]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/memory.c
Merge tag 'block-5.7-2020-04-10' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / mm / memory.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74
75 #include <trace/events/kmem.h>
76
77 #include <asm/io.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
81 #include <asm/tlb.h>
82 #include <asm/tlbflush.h>
83 #include <asm/pgtable.h>
84
85 #include "internal.h"
86
87 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
88 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
89 #endif
90
91 #ifndef CONFIG_NEED_MULTIPLE_NODES
92 /* use the per-pgdat data instead for discontigmem - mbligh */
93 unsigned long max_mapnr;
94 EXPORT_SYMBOL(max_mapnr);
95
96 struct page *mem_map;
97 EXPORT_SYMBOL(mem_map);
98 #endif
99
100 /*
101 * A number of key systems in x86 including ioremap() rely on the assumption
102 * that high_memory defines the upper bound on direct map memory, then end
103 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
104 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
105 * and ZONE_HIGHMEM.
106 */
107 void *high_memory;
108 EXPORT_SYMBOL(high_memory);
109
110 /*
111 * Randomize the address space (stacks, mmaps, brk, etc.).
112 *
113 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
114 * as ancient (libc5 based) binaries can segfault. )
115 */
116 int randomize_va_space __read_mostly =
117 #ifdef CONFIG_COMPAT_BRK
118 1;
119 #else
120 2;
121 #endif
122
123 #ifndef arch_faults_on_old_pte
124 static inline bool arch_faults_on_old_pte(void)
125 {
126 /*
127 * Those arches which don't have hw access flag feature need to
128 * implement their own helper. By default, "true" means pagefault
129 * will be hit on old pte.
130 */
131 return true;
132 }
133 #endif
134
135 static int __init disable_randmaps(char *s)
136 {
137 randomize_va_space = 0;
138 return 1;
139 }
140 __setup("norandmaps", disable_randmaps);
141
142 unsigned long zero_pfn __read_mostly;
143 EXPORT_SYMBOL(zero_pfn);
144
145 unsigned long highest_memmap_pfn __read_mostly;
146
147 /*
148 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
149 */
150 static int __init init_zero_pfn(void)
151 {
152 zero_pfn = page_to_pfn(ZERO_PAGE(0));
153 return 0;
154 }
155 core_initcall(init_zero_pfn);
156
157 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
158 {
159 trace_rss_stat(mm, member, count);
160 }
161
162 #if defined(SPLIT_RSS_COUNTING)
163
164 void sync_mm_rss(struct mm_struct *mm)
165 {
166 int i;
167
168 for (i = 0; i < NR_MM_COUNTERS; i++) {
169 if (current->rss_stat.count[i]) {
170 add_mm_counter(mm, i, current->rss_stat.count[i]);
171 current->rss_stat.count[i] = 0;
172 }
173 }
174 current->rss_stat.events = 0;
175 }
176
177 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
178 {
179 struct task_struct *task = current;
180
181 if (likely(task->mm == mm))
182 task->rss_stat.count[member] += val;
183 else
184 add_mm_counter(mm, member, val);
185 }
186 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
187 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
188
189 /* sync counter once per 64 page faults */
190 #define TASK_RSS_EVENTS_THRESH (64)
191 static void check_sync_rss_stat(struct task_struct *task)
192 {
193 if (unlikely(task != current))
194 return;
195 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
196 sync_mm_rss(task->mm);
197 }
198 #else /* SPLIT_RSS_COUNTING */
199
200 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
201 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
202
203 static void check_sync_rss_stat(struct task_struct *task)
204 {
205 }
206
207 #endif /* SPLIT_RSS_COUNTING */
208
209 /*
210 * Note: this doesn't free the actual pages themselves. That
211 * has been handled earlier when unmapping all the memory regions.
212 */
213 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
214 unsigned long addr)
215 {
216 pgtable_t token = pmd_pgtable(*pmd);
217 pmd_clear(pmd);
218 pte_free_tlb(tlb, token, addr);
219 mm_dec_nr_ptes(tlb->mm);
220 }
221
222 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
223 unsigned long addr, unsigned long end,
224 unsigned long floor, unsigned long ceiling)
225 {
226 pmd_t *pmd;
227 unsigned long next;
228 unsigned long start;
229
230 start = addr;
231 pmd = pmd_offset(pud, addr);
232 do {
233 next = pmd_addr_end(addr, end);
234 if (pmd_none_or_clear_bad(pmd))
235 continue;
236 free_pte_range(tlb, pmd, addr);
237 } while (pmd++, addr = next, addr != end);
238
239 start &= PUD_MASK;
240 if (start < floor)
241 return;
242 if (ceiling) {
243 ceiling &= PUD_MASK;
244 if (!ceiling)
245 return;
246 }
247 if (end - 1 > ceiling - 1)
248 return;
249
250 pmd = pmd_offset(pud, start);
251 pud_clear(pud);
252 pmd_free_tlb(tlb, pmd, start);
253 mm_dec_nr_pmds(tlb->mm);
254 }
255
256 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
257 unsigned long addr, unsigned long end,
258 unsigned long floor, unsigned long ceiling)
259 {
260 pud_t *pud;
261 unsigned long next;
262 unsigned long start;
263
264 start = addr;
265 pud = pud_offset(p4d, addr);
266 do {
267 next = pud_addr_end(addr, end);
268 if (pud_none_or_clear_bad(pud))
269 continue;
270 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
271 } while (pud++, addr = next, addr != end);
272
273 start &= P4D_MASK;
274 if (start < floor)
275 return;
276 if (ceiling) {
277 ceiling &= P4D_MASK;
278 if (!ceiling)
279 return;
280 }
281 if (end - 1 > ceiling - 1)
282 return;
283
284 pud = pud_offset(p4d, start);
285 p4d_clear(p4d);
286 pud_free_tlb(tlb, pud, start);
287 mm_dec_nr_puds(tlb->mm);
288 }
289
290 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
291 unsigned long addr, unsigned long end,
292 unsigned long floor, unsigned long ceiling)
293 {
294 p4d_t *p4d;
295 unsigned long next;
296 unsigned long start;
297
298 start = addr;
299 p4d = p4d_offset(pgd, addr);
300 do {
301 next = p4d_addr_end(addr, end);
302 if (p4d_none_or_clear_bad(p4d))
303 continue;
304 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
305 } while (p4d++, addr = next, addr != end);
306
307 start &= PGDIR_MASK;
308 if (start < floor)
309 return;
310 if (ceiling) {
311 ceiling &= PGDIR_MASK;
312 if (!ceiling)
313 return;
314 }
315 if (end - 1 > ceiling - 1)
316 return;
317
318 p4d = p4d_offset(pgd, start);
319 pgd_clear(pgd);
320 p4d_free_tlb(tlb, p4d, start);
321 }
322
323 /*
324 * This function frees user-level page tables of a process.
325 */
326 void free_pgd_range(struct mmu_gather *tlb,
327 unsigned long addr, unsigned long end,
328 unsigned long floor, unsigned long ceiling)
329 {
330 pgd_t *pgd;
331 unsigned long next;
332
333 /*
334 * The next few lines have given us lots of grief...
335 *
336 * Why are we testing PMD* at this top level? Because often
337 * there will be no work to do at all, and we'd prefer not to
338 * go all the way down to the bottom just to discover that.
339 *
340 * Why all these "- 1"s? Because 0 represents both the bottom
341 * of the address space and the top of it (using -1 for the
342 * top wouldn't help much: the masks would do the wrong thing).
343 * The rule is that addr 0 and floor 0 refer to the bottom of
344 * the address space, but end 0 and ceiling 0 refer to the top
345 * Comparisons need to use "end - 1" and "ceiling - 1" (though
346 * that end 0 case should be mythical).
347 *
348 * Wherever addr is brought up or ceiling brought down, we must
349 * be careful to reject "the opposite 0" before it confuses the
350 * subsequent tests. But what about where end is brought down
351 * by PMD_SIZE below? no, end can't go down to 0 there.
352 *
353 * Whereas we round start (addr) and ceiling down, by different
354 * masks at different levels, in order to test whether a table
355 * now has no other vmas using it, so can be freed, we don't
356 * bother to round floor or end up - the tests don't need that.
357 */
358
359 addr &= PMD_MASK;
360 if (addr < floor) {
361 addr += PMD_SIZE;
362 if (!addr)
363 return;
364 }
365 if (ceiling) {
366 ceiling &= PMD_MASK;
367 if (!ceiling)
368 return;
369 }
370 if (end - 1 > ceiling - 1)
371 end -= PMD_SIZE;
372 if (addr > end - 1)
373 return;
374 /*
375 * We add page table cache pages with PAGE_SIZE,
376 * (see pte_free_tlb()), flush the tlb if we need
377 */
378 tlb_change_page_size(tlb, PAGE_SIZE);
379 pgd = pgd_offset(tlb->mm, addr);
380 do {
381 next = pgd_addr_end(addr, end);
382 if (pgd_none_or_clear_bad(pgd))
383 continue;
384 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
385 } while (pgd++, addr = next, addr != end);
386 }
387
388 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
389 unsigned long floor, unsigned long ceiling)
390 {
391 while (vma) {
392 struct vm_area_struct *next = vma->vm_next;
393 unsigned long addr = vma->vm_start;
394
395 /*
396 * Hide vma from rmap and truncate_pagecache before freeing
397 * pgtables
398 */
399 unlink_anon_vmas(vma);
400 unlink_file_vma(vma);
401
402 if (is_vm_hugetlb_page(vma)) {
403 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
404 floor, next ? next->vm_start : ceiling);
405 } else {
406 /*
407 * Optimization: gather nearby vmas into one call down
408 */
409 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
410 && !is_vm_hugetlb_page(next)) {
411 vma = next;
412 next = vma->vm_next;
413 unlink_anon_vmas(vma);
414 unlink_file_vma(vma);
415 }
416 free_pgd_range(tlb, addr, vma->vm_end,
417 floor, next ? next->vm_start : ceiling);
418 }
419 vma = next;
420 }
421 }
422
423 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
424 {
425 spinlock_t *ptl;
426 pgtable_t new = pte_alloc_one(mm);
427 if (!new)
428 return -ENOMEM;
429
430 /*
431 * Ensure all pte setup (eg. pte page lock and page clearing) are
432 * visible before the pte is made visible to other CPUs by being
433 * put into page tables.
434 *
435 * The other side of the story is the pointer chasing in the page
436 * table walking code (when walking the page table without locking;
437 * ie. most of the time). Fortunately, these data accesses consist
438 * of a chain of data-dependent loads, meaning most CPUs (alpha
439 * being the notable exception) will already guarantee loads are
440 * seen in-order. See the alpha page table accessors for the
441 * smp_read_barrier_depends() barriers in page table walking code.
442 */
443 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
444
445 ptl = pmd_lock(mm, pmd);
446 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
447 mm_inc_nr_ptes(mm);
448 pmd_populate(mm, pmd, new);
449 new = NULL;
450 }
451 spin_unlock(ptl);
452 if (new)
453 pte_free(mm, new);
454 return 0;
455 }
456
457 int __pte_alloc_kernel(pmd_t *pmd)
458 {
459 pte_t *new = pte_alloc_one_kernel(&init_mm);
460 if (!new)
461 return -ENOMEM;
462
463 smp_wmb(); /* See comment in __pte_alloc */
464
465 spin_lock(&init_mm.page_table_lock);
466 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
467 pmd_populate_kernel(&init_mm, pmd, new);
468 new = NULL;
469 }
470 spin_unlock(&init_mm.page_table_lock);
471 if (new)
472 pte_free_kernel(&init_mm, new);
473 return 0;
474 }
475
476 static inline void init_rss_vec(int *rss)
477 {
478 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
479 }
480
481 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
482 {
483 int i;
484
485 if (current->mm == mm)
486 sync_mm_rss(mm);
487 for (i = 0; i < NR_MM_COUNTERS; i++)
488 if (rss[i])
489 add_mm_counter(mm, i, rss[i]);
490 }
491
492 /*
493 * This function is called to print an error when a bad pte
494 * is found. For example, we might have a PFN-mapped pte in
495 * a region that doesn't allow it.
496 *
497 * The calling function must still handle the error.
498 */
499 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
500 pte_t pte, struct page *page)
501 {
502 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
503 p4d_t *p4d = p4d_offset(pgd, addr);
504 pud_t *pud = pud_offset(p4d, addr);
505 pmd_t *pmd = pmd_offset(pud, addr);
506 struct address_space *mapping;
507 pgoff_t index;
508 static unsigned long resume;
509 static unsigned long nr_shown;
510 static unsigned long nr_unshown;
511
512 /*
513 * Allow a burst of 60 reports, then keep quiet for that minute;
514 * or allow a steady drip of one report per second.
515 */
516 if (nr_shown == 60) {
517 if (time_before(jiffies, resume)) {
518 nr_unshown++;
519 return;
520 }
521 if (nr_unshown) {
522 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
523 nr_unshown);
524 nr_unshown = 0;
525 }
526 nr_shown = 0;
527 }
528 if (nr_shown++ == 0)
529 resume = jiffies + 60 * HZ;
530
531 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
532 index = linear_page_index(vma, addr);
533
534 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
535 current->comm,
536 (long long)pte_val(pte), (long long)pmd_val(*pmd));
537 if (page)
538 dump_page(page, "bad pte");
539 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
540 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
541 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
542 vma->vm_file,
543 vma->vm_ops ? vma->vm_ops->fault : NULL,
544 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
545 mapping ? mapping->a_ops->readpage : NULL);
546 dump_stack();
547 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
548 }
549
550 /*
551 * vm_normal_page -- This function gets the "struct page" associated with a pte.
552 *
553 * "Special" mappings do not wish to be associated with a "struct page" (either
554 * it doesn't exist, or it exists but they don't want to touch it). In this
555 * case, NULL is returned here. "Normal" mappings do have a struct page.
556 *
557 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558 * pte bit, in which case this function is trivial. Secondly, an architecture
559 * may not have a spare pte bit, which requires a more complicated scheme,
560 * described below.
561 *
562 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563 * special mapping (even if there are underlying and valid "struct pages").
564 * COWed pages of a VM_PFNMAP are always normal.
565 *
566 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
568 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569 * mapping will always honor the rule
570 *
571 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
572 *
573 * And for normal mappings this is false.
574 *
575 * This restricts such mappings to be a linear translation from virtual address
576 * to pfn. To get around this restriction, we allow arbitrary mappings so long
577 * as the vma is not a COW mapping; in that case, we know that all ptes are
578 * special (because none can have been COWed).
579 *
580 *
581 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
582 *
583 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584 * page" backing, however the difference is that _all_ pages with a struct
585 * page (that is, those where pfn_valid is true) are refcounted and considered
586 * normal pages by the VM. The disadvantage is that pages are refcounted
587 * (which can be slower and simply not an option for some PFNMAP users). The
588 * advantage is that we don't have to follow the strict linearity rule of
589 * PFNMAP mappings in order to support COWable mappings.
590 *
591 */
592 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
593 pte_t pte)
594 {
595 unsigned long pfn = pte_pfn(pte);
596
597 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
598 if (likely(!pte_special(pte)))
599 goto check_pfn;
600 if (vma->vm_ops && vma->vm_ops->find_special_page)
601 return vma->vm_ops->find_special_page(vma, addr);
602 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
603 return NULL;
604 if (is_zero_pfn(pfn))
605 return NULL;
606 if (pte_devmap(pte))
607 return NULL;
608
609 print_bad_pte(vma, addr, pte, NULL);
610 return NULL;
611 }
612
613 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614
615 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 if (vma->vm_flags & VM_MIXEDMAP) {
617 if (!pfn_valid(pfn))
618 return NULL;
619 goto out;
620 } else {
621 unsigned long off;
622 off = (addr - vma->vm_start) >> PAGE_SHIFT;
623 if (pfn == vma->vm_pgoff + off)
624 return NULL;
625 if (!is_cow_mapping(vma->vm_flags))
626 return NULL;
627 }
628 }
629
630 if (is_zero_pfn(pfn))
631 return NULL;
632
633 check_pfn:
634 if (unlikely(pfn > highest_memmap_pfn)) {
635 print_bad_pte(vma, addr, pte, NULL);
636 return NULL;
637 }
638
639 /*
640 * NOTE! We still have PageReserved() pages in the page tables.
641 * eg. VDSO mappings can cause them to exist.
642 */
643 out:
644 return pfn_to_page(pfn);
645 }
646
647 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
648 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
649 pmd_t pmd)
650 {
651 unsigned long pfn = pmd_pfn(pmd);
652
653 /*
654 * There is no pmd_special() but there may be special pmds, e.g.
655 * in a direct-access (dax) mapping, so let's just replicate the
656 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
657 */
658 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
659 if (vma->vm_flags & VM_MIXEDMAP) {
660 if (!pfn_valid(pfn))
661 return NULL;
662 goto out;
663 } else {
664 unsigned long off;
665 off = (addr - vma->vm_start) >> PAGE_SHIFT;
666 if (pfn == vma->vm_pgoff + off)
667 return NULL;
668 if (!is_cow_mapping(vma->vm_flags))
669 return NULL;
670 }
671 }
672
673 if (pmd_devmap(pmd))
674 return NULL;
675 if (is_huge_zero_pmd(pmd))
676 return NULL;
677 if (unlikely(pfn > highest_memmap_pfn))
678 return NULL;
679
680 /*
681 * NOTE! We still have PageReserved() pages in the page tables.
682 * eg. VDSO mappings can cause them to exist.
683 */
684 out:
685 return pfn_to_page(pfn);
686 }
687 #endif
688
689 /*
690 * copy one vm_area from one task to the other. Assumes the page tables
691 * already present in the new task to be cleared in the whole range
692 * covered by this vma.
