event)(struct mem_cgroup *memcg,
156 struct eventfd_ctx *eventfd);
157 /*
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
160 */
161 poll_table pt;
162 wait_queue_head_t *wqh;
163 wait_queue_entry_t wait;
164 struct work_struct remove;
165 };
166
167 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169
170 /* Stuffs for move charges at task migration. */
171 /*
172 * Types of charges to be moved.
173 */
174 #define MOVE_ANON 0x1U
175 #define MOVE_FILE 0x2U
176 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
177
178 /* "mc" and its members are protected by cgroup_mutex */
179 static struct move_charge_struct {
180 spinlock_t lock; /* for from, to */
181 struct mm_struct *mm;
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
184 unsigned long flags;
185 unsigned long precharge;
186 unsigned long moved_charge;
187 unsigned long moved_swap;
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
190 } mc = {
191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193 };
194
195 /*
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
198 */
199 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
200 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
201
202 enum charge_type {
203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
204 MEM_CGROUP_CHARGE_TYPE_ANON,
205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
207 NR_CHARGE_TYPE,
208 };
209
210 /* for encoding cft->private value on file */
211 enum res_type {
212 _MEM,
213 _MEMSWAP,
214 _OOM_TYPE,
215 _KMEM,
216 _TCP,
217 };
218
219 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
220 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
221 #define MEMFILE_ATTR(val) ((val) & 0xffff)
222 /* Used for OOM nofiier */
223 #define OOM_CONTROL (0)
224
225 /*
226 * Iteration constructs for visiting all cgroups (under a tree). If
227 * loops are exited prematurely (break), mem_cgroup_iter_break() must
228 * be used for reference counting.
229 */
230 #define for_each_mem_cgroup_tree(iter, root) \
231 for (iter = mem_cgroup_iter(root, NULL, NULL); \
232 iter != NULL; \
233 iter = mem_cgroup_iter(root, iter, NULL))
234
235 #define for_each_mem_cgroup(iter) \
236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
237 iter != NULL; \
238 iter = mem_cgroup_iter(NULL, iter, NULL))
239
240 static inline bool should_force_charge(void)
241 {
242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 (current->flags & PF_EXITING);
244 }
245
246 /* Some nice accessors for the vmpressure. */
247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
248 {
249 if (!memcg)
250 memcg = root_mem_cgroup;
251 return &memcg->vmpressure;
252 }
253
254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
255 {
256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
257 }
258
259 #ifdef CONFIG_MEMCG_KMEM
260 /*
261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
262 * The main reason for not using cgroup id for this:
263 * this works better in sparse environments, where we have a lot of memcgs,
264 * but only a few kmem-limited. Or also, if we have, for instance, 200
265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
266 * 200 entry array for that.
267 *
268 * The current size of the caches array is stored in memcg_nr_cache_ids. It
269 * will double each time we have to increase it.
270 */
271 static DEFINE_IDA(memcg_cache_ida);
272 int memcg_nr_cache_ids;
273
274 /* Protects memcg_nr_cache_ids */
275 static DECLARE_RWSEM(memcg_cache_ids_sem);
276
277 void memcg_get_cache_ids(void)
278 {
279 down_read(&memcg_cache_ids_sem);
280 }
281
282 void memcg_put_cache_ids(void)
283 {
284 up_read(&memcg_cache_ids_sem);
285 }
286
287 /*
288 * MIN_SIZE is different than 1, because we would like to avoid going through
289 * the alloc/free process all the time. In a small machine, 4 kmem-limited
290 * cgroups is a reasonable guess. In the future, it could be a parameter or
291 * tunable, but that is strictly not necessary.
292 *
293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
294 * this constant directly from cgroup, but it is understandable that this is
295 * better kept as an internal representation in cgroup.c. In any case, the
296 * cgrp_id space is not getting any smaller, and we don't have to necessarily
297 * increase ours as well if it increases.
298 */
299 #define MEMCG_CACHES_MIN_SIZE 4
300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
301
302 /*
303 * A lot of the calls to the cache allocation functions are expected to be
304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305 * conditional to this static branch, we'll have to allow modules that does
306 * kmem_cache_alloc and the such to see this symbol as well
307 */
308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
309 EXPORT_SYMBOL(memcg_kmem_enabled_key);
310
311 struct workqueue_struct *memcg_kmem_cache_wq;
312 #endif
313
314 static int memcg_shrinker_map_size;
315 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
316
317 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
318 {
319 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
320 }
321
322 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 int size, int old_size)
324 {
325 struct memcg_shrinker_map *new, *old;
326 int nid;
327
328 lockdep_assert_held(&memcg_shrinker_map_mutex);
329
330 for_each_node(nid) {
331 old = rcu_dereference_protected(
332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 /* Not yet online memcg */
334 if (!old)
335 return 0;
336
337 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
338 if (!new)
339 return -ENOMEM;
340
341 /* Set all old bits, clear all new bits */
342 memset(new->map, (int)0xff, old_size);
343 memset((void *)new->map + old_size, 0, size - old_size);
344
345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
347 }
348
349 return 0;
350 }
351
352 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
353 {
354 struct mem_cgroup_per_node *pn;
355 struct memcg_shrinker_map *map;
356 int nid;
357
358 if (mem_cgroup_is_root(memcg))
359 return;
360
361 for_each_node(nid) {
362 pn = mem_cgroup_nodeinfo(memcg, nid);
363 map = rcu_dereference_protected(pn->shrinker_map, true);
364 if (map)
365 kvfree(map);
366 rcu_assign_pointer(pn->shrinker_map, NULL);
367 }
368 }
369
370 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
371 {
372 struct memcg_shrinker_map *map;
373 int nid, size, ret = 0;
374
375 if (mem_cgroup_is_root(memcg))
376 return 0;
377
378 mutex_lock(&memcg_shrinker_map_mutex);
379 size = memcg_shrinker_map_size;
380 for_each_node(nid) {
381 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
382 if (!map) {
383 memcg_free_shrinker_maps(memcg);
384 ret = -ENOMEM;
385 break;
386 }
387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
388 }
389 mutex_unlock(&memcg_shrinker_map_mutex);
390
391 return ret;
392 }
393
394 int memcg_expand_shrinker_maps(int new_id)
395 {
396 int size, old_size, ret = 0;
397 struct mem_cgroup *memcg;
398
399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 old_size = memcg_shrinker_map_size;
401 if (size <= old_size)
402 return 0;
403
404 mutex_lock(&memcg_shrinker_map_mutex);
405 if (!root_mem_cgroup)
406 goto unlock;
407
408 for_each_mem_cgroup(memcg) {
409 if (mem_cgroup_is_root(memcg))
410 continue;
411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
412 if (ret) {
413 mem_cgroup_iter_break(NULL, memcg);
414 goto unlock;
415 }
416 }
417 unlock:
418 if (!ret)
419 memcg_shrinker_map_size = size;
420 mutex_unlock(&memcg_shrinker_map_mutex);
421 return ret;
422 }
423
424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
425 {
426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 struct memcg_shrinker_map *map;
428
429 rcu_read_lock();
430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 /* Pairs with smp mb in shrink_slab() */
432 smp_mb__before_atomic();
433 set_bit(shrinker_id, map->map);
434 rcu_read_unlock();
435 }
436 }
437
438 /**
439 * mem_cgroup_css_from_page - css of the memcg associated with a page
440 * @page: page of interest
441 *
442 * If memcg is bound to the default hierarchy, css of the memcg associated
443 * with @page is returned. The returned css remains associated with @page
444 * until it is released.
445 *
446 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
447 * is returned.
448 */
449 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
450 {
451 struct mem_cgroup *memcg;
452
453 memcg = page->mem_cgroup;
454
455 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
456 memcg = root_mem_cgroup;
457
458 return &memcg->css;
459 }
460
461 /**
462 * page_cgroup_ino - return inode number of the memcg a page is charged to
463 * @page: the page
464 *
465 * Look up the closest online ancestor of the memory cgroup @page is charged to
466 * and return its inode number or 0 if @page is not charged to any cgroup. It
467 * is safe to call this function without holding a reference to @page.
468 *
469 * Note, this function is inherently racy, because there is nothing to prevent
470 * the cgroup inode from getting torn down and potentially reallocated a moment
471 * after page_cgroup_ino() returns, so it only should be used by callers that
472 * do not care (such as procfs interfaces).
473 */
474 ino_t page_cgroup_ino(struct page *page)
475 {
476 struct mem_cgroup *memcg;
477 unsigned long ino = 0;
478
479 rcu_read_lock();
480 if (PageSlab(page) && !PageTail(page))
481 memcg = memcg_from_slab_page(page);
482 else
483 memcg = READ_ONCE(page->mem_cgroup);
484 while (memcg && !(memcg->css.flags & CSS_ONLINE))
485 memcg = parent_mem_cgroup(memcg);
486 if (memcg)
487 ino = cgroup_ino(memcg->css.cgroup);
488 rcu_read_unlock();
489 return ino;
490 }
491
492 static struct mem_cgroup_per_node *
493 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
494 {
495 int nid = page_to_nid(page);
496
497 return memcg->nodeinfo[nid];
498 }
499
500 static struct mem_cgroup_tree_per_node *
501 soft_limit_tree_node(int nid)
502 {
503 return soft_limit_tree.rb_tree_per_node[nid];
504 }
505
506 static struct mem_cgroup_tree_per_node *
507 soft_limit_tree_from_page(struct page *page)
508 {
509 int nid = page_to_nid(page);
510
511 return soft_limit_tree.rb_tree_per_node[nid];
512 }
513
514 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
515 struct mem_cgroup_tree_per_node *mctz,
516 unsigned long new_usage_in_excess)
517 {
518 struct rb_node **p = &mctz->rb_root.rb_node;
519 struct rb_node *parent = NULL;
520 struct mem_cgroup_per_node *mz_node;
521 bool rightmost = true;
522
523 if (mz->on_tree)
524 return;
525
526 mz->usage_in_excess = new_usage_in_excess;
527 if (!mz->usage_in_excess)
528 return;
529 while (*p) {
530 parent = *p;
531 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
532 tree_node);
533 if (mz->usage_in_excess < mz_node->usage_in_excess) {
534 p = &(*p)->rb_left;
535 rightmost = false;
536 }
537
538 /*
539 * We can't avoid mem cgroups that are over their soft
540 * limit by the same amount
541 */
542 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
543 p = &(*p)->rb_right;
544 }
545
546 if (rightmost)
547 mctz->rb_rightmost = &mz->tree_node;
548
549 rb_link_node(&mz->tree_node, parent, p);
550 rb_insert_color(&mz->tree_node, &mctz->rb_root);
551 mz->on_tree = true;
552 }
553
554 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
555 struct mem_cgroup_tree_per_node *mctz)
556 {
557 if (!mz->on_tree)
558 return;
559
560 if (&mz->tree_node == mctz->rb_rightmost)
561 mctz->rb_rightmost = rb_prev(&mz->tree_node);
562
563 rb_erase(&mz->tree_node, &mctz->rb_root);
564 mz->on_tree = false;
565 }
566
567 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 struct mem_cgroup_tree_per_node *mctz)
569 {
570 unsigned long flags;
571
572 spin_lock_irqsave(&mctz->lock, flags);
573 __mem_cgroup_remove_exceeded(mz, mctz);
574 spin_unlock_irqrestore(&mctz->lock, flags);
575 }
576
577 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
578 {
579 unsigned long nr_pages = page_counter_read(&memcg->memory);
580 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
581 unsigned long excess = 0;
582
583 if (nr_pages > soft_limit)
584 excess = nr_pages - soft_limit;
585
586 return excess;
587 }
588
589 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
590 {
591 unsigned long excess;
592 struct mem_cgroup_per_node *mz;
593 struct mem_cgroup_tree_per_node *mctz;
594
595 mctz = soft_limit_tree_from_page(page);
596 if (!mctz)
597 return;
598 /*
599 * Necessary to update all ancestors when hierarchy is used.
600 * because their event counter is not touched.
601 */
602 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
603 mz = mem_cgroup_page_nodeinfo(memcg, page);
604 excess = soft_limit_excess(memcg);
605 /*
606 * We have to update the tree if mz is on RB-tree or
607 * mem is over its softlimit.
608 */
609 if (excess || mz->on_tree) {
610 unsigned long flags;
611
612 spin_lock_irqsave(&mctz->lock, flags);
613 /* if on-tree, remove it */
614 if (mz->on_tree)
615 __mem_cgroup_remove_exceeded(mz, mctz);
616 /*
617 * Insert again. mz->usage_in_excess will be updated.
618 * If excess is 0, no tree ops.
619 */
620 __mem_cgroup_insert_exceeded(mz, mctz, excess);
621 spin_unlock_irqrestore(&mctz->lock, flags);
622 }
623 }
624 }
625
626 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
627 {
628 struct mem_cgroup_tree_per_node *mctz;
629 struct mem_cgroup_per_node *mz;
630 int nid;
631
632 for_each_node(nid) {
633 mz = mem_cgroup_nodeinfo(memcg, nid);
634 mctz = soft_limit_tree_node(nid);
635 if (mctz)
636 mem_cgroup_remove_exceeded(mz, mctz);
637 }
638 }
639
640 static struct mem_cgroup_per_node *
641 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
642 {
643 struct mem_cgroup_per_node *mz;
644
645 retry:
646 mz = NULL;
647 if (!mctz->rb_rightmost)
648 goto done; /* Nothing to reclaim from */
649
650 mz = rb_entry(mctz->rb_rightmost,
651 struct mem_cgroup_per_node, tree_node);
652 /*
653 * Remove the node now but someone else can add it back,
654 * we will to add it back at the end of reclaim to its correct
655 * position in the tree.
656 */
657 __mem_cgroup_remove_exceeded(mz, mctz);
658 if (!soft_limit_excess(mz->memcg) ||
659 !css_tryget(&mz->memcg->css))
660 goto retry;
661 done:
662 return mz;
663 }
664
665 static struct mem_cgroup_per_node *
666 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
667 {
668 struct mem_cgroup_per_node *mz;
669
670 spin_lock_irq(&mctz->lock);
671 mz = __mem_cgroup_largest_soft_limit_node(mctz);
672 spin_unlock_irq(&mctz->lock);
673 return mz;
674 }
675
676 /**
677 * __mod_memcg_state - update cgroup memory statistics
678 * @memcg: the memory cgroup
679 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
680 * @val: delta to add to the counter, can be negative
681 */
682 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
683 {
684 long x;
685
686 if (mem_cgroup_disabled())
687 return;
688
689 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
690 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
691 struct mem_cgroup *mi;
692
693 /*
694 * Batch local counters to keep them in sync with
695 * the hierarchical ones.
696 */
697 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
698 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
699 atomic_long_add(x, &mi->vmstats[idx]);
700 x = 0;
701 }
702 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
703 }
704
705 static struct mem_cgroup_per_node *
706 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
707 {
708 struct mem_cgroup *parent;
709
710 parent = parent_mem_cgroup(pn->memcg);
711 if (!parent)
712 return NULL;
713 return mem_cgroup_nodeinfo(parent, nid);
714 }
715
716 /**
717 * __mod_lruvec_state - update lruvec memory statistics
718 * @lruvec: the lruvec
719 * @idx: the stat item
720 * @val: delta to add to the counter, can be negative
721 *
722 * The lruvec is the intersection of the NUMA node and a cgroup. This
723 * function updates the all three counters that are affected by a
724 * change of state at this level: per-node, per-cgroup, per-lruvec.
725 */
726 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 int val)
728 {
729 pg_data_t *pgdat = lruvec_pgdat(lruvec);
730 struct mem_cgroup_per_node *pn;
731 struct mem_cgroup *memcg;
732 long x;
733
734 /* Update node */
735 __mod_node_page_state(pgdat, idx, val);
736
737 if (mem_cgroup_disabled())
738 return;
739
740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
741 memcg = pn->memcg;
742
743 /* Update memcg */
744 __mod_memcg_state(memcg, idx, val);
745
746 /* Update lruvec */
747 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
748
749 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
750 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
751 struct mem_cgroup_per_node *pi;
752
753 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
754 atomic_long_add(x, &pi->lruvec_stat[idx]);
755 x = 0;
756 }
757 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
758 }
759
760 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
761 {
762 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
763 struct mem_cgroup *memcg;
764 struct lruvec *lruvec;
765
766 rcu_read_lock();
767 memcg = mem_cgroup_from_obj(p);
768
769 /* Untracked pages have no memcg, no lruvec. Update only the node */
770 if (!memcg || memcg == root_mem_cgroup) {
771 __mod_node_page_state(pgdat, idx, val);
772 } else {
773 lruvec = mem_cgroup_lruvec(memcg, pgdat);
774 __mod_lruvec_state(lruvec, idx, val);
775 }
776 rcu_read_unlock();
777 }
778
779 void mod_memcg_obj_state(void *p, int idx, int val)
780 {
781 struct mem_cgroup *memcg;
782
783 rcu_read_lock();
784 memcg = mem_cgroup_from_obj(p);
785 if (memcg)
786 mod_memcg_state(memcg, idx, val);
787 rcu_read_unlock();
788 }
789
790 /**
791 * __count_memcg_events - account VM events in a cgroup
792 * @memcg: the memory cgroup
793 * @idx: the event item
794 * @count: the number of events that occured
795 */
796 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
797 unsigned long count)
798 {
799 unsigned long x;
800
801 if (mem_cgroup_disabled())
802 return;
803
804 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
805 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
806 struct mem_cgroup *mi;
807
808 /*
809 * Batch local counters to keep them in sync with
810 * the hierarchical ones.
811 */
812 __this_cpu_add(memcg->vmstats_local->events[idx], x);
813 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
814 atomic_long_add(x, &mi->vmevents[idx]);
815 x = 0;
816 }
817 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
818 }
819
820 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
821 {
822 return atomic_long_read(&memcg->vmevents[event]);
823 }
824
825 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
826 {
827 long x = 0;
828 int cpu;
829
830 for_each_possible_cpu(cpu)
831 x += per_cpu(memcg->vmstats_local->events[event], cpu);
832 return x;
833 }
834
835 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
836 struct page *page,
837 bool compound, int nr_pages)
838 {
839 /*
840 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
841 * counted as CACHE even if it's on ANON LRU.
842 */
843 if (PageAnon(page))
844 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
845 else {
846 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
847 if (PageSwapBacked(page))
848 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
849 }
850
851 if (compound) {
852 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
853 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
854 }
855
856 /* pagein of a big page is an event. So, ignore page size */
857 if (nr_pages > 0)
858 __count_memcg_events(memcg, PGPGIN, 1);
859 else {
860 __count_memcg_events(memcg, PGPGOUT, 1);
861 nr_pages = -nr_pages; /* for event */
862 }
863
864 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
865 }
866
867 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
868 enum mem_cgroup_events_target target)
869 {
870 unsigned long val, next;
871
872 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
873 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
874 /* from time_after() in jiffies.h */
875 if ((long)(next - val) < 0) {
876 switch (target) {
877 case MEM_CGROUP_TARGET_THRESH:
878 next = val + THRESHOLDS_EVENTS_TARGET;
879 break;
880 case MEM_CGROUP_TARGET_SOFTLIMIT:
881 next = val + SOFTLIMIT_EVENTS_TARGET;
882 break;
883 default:
884 break;
885 }
886 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
887 return true;
888 }
889 return false;
890 }
891
892 /*
893 * Check events in order.
894 *
895 */
896 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
897 {
898 /* threshold event is triggered in finer grain than soft limit */
899 if (unlikely(mem_cgroup_event_ratelimit(memcg,
900 MEM_CGROUP_TARGET_THRESH))) {
901 bool do_softlimit;
902
903 do_softlimit = mem_cgroup_event_ratelimit(memcg,
904 MEM_CGROUP_TARGET_SOFTLIMIT);
905 mem_cgroup_threshold(memcg);
906 if (unlikely(do_softlimit))
907 mem_cgroup_update_tree(memcg, page);
908 }
909 }
910
911 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
912 {
913 /*
914 * mm_update_next_owner() may clear mm->owner to NULL
915 * if it races with swapoff, page migration, etc.
916 * So this can be called with p == NULL.
917 */
918 if (unlikely(!p))
919 return NULL;
920
921 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
922 }
923 EXPORT_SYMBOL(mem_cgroup_from_task);
924
925 /**
926 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
927 * @mm: mm from which memcg should be extracted. It can be NULL.
928 *
929 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
930 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
931 * returned.
932 */
933 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
934 {
935 struct mem_cgroup *memcg;
936
937 if (mem_cgroup_disabled())
938 return NULL;
939
940 rcu_read_lock();
941 do {
942 /*
943 * Page cache insertions can happen withou an
944 * actual mm context, e.g. during disk probing
945 * on boot, loopback IO, acct() writes etc.
946 */
947 if (unlikely(!mm))
948 memcg = root_mem_cgroup;
949 else {
950 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
951 if (unlikely(!memcg))
952 memcg = root_mem_cgroup;
953 }
954 } while (!css_tryget(&memcg->css));
955 rcu_read_unlock();
956 return memcg;
957 }
958 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
959
960 /**
961 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
962 * @page: page from which memcg should be extracted.
963 *
964 * Obtain a reference on page->memcg and returns it if successful. Otherwise
965 * root_mem_cgroup is returned.
966 */
967 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
968 {
969 struct mem_cgroup *memcg = page->mem_cgroup;
970
971 if (mem_cgroup_disabled())
972 return NULL;
973
974 rcu_read_lock();
975 /* Page should not get uncharged and freed memcg under us. */
976 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
977 memcg = root_mem_cgroup;
978 rcu_read_unlock();
979 return memcg;
980 }
981 EXPORT_SYMBOL(get_mem_cgroup_from_page);
982
983 /**
984 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
985 */
986 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
987 {
988 if (unlikely(current->active_memcg)) {
989 struct mem_cgroup *memcg;
990
991 rcu_read_lock();
992 /* current->active_memcg must hold a ref. */
993 if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
994 memcg = root_mem_cgroup;
995 else
996 memcg = current->active_memcg;
997 rcu_read_unlock();
998 return memcg;
999 }
1000 return get_mem_cgroup_from_mm(current->mm);
1001 }
1002
1003 /**
1004 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1005 * @root: hierarchy root
1006 * @prev: previously returned memcg, NULL on first invocation
1007 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1008 *
1009 * Returns references to children of the hierarchy below @root, or
1010 * @root itself, or %NULL after a full round-trip.
1011 *
1012 * Caller must pass the return value in @prev on subsequent
1013 * invocations for reference counting, or use mem_cgroup_iter_break()
1014 * to cancel a hierarchy walk before the round-trip is complete.
1015 *
1016 * Reclaimers can specify a node and a priority level in @reclaim to
1017 * divide up the memcgs in the hierarchy among all concurrent
1018 * reclaimers operating on the same node and priority.
1019 */
1020 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1021 struct mem_cgroup *prev,
1022 struct mem_cgroup_reclaim_cookie *reclaim)
1023 {
1024 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1025 struct cgroup_subsys_state *css = NULL;
1026 struct mem_cgroup *memcg = NULL;
1027 struct mem_cgroup *pos = NULL;
1028
1029 if (mem_cgroup_disabled())
1030 return NULL;
1031
1032 if (!root)
1033 root = root_mem_cgroup;
1034
1035 if (prev && !reclaim)
1036 pos = prev;
1037
1038 if (!root->use_hierarchy && root != root_mem_cgroup) {
1039 if (prev)
1040 goto out;
1041 return root;
1042 }
1043
1044 rcu_read_lock();
1045
1046 if (reclaim) {
1047 struct mem_cgroup_per_node *mz;
1048
1049 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1050 iter = &mz->iter;
1051
1052 if (prev && reclaim->generation != iter->generation)
1053 goto out_unlock;
1054
1055 while (1) {
1056 pos = READ_ONCE(iter->position);
1057 if (!pos || css_tryget(&pos->css))
1058 break;
1059 /*
1060 * css reference reached zero, so iter->position will
1061 * be cleared by ->css_released. However, we should not
1062 * rely on this happening soon, because ->css_released
1063 * is called from a work queue, and by busy-waiting we
1064 * might block it. So we clear iter->position right
1065 * away.
1066 */
1067 (void)cmpxchg(&iter->position, pos, NULL);
1068 }
1069 }
1070
1071 if (pos)
1072 css = &pos->css;
1073
1074 for (;;) {
1075 css = css_next_descendant_pre(css, &root->css);
1076 if (!css) {
1077 /*
1078 * Reclaimers share the hierarchy walk, and a
1079 * new one might jump in right at the end of
1080 * the hierarchy - make sure they see at least
1081 * one group and restart from the beginning.
1082 */
1083 if (!prev)
1084 continue;
1085 break;
1086 }
1087
1088 /*
1089 * Verify the css and acquire a reference. The root
1090 * is provided by the caller, so we know it's alive
1091 * and kicking, and don't take an extra reference.
1092 */
1093 memcg = mem_cgroup_from_css(css);
1094
1095 if (css == &root->css)
1096 break;
1097
1098 if (css_tryget(css))
1099 break;
1100
1101 memcg = NULL;
1102 }
1103
1104 if (reclaim) {
1105 /*
1106 * The position could have already been updated by a competing
1107 * thread, so check that the value hasn't changed since we read
1108 * it to avoid reclaiming from the same cgroup twice.
