]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/mempolicy.c
mm/vmstat.c: fix /proc/vmstat format for CONFIG_DEBUG_TLBFLUSH=y CONFIG_SMP=n
[thirdparty/linux.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
102
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
105
106 #include "internal.h"
107
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
111
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
114
115 /* Highest zone. An specific allocation for a zone below that is not
116 policied. */
117 enum zone_type policy_zone = 0;
118
119 /*
120 * run-time system-wide default policy => local allocation
121 */
122 static struct mempolicy default_policy = {
123 .refcnt = ATOMIC_INIT(1), /* never free it */
124 .mode = MPOL_PREFERRED,
125 .flags = MPOL_F_LOCAL,
126 };
127
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129
130 struct mempolicy *get_task_policy(struct task_struct *p)
131 {
132 struct mempolicy *pol = p->mempolicy;
133 int node;
134
135 if (pol)
136 return pol;
137
138 node = numa_node_id();
139 if (node != NUMA_NO_NODE) {
140 pol = &preferred_node_policy[node];
141 /* preferred_node_policy is not initialised early in boot */
142 if (pol->mode)
143 return pol;
144 }
145
146 return &default_policy;
147 }
148
149 static const struct mempolicy_operations {
150 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
151 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
152 } mpol_ops[MPOL_MAX];
153
154 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
155 {
156 return pol->flags & MPOL_MODE_FLAGS;
157 }
158
159 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
160 const nodemask_t *rel)
161 {
162 nodemask_t tmp;
163 nodes_fold(tmp, *orig, nodes_weight(*rel));
164 nodes_onto(*ret, tmp, *rel);
165 }
166
167 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
168 {
169 if (nodes_empty(*nodes))
170 return -EINVAL;
171 pol->v.nodes = *nodes;
172 return 0;
173 }
174
175 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
176 {
177 if (!nodes)
178 pol->flags |= MPOL_F_LOCAL; /* local allocation */
179 else if (nodes_empty(*nodes))
180 return -EINVAL; /* no allowed nodes */
181 else
182 pol->v.preferred_node = first_node(*nodes);
183 return 0;
184 }
185
186 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
187 {
188 if (nodes_empty(*nodes))
189 return -EINVAL;
190 pol->v.nodes = *nodes;
191 return 0;
192 }
193
194 /*
195 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
196 * any, for the new policy. mpol_new() has already validated the nodes
197 * parameter with respect to the policy mode and flags. But, we need to
198 * handle an empty nodemask with MPOL_PREFERRED here.
199 *
200 * Must be called holding task's alloc_lock to protect task's mems_allowed
201 * and mempolicy. May also be called holding the mmap_semaphore for write.
202 */
203 static int mpol_set_nodemask(struct mempolicy *pol,
204 const nodemask_t *nodes, struct nodemask_scratch *nsc)
205 {
206 int ret;
207
208 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
209 if (pol == NULL)
210 return 0;
211 /* Check N_MEMORY */
212 nodes_and(nsc->mask1,
213 cpuset_current_mems_allowed, node_states[N_MEMORY]);
214
215 VM_BUG_ON(!nodes);
216 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
217 nodes = NULL; /* explicit local allocation */
218 else {
219 if (pol->flags & MPOL_F_RELATIVE_NODES)
220 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
221 else
222 nodes_and(nsc->mask2, *nodes, nsc->mask1);
223
224 if (mpol_store_user_nodemask(pol))
225 pol->w.user_nodemask = *nodes;
226 else
227 pol->w.cpuset_mems_allowed =
228 cpuset_current_mems_allowed;
229 }
230
231 if (nodes)
232 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
233 else
234 ret = mpol_ops[pol->mode].create(pol, NULL);
235 return ret;
236 }
237
238 /*
239 * This function just creates a new policy, does some check and simple
240 * initialization. You must invoke mpol_set_nodemask() to set nodes.
241 */
242 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
243 nodemask_t *nodes)
244 {
245 struct mempolicy *policy;
246
247 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
248 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
249
250 if (mode == MPOL_DEFAULT) {
251 if (nodes && !nodes_empty(*nodes))
252 return ERR_PTR(-EINVAL);
253 return NULL;
254 }
255 VM_BUG_ON(!nodes);
256
257 /*
258 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
259 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
260 * All other modes require a valid pointer to a non-empty nodemask.
261 */
262 if (mode == MPOL_PREFERRED) {
263 if (nodes_empty(*nodes)) {
264 if (((flags & MPOL_F_STATIC_NODES) ||
265 (flags & MPOL_F_RELATIVE_NODES)))
266 return ERR_PTR(-EINVAL);
267 }
268 } else if (mode == MPOL_LOCAL) {
269 if (!nodes_empty(*nodes) ||
270 (flags & MPOL_F_STATIC_NODES) ||
271 (flags & MPOL_F_RELATIVE_NODES))
272 return ERR_PTR(-EINVAL);
273 mode = MPOL_PREFERRED;
274 } else if (nodes_empty(*nodes))
275 return ERR_PTR(-EINVAL);
276 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
277 if (!policy)
278 return ERR_PTR(-ENOMEM);
279 atomic_set(&policy->refcnt, 1);
280 policy->mode = mode;
281 policy->flags = flags;
282
283 return policy;
284 }
285
286 /* Slow path of a mpol destructor. */
287 void __mpol_put(struct mempolicy *p)
288 {
289 if (!atomic_dec_and_test(&p->refcnt))
290 return;
291 kmem_cache_free(policy_cache, p);
292 }
293
294 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
295 {
296 }
297
298 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
299 {
300 nodemask_t tmp;
301
302 if (pol->flags & MPOL_F_STATIC_NODES)
303 nodes_and(tmp, pol->w.user_nodemask, *nodes);
304 else if (pol->flags & MPOL_F_RELATIVE_NODES)
305 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
306 else {
307 nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
308 *nodes);
309 pol->w.cpuset_mems_allowed = tmp;
310 }
311
312 if (nodes_empty(tmp))
313 tmp = *nodes;
314
315 pol->v.nodes = tmp;
316 }
317
318 static void mpol_rebind_preferred(struct mempolicy *pol,
319 const nodemask_t *nodes)
320 {
321 nodemask_t tmp;
322
323 if (pol->flags & MPOL_F_STATIC_NODES) {
324 int node = first_node(pol->w.user_nodemask);
325
326 if (node_isset(node, *nodes)) {
327 pol->v.preferred_node = node;
328 pol->flags &= ~MPOL_F_LOCAL;
329 } else
330 pol->flags |= MPOL_F_LOCAL;
331 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
332 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
333 pol->v.preferred_node = first_node(tmp);
334 } else if (!(pol->flags & MPOL_F_LOCAL)) {
335 pol->v.preferred_node = node_remap(pol->v.preferred_node,
336 pol->w.cpuset_mems_allowed,
337 *nodes);
338 pol->w.cpuset_mems_allowed = *nodes;
339 }
340 }
341
342 /*
343 * mpol_rebind_policy - Migrate a policy to a different set of nodes
344 *
345 * Per-vma policies are protected by mmap_sem. Allocations using per-task
346 * policies are protected by task->mems_allowed_seq to prevent a premature
347 * OOM/allocation failure due to parallel nodemask modification.
348 */
349 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
350 {
351 if (!pol)
352 return;
353 if (!mpol_store_user_nodemask(pol) && !(pol->flags & MPOL_F_LOCAL) &&
354 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
355 return;
356
357 mpol_ops[pol->mode].rebind(pol, newmask);
358 }
359
360 /*
361 * Wrapper for mpol_rebind_policy() that just requires task
362 * pointer, and updates task mempolicy.
363 *
364 * Called with task's alloc_lock held.
365 */
366
367 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
368 {
369 mpol_rebind_policy(tsk->mempolicy, new);
370 }
371
372 /*
373 * Rebind each vma in mm to new nodemask.
374 *
375 * Call holding a reference to mm. Takes mm->mmap_sem during call.
376 */
377
378 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
379 {
380 struct vm_area_struct *vma;
381
382 down_write(&mm->mmap_sem);
383 for (vma = mm->mmap; vma; vma = vma->vm_next)
384 mpol_rebind_policy(vma->vm_policy, new);
385 up_write(&mm->mmap_sem);
386 }
387
388 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
389 [MPOL_DEFAULT] = {
390 .rebind = mpol_rebind_default,
391 },
392 [MPOL_INTERLEAVE] = {
393 .create = mpol_new_interleave,
394 .rebind = mpol_rebind_nodemask,
395 },
396 [MPOL_PREFERRED] = {
397 .create = mpol_new_preferred,
398 .rebind = mpol_rebind_preferred,
399 },
400 [MPOL_BIND] = {
401 .create = mpol_new_bind,
402 .rebind = mpol_rebind_nodemask,
403 },
404 };
405
406 static void migrate_page_add(struct page *page, struct list_head *pagelist,
407 unsigned long flags);
408
409 struct queue_pages {
410 struct list_head *pagelist;
411 unsigned long flags;
412 nodemask_t *nmask;
413 struct vm_area_struct *prev;
414 };
415
416 /*
417 * Check if the page's nid is in qp->nmask.
418 *
419 * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
420 * in the invert of qp->nmask.
421 */
422 static inline bool queue_pages_required(struct page *page,
423 struct queue_pages *qp)
424 {
425 int nid = page_to_nid(page);
426 unsigned long flags = qp->flags;
427
428 return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
429 }
430
431 /*
432 * queue_pages_pmd() has three possible return values:
433 * 1 - pages are placed on the right node or queued successfully.
434 * 0 - THP was split.
435 * -EIO - is migration entry or MPOL_MF_STRICT was specified and an existing
436 * page was already on a node that does not follow the policy.
437 */
438 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
439 unsigned long end, struct mm_walk *walk)
440 {
441 int ret = 0;
442 struct page *page;
443 struct queue_pages *qp = walk->private;
444 unsigned long flags;
445
446 if (unlikely(is_pmd_migration_entry(*pmd))) {
447 ret = -EIO;
448 goto unlock;
449 }
450 page = pmd_page(*pmd);
451 if (is_huge_zero_page(page)) {
452 spin_unlock(ptl);
453 __split_huge_pmd(walk->vma, pmd, addr, false, NULL);
454 goto out;
455 }
456 if (!queue_pages_required(page, qp)) {
457 ret = 1;
458 goto unlock;
459 }
460
461 ret = 1;
462 flags = qp->flags;
463 /* go to thp migration */
464 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
465 if (!vma_migratable(walk->vma)) {
466 ret = -EIO;
467 goto unlock;
468 }
469
470 migrate_page_add(page, qp->pagelist, flags);
471 } else
472 ret = -EIO;
473 unlock:
474 spin_unlock(ptl);
475 out:
476 return ret;
477 }
478
479 /*
480 * Scan through pages checking if pages follow certain conditions,
481 * and move them to the pagelist if they do.