693 */
694
695 static inline unsigned long
696 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
697 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
698 unsigned long addr, int *rss)
699 {
700 unsigned long vm_flags = vma->vm_flags;
701 pte_t pte = *src_pte;
702 struct page *page;
703
704 /* pte contains position in swap or file, so copy. */
705 if (unlikely(!pte_present(pte))) {
706 swp_entry_t entry = pte_to_swp_entry(pte);
707
708 if (likely(!non_swap_entry(entry))) {
709 if (swap_duplicate(entry) < 0)
710 return entry.val;
711
712 /* make sure dst_mm is on swapoff's mmlist. */
713 if (unlikely(list_empty(&dst_mm->mmlist))) {
714 spin_lock(&mmlist_lock);
715 if (list_empty(&dst_mm->mmlist))
716 list_add(&dst_mm->mmlist,
717 &src_mm->mmlist);
718 spin_unlock(&mmlist_lock);
719 }
720 rss[MM_SWAPENTS]++;
721 } else if (is_migration_entry(entry)) {
722 page = migration_entry_to_page(entry);
723
724 rss[mm_counter(page)]++;
725
726 if (is_write_migration_entry(entry) &&
727 is_cow_mapping(vm_flags)) {
728 /*
729 * COW mappings require pages in both
730 * parent and child to be set to read.
731 */
732 make_migration_entry_read(&entry);
733 pte = swp_entry_to_pte(entry);
734 if (pte_swp_soft_dirty(*src_pte))
735 pte = pte_swp_mksoft_dirty(pte);
736 if (pte_swp_uffd_wp(*src_pte))
737 pte = pte_swp_mkuffd_wp(pte);
738 set_pte_at(src_mm, addr, src_pte, pte);
739 }
740 } else if (is_device_private_entry(entry)) {
741 page = device_private_entry_to_page(entry);
742
743 /*
744 * Update rss count even for unaddressable pages, as
745 * they should treated just like normal pages in this
746 * respect.
747 *
748 * We will likely want to have some new rss counters
749 * for unaddressable pages, at some point. But for now
750 * keep things as they are.
751 */
752 get_page(page);
753 rss[mm_counter(page)]++;
754 page_dup_rmap(page, false);
755
756 /*
757 * We do not preserve soft-dirty information, because so
758 * far, checkpoint/restore is the only feature that
759 * requires that. And checkpoint/restore does not work
760 * when a device driver is involved (you cannot easily
761 * save and restore device driver state).
762 */
763 if (is_write_device_private_entry(entry) &&
764 is_cow_mapping(vm_flags)) {
765 make_device_private_entry_read(&entry);
766 pte = swp_entry_to_pte(entry);
767 if (pte_swp_uffd_wp(*src_pte))
768 pte = pte_swp_mkuffd_wp(pte);
769 set_pte_at(src_mm, addr, src_pte, pte);
770 }
771 }
772 goto out_set_pte;
773 }
774
775 /*
776 * If it's a COW mapping, write protect it both
777 * in the parent and the child
778 */
779 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
780 ptep_set_wrprotect(src_mm, addr, src_pte);
781 pte = pte_wrprotect(pte);
782 }
783
784 /*
785 * If it's a shared mapping, mark it clean in
786 * the child
787 */
788 if (vm_flags & VM_SHARED)
789 pte = pte_mkclean(pte);
790 pte = pte_mkold(pte);
791
792 /*
793 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
794 * does not have the VM_UFFD_WP, which means that the uffd
795 * fork event is not enabled.
796 */
797 if (!(vm_flags & VM_UFFD_WP))
798 pte = pte_clear_uffd_wp(pte);
799
800 page = vm_normal_page(vma, addr, pte);
801 if (page) {
802 get_page(page);
803 page_dup_rmap(page, false);
804 rss[mm_counter(page)]++;
805 } else if (pte_devmap(pte)) {
806 page = pte_page(pte);
807 }
808
809 out_set_pte:
810 set_pte_at(dst_mm, addr, dst_pte, pte);
811 return 0;
812 }
813
814 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
815 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
816 unsigned long addr, unsigned long end)
817 {
818 pte_t *orig_src_pte, *orig_dst_pte;
819 pte_t *src_pte, *dst_pte;
820 spinlock_t *src_ptl, *dst_ptl;
821 int progress = 0;
822 int rss[NR_MM_COUNTERS];
823 swp_entry_t entry = (swp_entry_t){0};
824
825 again:
826 init_rss_vec(rss);
827
828 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
829 if (!dst_pte)
830 return -ENOMEM;
831 src_pte = pte_offset_map(src_pmd, addr);
832 src_ptl = pte_lockptr(src_mm, src_pmd);
833 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
834 orig_src_pte = src_pte;
835 orig_dst_pte = dst_pte;
836 arch_enter_lazy_mmu_mode();
837
838 do {
839 /*
840 * We are holding two locks at this point - either of them
841 * could generate latencies in another task on another CPU.
842 */
843 if (progress >= 32) {
844 progress = 0;
845 if (need_resched() ||
846 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
847 break;
848 }
849 if (pte_none(*src_pte)) {
850 progress++;
851 continue;
852 }
853 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
854 vma, addr, rss);
855 if (entry.val)
856 break;
857 progress += 8;
858 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
859
860 arch_leave_lazy_mmu_mode();
861 spin_unlock(src_ptl);
862 pte_unmap(orig_src_pte);
863 add_mm_rss_vec(dst_mm, rss);
864 pte_unmap_unlock(orig_dst_pte, dst_ptl);
865 cond_resched();
866
867 if (entry.val) {
868 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
869 return -ENOMEM;
870 progress = 0;
871 }
872 if (addr != end)
873 goto again;
874 return 0;
875 }
876
877 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
878 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
879 unsigned long addr, unsigned long end)
880 {
881 pmd_t *src_pmd, *dst_pmd;
882 unsigned long next;
883
884 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
885 if (!dst_pmd)
886 return -ENOMEM;
887 src_pmd = pmd_offset(src_pud, addr);
888 do {
889 next = pmd_addr_end(addr, end);
890 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
891 || pmd_devmap(*src_pmd)) {
892 int err;
893 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
894 err = copy_huge_pmd(dst_mm, src_mm,
895 dst_pmd, src_pmd, addr, vma);
896 if (err == -ENOMEM)
897 return -ENOMEM;
898 if (!err)
899 continue;
900 /* fall through */
901 }
902 if (pmd_none_or_clear_bad(src_pmd))
903 continue;
904 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
905 vma, addr, next))
906 return -ENOMEM;
907 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
908 return 0;
909 }
910
911 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
912 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
913 unsigned long addr, unsigned long end)
914 {
915 pud_t *src_pud, *dst_pud;
916 unsigned long next;
917
918 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
919 if (!dst_pud)
920 return -ENOMEM;
921 src_pud = pud_offset(src_p4d, addr);
922 do {
923 next = pud_addr_end(addr, end);
924 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
925 int err;
926
927 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
928 err = copy_huge_pud(dst_mm, src_mm,
929 dst_pud, src_pud, addr, vma);
930 if (err == -ENOMEM)
931 return -ENOMEM;
932 if (!err)
933 continue;
934 /* fall through */
935 }
936 if (pud_none_or_clear_bad(src_pud))
937 continue;
938 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
939 vma, addr, next))
940 return -ENOMEM;
941 } while (dst_pud++, src_pud++, addr = next, addr != end);
942 return 0;
943 }
944
945 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
946 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
947 unsigned long addr, unsigned long end)
948 {
949 p4d_t *src_p4d, *dst_p4d;
950 unsigned long next;
951
952 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
953 if (!dst_p4d)
954 return -ENOMEM;
955 src_p4d = p4d_offset(src_pgd, addr);
956 do {
957 next = p4d_addr_end(addr, end);
958 if (p4d_none_or_clear_bad(src_p4d))
959 continue;
960 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
961 vma, addr, next))
962 return -ENOMEM;
963 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
964 return 0;
965 }
966
967 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
968 struct vm_area_struct *vma)
969 {
970 pgd_t *src_pgd, *dst_pgd;
971 unsigned long next;
972 unsigned long addr = vma->vm_start;
973 unsigned long end = vma->vm_end;
974 struct mmu_notifier_range range;
975 bool is_cow;
976 int ret;
977
978 /*
979 * Don't copy ptes where a page fault will fill them correctly.
980 * Fork becomes much lighter when there are big shared or private
981 * readonly mappings. The tradeoff is that copy_page_range is more
982 * efficient than faulting.
983 */
984 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
985 !vma->anon_vma)
986 return 0;
987
988 if (is_vm_hugetlb_page(vma))
989 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
990
991 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
992 /*
993 * We do not free on error cases below as remove_vma
994 * gets called on error from higher level routine
995 */
996 ret = track_pfn_copy(vma);
997 if (ret)
998 return ret;
999 }
1000
1001 /*
1002 * We need to invalidate the secondary MMU mappings only when
1003 * there could be a permission downgrade on the ptes of the
1004 * parent mm. And a permission downgrade will only happen if
1005 * is_cow_mapping() returns true.
1006 */
1007 is_cow = is_cow_mapping(vma->vm_flags);
1008
1009 if (is_cow) {
1010 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1011 0, vma, src_mm, addr, end);
1012 mmu_notifier_invalidate_range_start(&range);
1013 }
1014
1015 ret = 0;
1016 dst_pgd = pgd_offset(dst_mm, addr);
1017 src_pgd = pgd_offset(src_mm, addr);
1018 do {
1019 next = pgd_addr_end(addr, end);
1020 if (pgd_none_or_clear_bad(src_pgd))
1021 continue;
1022 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1023 vma, addr, next))) {
1024 ret = -ENOMEM;
1025 break;
1026 }
1027 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1028
1029 if (is_cow)
1030 mmu_notifier_invalidate_range_end(&range);
1031 return ret;
1032 }
1033
1034 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1035 struct vm_area_struct *vma, pmd_t *pmd,
1036 unsigned long addr, unsigned long end,
1037 struct zap_details *details)
1038 {
1039 struct mm_struct *mm = tlb->mm;
1040 int force_flush = 0;
1041 int rss[NR_MM_COUNTERS];
1042 spinlock_t *ptl;
1043 pte_t *start_pte;
1044 pte_t *pte;
1045 swp_entry_t entry;
1046
1047 tlb_change_page_size(tlb, PAGE_SIZE);
1048 again:
1049 init_rss_vec(rss);
1050 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1051 pte = start_pte;
1052 flush_tlb_batched_pending(mm);
1053 arch_enter_lazy_mmu_mode();
1054 do {
1055 pte_t ptent = *pte;
1056 if (pte_none(ptent))
1057 continue;
1058
1059 if (need_resched())
1060 break;
1061
1062 if (pte_present(ptent)) {
1063 struct page *page;
1064
1065 page = vm_normal_page(vma, addr, ptent);
1066 if (unlikely(details) && page) {
1067 /*
1068 * unmap_shared_mapping_pages() wants to
1069 * invalidate cache without truncating:
1070 * unmap shared but keep private pages.
1071 */
1072 if (details->check_mapping &&
1073 details->check_mapping != page_rmapping(page))
1074 continue;
1075 }
1076 ptent = ptep_get_and_clear_full(mm, addr, pte,
1077 tlb->fullmm);
1078 tlb_remove_tlb_entry(tlb, pte, addr);
1079 if (unlikely(!page))
1080 continue;
1081
1082 if (!PageAnon(page)) {
1083 if (pte_dirty(ptent)) {
1084 force_flush = 1;
1085 set_page_dirty(page);
1086 }
1087 if (pte_young(ptent) &&
1088 likely(!(vma->vm_flags & VM_SEQ_READ)))
1089 mark_page_accessed(page);
1090 }
1091 rss[mm_counter(page)]--;
1092 page_remove_rmap(page, false);
1093 if (unlikely(page_mapcount(page) < 0))
1094 print_bad_pte(vma, addr, ptent, page);
1095 if (unlikely(__tlb_remove_page(tlb, page))) {
1096 force_flush = 1;
1097 addr += PAGE_SIZE;
1098 break;
1099 }
1100 continue;
1101 }
1102
1103 entry = pte_to_swp_entry(ptent);
1104 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1105 struct page *page = device_private_entry_to_page(entry);
1106
1107 if (unlikely(details && details->check_mapping)) {
1108 /*
1109 * unmap_shared_mapping_pages() wants to
1110 * invalidate cache without truncating:
1111 * unmap shared but keep private pages.
1112 */
1113 if (details->check_mapping !=
1114 page_rmapping(page))
1115 continue;
1116 }
1117
1118 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1119 rss[mm_counter(page)]--;
1120 page_remove_rmap(page, false);
1121 put_page(page);
1122 continue;
1123 }
1124
1125 /* If details->check_mapping, we leave swap entries. */
1126 if (unlikely(details))
1127 continue;
1128
1129 if (!non_swap_entry(entry))
1130 rss[MM_SWAPENTS]--;
1131 else if (is_migration_entry(entry)) {
1132 struct page *page;
1133
1134 page = migration_entry_to_page(entry);
1135 rss[mm_counter(page)]--;
1136 }
1137 if (unlikely(!free_swap_and_cache(entry)))
1138 print_bad_pte(vma, addr, ptent, NULL);
1139 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1140 } while (pte++, addr += PAGE_SIZE, addr != end);
1141
1142 add_mm_rss_vec(mm, rss);
1143 arch_leave_lazy_mmu_mode();
1144
1145 /* Do the actual TLB flush before dropping ptl */
1146 if (force_flush)
1147 tlb_flush_mmu_tlbonly(tlb);
1148 pte_unmap_unlock(start_pte, ptl);
1149
1150 /*
1151 * If we forced a TLB flush (either due to running out of
1152 * batch buffers or because we needed to flush dirty TLB
1153 * entries before releasing the ptl), free the batched
1154 * memory too. Restart if we didn't do everything.
1155 */
1156 if (force_flush) {
1157 force_flush = 0;
1158 tlb_flush_mmu(tlb);
1159 }
1160
1161 if (addr != end) {
1162 cond_resched();
1163 goto again;
1164 }
1165
1166 return addr;
1167 }
1168
1169 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1170 struct vm_area_struct *vma, pud_t *pud,
1171 unsigned long addr, unsigned long end,
1172 struct zap_details *details)
1173 {
1174 pmd_t *pmd;
1175 unsigned long next;
1176
1177 pmd = pmd_offset(pud, addr);
1178 do {
1179 next = pmd_addr_end(addr, end);
1180 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1181 if (next - addr != HPAGE_PMD_SIZE)
1182 __split_huge_pmd(vma, pmd, addr, false, NULL);
1183 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1184 goto next;
1185 /* fall through */
1186 }
1187 /*
1188 * Here there can be other concurrent MADV_DONTNEED or
1189 * trans huge page faults running, and if the pmd is
1190 * none or trans huge it can change under us. This is
1191 * because MADV_DONTNEED holds the mmap_sem in read
1192 * mode.
1193 */
1194 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1195 goto next;
1196 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1197 next:
1198 cond_resched();
1199 } while (pmd++, addr = next, addr != end);
1200
1201 return addr;
1202 }
1203
1204 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1205 struct vm_area_struct *vma, p4d_t *p4d,
1206 unsigned long addr, unsigned long end,
1207 struct zap_details *details)
1208 {
1209 pud_t *pud;
1210 unsigned long next;
1211
1212 pud = pud_offset(p4d, addr);
1213 do {
1214 next = pud_addr_end(addr, end);
1215 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1216 if (next - addr != HPAGE_PUD_SIZE) {
1217 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1218 split_huge_pud(vma, pud, addr);
1219 } else if (zap_huge_pud(tlb, vma, pud, addr))
1220 goto next;
1221 /* fall through */
1222 }
1223 if (pud_none_or_clear_bad(pud))
1224 continue;
1225 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1226 next:
1227 cond_resched();
1228 } while (pud++, addr = next, addr != end);
1229
1230 return addr;
1231 }
1232
1233 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1234 struct vm_area_struct *vma, pgd_t *pgd,
1235 unsigned long addr, unsigned long end,
1236 struct zap_details *details)
1237 {
1238 p4d_t *p4d;
1239 unsigned long next;
1240
1241 p4d = p4d_offset(pgd, addr);
1242 do {
1243 next = p4d_addr_end(addr, end);
1244 if (p4d_none_or_clear_bad(p4d))
1245 continue;
1246 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1247 } while (p4d++, addr = next, addr != end);
1248
1249 return addr;
1250 }
1251
1252 void unmap_page_range(struct mmu_gather *tlb,
1253 struct vm_area_struct *vma,
1254 unsigned long addr, unsigned long end,
1255 struct zap_details *details)
1256 {
1257 pgd_t *pgd;
1258 unsigned long next;
1259
1260 BUG_ON(addr >= end);
1261 tlb_start_vma(tlb, vma);
1262 pgd = pgd_offset(vma->vm_mm, addr);
1263 do {
1264 next = pgd_addr_end(addr, end);
1265 if (pgd_none_or_clear_bad(pgd))
1266 continue;
1267 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1268 } while (pgd++, addr = next, addr != end);
1269 tlb_end_vma(tlb, vma);
1270 }
1271
1272
1273 static void unmap_single_vma(struct mmu_gather *tlb,
1274 struct vm_area_struct *vma, unsigned long start_addr,
1275 unsigned long end_addr,
1276 struct zap_details *details)
1277 {
1278 unsigned long start = max(vma->vm_start, start_addr);
1279 unsigned long end;
1280
1281 if (start >= vma->vm_end)
1282 return;
1283 end = min(vma->vm_end, end_addr);
1284 if (end <= vma->vm_start)
1285 return;
1286
1287 if (vma->vm_file)
1288 uprobe_munmap(vma, start, end);
1289
1290 if (unlikely(vma->vm_flags & VM_PFNMAP))
1291 untrack_pfn(vma, 0, 0);
1292
1293 if (start != end) {
1294 if (unlikely(is_vm_hugetlb_page(vma))) {
1295 /*
1296 * It is undesirable to test vma->vm_file as it
1297 * should be non-null for valid hugetlb area.
1298 * However, vm_file will be NULL in the error
1299 * cleanup path of mmap_region. When
1300 * hugetlbfs ->mmap method fails,
1301 * mmap_region() nullifies vma->vm_file
1302 * before calling this function to clean up.
1303 * Since no pte has actually been setup, it is
1304 * safe to do nothing in this case.
1305 */
1306 if (vma->vm_file) {
1307 i_mmap_lock_write(vma->vm_file->f_mapping);
1308 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1309 i_mmap_unlock_write(vma->vm_file->f_mapping);
1310 }
1311 } else
1312 unmap_page_range(tlb, vma, start, end, details);
1313 }
1314 }
1315
1316 /**
1317 * unmap_vmas - unmap a range of memory covered by a list of vma's
1318 * @tlb: address of the caller's struct mmu_gather
1319 * @vma: the starting vma
1320 * @start_addr: virtual address at which to start unmapping
1321 * @end_addr: virtual address at which to end unmapping
1322 *
1323 * Unmap all pages in the vma list.