1109 */
1110 (void)cmpxchg(&iter->position, pos, memcg);
1111
1112 if (pos)
1113 css_put(&pos->css);
1114
1115 if (!memcg)
1116 iter->generation++;
1117 else if (!prev)
1118 reclaim->generation = iter->generation;
1119 }
1120
1121 out_unlock:
1122 rcu_read_unlock();
1123 out:
1124 if (prev && prev != root)
1125 css_put(&prev->css);
1126
1127 return memcg;
1128 }
1129
1130 /**
1131 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1132 * @root: hierarchy root
1133 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1134 */
1135 void mem_cgroup_iter_break(struct mem_cgroup *root,
1136 struct mem_cgroup *prev)
1137 {
1138 if (!root)
1139 root = root_mem_cgroup;
1140 if (prev && prev != root)
1141 css_put(&prev->css);
1142 }
1143
1144 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1145 struct mem_cgroup *dead_memcg)
1146 {
1147 struct mem_cgroup_reclaim_iter *iter;
1148 struct mem_cgroup_per_node *mz;
1149 int nid;
1150
1151 for_each_node(nid) {
1152 mz = mem_cgroup_nodeinfo(from, nid);
1153 iter = &mz->iter;
1154 cmpxchg(&iter->position, dead_memcg, NULL);
1155 }
1156 }
1157
1158 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1159 {
1160 struct mem_cgroup *memcg = dead_memcg;
1161 struct mem_cgroup *last;
1162
1163 do {
1164 __invalidate_reclaim_iterators(memcg, dead_memcg);
1165 last = memcg;
1166 } while ((memcg = parent_mem_cgroup(memcg)));
1167
1168 /*
1169 * When cgruop1 non-hierarchy mode is used,
1170 * parent_mem_cgroup() does not walk all the way up to the
1171 * cgroup root (root_mem_cgroup). So we have to handle
1172 * dead_memcg from cgroup root separately.
1173 */
1174 if (last != root_mem_cgroup)
1175 __invalidate_reclaim_iterators(root_mem_cgroup,
1176 dead_memcg);
1177 }
1178
1179 /**
1180 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1181 * @memcg: hierarchy root
1182 * @fn: function to call for each task
1183 * @arg: argument passed to @fn
1184 *
1185 * This function iterates over tasks attached to @memcg or to any of its
1186 * descendants and calls @fn for each task. If @fn returns a non-zero
1187 * value, the function breaks the iteration loop and returns the value.
1188 * Otherwise, it will iterate over all tasks and return 0.
1189 *
1190 * This function must not be called for the root memory cgroup.
1191 */
1192 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1193 int (*fn)(struct task_struct *, void *), void *arg)
1194 {
1195 struct mem_cgroup *iter;
1196 int ret = 0;
1197
1198 BUG_ON(memcg == root_mem_cgroup);
1199
1200 for_each_mem_cgroup_tree(iter, memcg) {
1201 struct css_task_iter it;
1202 struct task_struct *task;
1203
1204 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1205 while (!ret && (task = css_task_iter_next(&it)))
1206 ret = fn(task, arg);
1207 css_task_iter_end(&it);
1208 if (ret) {
1209 mem_cgroup_iter_break(memcg, iter);
1210 break;
1211 }
1212 }
1213 return ret;
1214 }
1215
1216 /**
1217 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1218 * @page: the page
1219 * @pgdat: pgdat of the page
1220 *
1221 * This function is only safe when following the LRU page isolation
1222 * and putback protocol: the LRU lock must be held, and the page must
1223 * either be PageLRU() or the caller must have isolated/allocated it.
1224 */
1225 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1226 {
1227 struct mem_cgroup_per_node *mz;
1228 struct mem_cgroup *memcg;
1229 struct lruvec *lruvec;
1230
1231 if (mem_cgroup_disabled()) {
1232 lruvec = &pgdat->__lruvec;
1233 goto out;
1234 }
1235
1236 memcg = page->mem_cgroup;
1237 /*
1238 * Swapcache readahead pages are added to the LRU - and
1239 * possibly migrated - before they are charged.
1240 */
1241 if (!memcg)
1242 memcg = root_mem_cgroup;
1243
1244 mz = mem_cgroup_page_nodeinfo(memcg, page);
1245 lruvec = &mz->lruvec;
1246 out:
1247 /*
1248 * Since a node can be onlined after the mem_cgroup was created,
1249 * we have to be prepared to initialize lruvec->zone here;
1250 * and if offlined then reonlined, we need to reinitialize it.
1251 */
1252 if (unlikely(lruvec->pgdat != pgdat))
1253 lruvec->pgdat = pgdat;
1254 return lruvec;
1255 }
1256
1257 /**
1258 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1259 * @lruvec: mem_cgroup per zone lru vector
1260 * @lru: index of lru list the page is sitting on
1261 * @zid: zone id of the accounted pages
1262 * @nr_pages: positive when adding or negative when removing
1263 *
1264 * This function must be called under lru_lock, just before a page is added
1265 * to or just after a page is removed from an lru list (that ordering being
1266 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1267 */
1268 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1269 int zid, int nr_pages)
1270 {
1271 struct mem_cgroup_per_node *mz;
1272 unsigned long *lru_size;
1273 long size;
1274
1275 if (mem_cgroup_disabled())
1276 return;
1277
1278 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1279 lru_size = &mz->lru_zone_size[zid][lru];
1280
1281 if (nr_pages < 0)
1282 *lru_size += nr_pages;
1283
1284 size = *lru_size;
1285 if (WARN_ONCE(size < 0,
1286 "%s(%p, %d, %d): lru_size %ld\n",
1287 __func__, lruvec, lru, nr_pages, size)) {
1288 VM_BUG_ON(1);
1289 *lru_size = 0;
1290 }
1291
1292 if (nr_pages > 0)
1293 *lru_size += nr_pages;
1294 }
1295
1296 /**
1297 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1298 * @memcg: the memory cgroup
1299 *
1300 * Returns the maximum amount of memory @mem can be charged with, in
1301 * pages.
1302 */
1303 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1304 {
1305 unsigned long margin = 0;
1306 unsigned long count;
1307 unsigned long limit;
1308
1309 count = page_counter_read(&memcg->memory);
1310 limit = READ_ONCE(memcg->memory.max);
1311 if (count < limit)
1312 margin = limit - count;
1313
1314 if (do_memsw_account()) {
1315 count = page_counter_read(&memcg->memsw);
1316 limit = READ_ONCE(memcg->memsw.max);
1317 if (count < limit)
1318 margin = min(margin, limit - count);
1319 else
1320 margin = 0;
1321 }
1322
1323 return margin;
1324 }
1325
1326 /*
1327 * A routine for checking "mem" is under move_account() or not.
1328 *
1329 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1330 * moving cgroups. This is for waiting at high-memory pressure
1331 * caused by "move".
1332 */
1333 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1334 {
1335 struct mem_cgroup *from;
1336 struct mem_cgroup *to;
1337 bool ret = false;
1338 /*
1339 * Unlike task_move routines, we access mc.to, mc.from not under
1340 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1341 */
1342 spin_lock(&mc.lock);
1343 from = mc.from;
1344 to = mc.to;
1345 if (!from)
1346 goto unlock;
1347
1348 ret = mem_cgroup_is_descendant(from, memcg) ||
1349 mem_cgroup_is_descendant(to, memcg);
1350 unlock:
1351 spin_unlock(&mc.lock);
1352 return ret;
1353 }
1354
1355 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1356 {
1357 if (mc.moving_task && current != mc.moving_task) {
1358 if (mem_cgroup_under_move(memcg)) {
1359 DEFINE_WAIT(wait);
1360 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1361 /* moving charge context might have finished. */
1362 if (mc.moving_task)
1363 schedule();
1364 finish_wait(&mc.waitq, &wait);
1365 return true;
1366 }
1367 }
1368 return false;
1369 }
1370
1371 static char *memory_stat_format(struct mem_cgroup *memcg)
1372 {
1373 struct seq_buf s;
1374 int i;
1375
1376 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1377 if (!s.buffer)
1378 return NULL;
1379
1380 /*
1381 * Provide statistics on the state of the memory subsystem as
1382 * well as cumulative event counters that show past behavior.
1383 *
1384 * This list is ordered following a combination of these gradients:
1385 * 1) generic big picture -> specifics and details
1386 * 2) reflecting userspace activity -> reflecting kernel heuristics
1387 *
1388 * Current memory state:
1389 */
1390
1391 seq_buf_printf(&s, "anon %llu\n",
1392 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1393 PAGE_SIZE);
1394 seq_buf_printf(&s, "file %llu\n",
1395 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1396 PAGE_SIZE);
1397 seq_buf_printf(&s, "kernel_stack %llu\n",
1398 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1399 1024);
1400 seq_buf_printf(&s, "slab %llu\n",
1401 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1402 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1403 PAGE_SIZE);
1404 seq_buf_printf(&s, "sock %llu\n",
1405 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1406 PAGE_SIZE);
1407
1408 seq_buf_printf(&s, "shmem %llu\n",
1409 (u64)memcg_page_state(memcg, NR_SHMEM) *
1410 PAGE_SIZE);
1411 seq_buf_printf(&s, "file_mapped %llu\n",
1412 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1413 PAGE_SIZE);
1414 seq_buf_printf(&s, "file_dirty %llu\n",
1415 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1416 PAGE_SIZE);
1417 seq_buf_printf(&s, "file_writeback %llu\n",
1418 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1419 PAGE_SIZE);
1420
1421 /*
1422 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1423 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1424 * arse because it requires migrating the work out of rmap to a place
1425 * where the page->mem_cgroup is set up and stable.
1426 */
1427 seq_buf_printf(&s, "anon_thp %llu\n",
1428 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1429 PAGE_SIZE);
1430
1431 for (i = 0; i < NR_LRU_LISTS; i++)
1432 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1433 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1434 PAGE_SIZE);
1435
1436 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1437 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1438 PAGE_SIZE);
1439 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1440 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1441 PAGE_SIZE);
1442
1443 /* Accumulated memory events */
1444
1445 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1446 memcg_events(memcg, PGFAULT));
1447 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1448 memcg_events(memcg, PGMAJFAULT));
1449
1450 seq_buf_printf(&s, "workingset_refault %lu\n",
1451 memcg_page_state(memcg, WORKINGSET_REFAULT));
1452 seq_buf_printf(&s, "workingset_activate %lu\n",
1453 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1454 seq_buf_printf(&s, "workingset_restore %lu\n",
1455 memcg_page_state(memcg, WORKINGSET_RESTORE));
1456 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1457 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1458
1459 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1460 memcg_events(memcg, PGREFILL));
1461 seq_buf_printf(&s, "pgscan %lu\n",
1462 memcg_events(memcg, PGSCAN_KSWAPD) +
1463 memcg_events(memcg, PGSCAN_DIRECT));
1464 seq_buf_printf(&s, "pgsteal %lu\n",
1465 memcg_events(memcg, PGSTEAL_KSWAPD) +
1466 memcg_events(memcg, PGSTEAL_DIRECT));
1467 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1468 memcg_events(memcg, PGACTIVATE));
1469 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1470 memcg_events(memcg, PGDEACTIVATE));
1471 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1472 memcg_events(memcg, PGLAZYFREE));
1473 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1474 memcg_events(memcg, PGLAZYFREED));
1475
1476 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1477 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1478 memcg_events(memcg, THP_FAULT_ALLOC));
1479 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1480 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1481 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1482
1483 /* The above should easily fit into one page */
1484 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1485
1486 return s.buffer;
1487 }
1488
1489 #define K(x) ((x) << (PAGE_SHIFT-10))
1490 /**
1491 * mem_cgroup_print_oom_context: Print OOM information relevant to
1492 * memory controller.
1493 * @memcg: The memory cgroup that went over limit
1494 * @p: Task that is going to be killed
1495 *
1496 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1497 * enabled
1498 */
1499 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1500 {
1501 rcu_read_lock();
1502
1503 if (memcg) {
1504 pr_cont(",oom_memcg=");
1505 pr_cont_cgroup_path(memcg->css.cgroup);
1506 } else
1507 pr_cont(",global_oom");
1508 if (p) {
1509 pr_cont(",task_memcg=");
1510 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1511 }
1512 rcu_read_unlock();
1513 }
1514
1515 /**
1516 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1517 * memory controller.
1518 * @memcg: The memory cgroup that went over limit
1519 */
1520 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1521 {
1522 char *buf;
1523
1524 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1525 K((u64)page_counter_read(&memcg->memory)),
1526 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1527 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1528 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1529 K((u64)page_counter_read(&memcg->swap)),
1530 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1531 else {
1532 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1533 K((u64)page_counter_read(&memcg->memsw)),
1534 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1535 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1536 K((u64)page_counter_read(&memcg->kmem)),
1537 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1538 }
1539
1540 pr_info("Memory cgroup stats for ");
1541 pr_cont_cgroup_path(memcg->css.cgroup);
1542 pr_cont(":");
1543 buf = memory_stat_format(memcg);
1544 if (!buf)
1545 return;
1546 pr_info("%s", buf);
1547 kfree(buf);
1548 }
1549
1550 /*
1551 * Return the memory (and swap, if configured) limit for a memcg.
1552 */
1553 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1554 {
1555 unsigned long max;
1556
1557 max = READ_ONCE(memcg->memory.max);
1558 if (mem_cgroup_swappiness(memcg)) {
1559 unsigned long memsw_max;
1560 unsigned long swap_max;
1561
1562 memsw_max = memcg->memsw.max;
1563 swap_max = READ_ONCE(memcg->swap.max);
1564 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1565 max = min(max + swap_max, memsw_max);
1566 }
1567 return max;
1568 }
1569
1570 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1571 {
1572 return page_counter_read(&memcg->memory);
1573 }
1574
1575 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1576 int order)
1577 {
1578 struct oom_control oc = {
1579 .zonelist = NULL,
1580 .nodemask = NULL,
1581 .memcg = memcg,
1582 .gfp_mask = gfp_mask,
1583 .order = order,
1584 };
1585 bool ret;
1586
1587 if (mutex_lock_killable(&oom_lock))
1588 return true;
1589 /*
1590 * A few threads which were not waiting at mutex_lock_killable() can
1591 * fail to bail out. Therefore, check again after holding oom_lock.
1592 */
1593 ret = should_force_charge() || out_of_memory(&oc);
1594 mutex_unlock(&oom_lock);
1595 return ret;
1596 }
1597
1598 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1599 pg_data_t *pgdat,
1600 gfp_t gfp_mask,
1601 unsigned long *total_scanned)
1602 {
1603 struct mem_cgroup *victim = NULL;
1604 int total = 0;
1605 int loop = 0;
1606 unsigned long excess;
1607 unsigned long nr_scanned;
1608 struct mem_cgroup_reclaim_cookie reclaim = {
1609 .pgdat = pgdat,
1610 };
1611
1612 excess = soft_limit_excess(root_memcg);
1613
1614 while (1) {
1615 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1616 if (!victim) {
1617 loop++;
1618 if (loop >= 2) {
1619 /*
1620 * If we have not been able to reclaim
1621 * anything, it might because there are
1622 * no reclaimable pages under this hierarchy
1623 */
1624 if (!total)
1625 break;
1626 /*
1627 * We want to do more targeted reclaim.
1628 * excess >> 2 is not to excessive so as to
1629 * reclaim too much, nor too less that we keep
1630 * coming back to reclaim from this cgroup
1631 */
1632 if (total >= (excess >> 2) ||
1633 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1634 break;
1635 }
1636 continue;
1637 }
1638 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1639 pgdat, &nr_scanned);
1640 *total_scanned += nr_scanned;
1641 if (!soft_limit_excess(root_memcg))
1642 break;
1643 }
1644 mem_cgroup_iter_break(root_memcg, victim);
1645 return total;
1646 }
1647
1648 #ifdef CONFIG_LOCKDEP
1649 static struct lockdep_map memcg_oom_lock_dep_map = {
1650 .name = "memcg_oom_lock",
1651 };
1652 #endif
1653
1654 static DEFINE_SPINLOCK(memcg_oom_lock);
1655
1656 /*
1657 * Check OOM-Killer is already running under our hierarchy.
1658 * If someone is running, return false.
1659 */
1660 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1661 {
1662 struct mem_cgroup *iter, *failed = NULL;
1663
1664 spin_lock(&memcg_oom_lock);
1665
1666 for_each_mem_cgroup_tree(iter, memcg) {
1667 if (iter->oom_lock) {
1668 /*
1669 * this subtree of our hierarchy is already locked
1670 * so we cannot give a lock.
1671 */
1672 failed = iter;
1673 mem_cgroup_iter_break(memcg, iter);
1674 break;
1675 } else
1676 iter->oom_lock = true;
1677 }
1678
1679 if (failed) {
1680 /*
1681 * OK, we failed to lock the whole subtree so we have
1682 * to clean up what we set up to the failing subtree
1683 */
1684 for_each_mem_cgroup_tree(iter, memcg) {
1685 if (iter == failed) {
1686 mem_cgroup_iter_break(memcg, iter);
1687 break;
1688 }
1689 iter->oom_lock = false;
1690 }
1691 } else
1692 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1693
1694 spin_unlock(&memcg_oom_lock);
1695
1696 return !failed;
1697 }
1698
1699 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1700 {
1701 struct mem_cgroup *iter;
1702
1703 spin_lock(&memcg_oom_lock);
1704 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1705 for_each_mem_cgroup_tree(iter, memcg)
1706 iter->oom_lock = false;
1707 spin_unlock(&memcg_oom_lock);
1708 }
1709
1710 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1711 {
1712 struct mem_cgroup *iter;
1713
1714 spin_lock(&memcg_oom_lock);
1715 for_each_mem_cgroup_tree(iter, memcg)
1716 iter->under_oom++;
1717 spin_unlock(&memcg_oom_lock);
1718 }
1719
1720 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1721 {
1722 struct mem_cgroup *iter;
1723
1724 /*
1725 * When a new child is created while the hierarchy is under oom,
1726 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1727 */
1728 spin_lock(&memcg_oom_lock);
1729 for_each_mem_cgroup_tree(iter, memcg)
1730 if (iter->under_oom > 0)
1731 iter->under_oom--;
1732 spin_unlock(&memcg_oom_lock);
1733 }
1734
1735 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1736
1737 struct oom_wait_info {
1738 struct mem_cgroup *memcg;
1739 wait_queue_entry_t wait;
1740 };
1741
1742 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1743 unsigned mode, int sync, void *arg)
1744 {
1745 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1746 struct mem_cgroup *oom_wait_memcg;
1747 struct oom_wait_info *oom_wait_info;
1748
1749 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1750 oom_wait_memcg = oom_wait_info->memcg;
1751
1752 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1753 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1754 return 0;
1755 return autoremove_wake_function(wait, mode, sync, arg);
1756 }
1757
1758 static void memcg_oom_recover(struct mem_cgroup *memcg)
1759 {
1760 /*
1761 * For the following lockless ->under_oom test, the only required
1762 * guarantee is that it must see the state asserted by an OOM when
1763 * this function is called as a result of userland actions
1764 * triggered by the notification of the OOM. This is trivially
1765 * achieved by invoking mem_cgroup_mark_under_oom() before
1766 * triggering notification.
1767 */
1768 if (memcg && memcg->under_oom)
1769 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1770 }
1771
1772 enum oom_status {
1773 OOM_SUCCESS,
1774 OOM_FAILED,
1775 OOM_ASYNC,
1776 OOM_SKIPPED
1777 };
1778
1779 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1780 {
1781 enum oom_status ret;
1782 bool locked;
1783
1784 if (order > PAGE_ALLOC_COSTLY_ORDER)
1785 return OOM_SKIPPED;
1786
1787 memcg_memory_event(memcg, MEMCG_OOM);
1788
1789 /*
1790 * We are in the middle of the charge context here, so we
1791 * don't want to block when potentially sitting on a callstack
1792 * that holds all kinds of filesystem and mm locks.
1793 *
1794 * cgroup1 allows disabling the OOM killer and waiting for outside
1795 * handling until the charge can succeed; remember the context and put
1796 * the task to sleep at the end of the page fault when all locks are
1797 * released.
1798 *
1799 * On the other hand, in-kernel OOM killer allows for an async victim
1800 * memory reclaim (oom_reaper) and that means that we are not solely
1801 * relying on the oom victim to make a forward progress and we can
1802 * invoke the oom killer here.
1803 *
1804 * Please note that mem_cgroup_out_of_memory might fail to find a
1805 * victim and then we have to bail out from the charge path.
1806 */
1807 if (memcg->oom_kill_disable) {
1808 if (!current->in_user_fault)
1809 return OOM_SKIPPED;
1810 css_get(&memcg->css);
1811 current->memcg_in_oom = memcg;
1812 current->memcg_oom_gfp_mask = mask;
1813 current->memcg_oom_order = order;
1814
1815 return OOM_ASYNC;
1816 }
1817
1818 mem_cgroup_mark_under_oom(memcg);
1819
1820 locked = mem_cgroup_oom_trylock(memcg);
1821
1822 if (locked)
1823 mem_cgroup_oom_notify(memcg);
1824
1825 mem_cgroup_unmark_under_oom(memcg);
1826 if (mem_cgroup_out_of_memory(memcg, mask, order))
1827 ret = OOM_SUCCESS;
1828 else
1829 ret = OOM_FAILED;
1830
1831 if (locked)
1832 mem_cgroup_oom_unlock(memcg);
1833
1834 return ret;
1835 }
1836
1837 /**
1838 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1839 * @handle: actually kill/wait or just clean up the OOM state
1840 *
1841 * This has to be called at the end of a page fault if the memcg OOM
1842 * handler was enabled.
1843 *
1844 * Memcg supports userspace OOM handling where failed allocations must
1845 * sleep on a waitqueue until the userspace task resolves the
1846 * situation. Sleeping directly in the charge context with all kinds
1847 * of locks held is not a good idea, instead we remember an OOM state
1848 * in the task and mem_cgroup_oom_synchronize() has to be called at
1849 * the end of the page fault to complete the OOM handling.
1850 *
1851 * Returns %true if an ongoing memcg OOM situation was detected and
1852 * completed, %false otherwise.
1853 */
1854 bool mem_cgroup_oom_synchronize(bool handle)
1855 {
1856 struct mem_cgroup *memcg = current->memcg_in_oom;
1857 struct oom_wait_info owait;
1858 bool locked;
1859
1860 /* OOM is global, do not handle */
1861 if (!memcg)
1862 return false;
1863
1864 if (!handle)
1865 goto cleanup;
1866
1867 owait.memcg = memcg;
1868 owait.wait.flags = 0;
1869 owait.wait.func = memcg_oom_wake_function;
1870 owait.wait.private = current;
1871 INIT_LIST_HEAD(&owait.wait.entry);
1872
1873 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1874 mem_cgroup_mark_under_oom(memcg);
1875
1876 locked = mem_cgroup_oom_trylock(memcg);
1877
1878 if (locked)
1879 mem_cgroup_oom_notify(memcg);
1880
1881 if (locked && !memcg->oom_kill_disable) {
1882 mem_cgroup_unmark_under_oom(memcg);
1883 finish_wait(&memcg_oom_waitq, &owait.wait);
1884 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1885 current->memcg_oom_order);
1886 } else {
1887 schedule();
1888 mem_cgroup_unmark_under_oom(memcg);
1889 finish_wait(&memcg_oom_waitq, &owait.wait);
1890 }
1891
1892 if (locked) {
1893 mem_cgroup_oom_unlock(memcg);
1894 /*
1895 * There is no guarantee that an OOM-lock contender
1896 * sees the wakeups triggered by the OOM kill
1897 * uncharges. Wake any sleepers explicitely.
1898 */
1899 memcg_oom_recover(memcg);
1900 }
1901 cleanup:
1902 current->memcg_in_oom = NULL;
1903 css_put(&memcg->css);
1904 return true;
1905 }
1906
1907 /**
1908 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1909 * @victim: task to be killed by the OOM killer
1910 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1911 *
1912 * Returns a pointer to a memory cgroup, which has to be cleaned up
1913 * by killing all belonging OOM-killable tasks.
1914 *
1915 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1916 */
1917 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1918 struct mem_cgroup *oom_domain)
1919 {
1920 struct mem_cgroup *oom_group = NULL;
1921 struct mem_cgroup *memcg;
1922
1923 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1924 return NULL;
1925
1926 if (!oom_domain)
1927 oom_domain = root_mem_cgroup;
1928
1929 rcu_read_lock();
1930
1931 memcg = mem_cgroup_from_task(victim);
1932 if (memcg == root_mem_cgroup)
1933 goto out;
1934
1935 /*
1936 * If the victim task has been asynchronously moved to a different
1937 * memory cgroup, we might end up killing tasks outside oom_domain.
1938 * In this case it's better to ignore memory.group.oom.
1939 */
1940 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1941 goto out;
1942
1943 /*
1944 * Traverse the memory cgroup hierarchy from the victim task's
1945 * cgroup up to the OOMing cgroup (or root) to find the
1946 * highest-level memory cgroup with oom.group set.
1947 */
1948 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1949 if (memcg->oom_group)
1950 oom_group = memcg;
1951
1952 if (memcg == oom_domain)
1953 break;
1954 }
1955
1956 if (oom_group)
1957 css_get(&oom_group->css);
1958 out:
1959 rcu_read_unlock();
1960
1961 return oom_group;
1962 }
1963
1964 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1965 {
1966 pr_info("Tasks in ");
1967 pr_cont_cgroup_path(memcg->css.cgroup);
1968 pr_cont(" are going to be killed due to memory.oom.group set\n");
1969 }
1970
1971 /**
1972 * lock_page_memcg - lock a page->mem_cgroup binding
1973 * @page: the page
1974 *
1975 * This function protects unlocked LRU pages from being moved to
1976 * another cgroup.
1977 *
1978 * It ensures lifetime of the returned memcg. Caller is responsible
1979 * for the lifetime of the page; __unlock_page_memcg() is available
1980 * when @page might get freed inside the locked section.
1981 */
1982 struct mem_cgroup *lock_page_memcg(struct page *page)
1983 {
1984 struct mem_cgroup *memcg;
1985 unsigned long flags;
1986
1987 /*
1988 * The RCU lock is held throughout the transaction. The fast
1989 * path can get away without acquiring the memcg->move_lock
1990 * because page moving starts with an RCU grace period.