482 */
483 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
484 unsigned long end, struct mm_walk *walk)
485 {
486 struct vm_area_struct *vma = walk->vma;
487 struct page *page;
488 struct queue_pages *qp = walk->private;
489 unsigned long flags = qp->flags;
490 int ret;
491 pte_t *pte;
492 spinlock_t *ptl;
493
494 ptl = pmd_trans_huge_lock(pmd, vma);
495 if (ptl) {
496 ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
497 if (ret > 0)
498 return 0;
499 else if (ret < 0)
500 return ret;
501 }
502
503 if (pmd_trans_unstable(pmd))
504 return 0;
505
506 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
507 for (; addr != end; pte++, addr += PAGE_SIZE) {
508 if (!pte_present(*pte))
509 continue;
510 page = vm_normal_page(vma, addr, *pte);
511 if (!page)
512 continue;
513 /*
514 * vm_normal_page() filters out zero pages, but there might
515 * still be PageReserved pages to skip, perhaps in a VDSO.
516 */
517 if (PageReserved(page))
518 continue;
519 if (!queue_pages_required(page, qp))
520 continue;
521 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
522 if (!vma_migratable(vma))
523 break;
524 migrate_page_add(page, qp->pagelist, flags);
525 } else
526 break;
527 }
528 pte_unmap_unlock(pte - 1, ptl);
529 cond_resched();
530 return addr != end ? -EIO : 0;
531 }
532
533 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
534 unsigned long addr, unsigned long end,
535 struct mm_walk *walk)
536 {
537 #ifdef CONFIG_HUGETLB_PAGE
538 struct queue_pages *qp = walk->private;
539 unsigned long flags = qp->flags;
540 struct page *page;
541 spinlock_t *ptl;
542 pte_t entry;
543
544 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
545 entry = huge_ptep_get(pte);
546 if (!pte_present(entry))
547 goto unlock;
548 page = pte_page(entry);
549 if (!queue_pages_required(page, qp))
550 goto unlock;
551 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
552 if (flags & (MPOL_MF_MOVE_ALL) ||
553 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
554 isolate_huge_page(page, qp->pagelist);
555 unlock:
556 spin_unlock(ptl);
557 #else
558 BUG();
559 #endif
560 return 0;
561 }
562
563 #ifdef CONFIG_NUMA_BALANCING
564 /*
565 * This is used to mark a range of virtual addresses to be inaccessible.
566 * These are later cleared by a NUMA hinting fault. Depending on these
567 * faults, pages may be migrated for better NUMA placement.
568 *
569 * This is assuming that NUMA faults are handled using PROT_NONE. If
570 * an architecture makes a different choice, it will need further
571 * changes to the core.
572 */
573 unsigned long change_prot_numa(struct vm_area_struct *vma,
574 unsigned long addr, unsigned long end)
575 {
576 int nr_updated;
577
578 nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
579 if (nr_updated)
580 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
581
582 return nr_updated;
583 }
584 #else
585 static unsigned long change_prot_numa(struct vm_area_struct *vma,
586 unsigned long addr, unsigned long end)
587 {
588 return 0;
589 }
590 #endif /* CONFIG_NUMA_BALANCING */
591
592 static int queue_pages_test_walk(unsigned long start, unsigned long end,
593 struct mm_walk *walk)
594 {
595 struct vm_area_struct *vma = walk->vma;
596 struct queue_pages *qp = walk->private;
597 unsigned long endvma = vma->vm_end;
598 unsigned long flags = qp->flags;
599
600 /*
601 * Need check MPOL_MF_STRICT to return -EIO if possible
602 * regardless of vma_migratable
603 */
604 if (!vma_migratable(vma) &&
605 !(flags & MPOL_MF_STRICT))
606 return 1;
607
608 if (endvma > end)
609 endvma = end;
610 if (vma->vm_start > start)
611 start = vma->vm_start;
612
613 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
614 if (!vma->vm_next && vma->vm_end < end)
615 return -EFAULT;
616 if (qp->prev && qp->prev->vm_end < vma->vm_start)
617 return -EFAULT;
618 }
619
620 qp->prev = vma;
621
622 if (flags & MPOL_MF_LAZY) {
623 /* Similar to task_numa_work, skip inaccessible VMAs */
624 if (!is_vm_hugetlb_page(vma) &&
625 (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
626 !(vma->vm_flags & VM_MIXEDMAP))
627 change_prot_numa(vma, start, endvma);
628 return 1;
629 }
630
631 /* queue pages from current vma */
632 if (flags & MPOL_MF_VALID)
633 return 0;
634 return 1;
635 }
636
637 /*
638 * Walk through page tables and collect pages to be migrated.
639 *
640 * If pages found in a given range are on a set of nodes (determined by
641 * @nodes and @flags,) it's isolated and queued to the pagelist which is
642 * passed via @private.)
643 */
644 static int
645 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
646 nodemask_t *nodes, unsigned long flags,
647 struct list_head *pagelist)
648 {
649 struct queue_pages qp = {
650 .pagelist = pagelist,
651 .flags = flags,
652 .nmask = nodes,
653 .prev = NULL,
654 };
655 struct mm_walk queue_pages_walk = {
656 .hugetlb_entry = queue_pages_hugetlb,
657 .pmd_entry = queue_pages_pte_range,
658 .test_walk = queue_pages_test_walk,
659 .mm = mm,
660 .private = &qp,
661 };
662
663 return walk_page_range(start, end, &queue_pages_walk);
664 }
665
666 /*
667 * Apply policy to a single VMA
668 * This must be called with the mmap_sem held for writing.
669 */
670 static int vma_replace_policy(struct vm_area_struct *vma,
671 struct mempolicy *pol)
672 {
673 int err;
674 struct mempolicy *old;
675 struct mempolicy *new;
676
677 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
678 vma->vm_start, vma->vm_end, vma->vm_pgoff,
679 vma->vm_ops, vma->vm_file,
680 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
681
682 new = mpol_dup(pol);
683 if (IS_ERR(new))
684 return PTR_ERR(new);
685
686 if (vma->vm_ops && vma->vm_ops->set_policy) {
687 err = vma->vm_ops->set_policy(vma, new);
688 if (err)
689 goto err_out;
690 }
691
692 old = vma->vm_policy;
693 vma->vm_policy = new; /* protected by mmap_sem */
694 mpol_put(old);
695
696 return 0;
697 err_out:
698 mpol_put(new);
699 return err;
700 }
701
702 /* Step 2: apply policy to a range and do splits. */
703 static int mbind_range(struct mm_struct *mm, unsigned long start,
704 unsigned long end, struct mempolicy *new_pol)
705 {
706 struct vm_area_struct *next;
707 struct vm_area_struct *prev;
708 struct vm_area_struct *vma;
709 int err = 0;
710 pgoff_t pgoff;
711 unsigned long vmstart;
712 unsigned long vmend;
713
714 vma = find_vma(mm, start);
715 if (!vma || vma->vm_start > start)
716 return -EFAULT;
717
718 prev = vma->vm_prev;
719 if (start > vma->vm_start)
720 prev = vma;
721
722 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
723 next = vma->vm_next;
724 vmstart = max(start, vma->vm_start);
725 vmend = min(end, vma->vm_end);
726
727 if (mpol_equal(vma_policy(vma), new_pol))
728 continue;
729
730 pgoff = vma->vm_pgoff +
731 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
732 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
733 vma->anon_vma, vma->vm_file, pgoff,
734 new_pol, vma->vm_userfaultfd_ctx);
735 if (prev) {
736 vma = prev;
737 next = vma->vm_next;
738 if (mpol_equal(vma_policy(vma), new_pol))
739 continue;
740 /* vma_merge() joined vma && vma->next, case 8 */
741 goto replace;
742 }
743 if (vma->vm_start != vmstart) {
744 err = split_vma(vma->vm_mm, vma, vmstart, 1);
745 if (err)
746 goto out;
747 }
748 if (vma->vm_end != vmend) {
749 err = split_vma(vma->vm_mm, vma, vmend, 0);
750 if (err)
751 goto out;
752 }
753 replace:
754 err = vma_replace_policy(vma, new_pol);
755 if (err)
756 goto out;
757 }
758
759 out:
760 return err;
761 }
762
763 /* Set the process memory policy */
764 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
765 nodemask_t *nodes)
766 {
767 struct mempolicy *new, *old;
768 NODEMASK_SCRATCH(scratch);
769 int ret;
770
771 if (!scratch)
772 return -ENOMEM;
773
774 new = mpol_new(mode, flags, nodes);
775 if (IS_ERR(new)) {
776 ret = PTR_ERR(new);
777 goto out;
778 }
779
780 task_lock(current);
781 ret = mpol_set_nodemask(new, nodes, scratch);
782 if (ret) {
783 task_unlock(current);
784 mpol_put(new);
785 goto out;
786 }
787 old = current->mempolicy;
788 current->mempolicy = new;
789 if (new && new->mode == MPOL_INTERLEAVE)
790 current->il_prev = MAX_NUMNODES-1;
791 task_unlock(current);
792 mpol_put(old);
793 ret = 0;
794 out:
795 NODEMASK_SCRATCH_FREE(scratch);
796 return ret;
797 }
798
799 /*
800 * Return nodemask for policy for get_mempolicy() query
801 *
802 * Called with task's alloc_lock held
803 */
804 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
805 {
806 nodes_clear(*nodes);
807 if (p == &default_policy)
808 return;
809
810 switch (p->mode) {
811 case MPOL_BIND:
812 /* Fall through */
813 case MPOL_INTERLEAVE:
814 *nodes = p->v.nodes;
815 break;
816 case MPOL_PREFERRED:
817 if (!(p->flags & MPOL_F_LOCAL))
818 node_set(p->v.preferred_node, *nodes);
819 /* else return empty node mask for local allocation */
820 break;
821 default:
822 BUG();
823 }
824 }
825
826 static int lookup_node(struct mm_struct *mm, unsigned long addr)
827 {
828 struct page *p;
829 int err;
830
831 int locked = 1;
832 err = get_user_pages_locked(addr & PAGE_MASK, 1, 0, &p, &locked);
833 if (err >= 0) {
834 err = page_to_nid(p);
835 put_page(p);
836 }
837 if (locked)
838 up_read(&mm->mmap_sem);
839 return err;
840 }
841
842 /* Retrieve NUMA policy */
843 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
844 unsigned long addr, unsigned long flags)
845 {
846 int err;
847 struct mm_struct *mm = current->mm;
848 struct vm_area_struct *vma = NULL;
849 struct mempolicy *pol = current->mempolicy, *pol_refcount = NULL;
850
851 if (flags &
852 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
853 return -EINVAL;
854
855 if (flags & MPOL_F_MEMS_ALLOWED) {
856 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
857 return -EINVAL;
858 *policy = 0; /* just so it's initialized */
859 task_lock(current);
860 *nmask = cpuset_current_mems_allowed;
861 task_unlock(current);
862 return 0;
863 }
864
865 if (flags & MPOL_F_ADDR) {
866 /*
867 * Do NOT fall back to task policy if the
868 * vma/shared policy at addr is NULL. We
869 * want to return MPOL_DEFAULT in this case.