1324 *
1325 * Only addresses between `start' and `end' will be unmapped.
1326 *
1327 * The VMA list must be sorted in ascending virtual address order.
1328 *
1329 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1330 * range after unmap_vmas() returns. So the only responsibility here is to
1331 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1332 * drops the lock and schedules.
1333 */
1334 void unmap_vmas(struct mmu_gather *tlb,
1335 struct vm_area_struct *vma, unsigned long start_addr,
1336 unsigned long end_addr)
1337 {
1338 struct mmu_notifier_range range;
1339
1340 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1341 start_addr, end_addr);
1342 mmu_notifier_invalidate_range_start(&range);
1343 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1344 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1345 mmu_notifier_invalidate_range_end(&range);
1346 }
1347
1348 /**
1349 * zap_page_range - remove user pages in a given range
1350 * @vma: vm_area_struct holding the applicable pages
1351 * @start: starting address of pages to zap
1352 * @size: number of bytes to zap
1353 *
1354 * Caller must protect the VMA list
1355 */
1356 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1357 unsigned long size)
1358 {
1359 struct mmu_notifier_range range;
1360 struct mmu_gather tlb;
1361
1362 lru_add_drain();
1363 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1364 start, start + size);
1365 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1366 update_hiwater_rss(vma->vm_mm);
1367 mmu_notifier_invalidate_range_start(&range);
1368 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1369 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1370 mmu_notifier_invalidate_range_end(&range);
1371 tlb_finish_mmu(&tlb, start, range.end);
1372 }
1373
1374 /**
1375 * zap_page_range_single - remove user pages in a given range
1376 * @vma: vm_area_struct holding the applicable pages
1377 * @address: starting address of pages to zap
1378 * @size: number of bytes to zap
1379 * @details: details of shared cache invalidation
1380 *
1381 * The range must fit into one VMA.
1382 */
1383 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1384 unsigned long size, struct zap_details *details)
1385 {
1386 struct mmu_notifier_range range;
1387 struct mmu_gather tlb;
1388
1389 lru_add_drain();
1390 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1391 address, address + size);
1392 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1393 update_hiwater_rss(vma->vm_mm);
1394 mmu_notifier_invalidate_range_start(&range);
1395 unmap_single_vma(&tlb, vma, address, range.end, details);
1396 mmu_notifier_invalidate_range_end(&range);
1397 tlb_finish_mmu(&tlb, address, range.end);
1398 }
1399
1400 /**
1401 * zap_vma_ptes - remove ptes mapping the vma
1402 * @vma: vm_area_struct holding ptes to be zapped
1403 * @address: starting address of pages to zap
1404 * @size: number of bytes to zap
1405 *
1406 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1407 *
1408 * The entire address range must be fully contained within the vma.
1409 *
1410 */
1411 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1412 unsigned long size)
1413 {
1414 if (address < vma->vm_start || address + size > vma->vm_end ||
1415 !(vma->vm_flags & VM_PFNMAP))
1416 return;
1417
1418 zap_page_range_single(vma, address, size, NULL);
1419 }
1420 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1421
1422 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1423 spinlock_t **ptl)
1424 {
1425 pgd_t *pgd;
1426 p4d_t *p4d;
1427 pud_t *pud;
1428 pmd_t *pmd;
1429
1430 pgd = pgd_offset(mm, addr);
1431 p4d = p4d_alloc(mm, pgd, addr);
1432 if (!p4d)
1433 return NULL;
1434 pud = pud_alloc(mm, p4d, addr);
1435 if (!pud)
1436 return NULL;
1437 pmd = pmd_alloc(mm, pud, addr);
1438 if (!pmd)
1439 return NULL;
1440
1441 VM_BUG_ON(pmd_trans_huge(*pmd));
1442 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1443 }
1444
1445 /*
1446 * This is the old fallback for page remapping.
1447 *
1448 * For historical reasons, it only allows reserved pages. Only
1449 * old drivers should use this, and they needed to mark their
1450 * pages reserved for the old functions anyway.
1451 */
1452 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1453 struct page *page, pgprot_t prot)
1454 {
1455 struct mm_struct *mm = vma->vm_mm;
1456 int retval;
1457 pte_t *pte;
1458 spinlock_t *ptl;
1459
1460 retval = -EINVAL;
1461 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1462 goto out;
1463 retval = -ENOMEM;
1464 flush_dcache_page(page);
1465 pte = get_locked_pte(mm, addr, &ptl);
1466 if (!pte)
1467 goto out;
1468 retval = -EBUSY;
1469 if (!pte_none(*pte))
1470 goto out_unlock;
1471
1472 /* Ok, finally just insert the thing.. */
1473 get_page(page);
1474 inc_mm_counter_fast(mm, mm_counter_file(page));
1475 page_add_file_rmap(page, false);
1476 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1477
1478 retval = 0;
1479 out_unlock:
1480 pte_unmap_unlock(pte, ptl);
1481 out:
1482 return retval;
1483 }
1484
1485 /**
1486 * vm_insert_page - insert single page into user vma
1487 * @vma: user vma to map to
1488 * @addr: target user address of this page
1489 * @page: source kernel page
1490 *
1491 * This allows drivers to insert individual pages they've allocated
1492 * into a user vma.
1493 *
1494 * The page has to be a nice clean _individual_ kernel allocation.
1495 * If you allocate a compound page, you need to have marked it as
1496 * such (__GFP_COMP), or manually just split the page up yourself
1497 * (see split_page()).
1498 *
1499 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1500 * took an arbitrary page protection parameter. This doesn't allow
1501 * that. Your vma protection will have to be set up correctly, which
1502 * means that if you want a shared writable mapping, you'd better
1503 * ask for a shared writable mapping!
1504 *
1505 * The page does not need to be reserved.
1506 *
1507 * Usually this function is called from f_op->mmap() handler
1508 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1509 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1510 * function from other places, for example from page-fault handler.
1511 *
1512 * Return: %0 on success, negative error code otherwise.
1513 */
1514 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1515 struct page *page)
1516 {
1517 if (addr < vma->vm_start || addr >= vma->vm_end)
1518 return -EFAULT;
1519 if (!page_count(page))
1520 return -EINVAL;
1521 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1522 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1523 BUG_ON(vma->vm_flags & VM_PFNMAP);
1524 vma->vm_flags |= VM_MIXEDMAP;
1525 }
1526 return insert_page(vma, addr, page, vma->vm_page_prot);
1527 }
1528 EXPORT_SYMBOL(vm_insert_page);
1529
1530 /*
1531 * __vm_map_pages - maps range of kernel pages into user vma
1532 * @vma: user vma to map to
1533 * @pages: pointer to array of source kernel pages
1534 * @num: number of pages in page array
1535 * @offset: user's requested vm_pgoff
1536 *
1537 * This allows drivers to map range of kernel pages into a user vma.
1538 *
1539 * Return: 0 on success and error code otherwise.
1540 */
1541 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1542 unsigned long num, unsigned long offset)
1543 {
1544 unsigned long count = vma_pages(vma);
1545 unsigned long uaddr = vma->vm_start;
1546 int ret, i;
1547
1548 /* Fail if the user requested offset is beyond the end of the object */
1549 if (offset >= num)
1550 return -ENXIO;
1551
1552 /* Fail if the user requested size exceeds available object size */
1553 if (count > num - offset)
1554 return -ENXIO;
1555
1556 for (i = 0; i < count; i++) {
1557 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1558 if (ret < 0)
1559 return ret;
1560 uaddr += PAGE_SIZE;
1561 }
1562
1563 return 0;
1564 }
1565
1566 /**
1567 * vm_map_pages - maps range of kernel pages starts with non zero offset
1568 * @vma: user vma to map to
1569 * @pages: pointer to array of source kernel pages
1570 * @num: number of pages in page array
1571 *
1572 * Maps an object consisting of @num pages, catering for the user's
1573 * requested vm_pgoff
1574 *
1575 * If we fail to insert any page into the vma, the function will return
1576 * immediately leaving any previously inserted pages present. Callers
1577 * from the mmap handler may immediately return the error as their caller
1578 * will destroy the vma, removing any successfully inserted pages. Other
1579 * callers should make their own arrangements for calling unmap_region().
1580 *
1581 * Context: Process context. Called by mmap handlers.
1582 * Return: 0 on success and error code otherwise.
1583 */
1584 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1585 unsigned long num)
1586 {
1587 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1588 }
1589 EXPORT_SYMBOL(vm_map_pages);
1590
1591 /**
1592 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1593 * @vma: user vma to map to
1594 * @pages: pointer to array of source kernel pages
1595 * @num: number of pages in page array
1596 *
1597 * Similar to vm_map_pages(), except that it explicitly sets the offset
1598 * to 0. This function is intended for the drivers that did not consider
1599 * vm_pgoff.
1600 *
1601 * Context: Process context. Called by mmap handlers.
1602 * Return: 0 on success and error code otherwise.
1603 */
1604 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1605 unsigned long num)
1606 {
1607 return __vm_map_pages(vma, pages, num, 0);
1608 }
1609 EXPORT_SYMBOL(vm_map_pages_zero);
1610
1611 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1612 pfn_t pfn, pgprot_t prot, bool mkwrite)
1613 {
1614 struct mm_struct *mm = vma->vm_mm;
1615 pte_t *pte, entry;
1616 spinlock_t *ptl;
1617
1618 pte = get_locked_pte(mm, addr, &ptl);
1619 if (!pte)
1620 return VM_FAULT_OOM;
1621 if (!pte_none(*pte)) {
1622 if (mkwrite) {
1623 /*
1624 * For read faults on private mappings the PFN passed
1625 * in may not match the PFN we have mapped if the
1626 * mapped PFN is a writeable COW page. In the mkwrite
1627 * case we are creating a writable PTE for a shared
1628 * mapping and we expect the PFNs to match. If they
1629 * don't match, we are likely racing with block
1630 * allocation and mapping invalidation so just skip the
1631 * update.
1632 */
1633 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1634 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1635 goto out_unlock;
1636 }
1637 entry = pte_mkyoung(*pte);
1638 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1639 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1640 update_mmu_cache(vma, addr, pte);
1641 }
1642 goto out_unlock;
1643 }
1644
1645 /* Ok, finally just insert the thing.. */
1646 if (pfn_t_devmap(pfn))
1647 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1648 else
1649 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1650
1651 if (mkwrite) {
1652 entry = pte_mkyoung(entry);
1653 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1654 }
1655
1656 set_pte_at(mm, addr, pte, entry);
1657 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1658
1659 out_unlock:
1660 pte_unmap_unlock(pte, ptl);
1661 return VM_FAULT_NOPAGE;
1662 }
1663
1664 /**
1665 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1666 * @vma: user vma to map to
1667 * @addr: target user address of this page
1668 * @pfn: source kernel pfn
1669 * @pgprot: pgprot flags for the inserted page
1670 *
1671 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1672 * to override pgprot on a per-page basis.
1673 *
1674 * This only makes sense for IO mappings, and it makes no sense for
1675 * COW mappings. In general, using multiple vmas is preferable;
1676 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1677 * impractical.
1678 *
1679 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1680 * a value of @pgprot different from that of @vma->vm_page_prot.
1681 *
1682 * Context: Process context. May allocate using %GFP_KERNEL.
1683 * Return: vm_fault_t value.
1684 */
1685 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1686 unsigned long pfn, pgprot_t pgprot)
1687 {
1688 /*
1689 * Technically, architectures with pte_special can avoid all these
1690 * restrictions (same for remap_pfn_range). However we would like
1691 * consistency in testing and feature parity among all, so we should
1692 * try to keep these invariants in place for everybody.
1693 */
1694 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1695 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1696 (VM_PFNMAP|VM_MIXEDMAP));
1697 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1698 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1699
1700 if (addr < vma->vm_start || addr >= vma->vm_end)
1701 return VM_FAULT_SIGBUS;
1702
1703 if (!pfn_modify_allowed(pfn, pgprot))
1704 return VM_FAULT_SIGBUS;
1705
1706 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1707
1708 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1709 false);
1710 }
1711 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1712
1713 /**
1714 * vmf_insert_pfn - insert single pfn into user vma
1715 * @vma: user vma to map to
1716 * @addr: target user address of this page
1717 * @pfn: source kernel pfn
1718 *
1719 * Similar to vm_insert_page, this allows drivers to insert individual pages
1720 * they've allocated into a user vma. Same comments apply.
1721 *
1722 * This function should only be called from a vm_ops->fault handler, and
1723 * in that case the handler should return the result of this function.
1724 *
1725 * vma cannot be a COW mapping.
1726 *
1727 * As this is called only for pages that do not currently exist, we
1728 * do not need to flush old virtual caches or the TLB.
1729 *
1730 * Context: Process context. May allocate using %GFP_KERNEL.
1731 * Return: vm_fault_t value.
1732 */
1733 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1734 unsigned long pfn)
1735 {
1736 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1737 }
1738 EXPORT_SYMBOL(vmf_insert_pfn);
1739
1740 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1741 {
1742 /* these checks mirror the abort conditions in vm_normal_page */
1743 if (vma->vm_flags & VM_MIXEDMAP)
1744 return true;
1745 if (pfn_t_devmap(pfn))
1746 return true;
1747 if (pfn_t_special(pfn))
1748 return true;
1749 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1750 return true;
1751 return false;
1752 }
1753
1754 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1755 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1756 bool mkwrite)
1757 {
1758 int err;
1759
1760 BUG_ON(!vm_mixed_ok(vma, pfn));
1761
1762 if (addr < vma->vm_start || addr >= vma->vm_end)
1763 return VM_FAULT_SIGBUS;
1764
1765 track_pfn_insert(vma, &pgprot, pfn);
1766
1767 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1768 return VM_FAULT_SIGBUS;
1769
1770 /*
1771 * If we don't have pte special, then we have to use the pfn_valid()
1772 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1773 * refcount the page if pfn_valid is true (hence insert_page rather
1774 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1775 * without pte special, it would there be refcounted as a normal page.
1776 */
1777 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1778 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1779 struct page *page;
1780
1781 /*
1782 * At this point we are committed to insert_page()
1783 * regardless of whether the caller specified flags that
1784 * result in pfn_t_has_page() == false.
1785 */
1786 page = pfn_to_page(pfn_t_to_pfn(pfn));
1787 err = insert_page(vma, addr, page, pgprot);
1788 } else {
1789 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1790 }
1791
1792 if (err == -ENOMEM)
1793 return VM_FAULT_OOM;
1794 if (err < 0 && err != -EBUSY)
1795 return VM_FAULT_SIGBUS;
1796
1797 return VM_FAULT_NOPAGE;
1798 }
1799
1800 /**
1801 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1802 * @vma: user vma to map to
1803 * @addr: target user address of this page
1804 * @pfn: source kernel pfn
1805 * @pgprot: pgprot flags for the inserted page
1806 *
1807 * This is exactly like vmf_insert_mixed(), except that it allows drivers to
1808 * to override pgprot on a per-page basis.
1809 *
1810 * Typically this function should be used by drivers to set caching- and
1811 * encryption bits different than those of @vma->vm_page_prot, because
1812 * the caching- or encryption mode may not be known at mmap() time.
1813 * This is ok as long as @vma->vm_page_prot is not used by the core vm
1814 * to set caching and encryption bits for those vmas (except for COW pages).
1815 * This is ensured by core vm only modifying these page table entries using
1816 * functions that don't touch caching- or encryption bits, using pte_modify()
1817 * if needed. (See for example mprotect()).
1818 * Also when new page-table entries are created, this is only done using the
1819 * fault() callback, and never using the value of vma->vm_page_prot,
1820 * except for page-table entries that point to anonymous pages as the result
1821 * of COW.
1822 *
1823 * Context: Process context. May allocate using %GFP_KERNEL.
1824 * Return: vm_fault_t value.
1825 */
1826 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1827 pfn_t pfn, pgprot_t pgprot)
1828 {
1829 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1830 }
1831 EXPORT_SYMBOL(vmf_insert_mixed_prot);
1832
1833 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1834 pfn_t pfn)
1835 {
1836 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1837 }
1838 EXPORT_SYMBOL(vmf_insert_mixed);
1839
1840 /*
1841 * If the insertion of PTE failed because someone else already added a
1842 * different entry in the mean time, we treat that as success as we assume
1843 * the same entry was actually inserted.