1991 *
1992 * The RCU lock also protects the memcg from being freed when
1993 * the page state that is going to change is the only thing
1994 * preventing the page itself from being freed. E.g. writeback
1995 * doesn't hold a page reference and relies on PG_writeback to
1996 * keep off truncation, migration and so forth.
1997 */
1998 rcu_read_lock();
1999
2000 if (mem_cgroup_disabled())
2001 return NULL;
2002 again:
2003 memcg = page->mem_cgroup;
2004 if (unlikely(!memcg))
2005 return NULL;
2006
2007 if (atomic_read(&memcg->moving_account) <= 0)
2008 return memcg;
2009
2010 spin_lock_irqsave(&memcg->move_lock, flags);
2011 if (memcg != page->mem_cgroup) {
2012 spin_unlock_irqrestore(&memcg->move_lock, flags);
2013 goto again;
2014 }
2015
2016 /*
2017 * When charge migration first begins, we can have locked and
2018 * unlocked page stat updates happening concurrently. Track
2019 * the task who has the lock for unlock_page_memcg().
2020 */
2021 memcg->move_lock_task = current;
2022 memcg->move_lock_flags = flags;
2023
2024 return memcg;
2025 }
2026 EXPORT_SYMBOL(lock_page_memcg);
2027
2028 /**
2029 * __unlock_page_memcg - unlock and unpin a memcg
2030 * @memcg: the memcg
2031 *
2032 * Unlock and unpin a memcg returned by lock_page_memcg().
2033 */
2034 void __unlock_page_memcg(struct mem_cgroup *memcg)
2035 {
2036 if (memcg && memcg->move_lock_task == current) {
2037 unsigned long flags = memcg->move_lock_flags;
2038
2039 memcg->move_lock_task = NULL;
2040 memcg->move_lock_flags = 0;
2041
2042 spin_unlock_irqrestore(&memcg->move_lock, flags);
2043 }
2044
2045 rcu_read_unlock();
2046 }
2047
2048 /**
2049 * unlock_page_memcg - unlock a page->mem_cgroup binding
2050 * @page: the page
2051 */
2052 void unlock_page_memcg(struct page *page)
2053 {
2054 __unlock_page_memcg(page->mem_cgroup);
2055 }
2056 EXPORT_SYMBOL(unlock_page_memcg);
2057
2058 struct memcg_stock_pcp {
2059 struct mem_cgroup *cached; /* this never be root cgroup */
2060 unsigned int nr_pages;
2061 struct work_struct work;
2062 unsigned long flags;
2063 #define FLUSHING_CACHED_CHARGE 0
2064 };
2065 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2066 static DEFINE_MUTEX(percpu_charge_mutex);
2067
2068 /**
2069 * consume_stock: Try to consume stocked charge on this cpu.
2070 * @memcg: memcg to consume from.
2071 * @nr_pages: how many pages to charge.
2072 *
2073 * The charges will only happen if @memcg matches the current cpu's memcg
2074 * stock, and at least @nr_pages are available in that stock. Failure to
2075 * service an allocation will refill the stock.
2076 *
2077 * returns true if successful, false otherwise.
2078 */
2079 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2080 {
2081 struct memcg_stock_pcp *stock;
2082 unsigned long flags;
2083 bool ret = false;
2084
2085 if (nr_pages > MEMCG_CHARGE_BATCH)
2086 return ret;
2087
2088 local_irq_save(flags);
2089
2090 stock = this_cpu_ptr(&memcg_stock);
2091 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2092 stock->nr_pages -= nr_pages;
2093 ret = true;
2094 }
2095
2096 local_irq_restore(flags);
2097
2098 return ret;
2099 }
2100
2101 /*
2102 * Returns stocks cached in percpu and reset cached information.
2103 */
2104 static void drain_stock(struct memcg_stock_pcp *stock)
2105 {
2106 struct mem_cgroup *old = stock->cached;
2107
2108 if (stock->nr_pages) {
2109 page_counter_uncharge(&old->memory, stock->nr_pages);
2110 if (do_memsw_account())
2111 page_counter_uncharge(&old->memsw, stock->nr_pages);
2112 css_put_many(&old->css, stock->nr_pages);
2113 stock->nr_pages = 0;
2114 }
2115 stock->cached = NULL;
2116 }
2117
2118 static void drain_local_stock(struct work_struct *dummy)
2119 {
2120 struct memcg_stock_pcp *stock;
2121 unsigned long flags;
2122
2123 /*
2124 * The only protection from memory hotplug vs. drain_stock races is
2125 * that we always operate on local CPU stock here with IRQ disabled
2126 */
2127 local_irq_save(flags);
2128
2129 stock = this_cpu_ptr(&memcg_stock);
2130 drain_stock(stock);
2131 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2132
2133 local_irq_restore(flags);
2134 }
2135
2136 /*
2137 * Cache charges(val) to local per_cpu area.
2138 * This will be consumed by consume_stock() function, later.
2139 */
2140 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2141 {
2142 struct memcg_stock_pcp *stock;
2143 unsigned long flags;
2144
2145 local_irq_save(flags);
2146
2147 stock = this_cpu_ptr(&memcg_stock);
2148 if (stock->cached != memcg) { /* reset if necessary */
2149 drain_stock(stock);
2150 stock->cached = memcg;
2151 }
2152 stock->nr_pages += nr_pages;
2153
2154 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2155 drain_stock(stock);
2156
2157 local_irq_restore(flags);
2158 }
2159
2160 /*
2161 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2162 * of the hierarchy under it.
2163 */
2164 static void drain_all_stock(struct mem_cgroup *root_memcg)
2165 {
2166 int cpu, curcpu;
2167
2168 /* If someone's already draining, avoid adding running more workers. */
2169 if (!mutex_trylock(&percpu_charge_mutex))
2170 return;
2171 /*
2172 * Notify other cpus that system-wide "drain" is running
2173 * We do not care about races with the cpu hotplug because cpu down
2174 * as well as workers from this path always operate on the local
2175 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2176 */
2177 curcpu = get_cpu();
2178 for_each_online_cpu(cpu) {
2179 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2180 struct mem_cgroup *memcg;
2181 bool flush = false;
2182
2183 rcu_read_lock();
2184 memcg = stock->cached;
2185 if (memcg && stock->nr_pages &&
2186 mem_cgroup_is_descendant(memcg, root_memcg))
2187 flush = true;
2188 rcu_read_unlock();
2189
2190 if (flush &&
2191 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2192 if (cpu == curcpu)
2193 drain_local_stock(&stock->work);
2194 else
2195 schedule_work_on(cpu, &stock->work);
2196 }
2197 }
2198 put_cpu();
2199 mutex_unlock(&percpu_charge_mutex);
2200 }
2201
2202 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2203 {
2204 struct memcg_stock_pcp *stock;
2205 struct mem_cgroup *memcg, *mi;
2206
2207 stock = &per_cpu(memcg_stock, cpu);
2208 drain_stock(stock);
2209
2210 for_each_mem_cgroup(memcg) {
2211 int i;
2212
2213 for (i = 0; i < MEMCG_NR_STAT; i++) {
2214 int nid;
2215 long x;
2216
2217 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2218 if (x)
2219 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2220 atomic_long_add(x, &memcg->vmstats[i]);
2221
2222 if (i >= NR_VM_NODE_STAT_ITEMS)
2223 continue;
2224
2225 for_each_node(nid) {
2226 struct mem_cgroup_per_node *pn;
2227
2228 pn = mem_cgroup_nodeinfo(memcg, nid);
2229 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2230 if (x)
2231 do {
2232 atomic_long_add(x, &pn->lruvec_stat[i]);
2233 } while ((pn = parent_nodeinfo(pn, nid)));
2234 }
2235 }
2236
2237 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2238 long x;
2239
2240 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2241 if (x)
2242 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2243 atomic_long_add(x, &memcg->vmevents[i]);
2244 }
2245 }
2246
2247 return 0;
2248 }
2249
2250 static void reclaim_high(struct mem_cgroup *memcg,
2251 unsigned int nr_pages,
2252 gfp_t gfp_mask)
2253 {
2254 do {
2255 if (page_counter_read(&memcg->memory) <=
2256 READ_ONCE(memcg->memory.high))
2257 continue;
2258 memcg_memory_event(memcg, MEMCG_HIGH);
2259 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2260 } while ((memcg = parent_mem_cgroup(memcg)) &&
2261 !mem_cgroup_is_root(memcg));
2262 }
2263
2264 static void high_work_func(struct work_struct *work)
2265 {
2266 struct mem_cgroup *memcg;
2267
2268 memcg = container_of(work, struct mem_cgroup, high_work);
2269 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2270 }
2271
2272 /*
2273 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2274 * enough to still cause a significant slowdown in most cases, while still
2275 * allowing diagnostics and tracing to proceed without becoming stuck.
2276 */
2277 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2278
2279 /*
2280 * When calculating the delay, we use these either side of the exponentiation to
2281 * maintain precision and scale to a reasonable number of jiffies (see the table
2282 * below.
2283 *
2284 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2285 * overage ratio to a delay.
2286 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2287 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2288 * to produce a reasonable delay curve.
2289 *
2290 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2291 * reasonable delay curve compared to precision-adjusted overage, not
2292 * penalising heavily at first, but still making sure that growth beyond the
2293 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2294 * example, with a high of 100 megabytes:
2295 *
2296 * +-------+------------------------+
2297 * | usage | time to allocate in ms |
2298 * +-------+------------------------+
2299 * | 100M | 0 |
2300 * | 101M | 6 |
2301 * | 102M | 25 |
2302 * | 103M | 57 |
2303 * | 104M | 102 |
2304 * | 105M | 159 |
2305 * | 106M | 230 |
2306 * | 107M | 313 |
2307 * | 108M | 409 |
2308 * | 109M | 518 |
2309 * | 110M | 639 |
2310 * | 111M | 774 |
2311 * | 112M | 921 |
2312 * | 113M | 1081 |
2313 * | 114M | 1254 |
2314 * | 115M | 1439 |
2315 * | 116M | 1638 |
2316 * | 117M | 1849 |
2317 * | 118M | 2000 |
2318 * | 119M | 2000 |
2319 * | 120M | 2000 |
2320 * +-------+------------------------+
2321 */
2322 #define MEMCG_DELAY_PRECISION_SHIFT 20
2323 #define MEMCG_DELAY_SCALING_SHIFT 14
2324
2325 static u64 calculate_overage(unsigned long usage, unsigned long high)
2326 {
2327 u64 overage;
2328
2329 if (usage <= high)
2330 return 0;
2331
2332 /*
2333 * Prevent division by 0 in overage calculation by acting as if
2334 * it was a threshold of 1 page
2335 */
2336 high = max(high, 1UL);
2337
2338 overage = usage - high;
2339 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2340 return div64_u64(overage, high);
2341 }
2342
2343 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2344 {
2345 u64 overage, max_overage = 0;
2346
2347 do {
2348 overage = calculate_overage(page_counter_read(&memcg->memory),
2349 READ_ONCE(memcg->memory.high));
2350 max_overage = max(overage, max_overage);
2351 } while ((memcg = parent_mem_cgroup(memcg)) &&
2352 !mem_cgroup_is_root(memcg));
2353
2354 return max_overage;
2355 }
2356
2357 /*
2358 * Get the number of jiffies that we should penalise a mischievous cgroup which
2359 * is exceeding its memory.high by checking both it and its ancestors.
2360 */
2361 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2362 unsigned int nr_pages,
2363 u64 max_overage)
2364 {
2365 unsigned long penalty_jiffies;
2366
2367 if (!max_overage)
2368 return 0;
2369
2370 /*
2371 * We use overage compared to memory.high to calculate the number of
2372 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2373 * fairly lenient on small overages, and increasingly harsh when the
2374 * memcg in question makes it clear that it has no intention of stopping
2375 * its crazy behaviour, so we exponentially increase the delay based on
2376 * overage amount.
2377 */
2378 penalty_jiffies = max_overage * max_overage * HZ;
2379 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2380 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2381
2382 /*
2383 * Factor in the task's own contribution to the overage, such that four
2384 * N-sized allocations are throttled approximately the same as one
2385 * 4N-sized allocation.
2386 *
2387 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2388 * larger the current charge patch is than that.
2389 */
2390 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2391 }
2392
2393 /*
2394 * Scheduled by try_charge() to be executed from the userland return path
2395 * and reclaims memory over the high limit.
2396 */
2397 void mem_cgroup_handle_over_high(void)
2398 {
2399 unsigned long penalty_jiffies;
2400 unsigned long pflags;
2401 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2402 struct mem_cgroup *memcg;
2403
2404 if (likely(!nr_pages))
2405 return;
2406
2407 memcg = get_mem_cgroup_from_mm(current->mm);
2408 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2409 current->memcg_nr_pages_over_high = 0;
2410
2411 /*
2412 * memory.high is breached and reclaim is unable to keep up. Throttle
2413 * allocators proactively to slow down excessive growth.
2414 */
2415 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2416 mem_find_max_overage(memcg));
2417
2418 /*
2419 * Clamp the max delay per usermode return so as to still keep the
2420 * application moving forwards and also permit diagnostics, albeit
2421 * extremely slowly.
2422 */
2423 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2424
2425 /*
2426 * Don't sleep if the amount of jiffies this memcg owes us is so low
2427 * that it's not even worth doing, in an attempt to be nice to those who
2428 * go only a small amount over their memory.high value and maybe haven't
2429 * been aggressively reclaimed enough yet.
2430 */
2431 if (penalty_jiffies <= HZ / 100)
2432 goto out;
2433
2434 /*
2435 * If we exit early, we're guaranteed to die (since
2436 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2437 * need to account for any ill-begotten jiffies to pay them off later.
2438 */
2439 psi_memstall_enter(&pflags);
2440 schedule_timeout_killable(penalty_jiffies);
2441 psi_memstall_leave(&pflags);
2442
2443 out:
2444 css_put(&memcg->css);
2445 }
2446
2447 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2448 unsigned int nr_pages)
2449 {
2450 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2451 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2452 struct mem_cgroup *mem_over_limit;
2453 struct page_counter *counter;
2454 unsigned long nr_reclaimed;
2455 bool may_swap = true;
2456 bool drained = false;
2457 enum oom_status oom_status;
2458
2459 if (mem_cgroup_is_root(memcg))
2460 return 0;
2461 retry:
2462 if (consume_stock(memcg, nr_pages))
2463 return 0;
2464
2465 if (!do_memsw_account() ||
2466 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2467 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2468 goto done_restock;
2469 if (do_memsw_account())
2470 page_counter_uncharge(&memcg->memsw, batch);
2471 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2472 } else {
2473 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2474 may_swap = false;
2475 }
2476
2477 if (batch > nr_pages) {
2478 batch = nr_pages;
2479 goto retry;
2480 }
2481
2482 /*
2483 * Memcg doesn't have a dedicated reserve for atomic
2484 * allocations. But like the global atomic pool, we need to
2485 * put the burden of reclaim on regular allocation requests
2486 * and let these go through as privileged allocations.
2487 */
2488 if (gfp_mask & __GFP_ATOMIC)
2489 goto force;
2490
2491 /*
2492 * Unlike in global OOM situations, memcg is not in a physical
2493 * memory shortage. Allow dying and OOM-killed tasks to
2494 * bypass the last charges so that they can exit quickly and
2495 * free their memory.
2496 */
2497 if (unlikely(should_force_charge()))
2498 goto force;
2499
2500 /*
2501 * Prevent unbounded recursion when reclaim operations need to
2502 * allocate memory. This might exceed the limits temporarily,
2503 * but we prefer facilitating memory reclaim and getting back
2504 * under the limit over triggering OOM kills in these cases.
2505 */
2506 if (unlikely(current->flags & PF_MEMALLOC))
2507 goto force;
2508
2509 if (unlikely(task_in_memcg_oom(current)))
2510 goto nomem;
2511
2512 if (!gfpflags_allow_blocking(gfp_mask))
2513 goto nomem;
2514
2515 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2516
2517 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2518 gfp_mask, may_swap);
2519
2520 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2521 goto retry;
2522
2523 if (!drained) {
2524 drain_all_stock(mem_over_limit);
2525 drained = true;
2526 goto retry;
2527 }
2528
2529 if (gfp_mask & __GFP_NORETRY)
2530 goto nomem;
2531 /*
2532 * Even though the limit is exceeded at this point, reclaim
2533 * may have been able to free some pages. Retry the charge
2534 * before killing the task.
2535 *
2536 * Only for regular pages, though: huge pages are rather
2537 * unlikely to succeed so close to the limit, and we fall back
2538 * to regular pages anyway in case of failure.
2539 */
2540 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2541 goto retry;
2542 /*
2543 * At task move, charge accounts can be doubly counted. So, it's
2544 * better to wait until the end of task_move if something is going on.
2545 */
2546 if (mem_cgroup_wait_acct_move(mem_over_limit))
2547 goto retry;
2548
2549 if (nr_retries--)
2550 goto retry;
2551
2552 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2553 goto nomem;
2554
2555 if (gfp_mask & __GFP_NOFAIL)
2556 goto force;
2557
2558 if (fatal_signal_pending(current))
2559 goto force;
2560
2561 /*
2562 * keep retrying as long as the memcg oom killer is able to make
2563 * a forward progress or bypass the charge if the oom killer
2564 * couldn't make any progress.
2565 */
2566 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2567 get_order(nr_pages * PAGE_SIZE));
2568 switch (oom_status) {
2569 case OOM_SUCCESS:
2570 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2571 goto retry;
2572 case OOM_FAILED:
2573 goto force;
2574 default:
2575 goto nomem;
2576 }
2577 nomem:
2578 if (!(gfp_mask & __GFP_NOFAIL))
2579 return -ENOMEM;
2580 force:
2581 /*
2582 * The allocation either can't fail or will lead to more memory
2583 * being freed very soon. Allow memory usage go over the limit
2584 * temporarily by force charging it.
2585 */
2586 page_counter_charge(&memcg->memory, nr_pages);
2587 if (do_memsw_account())
2588 page_counter_charge(&memcg->memsw, nr_pages);
2589 css_get_many(&memcg->css, nr_pages);
2590
2591 return 0;
2592
2593 done_restock:
2594 css_get_many(&memcg->css, batch);
2595 if (batch > nr_pages)
2596 refill_stock(memcg, batch - nr_pages);
2597
2598 /*
2599 * If the hierarchy is above the normal consumption range, schedule
2600 * reclaim on returning to userland. We can perform reclaim here
2601 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2602 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2603 * not recorded as it most likely matches current's and won't
2604 * change in the meantime. As high limit is checked again before
2605 * reclaim, the cost of mismatch is negligible.
2606 */
2607 do {
2608 if (page_counter_read(&memcg->memory) >
2609 READ_ONCE(memcg->memory.high)) {
2610 /* Don't bother a random interrupted task */
2611 if (in_interrupt()) {
2612 schedule_work(&memcg->high_work);
2613 break;
2614 }
2615 current->memcg_nr_pages_over_high += batch;
2616 set_notify_resume(current);
2617 break;
2618 }
2619 } while ((memcg = parent_mem_cgroup(memcg)));
2620
2621 return 0;
2622 }
2623
2624 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2625 {
2626 if (mem_cgroup_is_root(memcg))
2627 return;
2628
2629 page_counter_uncharge(&memcg->memory, nr_pages);
2630 if (do_memsw_account())
2631 page_counter_uncharge(&memcg->memsw, nr_pages);
2632
2633 css_put_many(&memcg->css, nr_pages);
2634 }
2635
2636 static void lock_page_lru(struct page *page, int *isolated)
2637 {
2638 pg_data_t *pgdat = page_pgdat(page);
2639
2640 spin_lock_irq(&pgdat->lru_lock);
2641 if (PageLRU(page)) {
2642 struct lruvec *lruvec;
2643
2644 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2645 ClearPageLRU(page);
2646 del_page_from_lru_list(page, lruvec, page_lru(page));
2647 *isolated = 1;
2648 } else
2649 *isolated = 0;
2650 }
2651
2652 static void unlock_page_lru(struct page *page, int isolated)
2653 {
2654 pg_data_t *pgdat = page_pgdat(page);
2655
2656 if (isolated) {
2657 struct lruvec *lruvec;
2658
2659 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2660 VM_BUG_ON_PAGE(PageLRU(page), page);
2661 SetPageLRU(page);
2662 add_page_to_lru_list(page, lruvec, page_lru(page));
2663 }
2664 spin_unlock_irq(&pgdat->lru_lock);
2665 }
2666
2667 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2668 bool lrucare)
2669 {
2670 int isolated;
2671
2672 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2673
2674 /*
2675 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2676 * may already be on some other mem_cgroup's LRU. Take care of it.
2677 */
2678 if (lrucare)
2679 lock_page_lru(page, &isolated);
2680
2681 /*
2682 * Nobody should be changing or seriously looking at
2683 * page->mem_cgroup at this point:
2684 *
2685 * - the page is uncharged
2686 *
2687 * - the page is off-LRU
2688 *
2689 * - an anonymous fault has exclusive page access, except for
2690 * a locked page table
2691 *
2692 * - a page cache insertion, a swapin fault, or a migration
2693 * have the page locked
2694 */
2695 page->mem_cgroup = memcg;
2696
2697 if (lrucare)
2698 unlock_page_lru(page, isolated);
2699 }
2700
2701 #ifdef CONFIG_MEMCG_KMEM
2702 /*
2703 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2704 *
2705 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2706 * cgroup_mutex, etc.
2707 */
2708 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2709 {
2710 struct page *page;
2711
2712 if (mem_cgroup_disabled())
2713 return NULL;
2714
2715 page = virt_to_head_page(p);
2716
2717 /*
2718 * Slab pages don't have page->mem_cgroup set because corresponding
2719 * kmem caches can be reparented during the lifetime. That's why
2720 * memcg_from_slab_page() should be used instead.
2721 */
2722 if (PageSlab(page))
2723 return memcg_from_slab_page(page);
2724
2725 /* All other pages use page->mem_cgroup */
2726 return page->mem_cgroup;
2727 }
2728
2729 static int memcg_alloc_cache_id(void)
2730 {
2731 int id, size;
2732 int err;
2733
2734 id = ida_simple_get(&memcg_cache_ida,
2735 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2736 if (id < 0)
2737 return id;
2738
2739 if (id < memcg_nr_cache_ids)
2740 return id;
2741
2742 /*
2743 * There's no space for the new id in memcg_caches arrays,
2744 * so we have to grow them.
2745 */
2746 down_write(&memcg_cache_ids_sem);
2747
2748 size = 2 * (id + 1);
2749 if (size < MEMCG_CACHES_MIN_SIZE)
2750 size = MEMCG_CACHES_MIN_SIZE;
2751 else if (size > MEMCG_CACHES_MAX_SIZE)
2752 size = MEMCG_CACHES_MAX_SIZE;
2753
2754 err = memcg_update_all_caches(size);
2755 if (!err)
2756 err = memcg_update_all_list_lrus(size);
2757 if (!err)
2758 memcg_nr_cache_ids = size;
2759
2760 up_write(&memcg_cache_ids_sem);
2761
2762 if (err) {
2763 ida_simple_remove(&memcg_cache_ida, id);
2764 return err;
2765 }
2766 return id;
2767 }
2768
2769 static void memcg_free_cache_id(int id)
2770 {
2771 ida_simple_remove(&memcg_cache_ida, id);
2772 }
2773
2774 struct memcg_kmem_cache_create_work {
2775 struct mem_cgroup *memcg;
2776 struct kmem_cache *cachep;
2777 struct work_struct work;
2778 };
2779
2780 static void memcg_kmem_cache_create_func(struct work_struct *w)
2781 {
2782 struct memcg_kmem_cache_create_work *cw =
2783 container_of(w, struct memcg_kmem_cache_create_work, work);
2784 struct mem_cgroup *memcg = cw->memcg;
2785 struct kmem_cache *cachep = cw->cachep;
2786
2787 memcg_create_kmem_cache(memcg, cachep);
2788
2789 css_put(&memcg->css);
2790 kfree(cw);
2791 }
2792
2793 /*
2794 * Enqueue the creation of a per-memcg kmem_cache.
2795 */
2796 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2797 struct kmem_cache *cachep)
2798 {
2799 struct memcg_kmem_cache_create_work *cw;
2800
2801 if (!css_tryget_online(&memcg->css))
2802 return;
2803
2804 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2805 if (!cw)
2806 return;
2807
2808 cw->memcg = memcg;
2809 cw->cachep = cachep;
2810 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2811
2812 queue_work(memcg_kmem_cache_wq, &cw->work);
2813 }
2814
2815 static inline bool memcg_kmem_bypass(void)
2816 {
2817 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2818 return true;
2819 return false;
2820 }
2821
2822 /**
2823 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2824 * @cachep: the original global kmem cache
2825 *
2826 * Return the kmem_cache we're supposed to use for a slab allocation.
2827 * We try to use the current memcg's version of the cache.
2828 *
2829 * If the cache does not exist yet, if we are the first user of it, we
2830 * create it asynchronously in a workqueue and let the current allocation
2831 * go through with the original cache.
2832 *
2833 * This function takes a reference to the cache it returns to assure it
2834 * won't get destroyed while we are working with it. Once the caller is
2835 * done with it, memcg_kmem_put_cache() must be called to release the
2836 * reference.
2837 */
2838 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2839 {
2840 struct mem_cgroup *memcg;
2841 struct kmem_cache *memcg_cachep;
2842 struct memcg_cache_array *arr;
2843 int kmemcg_id;
2844
2845 VM_BUG_ON(!is_root_cache(cachep));
2846
2847 if (memcg_kmem_bypass())
2848 return cachep;
2849
2850 rcu_read_lock();
2851
2852 if (unlikely(current->active_memcg))
2853 memcg = current->active_memcg;
2854 else
2855 memcg = mem_cgroup_from_task(current);
2856
2857 if (!memcg || memcg == root_mem_cgroup)
2858 goto out_unlock;
2859
2860 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2861 if (kmemcg_id < 0)
2862 goto out_unlock;
2863
2864 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2865
2866 /*
2867 * Make sure we will access the up-to-date value. The code updating
2868 * memcg_caches issues a write barrier to match the data dependency
2869 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2870 */
2871 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2872
2873 /*
2874 * If we are in a safe context (can wait, and not in interrupt
2875 * context), we could be be predictable and return right away.