870 */
871 down_read(&mm->mmap_sem);
872 vma = find_vma_intersection(mm, addr, addr+1);
873 if (!vma) {
874 up_read(&mm->mmap_sem);
875 return -EFAULT;
876 }
877 if (vma->vm_ops && vma->vm_ops->get_policy)
878 pol = vma->vm_ops->get_policy(vma, addr);
879 else
880 pol = vma->vm_policy;
881 } else if (addr)
882 return -EINVAL;
883
884 if (!pol)
885 pol = &default_policy; /* indicates default behavior */
886
887 if (flags & MPOL_F_NODE) {
888 if (flags & MPOL_F_ADDR) {
889 /*
890 * Take a refcount on the mpol, lookup_node()
891 * wil drop the mmap_sem, so after calling
892 * lookup_node() only "pol" remains valid, "vma"
893 * is stale.
894 */
895 pol_refcount = pol;
896 vma = NULL;
897 mpol_get(pol);
898 err = lookup_node(mm, addr);
899 if (err < 0)
900 goto out;
901 *policy = err;
902 } else if (pol == current->mempolicy &&
903 pol->mode == MPOL_INTERLEAVE) {
904 *policy = next_node_in(current->il_prev, pol->v.nodes);
905 } else {
906 err = -EINVAL;
907 goto out;
908 }
909 } else {
910 *policy = pol == &default_policy ? MPOL_DEFAULT :
911 pol->mode;
912 /*
913 * Internal mempolicy flags must be masked off before exposing
914 * the policy to userspace.
915 */
916 *policy |= (pol->flags & MPOL_MODE_FLAGS);
917 }
918
919 err = 0;
920 if (nmask) {
921 if (mpol_store_user_nodemask(pol)) {
922 *nmask = pol->w.user_nodemask;
923 } else {
924 task_lock(current);
925 get_policy_nodemask(pol, nmask);
926 task_unlock(current);
927 }
928 }
929
930 out:
931 mpol_cond_put(pol);
932 if (vma)
933 up_read(&mm->mmap_sem);
934 if (pol_refcount)
935 mpol_put(pol_refcount);
936 return err;
937 }
938
939 #ifdef CONFIG_MIGRATION
940 /*
941 * page migration, thp tail pages can be passed.
942 */
943 static void migrate_page_add(struct page *page, struct list_head *pagelist,
944 unsigned long flags)
945 {
946 struct page *head = compound_head(page);
947 /*
948 * Avoid migrating a page that is shared with others.
949 */
950 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
951 if (!isolate_lru_page(head)) {
952 list_add_tail(&head->lru, pagelist);
953 mod_node_page_state(page_pgdat(head),
954 NR_ISOLATED_ANON + page_is_file_cache(head),
955 hpage_nr_pages(head));
956 }
957 }
958 }
959
960 /* page allocation callback for NUMA node migration */
961 struct page *alloc_new_node_page(struct page *page, unsigned long node)
962 {
963 if (PageHuge(page))
964 return alloc_huge_page_node(page_hstate(compound_head(page)),
965 node);
966 else if (PageTransHuge(page)) {
967 struct page *thp;
968
969 thp = alloc_pages_node(node,
970 (GFP_TRANSHUGE | __GFP_THISNODE),
971 HPAGE_PMD_ORDER);
972 if (!thp)
973 return NULL;
974 prep_transhuge_page(thp);
975 return thp;
976 } else
977 return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
978 __GFP_THISNODE, 0);
979 }
980
981 /*
982 * Migrate pages from one node to a target node.
983 * Returns error or the number of pages not migrated.
984 */
985 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
986 int flags)
987 {
988 nodemask_t nmask;
989 LIST_HEAD(pagelist);
990 int err = 0;
991
992 nodes_clear(nmask);
993 node_set(source, nmask);
994
995 /*
996 * This does not "check" the range but isolates all pages that
997 * need migration. Between passing in the full user address
998 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
999 */
1000 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1001 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1002 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1003
1004 if (!list_empty(&pagelist)) {
1005 err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest,
1006 MIGRATE_SYNC, MR_SYSCALL);
1007 if (err)
1008 putback_movable_pages(&pagelist);
1009 }
1010
1011 return err;
1012 }
1013
1014 /*
1015 * Move pages between the two nodesets so as to preserve the physical
1016 * layout as much as possible.
1017 *
1018 * Returns the number of page that could not be moved.
1019 */
1020 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1021 const nodemask_t *to, int flags)
1022 {
1023 int busy = 0;
1024 int err;
1025 nodemask_t tmp;
1026
1027 err = migrate_prep();
1028 if (err)
1029 return err;
1030
1031 down_read(&mm->mmap_sem);
1032
1033 /*
1034 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1035 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1036 * bit in 'tmp', and return that <source, dest> pair for migration.
1037 * The pair of nodemasks 'to' and 'from' define the map.
1038 *
1039 * If no pair of bits is found that way, fallback to picking some
1040 * pair of 'source' and 'dest' bits that are not the same. If the
1041 * 'source' and 'dest' bits are the same, this represents a node
1042 * that will be migrating to itself, so no pages need move.
1043 *
1044 * If no bits are left in 'tmp', or if all remaining bits left
1045 * in 'tmp' correspond to the same bit in 'to', return false
1046 * (nothing left to migrate).
1047 *
1048 * This lets us pick a pair of nodes to migrate between, such that
1049 * if possible the dest node is not already occupied by some other
1050 * source node, minimizing the risk of overloading the memory on a
1051 * node that would happen if we migrated incoming memory to a node
1052 * before migrating outgoing memory source that same node.
1053 *
1054 * A single scan of tmp is sufficient. As we go, we remember the
1055 * most recent <s, d> pair that moved (s != d). If we find a pair
1056 * that not only moved, but what's better, moved to an empty slot
1057 * (d is not set in tmp), then we break out then, with that pair.
1058 * Otherwise when we finish scanning from_tmp, we at least have the
1059 * most recent <s, d> pair that moved. If we get all the way through
1060 * the scan of tmp without finding any node that moved, much less
1061 * moved to an empty node, then there is nothing left worth migrating.
1062 */
1063
1064 tmp = *from;
1065 while (!nodes_empty(tmp)) {
1066 int s,d;
1067 int source = NUMA_NO_NODE;
1068 int dest = 0;
1069
1070 for_each_node_mask(s, tmp) {
1071
1072 /*
1073 * do_migrate_pages() tries to maintain the relative
1074 * node relationship of the pages established between
1075 * threads and memory areas.
1076 *
1077 * However if the number of source nodes is not equal to
1078 * the number of destination nodes we can not preserve
1079 * this node relative relationship. In that case, skip
1080 * copying memory from a node that is in the destination
1081 * mask.
1082 *
1083 * Example: [2,3,4] -> [3,4,5] moves everything.
1084 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1085 */
1086
1087 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1088 (node_isset(s, *to)))
1089 continue;
1090
1091 d = node_remap(s, *from, *to);
1092 if (s == d)
1093 continue;
1094
1095 source = s; /* Node moved. Memorize */
1096 dest = d;
1097
1098 /* dest not in remaining from nodes? */
1099 if (!node_isset(dest, tmp))
1100 break;
1101 }
1102 if (source == NUMA_NO_NODE)
1103 break;
1104
1105 node_clear(source, tmp);
1106 err = migrate_to_node(mm, source, dest, flags);
1107 if (err > 0)
1108 busy += err;
1109 if (err < 0)
1110 break;
1111 }
1112 up_read(&mm->mmap_sem);
1113 if (err < 0)
1114 return err;
1115 return busy;
1116
1117 }
1118
1119 /*
1120 * Allocate a new page for page migration based on vma policy.
1121 * Start by assuming the page is mapped by the same vma as contains @start.
1122 * Search forward from there, if not. N.B., this assumes that the
1123 * list of pages handed to migrate_pages()--which is how we get here--
1124 * is in virtual address order.