1844 */
1845 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1846 unsigned long addr, pfn_t pfn)
1847 {
1848 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1849 }
1850 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1851
1852 /*
1853 * maps a range of physical memory into the requested pages. the old
1854 * mappings are removed. any references to nonexistent pages results
1855 * in null mappings (currently treated as "copy-on-access")
1856 */
1857 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1858 unsigned long addr, unsigned long end,
1859 unsigned long pfn, pgprot_t prot)
1860 {
1861 pte_t *pte;
1862 spinlock_t *ptl;
1863 int err = 0;
1864
1865 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1866 if (!pte)
1867 return -ENOMEM;
1868 arch_enter_lazy_mmu_mode();
1869 do {
1870 BUG_ON(!pte_none(*pte));
1871 if (!pfn_modify_allowed(pfn, prot)) {
1872 err = -EACCES;
1873 break;
1874 }
1875 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1876 pfn++;
1877 } while (pte++, addr += PAGE_SIZE, addr != end);
1878 arch_leave_lazy_mmu_mode();
1879 pte_unmap_unlock(pte - 1, ptl);
1880 return err;
1881 }
1882
1883 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1884 unsigned long addr, unsigned long end,
1885 unsigned long pfn, pgprot_t prot)
1886 {
1887 pmd_t *pmd;
1888 unsigned long next;
1889 int err;
1890
1891 pfn -= addr >> PAGE_SHIFT;
1892 pmd = pmd_alloc(mm, pud, addr);
1893 if (!pmd)
1894 return -ENOMEM;
1895 VM_BUG_ON(pmd_trans_huge(*pmd));
1896 do {
1897 next = pmd_addr_end(addr, end);
1898 err = remap_pte_range(mm, pmd, addr, next,
1899 pfn + (addr >> PAGE_SHIFT), prot);
1900 if (err)
1901 return err;
1902 } while (pmd++, addr = next, addr != end);
1903 return 0;
1904 }
1905
1906 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1907 unsigned long addr, unsigned long end,
1908 unsigned long pfn, pgprot_t prot)
1909 {
1910 pud_t *pud;
1911 unsigned long next;
1912 int err;
1913
1914 pfn -= addr >> PAGE_SHIFT;
1915 pud = pud_alloc(mm, p4d, addr);
1916 if (!pud)
1917 return -ENOMEM;
1918 do {
1919 next = pud_addr_end(addr, end);
1920 err = remap_pmd_range(mm, pud, addr, next,
1921 pfn + (addr >> PAGE_SHIFT), prot);
1922 if (err)
1923 return err;
1924 } while (pud++, addr = next, addr != end);
1925 return 0;
1926 }
1927
1928 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1929 unsigned long addr, unsigned long end,
1930 unsigned long pfn, pgprot_t prot)
1931 {
1932 p4d_t *p4d;
1933 unsigned long next;
1934 int err;
1935
1936 pfn -= addr >> PAGE_SHIFT;
1937 p4d = p4d_alloc(mm, pgd, addr);
1938 if (!p4d)
1939 return -ENOMEM;
1940 do {
1941 next = p4d_addr_end(addr, end);
1942 err = remap_pud_range(mm, p4d, addr, next,
1943 pfn + (addr >> PAGE_SHIFT), prot);
1944 if (err)
1945 return err;
1946 } while (p4d++, addr = next, addr != end);
1947 return 0;
1948 }
1949
1950 /**
1951 * remap_pfn_range - remap kernel memory to userspace
1952 * @vma: user vma to map to
1953 * @addr: target user address to start at
1954 * @pfn: page frame number of kernel physical memory address
1955 * @size: size of mapping area
1956 * @prot: page protection flags for this mapping
1957 *
1958 * Note: this is only safe if the mm semaphore is held when called.
1959 *
1960 * Return: %0 on success, negative error code otherwise.
1961 */
1962 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1963 unsigned long pfn, unsigned long size, pgprot_t prot)
1964 {
1965 pgd_t *pgd;
1966 unsigned long next;
1967 unsigned long end = addr + PAGE_ALIGN(size);
1968 struct mm_struct *mm = vma->vm_mm;
1969 unsigned long remap_pfn = pfn;
1970 int err;
1971
1972 /*
1973 * Physically remapped pages are special. Tell the
1974 * rest of the world about it:
1975 * VM_IO tells people not to look at these pages
1976 * (accesses can have side effects).
1977 * VM_PFNMAP tells the core MM that the base pages are just
1978 * raw PFN mappings, and do not have a "struct page" associated
1979 * with them.
1980 * VM_DONTEXPAND
1981 * Disable vma merging and expanding with mremap().
1982 * VM_DONTDUMP
1983 * Omit vma from core dump, even when VM_IO turned off.
1984 *
1985 * There's a horrible special case to handle copy-on-write
1986 * behaviour that some programs depend on. We mark the "original"
1987 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1988 * See vm_normal_page() for details.
1989 */
1990 if (is_cow_mapping(vma->vm_flags)) {
1991 if (addr != vma->vm_start || end != vma->vm_end)
1992 return -EINVAL;
1993 vma->vm_pgoff = pfn;
1994 }
1995
1996 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1997 if (err)
1998 return -EINVAL;
1999
2000 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2001
2002 BUG_ON(addr >= end);
2003 pfn -= addr >> PAGE_SHIFT;
2004 pgd = pgd_offset(mm, addr);
2005 flush_cache_range(vma, addr, end);
2006 do {
2007 next = pgd_addr_end(addr, end);
2008 err = remap_p4d_range(mm, pgd, addr, next,
2009 pfn + (addr >> PAGE_SHIFT), prot);
2010 if (err)
2011 break;
2012 } while (pgd++, addr = next, addr != end);
2013
2014 if (err)
2015 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2016
2017 return err;
2018 }
2019 EXPORT_SYMBOL(remap_pfn_range);
2020
2021 /**
2022 * vm_iomap_memory - remap memory to userspace
2023 * @vma: user vma to map to
2024 * @start: start of the physical memory to be mapped
2025 * @len: size of area
2026 *
2027 * This is a simplified io_remap_pfn_range() for common driver use. The
2028 * driver just needs to give us the physical memory range to be mapped,
2029 * we'll figure out the rest from the vma information.
2030 *
2031 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2032 * whatever write-combining details or similar.
2033 *
2034 * Return: %0 on success, negative error code otherwise.
2035 */
2036 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2037 {
2038 unsigned long vm_len, pfn, pages;
2039
2040 /* Check that the physical memory area passed in looks valid */
2041 if (start + len < start)
2042 return -EINVAL;
2043 /*
2044 * You *really* shouldn't map things that aren't page-aligned,
2045 * but we've historically allowed it because IO memory might
2046 * just have smaller alignment.
2047 */
2048 len += start & ~PAGE_MASK;
2049 pfn = start >> PAGE_SHIFT;
2050 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2051 if (pfn + pages < pfn)
2052 return -EINVAL;
2053
2054 /* We start the mapping 'vm_pgoff' pages into the area */
2055 if (vma->vm_pgoff > pages)
2056 return -EINVAL;
2057 pfn += vma->vm_pgoff;
2058 pages -= vma->vm_pgoff;
2059
2060 /* Can we fit all of the mapping? */
2061 vm_len = vma->vm_end - vma->vm_start;
2062 if (vm_len >> PAGE_SHIFT > pages)
2063 return -EINVAL;
2064
2065 /* Ok, let it rip */
2066 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2067 }
2068 EXPORT_SYMBOL(vm_iomap_memory);
2069
2070 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2071 unsigned long addr, unsigned long end,
2072 pte_fn_t fn, void *data, bool create)
2073 {
2074 pte_t *pte;
2075 int err = 0;
2076 spinlock_t *uninitialized_var(ptl);
2077
2078 if (create) {
2079 pte = (mm == &init_mm) ?
2080 pte_alloc_kernel(pmd, addr) :
2081 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2082 if (!pte)
2083 return -ENOMEM;
2084 } else {
2085 pte = (mm == &init_mm) ?
2086 pte_offset_kernel(pmd, addr) :
2087 pte_offset_map_lock(mm, pmd, addr, &ptl);
2088 }
2089
2090 BUG_ON(pmd_huge(*pmd));
2091
2092 arch_enter_lazy_mmu_mode();
2093
2094 do {
2095 if (create || !pte_none(*pte)) {
2096 err = fn(pte++, addr, data);
2097 if (err)
2098 break;
2099 }
2100 } while (addr += PAGE_SIZE, addr != end);
2101
2102 arch_leave_lazy_mmu_mode();
2103
2104 if (mm != &init_mm)
2105 pte_unmap_unlock(pte-1, ptl);
2106 return err;
2107 }
2108
2109 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2110 unsigned long addr, unsigned long end,
2111 pte_fn_t fn, void *data, bool create)
2112 {
2113 pmd_t *pmd;
2114 unsigned long next;
2115 int err = 0;
2116
2117 BUG_ON(pud_huge(*pud));
2118
2119 if (create) {
2120 pmd = pmd_alloc(mm, pud, addr);
2121 if (!pmd)
2122 return -ENOMEM;
2123 } else {
2124 pmd = pmd_offset(pud, addr);
2125 }
2126 do {
2127 next = pmd_addr_end(addr, end);
2128 if (create || !pmd_none_or_clear_bad(pmd)) {
2129 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2130 create);
2131 if (err)
2132 break;
2133 }
2134 } while (pmd++, addr = next, addr != end);
2135 return err;
2136 }
2137
2138 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2139 unsigned long addr, unsigned long end,
2140 pte_fn_t fn, void *data, bool create)
2141 {
2142 pud_t *pud;
2143 unsigned long next;
2144 int err = 0;
2145
2146 if (create) {
2147 pud = pud_alloc(mm, p4d, addr);
2148 if (!pud)
2149 return -ENOMEM;
2150 } else {
2151 pud = pud_offset(p4d, addr);
2152 }
2153 do {
2154 next = pud_addr_end(addr, end);
2155 if (create || !pud_none_or_clear_bad(pud)) {
2156 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2157 create);
2158 if (err)
2159 break;
2160 }
2161 } while (pud++, addr = next, addr != end);
2162 return err;
2163 }
2164
2165 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2166 unsigned long addr, unsigned long end,
2167 pte_fn_t fn, void *data, bool create)
2168 {
2169 p4d_t *p4d;
2170 unsigned long next;
2171 int err = 0;
2172
2173 if (create) {
2174 p4d = p4d_alloc(mm, pgd, addr);
2175 if (!p4d)
2176 return -ENOMEM;
2177 } else {
2178 p4d = p4d_offset(pgd, addr);
2179 }
2180 do {
2181 next = p4d_addr_end(addr, end);
2182 if (create || !p4d_none_or_clear_bad(p4d)) {
2183 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2184 create);
2185 if (err)
2186 break;
2187 }
2188 } while (p4d++, addr = next, addr != end);
2189 return err;
2190 }
2191
2192 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2193 unsigned long size, pte_fn_t fn,
2194 void *data, bool create)
2195 {
2196 pgd_t *pgd;
2197 unsigned long next;
2198 unsigned long end = addr + size;
2199 int err = 0;
2200
2201 if (WARN_ON(addr >= end))
2202 return -EINVAL;
2203
2204 pgd = pgd_offset(mm, addr);
2205 do {
2206 next = pgd_addr_end(addr, end);
2207 if (!create && pgd_none_or_clear_bad(pgd))
2208 continue;
2209 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
2210 if (err)
2211 break;
2212 } while (pgd++, addr = next, addr != end);
2213
2214 return err;
2215 }
2216
2217 /*
2218 * Scan a region of virtual memory, filling in page tables as necessary
2219 * and calling a provided function on each leaf page table.
2220 */
2221 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2222 unsigned long size, pte_fn_t fn, void *data)
2223 {
2224 return __apply_to_page_range(mm, addr, size, fn, data, true);
2225 }
2226 EXPORT_SYMBOL_GPL(apply_to_page_range);
2227
2228 /*
2229 * Scan a region of virtual memory, calling a provided function on
2230 * each leaf page table where it exists.
2231 *
2232 * Unlike apply_to_page_range, this does _not_ fill in page tables
2233 * where they are absent.
2234 */
2235 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2236 unsigned long size, pte_fn_t fn, void *data)
2237 {
2238 return __apply_to_page_range(mm, addr, size, fn, data, false);
2239 }
2240 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2241
2242 /*
2243 * handle_pte_fault chooses page fault handler according to an entry which was
2244 * read non-atomically. Before making any commitment, on those architectures
2245 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2246 * parts, do_swap_page must check under lock before unmapping the pte and
2247 * proceeding (but do_wp_page is only called after already making such a check;
2248 * and do_anonymous_page can safely check later on).
2249 */
2250 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2251 pte_t *page_table, pte_t orig_pte)
2252 {
2253 int same = 1;
2254 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2255 if (sizeof(pte_t) > sizeof(unsigned long)) {
2256 spinlock_t *ptl = pte_lockptr(mm, pmd);
2257 spin_lock(ptl);
2258 same = pte_same(*page_table, orig_pte);
2259 spin_unlock(ptl);
2260 }
2261 #endif
2262 pte_unmap(page_table);
2263 return same;
2264 }
2265
2266 static inline bool cow_user_page(struct page *dst, struct page *src,
2267 struct vm_fault *vmf)
2268 {
2269 bool ret;
2270 void *kaddr;
2271 void __user *uaddr;
2272 bool locked = false;
2273 struct vm_area_struct *vma = vmf->vma;
2274 struct mm_struct *mm = vma->vm_mm;
2275 unsigned long addr = vmf->address;
2276
2277 debug_dma_assert_idle(src);
2278
2279 if (likely(src)) {
2280 copy_user_highpage(dst, src, addr, vma);
2281 return true;
2282 }
2283
2284 /*
2285 * If the source page was a PFN mapping, we don't have
2286 * a "struct page" for it. We do a best-effort copy by
2287 * just copying from the original user address. If that
2288 * fails, we just zero-fill it. Live with it.
2289 */
2290 kaddr = kmap_atomic(dst);
2291 uaddr = (void __user *)(addr & PAGE_MASK);
2292
2293 /*
2294 * On architectures with software "accessed" bits, we would
2295 * take a double page fault, so mark it accessed here.
2296 */
2297 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2298 pte_t entry;
2299
2300 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2301 locked = true;
2302 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2303 /*
2304 * Other thread has already handled the fault
2305 * and we don't need to do anything. If it's
2306 * not the case, the fault will be triggered
2307 * again on the same address.
2308 */
2309 ret = false;
2310 goto pte_unlock;
2311 }
2312
2313 entry = pte_mkyoung(vmf->orig_pte);
2314 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2315 update_mmu_cache(vma, addr, vmf->pte);
2316 }
2317
2318 /*
2319 * This really shouldn't fail, because the page is there
2320 * in the page tables. But it might just be unreadable,
2321 * in which case we just give up and fill the result with
2322 * zeroes.
2323 */
2324 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2325 if (locked)
2326 goto warn;
2327
2328 /* Re-validate under PTL if the page is still mapped */
2329 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2330 locked = true;
2331 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2332 /* The PTE changed under us. Retry page fault. */
2333 ret = false;
2334 goto pte_unlock;
2335 }
2336
2337 /*
2338 * The same page can be mapped back since last copy attampt.
2339 * Try to copy again under PTL.
2340 */
2341 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2342 /*
2343 * Give a warn in case there can be some obscure
2344 * use-case
2345 */
2346 warn:
2347 WARN_ON_ONCE(1);
2348 clear_page(kaddr);
2349 }
2350 }
2351
2352 ret = true;
2353
2354 pte_unlock:
2355 if (locked)
2356 pte_unmap_unlock(vmf->pte, vmf->ptl);
2357 kunmap_atomic(kaddr);
2358 flush_dcache_page(dst);
2359
2360 return ret;
2361 }
2362
2363 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2364 {
2365 struct file *vm_file = vma->vm_file;
2366
2367 if (vm_file)
2368 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2369
2370 /*
2371 * Special mappings (e.g. VDSO) do not have any file so fake
2372 * a default GFP_KERNEL for them.
2373 */
2374 return GFP_KERNEL;
2375 }
2376
2377 /*
2378 * Notify the address space that the page is about to become writable so that
2379 * it can prohibit this or wait for the page to get into an appropriate state.
2380 *
2381 * We do this without the lock held, so that it can sleep if it needs to.
2382 */
2383 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2384 {
2385 vm_fault_t ret;
2386 struct page *page = vmf->page;
2387 unsigned int old_flags = vmf->flags;
2388
2389 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2390
2391 if (vmf->vma->vm_file &&
2392 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2393 return VM_FAULT_SIGBUS;
2394
2395 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2396 /* Restore original flags so that caller is not surprised */
2397 vmf->flags = old_flags;
2398 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2399 return ret;
2400 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2401 lock_page(page);
2402 if (!page->mapping) {
2403 unlock_page(page);
2404 return 0; /* retry */
2405 }
2406 ret |= VM_FAULT_LOCKED;
2407 } else
2408 VM_BUG_ON_PAGE(!PageLocked(page), page);
2409 return ret;
2410 }
2411
2412 /*
2413 * Handle dirtying of a page in shared file mapping on a write fault.
2414 *
2415 * The function expects the page to be locked and unlocks it.
2416 */
2417 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2418 {
2419 struct vm_area_struct *vma = vmf->vma;
2420 struct address_space *mapping;
2421 struct page *page = vmf->page;
2422 bool dirtied;
2423 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2424
2425 dirtied = set_page_dirty(page);
2426 VM_BUG_ON_PAGE(PageAnon(page), page);
2427 /*
2428 * Take a local copy of the address_space - page.mapping may be zeroed
2429 * by truncate after unlock_page(). The address_space itself remains
2430 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2431 * release semantics to prevent the compiler from undoing this copying.
2432 */
2433 mapping = page_rmapping(page);
2434 unlock_page(page);
2435
2436 if (!page_mkwrite)
2437 file_update_time(vma->vm_file);
2438
2439 /*
2440 * Throttle page dirtying rate down to writeback speed.
2441 *
2442 * mapping may be NULL here because some device drivers do not
2443 * set page.mapping but still dirty their pages
2444 *
2445 * Drop the mmap_sem before waiting on IO, if we can. The file
2446 * is pinning the mapping, as per above.
2447 */
2448 if ((dirtied || page_mkwrite) && mapping) {
2449 struct file *fpin;
2450
2451 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2452 balance_dirty_pages_ratelimited(mapping);
2453 if (fpin) {
2454 fput(fpin);
2455 return VM_FAULT_RETRY;
2456 }
2457 }
2458
2459 return 0;
2460 }
2461
2462 /*
2463 * Handle write page faults for pages that can be reused in the current vma
2464 *
2465 * This can happen either due to the mapping being with the VM_SHARED flag,
2466 * or due to us being the last reference standing to the page. In either
2467 * case, all we need to do here is to mark the page as writable and update
2468 * any related book-keeping.
2469 */
2470 static inline void wp_page_reuse(struct vm_fault *vmf)
2471 __releases(vmf->ptl)
2472 {
2473 struct vm_area_struct *vma = vmf->vma;
2474 struct page *page = vmf->page;
2475 pte_t entry;
2476 /*
2477 * Clear the pages cpupid information as the existing
2478 * information potentially belongs to a now completely
2479 * unrelated process.
2480 */
2481 if (page)
2482 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2483
2484 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2485 entry = pte_mkyoung(vmf->orig_pte);
2486 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2487 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2488 update_mmu_cache(vma, vmf->address, vmf->pte);
2489 pte_unmap_unlock(vmf->pte, vmf->ptl);
2490 }
2491
2492 /*
2493 * Handle the case of a page which we actually need to copy to a new page.
2494 *
2495 * Called with mmap_sem locked and the old page referenced, but
2496 * without the ptl held.
2497 *
2498 * High level logic flow:
2499 *
2500 * - Allocate a page, copy the content of the old page to the new one.