2876 * This would guarantee that the allocation being performed
2877 * already belongs in the new cache.
2878 *
2879 * However, there are some clashes that can arrive from locking.
2880 * For instance, because we acquire the slab_mutex while doing
2881 * memcg_create_kmem_cache, this means no further allocation
2882 * could happen with the slab_mutex held. So it's better to
2883 * defer everything.
2884 *
2885 * If the memcg is dying or memcg_cache is about to be released,
2886 * don't bother creating new kmem_caches. Because memcg_cachep
2887 * is ZEROed as the fist step of kmem offlining, we don't need
2888 * percpu_ref_tryget_live() here. css_tryget_online() check in
2889 * memcg_schedule_kmem_cache_create() will prevent us from
2890 * creation of a new kmem_cache.
2891 */
2892 if (unlikely(!memcg_cachep))
2893 memcg_schedule_kmem_cache_create(memcg, cachep);
2894 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2895 cachep = memcg_cachep;
2896 out_unlock:
2897 rcu_read_unlock();
2898 return cachep;
2899 }
2900
2901 /**
2902 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2903 * @cachep: the cache returned by memcg_kmem_get_cache
2904 */
2905 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2906 {
2907 if (!is_root_cache(cachep))
2908 percpu_ref_put(&cachep->memcg_params.refcnt);
2909 }
2910
2911 /**
2912 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
2913 * @memcg: memory cgroup to charge
2914 * @gfp: reclaim mode
2915 * @nr_pages: number of pages to charge
2916 *
2917 * Returns 0 on success, an error code on failure.
2918 */
2919 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
2920 unsigned int nr_pages)
2921 {
2922 struct page_counter *counter;
2923 int ret;
2924
2925 ret = try_charge(memcg, gfp, nr_pages);
2926 if (ret)
2927 return ret;
2928
2929 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2930 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2931
2932 /*
2933 * Enforce __GFP_NOFAIL allocation because callers are not
2934 * prepared to see failures and likely do not have any failure
2935 * handling code.
2936 */
2937 if (gfp & __GFP_NOFAIL) {
2938 page_counter_charge(&memcg->kmem, nr_pages);
2939 return 0;
2940 }
2941 cancel_charge(memcg, nr_pages);
2942 return -ENOMEM;
2943 }
2944 return 0;
2945 }
2946
2947 /**
2948 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
2949 * @memcg: memcg to uncharge
2950 * @nr_pages: number of pages to uncharge
2951 */
2952 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
2953 {
2954 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2955 page_counter_uncharge(&memcg->kmem, nr_pages);
2956
2957 page_counter_uncharge(&memcg->memory, nr_pages);
2958 if (do_memsw_account())
2959 page_counter_uncharge(&memcg->memsw, nr_pages);
2960 }
2961
2962 /**
2963 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2964 * @page: page to charge
2965 * @gfp: reclaim mode
2966 * @order: allocation order
2967 *
2968 * Returns 0 on success, an error code on failure.
2969 */
2970 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2971 {
2972 struct mem_cgroup *memcg;
2973 int ret = 0;
2974
2975 if (memcg_kmem_bypass())
2976 return 0;
2977
2978 memcg = get_mem_cgroup_from_current();
2979 if (!mem_cgroup_is_root(memcg)) {
2980 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
2981 if (!ret) {
2982 page->mem_cgroup = memcg;
2983 __SetPageKmemcg(page);
2984 }
2985 }
2986 css_put(&memcg->css);
2987 return ret;
2988 }
2989
2990 /**
2991 * __memcg_kmem_uncharge_page: uncharge a kmem page
2992 * @page: page to uncharge
2993 * @order: allocation order
2994 */
2995 void __memcg_kmem_uncharge_page(struct page *page, int order)
2996 {
2997 struct mem_cgroup *memcg = page->mem_cgroup;
2998 unsigned int nr_pages = 1 << order;
2999
3000 if (!memcg)
3001 return;
3002
3003 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3004 __memcg_kmem_uncharge(memcg, nr_pages);
3005 page->mem_cgroup = NULL;
3006
3007 /* slab pages do not have PageKmemcg flag set */
3008 if (PageKmemcg(page))
3009 __ClearPageKmemcg(page);
3010
3011 css_put_many(&memcg->css, nr_pages);
3012 }
3013 #endif /* CONFIG_MEMCG_KMEM */
3014
3015 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3016
3017 /*
3018 * Because tail pages are not marked as "used", set it. We're under
3019 * pgdat->lru_lock and migration entries setup in all page mappings.
3020 */
3021 void mem_cgroup_split_huge_fixup(struct page *head)
3022 {
3023 int i;
3024
3025 if (mem_cgroup_disabled())
3026 return;
3027
3028 for (i = 1; i < HPAGE_PMD_NR; i++)
3029 head[i].mem_cgroup = head->mem_cgroup;
3030
3031 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
3032 }
3033 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3034
3035 #ifdef CONFIG_MEMCG_SWAP
3036 /**
3037 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3038 * @entry: swap entry to be moved
3039 * @from: mem_cgroup which the entry is moved from
3040 * @to: mem_cgroup which the entry is moved to
3041 *
3042 * It succeeds only when the swap_cgroup's record for this entry is the same
3043 * as the mem_cgroup's id of @from.
3044 *
3045 * Returns 0 on success, -EINVAL on failure.
3046 *
3047 * The caller must have charged to @to, IOW, called page_counter_charge() about
3048 * both res and memsw, and called css_get().
3049 */
3050 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3051 struct mem_cgroup *from, struct mem_cgroup *to)
3052 {
3053 unsigned short old_id, new_id;
3054
3055 old_id = mem_cgroup_id(from);
3056 new_id = mem_cgroup_id(to);
3057
3058 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3059 mod_memcg_state(from, MEMCG_SWAP, -1);
3060 mod_memcg_state(to, MEMCG_SWAP, 1);
3061 return 0;
3062 }
3063 return -EINVAL;
3064 }
3065 #else
3066 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3067 struct mem_cgroup *from, struct mem_cgroup *to)
3068 {
3069 return -EINVAL;
3070 }
3071 #endif
3072
3073 static DEFINE_MUTEX(memcg_max_mutex);
3074
3075 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3076 unsigned long max, bool memsw)
3077 {
3078 bool enlarge = false;
3079 bool drained = false;
3080 int ret;
3081 bool limits_invariant;
3082 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3083
3084 do {
3085 if (signal_pending(current)) {
3086 ret = -EINTR;
3087 break;
3088 }
3089
3090 mutex_lock(&memcg_max_mutex);
3091 /*
3092 * Make sure that the new limit (memsw or memory limit) doesn't
3093 * break our basic invariant rule memory.max <= memsw.max.
3094 */
3095 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3096 max <= memcg->memsw.max;
3097 if (!limits_invariant) {
3098 mutex_unlock(&memcg_max_mutex);
3099 ret = -EINVAL;
3100 break;
3101 }
3102 if (max > counter->max)
3103 enlarge = true;
3104 ret = page_counter_set_max(counter, max);
3105 mutex_unlock(&memcg_max_mutex);
3106
3107 if (!ret)
3108 break;
3109
3110 if (!drained) {
3111 drain_all_stock(memcg);
3112 drained = true;
3113 continue;
3114 }
3115
3116 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3117 GFP_KERNEL, !memsw)) {
3118 ret = -EBUSY;
3119 break;
3120 }
3121 } while (true);
3122
3123 if (!ret && enlarge)
3124 memcg_oom_recover(memcg);
3125
3126 return ret;
3127 }
3128
3129 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3130 gfp_t gfp_mask,
3131 unsigned long *total_scanned)
3132 {
3133 unsigned long nr_reclaimed = 0;
3134 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3135 unsigned long reclaimed;
3136 int loop = 0;
3137 struct mem_cgroup_tree_per_node *mctz;
3138 unsigned long excess;
3139 unsigned long nr_scanned;
3140
3141 if (order > 0)
3142 return 0;
3143
3144 mctz = soft_limit_tree_node(pgdat->node_id);
3145
3146 /*
3147 * Do not even bother to check the largest node if the root
3148 * is empty. Do it lockless to prevent lock bouncing. Races
3149 * are acceptable as soft limit is best effort anyway.
3150 */
3151 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3152 return 0;
3153
3154 /*
3155 * This loop can run a while, specially if mem_cgroup's continuously
3156 * keep exceeding their soft limit and putting the system under
3157 * pressure
3158 */
3159 do {
3160 if (next_mz)
3161 mz = next_mz;
3162 else
3163 mz = mem_cgroup_largest_soft_limit_node(mctz);
3164 if (!mz)
3165 break;
3166
3167 nr_scanned = 0;
3168 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3169 gfp_mask, &nr_scanned);
3170 nr_reclaimed += reclaimed;
3171 *total_scanned += nr_scanned;
3172 spin_lock_irq(&mctz->lock);
3173 __mem_cgroup_remove_exceeded(mz, mctz);
3174
3175 /*
3176 * If we failed to reclaim anything from this memory cgroup
3177 * it is time to move on to the next cgroup
3178 */
3179 next_mz = NULL;
3180 if (!reclaimed)
3181 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3182
3183 excess = soft_limit_excess(mz->memcg);
3184 /*
3185 * One school of thought says that we should not add
3186 * back the node to the tree if reclaim returns 0.
3187 * But our reclaim could return 0, simply because due
3188 * to priority we are exposing a smaller subset of
3189 * memory to reclaim from. Consider this as a longer
3190 * term TODO.
3191 */
3192 /* If excess == 0, no tree ops */
3193 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3194 spin_unlock_irq(&mctz->lock);
3195 css_put(&mz->memcg->css);
3196 loop++;
3197 /*
3198 * Could not reclaim anything and there are no more
3199 * mem cgroups to try or we seem to be looping without
3200 * reclaiming anything.
3201 */
3202 if (!nr_reclaimed &&
3203 (next_mz == NULL ||
3204 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3205 break;
3206 } while (!nr_reclaimed);
3207 if (next_mz)
3208 css_put(&next_mz->memcg->css);
3209 return nr_reclaimed;
3210 }
3211
3212 /*
3213 * Test whether @memcg has children, dead or alive. Note that this
3214 * function doesn't care whether @memcg has use_hierarchy enabled and
3215 * returns %true if there are child csses according to the cgroup
3216 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3217 */
3218 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3219 {
3220 bool ret;
3221
3222 rcu_read_lock();
3223 ret = css_next_child(NULL, &memcg->css);
3224 rcu_read_unlock();
3225 return ret;
3226 }
3227
3228 /*
3229 * Reclaims as many pages from the given memcg as possible.
3230 *
3231 * Caller is responsible for holding css reference for memcg.
3232 */
3233 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3234 {
3235 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3236
3237 /* we call try-to-free pages for make this cgroup empty */
3238 lru_add_drain_all();
3239
3240 drain_all_stock(memcg);
3241
3242 /* try to free all pages in this cgroup */
3243 while (nr_retries && page_counter_read(&memcg->memory)) {
3244 int progress;
3245
3246 if (signal_pending(current))
3247 return -EINTR;
3248
3249 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3250 GFP_KERNEL, true);
3251 if (!progress) {
3252 nr_retries--;
3253 /* maybe some writeback is necessary */
3254 congestion_wait(BLK_RW_ASYNC, HZ/10);
3255 }
3256
3257 }
3258
3259 return 0;
3260 }
3261
3262 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3263 char *buf, size_t nbytes,
3264 loff_t off)
3265 {
3266 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3267
3268 if (mem_cgroup_is_root(memcg))
3269 return -EINVAL;
3270 return mem_cgroup_force_empty(memcg) ?: nbytes;
3271 }
3272
3273 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3274 struct cftype *cft)
3275 {
3276 return mem_cgroup_from_css(css)->use_hierarchy;
3277 }
3278
3279 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3280 struct cftype *cft, u64 val)
3281 {
3282 int retval = 0;
3283 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3284 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3285
3286 if (memcg->use_hierarchy == val)
3287 return 0;
3288
3289 /*
3290 * If parent's use_hierarchy is set, we can't make any modifications
3291 * in the child subtrees. If it is unset, then the change can
3292 * occur, provided the current cgroup has no children.
3293 *
3294 * For the root cgroup, parent_mem is NULL, we allow value to be
3295 * set if there are no children.
3296 */
3297 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3298 (val == 1 || val == 0)) {
3299 if (!memcg_has_children(memcg))
3300 memcg->use_hierarchy = val;
3301 else
3302 retval = -EBUSY;
3303 } else
3304 retval = -EINVAL;
3305
3306 return retval;
3307 }
3308
3309 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3310 {
3311 unsigned long val;
3312
3313 if (mem_cgroup_is_root(memcg)) {
3314 val = memcg_page_state(memcg, MEMCG_CACHE) +
3315 memcg_page_state(memcg, MEMCG_RSS);
3316 if (swap)
3317 val += memcg_page_state(memcg, MEMCG_SWAP);
3318 } else {
3319 if (!swap)
3320 val = page_counter_read(&memcg->memory);
3321 else
3322 val = page_counter_read(&memcg->memsw);
3323 }
3324 return val;
3325 }
3326
3327 enum {
3328 RES_USAGE,
3329 RES_LIMIT,
3330 RES_MAX_USAGE,
3331 RES_FAILCNT,
3332 RES_SOFT_LIMIT,
3333 };
3334
3335 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3336 struct cftype *cft)
3337 {
3338 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3339 struct page_counter *counter;
3340
3341 switch (MEMFILE_TYPE(cft->private)) {
3342 case _MEM:
3343 counter = &memcg->memory;
3344 break;
3345 case _MEMSWAP:
3346 counter = &memcg->memsw;
3347 break;
3348 case _KMEM:
3349 counter = &memcg->kmem;
3350 break;
3351 case _TCP:
3352 counter = &memcg->tcpmem;
3353 break;
3354 default:
3355 BUG();
3356 }
3357
3358 switch (MEMFILE_ATTR(cft->private)) {
3359 case RES_USAGE:
3360 if (counter == &memcg->memory)
3361 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3362 if (counter == &memcg->memsw)
3363 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3364 return (u64)page_counter_read(counter) * PAGE_SIZE;
3365 case RES_LIMIT:
3366 return (u64)counter->max * PAGE_SIZE;
3367 case RES_MAX_USAGE:
3368 return (u64)counter->watermark * PAGE_SIZE;
3369 case RES_FAILCNT:
3370 return counter->failcnt;
3371 case RES_SOFT_LIMIT:
3372 return (u64)memcg->soft_limit * PAGE_SIZE;
3373 default:
3374 BUG();
3375 }
3376 }
3377
3378 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3379 {
3380 unsigned long stat[MEMCG_NR_STAT] = {0};
3381 struct mem_cgroup *mi;
3382 int node, cpu, i;
3383
3384 for_each_online_cpu(cpu)
3385 for (i = 0; i < MEMCG_NR_STAT; i++)
3386 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3387
3388 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3389 for (i = 0; i < MEMCG_NR_STAT; i++)
3390 atomic_long_add(stat[i], &mi->vmstats[i]);
3391
3392 for_each_node(node) {
3393 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3394 struct mem_cgroup_per_node *pi;
3395
3396 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3397 stat[i] = 0;
3398
3399 for_each_online_cpu(cpu)
3400 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3401 stat[i] += per_cpu(
3402 pn->lruvec_stat_cpu->count[i], cpu);
3403
3404 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3405 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3406 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3407 }
3408 }
3409
3410 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3411 {
3412 unsigned long events[NR_VM_EVENT_ITEMS];
3413 struct mem_cgroup *mi;
3414 int cpu, i;
3415
3416 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3417 events[i] = 0;
3418
3419 for_each_online_cpu(cpu)
3420 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3421 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3422 cpu);
3423
3424 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3425 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3426 atomic_long_add(events[i], &mi->vmevents[i]);
3427 }
3428
3429 #ifdef CONFIG_MEMCG_KMEM
3430 static int memcg_online_kmem(struct mem_cgroup *memcg)
3431 {
3432 int memcg_id;
3433
3434 if (cgroup_memory_nokmem)
3435 return 0;
3436
3437 BUG_ON(memcg->kmemcg_id >= 0);
3438 BUG_ON(memcg->kmem_state);
3439
3440 memcg_id = memcg_alloc_cache_id();
3441 if (memcg_id < 0)
3442 return memcg_id;
3443
3444 static_branch_inc(&memcg_kmem_enabled_key);
3445 /*
3446 * A memory cgroup is considered kmem-online as soon as it gets
3447 * kmemcg_id. Setting the id after enabling static branching will
3448 * guarantee no one starts accounting before all call sites are
3449 * patched.
3450 */
3451 memcg->kmemcg_id = memcg_id;
3452 memcg->kmem_state = KMEM_ONLINE;
3453 INIT_LIST_HEAD(&memcg->kmem_caches);
3454
3455 return 0;
3456 }
3457
3458 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3459 {
3460 struct cgroup_subsys_state *css;
3461 struct mem_cgroup *parent, *child;
3462 int kmemcg_id;
3463
3464 if (memcg->kmem_state != KMEM_ONLINE)
3465 return;
3466 /*
3467 * Clear the online state before clearing memcg_caches array
3468 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3469 * guarantees that no cache will be created for this cgroup
3470 * after we are done (see memcg_create_kmem_cache()).
3471 */
3472 memcg->kmem_state = KMEM_ALLOCATED;
3473
3474 parent = parent_mem_cgroup(memcg);
3475 if (!parent)
3476 parent = root_mem_cgroup;
3477
3478 /*
3479 * Deactivate and reparent kmem_caches.
3480 */
3481 memcg_deactivate_kmem_caches(memcg, parent);
3482
3483 kmemcg_id = memcg->kmemcg_id;
3484 BUG_ON(kmemcg_id < 0);
3485
3486 /*
3487 * Change kmemcg_id of this cgroup and all its descendants to the
3488 * parent's id, and then move all entries from this cgroup's list_lrus
3489 * to ones of the parent. After we have finished, all list_lrus
3490 * corresponding to this cgroup are guaranteed to remain empty. The
3491 * ordering is imposed by list_lru_node->lock taken by
3492 * memcg_drain_all_list_lrus().
3493 */
3494 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3495 css_for_each_descendant_pre(css, &memcg->css) {
3496 child = mem_cgroup_from_css(css);
3497 BUG_ON(child->kmemcg_id != kmemcg_id);
3498 child->kmemcg_id = parent->kmemcg_id;
3499 if (!memcg->use_hierarchy)
3500 break;
3501 }
3502 rcu_read_unlock();
3503
3504 memcg_drain_all_list_lrus(kmemcg_id, parent);
3505
3506 memcg_free_cache_id(kmemcg_id);
3507 }
3508
3509 static void memcg_free_kmem(struct mem_cgroup *memcg)
3510 {
3511 /* css_alloc() failed, offlining didn't happen */
3512 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3513 memcg_offline_kmem(memcg);
3514
3515 if (memcg->kmem_state == KMEM_ALLOCATED) {
3516 WARN_ON(!list_empty(&memcg->kmem_caches));
3517 static_branch_dec(&memcg_kmem_enabled_key);
3518 }
3519 }
3520 #else
3521 static int memcg_online_kmem(struct mem_cgroup *memcg)
3522 {
3523 return 0;
3524 }
3525 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3526 {
3527 }
3528 static void memcg_free_kmem(struct mem_cgroup *memcg)
3529 {
3530 }
3531 #endif /* CONFIG_MEMCG_KMEM */
3532
3533 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3534 unsigned long max)
3535 {
3536 int ret;
3537
3538 mutex_lock(&memcg_max_mutex);
3539 ret = page_counter_set_max(&memcg->kmem, max);
3540 mutex_unlock(&memcg_max_mutex);
3541 return ret;
3542 }
3543
3544 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3545 {
3546 int ret;
3547
3548 mutex_lock(&memcg_max_mutex);
3549
3550 ret = page_counter_set_max(&memcg->tcpmem, max);
3551 if (ret)
3552 goto out;
3553
3554 if (!memcg->tcpmem_active) {
3555 /*
3556 * The active flag needs to be written after the static_key
3557 * update. This is what guarantees that the socket activation
3558 * function is the last one to run. See mem_cgroup_sk_alloc()
3559 * for details, and note that we don't mark any socket as
3560 * belonging to this memcg until that flag is up.
3561 *
3562 * We need to do this, because static_keys will span multiple
3563 * sites, but we can't control their order. If we mark a socket
3564 * as accounted, but the accounting functions are not patched in
3565 * yet, we'll lose accounting.
3566 *
3567 * We never race with the readers in mem_cgroup_sk_alloc(),
3568 * because when this value change, the code to process it is not
3569 * patched in yet.
3570 */
3571 static_branch_inc(&memcg_sockets_enabled_key);
3572 memcg->tcpmem_active = true;
3573 }
3574 out:
3575 mutex_unlock(&memcg_max_mutex);
3576 return ret;
3577 }
3578
3579 /*
3580 * The user of this function is...
3581 * RES_LIMIT.
3582 */
3583 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3584 char *buf, size_t nbytes, loff_t off)
3585 {
3586 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3587 unsigned long nr_pages;
3588 int ret;
3589
3590 buf = strstrip(buf);
3591 ret = page_counter_memparse(buf, "-1", &nr_pages);
3592 if (ret)
3593 return ret;
3594
3595 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3596 case RES_LIMIT:
3597 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3598 ret = -EINVAL;
3599 break;
3600 }
3601 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3602 case _MEM:
3603 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3604 break;
3605 case _MEMSWAP:
3606 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3607 break;
3608 case _KMEM:
3609 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3610 "Please report your usecase to linux-mm@kvack.org if you "
3611 "depend on this functionality.\n");
3612 ret = memcg_update_kmem_max(memcg, nr_pages);
3613 break;
3614 case _TCP:
3615 ret = memcg_update_tcp_max(memcg, nr_pages);
3616 break;
3617 }
3618 break;
3619 case RES_SOFT_LIMIT:
3620 memcg->soft_limit = nr_pages;
3621 ret = 0;
3622 break;
3623 }
3624 return ret ?: nbytes;
3625 }
3626
3627 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3628 size_t nbytes, loff_t off)
3629 {
3630 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3631 struct page_counter *counter;
3632
3633 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3634 case _MEM:
3635 counter = &memcg->memory;
3636 break;
3637 case _MEMSWAP:
3638 counter = &memcg->memsw;
3639 break;
3640 case _KMEM:
3641 counter = &memcg->kmem;
3642 break;
3643 case _TCP:
3644 counter = &memcg->tcpmem;
3645 break;
3646 default:
3647 BUG();
3648 }
3649
3650 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3651 case RES_MAX_USAGE:
3652 page_counter_reset_watermark(counter);
3653 break;
3654 case RES_FAILCNT:
3655 counter->failcnt = 0;
3656 break;
3657 default:
3658 BUG();
3659 }
3660
3661 return nbytes;
3662 }
3663
3664 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3665 struct cftype *cft)
3666 {
3667 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3668 }
3669
3670 #ifdef CONFIG_MMU
3671 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3672 struct cftype *cft, u64 val)
3673 {
3674 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3675
3676 if (val & ~MOVE_MASK)
3677 return -EINVAL;
3678
3679 /*
3680 * No kind of locking is needed in here, because ->can_attach() will
3681 * check this value once in the beginning of the process, and then carry
3682 * on with stale data. This means that changes to this value will only
3683 * affect task migrations starting after the change.