1125 */
1126 static struct page *new_page(struct page *page, unsigned long start)
1127 {
1128 struct vm_area_struct *vma;
1129 unsigned long uninitialized_var(address);
1130
1131 vma = find_vma(current->mm, start);
1132 while (vma) {
1133 address = page_address_in_vma(page, vma);
1134 if (address != -EFAULT)
1135 break;
1136 vma = vma->vm_next;
1137 }
1138
1139 if (PageHuge(page)) {
1140 return alloc_huge_page_vma(page_hstate(compound_head(page)),
1141 vma, address);
1142 } else if (PageTransHuge(page)) {
1143 struct page *thp;
1144
1145 thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1146 HPAGE_PMD_ORDER);
1147 if (!thp)
1148 return NULL;
1149 prep_transhuge_page(thp);
1150 return thp;
1151 }
1152 /*
1153 * if !vma, alloc_page_vma() will use task or system default policy
1154 */
1155 return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1156 vma, address);
1157 }
1158 #else
1159
1160 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1161 unsigned long flags)
1162 {
1163 }
1164
1165 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1166 const nodemask_t *to, int flags)
1167 {
1168 return -ENOSYS;
1169 }
1170
1171 static struct page *new_page(struct page *page, unsigned long start)
1172 {
1173 return NULL;
1174 }
1175 #endif
1176
1177 static long do_mbind(unsigned long start, unsigned long len,
1178 unsigned short mode, unsigned short mode_flags,
1179 nodemask_t *nmask, unsigned long flags)
1180 {
1181 struct mm_struct *mm = current->mm;
1182 struct mempolicy *new;
1183 unsigned long end;
1184 int err;
1185 LIST_HEAD(pagelist);
1186
1187 if (flags & ~(unsigned long)MPOL_MF_VALID)
1188 return -EINVAL;
1189 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1190 return -EPERM;
1191
1192 if (start & ~PAGE_MASK)
1193 return -EINVAL;
1194
1195 if (mode == MPOL_DEFAULT)
1196 flags &= ~MPOL_MF_STRICT;
1197
1198 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1199 end = start + len;
1200
1201 if (end < start)
1202 return -EINVAL;
1203 if (end == start)
1204 return 0;
1205
1206 new = mpol_new(mode, mode_flags, nmask);
1207 if (IS_ERR(new))
1208 return PTR_ERR(new);
1209
1210 if (flags & MPOL_MF_LAZY)
1211 new->flags |= MPOL_F_MOF;
1212
1213 /*
1214 * If we are using the default policy then operation
1215 * on discontinuous address spaces is okay after all
1216 */
1217 if (!new)
1218 flags |= MPOL_MF_DISCONTIG_OK;
1219
1220 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1221 start, start + len, mode, mode_flags,
1222 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1223
1224 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1225
1226 err = migrate_prep();
1227 if (err)
1228 goto mpol_out;
1229 }
1230 {
1231 NODEMASK_SCRATCH(scratch);
1232 if (scratch) {
1233 down_write(&mm->mmap_sem);
1234 task_lock(current);
1235 err = mpol_set_nodemask(new, nmask, scratch);
1236 task_unlock(current);
1237 if (err)
1238 up_write(&mm->mmap_sem);
1239 } else
1240 err = -ENOMEM;
1241 NODEMASK_SCRATCH_FREE(scratch);
1242 }
1243 if (err)
1244 goto mpol_out;
1245
1246 err = queue_pages_range(mm, start, end, nmask,
1247 flags | MPOL_MF_INVERT, &pagelist);
1248 if (!err)
1249 err = mbind_range(mm, start, end, new);
1250
1251 if (!err) {
1252 int nr_failed = 0;
1253
1254 if (!list_empty(&pagelist)) {
1255 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1256 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1257 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1258 if (nr_failed)
1259 putback_movable_pages(&pagelist);
1260 }
1261
1262 if (nr_failed && (flags & MPOL_MF_STRICT))
1263 err = -EIO;
1264 } else
1265 putback_movable_pages(&pagelist);
1266
1267 up_write(&mm->mmap_sem);
1268 mpol_out:
1269 mpol_put(new);
1270 return err;
1271 }
1272
1273 /*
1274 * User space interface with variable sized bitmaps for nodelists.
1275 */
1276
1277 /* Copy a node mask from user space. */
1278 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1279 unsigned long maxnode)
1280 {
1281 unsigned long k;
1282 unsigned long t;
1283 unsigned long nlongs;
1284 unsigned long endmask;
1285
1286 --maxnode;
1287 nodes_clear(*nodes);
1288 if (maxnode == 0 || !nmask)
1289 return 0;
1290 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1291 return -EINVAL;
1292
1293 nlongs = BITS_TO_LONGS(maxnode);
1294 if ((maxnode % BITS_PER_LONG) == 0)
1295 endmask = ~0UL;
1296 else
1297 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1298
1299 /*
1300 * When the user specified more nodes than supported just check
1301 * if the non supported part is all zero.
1302 *
1303 * If maxnode have more longs than MAX_NUMNODES, check
1304 * the bits in that area first. And then go through to
1305 * check the rest bits which equal or bigger than MAX_NUMNODES.
1306 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1307 */
1308 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1309 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1310 if (get_user(t, nmask + k))
1311 return -EFAULT;
1312 if (k == nlongs - 1) {
1313 if (t & endmask)
1314 return -EINVAL;
1315 } else if (t)
1316 return -EINVAL;
1317 }
1318 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1319 endmask = ~0UL;
1320 }
1321
1322 if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1323 unsigned long valid_mask = endmask;
1324
1325 valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1326 if (get_user(t, nmask + nlongs - 1))
1327 return -EFAULT;
1328 if (t & valid_mask)
1329 return -EINVAL;
1330 }
1331
1332 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1333 return -EFAULT;
1334 nodes_addr(*nodes)[nlongs-1] &= endmask;
1335 return 0;
1336 }
1337
1338 /* Copy a kernel node mask to user space */
1339 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1340 nodemask_t *nodes)
1341 {
1342 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1343 unsigned int nbytes = BITS_TO_LONGS(nr_node_ids) * sizeof(long);
1344
1345 if (copy > nbytes) {
1346 if (copy > PAGE_SIZE)
1347 return -EINVAL;
1348 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1349 return -EFAULT;
1350 copy = nbytes;
1351 }
1352 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1353 }
1354
1355 static long kernel_mbind(unsigned long start, unsigned long len,
1356 unsigned long mode, const unsigned long __user *nmask,
1357 unsigned long maxnode, unsigned int flags)
1358 {
1359 nodemask_t nodes;
1360 int err;
1361 unsigned short mode_flags;
1362
1363 mode_flags = mode & MPOL_MODE_FLAGS;
1364 mode &= ~MPOL_MODE_FLAGS;
1365 if (mode >= MPOL_MAX)
1366 return -EINVAL;
1367 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1368 (mode_flags & MPOL_F_RELATIVE_NODES))
1369 return -EINVAL;
1370 err = get_nodes(&nodes, nmask, maxnode);
1371 if (err)
1372 return err;
1373 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1374 }
1375
1376 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1377 unsigned long, mode, const unsigned long __user *, nmask,
1378 unsigned long, maxnode, unsigned int, flags)
1379 {
1380 return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1381 }
1382
1383 /* Set the process memory policy */
1384 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1385 unsigned long maxnode)
1386 {
1387 int err;
1388 nodemask_t nodes;
1389 unsigned short flags;
1390
1391 flags = mode & MPOL_MODE_FLAGS;
1392 mode &= ~MPOL_MODE_FLAGS;
1393 if ((unsigned int)mode >= MPOL_MAX)
1394 return -EINVAL;
1395 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1396 return -EINVAL;
1397 err = get_nodes(&nodes, nmask, maxnode);
1398 if (err)
1399 return err;
1400 return do_set_mempolicy(mode, flags, &nodes);
1401 }
1402
1403 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1404 unsigned long, maxnode)
1405 {
1406 return kernel_set_mempolicy(mode, nmask, maxnode);
1407 }
1408
1409 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1410 const unsigned long __user *old_nodes,
1411 const unsigned long __user *new_nodes)
1412 {
1413 struct mm_struct *mm = NULL;
1414 struct task_struct *task;
1415 nodemask_t task_nodes;
1416 int err;
1417 nodemask_t *old;
1418 nodemask_t *new;
1419 NODEMASK_SCRATCH(scratch);
1420
1421 if (!scratch)
1422 return -ENOMEM;
1423
1424 old = &scratch->mask1;
1425 new = &scratch->mask2;
1426
1427 err = get_nodes(old, old_nodes, maxnode);
1428 if (err)
1429 goto out;
1430
1431 err = get_nodes(new, new_nodes, maxnode);
1432 if (err)
1433 goto out;
1434
1435 /* Find the mm_struct */
1436 rcu_read_lock();
1437 task = pid ? find_task_by_vpid(pid) : current;
1438 if (!task) {
1439 rcu_read_unlock();
1440 err = -ESRCH;
1441 goto out;
1442 }
1443 get_task_struct(task);
1444
1445 err = -EINVAL;
1446
1447 /*
1448 * Check if this process has the right to modify the specified process.
1449 * Use the regular "ptrace_may_access()" checks.