2501 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2502 * - Take the PTL. If the pte changed, bail out and release the allocated page
2503 * - If the pte is still the way we remember it, update the page table and all
2504 * relevant references. This includes dropping the reference the page-table
2505 * held to the old page, as well as updating the rmap.
2506 * - In any case, unlock the PTL and drop the reference we took to the old page.
2507 */
2508 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2509 {
2510 struct vm_area_struct *vma = vmf->vma;
2511 struct mm_struct *mm = vma->vm_mm;
2512 struct page *old_page = vmf->page;
2513 struct page *new_page = NULL;
2514 pte_t entry;
2515 int page_copied = 0;
2516 struct mem_cgroup *memcg;
2517 struct mmu_notifier_range range;
2518
2519 if (unlikely(anon_vma_prepare(vma)))
2520 goto oom;
2521
2522 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2523 new_page = alloc_zeroed_user_highpage_movable(vma,
2524 vmf->address);
2525 if (!new_page)
2526 goto oom;
2527 } else {
2528 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2529 vmf->address);
2530 if (!new_page)
2531 goto oom;
2532
2533 if (!cow_user_page(new_page, old_page, vmf)) {
2534 /*
2535 * COW failed, if the fault was solved by other,
2536 * it's fine. If not, userspace would re-fault on
2537 * the same address and we will handle the fault
2538 * from the second attempt.
2539 */
2540 put_page(new_page);
2541 if (old_page)
2542 put_page(old_page);
2543 return 0;
2544 }
2545 }
2546
2547 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2548 goto oom_free_new;
2549
2550 __SetPageUptodate(new_page);
2551
2552 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2553 vmf->address & PAGE_MASK,
2554 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2555 mmu_notifier_invalidate_range_start(&range);
2556
2557 /*
2558 * Re-check the pte - we dropped the lock
2559 */
2560 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2561 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2562 if (old_page) {
2563 if (!PageAnon(old_page)) {
2564 dec_mm_counter_fast(mm,
2565 mm_counter_file(old_page));
2566 inc_mm_counter_fast(mm, MM_ANONPAGES);
2567 }
2568 } else {
2569 inc_mm_counter_fast(mm, MM_ANONPAGES);
2570 }
2571 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2572 entry = mk_pte(new_page, vma->vm_page_prot);
2573 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2574 /*
2575 * Clear the pte entry and flush it first, before updating the
2576 * pte with the new entry. This will avoid a race condition
2577 * seen in the presence of one thread doing SMC and another
2578 * thread doing COW.
2579 */
2580 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2581 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2582 mem_cgroup_commit_charge(new_page, memcg, false, false);
2583 lru_cache_add_active_or_unevictable(new_page, vma);
2584 /*
2585 * We call the notify macro here because, when using secondary
2586 * mmu page tables (such as kvm shadow page tables), we want the
2587 * new page to be mapped directly into the secondary page table.
2588 */
2589 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2590 update_mmu_cache(vma, vmf->address, vmf->pte);
2591 if (old_page) {
2592 /*
2593 * Only after switching the pte to the new page may
2594 * we remove the mapcount here. Otherwise another
2595 * process may come and find the rmap count decremented
2596 * before the pte is switched to the new page, and
2597 * "reuse" the old page writing into it while our pte
2598 * here still points into it and can be read by other
2599 * threads.
2600 *
2601 * The critical issue is to order this
2602 * page_remove_rmap with the ptp_clear_flush above.
2603 * Those stores are ordered by (if nothing else,)
2604 * the barrier present in the atomic_add_negative
2605 * in page_remove_rmap.
2606 *
2607 * Then the TLB flush in ptep_clear_flush ensures that
2608 * no process can access the old page before the
2609 * decremented mapcount is visible. And the old page
2610 * cannot be reused until after the decremented
2611 * mapcount is visible. So transitively, TLBs to
2612 * old page will be flushed before it can be reused.
2613 */
2614 page_remove_rmap(old_page, false);
2615 }
2616
2617 /* Free the old page.. */
2618 new_page = old_page;
2619 page_copied = 1;
2620 } else {
2621 mem_cgroup_cancel_charge(new_page, memcg, false);
2622 }
2623
2624 if (new_page)
2625 put_page(new_page);
2626
2627 pte_unmap_unlock(vmf->pte, vmf->ptl);
2628 /*
2629 * No need to double call mmu_notifier->invalidate_range() callback as
2630 * the above ptep_clear_flush_notify() did already call it.
2631 */
2632 mmu_notifier_invalidate_range_only_end(&range);
2633 if (old_page) {
2634 /*
2635 * Don't let another task, with possibly unlocked vma,
2636 * keep the mlocked page.
2637 */
2638 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2639 lock_page(old_page); /* LRU manipulation */
2640 if (PageMlocked(old_page))
2641 munlock_vma_page(old_page);
2642 unlock_page(old_page);
2643 }
2644 put_page(old_page);
2645 }
2646 return page_copied ? VM_FAULT_WRITE : 0;
2647 oom_free_new:
2648 put_page(new_page);
2649 oom:
2650 if (old_page)
2651 put_page(old_page);
2652 return VM_FAULT_OOM;
2653 }
2654
2655 /**
2656 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2657 * writeable once the page is prepared
2658 *
2659 * @vmf: structure describing the fault
2660 *
2661 * This function handles all that is needed to finish a write page fault in a
2662 * shared mapping due to PTE being read-only once the mapped page is prepared.
2663 * It handles locking of PTE and modifying it.
2664 *
2665 * The function expects the page to be locked or other protection against
2666 * concurrent faults / writeback (such as DAX radix tree locks).
2667 *
2668 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2669 * we acquired PTE lock.
2670 */
2671 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2672 {
2673 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2674 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2675 &vmf->ptl);
2676 /*
2677 * We might have raced with another page fault while we released the
2678 * pte_offset_map_lock.
2679 */
2680 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2681 pte_unmap_unlock(vmf->pte, vmf->ptl);
2682 return VM_FAULT_NOPAGE;
2683 }
2684 wp_page_reuse(vmf);
2685 return 0;
2686 }
2687
2688 /*
2689 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2690 * mapping
2691 */
2692 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2693 {
2694 struct vm_area_struct *vma = vmf->vma;
2695
2696 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2697 vm_fault_t ret;
2698
2699 pte_unmap_unlock(vmf->pte, vmf->ptl);
2700 vmf->flags |= FAULT_FLAG_MKWRITE;
2701 ret = vma->vm_ops->pfn_mkwrite(vmf);
2702 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2703 return ret;
2704 return finish_mkwrite_fault(vmf);
2705 }
2706 wp_page_reuse(vmf);
2707 return VM_FAULT_WRITE;
2708 }
2709
2710 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2711 __releases(vmf->ptl)
2712 {
2713 struct vm_area_struct *vma = vmf->vma;
2714 vm_fault_t ret = VM_FAULT_WRITE;
2715
2716 get_page(vmf->page);
2717
2718 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2719 vm_fault_t tmp;
2720
2721 pte_unmap_unlock(vmf->pte, vmf->ptl);
2722 tmp = do_page_mkwrite(vmf);
2723 if (unlikely(!tmp || (tmp &
2724 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2725 put_page(vmf->page);
2726 return tmp;
2727 }
2728 tmp = finish_mkwrite_fault(vmf);
2729 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2730 unlock_page(vmf->page);
2731 put_page(vmf->page);
2732 return tmp;
2733 }
2734 } else {
2735 wp_page_reuse(vmf);
2736 lock_page(vmf->page);
2737 }
2738 ret |= fault_dirty_shared_page(vmf);
2739 put_page(vmf->page);
2740
2741 return ret;
2742 }
2743
2744 /*
2745 * This routine handles present pages, when users try to write
2746 * to a shared page. It is done by copying the page to a new address
2747 * and decrementing the shared-page counter for the old page.
2748 *
2749 * Note that this routine assumes that the protection checks have been
2750 * done by the caller (the low-level page fault routine in most cases).
2751 * Thus we can safely just mark it writable once we've done any necessary
2752 * COW.
2753 *
2754 * We also mark the page dirty at this point even though the page will
2755 * change only once the write actually happens. This avoids a few races,
2756 * and potentially makes it more efficient.
2757 *
2758 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2759 * but allow concurrent faults), with pte both mapped and locked.
2760 * We return with mmap_sem still held, but pte unmapped and unlocked.
2761 */
2762 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2763 __releases(vmf->ptl)
2764 {
2765 struct vm_area_struct *vma = vmf->vma;
2766
2767 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
2768 pte_unmap_unlock(vmf->pte, vmf->ptl);
2769 return handle_userfault(vmf, VM_UFFD_WP);
2770 }
2771
2772 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2773 if (!vmf->page) {
2774 /*
2775 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2776 * VM_PFNMAP VMA.
2777 *
2778 * We should not cow pages in a shared writeable mapping.
2779 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2780 */
2781 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2782 (VM_WRITE|VM_SHARED))
2783 return wp_pfn_shared(vmf);
2784
2785 pte_unmap_unlock(vmf->pte, vmf->ptl);
2786 return wp_page_copy(vmf);
2787 }
2788
2789 /*
2790 * Take out anonymous pages first, anonymous shared vmas are
2791 * not dirty accountable.
2792 */
2793 if (PageAnon(vmf->page)) {
2794 int total_map_swapcount;
2795 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2796 page_count(vmf->page) != 1))
2797 goto copy;
2798 if (!trylock_page(vmf->page)) {
2799 get_page(vmf->page);
2800 pte_unmap_unlock(vmf->pte, vmf->ptl);
2801 lock_page(vmf->page);
2802 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2803 vmf->address, &vmf->ptl);
2804 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2805 unlock_page(vmf->page);
2806 pte_unmap_unlock(vmf->pte, vmf->ptl);
2807 put_page(vmf->page);
2808 return 0;
2809 }
2810 put_page(vmf->page);
2811 }
2812 if (PageKsm(vmf->page)) {
2813 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2814 vmf->address);
2815 unlock_page(vmf->page);
2816 if (!reused)
2817 goto copy;
2818 wp_page_reuse(vmf);
2819 return VM_FAULT_WRITE;
2820 }
2821 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2822 if (total_map_swapcount == 1) {
2823 /*
2824 * The page is all ours. Move it to
2825 * our anon_vma so the rmap code will
2826 * not search our parent or siblings.
2827 * Protected against the rmap code by
2828 * the page lock.
2829 */
2830 page_move_anon_rmap(vmf->page, vma);
2831 }
2832 unlock_page(vmf->page);
2833 wp_page_reuse(vmf);
2834 return VM_FAULT_WRITE;
2835 }
2836 unlock_page(vmf->page);
2837 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2838 (VM_WRITE|VM_SHARED))) {
2839 return wp_page_shared(vmf);
2840 }
2841 copy:
2842 /*
2843 * Ok, we need to copy. Oh, well..
2844 */
2845 get_page(vmf->page);
2846
2847 pte_unmap_unlock(vmf->pte, vmf->ptl);
2848 return wp_page_copy(vmf);
2849 }
2850
2851 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2852 unsigned long start_addr, unsigned long end_addr,
2853 struct zap_details *details)
2854 {
2855 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2856 }
2857
2858 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2859 struct zap_details *details)
2860 {
2861 struct vm_area_struct *vma;
2862 pgoff_t vba, vea, zba, zea;
2863
2864 vma_interval_tree_foreach(vma, root,
2865 details->first_index, details->last_index) {
2866
2867 vba = vma->vm_pgoff;
2868 vea = vba + vma_pages(vma) - 1;
2869 zba = details->first_index;
2870 if (zba < vba)
2871 zba = vba;
2872 zea = details->last_index;
2873 if (zea > vea)
2874 zea = vea;
2875
2876 unmap_mapping_range_vma(vma,
2877 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2878 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2879 details);
2880 }
2881 }
2882
2883 /**
2884 * unmap_mapping_pages() - Unmap pages from processes.
2885 * @mapping: The address space containing pages to be unmapped.
2886 * @start: Index of first page to be unmapped.
2887 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2888 * @even_cows: Whether to unmap even private COWed pages.
2889 *
2890 * Unmap the pages in this address space from any userspace process which
2891 * has them mmaped. Generally, you want to remove COWed pages as well when
2892 * a file is being truncated, but not when invalidating pages from the page
2893 * cache.
2894 */
2895 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2896 pgoff_t nr, bool even_cows)
2897 {
2898 struct zap_details details = { };
2899
2900 details.check_mapping = even_cows ? NULL : mapping;
2901 details.first_index = start;
2902 details.last_index = start + nr - 1;
2903 if (details.last_index < details.first_index)
2904 details.last_index = ULONG_MAX;
2905
2906 i_mmap_lock_write(mapping);
2907 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2908 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2909 i_mmap_unlock_write(mapping);
2910 }
2911
2912 /**
2913 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2914 * address_space corresponding to the specified byte range in the underlying
2915 * file.
2916 *
2917 * @mapping: the address space containing mmaps to be unmapped.
2918 * @holebegin: byte in first page to unmap, relative to the start of
2919 * the underlying file. This will be rounded down to a PAGE_SIZE
2920 * boundary. Note that this is different from truncate_pagecache(), which
2921 * must keep the partial page. In contrast, we must get rid of
2922 * partial pages.
2923 * @holelen: size of prospective hole in bytes. This will be rounded
2924 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2925 * end of the file.
2926 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2927 * but 0 when invalidating pagecache, don't throw away private data.
2928 */
2929 void unmap_mapping_range(struct address_space *mapping,
2930 loff_t const holebegin, loff_t const holelen, int even_cows)
2931 {
2932 pgoff_t hba = holebegin >> PAGE_SHIFT;
2933 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2934
2935 /* Check for overflow. */
2936 if (sizeof(holelen) > sizeof(hlen)) {
2937 long long holeend =
2938 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2939 if (holeend & ~(long long)ULONG_MAX)
2940 hlen = ULONG_MAX - hba + 1;
2941 }
2942
2943 unmap_mapping_pages(mapping, hba, hlen, even_cows);
2944 }
2945 EXPORT_SYMBOL(unmap_mapping_range);
2946
2947 /*
2948 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2949 * but allow concurrent faults), and pte mapped but not yet locked.
2950 * We return with pte unmapped and unlocked.
2951 *
2952 * We return with the mmap_sem locked or unlocked in the same cases
2953 * as does filemap_fault().
2954 */
2955 vm_fault_t do_swap_page(struct vm_fault *vmf)
2956 {
2957 struct vm_area_struct *vma = vmf->vma;
2958 struct page *page = NULL, *swapcache;
2959 struct mem_cgroup *memcg;
2960 swp_entry_t entry;
2961 pte_t pte;
2962 int locked;
2963 int exclusive = 0;
2964 vm_fault_t ret = 0;
2965
2966 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2967 goto out;
2968
2969 entry = pte_to_swp_entry(vmf->orig_pte);
2970 if (unlikely(non_swap_entry(entry))) {
2971 if (is_migration_entry(entry)) {
2972 migration_entry_wait(vma->vm_mm, vmf->pmd,
2973 vmf->address);
2974 } else if (is_device_private_entry(entry)) {
2975 vmf->page = device_private_entry_to_page(entry);
2976 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2977 } else if (is_hwpoison_entry(entry)) {
2978 ret = VM_FAULT_HWPOISON;
2979 } else {
2980 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2981 ret = VM_FAULT_SIGBUS;
2982 }
2983 goto out;
2984 }
2985
2986
2987 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2988 page = lookup_swap_cache(entry, vma, vmf->address);
2989 swapcache = page;
2990
2991 if (!page) {
2992 struct swap_info_struct *si = swp_swap_info(entry);
2993
2994 if (si->flags & SWP_SYNCHRONOUS_IO &&
2995 __swap_count(entry) == 1) {
2996 /* skip swapcache */
2997 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2998 vmf->address);
2999 if (page) {
3000 __SetPageLocked(page);
3001 __SetPageSwapBacked(page);
3002 set_page_private(page, entry.val);
3003 lru_cache_add_anon(page);
3004 swap_readpage(page, true);
3005 }
3006 } else {
3007 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3008 vmf);
3009 swapcache = page;
3010 }
3011
3012 if (!page) {
3013 /*
3014 * Back out if somebody else faulted in this pte
3015 * while we released the pte lock.
3016 */
3017 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3018 vmf->address, &vmf->ptl);
3019 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3020 ret = VM_FAULT_OOM;
3021 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3022 goto unlock;
3023 }
3024
3025 /* Had to read the page from swap area: Major fault */
3026 ret = VM_FAULT_MAJOR;
3027 count_vm_event(PGMAJFAULT);
3028 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3029 } else if (PageHWPoison(page)) {
3030 /*
3031 * hwpoisoned dirty swapcache pages are kept for killing
3032 * owner processes (which may be unknown at hwpoison time)
3033 */
3034 ret = VM_FAULT_HWPOISON;
3035 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3036 goto out_release;
3037 }
3038
3039 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3040
3041 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3042 if (!locked) {
3043 ret |= VM_FAULT_RETRY;
3044 goto out_release;
3045 }
3046
3047 /*
3048 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3049 * release the swapcache from under us. The page pin, and pte_same
3050 * test below, are not enough to exclude that. Even if it is still
3051 * swapcache, we need to check that the page's swap has not changed.
3052 */
3053 if (unlikely((!PageSwapCache(page) ||
3054 page_private(page) != entry.val)) && swapcache)
3055 goto out_page;
3056
3057 page = ksm_might_need_to_copy(page, vma, vmf->address);
3058 if (unlikely(!page)) {
3059 ret = VM_FAULT_OOM;
3060 page = swapcache;
3061 goto out_page;
3062 }
3063
3064 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3065 &memcg, false)) {
3066 ret = VM_FAULT_OOM;
3067 goto out_page;
3068 }
3069
3070 /*
3071 * Back out if somebody else already faulted in this pte.
3072 */
3073 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3074 &vmf->ptl);
3075 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3076 goto out_nomap;
3077
3078 if (unlikely(!PageUptodate(page))) {
3079 ret = VM_FAULT_SIGBUS;
3080 goto out_nomap;
3081 }
3082
3083 /*
3084 * The page isn't present yet, go ahead with the fault.
3085 *
3086 * Be careful about the sequence of operations here.
3087 * To get its accounting right, reuse_swap_page() must be called
3088 * while the page is counted on swap but not yet in mapcount i.e.
3089 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3090 * must be called after the swap_free(), or it will never succeed.