3684 */
3685 memcg->move_charge_at_immigrate = val;
3686 return 0;
3687 }
3688 #else
3689 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3690 struct cftype *cft, u64 val)
3691 {
3692 return -ENOSYS;
3693 }
3694 #endif
3695
3696 #ifdef CONFIG_NUMA
3697
3698 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3699 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3700 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3701
3702 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3703 int nid, unsigned int lru_mask)
3704 {
3705 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3706 unsigned long nr = 0;
3707 enum lru_list lru;
3708
3709 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3710
3711 for_each_lru(lru) {
3712 if (!(BIT(lru) & lru_mask))
3713 continue;
3714 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3715 }
3716 return nr;
3717 }
3718
3719 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3720 unsigned int lru_mask)
3721 {
3722 unsigned long nr = 0;
3723 enum lru_list lru;
3724
3725 for_each_lru(lru) {
3726 if (!(BIT(lru) & lru_mask))
3727 continue;
3728 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3729 }
3730 return nr;
3731 }
3732
3733 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3734 {
3735 struct numa_stat {
3736 const char *name;
3737 unsigned int lru_mask;
3738 };
3739
3740 static const struct numa_stat stats[] = {
3741 { "total", LRU_ALL },
3742 { "file", LRU_ALL_FILE },
3743 { "anon", LRU_ALL_ANON },
3744 { "unevictable", BIT(LRU_UNEVICTABLE) },
3745 };
3746 const struct numa_stat *stat;
3747 int nid;
3748 unsigned long nr;
3749 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3750
3751 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3752 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3753 seq_printf(m, "%s=%lu", stat->name, nr);
3754 for_each_node_state(nid, N_MEMORY) {
3755 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3756 stat->lru_mask);
3757 seq_printf(m, " N%d=%lu", nid, nr);
3758 }
3759 seq_putc(m, '\n');
3760 }
3761
3762 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3763 struct mem_cgroup *iter;
3764
3765 nr = 0;
3766 for_each_mem_cgroup_tree(iter, memcg)
3767 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3768 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3769 for_each_node_state(nid, N_MEMORY) {
3770 nr = 0;
3771 for_each_mem_cgroup_tree(iter, memcg)
3772 nr += mem_cgroup_node_nr_lru_pages(
3773 iter, nid, stat->lru_mask);
3774 seq_printf(m, " N%d=%lu", nid, nr);
3775 }
3776 seq_putc(m, '\n');
3777 }
3778
3779 return 0;
3780 }
3781 #endif /* CONFIG_NUMA */
3782
3783 static const unsigned int memcg1_stats[] = {
3784 MEMCG_CACHE,
3785 MEMCG_RSS,
3786 MEMCG_RSS_HUGE,
3787 NR_SHMEM,
3788 NR_FILE_MAPPED,
3789 NR_FILE_DIRTY,
3790 NR_WRITEBACK,
3791 MEMCG_SWAP,
3792 };
3793
3794 static const char *const memcg1_stat_names[] = {
3795 "cache",
3796 "rss",
3797 "rss_huge",
3798 "shmem",
3799 "mapped_file",
3800 "dirty",
3801 "writeback",
3802 "swap",
3803 };
3804
3805 /* Universal VM events cgroup1 shows, original sort order */
3806 static const unsigned int memcg1_events[] = {
3807 PGPGIN,
3808 PGPGOUT,
3809 PGFAULT,
3810 PGMAJFAULT,
3811 };
3812
3813 static int memcg_stat_show(struct seq_file *m, void *v)
3814 {
3815 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3816 unsigned long memory, memsw;
3817 struct mem_cgroup *mi;
3818 unsigned int i;
3819
3820 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3821
3822 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3823 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3824 continue;
3825 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3826 memcg_page_state_local(memcg, memcg1_stats[i]) *
3827 PAGE_SIZE);
3828 }
3829
3830 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3831 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3832 memcg_events_local(memcg, memcg1_events[i]));
3833
3834 for (i = 0; i < NR_LRU_LISTS; i++)
3835 seq_printf(m, "%s %lu\n", lru_list_name(i),
3836 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3837 PAGE_SIZE);
3838
3839 /* Hierarchical information */
3840 memory = memsw = PAGE_COUNTER_MAX;
3841 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3842 memory = min(memory, READ_ONCE(mi->memory.max));
3843 memsw = min(memsw, READ_ONCE(mi->memsw.max));
3844 }
3845 seq_printf(m, "hierarchical_memory_limit %llu\n",
3846 (u64)memory * PAGE_SIZE);
3847 if (do_memsw_account())
3848 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3849 (u64)memsw * PAGE_SIZE);
3850
3851 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3852 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3853 continue;
3854 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3855 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3856 PAGE_SIZE);
3857 }
3858
3859 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3860 seq_printf(m, "total_%s %llu\n",
3861 vm_event_name(memcg1_events[i]),
3862 (u64)memcg_events(memcg, memcg1_events[i]));
3863
3864 for (i = 0; i < NR_LRU_LISTS; i++)
3865 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3866 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3867 PAGE_SIZE);
3868
3869 #ifdef CONFIG_DEBUG_VM
3870 {
3871 pg_data_t *pgdat;
3872 struct mem_cgroup_per_node *mz;
3873 struct zone_reclaim_stat *rstat;
3874 unsigned long recent_rotated[2] = {0, 0};
3875 unsigned long recent_scanned[2] = {0, 0};
3876
3877 for_each_online_pgdat(pgdat) {
3878 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3879 rstat = &mz->lruvec.reclaim_stat;
3880
3881 recent_rotated[0] += rstat->recent_rotated[0];
3882 recent_rotated[1] += rstat->recent_rotated[1];
3883 recent_scanned[0] += rstat->recent_scanned[0];
3884 recent_scanned[1] += rstat->recent_scanned[1];
3885 }
3886 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3887 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3888 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3889 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3890 }
3891 #endif
3892
3893 return 0;
3894 }
3895
3896 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3897 struct cftype *cft)
3898 {
3899 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3900
3901 return mem_cgroup_swappiness(memcg);
3902 }
3903
3904 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3905 struct cftype *cft, u64 val)
3906 {
3907 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3908
3909 if (val > 100)
3910 return -EINVAL;
3911
3912 if (css->parent)
3913 memcg->swappiness = val;
3914 else
3915 vm_swappiness = val;
3916
3917 return 0;
3918 }
3919
3920 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3921 {
3922 struct mem_cgroup_threshold_ary *t;
3923 unsigned long usage;
3924 int i;
3925
3926 rcu_read_lock();
3927 if (!swap)
3928 t = rcu_dereference(memcg->thresholds.primary);
3929 else
3930 t = rcu_dereference(memcg->memsw_thresholds.primary);
3931
3932 if (!t)
3933 goto unlock;
3934
3935 usage = mem_cgroup_usage(memcg, swap);
3936
3937 /*
3938 * current_threshold points to threshold just below or equal to usage.
3939 * If it's not true, a threshold was crossed after last
3940 * call of __mem_cgroup_threshold().
3941 */
3942 i = t->current_threshold;
3943
3944 /*
3945 * Iterate backward over array of thresholds starting from
3946 * current_threshold and check if a threshold is crossed.
3947 * If none of thresholds below usage is crossed, we read
3948 * only one element of the array here.
3949 */
3950 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3951 eventfd_signal(t->entries[i].eventfd, 1);
3952
3953 /* i = current_threshold + 1 */
3954 i++;
3955
3956 /*
3957 * Iterate forward over array of thresholds starting from
3958 * current_threshold+1 and check if a threshold is crossed.
3959 * If none of thresholds above usage is crossed, we read
3960 * only one element of the array here.
3961 */
3962 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3963 eventfd_signal(t->entries[i].eventfd, 1);
3964
3965 /* Update current_threshold */
3966 t->current_threshold = i - 1;
3967 unlock:
3968 rcu_read_unlock();
3969 }
3970
3971 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3972 {
3973 while (memcg) {
3974 __mem_cgroup_threshold(memcg, false);
3975 if (do_memsw_account())
3976 __mem_cgroup_threshold(memcg, true);
3977
3978 memcg = parent_mem_cgroup(memcg);
3979 }
3980 }
3981
3982 static int compare_thresholds(const void *a, const void *b)
3983 {
3984 const struct mem_cgroup_threshold *_a = a;
3985 const struct mem_cgroup_threshold *_b = b;
3986
3987 if (_a->threshold > _b->threshold)
3988 return 1;
3989
3990 if (_a->threshold < _b->threshold)
3991 return -1;
3992
3993 return 0;
3994 }
3995
3996 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3997 {
3998 struct mem_cgroup_eventfd_list *ev;
3999
4000 spin_lock(&memcg_oom_lock);
4001
4002 list_for_each_entry(ev, &memcg->oom_notify, list)
4003 eventfd_signal(ev->eventfd, 1);
4004
4005 spin_unlock(&memcg_oom_lock);
4006 return 0;
4007 }
4008
4009 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4010 {
4011 struct mem_cgroup *iter;
4012
4013 for_each_mem_cgroup_tree(iter, memcg)
4014 mem_cgroup_oom_notify_cb(iter);
4015 }
4016
4017 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4018 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4019 {
4020 struct mem_cgroup_thresholds *thresholds;
4021 struct mem_cgroup_threshold_ary *new;
4022 unsigned long threshold;
4023 unsigned long usage;
4024 int i, size, ret;
4025
4026 ret = page_counter_memparse(args, "-1", &threshold);
4027 if (ret)
4028 return ret;
4029
4030 mutex_lock(&memcg->thresholds_lock);
4031
4032 if (type == _MEM) {
4033 thresholds = &memcg->thresholds;
4034 usage = mem_cgroup_usage(memcg, false);
4035 } else if (type == _MEMSWAP) {
4036 thresholds = &memcg->memsw_thresholds;
4037 usage = mem_cgroup_usage(memcg, true);
4038 } else
4039 BUG();
4040
4041 /* Check if a threshold crossed before adding a new one */
4042 if (thresholds->primary)
4043 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4044
4045 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4046
4047 /* Allocate memory for new array of thresholds */
4048 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4049 if (!new) {
4050 ret = -ENOMEM;
4051 goto unlock;
4052 }
4053 new->size = size;
4054
4055 /* Copy thresholds (if any) to new array */
4056 if (thresholds->primary) {
4057 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4058 sizeof(struct mem_cgroup_threshold));
4059 }
4060
4061 /* Add new threshold */
4062 new->entries[size - 1].eventfd = eventfd;
4063 new->entries[size - 1].threshold = threshold;
4064
4065 /* Sort thresholds. Registering of new threshold isn't time-critical */
4066 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4067 compare_thresholds, NULL);
4068
4069 /* Find current threshold */
4070 new->current_threshold = -1;
4071 for (i = 0; i < size; i++) {
4072 if (new->entries[i].threshold <= usage) {
4073 /*
4074 * new->current_threshold will not be used until
4075 * rcu_assign_pointer(), so it's safe to increment
4076 * it here.
4077 */
4078 ++new->current_threshold;
4079 } else
4080 break;
4081 }
4082
4083 /* Free old spare buffer and save old primary buffer as spare */
4084 kfree(thresholds->spare);
4085 thresholds->spare = thresholds->primary;
4086
4087 rcu_assign_pointer(thresholds->primary, new);
4088
4089 /* To be sure that nobody uses thresholds */
4090 synchronize_rcu();
4091
4092 unlock:
4093 mutex_unlock(&memcg->thresholds_lock);
4094
4095 return ret;
4096 }
4097
4098 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4099 struct eventfd_ctx *eventfd, const char *args)
4100 {
4101 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4102 }
4103
4104 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4105 struct eventfd_ctx *eventfd, const char *args)
4106 {
4107 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4108 }
4109
4110 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4111 struct eventfd_ctx *eventfd, enum res_type type)
4112 {
4113 struct mem_cgroup_thresholds *thresholds;
4114 struct mem_cgroup_threshold_ary *new;
4115 unsigned long usage;
4116 int i, j, size, entries;
4117
4118 mutex_lock(&memcg->thresholds_lock);
4119
4120 if (type == _MEM) {
4121 thresholds = &memcg->thresholds;
4122 usage = mem_cgroup_usage(memcg, false);
4123 } else if (type == _MEMSWAP) {
4124 thresholds = &memcg->memsw_thresholds;
4125 usage = mem_cgroup_usage(memcg, true);
4126 } else
4127 BUG();
4128
4129 if (!thresholds->primary)
4130 goto unlock;
4131
4132 /* Check if a threshold crossed before removing */
4133 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4134
4135 /* Calculate new number of threshold */
4136 size = entries = 0;
4137 for (i = 0; i < thresholds->primary->size; i++) {
4138 if (thresholds->primary->entries[i].eventfd != eventfd)
4139 size++;
4140 else
4141 entries++;
4142 }
4143
4144 new = thresholds->spare;
4145
4146 /* If no items related to eventfd have been cleared, nothing to do */
4147 if (!entries)
4148 goto unlock;
4149
4150 /* Set thresholds array to NULL if we don't have thresholds */
4151 if (!size) {
4152 kfree(new);
4153 new = NULL;
4154 goto swap_buffers;
4155 }
4156
4157 new->size = size;
4158
4159 /* Copy thresholds and find current threshold */
4160 new->current_threshold = -1;
4161 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4162 if (thresholds->primary->entries[i].eventfd == eventfd)
4163 continue;
4164
4165 new->entries[j] = thresholds->primary->entries[i];
4166 if (new->entries[j].threshold <= usage) {
4167 /*
4168 * new->current_threshold will not be used
4169 * until rcu_assign_pointer(), so it's safe to increment
4170 * it here.
4171 */
4172 ++new->current_threshold;
4173 }
4174 j++;
4175 }
4176
4177 swap_buffers:
4178 /* Swap primary and spare array */
4179 thresholds->spare = thresholds->primary;
4180
4181 rcu_assign_pointer(thresholds->primary, new);
4182
4183 /* To be sure that nobody uses thresholds */
4184 synchronize_rcu();
4185
4186 /* If all events are unregistered, free the spare array */
4187 if (!new) {
4188 kfree(thresholds->spare);
4189 thresholds->spare = NULL;
4190 }
4191 unlock:
4192 mutex_unlock(&memcg->thresholds_lock);
4193 }
4194
4195 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4196 struct eventfd_ctx *eventfd)
4197 {
4198 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4199 }
4200
4201 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4202 struct eventfd_ctx *eventfd)
4203 {
4204 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4205 }
4206
4207 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4208 struct eventfd_ctx *eventfd, const char *args)
4209 {
4210 struct mem_cgroup_eventfd_list *event;
4211
4212 event = kmalloc(sizeof(*event), GFP_KERNEL);
4213 if (!event)
4214 return -ENOMEM;
4215
4216 spin_lock(&memcg_oom_lock);
4217
4218 event->eventfd = eventfd;
4219 list_add(&event->list, &memcg->oom_notify);
4220
4221 /* already in OOM ? */
4222 if (memcg->under_oom)
4223 eventfd_signal(eventfd, 1);
4224 spin_unlock(&memcg_oom_lock);
4225
4226 return 0;
4227 }
4228
4229 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4230 struct eventfd_ctx *eventfd)
4231 {
4232 struct mem_cgroup_eventfd_list *ev, *tmp;
4233
4234 spin_lock(&memcg_oom_lock);
4235
4236 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4237 if (ev->eventfd == eventfd) {
4238 list_del(&ev->list);
4239 kfree(ev);
4240 }
4241 }
4242
4243 spin_unlock(&memcg_oom_lock);
4244 }
4245
4246 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4247 {
4248 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4249
4250 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4251 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4252 seq_printf(sf, "oom_kill %lu\n",
4253 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4254 return 0;
4255 }
4256
4257 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4258 struct cftype *cft, u64 val)
4259 {
4260 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4261
4262 /* cannot set to root cgroup and only 0 and 1 are allowed */
4263 if (!css->parent || !((val == 0) || (val == 1)))
4264 return -EINVAL;
4265
4266 memcg->oom_kill_disable = val;
4267 if (!val)
4268 memcg_oom_recover(memcg);
4269
4270 return 0;
4271 }
4272
4273 #ifdef CONFIG_CGROUP_WRITEBACK
4274
4275 #include <trace/events/writeback.h>
4276
4277 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4278 {
4279 return wb_domain_init(&memcg->cgwb_domain, gfp);
4280 }
4281
4282 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4283 {
4284 wb_domain_exit(&memcg->cgwb_domain);
4285 }
4286
4287 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4288 {
4289 wb_domain_size_changed(&memcg->cgwb_domain);
4290 }
4291
4292 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4293 {
4294 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4295
4296 if (!memcg->css.parent)
4297 return NULL;
4298
4299 return &memcg->cgwb_domain;
4300 }
4301
4302 /*
4303 * idx can be of type enum memcg_stat_item or node_stat_item.
4304 * Keep in sync with memcg_exact_page().
4305 */
4306 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4307 {
4308 long x = atomic_long_read(&memcg->vmstats[idx]);
4309 int cpu;
4310
4311 for_each_online_cpu(cpu)
4312 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4313 if (x < 0)
4314 x = 0;
4315 return x;
4316 }
4317
4318 /**
4319 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4320 * @wb: bdi_writeback in question
4321 * @pfilepages: out parameter for number of file pages
4322 * @pheadroom: out parameter for number of allocatable pages according to memcg
4323 * @pdirty: out parameter for number of dirty pages
4324 * @pwriteback: out parameter for number of pages under writeback
4325 *
4326 * Determine the numbers of file, headroom, dirty, and writeback pages in
4327 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4328 * is a bit more involved.
4329 *
4330 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4331 * headroom is calculated as the lowest headroom of itself and the
4332 * ancestors. Note that this doesn't consider the actual amount of
4333 * available memory in the system. The caller should further cap
4334 * *@pheadroom accordingly.
4335 */
4336 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4337 unsigned long *pheadroom, unsigned long *pdirty,
4338 unsigned long *pwriteback)
4339 {
4340 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4341 struct mem_cgroup *parent;
4342
4343 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4344
4345 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4346 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4347 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4348 *pheadroom = PAGE_COUNTER_MAX;
4349
4350 while ((parent = parent_mem_cgroup(memcg))) {
4351 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4352 READ_ONCE(memcg->memory.high));
4353 unsigned long used = page_counter_read(&memcg->memory);
4354
4355 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4356 memcg = parent;
4357 }
4358 }
4359
4360 /*
4361 * Foreign dirty flushing
4362 *
4363 * There's an inherent mismatch between memcg and writeback. The former
4364 * trackes ownership per-page while the latter per-inode. This was a
4365 * deliberate design decision because honoring per-page ownership in the
4366 * writeback path is complicated, may lead to higher CPU and IO overheads
4367 * and deemed unnecessary given that write-sharing an inode across
4368 * different cgroups isn't a common use-case.
4369 *
4370 * Combined with inode majority-writer ownership switching, this works well
4371 * enough in most cases but there are some pathological cases. For
4372 * example, let's say there are two cgroups A and B which keep writing to
4373 * different but confined parts of the same inode. B owns the inode and
4374 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4375 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4376 * triggering background writeback. A will be slowed down without a way to
4377 * make writeback of the dirty pages happen.
4378 *
4379 * Conditions like the above can lead to a cgroup getting repatedly and
4380 * severely throttled after making some progress after each
4381 * dirty_expire_interval while the underyling IO device is almost
4382 * completely idle.
4383 *
4384 * Solving this problem completely requires matching the ownership tracking
4385 * granularities between memcg and writeback in either direction. However,
4386 * the more egregious behaviors can be avoided by simply remembering the
4387 * most recent foreign dirtying events and initiating remote flushes on
4388 * them when local writeback isn't enough to keep the memory clean enough.
4389 *
4390 * The following two functions implement such mechanism. When a foreign
4391 * page - a page whose memcg and writeback ownerships don't match - is
4392 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4393 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4394 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4395 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4396 * foreign bdi_writebacks which haven't expired. Both the numbers of
4397 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4398 * limited to MEMCG_CGWB_FRN_CNT.
4399 *
4400 * The mechanism only remembers IDs and doesn't hold any object references.
4401 * As being wrong occasionally doesn't matter, updates and accesses to the
4402 * records are lockless and racy.
4403 */
4404 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4405 struct bdi_writeback *wb)
4406 {
4407 struct mem_cgroup *memcg = page->mem_cgroup;
4408 struct memcg_cgwb_frn *frn;
4409 u64 now = get_jiffies_64();
4410 u64 oldest_at = now;
4411 int oldest = -1;
4412 int i;
4413
4414 trace_track_foreign_dirty(page, wb);
4415
4416 /*
4417 * Pick the slot to use. If there is already a slot for @wb, keep
4418 * using it. If not replace the oldest one which isn't being
4419 * written out.
4420 */
4421 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4422 frn = &memcg->cgwb_frn[i];
4423 if (frn->bdi_id == wb->bdi->id &&
4424 frn->memcg_id == wb->memcg_css->id)
4425 break;
4426 if (time_before64(frn->at, oldest_at) &&
4427 atomic_read(&frn->done.cnt) == 1) {
4428 oldest = i;
4429 oldest_at = frn->at;
4430 }
4431 }
4432
4433 if (i < MEMCG_CGWB_FRN_CNT) {
4434 /*
4435 * Re-using an existing one. Update timestamp lazily to
4436 * avoid making the cacheline hot. We want them to be
4437 * reasonably up-to-date and significantly shorter than
4438 * dirty_expire_interval as that's what expires the record.
4439 * Use the shorter of 1s and dirty_expire_interval / 8.
4440 */
4441 unsigned long update_intv =
4442 min_t(unsigned long, HZ,
4443 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4444
4445 if (time_before64(frn->at, now - update_intv))
4446 frn->at = now;
4447 } else if (oldest >= 0) {
4448 /* replace the oldest free one */
4449 frn = &memcg->cgwb_frn[oldest];
4450 frn->bdi_id = wb->bdi->id;
4451 frn->memcg_id = wb->memcg_css->id;
4452 frn->at = now;
4453 }
4454 }
4455
4456 /* issue foreign writeback flushes for recorded foreign dirtying events */
4457 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4458 {
4459 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4460 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4461 u64 now = jiffies_64;
4462 int i;
4463
4464 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4465 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4466
4467 /*
4468 * If the record is older than dirty_expire_interval,
4469 * writeback on it has already started. No need to kick it
4470 * off again. Also, don't start a new one if there's
4471 * already one in flight.
4472 */
4473 if (time_after64(frn->at, now - intv) &&
4474 atomic_read(&frn->done.cnt) == 1) {
4475 frn->at = 0;
4476 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4477 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4478 WB_REASON_FOREIGN_FLUSH,
4479 &frn->done);
4480 }
4481 }
4482 }
4483
4484 #else /* CONFIG_CGROUP_WRITEBACK */
4485
4486 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4487 {
4488 return 0;
4489 }
4490
4491 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4492 {
4493 }
4494
4495 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4496 {
4497 }
4498
4499 #endif /* CONFIG_CGROUP_WRITEBACK */
4500
4501 /*
4502 * DO NOT USE IN NEW FILES.
4503 *
4504 * "cgroup.event_control" implementation.
4505 *
4506 * This is way over-engineered. It tries to support fully configurable
4507 * events for each user. Such level of flexibility is completely
4508 * unnecessary especially in the light of the planned unified hierarchy.
4509 *
4510 * Please deprecate this and replace with something simpler if at all
4511 * possible.
4512 */
4513
4514 /*
4515 * Unregister event and free resources.
4516 *
4517 * Gets called from workqueue.
4518 */
4519 static void memcg_event_remove(struct work_struct *work)
4520 {
4521 struct mem_cgroup_event *event =
4522 container_of(work, struct mem_cgroup_event, remove);
4523 struct mem_cgroup *memcg = event->memcg;
4524
4525 remove_wait_queue(event->wqh, &event->wait);
4526
4527 event->unregister_event(memcg, event->eventfd);
4528
4529 /* Notify userspace the event is going away. */
4530 eventfd_signal(event->eventfd, 1);
4531
4532 eventfd_ctx_put(event->eventfd);
4533 kfree(event);
4534 css_put(&memcg->css);
4535 }
4536
4537 /*
4538 * Gets called on EPOLLHUP on eventfd when user closes it.
4539 *
4540 * Called with wqh->lock held and interrupts disabled.
4541 */
4542 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4543 int sync, void *key)
4544 {
4545 struct mem_cgroup_event *event =
4546 container_of(wait, struct mem_cgroup_event, wait);
4547 struct mem_cgroup *memcg = event->memcg;
4548 __poll_t flags = key_to_poll(key);
4549
4550 if (flags & EPOLLHUP) {
4551 /*
4552 * If the event has been detached at cgroup removal, we
4553 * can simply return knowing the other side will cleanup
4554 * for us.
4555 *
4556 * We can't race against event freeing since the other
4557 * side will require wqh->lock via remove_wait_queue(),
4558 * which we hold.
4559 */
4560 spin_lock(&memcg->event_list_lock);
4561 if (!list_empty(&event->list)) {
4562 list_del_init(&event->list);
4563 /*
4564 * We are in atomic context, but cgroup_event_remove()
4565 * may sleep, so we have to call it in workqueue.
4566 */
4567 schedule_work(&event->remove);
4568 }
4569 spin_unlock(&memcg->event_list_lock);
4570 }
4571
4572 return 0;
4573 }
4574
4575 static void memcg_event_ptable_queue_proc(struct file *file,
4576 wait_queue_head_t *wqh, poll_table *pt)
4577 {
4578 struct mem_cgroup_event *event =
4579 container_of(pt, struct mem_cgroup_event, pt);
4580
4581 event->wqh = wqh;
4582 add_wait_queue(wqh, &event->wait);
4583 }
4584
4585 /*
4586 * DO NOT USE IN NEW FILES.
4587 *
4588 * Parse input and register new cgroup event handler.
4589 *
4590 * Input must be in format '<event_fd> <control_fd> <args>'.
4591 * Interpretation of args is defined by control file implementation.
4592 */
4593 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4594 char *buf, size_t nbytes, loff_t off)
4595 {
4596 struct cgroup_subsys_state *css = of_css(of);
4597 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4598 struct mem_cgroup_event *event;
4599 struct cgroup_subsys_state *cfile_css;
4600 unsigned int efd, cfd;
4601 struct fd efile;
4602 struct fd cfile;
4603 const char *name;
4604 char *endp;
4605 int ret;
4606
4607 buf = strstrip(buf);
4608
4609 efd = simple_strtoul(buf, &endp, 10);
4610 if (*endp != ' ')
4611 return -EINVAL;
4612 buf = endp + 1;
4613
4614 cfd = simple_strtoul(buf, &endp, 10);
4615 if ((*endp != ' ') && (*endp != '\0'))
4616 return -EINVAL;
4617 buf = endp + 1;
4618
4619 event = kzalloc(sizeof(*event), GFP_KERNEL);
4620 if (!event)
4621 return -ENOMEM;
4622
4623 event->memcg = memcg;
4624 INIT_LIST_HEAD(&event->list);
4625 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4626 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4627 INIT_WORK(&event->remove, memcg_event_remove);
4628
4629 efile = fdget(efd);
4630 if (!efile.file) {
4631 ret = -EBADF;
4632 goto out_kfree;
4633 }
4634
4635 event->eventfd = eventfd_ctx_fileget(efile.file);
4636 if (IS_ERR(event->eventfd)) {
4637 ret = PTR_ERR(event->eventfd);
4638 goto out_put_efile;
4639 }
4640
4641 cfile = fdget(cfd);
4642 if (!cfile.file) {
4643 ret = -EBADF;
4644 goto out_put_eventfd;
4645 }
4646
4647 /* the process need read permission on control file */
4648 /* AV: shouldn't we check that it's been opened for read instead? */
4649 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4650 if (ret < 0)
4651 goto out_put_cfile;
4652
4653 /*
4654 * Determine the event callbacks and set them in @event. This used
4655 * to be done via struct cftype but cgroup core no longer knows
4656 * about these events. The following is crude but the whole thing
4657 * is for compatibility anyway.