1450 */
1451 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1452 rcu_read_unlock();
1453 err = -EPERM;
1454 goto out_put;
1455 }
1456 rcu_read_unlock();
1457
1458 task_nodes = cpuset_mems_allowed(task);
1459 /* Is the user allowed to access the target nodes? */
1460 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1461 err = -EPERM;
1462 goto out_put;
1463 }
1464
1465 task_nodes = cpuset_mems_allowed(current);
1466 nodes_and(*new, *new, task_nodes);
1467 if (nodes_empty(*new))
1468 goto out_put;
1469
1470 nodes_and(*new, *new, node_states[N_MEMORY]);
1471 if (nodes_empty(*new))
1472 goto out_put;
1473
1474 err = security_task_movememory(task);
1475 if (err)
1476 goto out_put;
1477
1478 mm = get_task_mm(task);
1479 put_task_struct(task);
1480
1481 if (!mm) {
1482 err = -EINVAL;
1483 goto out;
1484 }
1485
1486 err = do_migrate_pages(mm, old, new,
1487 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1488
1489 mmput(mm);
1490 out:
1491 NODEMASK_SCRATCH_FREE(scratch);
1492
1493 return err;
1494
1495 out_put:
1496 put_task_struct(task);
1497 goto out;
1498
1499 }
1500
1501 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1502 const unsigned long __user *, old_nodes,
1503 const unsigned long __user *, new_nodes)
1504 {
1505 return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1506 }
1507
1508
1509 /* Retrieve NUMA policy */
1510 static int kernel_get_mempolicy(int __user *policy,
1511 unsigned long __user *nmask,
1512 unsigned long maxnode,
1513 unsigned long addr,
1514 unsigned long flags)
1515 {
1516 int err;
1517 int uninitialized_var(pval);
1518 nodemask_t nodes;
1519
1520 if (nmask != NULL && maxnode < nr_node_ids)
1521 return -EINVAL;
1522
1523 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1524
1525 if (err)
1526 return err;
1527
1528 if (policy && put_user(pval, policy))
1529 return -EFAULT;
1530
1531 if (nmask)
1532 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1533
1534 return err;
1535 }
1536
1537 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1538 unsigned long __user *, nmask, unsigned long, maxnode,
1539 unsigned long, addr, unsigned long, flags)
1540 {
1541 return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1542 }
1543
1544 #ifdef CONFIG_COMPAT
1545
1546 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1547 compat_ulong_t __user *, nmask,
1548 compat_ulong_t, maxnode,
1549 compat_ulong_t, addr, compat_ulong_t, flags)
1550 {
1551 long err;
1552 unsigned long __user *nm = NULL;
1553 unsigned long nr_bits, alloc_size;
1554 DECLARE_BITMAP(bm, MAX_NUMNODES);
1555
1556 nr_bits = min_t(unsigned long, maxnode-1, nr_node_ids);
1557 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1558
1559 if (nmask)
1560 nm = compat_alloc_user_space(alloc_size);
1561
1562 err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1563
1564 if (!err && nmask) {
1565 unsigned long copy_size;
1566 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1567 err = copy_from_user(bm, nm, copy_size);
1568 /* ensure entire bitmap is zeroed */
1569 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1570 err |= compat_put_bitmap(nmask, bm, nr_bits);
1571 }
1572
1573 return err;
1574 }
1575
1576 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1577 compat_ulong_t, maxnode)
1578 {
1579 unsigned long __user *nm = NULL;
1580 unsigned long nr_bits, alloc_size;
1581 DECLARE_BITMAP(bm, MAX_NUMNODES);
1582
1583 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1584 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1585
1586 if (nmask) {
1587 if (compat_get_bitmap(bm, nmask, nr_bits))
1588 return -EFAULT;
1589 nm = compat_alloc_user_space(alloc_size);
1590 if (copy_to_user(nm, bm, alloc_size))
1591 return -EFAULT;
1592 }
1593
1594 return kernel_set_mempolicy(mode, nm, nr_bits+1);
1595 }
1596
1597 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1598 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1599 compat_ulong_t, maxnode, compat_ulong_t, flags)
1600 {
1601 unsigned long __user *nm = NULL;
1602 unsigned long nr_bits, alloc_size;
1603 nodemask_t bm;
1604
1605 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1606 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1607
1608 if (nmask) {
1609 if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1610 return -EFAULT;
1611 nm = compat_alloc_user_space(alloc_size);
1612 if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1613 return -EFAULT;
1614 }
1615
1616 return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1617 }
1618
1619 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1620 compat_ulong_t, maxnode,
1621 const compat_ulong_t __user *, old_nodes,
1622 const compat_ulong_t __user *, new_nodes)
1623 {
1624 unsigned long __user *old = NULL;
1625 unsigned long __user *new = NULL;
1626 nodemask_t tmp_mask;
1627 unsigned long nr_bits;
1628 unsigned long size;
1629
1630 nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1631 size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1632 if (old_nodes) {
1633 if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1634 return -EFAULT;
1635 old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1636 if (new_nodes)
1637 new = old + size / sizeof(unsigned long);
1638 if (copy_to_user(old, nodes_addr(tmp_mask), size))
1639 return -EFAULT;
1640 }
1641 if (new_nodes) {
1642 if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1643 return -EFAULT;
1644 if (new == NULL)
1645 new = compat_alloc_user_space(size);
1646 if (copy_to_user(new, nodes_addr(tmp_mask), size))
1647 return -EFAULT;
1648 }
1649 return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1650 }
1651
1652 #endif /* CONFIG_COMPAT */
1653
1654 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1655 unsigned long addr)
1656 {
1657 struct mempolicy *pol = NULL;
1658
1659 if (vma) {
1660 if (vma->vm_ops && vma->vm_ops->get_policy) {
1661 pol = vma->vm_ops->get_policy(vma, addr);
1662 } else if (vma->vm_policy) {
1663 pol = vma->vm_policy;
1664
1665 /*
1666 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1667 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1668 * count on these policies which will be dropped by
1669 * mpol_cond_put() later
1670 */
1671 if (mpol_needs_cond_ref(pol))
1672 mpol_get(pol);
1673 }
1674 }
1675
1676 return pol;
1677 }
1678
1679 /*
1680 * get_vma_policy(@vma, @addr)
1681 * @vma: virtual memory area whose policy is sought
1682 * @addr: address in @vma for shared policy lookup
1683 *
1684 * Returns effective policy for a VMA at specified address.
1685 * Falls back to current->mempolicy or system default policy, as necessary.
1686 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1687 * count--added by the get_policy() vm_op, as appropriate--to protect against
1688 * freeing by another task. It is the caller's responsibility to free the
1689 * extra reference for shared policies.
1690 */
1691 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1692 unsigned long addr)
1693 {
1694 struct mempolicy *pol = __get_vma_policy(vma, addr);
1695
1696 if (!pol)
1697 pol = get_task_policy(current);
1698
1699 return pol;
1700 }
1701
1702 bool vma_policy_mof(struct vm_area_struct *vma)
1703 {
1704 struct mempolicy *pol;
1705
1706 if (vma->vm_ops && vma->vm_ops->get_policy) {
1707 bool ret = false;
1708
1709 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1710 if (pol && (pol->flags & MPOL_F_MOF))
1711 ret = true;
1712 mpol_cond_put(pol);
1713
1714 return ret;
1715 }
1716
1717 pol = vma->vm_policy;
1718 if (!pol)
1719 pol = get_task_policy(current);
1720
1721 return pol->flags & MPOL_F_MOF;
1722 }
1723
1724 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1725 {
1726 enum zone_type dynamic_policy_zone = policy_zone;
1727
1728 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1729
1730 /*
1731 * if policy->v.nodes has movable memory only,
1732 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1733 *
1734 * policy->v.nodes is intersect with node_states[N_MEMORY].
1735 * so if the following test faile, it implies
1736 * policy->v.nodes has movable memory only.
1737 */
1738 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1739 dynamic_policy_zone = ZONE_MOVABLE;
1740
1741 return zone >= dynamic_policy_zone;
1742 }
1743
1744 /*
1745 * Return a nodemask representing a mempolicy for filtering nodes for
1746 * page allocation
1747 */
1748 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1749 {
1750 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1751 if (unlikely(policy->mode == MPOL_BIND) &&
1752 apply_policy_zone(policy, gfp_zone(gfp)) &&
1753 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1754 return &policy->v.nodes;
1755
1756 return NULL;
1757 }
1758
1759 /* Return the node id preferred by the given mempolicy, or the given id */
1760 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1761 int nd)
1762 {
1763 if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1764 nd = policy->v.preferred_node;
1765 else {
1766 /*
1767 * __GFP_THISNODE shouldn't even be used with the bind policy
1768 * because we might easily break the expectation to stay on the
1769 * requested node and not break the policy.
1770 */
1771 WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1772 }
1773
1774 return nd;
1775 }
1776
1777 /* Do dynamic interleaving for a process */
1778 static unsigned interleave_nodes(struct mempolicy *policy)
1779 {
1780 unsigned next;
1781 struct task_struct *me = current;
1782
1783 next = next_node_in(me->il_prev, policy->v.nodes);
1784 if (next < MAX_NUMNODES)
1785 me->il_prev = next;
1786 return next;
1787 }
1788
1789 /*
1790 * Depending on the memory policy provide a node from which to allocate the
1791 * next slab entry.
1792 */
1793 unsigned int mempolicy_slab_node(void)
1794 {
1795 struct mempolicy *policy;
1796 int node = numa_mem_id();
1797
1798 if (in_interrupt())
1799 return node;
1800
1801 policy = current->mempolicy;
1802 if (!policy || policy->flags & MPOL_F_LOCAL)
1803 return node;
1804
1805 switch (policy->mode) {
1806 case MPOL_PREFERRED:
1807 /*
1808 * handled MPOL_F_LOCAL above
1809 */
1810 return policy->v.preferred_node;
1811
1812 case MPOL_INTERLEAVE:
1813 return interleave_nodes(policy);
1814
1815 case MPOL_BIND: {
1816 struct zoneref *z;
1817
1818 /*
1819 * Follow bind policy behavior and start allocation at the
1820 * first node.
1821 */
1822 struct zonelist *zonelist;
1823 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1824 zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1825 z = first_zones_zonelist(zonelist, highest_zoneidx,
1826 &policy->v.nodes);
1827 return z->zone ? zone_to_nid(z->zone) : node;
1828 }
1829
1830 default:
1831 BUG();
1832 }
1833 }
1834
1835 /*
1836 * Do static interleaving for a VMA with known offset @n. Returns the n'th
1837 * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1838 * number of present nodes.
1839 */
1840 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1841 {
1842 unsigned nnodes = nodes_weight(pol->v.nodes);
1843 unsigned target;
1844 int i;
1845 int nid;
1846
1847 if (!nnodes)
1848 return numa_node_id();
1849 target = (unsigned int)n % nnodes;
1850 nid = first_node(pol->v.nodes);
1851 for (i = 0; i < target; i++)
1852 nid = next_node(nid, pol->v.nodes);
1853 return nid;
1854 }
1855
1856 /* Determine a node number for interleave */
1857 static inline unsigned interleave_nid(struct mempolicy *pol,
1858 struct vm_area_struct *vma, unsigned long addr, int shift)
1859 {
1860 if (vma) {
1861 unsigned long off;
1862
1863 /*
1864 * for small pages, there is no difference between
1865 * shift and PAGE_SHIFT, so the bit-shift is safe.
1866 * for huge pages, since vm_pgoff is in units of small
1867 * pages, we need to shift off the always 0 bits to get
1868 * a useful offset.
1869 */
1870 BUG_ON(shift < PAGE_SHIFT);
1871 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1872 off += (addr - vma->vm_start) >> shift;
1873 return offset_il_node(pol, off);
1874 } else
1875 return interleave_nodes(pol);
1876 }
1877
1878 #ifdef CONFIG_HUGETLBFS
1879 /*
1880 * huge_node(@vma, @addr, @gfp_flags, @mpol)
1881 * @vma: virtual memory area whose policy is sought
1882 * @addr: address in @vma for shared policy lookup and interleave policy
1883 * @gfp_flags: for requested zone
1884 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1885 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1886 *
1887 * Returns a nid suitable for a huge page allocation and a pointer
1888 * to the struct mempolicy for conditional unref after allocation.
1889 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1890 * @nodemask for filtering the zonelist.