3091 */
3092
3093 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3094 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3095 pte = mk_pte(page, vma->vm_page_prot);
3096 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3097 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3098 vmf->flags &= ~FAULT_FLAG_WRITE;
3099 ret |= VM_FAULT_WRITE;
3100 exclusive = RMAP_EXCLUSIVE;
3101 }
3102 flush_icache_page(vma, page);
3103 if (pte_swp_soft_dirty(vmf->orig_pte))
3104 pte = pte_mksoft_dirty(pte);
3105 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3106 pte = pte_mkuffd_wp(pte);
3107 pte = pte_wrprotect(pte);
3108 }
3109 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3110 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3111 vmf->orig_pte = pte;
3112
3113 /* ksm created a completely new copy */
3114 if (unlikely(page != swapcache && swapcache)) {
3115 page_add_new_anon_rmap(page, vma, vmf->address, false);
3116 mem_cgroup_commit_charge(page, memcg, false, false);
3117 lru_cache_add_active_or_unevictable(page, vma);
3118 } else {
3119 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3120 mem_cgroup_commit_charge(page, memcg, true, false);
3121 activate_page(page);
3122 }
3123
3124 swap_free(entry);
3125 if (mem_cgroup_swap_full(page) ||
3126 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3127 try_to_free_swap(page);
3128 unlock_page(page);
3129 if (page != swapcache && swapcache) {
3130 /*
3131 * Hold the lock to avoid the swap entry to be reused
3132 * until we take the PT lock for the pte_same() check
3133 * (to avoid false positives from pte_same). For
3134 * further safety release the lock after the swap_free
3135 * so that the swap count won't change under a
3136 * parallel locked swapcache.
3137 */
3138 unlock_page(swapcache);
3139 put_page(swapcache);
3140 }
3141
3142 if (vmf->flags & FAULT_FLAG_WRITE) {
3143 ret |= do_wp_page(vmf);
3144 if (ret & VM_FAULT_ERROR)
3145 ret &= VM_FAULT_ERROR;
3146 goto out;
3147 }
3148
3149 /* No need to invalidate - it was non-present before */
3150 update_mmu_cache(vma, vmf->address, vmf->pte);
3151 unlock:
3152 pte_unmap_unlock(vmf->pte, vmf->ptl);
3153 out:
3154 return ret;
3155 out_nomap:
3156 mem_cgroup_cancel_charge(page, memcg, false);
3157 pte_unmap_unlock(vmf->pte, vmf->ptl);
3158 out_page:
3159 unlock_page(page);
3160 out_release:
3161 put_page(page);
3162 if (page != swapcache && swapcache) {
3163 unlock_page(swapcache);
3164 put_page(swapcache);
3165 }
3166 return ret;
3167 }
3168
3169 /*
3170 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3171 * but allow concurrent faults), and pte mapped but not yet locked.
3172 * We return with mmap_sem still held, but pte unmapped and unlocked.
3173 */
3174 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3175 {
3176 struct vm_area_struct *vma = vmf->vma;
3177 struct mem_cgroup *memcg;
3178 struct page *page;
3179 vm_fault_t ret = 0;
3180 pte_t entry;
3181
3182 /* File mapping without ->vm_ops ? */
3183 if (vma->vm_flags & VM_SHARED)
3184 return VM_FAULT_SIGBUS;
3185
3186 /*
3187 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3188 * pte_offset_map() on pmds where a huge pmd might be created
3189 * from a different thread.
3190 *
3191 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3192 * parallel threads are excluded by other means.
3193 *
3194 * Here we only have down_read(mmap_sem).
3195 */
3196 if (pte_alloc(vma->vm_mm, vmf->pmd))
3197 return VM_FAULT_OOM;
3198
3199 /* See the comment in pte_alloc_one_map() */
3200 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3201 return 0;
3202
3203 /* Use the zero-page for reads */
3204 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3205 !mm_forbids_zeropage(vma->vm_mm)) {
3206 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3207 vma->vm_page_prot));
3208 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3209 vmf->address, &vmf->ptl);
3210 if (!pte_none(*vmf->pte))
3211 goto unlock;
3212 ret = check_stable_address_space(vma->vm_mm);
3213 if (ret)
3214 goto unlock;
3215 /* Deliver the page fault to userland, check inside PT lock */
3216 if (userfaultfd_missing(vma)) {
3217 pte_unmap_unlock(vmf->pte, vmf->ptl);
3218 return handle_userfault(vmf, VM_UFFD_MISSING);
3219 }
3220 goto setpte;
3221 }
3222
3223 /* Allocate our own private page. */
3224 if (unlikely(anon_vma_prepare(vma)))
3225 goto oom;
3226 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3227 if (!page)
3228 goto oom;
3229
3230 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3231 false))
3232 goto oom_free_page;
3233
3234 /*
3235 * The memory barrier inside __SetPageUptodate makes sure that
3236 * preceding stores to the page contents become visible before
3237 * the set_pte_at() write.
3238 */
3239 __SetPageUptodate(page);
3240
3241 entry = mk_pte(page, vma->vm_page_prot);
3242 if (vma->vm_flags & VM_WRITE)
3243 entry = pte_mkwrite(pte_mkdirty(entry));
3244
3245 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3246 &vmf->ptl);
3247 if (!pte_none(*vmf->pte))
3248 goto release;
3249
3250 ret = check_stable_address_space(vma->vm_mm);
3251 if (ret)
3252 goto release;
3253
3254 /* Deliver the page fault to userland, check inside PT lock */
3255 if (userfaultfd_missing(vma)) {
3256 pte_unmap_unlock(vmf->pte, vmf->ptl);
3257 mem_cgroup_cancel_charge(page, memcg, false);
3258 put_page(page);
3259 return handle_userfault(vmf, VM_UFFD_MISSING);
3260 }
3261
3262 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3263 page_add_new_anon_rmap(page, vma, vmf->address, false);
3264 mem_cgroup_commit_charge(page, memcg, false, false);
3265 lru_cache_add_active_or_unevictable(page, vma);
3266 setpte:
3267 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3268
3269 /* No need to invalidate - it was non-present before */
3270 update_mmu_cache(vma, vmf->address, vmf->pte);
3271 unlock:
3272 pte_unmap_unlock(vmf->pte, vmf->ptl);
3273 return ret;
3274 release:
3275 mem_cgroup_cancel_charge(page, memcg, false);
3276 put_page(page);
3277 goto unlock;
3278 oom_free_page:
3279 put_page(page);
3280 oom:
3281 return VM_FAULT_OOM;
3282 }
3283
3284 /*
3285 * The mmap_sem must have been held on entry, and may have been
3286 * released depending on flags and vma->vm_ops->fault() return value.
3287 * See filemap_fault() and __lock_page_retry().
3288 */
3289 static vm_fault_t __do_fault(struct vm_fault *vmf)
3290 {
3291 struct vm_area_struct *vma = vmf->vma;
3292 vm_fault_t ret;
3293
3294 /*
3295 * Preallocate pte before we take page_lock because this might lead to
3296 * deadlocks for memcg reclaim which waits for pages under writeback:
3297 * lock_page(A)
3298 * SetPageWriteback(A)
3299 * unlock_page(A)
3300 * lock_page(B)
3301 * lock_page(B)
3302 * pte_alloc_pne
3303 * shrink_page_list
3304 * wait_on_page_writeback(A)
3305 * SetPageWriteback(B)
3306 * unlock_page(B)
3307 * # flush A, B to clear the writeback
3308 */
3309 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3310 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3311 if (!vmf->prealloc_pte)
3312 return VM_FAULT_OOM;
3313 smp_wmb(); /* See comment in __pte_alloc() */
3314 }
3315
3316 ret = vma->vm_ops->fault(vmf);
3317 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3318 VM_FAULT_DONE_COW)))
3319 return ret;
3320
3321 if (unlikely(PageHWPoison(vmf->page))) {
3322 if (ret & VM_FAULT_LOCKED)
3323 unlock_page(vmf->page);
3324 put_page(vmf->page);
3325 vmf->page = NULL;
3326 return VM_FAULT_HWPOISON;
3327 }
3328
3329 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3330 lock_page(vmf->page);
3331 else
3332 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3333
3334 return ret;
3335 }
3336
3337 /*
3338 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3339 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3340 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3341 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3342 */
3343 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3344 {
3345 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3346 }
3347
3348 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3349 {
3350 struct vm_area_struct *vma = vmf->vma;
3351
3352 if (!pmd_none(*vmf->pmd))
3353 goto map_pte;
3354 if (vmf->prealloc_pte) {
3355 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3356 if (unlikely(!pmd_none(*vmf->pmd))) {
3357 spin_unlock(vmf->ptl);
3358 goto map_pte;
3359 }
3360
3361 mm_inc_nr_ptes(vma->vm_mm);
3362 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3363 spin_unlock(vmf->ptl);
3364 vmf->prealloc_pte = NULL;
3365 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3366 return VM_FAULT_OOM;
3367 }
3368 map_pte:
3369 /*
3370 * If a huge pmd materialized under us just retry later. Use
3371 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3372 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3373 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3374 * running immediately after a huge pmd fault in a different thread of
3375 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3376 * All we have to ensure is that it is a regular pmd that we can walk
3377 * with pte_offset_map() and we can do that through an atomic read in
3378 * C, which is what pmd_trans_unstable() provides.
3379 */
3380 if (pmd_devmap_trans_unstable(vmf->pmd))
3381 return VM_FAULT_NOPAGE;
3382
3383 /*
3384 * At this point we know that our vmf->pmd points to a page of ptes
3385 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3386 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3387 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3388 * be valid and we will re-check to make sure the vmf->pte isn't
3389 * pte_none() under vmf->ptl protection when we return to
3390 * alloc_set_pte().
3391 */
3392 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3393 &vmf->ptl);
3394 return 0;
3395 }
3396
3397 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3398 static void deposit_prealloc_pte(struct vm_fault *vmf)
3399 {
3400 struct vm_area_struct *vma = vmf->vma;
3401
3402 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3403 /*
3404 * We are going to consume the prealloc table,
3405 * count that as nr_ptes.
3406 */
3407 mm_inc_nr_ptes(vma->vm_mm);
3408 vmf->prealloc_pte = NULL;
3409 }
3410
3411 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3412 {
3413 struct vm_area_struct *vma = vmf->vma;
3414 bool write = vmf->flags & FAULT_FLAG_WRITE;
3415 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3416 pmd_t entry;
3417 int i;
3418 vm_fault_t ret;
3419
3420 if (!transhuge_vma_suitable(vma, haddr))
3421 return VM_FAULT_FALLBACK;
3422
3423 ret = VM_FAULT_FALLBACK;
3424 page = compound_head(page);
3425
3426 /*
3427 * Archs like ppc64 need additonal space to store information
3428 * related to pte entry. Use the preallocated table for that.
3429 */
3430 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3431 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3432 if (!vmf->prealloc_pte)
3433 return VM_FAULT_OOM;
3434 smp_wmb(); /* See comment in __pte_alloc() */
3435 }
3436
3437 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3438 if (unlikely(!pmd_none(*vmf->pmd)))
3439 goto out;
3440
3441 for (i = 0; i < HPAGE_PMD_NR; i++)
3442 flush_icache_page(vma, page + i);
3443
3444 entry = mk_huge_pmd(page, vma->vm_page_prot);
3445 if (write)
3446 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3447
3448 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3449 page_add_file_rmap(page, true);
3450 /*
3451 * deposit and withdraw with pmd lock held
3452 */
3453 if (arch_needs_pgtable_deposit())
3454 deposit_prealloc_pte(vmf);
3455
3456 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3457
3458 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3459
3460 /* fault is handled */
3461 ret = 0;
3462 count_vm_event(THP_FILE_MAPPED);
3463 out:
3464 spin_unlock(vmf->ptl);
3465 return ret;
3466 }
3467 #else
3468 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3469 {
3470 BUILD_BUG();
3471 return 0;
3472 }
3473 #endif
3474
3475 /**
3476 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3477 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3478 *
3479 * @vmf: fault environment
3480 * @memcg: memcg to charge page (only for private mappings)
3481 * @page: page to map
3482 *
3483 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3484 * return.
3485 *
3486 * Target users are page handler itself and implementations of
3487 * vm_ops->map_pages.
3488 *
3489 * Return: %0 on success, %VM_FAULT_ code in case of error.
3490 */
3491 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3492 struct page *page)
3493 {
3494 struct vm_area_struct *vma = vmf->vma;
3495 bool write = vmf->flags & FAULT_FLAG_WRITE;
3496 pte_t entry;
3497 vm_fault_t ret;
3498
3499 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3500 /* THP on COW? */
3501 VM_BUG_ON_PAGE(memcg, page);
3502
3503 ret = do_set_pmd(vmf, page);
3504 if (ret != VM_FAULT_FALLBACK)
3505 return ret;
3506 }
3507
3508 if (!vmf->pte) {
3509 ret = pte_alloc_one_map(vmf);
3510 if (ret)
3511 return ret;
3512 }
3513
3514 /* Re-check under ptl */
3515 if (unlikely(!pte_none(*vmf->pte)))
3516 return VM_FAULT_NOPAGE;
3517
3518 flush_icache_page(vma, page);
3519 entry = mk_pte(page, vma->vm_page_prot);
3520 if (write)
3521 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3522 /* copy-on-write page */
3523 if (write && !(vma->vm_flags & VM_SHARED)) {
3524 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3525 page_add_new_anon_rmap(page, vma, vmf->address, false);
3526 mem_cgroup_commit_charge(page, memcg, false, false);
3527 lru_cache_add_active_or_unevictable(page, vma);
3528 } else {
3529 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3530 page_add_file_rmap(page, false);
3531 }
3532 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3533
3534 /* no need to invalidate: a not-present page won't be cached */
3535 update_mmu_cache(vma, vmf->address, vmf->pte);
3536
3537 return 0;
3538 }
3539
3540
3541 /**
3542 * finish_fault - finish page fault once we have prepared the page to fault
3543 *
3544 * @vmf: structure describing the fault
3545 *
3546 * This function handles all that is needed to finish a page fault once the
3547 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3548 * given page, adds reverse page mapping, handles memcg charges and LRU
3549 * addition.
3550 *
3551 * The function expects the page to be locked and on success it consumes a
3552 * reference of a page being mapped (for the PTE which maps it).
3553 *
3554 * Return: %0 on success, %VM_FAULT_ code in case of error.
3555 */
3556 vm_fault_t finish_fault(struct vm_fault *vmf)
3557 {
3558 struct page *page;
3559 vm_fault_t ret = 0;
3560
3561 /* Did we COW the page? */
3562 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3563 !(vmf->vma->vm_flags & VM_SHARED))
3564 page = vmf->cow_page;
3565 else
3566 page = vmf->page;
3567
3568 /*
3569 * check even for read faults because we might have lost our CoWed
3570 * page
3571 */
3572 if (!(vmf->vma->vm_flags & VM_SHARED))
3573 ret = check_stable_address_space(vmf->vma->vm_mm);
3574 if (!ret)
3575 ret = alloc_set_pte(vmf, vmf->memcg, page);
3576 if (vmf->pte)
3577 pte_unmap_unlock(vmf->pte, vmf->ptl);
3578 return ret;
3579 }
3580
3581 static unsigned long fault_around_bytes __read_mostly =
3582 rounddown_pow_of_two(65536);
3583
3584 #ifdef CONFIG_DEBUG_FS
3585 static int fault_around_bytes_get(void *data, u64 *val)
3586 {
3587 *val = fault_around_bytes;
3588 return 0;
3589 }
3590
3591 /*
3592 * fault_around_bytes must be rounded down to the nearest page order as it's
3593 * what do_fault_around() expects to see.
3594 */
3595 static int fault_around_bytes_set(void *data, u64 val)
3596 {
3597 if (val / PAGE_SIZE > PTRS_PER_PTE)
3598 return -EINVAL;
3599 if (val > PAGE_SIZE)
3600 fault_around_bytes = rounddown_pow_of_two(val);
3601 else
3602 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3603 return 0;
3604 }
3605 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3606 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3607
3608 static int __init fault_around_debugfs(void)
3609 {
3610 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3611 &fault_around_bytes_fops);
3612 return 0;
3613 }
3614 late_initcall(fault_around_debugfs);
3615 #endif
3616
3617 /*
3618 * do_fault_around() tries to map few pages around the fault address. The hope
3619 * is that the pages will be needed soon and this will lower the number of
3620 * faults to handle.
3621 *
3622 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3623 * not ready to be mapped: not up-to-date, locked, etc.
3624 *
3625 * This function is called with the page table lock taken. In the split ptlock
3626 * case the page table lock only protects only those entries which belong to
3627 * the page table corresponding to the fault address.
3628 *
3629 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3630 * only once.
3631 *
3632 * fault_around_bytes defines how many bytes we'll try to map.
3633 * do_fault_around() expects it to be set to a power of two less than or equal
3634 * to PTRS_PER_PTE.
3635 *
3636 * The virtual address of the area that we map is naturally aligned to
3637 * fault_around_bytes rounded down to the machine page size
3638 * (and therefore to page order). This way it's easier to guarantee
3639 * that we don't cross page table boundaries.
3640 */
3641 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3642 {
3643 unsigned long address = vmf->address, nr_pages, mask;
3644 pgoff_t start_pgoff = vmf->pgoff;
3645 pgoff_t end_pgoff;
3646 int off;
3647 vm_fault_t ret = 0;
3648
3649 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3650 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3651
3652 vmf->address = max(address & mask, vmf->vma->vm_start);
3653 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3654 start_pgoff -= off;
3655
3656 /*
3657 * end_pgoff is either the end of the page table, the end of
3658 * the vma or nr_pages from start_pgoff, depending what is nearest.