4658 *
4659 * DO NOT ADD NEW FILES.
4660 */
4661 name = cfile.file->f_path.dentry->d_name.name;
4662
4663 if (!strcmp(name, "memory.usage_in_bytes")) {
4664 event->register_event = mem_cgroup_usage_register_event;
4665 event->unregister_event = mem_cgroup_usage_unregister_event;
4666 } else if (!strcmp(name, "memory.oom_control")) {
4667 event->register_event = mem_cgroup_oom_register_event;
4668 event->unregister_event = mem_cgroup_oom_unregister_event;
4669 } else if (!strcmp(name, "memory.pressure_level")) {
4670 event->register_event = vmpressure_register_event;
4671 event->unregister_event = vmpressure_unregister_event;
4672 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4673 event->register_event = memsw_cgroup_usage_register_event;
4674 event->unregister_event = memsw_cgroup_usage_unregister_event;
4675 } else {
4676 ret = -EINVAL;
4677 goto out_put_cfile;
4678 }
4679
4680 /*
4681 * Verify @cfile should belong to @css. Also, remaining events are
4682 * automatically removed on cgroup destruction but the removal is
4683 * asynchronous, so take an extra ref on @css.
4684 */
4685 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4686 &memory_cgrp_subsys);
4687 ret = -EINVAL;
4688 if (IS_ERR(cfile_css))
4689 goto out_put_cfile;
4690 if (cfile_css != css) {
4691 css_put(cfile_css);
4692 goto out_put_cfile;
4693 }
4694
4695 ret = event->register_event(memcg, event->eventfd, buf);
4696 if (ret)
4697 goto out_put_css;
4698
4699 vfs_poll(efile.file, &event->pt);
4700
4701 spin_lock(&memcg->event_list_lock);
4702 list_add(&event->list, &memcg->event_list);
4703 spin_unlock(&memcg->event_list_lock);
4704
4705 fdput(cfile);
4706 fdput(efile);
4707
4708 return nbytes;
4709
4710 out_put_css:
4711 css_put(css);
4712 out_put_cfile:
4713 fdput(cfile);
4714 out_put_eventfd:
4715 eventfd_ctx_put(event->eventfd);
4716 out_put_efile:
4717 fdput(efile);
4718 out_kfree:
4719 kfree(event);
4720
4721 return ret;
4722 }
4723
4724 static struct cftype mem_cgroup_legacy_files[] = {
4725 {
4726 .name = "usage_in_bytes",
4727 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4728 .read_u64 = mem_cgroup_read_u64,
4729 },
4730 {
4731 .name = "max_usage_in_bytes",
4732 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4733 .write = mem_cgroup_reset,
4734 .read_u64 = mem_cgroup_read_u64,
4735 },
4736 {
4737 .name = "limit_in_bytes",
4738 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4739 .write = mem_cgroup_write,
4740 .read_u64 = mem_cgroup_read_u64,
4741 },
4742 {
4743 .name = "soft_limit_in_bytes",
4744 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4745 .write = mem_cgroup_write,
4746 .read_u64 = mem_cgroup_read_u64,
4747 },
4748 {
4749 .name = "failcnt",
4750 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4751 .write = mem_cgroup_reset,
4752 .read_u64 = mem_cgroup_read_u64,
4753 },
4754 {
4755 .name = "stat",
4756 .seq_show = memcg_stat_show,
4757 },
4758 {
4759 .name = "force_empty",
4760 .write = mem_cgroup_force_empty_write,
4761 },
4762 {
4763 .name = "use_hierarchy",
4764 .write_u64 = mem_cgroup_hierarchy_write,
4765 .read_u64 = mem_cgroup_hierarchy_read,
4766 },
4767 {
4768 .name = "cgroup.event_control", /* XXX: for compat */
4769 .write = memcg_write_event_control,
4770 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4771 },
4772 {
4773 .name = "swappiness",
4774 .read_u64 = mem_cgroup_swappiness_read,
4775 .write_u64 = mem_cgroup_swappiness_write,
4776 },
4777 {
4778 .name = "move_charge_at_immigrate",
4779 .read_u64 = mem_cgroup_move_charge_read,
4780 .write_u64 = mem_cgroup_move_charge_write,
4781 },
4782 {
4783 .name = "oom_control",
4784 .seq_show = mem_cgroup_oom_control_read,
4785 .write_u64 = mem_cgroup_oom_control_write,
4786 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4787 },
4788 {
4789 .name = "pressure_level",
4790 },
4791 #ifdef CONFIG_NUMA
4792 {
4793 .name = "numa_stat",
4794 .seq_show = memcg_numa_stat_show,
4795 },
4796 #endif
4797 {
4798 .name = "kmem.limit_in_bytes",
4799 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4800 .write = mem_cgroup_write,
4801 .read_u64 = mem_cgroup_read_u64,
4802 },
4803 {
4804 .name = "kmem.usage_in_bytes",
4805 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4806 .read_u64 = mem_cgroup_read_u64,
4807 },
4808 {
4809 .name = "kmem.failcnt",
4810 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4811 .write = mem_cgroup_reset,
4812 .read_u64 = mem_cgroup_read_u64,
4813 },
4814 {
4815 .name = "kmem.max_usage_in_bytes",
4816 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4817 .write = mem_cgroup_reset,
4818 .read_u64 = mem_cgroup_read_u64,
4819 },
4820 #if defined(CONFIG_MEMCG_KMEM) && \
4821 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4822 {
4823 .name = "kmem.slabinfo",
4824 .seq_start = memcg_slab_start,
4825 .seq_next = memcg_slab_next,
4826 .seq_stop = memcg_slab_stop,
4827 .seq_show = memcg_slab_show,
4828 },
4829 #endif
4830 {
4831 .name = "kmem.tcp.limit_in_bytes",
4832 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4833 .write = mem_cgroup_write,
4834 .read_u64 = mem_cgroup_read_u64,
4835 },
4836 {
4837 .name = "kmem.tcp.usage_in_bytes",
4838 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4839 .read_u64 = mem_cgroup_read_u64,
4840 },
4841 {
4842 .name = "kmem.tcp.failcnt",
4843 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4844 .write = mem_cgroup_reset,
4845 .read_u64 = mem_cgroup_read_u64,
4846 },
4847 {
4848 .name = "kmem.tcp.max_usage_in_bytes",
4849 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4850 .write = mem_cgroup_reset,
4851 .read_u64 = mem_cgroup_read_u64,
4852 },
4853 { }, /* terminate */
4854 };
4855
4856 /*
4857 * Private memory cgroup IDR
4858 *
4859 * Swap-out records and page cache shadow entries need to store memcg
4860 * references in constrained space, so we maintain an ID space that is
4861 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4862 * memory-controlled cgroups to 64k.
4863 *
4864 * However, there usually are many references to the oflline CSS after
4865 * the cgroup has been destroyed, such as page cache or reclaimable
4866 * slab objects, that don't need to hang on to the ID. We want to keep
4867 * those dead CSS from occupying IDs, or we might quickly exhaust the
4868 * relatively small ID space and prevent the creation of new cgroups
4869 * even when there are much fewer than 64k cgroups - possibly none.
4870 *
4871 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4872 * be freed and recycled when it's no longer needed, which is usually
4873 * when the CSS is offlined.
4874 *
4875 * The only exception to that are records of swapped out tmpfs/shmem
4876 * pages that need to be attributed to live ancestors on swapin. But
4877 * those references are manageable from userspace.
4878 */
4879
4880 static DEFINE_IDR(mem_cgroup_idr);
4881
4882 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4883 {
4884 if (memcg->id.id > 0) {
4885 idr_remove(&mem_cgroup_idr, memcg->id.id);
4886 memcg->id.id = 0;
4887 }
4888 }
4889
4890 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
4891 unsigned int n)
4892 {
4893 refcount_add(n, &memcg->id.ref);
4894 }
4895
4896 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4897 {
4898 if (refcount_sub_and_test(n, &memcg->id.ref)) {
4899 mem_cgroup_id_remove(memcg);
4900
4901 /* Memcg ID pins CSS */
4902 css_put(&memcg->css);
4903 }
4904 }
4905
4906 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4907 {
4908 mem_cgroup_id_put_many(memcg, 1);
4909 }
4910
4911 /**
4912 * mem_cgroup_from_id - look up a memcg from a memcg id
4913 * @id: the memcg id to look up
4914 *
4915 * Caller must hold rcu_read_lock().
4916 */
4917 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4918 {
4919 WARN_ON_ONCE(!rcu_read_lock_held());
4920 return idr_find(&mem_cgroup_idr, id);
4921 }
4922
4923 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4924 {
4925 struct mem_cgroup_per_node *pn;
4926 int tmp = node;
4927 /*
4928 * This routine is called against possible nodes.
4929 * But it's BUG to call kmalloc() against offline node.
4930 *
4931 * TODO: this routine can waste much memory for nodes which will
4932 * never be onlined. It's better to use memory hotplug callback
4933 * function.
4934 */
4935 if (!node_state(node, N_NORMAL_MEMORY))
4936 tmp = -1;
4937 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4938 if (!pn)
4939 return 1;
4940
4941 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4942 if (!pn->lruvec_stat_local) {
4943 kfree(pn);
4944 return 1;
4945 }
4946
4947 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4948 if (!pn->lruvec_stat_cpu) {
4949 free_percpu(pn->lruvec_stat_local);
4950 kfree(pn);
4951 return 1;
4952 }
4953
4954 lruvec_init(&pn->lruvec);
4955 pn->usage_in_excess = 0;
4956 pn->on_tree = false;
4957 pn->memcg = memcg;
4958
4959 memcg->nodeinfo[node] = pn;
4960 return 0;
4961 }
4962
4963 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4964 {
4965 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4966
4967 if (!pn)
4968 return;
4969
4970 free_percpu(pn->lruvec_stat_cpu);
4971 free_percpu(pn->lruvec_stat_local);
4972 kfree(pn);
4973 }
4974
4975 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4976 {
4977 int node;
4978
4979 for_each_node(node)
4980 free_mem_cgroup_per_node_info(memcg, node);
4981 free_percpu(memcg->vmstats_percpu);
4982 free_percpu(memcg->vmstats_local);
4983 kfree(memcg);
4984 }
4985
4986 static void mem_cgroup_free(struct mem_cgroup *memcg)
4987 {
4988 memcg_wb_domain_exit(memcg);
4989 /*
4990 * Flush percpu vmstats and vmevents to guarantee the value correctness
4991 * on parent's and all ancestor levels.
4992 */
4993 memcg_flush_percpu_vmstats(memcg);
4994 memcg_flush_percpu_vmevents(memcg);
4995 __mem_cgroup_free(memcg);
4996 }
4997
4998 static struct mem_cgroup *mem_cgroup_alloc(void)
4999 {
5000 struct mem_cgroup *memcg;
5001 unsigned int size;
5002 int node;
5003 int __maybe_unused i;
5004 long error = -ENOMEM;
5005
5006 size = sizeof(struct mem_cgroup);
5007 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5008
5009 memcg = kzalloc(size, GFP_KERNEL);
5010 if (!memcg)
5011 return ERR_PTR(error);
5012
5013 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5014 1, MEM_CGROUP_ID_MAX,
5015 GFP_KERNEL);
5016 if (memcg->id.id < 0) {
5017 error = memcg->id.id;
5018 goto fail;
5019 }
5020
5021 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5022 if (!memcg->vmstats_local)
5023 goto fail;
5024
5025 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5026 if (!memcg->vmstats_percpu)
5027 goto fail;
5028
5029 for_each_node(node)
5030 if (alloc_mem_cgroup_per_node_info(memcg, node))
5031 goto fail;
5032
5033 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5034 goto fail;
5035
5036 INIT_WORK(&memcg->high_work, high_work_func);
5037 INIT_LIST_HEAD(&memcg->oom_notify);
5038 mutex_init(&memcg->thresholds_lock);
5039 spin_lock_init(&memcg->move_lock);
5040 vmpressure_init(&memcg->vmpressure);
5041 INIT_LIST_HEAD(&memcg->event_list);
5042 spin_lock_init(&memcg->event_list_lock);
5043 memcg->socket_pressure = jiffies;
5044 #ifdef CONFIG_MEMCG_KMEM
5045 memcg->kmemcg_id = -1;
5046 #endif
5047 #ifdef CONFIG_CGROUP_WRITEBACK
5048 INIT_LIST_HEAD(&memcg->cgwb_list);
5049 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5050 memcg->cgwb_frn[i].done =
5051 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5052 #endif
5053 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5054 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5055 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5056 memcg->deferred_split_queue.split_queue_len = 0;
5057 #endif
5058 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5059 return memcg;
5060 fail:
5061 mem_cgroup_id_remove(memcg);
5062 __mem_cgroup_free(memcg);
5063 return ERR_PTR(error);
5064 }
5065
5066 static struct cgroup_subsys_state * __ref
5067 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5068 {
5069 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5070 struct mem_cgroup *memcg;
5071 long error = -ENOMEM;
5072
5073 memcg = mem_cgroup_alloc();
5074 if (IS_ERR(memcg))
5075 return ERR_CAST(memcg);
5076
5077 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5078 memcg->soft_limit = PAGE_COUNTER_MAX;
5079 if (parent) {
5080 memcg->swappiness = mem_cgroup_swappiness(parent);
5081 memcg->oom_kill_disable = parent->oom_kill_disable;
5082 }
5083 if (parent && parent->use_hierarchy) {
5084 memcg->use_hierarchy = true;
5085 page_counter_init(&memcg->memory, &parent->memory);
5086 page_counter_init(&memcg->swap, &parent->swap);
5087 page_counter_init(&memcg->memsw, &parent->memsw);
5088 page_counter_init(&memcg->kmem, &parent->kmem);
5089 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5090 } else {
5091 page_counter_init(&memcg->memory, NULL);
5092 page_counter_init(&memcg->swap, NULL);
5093 page_counter_init(&memcg->memsw, NULL);
5094 page_counter_init(&memcg->kmem, NULL);
5095 page_counter_init(&memcg->tcpmem, NULL);
5096 /*
5097 * Deeper hierachy with use_hierarchy == false doesn't make
5098 * much sense so let cgroup subsystem know about this
5099 * unfortunate state in our controller.
5100 */
5101 if (parent != root_mem_cgroup)
5102 memory_cgrp_subsys.broken_hierarchy = true;
5103 }
5104
5105 /* The following stuff does not apply to the root */
5106 if (!parent) {
5107 #ifdef CONFIG_MEMCG_KMEM
5108 INIT_LIST_HEAD(&memcg->kmem_caches);
5109 #endif
5110 root_mem_cgroup = memcg;
5111 return &memcg->css;
5112 }
5113
5114 error = memcg_online_kmem(memcg);
5115 if (error)
5116 goto fail;
5117
5118 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5119 static_branch_inc(&memcg_sockets_enabled_key);
5120
5121 return &memcg->css;
5122 fail:
5123 mem_cgroup_id_remove(memcg);
5124 mem_cgroup_free(memcg);
5125 return ERR_PTR(error);
5126 }
5127
5128 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5129 {
5130 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5131
5132 /*
5133 * A memcg must be visible for memcg_expand_shrinker_maps()
5134 * by the time the maps are allocated. So, we allocate maps
5135 * here, when for_each_mem_cgroup() can't skip it.
5136 */
5137 if (memcg_alloc_shrinker_maps(memcg)) {
5138 mem_cgroup_id_remove(memcg);
5139 return -ENOMEM;
5140 }
5141
5142 /* Online state pins memcg ID, memcg ID pins CSS */
5143 refcount_set(&memcg->id.ref, 1);
5144 css_get(css);
5145 return 0;
5146 }
5147
5148 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5149 {
5150 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5151 struct mem_cgroup_event *event, *tmp;
5152
5153 /*
5154 * Unregister events and notify userspace.
5155 * Notify userspace about cgroup removing only after rmdir of cgroup
5156 * directory to avoid race between userspace and kernelspace.
5157 */
5158 spin_lock(&memcg->event_list_lock);
5159 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5160 list_del_init(&event->list);
5161 schedule_work(&event->remove);
5162 }
5163 spin_unlock(&memcg->event_list_lock);
5164
5165 page_counter_set_min(&memcg->memory, 0);
5166 page_counter_set_low(&memcg->memory, 0);
5167
5168 memcg_offline_kmem(memcg);
5169 wb_memcg_offline(memcg);
5170
5171 drain_all_stock(memcg);
5172
5173 mem_cgroup_id_put(memcg);
5174 }
5175
5176 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5177 {
5178 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5179
5180 invalidate_reclaim_iterators(memcg);
5181 }
5182
5183 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5184 {
5185 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5186 int __maybe_unused i;
5187
5188 #ifdef CONFIG_CGROUP_WRITEBACK
5189 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5190 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5191 #endif
5192 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5193 static_branch_dec(&memcg_sockets_enabled_key);
5194
5195 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5196 static_branch_dec(&memcg_sockets_enabled_key);
5197
5198 vmpressure_cleanup(&memcg->vmpressure);
5199 cancel_work_sync(&memcg->high_work);
5200 mem_cgroup_remove_from_trees(memcg);
5201 memcg_free_shrinker_maps(memcg);
5202 memcg_free_kmem(memcg);
5203 mem_cgroup_free(memcg);
5204 }
5205
5206 /**
5207 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5208 * @css: the target css
5209 *
5210 * Reset the states of the mem_cgroup associated with @css. This is
5211 * invoked when the userland requests disabling on the default hierarchy
5212 * but the memcg is pinned through dependency. The memcg should stop
5213 * applying policies and should revert to the vanilla state as it may be
5214 * made visible again.
5215 *
5216 * The current implementation only resets the essential configurations.
5217 * This needs to be expanded to cover all the visible parts.
5218 */
5219 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5220 {
5221 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5222
5223 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5224 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5225 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5226 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5227 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5228 page_counter_set_min(&memcg->memory, 0);
5229 page_counter_set_low(&memcg->memory, 0);
5230 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5231 memcg->soft_limit = PAGE_COUNTER_MAX;
5232 memcg_wb_domain_size_changed(memcg);
5233 }
5234
5235 #ifdef CONFIG_MMU
5236 /* Handlers for move charge at task migration. */
5237 static int mem_cgroup_do_precharge(unsigned long count)
5238 {
5239 int ret;
5240
5241 /* Try a single bulk charge without reclaim first, kswapd may wake */
5242 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5243 if (!ret) {
5244 mc.precharge += count;
5245 return ret;
5246 }
5247
5248 /* Try charges one by one with reclaim, but do not retry */
5249 while (count--) {
5250 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5251 if (ret)
5252 return ret;
5253 mc.precharge++;
5254 cond_resched();
5255 }
5256 return 0;
5257 }
5258
5259 union mc_target {
5260 struct page *page;
5261 swp_entry_t ent;
5262 };
5263
5264 enum mc_target_type {
5265 MC_TARGET_NONE = 0,
5266 MC_TARGET_PAGE,
5267 MC_TARGET_SWAP,
5268 MC_TARGET_DEVICE,
5269 };
5270
5271 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5272 unsigned long addr, pte_t ptent)
5273 {
5274 struct page *page = vm_normal_page(vma, addr, ptent);
5275
5276 if (!page || !page_mapped(page))
5277 return NULL;
5278 if (PageAnon(page)) {
5279 if (!(mc.flags & MOVE_ANON))
5280 return NULL;
5281 } else {
5282 if (!(mc.flags & MOVE_FILE))
5283 return NULL;
5284 }
5285 if (!get_page_unless_zero(page))
5286 return NULL;
5287
5288 return page;
5289 }
5290
5291 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5292 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5293 pte_t ptent, swp_entry_t *entry)
5294 {
5295 struct page *page = NULL;
5296 swp_entry_t ent = pte_to_swp_entry(ptent);
5297
5298 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5299 return NULL;
5300
5301 /*
5302 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5303 * a device and because they are not accessible by CPU they are store
5304 * as special swap entry in the CPU page table.
5305 */
5306 if (is_device_private_entry(ent)) {
5307 page = device_private_entry_to_page(ent);
5308 /*
5309 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5310 * a refcount of 1 when free (unlike normal page)
5311 */
5312 if (!page_ref_add_unless(page, 1, 1))
5313 return NULL;
5314 return page;
5315 }
5316
5317 /*
5318 * Because lookup_swap_cache() updates some statistics counter,
5319 * we call find_get_page() with swapper_space directly.
5320 */
5321 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5322 if (do_memsw_account())
5323 entry->val = ent.val;
5324
5325 return page;
5326 }
5327 #else
5328 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5329 pte_t ptent, swp_entry_t *entry)
5330 {
5331 return NULL;
5332 }
5333 #endif
5334
5335 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5336 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5337 {
5338 struct page *page = NULL;
5339 struct address_space *mapping;
5340 pgoff_t pgoff;
5341
5342 if (!vma->vm_file) /* anonymous vma */
5343 return NULL;
5344 if (!(mc.flags & MOVE_FILE))
5345 return NULL;
5346
5347 mapping = vma->vm_file->f_mapping;
5348 pgoff = linear_page_index(vma, addr);
5349
5350 /* page is moved even if it's not RSS of this task(page-faulted). */
5351 #ifdef CONFIG_SWAP
5352 /* shmem/tmpfs may report page out on swap: account for that too. */
5353 if (shmem_mapping(mapping)) {
5354 page = find_get_entry(mapping, pgoff);
5355 if (xa_is_value(page)) {
5356 swp_entry_t swp = radix_to_swp_entry(page);
5357 if (do_memsw_account())
5358 *entry = swp;
5359 page = find_get_page(swap_address_space(swp),
5360 swp_offset(swp));
5361 }
5362 } else
5363 page = find_get_page(mapping, pgoff);
5364 #else
5365 page = find_get_page(mapping, pgoff);
5366 #endif
5367 return page;
5368 }
5369
5370 /**
5371 * mem_cgroup_move_account - move account of the page
5372 * @page: the page
5373 * @compound: charge the page as compound or small page
5374 * @from: mem_cgroup which the page is moved from.
5375 * @to: mem_cgroup which the page is moved to. @from != @to.
5376 *
5377 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5378 *
5379 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5380 * from old cgroup.
5381 */
5382 static int mem_cgroup_move_account(struct page *page,
5383 bool compound,
5384 struct mem_cgroup *from,
5385 struct mem_cgroup *to)
5386 {
5387 struct lruvec *from_vec, *to_vec;
5388 struct pglist_data *pgdat;
5389 unsigned long flags;
5390 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5391 int ret;
5392 bool anon;
5393
5394 VM_BUG_ON(from == to);
5395 VM_BUG_ON_PAGE(PageLRU(page), page);
5396 VM_BUG_ON(compound && !PageTransHuge(page));
5397
5398 /*
5399 * Prevent mem_cgroup_migrate() from looking at
5400 * page->mem_cgroup of its source page while we change it.
5401 */
5402 ret = -EBUSY;
5403 if (!trylock_page(page))
5404 goto out;
5405
5406 ret = -EINVAL;
5407 if (page->mem_cgroup != from)
5408 goto out_unlock;
5409
5410 anon = PageAnon(page);
5411
5412 pgdat = page_pgdat(page);
5413 from_vec = mem_cgroup_lruvec(from, pgdat);
5414 to_vec = mem_cgroup_lruvec(to, pgdat);
5415
5416 spin_lock_irqsave(&from->move_lock, flags);
5417
5418 if (!anon && page_mapped(page)) {
5419 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5420 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5421 }
5422
5423 /*
5424 * move_lock grabbed above and caller set from->moving_account, so
5425 * mod_memcg_page_state will serialize updates to PageDirty.
5426 * So mapping should be stable for dirty pages.
5427 */
5428 if (!anon && PageDirty(page)) {
5429 struct address_space *mapping = page_mapping(page);
5430
5431 if (mapping_cap_account_dirty(mapping)) {
5432 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5433 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
5434 }
5435 }
5436
5437 if (PageWriteback(page)) {
5438 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5439 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5440 }
5441
5442 /*
5443 * It is safe to change page->mem_cgroup here because the page
5444 * is referenced, charged, and isolated - we can't race with
5445 * uncharging, charging, migration, or LRU putback.
5446 */
5447
5448 /* caller should have done css_get */
5449 page->mem_cgroup = to;
5450
5451 spin_unlock_irqrestore(&from->move_lock, flags);
5452
5453 ret = 0;
5454
5455 local_irq_disable();
5456 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5457 memcg_check_events(to, page);
5458 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5459 memcg_check_events(from, page);
5460 local_irq_enable();
5461 out_unlock:
5462 unlock_page(page);
5463 out:
5464 return ret;
5465 }
5466
5467 /**
5468 * get_mctgt_type - get target type of moving charge
5469 * @vma: the vma the pte to be checked belongs
5470 * @addr: the address corresponding to the pte to be checked
5471 * @ptent: the pte to be checked
5472 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5473 *
5474 * Returns
5475 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5476 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5477 * move charge. if @target is not NULL, the page is stored in target->page
5478 * with extra refcnt got(Callers should handle it).
5479 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5480 * target for charge migration. if @target is not NULL, the entry is stored
5481 * in target->ent.
5482 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5483 * (so ZONE_DEVICE page and thus not on the lru).
5484 * For now we such page is charge like a regular page would be as for all
5485 * intent and purposes it is just special memory taking the place of a
5486 * regular page.
5487 *
5488 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5489 *
5490 * Called with pte lock held.
5491 */
5492
5493 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5494 unsigned long addr, pte_t ptent, union mc_target *target)
5495 {
5496 struct page *page = NULL;
5497 enum mc_target_type ret = MC_TARGET_NONE;
5498 swp_entry_t ent = { .val = 0 };
5499
5500 if (pte_present(ptent))
5501 page = mc_handle_present_pte(vma, addr, ptent);
5502 else if (is_swap_pte(ptent))
5503 page = mc_handle_swap_pte(vma, ptent, &ent);
5504 else if (pte_none(ptent))
5505 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5506
5507 if (!page && !ent.val)
5508 return ret;
5509 if (page) {
5510 /*
5511 * Do only loose check w/o serialization.