1891 *
1892 * Must be protected by read_mems_allowed_begin()
1893 */
1894 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1895 struct mempolicy **mpol, nodemask_t **nodemask)
1896 {
1897 int nid;
1898
1899 *mpol = get_vma_policy(vma, addr);
1900 *nodemask = NULL; /* assume !MPOL_BIND */
1901
1902 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1903 nid = interleave_nid(*mpol, vma, addr,
1904 huge_page_shift(hstate_vma(vma)));
1905 } else {
1906 nid = policy_node(gfp_flags, *mpol, numa_node_id());
1907 if ((*mpol)->mode == MPOL_BIND)
1908 *nodemask = &(*mpol)->v.nodes;
1909 }
1910 return nid;
1911 }
1912
1913 /*
1914 * init_nodemask_of_mempolicy
1915 *
1916 * If the current task's mempolicy is "default" [NULL], return 'false'
1917 * to indicate default policy. Otherwise, extract the policy nodemask
1918 * for 'bind' or 'interleave' policy into the argument nodemask, or
1919 * initialize the argument nodemask to contain the single node for
1920 * 'preferred' or 'local' policy and return 'true' to indicate presence
1921 * of non-default mempolicy.
1922 *
1923 * We don't bother with reference counting the mempolicy [mpol_get/put]
1924 * because the current task is examining it's own mempolicy and a task's
1925 * mempolicy is only ever changed by the task itself.
1926 *
1927 * N.B., it is the caller's responsibility to free a returned nodemask.
1928 */
1929 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1930 {
1931 struct mempolicy *mempolicy;
1932 int nid;
1933
1934 if (!(mask && current->mempolicy))
1935 return false;
1936
1937 task_lock(current);
1938 mempolicy = current->mempolicy;
1939 switch (mempolicy->mode) {
1940 case MPOL_PREFERRED:
1941 if (mempolicy->flags & MPOL_F_LOCAL)
1942 nid = numa_node_id();
1943 else
1944 nid = mempolicy->v.preferred_node;
1945 init_nodemask_of_node(mask, nid);
1946 break;
1947
1948 case MPOL_BIND:
1949 /* Fall through */
1950 case MPOL_INTERLEAVE:
1951 *mask = mempolicy->v.nodes;
1952 break;
1953
1954 default:
1955 BUG();
1956 }
1957 task_unlock(current);
1958
1959 return true;
1960 }
1961 #endif
1962
1963 /*
1964 * mempolicy_nodemask_intersects
1965 *
1966 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1967 * policy. Otherwise, check for intersection between mask and the policy
1968 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1969 * policy, always return true since it may allocate elsewhere on fallback.
1970 *
1971 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1972 */
1973 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1974 const nodemask_t *mask)
1975 {
1976 struct mempolicy *mempolicy;
1977 bool ret = true;
1978
1979 if (!mask)
1980 return ret;
1981 task_lock(tsk);
1982 mempolicy = tsk->mempolicy;
1983 if (!mempolicy)
1984 goto out;
1985
1986 switch (mempolicy->mode) {
1987 case MPOL_PREFERRED:
1988 /*
1989 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1990 * allocate from, they may fallback to other nodes when oom.
1991 * Thus, it's possible for tsk to have allocated memory from
1992 * nodes in mask.
1993 */
1994 break;
1995 case MPOL_BIND:
1996 case MPOL_INTERLEAVE:
1997 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1998 break;
1999 default:
2000 BUG();
2001 }
2002 out:
2003 task_unlock(tsk);
2004 return ret;
2005 }
2006
2007 /* Allocate a page in interleaved policy.
2008 Own path because it needs to do special accounting. */
2009 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
2010 unsigned nid)
2011 {
2012 struct page *page;
2013
2014 page = __alloc_pages(gfp, order, nid);
2015 /* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
2016 if (!static_branch_likely(&vm_numa_stat_key))
2017 return page;
2018 if (page && page_to_nid(page) == nid) {
2019 preempt_disable();
2020 __inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
2021 preempt_enable();
2022 }
2023 return page;
2024 }
2025
2026 /**
2027 * alloc_pages_vma - Allocate a page for a VMA.
2028 *
2029 * @gfp:
2030 * %GFP_USER user allocation.
2031 * %GFP_KERNEL kernel allocations,
2032 * %GFP_HIGHMEM highmem/user allocations,
2033 * %GFP_FS allocation should not call back into a file system.
2034 * %GFP_ATOMIC don't sleep.
2035 *
2036 * @order:Order of the GFP allocation.
2037 * @vma: Pointer to VMA or NULL if not available.
2038 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2039 * @node: Which node to prefer for allocation (modulo policy).
2040 * @hugepage: for hugepages try only the preferred node if possible
2041 *
2042 * This function allocates a page from the kernel page pool and applies
2043 * a NUMA policy associated with the VMA or the current process.
2044 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2045 * mm_struct of the VMA to prevent it from going away. Should be used for
2046 * all allocations for pages that will be mapped into user space. Returns
2047 * NULL when no page can be allocated.
2048 */
2049 struct page *
2050 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2051 unsigned long addr, int node, bool hugepage)
2052 {
2053 struct mempolicy *pol;
2054 struct page *page;
2055 int preferred_nid;
2056 nodemask_t *nmask;
2057
2058 pol = get_vma_policy(vma, addr);
2059
2060 if (pol->mode == MPOL_INTERLEAVE) {
2061 unsigned nid;
2062
2063 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2064 mpol_cond_put(pol);
2065 page = alloc_page_interleave(gfp, order, nid);
2066 goto out;
2067 }
2068
2069 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2070 int hpage_node = node;
2071
2072 /*
2073 * For hugepage allocation and non-interleave policy which
2074 * allows the current node (or other explicitly preferred
2075 * node) we only try to allocate from the current/preferred
2076 * node and don't fall back to other nodes, as the cost of
2077 * remote accesses would likely offset THP benefits.
2078 *
2079 * If the policy is interleave, or does not allow the current
2080 * node in its nodemask, we allocate the standard way.
2081 */
2082 if (pol->mode == MPOL_PREFERRED && !(pol->flags & MPOL_F_LOCAL))
2083 hpage_node = pol->v.preferred_node;
2084
2085 nmask = policy_nodemask(gfp, pol);
2086 if (!nmask || node_isset(hpage_node, *nmask)) {
2087 mpol_cond_put(pol);
2088 page = __alloc_pages_node(hpage_node,
2089 gfp | __GFP_THISNODE, order);
2090 goto out;
2091 }
2092 }
2093
2094 nmask = policy_nodemask(gfp, pol);
2095 preferred_nid = policy_node(gfp, pol, node);
2096 page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2097 mpol_cond_put(pol);
2098 out:
2099 return page;
2100 }
2101
2102 /**
2103 * alloc_pages_current - Allocate pages.
2104 *
2105 * @gfp:
2106 * %GFP_USER user allocation,
2107 * %GFP_KERNEL kernel allocation,
2108 * %GFP_HIGHMEM highmem allocation,
2109 * %GFP_FS don't call back into a file system.
2110 * %GFP_ATOMIC don't sleep.
2111 * @order: Power of two of allocation size in pages. 0 is a single page.
2112 *
2113 * Allocate a page from the kernel page pool. When not in
2114 * interrupt context and apply the current process NUMA policy.
2115 * Returns NULL when no page can be allocated.
2116 */
2117 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2118 {
2119 struct mempolicy *pol = &default_policy;
2120 struct page *page;
2121
2122 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2123 pol = get_task_policy(current);
2124
2125 /*
2126 * No reference counting needed for current->mempolicy
2127 * nor system default_policy
2128 */
2129 if (pol->mode == MPOL_INTERLEAVE)
2130 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2131 else
2132 page = __alloc_pages_nodemask(gfp, order,
2133 policy_node(gfp, pol, numa_node_id()),
2134 policy_nodemask(gfp, pol));
2135
2136 return page;
2137 }
2138 EXPORT_SYMBOL(alloc_pages_current);
2139
2140 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2141 {
2142 struct mempolicy *pol = mpol_dup(vma_policy(src));
2143
2144 if (IS_ERR(pol))
2145 return PTR_ERR(pol);
2146 dst->vm_policy = pol;
2147 return 0;
2148 }
2149
2150 /*
2151 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2152 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2153 * with the mems_allowed returned by cpuset_mems_allowed(). This
2154 * keeps mempolicies cpuset relative after its cpuset moves. See
2155 * further kernel/cpuset.c update_nodemask().
2156 *
2157 * current's mempolicy may be rebinded by the other task(the task that changes
2158 * cpuset's mems), so we needn't do rebind work for current task.
2159 */
2160
2161 /* Slow path of a mempolicy duplicate */
2162 struct mempolicy *__mpol_dup(struct mempolicy *old)
2163 {
2164 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2165
2166 if (!new)
2167 return ERR_PTR(-ENOMEM);
2168
2169 /* task's mempolicy is protected by alloc_lock */
2170 if (old == current->mempolicy) {
2171 task_lock(current);
2172 *new = *old;
2173 task_unlock(current);
2174 } else
2175 *new = *old;
2176
2177 if (current_cpuset_is_being_rebound()) {
2178 nodemask_t mems = cpuset_mems_allowed(current);
2179 mpol_rebind_policy(new, &mems);
2180 }
2181 atomic_set(&new->refcnt, 1);
2182 return new;
2183 }
2184
2185 /* Slow path of a mempolicy comparison */
2186 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2187 {
2188 if (!a || !b)
2189 return false;
2190 if (a->mode != b->mode)
2191 return false;
2192 if (a->flags != b->flags)
2193 return false;
2194 if (mpol_store_user_nodemask(a))
2195 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2196 return false;
2197
2198 switch (a->mode) {
2199 case MPOL_BIND:
2200 /* Fall through */
2201 case MPOL_INTERLEAVE:
2202 return !!nodes_equal(a->v.nodes, b->v.nodes);
2203 case MPOL_PREFERRED:
2204 /* a's ->flags is the same as b's */
2205 if (a->flags & MPOL_F_LOCAL)
2206 return true;
2207 return a->v.preferred_node == b->v.preferred_node;
2208 default:
2209 BUG();
2210 return false;
2211 }
2212 }
2213
2214 /*
2215 * Shared memory backing store policy support.
2216 *
2217 * Remember policies even when nobody has shared memory mapped.