3659 */
3660 end_pgoff = start_pgoff -
3661 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3662 PTRS_PER_PTE - 1;
3663 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3664 start_pgoff + nr_pages - 1);
3665
3666 if (pmd_none(*vmf->pmd)) {
3667 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3668 if (!vmf->prealloc_pte)
3669 goto out;
3670 smp_wmb(); /* See comment in __pte_alloc() */
3671 }
3672
3673 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3674
3675 /* Huge page is mapped? Page fault is solved */
3676 if (pmd_trans_huge(*vmf->pmd)) {
3677 ret = VM_FAULT_NOPAGE;
3678 goto out;
3679 }
3680
3681 /* ->map_pages() haven't done anything useful. Cold page cache? */
3682 if (!vmf->pte)
3683 goto out;
3684
3685 /* check if the page fault is solved */
3686 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3687 if (!pte_none(*vmf->pte))
3688 ret = VM_FAULT_NOPAGE;
3689 pte_unmap_unlock(vmf->pte, vmf->ptl);
3690 out:
3691 vmf->address = address;
3692 vmf->pte = NULL;
3693 return ret;
3694 }
3695
3696 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3697 {
3698 struct vm_area_struct *vma = vmf->vma;
3699 vm_fault_t ret = 0;
3700
3701 /*
3702 * Let's call ->map_pages() first and use ->fault() as fallback
3703 * if page by the offset is not ready to be mapped (cold cache or
3704 * something).
3705 */
3706 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3707 ret = do_fault_around(vmf);
3708 if (ret)
3709 return ret;
3710 }
3711
3712 ret = __do_fault(vmf);
3713 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3714 return ret;
3715
3716 ret |= finish_fault(vmf);
3717 unlock_page(vmf->page);
3718 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3719 put_page(vmf->page);
3720 return ret;
3721 }
3722
3723 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3724 {
3725 struct vm_area_struct *vma = vmf->vma;
3726 vm_fault_t ret;
3727
3728 if (unlikely(anon_vma_prepare(vma)))
3729 return VM_FAULT_OOM;
3730
3731 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3732 if (!vmf->cow_page)
3733 return VM_FAULT_OOM;
3734
3735 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3736 &vmf->memcg, false)) {
3737 put_page(vmf->cow_page);
3738 return VM_FAULT_OOM;
3739 }
3740
3741 ret = __do_fault(vmf);
3742 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3743 goto uncharge_out;
3744 if (ret & VM_FAULT_DONE_COW)
3745 return ret;
3746
3747 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3748 __SetPageUptodate(vmf->cow_page);
3749
3750 ret |= finish_fault(vmf);
3751 unlock_page(vmf->page);
3752 put_page(vmf->page);
3753 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3754 goto uncharge_out;
3755 return ret;
3756 uncharge_out:
3757 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3758 put_page(vmf->cow_page);
3759 return ret;
3760 }
3761
3762 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3763 {
3764 struct vm_area_struct *vma = vmf->vma;
3765 vm_fault_t ret, tmp;
3766
3767 ret = __do_fault(vmf);
3768 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3769 return ret;
3770
3771 /*
3772 * Check if the backing address space wants to know that the page is
3773 * about to become writable
3774 */
3775 if (vma->vm_ops->page_mkwrite) {
3776 unlock_page(vmf->page);
3777 tmp = do_page_mkwrite(vmf);
3778 if (unlikely(!tmp ||
3779 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3780 put_page(vmf->page);
3781 return tmp;
3782 }
3783 }
3784
3785 ret |= finish_fault(vmf);
3786 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3787 VM_FAULT_RETRY))) {
3788 unlock_page(vmf->page);
3789 put_page(vmf->page);
3790 return ret;
3791 }
3792
3793 ret |= fault_dirty_shared_page(vmf);
3794 return ret;
3795 }
3796
3797 /*
3798 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3799 * but allow concurrent faults).
3800 * The mmap_sem may have been released depending on flags and our
3801 * return value. See filemap_fault() and __lock_page_or_retry().
3802 * If mmap_sem is released, vma may become invalid (for example
3803 * by other thread calling munmap()).
3804 */
3805 static vm_fault_t do_fault(struct vm_fault *vmf)
3806 {
3807 struct vm_area_struct *vma = vmf->vma;
3808 struct mm_struct *vm_mm = vma->vm_mm;
3809 vm_fault_t ret;
3810
3811 /*
3812 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3813 */
3814 if (!vma->vm_ops->fault) {
3815 /*
3816 * If we find a migration pmd entry or a none pmd entry, which
3817 * should never happen, return SIGBUS
3818 */
3819 if (unlikely(!pmd_present(*vmf->pmd)))
3820 ret = VM_FAULT_SIGBUS;
3821 else {
3822 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3823 vmf->pmd,
3824 vmf->address,
3825 &vmf->ptl);
3826 /*
3827 * Make sure this is not a temporary clearing of pte
3828 * by holding ptl and checking again. A R/M/W update
3829 * of pte involves: take ptl, clearing the pte so that
3830 * we don't have concurrent modification by hardware
3831 * followed by an update.
3832 */
3833 if (unlikely(pte_none(*vmf->pte)))
3834 ret = VM_FAULT_SIGBUS;
3835 else
3836 ret = VM_FAULT_NOPAGE;
3837
3838 pte_unmap_unlock(vmf->pte, vmf->ptl);
3839 }
3840 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3841 ret = do_read_fault(vmf);
3842 else if (!(vma->vm_flags & VM_SHARED))
3843 ret = do_cow_fault(vmf);
3844 else
3845 ret = do_shared_fault(vmf);
3846
3847 /* preallocated pagetable is unused: free it */
3848 if (vmf->prealloc_pte) {
3849 pte_free(vm_mm, vmf->prealloc_pte);
3850 vmf->prealloc_pte = NULL;
3851 }
3852 return ret;
3853 }
3854
3855 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3856 unsigned long addr, int page_nid,
3857 int *flags)
3858 {
3859 get_page(page);
3860
3861 count_vm_numa_event(NUMA_HINT_FAULTS);
3862 if (page_nid == numa_node_id()) {
3863 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3864 *flags |= TNF_FAULT_LOCAL;
3865 }
3866
3867 return mpol_misplaced(page, vma, addr);
3868 }
3869
3870 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3871 {
3872 struct vm_area_struct *vma = vmf->vma;
3873 struct page *page = NULL;
3874 int page_nid = NUMA_NO_NODE;
3875 int last_cpupid;
3876 int target_nid;
3877 bool migrated = false;
3878 pte_t pte, old_pte;
3879 bool was_writable = pte_savedwrite(vmf->orig_pte);
3880 int flags = 0;
3881
3882 /*
3883 * The "pte" at this point cannot be used safely without
3884 * validation through pte_unmap_same(). It's of NUMA type but
3885 * the pfn may be screwed if the read is non atomic.
3886 */
3887 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3888 spin_lock(vmf->ptl);
3889 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3890 pte_unmap_unlock(vmf->pte, vmf->ptl);
3891 goto out;
3892 }
3893
3894 /*
3895 * Make it present again, Depending on how arch implementes non
3896 * accessible ptes, some can allow access by kernel mode.
3897 */
3898 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3899 pte = pte_modify(old_pte, vma->vm_page_prot);
3900 pte = pte_mkyoung(pte);
3901 if (was_writable)
3902 pte = pte_mkwrite(pte);
3903 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3904 update_mmu_cache(vma, vmf->address, vmf->pte);
3905
3906 page = vm_normal_page(vma, vmf->address, pte);
3907 if (!page) {
3908 pte_unmap_unlock(vmf->pte, vmf->ptl);
3909 return 0;
3910 }
3911
3912 /* TODO: handle PTE-mapped THP */
3913 if (PageCompound(page)) {
3914 pte_unmap_unlock(vmf->pte, vmf->ptl);
3915 return 0;
3916 }
3917
3918 /*
3919 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3920 * much anyway since they can be in shared cache state. This misses
3921 * the case where a mapping is writable but the process never writes
3922 * to it but pte_write gets cleared during protection updates and
3923 * pte_dirty has unpredictable behaviour between PTE scan updates,
3924 * background writeback, dirty balancing and application behaviour.
3925 */
3926 if (!pte_write(pte))
3927 flags |= TNF_NO_GROUP;
3928
3929 /*
3930 * Flag if the page is shared between multiple address spaces. This
3931 * is later used when determining whether to group tasks together
3932 */
3933 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3934 flags |= TNF_SHARED;
3935
3936 last_cpupid = page_cpupid_last(page);
3937 page_nid = page_to_nid(page);
3938 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3939 &flags);
3940 pte_unmap_unlock(vmf->pte, vmf->ptl);
3941 if (target_nid == NUMA_NO_NODE) {
3942 put_page(page);
3943 goto out;
3944 }
3945
3946 /* Migrate to the requested node */
3947 migrated = migrate_misplaced_page(page, vma, target_nid);
3948 if (migrated) {
3949 page_nid = target_nid;
3950 flags |= TNF_MIGRATED;
3951 } else
3952 flags |= TNF_MIGRATE_FAIL;
3953
3954 out:
3955 if (page_nid != NUMA_NO_NODE)
3956 task_numa_fault(last_cpupid, page_nid, 1, flags);
3957 return 0;
3958 }
3959
3960 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3961 {
3962 if (vma_is_anonymous(vmf->vma))
3963 return do_huge_pmd_anonymous_page(vmf);
3964 if (vmf->vma->vm_ops->huge_fault)
3965 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3966 return VM_FAULT_FALLBACK;
3967 }
3968
3969 /* `inline' is required to avoid gcc 4.1.2 build error */
3970 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3971 {
3972 if (vma_is_anonymous(vmf->vma)) {
3973 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
3974 return handle_userfault(vmf, VM_UFFD_WP);
3975 return do_huge_pmd_wp_page(vmf, orig_pmd);
3976 }
3977 if (vmf->vma->vm_ops->huge_fault) {
3978 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3979
3980 if (!(ret & VM_FAULT_FALLBACK))
3981 return ret;
3982 }
3983
3984 /* COW or write-notify handled on pte level: split pmd. */
3985 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3986
3987 return VM_FAULT_FALLBACK;
3988 }
3989
3990 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3991 {
3992 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
3993 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
3994 /* No support for anonymous transparent PUD pages yet */
3995 if (vma_is_anonymous(vmf->vma))
3996 goto split;
3997 if (vmf->vma->vm_ops->huge_fault) {
3998 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3999
4000 if (!(ret & VM_FAULT_FALLBACK))
4001 return ret;
4002 }
4003 split:
4004 /* COW or write-notify not handled on PUD level: split pud.*/
4005 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4006 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4007 return VM_FAULT_FALLBACK;
4008 }
4009
4010 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4011 {
4012 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4013 /* No support for anonymous transparent PUD pages yet */
4014 if (vma_is_anonymous(vmf->vma))
4015 return VM_FAULT_FALLBACK;
4016 if (vmf->vma->vm_ops->huge_fault)
4017 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4018 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4019 return VM_FAULT_FALLBACK;
4020 }
4021
4022 /*
4023 * These routines also need to handle stuff like marking pages dirty
4024 * and/or accessed for architectures that don't do it in hardware (most
4025 * RISC architectures). The early dirtying is also good on the i386.
4026 *
4027 * There is also a hook called "update_mmu_cache()" that architectures
4028 * with external mmu caches can use to update those (ie the Sparc or
4029 * PowerPC hashed page tables that act as extended TLBs).
4030 *
4031 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
4032 * concurrent faults).
4033 *
4034 * The mmap_sem may have been released depending on flags and our return value.
4035 * See filemap_fault() and __lock_page_or_retry().
4036 */
4037 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4038 {
4039 pte_t entry;
4040
4041 if (unlikely(pmd_none(*vmf->pmd))) {
4042 /*
4043 * Leave __pte_alloc() until later: because vm_ops->fault may
4044 * want to allocate huge page, and if we expose page table
4045 * for an instant, it will be difficult to retract from
4046 * concurrent faults and from rmap lookups.
4047 */
4048 vmf->pte = NULL;
4049 } else {
4050 /* See comment in pte_alloc_one_map() */
4051 if (pmd_devmap_trans_unstable(vmf->pmd))
4052 return 0;
4053 /*
4054 * A regular pmd is established and it can't morph into a huge
4055 * pmd from under us anymore at this point because we hold the
4056 * mmap_sem read mode and khugepaged takes it in write mode.
4057 * So now it's safe to run pte_offset_map().
4058 */
4059 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4060 vmf->orig_pte = *vmf->pte;
4061
4062 /*
4063 * some architectures can have larger ptes than wordsize,
4064 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4065 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4066 * accesses. The code below just needs a consistent view
4067 * for the ifs and we later double check anyway with the
4068 * ptl lock held. So here a barrier will do.
4069 */
4070 barrier();
4071 if (pte_none(vmf->orig_pte)) {
4072 pte_unmap(vmf->pte);
4073 vmf->pte = NULL;
4074 }
4075 }
4076
4077 if (!vmf->pte) {
4078 if (vma_is_anonymous(vmf->vma))
4079 return do_anonymous_page(vmf);
4080 else
4081 return do_fault(vmf);
4082 }
4083
4084 if (!pte_present(vmf->orig_pte))
4085 return do_swap_page(vmf);
4086
4087 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4088 return do_numa_page(vmf);
4089
4090 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4091 spin_lock(vmf->ptl);
4092 entry = vmf->orig_pte;
4093 if (unlikely(!pte_same(*vmf->pte, entry)))
4094 goto unlock;
4095 if (vmf->flags & FAULT_FLAG_WRITE) {
4096 if (!pte_write(entry))
4097 return do_wp_page(vmf);
4098 entry = pte_mkdirty(entry);
4099 }
4100 entry = pte_mkyoung(entry);
4101 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4102 vmf->flags & FAULT_FLAG_WRITE)) {
4103 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4104 } else {
4105 /*
4106 * This is needed only for protection faults but the arch code
4107 * is not yet telling us if this is a protection fault or not.
4108 * This still avoids useless tlb flushes for .text page faults
4109 * with threads.
4110 */
4111 if (vmf->flags & FAULT_FLAG_WRITE)
4112 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4113 }
4114 unlock:
4115 pte_unmap_unlock(vmf->pte, vmf->ptl);
4116 return 0;
4117 }
4118
4119 /*
4120 * By the time we get here, we already hold the mm semaphore
4121 *
4122 * The mmap_sem may have been released depending on flags and our
4123 * return value. See filemap_fault() and __lock_page_or_retry().
4124 */
4125 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4126 unsigned long address, unsigned int flags)
4127 {
4128 struct vm_fault vmf = {
4129 .vma = vma,
4130 .address = address & PAGE_MASK,
4131 .flags = flags,
4132 .pgoff = linear_page_index(vma, address),
4133 .gfp_mask = __get_fault_gfp_mask(vma),
4134 };
4135 unsigned int dirty = flags & FAULT_FLAG_WRITE;
4136 struct mm_struct *mm = vma->vm_mm;
4137 pgd_t *pgd;
4138 p4d_t *p4d;
4139 vm_fault_t ret;
4140
4141 pgd = pgd_offset(mm, address);
4142 p4d = p4d_alloc(mm, pgd, address);
4143 if (!p4d)
4144 return VM_FAULT_OOM;
4145
4146 vmf.pud = pud_alloc(mm, p4d, address);
4147 if (!vmf.pud)
4148 return VM_FAULT_OOM;
4149 retry_pud:
4150 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4151 ret = create_huge_pud(&vmf);
4152 if (!(ret & VM_FAULT_FALLBACK))
4153 return ret;
4154 } else {
4155 pud_t orig_pud = *vmf.pud;
4156
4157 barrier();
4158 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4159
4160 /* NUMA case for anonymous PUDs would go here */
4161
4162 if (dirty && !pud_write(orig_pud)) {
4163 ret = wp_huge_pud(&vmf, orig_pud);
4164 if (!(ret & VM_FAULT_FALLBACK))
4165 return ret;
4166 } else {
4167 huge_pud_set_accessed(&vmf, orig_pud);
4168 return 0;
4169 }
4170 }
4171 }
4172
4173 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4174 if (!vmf.pmd)
4175 return VM_FAULT_OOM;
4176
4177 /* Huge pud page fault raced with pmd_alloc? */
4178 if (pud_trans_unstable(vmf.pud))
4179 goto retry_pud;
4180
4181 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4182 ret = create_huge_pmd(&vmf);
4183 if (!(ret & VM_FAULT_FALLBACK))
4184 return ret;
4185 } else {
4186 pmd_t orig_pmd = *vmf.pmd;
4187
4188 barrier();
4189 if (unlikely(is_swap_pmd(orig_pmd))) {
4190 VM_BUG_ON(thp_migration_supported() &&
4191 !is_pmd_migration_entry(orig_pmd));
4192 if (is_pmd_migration_entry(orig_pmd))
4193 pmd_migration_entry_wait(mm, vmf.pmd);
4194 return 0;
4195 }
4196 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4197 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4198 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4199
4200 if (dirty && !pmd_write(orig_pmd)) {
4201 ret = wp_huge_pmd(&vmf, orig_pmd);
4202 if (!(ret & VM_FAULT_FALLBACK))
4203 return ret;
4204 } else {
4205 huge_pmd_set_accessed(&vmf, orig_pmd);
4206 return 0;
4207 }
4208 }
4209 }
4210
4211 return handle_pte_fault(&vmf);
4212 }
4213
4214 /*
4215 * By the time we get here, we already hold the mm semaphore
4216 *
4217 * The mmap_sem may have been released depending on flags and our
4218 * return value. See filemap_fault() and __lock_page_or_retry().
4219 */
4220 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4221 unsigned int flags)
4222 {
4223 vm_fault_t ret;
4224
4225 __set_current_state(TASK_RUNNING);
4226
4227 count_vm_event(PGFAULT);
4228 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4229
4230 /* do counter updates before entering really critical section. */
4231 check_sync_rss_stat(current);
4232
4233 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4234 flags & FAULT_FLAG_INSTRUCTION,
4235 flags & FAULT_FLAG_REMOTE))
4236 return VM_FAULT_SIGSEGV;
4237
4238 /*
4239 * Enable the memcg OOM handling for faults triggered in user
4240 * space. Kernel faults are handled more gracefully.
4241 */
4242 if (flags & FAULT_FLAG_USER)
4243 mem_cgroup_enter_user_fault();
4244
4245 if (unlikely(is_vm_hugetlb_page(vma)))
4246 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4247 else
4248 ret = __handle_mm_fault(vma, address, flags);
4249
4250 if (flags & FAULT_FLAG_USER) {
4251 mem_cgroup_exit_user_fault();
4252 /*
4253 * The task may have entered a memcg OOM situation but
4254 * if the allocation error was handled gracefully (no
4255 * VM_FAULT_OOM), there is no need to kill anything.