5512 * mem_cgroup_move_account() checks the page is valid or
5513 * not under LRU exclusion.
5514 */
5515 if (page->mem_cgroup == mc.from) {
5516 ret = MC_TARGET_PAGE;
5517 if (is_device_private_page(page))
5518 ret = MC_TARGET_DEVICE;
5519 if (target)
5520 target->page = page;
5521 }
5522 if (!ret || !target)
5523 put_page(page);
5524 }
5525 /*
5526 * There is a swap entry and a page doesn't exist or isn't charged.
5527 * But we cannot move a tail-page in a THP.
5528 */
5529 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5530 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5531 ret = MC_TARGET_SWAP;
5532 if (target)
5533 target->ent = ent;
5534 }
5535 return ret;
5536 }
5537
5538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5539 /*
5540 * We don't consider PMD mapped swapping or file mapped pages because THP does
5541 * not support them for now.
5542 * Caller should make sure that pmd_trans_huge(pmd) is true.
5543 */
5544 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5545 unsigned long addr, pmd_t pmd, union mc_target *target)
5546 {
5547 struct page *page = NULL;
5548 enum mc_target_type ret = MC_TARGET_NONE;
5549
5550 if (unlikely(is_swap_pmd(pmd))) {
5551 VM_BUG_ON(thp_migration_supported() &&
5552 !is_pmd_migration_entry(pmd));
5553 return ret;
5554 }
5555 page = pmd_page(pmd);
5556 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5557 if (!(mc.flags & MOVE_ANON))
5558 return ret;
5559 if (page->mem_cgroup == mc.from) {
5560 ret = MC_TARGET_PAGE;
5561 if (target) {
5562 get_page(page);
5563 target->page = page;
5564 }
5565 }
5566 return ret;
5567 }
5568 #else
5569 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5570 unsigned long addr, pmd_t pmd, union mc_target *target)
5571 {
5572 return MC_TARGET_NONE;
5573 }
5574 #endif
5575
5576 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5577 unsigned long addr, unsigned long end,
5578 struct mm_walk *walk)
5579 {
5580 struct vm_area_struct *vma = walk->vma;
5581 pte_t *pte;
5582 spinlock_t *ptl;
5583
5584 ptl = pmd_trans_huge_lock(pmd, vma);
5585 if (ptl) {
5586 /*
5587 * Note their can not be MC_TARGET_DEVICE for now as we do not
5588 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5589 * this might change.
5590 */
5591 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5592 mc.precharge += HPAGE_PMD_NR;
5593 spin_unlock(ptl);
5594 return 0;
5595 }
5596
5597 if (pmd_trans_unstable(pmd))
5598 return 0;
5599 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5600 for (; addr != end; pte++, addr += PAGE_SIZE)
5601 if (get_mctgt_type(vma, addr, *pte, NULL))
5602 mc.precharge++; /* increment precharge temporarily */
5603 pte_unmap_unlock(pte - 1, ptl);
5604 cond_resched();
5605
5606 return 0;
5607 }
5608
5609 static const struct mm_walk_ops precharge_walk_ops = {
5610 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5611 };
5612
5613 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5614 {
5615 unsigned long precharge;
5616
5617 down_read(&mm->mmap_sem);
5618 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5619 up_read(&mm->mmap_sem);
5620
5621 precharge = mc.precharge;
5622 mc.precharge = 0;
5623
5624 return precharge;
5625 }
5626
5627 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5628 {
5629 unsigned long precharge = mem_cgroup_count_precharge(mm);
5630
5631 VM_BUG_ON(mc.moving_task);
5632 mc.moving_task = current;
5633 return mem_cgroup_do_precharge(precharge);
5634 }
5635
5636 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5637 static void __mem_cgroup_clear_mc(void)
5638 {
5639 struct mem_cgroup *from = mc.from;
5640 struct mem_cgroup *to = mc.to;
5641
5642 /* we must uncharge all the leftover precharges from mc.to */
5643 if (mc.precharge) {
5644 cancel_charge(mc.to, mc.precharge);
5645 mc.precharge = 0;
5646 }
5647 /*
5648 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5649 * we must uncharge here.
5650 */
5651 if (mc.moved_charge) {
5652 cancel_charge(mc.from, mc.moved_charge);
5653 mc.moved_charge = 0;
5654 }
5655 /* we must fixup refcnts and charges */
5656 if (mc.moved_swap) {
5657 /* uncharge swap account from the old cgroup */
5658 if (!mem_cgroup_is_root(mc.from))
5659 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5660
5661 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5662
5663 /*
5664 * we charged both to->memory and to->memsw, so we
5665 * should uncharge to->memory.
5666 */
5667 if (!mem_cgroup_is_root(mc.to))
5668 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5669
5670 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5671 css_put_many(&mc.to->css, mc.moved_swap);
5672
5673 mc.moved_swap = 0;
5674 }
5675 memcg_oom_recover(from);
5676 memcg_oom_recover(to);
5677 wake_up_all(&mc.waitq);
5678 }
5679
5680 static void mem_cgroup_clear_mc(void)
5681 {
5682 struct mm_struct *mm = mc.mm;
5683
5684 /*
5685 * we must clear moving_task before waking up waiters at the end of
5686 * task migration.
5687 */
5688 mc.moving_task = NULL;
5689 __mem_cgroup_clear_mc();
5690 spin_lock(&mc.lock);
5691 mc.from = NULL;
5692 mc.to = NULL;
5693 mc.mm = NULL;
5694 spin_unlock(&mc.lock);
5695
5696 mmput(mm);
5697 }
5698
5699 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5700 {
5701 struct cgroup_subsys_state *css;
5702 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5703 struct mem_cgroup *from;
5704 struct task_struct *leader, *p;
5705 struct mm_struct *mm;
5706 unsigned long move_flags;
5707 int ret = 0;
5708
5709 /* charge immigration isn't supported on the default hierarchy */
5710 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5711 return 0;
5712
5713 /*
5714 * Multi-process migrations only happen on the default hierarchy
5715 * where charge immigration is not used. Perform charge
5716 * immigration if @tset contains a leader and whine if there are
5717 * multiple.
5718 */
5719 p = NULL;
5720 cgroup_taskset_for_each_leader(leader, css, tset) {
5721 WARN_ON_ONCE(p);
5722 p = leader;
5723 memcg = mem_cgroup_from_css(css);
5724 }
5725 if (!p)
5726 return 0;
5727
5728 /*
5729 * We are now commited to this value whatever it is. Changes in this
5730 * tunable will only affect upcoming migrations, not the current one.
5731 * So we need to save it, and keep it going.
5732 */
5733 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5734 if (!move_flags)
5735 return 0;
5736
5737 from = mem_cgroup_from_task(p);
5738
5739 VM_BUG_ON(from == memcg);
5740
5741 mm = get_task_mm(p);
5742 if (!mm)
5743 return 0;
5744 /* We move charges only when we move a owner of the mm */
5745 if (mm->owner == p) {
5746 VM_BUG_ON(mc.from);
5747 VM_BUG_ON(mc.to);
5748 VM_BUG_ON(mc.precharge);
5749 VM_BUG_ON(mc.moved_charge);
5750 VM_BUG_ON(mc.moved_swap);
5751
5752 spin_lock(&mc.lock);
5753 mc.mm = mm;
5754 mc.from = from;
5755 mc.to = memcg;
5756 mc.flags = move_flags;
5757 spin_unlock(&mc.lock);
5758 /* We set mc.moving_task later */
5759
5760 ret = mem_cgroup_precharge_mc(mm);
5761 if (ret)
5762 mem_cgroup_clear_mc();
5763 } else {
5764 mmput(mm);
5765 }
5766 return ret;
5767 }
5768
5769 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5770 {
5771 if (mc.to)
5772 mem_cgroup_clear_mc();
5773 }
5774
5775 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5776 unsigned long addr, unsigned long end,
5777 struct mm_walk *walk)
5778 {
5779 int ret = 0;
5780 struct vm_area_struct *vma = walk->vma;
5781 pte_t *pte;
5782 spinlock_t *ptl;
5783 enum mc_target_type target_type;
5784 union mc_target target;
5785 struct page *page;
5786
5787 ptl = pmd_trans_huge_lock(pmd, vma);
5788 if (ptl) {
5789 if (mc.precharge < HPAGE_PMD_NR) {
5790 spin_unlock(ptl);
5791 return 0;
5792 }
5793 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5794 if (target_type == MC_TARGET_PAGE) {
5795 page = target.page;
5796 if (!isolate_lru_page(page)) {
5797 if (!mem_cgroup_move_account(page, true,
5798 mc.from, mc.to)) {
5799 mc.precharge -= HPAGE_PMD_NR;
5800 mc.moved_charge += HPAGE_PMD_NR;
5801 }
5802 putback_lru_page(page);
5803 }
5804 put_page(page);
5805 } else if (target_type == MC_TARGET_DEVICE) {
5806 page = target.page;
5807 if (!mem_cgroup_move_account(page, true,
5808 mc.from, mc.to)) {
5809 mc.precharge -= HPAGE_PMD_NR;
5810 mc.moved_charge += HPAGE_PMD_NR;
5811 }
5812 put_page(page);
5813 }
5814 spin_unlock(ptl);
5815 return 0;
5816 }
5817
5818 if (pmd_trans_unstable(pmd))
5819 return 0;
5820 retry:
5821 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5822 for (; addr != end; addr += PAGE_SIZE) {
5823 pte_t ptent = *(pte++);
5824 bool device = false;
5825 swp_entry_t ent;
5826
5827 if (!mc.precharge)
5828 break;
5829
5830 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5831 case MC_TARGET_DEVICE:
5832 device = true;
5833 fallthrough;
5834 case MC_TARGET_PAGE:
5835 page = target.page;
5836 /*
5837 * We can have a part of the split pmd here. Moving it
5838 * can be done but it would be too convoluted so simply
5839 * ignore such a partial THP and keep it in original
5840 * memcg. There should be somebody mapping the head.
5841 */
5842 if (PageTransCompound(page))
5843 goto put;
5844 if (!device && isolate_lru_page(page))
5845 goto put;
5846 if (!mem_cgroup_move_account(page, false,
5847 mc.from, mc.to)) {
5848 mc.precharge--;
5849 /* we uncharge from mc.from later. */
5850 mc.moved_charge++;
5851 }
5852 if (!device)
5853 putback_lru_page(page);
5854 put: /* get_mctgt_type() gets the page */
5855 put_page(page);
5856 break;
5857 case MC_TARGET_SWAP:
5858 ent = target.ent;
5859 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5860 mc.precharge--;
5861 /* we fixup refcnts and charges later. */
5862 mc.moved_swap++;
5863 }
5864 break;
5865 default:
5866 break;
5867 }
5868 }
5869 pte_unmap_unlock(pte - 1, ptl);
5870 cond_resched();
5871
5872 if (addr != end) {
5873 /*
5874 * We have consumed all precharges we got in can_attach().
5875 * We try charge one by one, but don't do any additional
5876 * charges to mc.to if we have failed in charge once in attach()
5877 * phase.
5878 */
5879 ret = mem_cgroup_do_precharge(1);
5880 if (!ret)
5881 goto retry;
5882 }
5883
5884 return ret;
5885 }
5886
5887 static const struct mm_walk_ops charge_walk_ops = {
5888 .pmd_entry = mem_cgroup_move_charge_pte_range,
5889 };
5890
5891 static void mem_cgroup_move_charge(void)
5892 {
5893 lru_add_drain_all();
5894 /*
5895 * Signal lock_page_memcg() to take the memcg's move_lock
5896 * while we're moving its pages to another memcg. Then wait
5897 * for already started RCU-only updates to finish.
5898 */
5899 atomic_inc(&mc.from->moving_account);
5900 synchronize_rcu();
5901 retry:
5902 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5903 /*
5904 * Someone who are holding the mmap_sem might be waiting in
5905 * waitq. So we cancel all extra charges, wake up all waiters,
5906 * and retry. Because we cancel precharges, we might not be able
5907 * to move enough charges, but moving charge is a best-effort
5908 * feature anyway, so it wouldn't be a big problem.
5909 */
5910 __mem_cgroup_clear_mc();
5911 cond_resched();
5912 goto retry;
5913 }
5914 /*
5915 * When we have consumed all precharges and failed in doing
5916 * additional charge, the page walk just aborts.
5917 */
5918 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5919 NULL);
5920
5921 up_read(&mc.mm->mmap_sem);
5922 atomic_dec(&mc.from->moving_account);
5923 }
5924
5925 static void mem_cgroup_move_task(void)
5926 {
5927 if (mc.to) {
5928 mem_cgroup_move_charge();
5929 mem_cgroup_clear_mc();
5930 }
5931 }
5932 #else /* !CONFIG_MMU */
5933 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5934 {
5935 return 0;
5936 }
5937 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5938 {
5939 }
5940 static void mem_cgroup_move_task(void)
5941 {
5942 }
5943 #endif
5944
5945 /*
5946 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5947 * to verify whether we're attached to the default hierarchy on each mount
5948 * attempt.
5949 */
5950 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5951 {
5952 /*
5953 * use_hierarchy is forced on the default hierarchy. cgroup core
5954 * guarantees that @root doesn't have any children, so turning it
5955 * on for the root memcg is enough.
5956 */
5957 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5958 root_mem_cgroup->use_hierarchy = true;
5959 else
5960 root_mem_cgroup->use_hierarchy = false;
5961 }
5962
5963 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5964 {
5965 if (value == PAGE_COUNTER_MAX)
5966 seq_puts(m, "max\n");
5967 else
5968 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5969
5970 return 0;
5971 }
5972
5973 static u64 memory_current_read(struct cgroup_subsys_state *css,
5974 struct cftype *cft)
5975 {
5976 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5977
5978 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5979 }
5980
5981 static int memory_min_show(struct seq_file *m, void *v)
5982 {
5983 return seq_puts_memcg_tunable(m,
5984 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5985 }
5986
5987 static ssize_t memory_min_write(struct kernfs_open_file *of,
5988 char *buf, size_t nbytes, loff_t off)
5989 {
5990 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5991 unsigned long min;
5992 int err;
5993
5994 buf = strstrip(buf);
5995 err = page_counter_memparse(buf, "max", &min);
5996 if (err)
5997 return err;
5998
5999 page_counter_set_min(&memcg->memory, min);
6000
6001 return nbytes;
6002 }
6003
6004 static int memory_low_show(struct seq_file *m, void *v)
6005 {
6006 return seq_puts_memcg_tunable(m,
6007 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6008 }
6009
6010 static ssize_t memory_low_write(struct kernfs_open_file *of,
6011 char *buf, size_t nbytes, loff_t off)
6012 {
6013 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6014 unsigned long low;
6015 int err;
6016
6017 buf = strstrip(buf);
6018 err = page_counter_memparse(buf, "max", &low);
6019 if (err)
6020 return err;
6021
6022 page_counter_set_low(&memcg->memory, low);
6023
6024 return nbytes;
6025 }
6026
6027 static int memory_high_show(struct seq_file *m, void *v)
6028 {
6029 return seq_puts_memcg_tunable(m,
6030 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6031 }
6032
6033 static ssize_t memory_high_write(struct kernfs_open_file *of,
6034 char *buf, size_t nbytes, loff_t off)
6035 {
6036 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6037 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6038 bool drained = false;
6039 unsigned long high;
6040 int err;
6041
6042 buf = strstrip(buf);
6043 err = page_counter_memparse(buf, "max", &high);
6044 if (err)
6045 return err;
6046
6047 page_counter_set_high(&memcg->memory, high);
6048
6049 for (;;) {
6050 unsigned long nr_pages = page_counter_read(&memcg->memory);
6051 unsigned long reclaimed;
6052
6053 if (nr_pages <= high)
6054 break;
6055
6056 if (signal_pending(current))
6057 break;
6058
6059 if (!drained) {
6060 drain_all_stock(memcg);
6061 drained = true;
6062 continue;
6063 }
6064
6065 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6066 GFP_KERNEL, true);
6067
6068 if (!reclaimed && !nr_retries--)
6069 break;
6070 }
6071
6072 return nbytes;
6073 }
6074
6075 static int memory_max_show(struct seq_file *m, void *v)
6076 {
6077 return seq_puts_memcg_tunable(m,
6078 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6079 }
6080
6081 static ssize_t memory_max_write(struct kernfs_open_file *of,
6082 char *buf, size_t nbytes, loff_t off)
6083 {
6084 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6085 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6086 bool drained = false;
6087 unsigned long max;
6088 int err;
6089
6090 buf = strstrip(buf);
6091 err = page_counter_memparse(buf, "max", &max);
6092 if (err)
6093 return err;
6094
6095 xchg(&memcg->memory.max, max);
6096
6097 for (;;) {
6098 unsigned long nr_pages = page_counter_read(&memcg->memory);
6099
6100 if (nr_pages <= max)
6101 break;
6102
6103 if (signal_pending(current))
6104 break;
6105
6106 if (!drained) {
6107 drain_all_stock(memcg);
6108 drained = true;
6109 continue;
6110 }
6111
6112 if (nr_reclaims) {
6113 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6114 GFP_KERNEL, true))
6115 nr_reclaims--;
6116 continue;
6117 }
6118
6119 memcg_memory_event(memcg, MEMCG_OOM);
6120 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6121 break;
6122 }
6123
6124 memcg_wb_domain_size_changed(memcg);
6125 return nbytes;
6126 }
6127
6128 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6129 {
6130 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6131 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6132 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6133 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6134 seq_printf(m, "oom_kill %lu\n",
6135 atomic_long_read(&events[MEMCG_OOM_KILL]));
6136 }
6137
6138 static int memory_events_show(struct seq_file *m, void *v)
6139 {
6140 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6141
6142 __memory_events_show(m, memcg->memory_events);
6143 return 0;
6144 }
6145
6146 static int memory_events_local_show(struct seq_file *m, void *v)
6147 {
6148 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6149
6150 __memory_events_show(m, memcg->memory_events_local);
6151 return 0;
6152 }
6153
6154 static int memory_stat_show(struct seq_file *m, void *v)
6155 {
6156 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6157 char *buf;
6158
6159 buf = memory_stat_format(memcg);
6160 if (!buf)
6161 return -ENOMEM;
6162 seq_puts(m, buf);
6163 kfree(buf);
6164 return 0;
6165 }
6166
6167 static int memory_oom_group_show(struct seq_file *m, void *v)
6168 {
6169 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6170
6171 seq_printf(m, "%d\n", memcg->oom_group);
6172
6173 return 0;
6174 }
6175
6176 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6177 char *buf, size_t nbytes, loff_t off)
6178 {
6179 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6180 int ret, oom_group;
6181
6182 buf = strstrip(buf);
6183 if (!buf)
6184 return -EINVAL;
6185
6186 ret = kstrtoint(buf, 0, &oom_group);
6187 if (ret)
6188 return ret;
6189
6190 if (oom_group != 0 && oom_group != 1)
6191 return -EINVAL;
6192
6193 memcg->oom_group = oom_group;
6194
6195 return nbytes;
6196 }
6197
6198 static struct cftype memory_files[] = {
6199 {
6200 .name = "current",
6201 .flags = CFTYPE_NOT_ON_ROOT,
6202 .read_u64 = memory_current_read,
6203 },
6204 {
6205 .name = "min",
6206 .flags = CFTYPE_NOT_ON_ROOT,
6207 .seq_show = memory_min_show,
6208 .write = memory_min_write,
6209 },
6210 {
6211 .name = "low",
6212 .flags = CFTYPE_NOT_ON_ROOT,
6213 .seq_show = memory_low_show,
6214 .write = memory_low_write,
6215 },
6216 {
6217 .name = "high",
6218 .flags = CFTYPE_NOT_ON_ROOT,
6219 .seq_show = memory_high_show,
6220 .write = memory_high_write,
6221 },
6222 {
6223 .name = "max",
6224 .flags = CFTYPE_NOT_ON_ROOT,
6225 .seq_show = memory_max_show,
6226 .write = memory_max_write,
6227 },
6228 {
6229 .name = "events",
6230 .flags = CFTYPE_NOT_ON_ROOT,
6231 .file_offset = offsetof(struct mem_cgroup, events_file),
6232 .seq_show = memory_events_show,
6233 },
6234 {
6235 .name = "events.local",
6236 .flags = CFTYPE_NOT_ON_ROOT,
6237 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6238 .seq_show = memory_events_local_show,
6239 },
6240 {
6241 .name = "stat",
6242 .seq_show = memory_stat_show,
6243 },
6244 {
6245 .name = "oom.group",
6246 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6247 .seq_show = memory_oom_group_show,
6248 .write = memory_oom_group_write,
6249 },
6250 { } /* terminate */
6251 };
6252
6253 struct cgroup_subsys memory_cgrp_subsys = {
6254 .css_alloc = mem_cgroup_css_alloc,
6255 .css_online = mem_cgroup_css_online,
6256 .css_offline = mem_cgroup_css_offline,
6257 .css_released = mem_cgroup_css_released,
6258 .css_free = mem_cgroup_css_free,
6259 .css_reset = mem_cgroup_css_reset,
6260 .can_attach = mem_cgroup_can_attach,
6261 .cancel_attach = mem_cgroup_cancel_attach,
6262 .post_attach = mem_cgroup_move_task,
6263 .bind = mem_cgroup_bind,
6264 .dfl_cftypes = memory_files,
6265 .legacy_cftypes = mem_cgroup_legacy_files,
6266 .early_init = 0,
6267 };
6268
6269 /*
6270 * This function calculates an individual cgroup's effective
6271 * protection which is derived from its own memory.min/low, its
6272 * parent's and siblings' settings, as well as the actual memory
6273 * distribution in the tree.
6274 *
6275 * The following rules apply to the effective protection values:
6276 *
6277 * 1. At the first level of reclaim, effective protection is equal to
6278 * the declared protection in memory.min and memory.low.
6279 *
6280 * 2. To enable safe delegation of the protection configuration, at
6281 * subsequent levels the effective protection is capped to the
6282 * parent's effective protection.
6283 *
6284 * 3. To make complex and dynamic subtrees easier to configure, the
6285 * user is allowed to overcommit the declared protection at a given
6286 * level. If that is the case, the parent's effective protection is
6287 * distributed to the children in proportion to how much protection
6288 * they have declared and how much of it they are utilizing.
6289 *
6290 * This makes distribution proportional, but also work-conserving:
6291 * if one cgroup claims much more protection than it uses memory,
6292 * the unused remainder is available to its siblings.
6293 *
6294 * 4. Conversely, when the declared protection is undercommitted at a
6295 * given level, the distribution of the larger parental protection
6296 * budget is NOT proportional. A cgroup's protection from a sibling
6297 * is capped to its own memory.min/low setting.
6298 *
6299 * 5. However, to allow protecting recursive subtrees from each other
6300 * without having to declare each individual cgroup's fixed share
6301 * of the ancestor's claim to protection, any unutilized -
6302 * "floating" - protection from up the tree is distributed in
6303 * proportion to each cgroup's *usage*. This makes the protection
6304 * neutral wrt sibling cgroups and lets them compete freely over
6305 * the shared parental protection budget, but it protects the
6306 * subtree as a whole from neighboring subtrees.
6307 *
6308 * Note that 4. and 5. are not in conflict: 4. is about protecting
6309 * against immediate siblings whereas 5. is about protecting against
6310 * neighboring subtrees.
6311 */
6312 static unsigned long effective_protection(unsigned long usage,
6313 unsigned long parent_usage,
6314 unsigned long setting,
6315 unsigned long parent_effective,
6316 unsigned long siblings_protected)
6317 {
6318 unsigned long protected;
6319 unsigned long ep;
6320
6321 protected = min(usage, setting);
6322 /*
6323 * If all cgroups at this level combined claim and use more
6324 * protection then what the parent affords them, distribute
6325 * shares in proportion to utilization.
6326 *
6327 * We are using actual utilization rather than the statically
6328 * claimed protection in order to be work-conserving: claimed
6329 * but unused protection is available to siblings that would
6330 * otherwise get a smaller chunk than what they claimed.
6331 */
6332 if (siblings_protected > parent_effective)
6333 return protected * parent_effective / siblings_protected;
6334
6335 /*
6336 * Ok, utilized protection of all children is within what the
6337 * parent affords them, so we know whatever this child claims
6338 * and utilizes is effectively protected.
6339 *
6340 * If there is unprotected usage beyond this value, reclaim
6341 * will apply pressure in proportion to that amount.
6342 *
6343 * If there is unutilized protection, the cgroup will be fully
6344 * shielded from reclaim, but we do return a smaller value for
6345 * protection than what the group could enjoy in theory. This
6346 * is okay. With the overcommit distribution above, effective
6347 * protection is always dependent on how memory is actually
6348 * consumed among the siblings anyway.
6349 */
6350 ep = protected;
6351
6352 /*
6353 * If the children aren't claiming (all of) the protection
6354 * afforded to them by the parent, distribute the remainder in
6355 * proportion to the (unprotected) memory of each cgroup. That
6356 * way, cgroups that aren't explicitly prioritized wrt each
6357 * other compete freely over the allowance, but they are
6358 * collectively protected from neighboring trees.
6359 *
6360 * We're using unprotected memory for the weight so that if
6361 * some cgroups DO claim explicit protection, we don't protect
6362 * the same bytes twice.
6363 */
6364 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6365 return ep;
6366
6367 if (parent_effective > siblings_protected && usage > protected) {
6368 unsigned long unclaimed;
6369
6370 unclaimed = parent_effective - siblings_protected;
6371 unclaimed *= usage - protected;
6372 unclaimed /= parent_usage - siblings_protected;
6373
6374 ep += unclaimed;
6375 }
6376
6377 return ep;
6378 }
6379
6380 /**
6381 * mem_cgroup_protected - check if memory consumption is in the normal range
6382 * @root: the top ancestor of the sub-tree being checked
6383 * @memcg: the memory cgroup to check
6384 *
6385 * WARNING: This function is not stateless! It can only be used as part
6386 * of a top-down tree iteration, not for isolated queries.