2218 * The policies are kept in Red-Black tree linked from the inode.
2219 * They are protected by the sp->lock rwlock, which should be held
2220 * for any accesses to the tree.
2221 */
2222
2223 /*
2224 * lookup first element intersecting start-end. Caller holds sp->lock for
2225 * reading or for writing
2226 */
2227 static struct sp_node *
2228 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2229 {
2230 struct rb_node *n = sp->root.rb_node;
2231
2232 while (n) {
2233 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2234
2235 if (start >= p->end)
2236 n = n->rb_right;
2237 else if (end <= p->start)
2238 n = n->rb_left;
2239 else
2240 break;
2241 }
2242 if (!n)
2243 return NULL;
2244 for (;;) {
2245 struct sp_node *w = NULL;
2246 struct rb_node *prev = rb_prev(n);
2247 if (!prev)
2248 break;
2249 w = rb_entry(prev, struct sp_node, nd);
2250 if (w->end <= start)
2251 break;
2252 n = prev;
2253 }
2254 return rb_entry(n, struct sp_node, nd);
2255 }
2256
2257 /*
2258 * Insert a new shared policy into the list. Caller holds sp->lock for
2259 * writing.
2260 */
2261 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2262 {
2263 struct rb_node **p = &sp->root.rb_node;
2264 struct rb_node *parent = NULL;
2265 struct sp_node *nd;
2266
2267 while (*p) {
2268 parent = *p;
2269 nd = rb_entry(parent, struct sp_node, nd);
2270 if (new->start < nd->start)
2271 p = &(*p)->rb_left;
2272 else if (new->end > nd->end)
2273 p = &(*p)->rb_right;
2274 else
2275 BUG();
2276 }
2277 rb_link_node(&new->nd, parent, p);
2278 rb_insert_color(&new->nd, &sp->root);
2279 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2280 new->policy ? new->policy->mode : 0);
2281 }
2282
2283 /* Find shared policy intersecting idx */
2284 struct mempolicy *
2285 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2286 {
2287 struct mempolicy *pol = NULL;
2288 struct sp_node *sn;
2289
2290 if (!sp->root.rb_node)
2291 return NULL;
2292 read_lock(&sp->lock);
2293 sn = sp_lookup(sp, idx, idx+1);
2294 if (sn) {
2295 mpol_get(sn->policy);
2296 pol = sn->policy;
2297 }
2298 read_unlock(&sp->lock);
2299 return pol;
2300 }
2301
2302 static void sp_free(struct sp_node *n)
2303 {
2304 mpol_put(n->policy);
2305 kmem_cache_free(sn_cache, n);
2306 }
2307
2308 /**
2309 * mpol_misplaced - check whether current page node is valid in policy
2310 *
2311 * @page: page to be checked
2312 * @vma: vm area where page mapped
2313 * @addr: virtual address where page mapped
2314 *
2315 * Lookup current policy node id for vma,addr and "compare to" page's
2316 * node id.
2317 *
2318 * Returns:
2319 * -1 - not misplaced, page is in the right node
2320 * node - node id where the page should be
2321 *
2322 * Policy determination "mimics" alloc_page_vma().
2323 * Called from fault path where we know the vma and faulting address.
2324 */
2325 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2326 {
2327 struct mempolicy *pol;
2328 struct zoneref *z;
2329 int curnid = page_to_nid(page);
2330 unsigned long pgoff;
2331 int thiscpu = raw_smp_processor_id();
2332 int thisnid = cpu_to_node(thiscpu);
2333 int polnid = NUMA_NO_NODE;
2334 int ret = -1;
2335
2336 pol = get_vma_policy(vma, addr);
2337 if (!(pol->flags & MPOL_F_MOF))
2338 goto out;
2339
2340 switch (pol->mode) {
2341 case MPOL_INTERLEAVE:
2342 pgoff = vma->vm_pgoff;
2343 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2344 polnid = offset_il_node(pol, pgoff);
2345 break;
2346
2347 case MPOL_PREFERRED:
2348 if (pol->flags & MPOL_F_LOCAL)
2349 polnid = numa_node_id();
2350 else
2351 polnid = pol->v.preferred_node;
2352 break;
2353
2354 case MPOL_BIND:
2355
2356 /*
2357 * allows binding to multiple nodes.
2358 * use current page if in policy nodemask,
2359 * else select nearest allowed node, if any.
2360 * If no allowed nodes, use current [!misplaced].
2361 */
2362 if (node_isset(curnid, pol->v.nodes))
2363 goto out;
2364 z = first_zones_zonelist(
2365 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2366 gfp_zone(GFP_HIGHUSER),
2367 &pol->v.nodes);
2368 polnid = zone_to_nid(z->zone);
2369 break;
2370
2371 default:
2372 BUG();
2373 }
2374
2375 /* Migrate the page towards the node whose CPU is referencing it */
2376 if (pol->flags & MPOL_F_MORON) {
2377 polnid = thisnid;
2378
2379 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2380 goto out;
2381 }
2382
2383 if (curnid != polnid)
2384 ret = polnid;
2385 out:
2386 mpol_cond_put(pol);
2387
2388 return ret;
2389 }
2390
2391 /*
2392 * Drop the (possibly final) reference to task->mempolicy. It needs to be
2393 * dropped after task->mempolicy is set to NULL so that any allocation done as
2394 * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2395 * policy.
2396 */
2397 void mpol_put_task_policy(struct task_struct *task)
2398 {
2399 struct mempolicy *pol;
2400
2401 task_lock(task);
2402 pol = task->mempolicy;
2403 task->mempolicy = NULL;
2404 task_unlock(task);
2405 mpol_put(pol);
2406 }
2407
2408 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2409 {
2410 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2411 rb_erase(&n->nd, &sp->root);
2412 sp_free(n);
2413 }
2414
2415 static void sp_node_init(struct sp_node *node, unsigned long start,
2416 unsigned long end, struct mempolicy *pol)
2417 {
2418 node->start = start;
2419 node->end = end;
2420 node->policy = pol;
2421 }
2422
2423 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2424 struct mempolicy *pol)
2425 {
2426 struct sp_node *n;
2427 struct mempolicy *newpol;
2428
2429 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2430 if (!n)
2431 return NULL;
2432
2433 newpol = mpol_dup(pol);
2434 if (IS_ERR(newpol)) {
2435 kmem_cache_free(sn_cache, n);
2436 return NULL;
2437 }
2438 newpol->flags |= MPOL_F_SHARED;
2439 sp_node_init(n, start, end, newpol);
2440
2441 return n;
2442 }
2443
2444 /* Replace a policy range. */
2445 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2446 unsigned long end, struct sp_node *new)
2447 {
2448 struct sp_node *n;
2449 struct sp_node *n_new = NULL;
2450 struct mempolicy *mpol_new = NULL;
2451 int ret = 0;
2452
2453 restart:
2454 write_lock(&sp->lock);
2455 n = sp_lookup(sp, start, end);
2456 /* Take care of old policies in the same range. */
2457 while (n && n->start < end) {
2458 struct rb_node *next = rb_next(&n->nd);
2459 if (n->start >= start) {
2460 if (n->end <= end)
2461 sp_delete(sp, n);
2462 else
2463 n->start = end;
2464 } else {
2465 /* Old policy spanning whole new range. */
2466 if (n->end > end) {
2467 if (!n_new)
2468 goto alloc_new;
2469
2470 *mpol_new = *n->policy;
2471 atomic_set(&mpol_new->refcnt, 1);
2472 sp_node_init(n_new, end, n->end, mpol_new);
2473 n->end = start;
2474 sp_insert(sp, n_new);
2475 n_new = NULL;
2476 mpol_new = NULL;
2477 break;
2478 } else
2479 n->end = start;
2480 }
2481 if (!next)
2482 break;
2483 n = rb_entry(next, struct sp_node, nd);
2484 }
2485 if (new)
2486 sp_insert(sp, new);
2487 write_unlock(&sp->lock);
2488 ret = 0;
2489
2490 err_out:
2491 if (mpol_new)
2492 mpol_put(mpol_new);
2493 if (n_new)
2494 kmem_cache_free(sn_cache, n_new);
2495
2496 return ret;
2497
2498 alloc_new:
2499 write_unlock(&sp->lock);
2500 ret = -ENOMEM;
2501 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2502 if (!n_new)
2503 goto err_out;
2504 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2505 if (!mpol_new)
2506 goto err_out;
2507 goto restart;
2508 }
2509
2510 /**
2511 * mpol_shared_policy_init - initialize shared policy for inode
2512 * @sp: pointer to inode shared policy
2513 * @mpol: struct mempolicy to install
2514 *
2515 * Install non-NULL @mpol in inode's shared policy rb-tree.
2516 * On entry, the current task has a reference on a non-NULL @mpol.
2517 * This must be released on exit.
2518 * This is called at get_inode() calls and we can use GFP_KERNEL.