4256 * Just clean up the OOM state peacefully.
4257 */
4258 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4259 mem_cgroup_oom_synchronize(false);
4260 }
4261
4262 return ret;
4263 }
4264 EXPORT_SYMBOL_GPL(handle_mm_fault);
4265
4266 #ifndef __PAGETABLE_P4D_FOLDED
4267 /*
4268 * Allocate p4d page table.
4269 * We've already handled the fast-path in-line.
4270 */
4271 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4272 {
4273 p4d_t *new = p4d_alloc_one(mm, address);
4274 if (!new)
4275 return -ENOMEM;
4276
4277 smp_wmb(); /* See comment in __pte_alloc */
4278
4279 spin_lock(&mm->page_table_lock);
4280 if (pgd_present(*pgd)) /* Another has populated it */
4281 p4d_free(mm, new);
4282 else
4283 pgd_populate(mm, pgd, new);
4284 spin_unlock(&mm->page_table_lock);
4285 return 0;
4286 }
4287 #endif /* __PAGETABLE_P4D_FOLDED */
4288
4289 #ifndef __PAGETABLE_PUD_FOLDED
4290 /*
4291 * Allocate page upper directory.
4292 * We've already handled the fast-path in-line.
4293 */
4294 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4295 {
4296 pud_t *new = pud_alloc_one(mm, address);
4297 if (!new)
4298 return -ENOMEM;
4299
4300 smp_wmb(); /* See comment in __pte_alloc */
4301
4302 spin_lock(&mm->page_table_lock);
4303 #ifndef __ARCH_HAS_5LEVEL_HACK
4304 if (!p4d_present(*p4d)) {
4305 mm_inc_nr_puds(mm);
4306 p4d_populate(mm, p4d, new);
4307 } else /* Another has populated it */
4308 pud_free(mm, new);
4309 #else
4310 if (!pgd_present(*p4d)) {
4311 mm_inc_nr_puds(mm);
4312 pgd_populate(mm, p4d, new);
4313 } else /* Another has populated it */
4314 pud_free(mm, new);
4315 #endif /* __ARCH_HAS_5LEVEL_HACK */
4316 spin_unlock(&mm->page_table_lock);
4317 return 0;
4318 }
4319 #endif /* __PAGETABLE_PUD_FOLDED */
4320
4321 #ifndef __PAGETABLE_PMD_FOLDED
4322 /*
4323 * Allocate page middle directory.
4324 * We've already handled the fast-path in-line.
4325 */
4326 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4327 {
4328 spinlock_t *ptl;
4329 pmd_t *new = pmd_alloc_one(mm, address);
4330 if (!new)
4331 return -ENOMEM;
4332
4333 smp_wmb(); /* See comment in __pte_alloc */
4334
4335 ptl = pud_lock(mm, pud);
4336 if (!pud_present(*pud)) {
4337 mm_inc_nr_pmds(mm);
4338 pud_populate(mm, pud, new);
4339 } else /* Another has populated it */
4340 pmd_free(mm, new);
4341 spin_unlock(ptl);
4342 return 0;
4343 }
4344 #endif /* __PAGETABLE_PMD_FOLDED */
4345
4346 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4347 struct mmu_notifier_range *range,
4348 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4349 {
4350 pgd_t *pgd;
4351 p4d_t *p4d;
4352 pud_t *pud;
4353 pmd_t *pmd;
4354 pte_t *ptep;
4355
4356 pgd = pgd_offset(mm, address);
4357 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4358 goto out;
4359
4360 p4d = p4d_offset(pgd, address);
4361 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4362 goto out;
4363
4364 pud = pud_offset(p4d, address);
4365 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4366 goto out;
4367
4368 pmd = pmd_offset(pud, address);
4369 VM_BUG_ON(pmd_trans_huge(*pmd));
4370
4371 if (pmd_huge(*pmd)) {
4372 if (!pmdpp)
4373 goto out;
4374
4375 if (range) {
4376 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4377 NULL, mm, address & PMD_MASK,
4378 (address & PMD_MASK) + PMD_SIZE);
4379 mmu_notifier_invalidate_range_start(range);
4380 }
4381 *ptlp = pmd_lock(mm, pmd);
4382 if (pmd_huge(*pmd)) {
4383 *pmdpp = pmd;
4384 return 0;
4385 }
4386 spin_unlock(*ptlp);
4387 if (range)
4388 mmu_notifier_invalidate_range_end(range);
4389 }
4390
4391 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4392 goto out;
4393
4394 if (range) {
4395 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4396 address & PAGE_MASK,
4397 (address & PAGE_MASK) + PAGE_SIZE);
4398 mmu_notifier_invalidate_range_start(range);
4399 }
4400 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4401 if (!pte_present(*ptep))
4402 goto unlock;
4403 *ptepp = ptep;
4404 return 0;
4405 unlock:
4406 pte_unmap_unlock(ptep, *ptlp);
4407 if (range)
4408 mmu_notifier_invalidate_range_end(range);
4409 out:
4410 return -EINVAL;
4411 }
4412
4413 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4414 pte_t **ptepp, spinlock_t **ptlp)
4415 {
4416 int res;
4417
4418 /* (void) is needed to make gcc happy */
4419 (void) __cond_lock(*ptlp,
4420 !(res = __follow_pte_pmd(mm, address, NULL,
4421 ptepp, NULL, ptlp)));
4422 return res;
4423 }
4424
4425 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4426 struct mmu_notifier_range *range,
4427 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4428 {
4429 int res;
4430
4431 /* (void) is needed to make gcc happy */
4432 (void) __cond_lock(*ptlp,
4433 !(res = __follow_pte_pmd(mm, address, range,
4434 ptepp, pmdpp, ptlp)));
4435 return res;
4436 }
4437 EXPORT_SYMBOL(follow_pte_pmd);
4438
4439 /**
4440 * follow_pfn - look up PFN at a user virtual address
4441 * @vma: memory mapping
4442 * @address: user virtual address
4443 * @pfn: location to store found PFN
4444 *
4445 * Only IO mappings and raw PFN mappings are allowed.
4446 *
4447 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4448 */
4449 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4450 unsigned long *pfn)
4451 {
4452 int ret = -EINVAL;
4453 spinlock_t *ptl;
4454 pte_t *ptep;
4455
4456 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4457 return ret;
4458
4459 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4460 if (ret)
4461 return ret;
4462 *pfn = pte_pfn(*ptep);
4463 pte_unmap_unlock(ptep, ptl);
4464 return 0;
4465 }
4466 EXPORT_SYMBOL(follow_pfn);
4467
4468 #ifdef CONFIG_HAVE_IOREMAP_PROT
4469 int follow_phys(struct vm_area_struct *vma,
4470 unsigned long address, unsigned int flags,
4471 unsigned long *prot, resource_size_t *phys)
4472 {
4473 int ret = -EINVAL;
4474 pte_t *ptep, pte;
4475 spinlock_t *ptl;
4476
4477 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4478 goto out;
4479
4480 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4481 goto out;
4482 pte = *ptep;
4483
4484 if ((flags & FOLL_WRITE) && !pte_write(pte))
4485 goto unlock;
4486
4487 *prot = pgprot_val(pte_pgprot(pte));
4488 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4489
4490 ret = 0;
4491 unlock:
4492 pte_unmap_unlock(ptep, ptl);
4493 out:
4494 return ret;
4495 }
4496
4497 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4498 void *buf, int len, int write)
4499 {
4500 resource_size_t phys_addr;
4501 unsigned long prot = 0;
4502 void __iomem *maddr;
4503 int offset = addr & (PAGE_SIZE-1);
4504
4505 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4506 return -EINVAL;
4507
4508 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4509 if (!maddr)
4510 return -ENOMEM;
4511
4512 if (write)
4513 memcpy_toio(maddr + offset, buf, len);
4514 else
4515 memcpy_fromio(buf, maddr + offset, len);
4516 iounmap(maddr);
4517
4518 return len;
4519 }
4520 EXPORT_SYMBOL_GPL(generic_access_phys);
4521 #endif
4522
4523 /*
4524 * Access another process' address space as given in mm. If non-NULL, use the
4525 * given task for page fault accounting.
4526 */
4527 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4528 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4529 {
4530 struct vm_area_struct *vma;
4531 void *old_buf = buf;
4532 int write = gup_flags & FOLL_WRITE;
4533
4534 if (down_read_killable(&mm->mmap_sem))
4535 return 0;
4536
4537 /* ignore errors, just check how much was successfully transferred */
4538 while (len) {
4539 int bytes, ret, offset;
4540 void *maddr;
4541 struct page *page = NULL;
4542
4543 ret = get_user_pages_remote(tsk, mm, addr, 1,
4544 gup_flags, &page, &vma, NULL);
4545 if (ret <= 0) {
4546 #ifndef CONFIG_HAVE_IOREMAP_PROT
4547 break;
4548 #else
4549 /*
4550 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4551 * we can access using slightly different code.
4552 */
4553 vma = find_vma(mm, addr);
4554 if (!vma || vma->vm_start > addr)
4555 break;
4556 if (vma->vm_ops && vma->vm_ops->access)
4557 ret = vma->vm_ops->access(vma, addr, buf,
4558 len, write);
4559 if (ret <= 0)
4560 break;
4561 bytes = ret;
4562 #endif
4563 } else {
4564 bytes = len;
4565 offset = addr & (PAGE_SIZE-1);
4566 if (bytes > PAGE_SIZE-offset)
4567 bytes = PAGE_SIZE-offset;
4568
4569 maddr = kmap(page);
4570 if (write) {
4571 copy_to_user_page(vma, page, addr,
4572 maddr + offset, buf, bytes);
4573 set_page_dirty_lock(page);
4574 } else {
4575 copy_from_user_page(vma, page, addr,
4576 buf, maddr + offset, bytes);
4577 }
4578 kunmap(page);
4579 put_page(page);
4580 }
4581 len -= bytes;
4582 buf += bytes;
4583 addr += bytes;
4584 }
4585 up_read(&mm->mmap_sem);
4586
4587 return buf - old_buf;
4588 }
4589
4590 /**
4591 * access_remote_vm - access another process' address space
4592 * @mm: the mm_struct of the target address space
4593 * @addr: start address to access
4594 * @buf: source or destination buffer
4595 * @len: number of bytes to transfer
4596 * @gup_flags: flags modifying lookup behaviour
4597 *
4598 * The caller must hold a reference on @mm.
4599 *
4600 * Return: number of bytes copied from source to destination.
4601 */
4602 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4603 void *buf, int len, unsigned int gup_flags)
4604 {
4605 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4606 }
4607
4608 /*
4609 * Access another process' address space.
4610 * Source/target buffer must be kernel space,
4611 * Do not walk the page table directly, use get_user_pages
4612 */
4613 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4614 void *buf, int len, unsigned int gup_flags)
4615 {
4616 struct mm_struct *mm;
4617 int ret;
4618
4619 mm = get_task_mm(tsk);
4620 if (!mm)
4621 return 0;
4622
4623 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4624
4625 mmput(mm);
4626
4627 return ret;
4628 }
4629 EXPORT_SYMBOL_GPL(access_process_vm);
4630
4631 /*
4632 * Print the name of a VMA.
4633 */
4634 void print_vma_addr(char *prefix, unsigned long ip)
4635 {
4636 struct mm_struct *mm = current->mm;
4637 struct vm_area_struct *vma;
4638
4639 /*
4640 * we might be running from an atomic context so we cannot sleep
4641 */
4642 if (!down_read_trylock(&mm->mmap_sem))
4643 return;
4644
4645 vma = find_vma(mm, ip);
4646 if (vma && vma->vm_file) {
4647 struct file *f = vma->vm_file;
4648 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4649 if (buf) {
4650 char *p;
4651
4652 p = file_path(f, buf, PAGE_SIZE);
4653 if (IS_ERR(p))
4654 p = "?";
4655 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4656 vma->vm_start,
4657 vma->vm_end - vma->vm_start);
4658 free_page((unsigned long)buf);
4659 }
4660 }
4661 up_read(&mm->mmap_sem);
4662 }
4663
4664 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4665 void __might_fault(const char *file, int line)
4666 {
4667 /*
4668 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4669 * holding the mmap_sem, this is safe because kernel memory doesn't
4670 * get paged out, therefore we'll never actually fault, and the
4671 * below annotations will generate false positives.
4672 */
4673 if (uaccess_kernel())
4674 return;
4675 if (pagefault_disabled())
4676 return;
4677 __might_sleep(file, line, 0);
4678 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4679 if (current->mm)
4680 might_lock_read(&current->mm->mmap_sem);
4681 #endif
4682 }
4683 EXPORT_SYMBOL(__might_fault);
4684 #endif
4685
4686 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4687 /*
4688 * Process all subpages of the specified huge page with the specified
4689 * operation. The target subpage will be processed last to keep its
4690 * cache lines hot.
4691 */
4692 static inline void process_huge_page(
4693 unsigned long addr_hint, unsigned int pages_per_huge_page,
4694 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4695 void *arg)
4696 {
4697 int i, n, base, l;
4698 unsigned long addr = addr_hint &
4699 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4700
4701 /* Process target subpage last to keep its cache lines hot */
4702 might_sleep();
4703 n = (addr_hint - addr) / PAGE_SIZE;
4704 if (2 * n <= pages_per_huge_page) {
4705 /* If target subpage in first half of huge page */
4706 base = 0;
4707 l = n;
4708 /* Process subpages at the end of huge page */
4709 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4710 cond_resched();
4711 process_subpage(addr + i * PAGE_SIZE, i, arg);
4712 }
4713 } else {
4714 /* If target subpage in second half of huge page */
4715 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4716 l = pages_per_huge_page - n;
4717 /* Process subpages at the begin of huge page */
4718 for (i = 0; i < base; i++) {
4719 cond_resched();
4720 process_subpage(addr + i * PAGE_SIZE, i, arg);
4721 }
4722 }
4723 /*
4724 * Process remaining subpages in left-right-left-right pattern
4725 * towards the target subpage
4726 */
4727 for (i = 0; i < l; i++) {
4728 int left_idx = base + i;
4729 int right_idx = base + 2 * l - 1 - i;
4730
4731 cond_resched();
4732 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4733 cond_resched();
4734 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4735 }
4736 }
4737
4738 static void clear_gigantic_page(struct page *page,
4739 unsigned long addr,
4740 unsigned int pages_per_huge_page)
4741 {
4742 int i;
4743 struct page *p = page;
4744
4745 might_sleep();
4746 for (i = 0; i < pages_per_huge_page;
4747 i++, p = mem_map_next(p, page, i)) {
4748 cond_resched();
4749 clear_user_highpage(p, addr + i * PAGE_SIZE);
4750 }
4751 }
4752
4753 static void clear_subpage(unsigned long addr, int idx, void *arg)
4754 {
4755 struct page *page = arg;
4756
4757 clear_user_highpage(page + idx, addr);
4758 }
4759
4760 void clear_huge_page(struct page *page,
4761 unsigned long addr_hint, unsigned int pages_per_huge_page)
4762 {
4763 unsigned long addr = addr_hint &
4764 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4765
4766 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4767 clear_gigantic_page(page, addr, pages_per_huge_page);
4768 return;
4769 }
4770
4771 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4772 }
4773
4774 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4775 unsigned long addr,
4776 struct vm_area_struct *vma,
4777 unsigned int pages_per_huge_page)
4778 {
4779 int i;
4780 struct page *dst_base = dst;
4781 struct page *src_base = src;
4782
4783 for (i = 0; i < pages_per_huge_page; ) {
4784 cond_resched();
4785 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4786
4787 i++;
4788 dst = mem_map_next(dst, dst_base, i);
4789 src = mem_map_next(src, src_base, i);
4790 }
4791 }
4792
4793 struct copy_subpage_arg {
4794 struct page *dst;
4795 struct page *src;
4796 struct vm_area_struct *vma;
4797 };
4798
4799 static void copy_subpage(unsigned long addr, int idx, void *arg)
4800 {
4801 struct copy_subpage_arg *copy_arg = arg;
4802
4803 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4804 addr, copy_arg->vma);
4805 }
4806
4807 void copy_user_huge_page(struct page *dst, struct page *src,
4808 unsigned long addr_hint, struct vm_area_struct *vma,
4809 unsigned int pages_per_huge_page)
4810 {
4811 unsigned long addr = addr_hint &
4812 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4813 struct copy_subpage_arg arg = {
4814 .dst = dst,
4815 .src = src,
4816 .vma = vma,
4817 };
4818
4819 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4820 copy_user_gigantic_page(dst, src, addr, vma,
4821 pages_per_huge_page);
4822 return;
4823 }
4824
4825 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4826 }
4827
4828 long copy_huge_page_from_user(struct page *dst_page,
4829 const void __user *usr_src,
4830 unsigned int pages_per_huge_page,
4831 bool allow_pagefault)
4832 {
4833 void *src = (void *)usr_src;
4834 void *page_kaddr;
4835 unsigned long i, rc = 0;
4836 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4837
4838 for (i = 0; i < pages_per_huge_page; i++) {
4839 if (allow_pagefault)
4840 page_kaddr = kmap(dst_page + i);
4841 else
4842 page_kaddr = kmap_atomic(dst_page + i);
4843 rc = copy_from_user(page_kaddr,
4844 (const void __user *)(src + i * PAGE_SIZE),
4845 PAGE_SIZE);
4846 if (allow_pagefault)
4847 kunmap(dst_page + i);
4848 else
4849 kunmap_atomic(page_kaddr);
4850
4851 ret_val -= (PAGE_SIZE - rc);
4852 if (rc)
4853 break;
4854
4855 cond_resched();
4856 }
4857 return ret_val;
4858 }
4859 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4860
4861 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4862
4863 static struct kmem_cache *page_ptl_cachep;
4864
4865 void __init ptlock_cache_init(void)
4866 {
4867 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4868 SLAB_PANIC, NULL);
4869 }
4870
4871 bool ptlock_alloc(struct page *page)
4872 {
4873 spinlock_t *ptl;
4874
4875 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4876 if (!ptl)
4877 return false;
4878 page->ptl = ptl;
4879 return true;
4880 }
4881
4882 void ptlock_free(struct page *page)
4883 {
4884 kmem_cache_free(page_ptl_cachep, page->ptl);
4885 }
4886 #endif