6387 *
6388 * Returns one of the following:
6389 * MEMCG_PROT_NONE: cgroup memory is not protected
6390 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6391 * an unprotected supply of reclaimable memory from other cgroups.
6392 * MEMCG_PROT_MIN: cgroup memory is protected
6393 */
6394 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6395 struct mem_cgroup *memcg)
6396 {
6397 unsigned long usage, parent_usage;
6398 struct mem_cgroup *parent;
6399
6400 if (mem_cgroup_disabled())
6401 return MEMCG_PROT_NONE;
6402
6403 if (!root)
6404 root = root_mem_cgroup;
6405 if (memcg == root)
6406 return MEMCG_PROT_NONE;
6407
6408 usage = page_counter_read(&memcg->memory);
6409 if (!usage)
6410 return MEMCG_PROT_NONE;
6411
6412 parent = parent_mem_cgroup(memcg);
6413 /* No parent means a non-hierarchical mode on v1 memcg */
6414 if (!parent)
6415 return MEMCG_PROT_NONE;
6416
6417 if (parent == root) {
6418 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6419 memcg->memory.elow = memcg->memory.low;
6420 goto out;
6421 }
6422
6423 parent_usage = page_counter_read(&parent->memory);
6424
6425 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6426 READ_ONCE(memcg->memory.min),
6427 READ_ONCE(parent->memory.emin),
6428 atomic_long_read(&parent->memory.children_min_usage)));
6429
6430 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6431 memcg->memory.low, READ_ONCE(parent->memory.elow),
6432 atomic_long_read(&parent->memory.children_low_usage)));
6433
6434 out:
6435 if (usage <= memcg->memory.emin)
6436 return MEMCG_PROT_MIN;
6437 else if (usage <= memcg->memory.elow)
6438 return MEMCG_PROT_LOW;
6439 else
6440 return MEMCG_PROT_NONE;
6441 }
6442
6443 /**
6444 * mem_cgroup_try_charge - try charging a page
6445 * @page: page to charge
6446 * @mm: mm context of the victim
6447 * @gfp_mask: reclaim mode
6448 * @memcgp: charged memcg return
6449 * @compound: charge the page as compound or small page
6450 *
6451 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6452 * pages according to @gfp_mask if necessary.
6453 *
6454 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6455 * Otherwise, an error code is returned.
6456 *
6457 * After page->mapping has been set up, the caller must finalize the
6458 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6459 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6460 */
6461 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6462 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6463 bool compound)
6464 {
6465 struct mem_cgroup *memcg = NULL;
6466 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6467 int ret = 0;
6468
6469 if (mem_cgroup_disabled())
6470 goto out;
6471
6472 if (PageSwapCache(page)) {
6473 /*
6474 * Every swap fault against a single page tries to charge the
6475 * page, bail as early as possible. shmem_unuse() encounters
6476 * already charged pages, too. The USED bit is protected by
6477 * the page lock, which serializes swap cache removal, which
6478 * in turn serializes uncharging.
6479 */
6480 VM_BUG_ON_PAGE(!PageLocked(page), page);
6481 if (compound_head(page)->mem_cgroup)
6482 goto out;
6483
6484 if (do_swap_account) {
6485 swp_entry_t ent = { .val = page_private(page), };
6486 unsigned short id = lookup_swap_cgroup_id(ent);
6487
6488 rcu_read_lock();
6489 memcg = mem_cgroup_from_id(id);
6490 if (memcg && !css_tryget_online(&memcg->css))
6491 memcg = NULL;
6492 rcu_read_unlock();
6493 }
6494 }
6495
6496 if (!memcg)
6497 memcg = get_mem_cgroup_from_mm(mm);
6498
6499 ret = try_charge(memcg, gfp_mask, nr_pages);
6500
6501 css_put(&memcg->css);
6502 out:
6503 *memcgp = memcg;
6504 return ret;
6505 }
6506
6507 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6508 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6509 bool compound)
6510 {
6511 struct mem_cgroup *memcg;
6512 int ret;
6513
6514 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6515 memcg = *memcgp;
6516 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6517 return ret;
6518 }
6519
6520 /**
6521 * mem_cgroup_commit_charge - commit a page charge
6522 * @page: page to charge
6523 * @memcg: memcg to charge the page to
6524 * @lrucare: page might be on LRU already
6525 * @compound: charge the page as compound or small page
6526 *
6527 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6528 * after page->mapping has been set up. This must happen atomically
6529 * as part of the page instantiation, i.e. under the page table lock
6530 * for anonymous pages, under the page lock for page and swap cache.
6531 *
6532 * In addition, the page must not be on the LRU during the commit, to
6533 * prevent racing with task migration. If it might be, use @lrucare.
6534 *
6535 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6536 */
6537 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6538 bool lrucare, bool compound)
6539 {
6540 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6541
6542 VM_BUG_ON_PAGE(!page->mapping, page);
6543 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6544
6545 if (mem_cgroup_disabled())
6546 return;
6547 /*
6548 * Swap faults will attempt to charge the same page multiple
6549 * times. But reuse_swap_page() might have removed the page
6550 * from swapcache already, so we can't check PageSwapCache().
6551 */
6552 if (!memcg)
6553 return;
6554
6555 commit_charge(page, memcg, lrucare);
6556
6557 local_irq_disable();
6558 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6559 memcg_check_events(memcg, page);
6560 local_irq_enable();
6561
6562 if (do_memsw_account() && PageSwapCache(page)) {
6563 swp_entry_t entry = { .val = page_private(page) };
6564 /*
6565 * The swap entry might not get freed for a long time,
6566 * let's not wait for it. The page already received a
6567 * memory+swap charge, drop the swap entry duplicate.
6568 */
6569 mem_cgroup_uncharge_swap(entry, nr_pages);
6570 }
6571 }
6572
6573 /**
6574 * mem_cgroup_cancel_charge - cancel a page charge
6575 * @page: page to charge
6576 * @memcg: memcg to charge the page to
6577 * @compound: charge the page as compound or small page
6578 *
6579 * Cancel a charge transaction started by mem_cgroup_try_charge().
6580 */
6581 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6582 bool compound)
6583 {
6584 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6585
6586 if (mem_cgroup_disabled())
6587 return;
6588 /*
6589 * Swap faults will attempt to charge the same page multiple
6590 * times. But reuse_swap_page() might have removed the page
6591 * from swapcache already, so we can't check PageSwapCache().
6592 */
6593 if (!memcg)
6594 return;
6595
6596 cancel_charge(memcg, nr_pages);
6597 }
6598
6599 struct uncharge_gather {
6600 struct mem_cgroup *memcg;
6601 unsigned long pgpgout;
6602 unsigned long nr_anon;
6603 unsigned long nr_file;
6604 unsigned long nr_kmem;
6605 unsigned long nr_huge;
6606 unsigned long nr_shmem;
6607 struct page *dummy_page;
6608 };
6609
6610 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6611 {
6612 memset(ug, 0, sizeof(*ug));
6613 }
6614
6615 static void uncharge_batch(const struct uncharge_gather *ug)
6616 {
6617 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6618 unsigned long flags;
6619
6620 if (!mem_cgroup_is_root(ug->memcg)) {
6621 page_counter_uncharge(&ug->memcg->memory, nr_pages);
6622 if (do_memsw_account())
6623 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6624 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6625 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6626 memcg_oom_recover(ug->memcg);
6627 }
6628
6629 local_irq_save(flags);
6630 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6631 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6632 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6633 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6634 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6635 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6636 memcg_check_events(ug->memcg, ug->dummy_page);
6637 local_irq_restore(flags);
6638
6639 if (!mem_cgroup_is_root(ug->memcg))
6640 css_put_many(&ug->memcg->css, nr_pages);
6641 }
6642
6643 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6644 {
6645 VM_BUG_ON_PAGE(PageLRU(page), page);
6646 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6647 !PageHWPoison(page) , page);
6648
6649 if (!page->mem_cgroup)
6650 return;
6651
6652 /*
6653 * Nobody should be changing or seriously looking at
6654 * page->mem_cgroup at this point, we have fully
6655 * exclusive access to the page.
6656 */
6657
6658 if (ug->memcg != page->mem_cgroup) {
6659 if (ug->memcg) {
6660 uncharge_batch(ug);
6661 uncharge_gather_clear(ug);
6662 }
6663 ug->memcg = page->mem_cgroup;
6664 }
6665
6666 if (!PageKmemcg(page)) {
6667 unsigned int nr_pages = 1;
6668
6669 if (PageTransHuge(page)) {
6670 nr_pages = compound_nr(page);
6671 ug->nr_huge += nr_pages;
6672 }
6673 if (PageAnon(page))
6674 ug->nr_anon += nr_pages;
6675 else {
6676 ug->nr_file += nr_pages;
6677 if (PageSwapBacked(page))
6678 ug->nr_shmem += nr_pages;
6679 }
6680 ug->pgpgout++;
6681 } else {
6682 ug->nr_kmem += compound_nr(page);
6683 __ClearPageKmemcg(page);
6684 }
6685
6686 ug->dummy_page = page;
6687 page->mem_cgroup = NULL;
6688 }
6689
6690 static void uncharge_list(struct list_head *page_list)
6691 {
6692 struct uncharge_gather ug;
6693 struct list_head *next;
6694
6695 uncharge_gather_clear(&ug);
6696
6697 /*
6698 * Note that the list can be a single page->lru; hence the
6699 * do-while loop instead of a simple list_for_each_entry().
6700 */
6701 next = page_list->next;
6702 do {
6703 struct page *page;
6704
6705 page = list_entry(next, struct page, lru);
6706 next = page->lru.next;
6707
6708 uncharge_page(page, &ug);
6709 } while (next != page_list);
6710
6711 if (ug.memcg)
6712 uncharge_batch(&ug);
6713 }
6714
6715 /**
6716 * mem_cgroup_uncharge - uncharge a page
6717 * @page: page to uncharge
6718 *
6719 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6720 * mem_cgroup_commit_charge().
6721 */
6722 void mem_cgroup_uncharge(struct page *page)
6723 {
6724 struct uncharge_gather ug;
6725
6726 if (mem_cgroup_disabled())
6727 return;
6728
6729 /* Don't touch page->lru of any random page, pre-check: */
6730 if (!page->mem_cgroup)
6731 return;
6732
6733 uncharge_gather_clear(&ug);
6734 uncharge_page(page, &ug);
6735 uncharge_batch(&ug);
6736 }
6737
6738 /**
6739 * mem_cgroup_uncharge_list - uncharge a list of page
6740 * @page_list: list of pages to uncharge
6741 *
6742 * Uncharge a list of pages previously charged with
6743 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6744 */
6745 void mem_cgroup_uncharge_list(struct list_head *page_list)
6746 {
6747 if (mem_cgroup_disabled())
6748 return;
6749
6750 if (!list_empty(page_list))
6751 uncharge_list(page_list);
6752 }
6753
6754 /**
6755 * mem_cgroup_migrate - charge a page's replacement
6756 * @oldpage: currently circulating page
6757 * @newpage: replacement page
6758 *
6759 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6760 * be uncharged upon free.
6761 *
6762 * Both pages must be locked, @newpage->mapping must be set up.
6763 */
6764 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6765 {
6766 struct mem_cgroup *memcg;
6767 unsigned int nr_pages;
6768 unsigned long flags;
6769
6770 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6771 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6772 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6773 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6774 newpage);
6775
6776 if (mem_cgroup_disabled())
6777 return;
6778
6779 /* Page cache replacement: new page already charged? */
6780 if (newpage->mem_cgroup)
6781 return;
6782
6783 /* Swapcache readahead pages can get replaced before being charged */
6784 memcg = oldpage->mem_cgroup;
6785 if (!memcg)
6786 return;
6787
6788 /* Force-charge the new page. The old one will be freed soon */
6789 nr_pages = hpage_nr_pages(newpage);
6790
6791 page_counter_charge(&memcg->memory, nr_pages);
6792 if (do_memsw_account())
6793 page_counter_charge(&memcg->memsw, nr_pages);
6794 css_get_many(&memcg->css, nr_pages);
6795
6796 commit_charge(newpage, memcg, false);
6797
6798 local_irq_save(flags);
6799 mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage),
6800 nr_pages);
6801 memcg_check_events(memcg, newpage);
6802 local_irq_restore(flags);
6803 }
6804
6805 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6806 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6807
6808 void mem_cgroup_sk_alloc(struct sock *sk)
6809 {
6810 struct mem_cgroup *memcg;
6811
6812 if (!mem_cgroup_sockets_enabled)
6813 return;
6814
6815 /* Do not associate the sock with unrelated interrupted task's memcg. */
6816 if (in_interrupt())
6817 return;
6818
6819 rcu_read_lock();
6820 memcg = mem_cgroup_from_task(current);
6821 if (memcg == root_mem_cgroup)
6822 goto out;
6823 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6824 goto out;
6825 if (css_tryget(&memcg->css))
6826 sk->sk_memcg = memcg;
6827 out:
6828 rcu_read_unlock();
6829 }
6830
6831 void mem_cgroup_sk_free(struct sock *sk)
6832 {
6833 if (sk->sk_memcg)
6834 css_put(&sk->sk_memcg->css);
6835 }
6836
6837 /**
6838 * mem_cgroup_charge_skmem - charge socket memory
6839 * @memcg: memcg to charge
6840 * @nr_pages: number of pages to charge
6841 *
6842 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6843 * @memcg's configured limit, %false if the charge had to be forced.
6844 */
6845 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6846 {
6847 gfp_t gfp_mask = GFP_KERNEL;
6848
6849 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6850 struct page_counter *fail;
6851
6852 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6853 memcg->tcpmem_pressure = 0;
6854 return true;
6855 }
6856 page_counter_charge(&memcg->tcpmem, nr_pages);
6857 memcg->tcpmem_pressure = 1;
6858 return false;
6859 }
6860
6861 /* Don't block in the packet receive path */
6862 if (in_softirq())
6863 gfp_mask = GFP_NOWAIT;
6864
6865 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6866
6867 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6868 return true;
6869
6870 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6871 return false;
6872 }
6873
6874 /**
6875 * mem_cgroup_uncharge_skmem - uncharge socket memory
6876 * @memcg: memcg to uncharge
6877 * @nr_pages: number of pages to uncharge
6878 */
6879 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6880 {
6881 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6882 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6883 return;
6884 }
6885
6886 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6887
6888 refill_stock(memcg, nr_pages);
6889 }
6890
6891 static int __init cgroup_memory(char *s)
6892 {
6893 char *token;
6894
6895 while ((token = strsep(&s, ",")) != NULL) {
6896 if (!*token)
6897 continue;
6898 if (!strcmp(token, "nosocket"))
6899 cgroup_memory_nosocket = true;
6900 if (!strcmp(token, "nokmem"))
6901 cgroup_memory_nokmem = true;
6902 }
6903 return 0;
6904 }
6905 __setup("cgroup.memory=", cgroup_memory);
6906
6907 /*
6908 * subsys_initcall() for memory controller.
6909 *
6910 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6911 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6912 * basically everything that doesn't depend on a specific mem_cgroup structure
6913 * should be initialized from here.
6914 */
6915 static int __init mem_cgroup_init(void)
6916 {
6917 int cpu, node;
6918
6919 #ifdef CONFIG_MEMCG_KMEM
6920 /*
6921 * Kmem cache creation is mostly done with the slab_mutex held,
6922 * so use a workqueue with limited concurrency to avoid stalling
6923 * all worker threads in case lots of cgroups are created and
6924 * destroyed simultaneously.
6925 */
6926 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6927 BUG_ON(!memcg_kmem_cache_wq);
6928 #endif
6929
6930 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6931 memcg_hotplug_cpu_dead);
6932
6933 for_each_possible_cpu(cpu)
6934 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6935 drain_local_stock);
6936
6937 for_each_node(node) {
6938 struct mem_cgroup_tree_per_node *rtpn;
6939
6940 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6941 node_online(node) ? node : NUMA_NO_NODE);
6942
6943 rtpn->rb_root = RB_ROOT;
6944 rtpn->rb_rightmost = NULL;
6945 spin_lock_init(&rtpn->lock);
6946 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6947 }
6948
6949 return 0;
6950 }
6951 subsys_initcall(mem_cgroup_init);
6952
6953 #ifdef CONFIG_MEMCG_SWAP
6954 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6955 {
6956 while (!refcount_inc_not_zero(&memcg->id.ref)) {
6957 /*
6958 * The root cgroup cannot be destroyed, so it's refcount must
6959 * always be >= 1.
6960 */
6961 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6962 VM_BUG_ON(1);
6963 break;
6964 }
6965 memcg = parent_mem_cgroup(memcg);
6966 if (!memcg)
6967 memcg = root_mem_cgroup;
6968 }
6969 return memcg;
6970 }
6971
6972 /**
6973 * mem_cgroup_swapout - transfer a memsw charge to swap
6974 * @page: page whose memsw charge to transfer
6975 * @entry: swap entry to move the charge to
6976 *
6977 * Transfer the memsw charge of @page to @entry.
6978 */
6979 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6980 {
6981 struct mem_cgroup *memcg, *swap_memcg;
6982 unsigned int nr_entries;
6983 unsigned short oldid;
6984
6985 VM_BUG_ON_PAGE(PageLRU(page), page);
6986 VM_BUG_ON_PAGE(page_count(page), page);
6987
6988 if (!do_memsw_account())
6989 return;
6990
6991 memcg = page->mem_cgroup;
6992
6993 /* Readahead page, never charged */
6994 if (!memcg)
6995 return;
6996
6997 /*
6998 * In case the memcg owning these pages has been offlined and doesn't
6999 * have an ID allocated to it anymore, charge the closest online
7000 * ancestor for the swap instead and transfer the memory+swap charge.
7001 */
7002 swap_memcg = mem_cgroup_id_get_online(memcg);
7003 nr_entries = hpage_nr_pages(page);
7004 /* Get references for the tail pages, too */
7005 if (nr_entries > 1)
7006 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7007 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7008 nr_entries);
7009 VM_BUG_ON_PAGE(oldid, page);
7010 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7011
7012 page->mem_cgroup = NULL;
7013
7014 if (!mem_cgroup_is_root(memcg))
7015 page_counter_uncharge(&memcg->memory, nr_entries);
7016
7017 if (memcg != swap_memcg) {
7018 if (!mem_cgroup_is_root(swap_memcg))
7019 page_counter_charge(&swap_memcg->memsw, nr_entries);
7020 page_counter_uncharge(&memcg->memsw, nr_entries);
7021 }
7022
7023 /*
7024 * Interrupts should be disabled here because the caller holds the
7025 * i_pages lock which is taken with interrupts-off. It is
7026 * important here to have the interrupts disabled because it is the
7027 * only synchronisation we have for updating the per-CPU variables.
7028 */
7029 VM_BUG_ON(!irqs_disabled());
7030 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
7031 -nr_entries);
7032 memcg_check_events(memcg, page);
7033
7034 if (!mem_cgroup_is_root(memcg))
7035 css_put_many(&memcg->css, nr_entries);
7036 }
7037
7038 /**
7039 * mem_cgroup_try_charge_swap - try charging swap space for a page
7040 * @page: page being added to swap
7041 * @entry: swap entry to charge
7042 *
7043 * Try to charge @page's memcg for the swap space at @entry.
7044 *
7045 * Returns 0 on success, -ENOMEM on failure.
7046 */
7047 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7048 {
7049 unsigned int nr_pages = hpage_nr_pages(page);
7050 struct page_counter *counter;
7051 struct mem_cgroup *memcg;
7052 unsigned short oldid;
7053
7054 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
7055 return 0;
7056
7057 memcg = page->mem_cgroup;
7058
7059 /* Readahead page, never charged */
7060 if (!memcg)
7061 return 0;
7062
7063 if (!entry.val) {
7064 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7065 return 0;
7066 }
7067
7068 memcg = mem_cgroup_id_get_online(memcg);
7069
7070 if (!mem_cgroup_is_root(memcg) &&
7071 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7072 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7073 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7074 mem_cgroup_id_put(memcg);
7075 return -ENOMEM;
7076 }
7077
7078 /* Get references for the tail pages, too */
7079 if (nr_pages > 1)
7080 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7081 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7082 VM_BUG_ON_PAGE(oldid, page);
7083 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7084
7085 return 0;
7086 }
7087
7088 /**
7089 * mem_cgroup_uncharge_swap - uncharge swap space
7090 * @entry: swap entry to uncharge
7091 * @nr_pages: the amount of swap space to uncharge
7092 */
7093 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7094 {
7095 struct mem_cgroup *memcg;
7096 unsigned short id;
7097
7098 if (!do_swap_account)
7099 return;
7100
7101 id = swap_cgroup_record(entry, 0, nr_pages);
7102 rcu_read_lock();
7103 memcg = mem_cgroup_from_id(id);
7104 if (memcg) {
7105 if (!mem_cgroup_is_root(memcg)) {
7106 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7107 page_counter_uncharge(&memcg->swap, nr_pages);
7108 else
7109 page_counter_uncharge(&memcg->memsw, nr_pages);
7110 }
7111 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7112 mem_cgroup_id_put_many(memcg, nr_pages);
7113 }
7114 rcu_read_unlock();
7115 }
7116
7117 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7118 {
7119 long nr_swap_pages = get_nr_swap_pages();
7120
7121 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7122 return nr_swap_pages;
7123 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7124 nr_swap_pages = min_t(long, nr_swap_pages,
7125 READ_ONCE(memcg->swap.max) -
7126 page_counter_read(&memcg->swap));
7127 return nr_swap_pages;
7128 }
7129
7130 bool mem_cgroup_swap_full(struct page *page)
7131 {
7132 struct mem_cgroup *memcg;
7133
7134 VM_BUG_ON_PAGE(!PageLocked(page), page);
7135
7136 if (vm_swap_full())
7137 return true;
7138 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7139 return false;
7140
7141 memcg = page->mem_cgroup;
7142 if (!memcg)
7143 return false;
7144
7145 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7146 if (page_counter_read(&memcg->swap) * 2 >=
7147 READ_ONCE(memcg->swap.max))
7148 return true;
7149
7150 return false;
7151 }
7152
7153 /* for remember boot option*/
7154 #ifdef CONFIG_MEMCG_SWAP_ENABLED
7155 static int really_do_swap_account __initdata = 1;
7156 #else
7157 static int really_do_swap_account __initdata;
7158 #endif
7159
7160 static int __init enable_swap_account(char *s)
7161 {
7162 if (!strcmp(s, "1"))
7163 really_do_swap_account = 1;
7164 else if (!strcmp(s, "0"))
7165 really_do_swap_account = 0;
7166 return 1;
7167 }
7168 __setup("swapaccount=", enable_swap_account);
7169
7170 static u64 swap_current_read(struct cgroup_subsys_state *css,
7171 struct cftype *cft)
7172 {
7173 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7174
7175 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7176 }
7177
7178 static int swap_max_show(struct seq_file *m, void *v)
7179 {
7180 return seq_puts_memcg_tunable(m,
7181 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7182 }
7183
7184 static ssize_t swap_max_write(struct kernfs_open_file *of,
7185 char *buf, size_t nbytes, loff_t off)
7186 {
7187 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7188 unsigned long max;
7189 int err;
7190
7191 buf = strstrip(buf);
7192 err = page_counter_memparse(buf, "max", &max);
7193 if (err)
7194 return err;
7195
7196 xchg(&memcg->swap.max, max);
7197
7198 return nbytes;
7199 }
7200
7201 static int swap_events_show(struct seq_file *m, void *v)
7202 {
7203 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7204
7205 seq_printf(m, "max %lu\n",
7206 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7207 seq_printf(m, "fail %lu\n",
7208 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7209
7210 return 0;
7211 }
7212
7213 static struct cftype swap_files[] = {
7214 {
7215 .name = "swap.current",
7216 .flags = CFTYPE_NOT_ON_ROOT,
7217 .read_u64 = swap_current_read,
7218 },
7219 {
7220 .name = "swap.max",
7221 .flags = CFTYPE_NOT_ON_ROOT,
7222 .seq_show = swap_max_show,
7223 .write = swap_max_write,
7224 },
7225 {
7226 .name = "swap.events",
7227 .flags = CFTYPE_NOT_ON_ROOT,
7228 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7229 .seq_show = swap_events_show,
7230 },
7231 { } /* terminate */
7232 };
7233
7234 static struct cftype memsw_cgroup_files[] = {
7235 {
7236 .name = "memsw.usage_in_bytes",
7237 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7238 .read_u64 = mem_cgroup_read_u64,
7239 },
7240 {
7241 .name = "memsw.max_usage_in_bytes",
7242 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7243 .write = mem_cgroup_reset,
7244 .read_u64 = mem_cgroup_read_u64,
7245 },
7246 {
7247 .name = "memsw.limit_in_bytes",
7248 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7249 .write = mem_cgroup_write,
7250 .read_u64 = mem_cgroup_read_u64,
7251 },
7252 {
7253 .name = "memsw.failcnt",
7254 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7255 .write = mem_cgroup_reset,
7256 .read_u64 = mem_cgroup_read_u64,
7257 },
7258 { }, /* terminate */
7259 };
7260
7261 static int __init mem_cgroup_swap_init(void)
7262 {
7263 if (!mem_cgroup_disabled() && really_do_swap_account) {
7264 do_swap_account = 1;
7265 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7266 swap_files));
7267 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7268 memsw_cgroup_files));
7269 }
7270 return 0;
7271 }
7272 subsys_initcall(mem_cgroup_swap_init);
7273
7274 #endif /* CONFIG_MEMCG_SWAP */