2519 */
2520 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2521 {
2522 int ret;
2523
2524 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2525 rwlock_init(&sp->lock);
2526
2527 if (mpol) {
2528 struct vm_area_struct pvma;
2529 struct mempolicy *new;
2530 NODEMASK_SCRATCH(scratch);
2531
2532 if (!scratch)
2533 goto put_mpol;
2534 /* contextualize the tmpfs mount point mempolicy */
2535 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2536 if (IS_ERR(new))
2537 goto free_scratch; /* no valid nodemask intersection */
2538
2539 task_lock(current);
2540 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2541 task_unlock(current);
2542 if (ret)
2543 goto put_new;
2544
2545 /* Create pseudo-vma that contains just the policy */
2546 vma_init(&pvma, NULL);
2547 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2548 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2549
2550 put_new:
2551 mpol_put(new); /* drop initial ref */
2552 free_scratch:
2553 NODEMASK_SCRATCH_FREE(scratch);
2554 put_mpol:
2555 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2556 }
2557 }
2558
2559 int mpol_set_shared_policy(struct shared_policy *info,
2560 struct vm_area_struct *vma, struct mempolicy *npol)
2561 {
2562 int err;
2563 struct sp_node *new = NULL;
2564 unsigned long sz = vma_pages(vma);
2565
2566 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2567 vma->vm_pgoff,
2568 sz, npol ? npol->mode : -1,
2569 npol ? npol->flags : -1,
2570 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2571
2572 if (npol) {
2573 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2574 if (!new)
2575 return -ENOMEM;
2576 }
2577 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2578 if (err && new)
2579 sp_free(new);
2580 return err;
2581 }
2582
2583 /* Free a backing policy store on inode delete. */
2584 void mpol_free_shared_policy(struct shared_policy *p)
2585 {
2586 struct sp_node *n;
2587 struct rb_node *next;
2588
2589 if (!p->root.rb_node)
2590 return;
2591 write_lock(&p->lock);
2592 next = rb_first(&p->root);
2593 while (next) {
2594 n = rb_entry(next, struct sp_node, nd);
2595 next = rb_next(&n->nd);
2596 sp_delete(p, n);
2597 }
2598 write_unlock(&p->lock);
2599 }
2600
2601 #ifdef CONFIG_NUMA_BALANCING
2602 static int __initdata numabalancing_override;
2603
2604 static void __init check_numabalancing_enable(void)
2605 {
2606 bool numabalancing_default = false;
2607
2608 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2609 numabalancing_default = true;
2610
2611 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2612 if (numabalancing_override)
2613 set_numabalancing_state(numabalancing_override == 1);
2614
2615 if (num_online_nodes() > 1 && !numabalancing_override) {
2616 pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2617 numabalancing_default ? "Enabling" : "Disabling");
2618 set_numabalancing_state(numabalancing_default);
2619 }
2620 }
2621
2622 static int __init setup_numabalancing(char *str)
2623 {
2624 int ret = 0;
2625 if (!str)
2626 goto out;
2627
2628 if (!strcmp(str, "enable")) {
2629 numabalancing_override = 1;
2630 ret = 1;
2631 } else if (!strcmp(str, "disable")) {
2632 numabalancing_override = -1;
2633 ret = 1;
2634 }
2635 out:
2636 if (!ret)
2637 pr_warn("Unable to parse numa_balancing=\n");
2638
2639 return ret;
2640 }
2641 __setup("numa_balancing=", setup_numabalancing);
2642 #else
2643 static inline void __init check_numabalancing_enable(void)
2644 {
2645 }
2646 #endif /* CONFIG_NUMA_BALANCING */
2647
2648 /* assumes fs == KERNEL_DS */
2649 void __init numa_policy_init(void)
2650 {
2651 nodemask_t interleave_nodes;
2652 unsigned long largest = 0;
2653 int nid, prefer = 0;
2654
2655 policy_cache = kmem_cache_create("numa_policy",
2656 sizeof(struct mempolicy),
2657 0, SLAB_PANIC, NULL);
2658
2659 sn_cache = kmem_cache_create("shared_policy_node",
2660 sizeof(struct sp_node),
2661 0, SLAB_PANIC, NULL);
2662
2663 for_each_node(nid) {
2664 preferred_node_policy[nid] = (struct mempolicy) {
2665 .refcnt = ATOMIC_INIT(1),
2666 .mode = MPOL_PREFERRED,
2667 .flags = MPOL_F_MOF | MPOL_F_MORON,
2668 .v = { .preferred_node = nid, },
2669 };
2670 }
2671
2672 /*
2673 * Set interleaving policy for system init. Interleaving is only
2674 * enabled across suitably sized nodes (default is >= 16MB), or
2675 * fall back to the largest node if they're all smaller.
2676 */
2677 nodes_clear(interleave_nodes);
2678 for_each_node_state(nid, N_MEMORY) {
2679 unsigned long total_pages = node_present_pages(nid);
2680
2681 /* Preserve the largest node */
2682 if (largest < total_pages) {
2683 largest = total_pages;
2684 prefer = nid;
2685 }
2686
2687 /* Interleave this node? */
2688 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2689 node_set(nid, interleave_nodes);
2690 }
2691
2692 /* All too small, use the largest */
2693 if (unlikely(nodes_empty(interleave_nodes)))
2694 node_set(prefer, interleave_nodes);
2695
2696 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2697 pr_err("%s: interleaving failed\n", __func__);
2698
2699 check_numabalancing_enable();
2700 }
2701
2702 /* Reset policy of current process to default */
2703 void numa_default_policy(void)
2704 {
2705 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2706 }
2707
2708 /*
2709 * Parse and format mempolicy from/to strings
2710 */
2711
2712 /*
2713 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2714 */
2715 static const char * const policy_modes[] =
2716 {
2717 [MPOL_DEFAULT] = "default",
2718 [MPOL_PREFERRED] = "prefer",
2719 [MPOL_BIND] = "bind",
2720 [MPOL_INTERLEAVE] = "interleave",
2721 [MPOL_LOCAL] = "local",
2722 };
2723
2724
2725 #ifdef CONFIG_TMPFS
2726 /**
2727 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2728 * @str: string containing mempolicy to parse
2729 * @mpol: pointer to struct mempolicy pointer, returned on success.
2730 *
2731 * Format of input:
2732 * <mode>[=<flags>][:<nodelist>]
2733 *
2734 * On success, returns 0, else 1
2735 */
2736 int mpol_parse_str(char *str, struct mempolicy **mpol)
2737 {
2738 struct mempolicy *new = NULL;
2739 unsigned short mode_flags;
2740 nodemask_t nodes;
2741 char *nodelist = strchr(str, ':');
2742 char *flags = strchr(str, '=');
2743 int err = 1, mode;
2744
2745 if (nodelist) {
2746 /* NUL-terminate mode or flags string */
2747 *nodelist++ = '\0';
2748 if (nodelist_parse(nodelist, nodes))
2749 goto out;
2750 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2751 goto out;
2752 } else
2753 nodes_clear(nodes);
2754
2755 if (flags)
2756 *flags++ = '\0'; /* terminate mode string */
2757
2758 mode = match_string(policy_modes, MPOL_MAX, str);
2759 if (mode < 0)
2760 goto out;
2761
2762 switch (mode) {
2763 case MPOL_PREFERRED:
2764 /*
2765 * Insist on a nodelist of one node only
2766 */
2767 if (nodelist) {
2768 char *rest = nodelist;
2769 while (isdigit(*rest))
2770 rest++;
2771 if (*rest)
2772 goto out;
2773 }
2774 break;
2775 case MPOL_INTERLEAVE:
2776 /*
2777 * Default to online nodes with memory if no nodelist
2778 */
2779 if (!nodelist)
2780 nodes = node_states[N_MEMORY];
2781 break;
2782 case MPOL_LOCAL:
2783 /*
2784 * Don't allow a nodelist; mpol_new() checks flags
2785 */
2786 if (nodelist)
2787 goto out;
2788 mode = MPOL_PREFERRED;
2789 break;
2790 case MPOL_DEFAULT:
2791 /*
2792 * Insist on a empty nodelist
2793 */
2794 if (!nodelist)
2795 err = 0;
2796 goto out;
2797 case MPOL_BIND:
2798 /*
2799 * Insist on a nodelist
2800 */
2801 if (!nodelist)
2802 goto out;
2803 }
2804
2805 mode_flags = 0;
2806 if (flags) {
2807 /*
2808 * Currently, we only support two mutually exclusive
2809 * mode flags.
2810 */
2811 if (!strcmp(flags, "static"))
2812 mode_flags |= MPOL_F_STATIC_NODES;
2813 else if (!strcmp(flags, "relative"))
2814 mode_flags |= MPOL_F_RELATIVE_NODES;
2815 else
2816 goto out;
2817 }
2818
2819 new = mpol_new(mode, mode_flags, &nodes);
2820 if (IS_ERR(new))
2821 goto out;
2822
2823 /*
2824 * Save nodes for mpol_to_str() to show the tmpfs mount options
2825 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2826 */
2827 if (mode != MPOL_PREFERRED)
2828 new->v.nodes = nodes;
2829 else if (nodelist)
2830 new->v.preferred_node = first_node(nodes);
2831 else
2832 new->flags |= MPOL_F_LOCAL;
2833
2834 /*
2835 * Save nodes for contextualization: this will be used to "clone"
2836 * the mempolicy in a specific context [cpuset] at a later time.
2837 */
2838 new->w.user_nodemask = nodes;
2839
2840 err = 0;
2841
2842 out:
2843 /* Restore string for error message */
2844 if (nodelist)
2845 *--nodelist = ':';
2846 if (flags)
2847 *--flags = '=';
2848 if (!err)
2849 *mpol = new;
2850 return err;
2851 }
2852 #endif /* CONFIG_TMPFS */
2853
2854 /**
2855 * mpol_to_str - format a mempolicy structure for printing
2856 * @buffer: to contain formatted mempolicy string
2857 * @maxlen: length of @buffer
2858 * @pol: pointer to mempolicy to be formatted
2859 *
2860 * Convert @pol into a string. If @buffer is too short, truncate the string.
2861 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2862 * longest flag, "relative", and to display at least a few node ids.
2863 */
2864 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2865 {
2866 char *p = buffer;
2867 nodemask_t nodes = NODE_MASK_NONE;
2868 unsigned short mode = MPOL_DEFAULT;
2869 unsigned short flags = 0;
2870
2871 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2872 mode = pol->mode;
2873 flags = pol->flags;
2874 }
2875
2876 switch (mode) {
2877 case MPOL_DEFAULT:
2878 break;
2879 case MPOL_PREFERRED:
2880 if (flags & MPOL_F_LOCAL)
2881 mode = MPOL_LOCAL;
2882 else
2883 node_set(pol->v.preferred_node, nodes);
2884 break;
2885 case MPOL_BIND:
2886 case MPOL_INTERLEAVE:
2887 nodes = pol->v.nodes;
2888 break;
2889 default:
2890 WARN_ON_ONCE(1);
2891 snprintf(p, maxlen, "unknown");
2892 return;
2893 }
2894
2895 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2896
2897 if (flags & MPOL_MODE_FLAGS) {
2898 p += snprintf(p, buffer + maxlen - p, "=");
2899
2900 /*
2901 * Currently, the only defined flags are mutually exclusive
2902 */
2903 if (flags & MPOL_F_STATIC_NODES)
2904 p += snprintf(p, buffer + maxlen - p, "static");
2905 else if (flags & MPOL_F_RELATIVE_NODES)
2906 p += snprintf(p, buffer + maxlen - p, "relative");
2907 }
2908
2909 if (!nodes_empty(nodes))
2910 p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2911 nodemask_pr_args(&nodes));
2912 }