]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/nommu.c
mm: remove vmalloc_user_node_flags
[thirdparty/linux.git] / mm / nommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/nommu.c
4 *
5 * Replacement code for mm functions to support CPU's that don't
6 * have any form of memory management unit (thus no virtual memory).
7 *
8 * See Documentation/nommu-mmap.txt
9 *
10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
39
40 #include <linux/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54
55 atomic_long_t mmap_pages_allocated;
56
57 EXPORT_SYMBOL(mem_map);
58
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66
67 /*
68 * Return the total memory allocated for this pointer, not
69 * just what the caller asked for.
70 *
71 * Doesn't have to be accurate, i.e. may have races.
72 */
73 unsigned int kobjsize(const void *objp)
74 {
75 struct page *page;
76
77 /*
78 * If the object we have should not have ksize performed on it,
79 * return size of 0
80 */
81 if (!objp || !virt_addr_valid(objp))
82 return 0;
83
84 page = virt_to_head_page(objp);
85
86 /*
87 * If the allocator sets PageSlab, we know the pointer came from
88 * kmalloc().
89 */
90 if (PageSlab(page))
91 return ksize(objp);
92
93 /*
94 * If it's not a compound page, see if we have a matching VMA
95 * region. This test is intentionally done in reverse order,
96 * so if there's no VMA, we still fall through and hand back
97 * PAGE_SIZE for 0-order pages.
98 */
99 if (!PageCompound(page)) {
100 struct vm_area_struct *vma;
101
102 vma = find_vma(current->mm, (unsigned long)objp);
103 if (vma)
104 return vma->vm_end - vma->vm_start;
105 }
106
107 /*
108 * The ksize() function is only guaranteed to work for pointers
109 * returned by kmalloc(). So handle arbitrary pointers here.
110 */
111 return page_size(page);
112 }
113
114 /**
115 * follow_pfn - look up PFN at a user virtual address
116 * @vma: memory mapping
117 * @address: user virtual address
118 * @pfn: location to store found PFN
119 *
120 * Only IO mappings and raw PFN mappings are allowed.
121 *
122 * Returns zero and the pfn at @pfn on success, -ve otherwise.
123 */
124 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125 unsigned long *pfn)
126 {
127 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128 return -EINVAL;
129
130 *pfn = address >> PAGE_SHIFT;
131 return 0;
132 }
133 EXPORT_SYMBOL(follow_pfn);
134
135 LIST_HEAD(vmap_area_list);
136
137 void vfree(const void *addr)
138 {
139 kfree(addr);
140 }
141 EXPORT_SYMBOL(vfree);
142
143 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
144 {
145 /*
146 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147 * returns only a logical address.
148 */
149 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
150 }
151 EXPORT_SYMBOL(__vmalloc);
152
153 void *__vmalloc_node_range(unsigned long size, unsigned long align,
154 unsigned long start, unsigned long end, gfp_t gfp_mask,
155 pgprot_t prot, unsigned long vm_flags, int node,
156 const void *caller)
157 {
158 return __vmalloc(size, gfp_mask);
159 }
160
161 void *__vmalloc_node(unsigned long size, unsigned long align, gfp_t gfp_mask,
162 int node, const void *caller)
163 {
164 return __vmalloc(size, gfp_mask);
165 }
166
167 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
168 {
169 void *ret;
170
171 ret = __vmalloc(size, flags);
172 if (ret) {
173 struct vm_area_struct *vma;
174
175 down_write(&current->mm->mmap_sem);
176 vma = find_vma(current->mm, (unsigned long)ret);
177 if (vma)
178 vma->vm_flags |= VM_USERMAP;
179 up_write(&current->mm->mmap_sem);
180 }
181
182 return ret;
183 }
184
185 void *vmalloc_user(unsigned long size)
186 {
187 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
188 }
189 EXPORT_SYMBOL(vmalloc_user);
190
191 struct page *vmalloc_to_page(const void *addr)
192 {
193 return virt_to_page(addr);
194 }
195 EXPORT_SYMBOL(vmalloc_to_page);
196
197 unsigned long vmalloc_to_pfn(const void *addr)
198 {
199 return page_to_pfn(virt_to_page(addr));
200 }
201 EXPORT_SYMBOL(vmalloc_to_pfn);
202
203 long vread(char *buf, char *addr, unsigned long count)
204 {
205 /* Don't allow overflow */
206 if ((unsigned long) buf + count < count)
207 count = -(unsigned long) buf;
208
209 memcpy(buf, addr, count);
210 return count;
211 }
212
213 long vwrite(char *buf, char *addr, unsigned long count)
214 {
215 /* Don't allow overflow */
216 if ((unsigned long) addr + count < count)
217 count = -(unsigned long) addr;
218
219 memcpy(addr, buf, count);
220 return count;
221 }
222
223 /*
224 * vmalloc - allocate virtually contiguous memory
225 *
226 * @size: allocation size
227 *
228 * Allocate enough pages to cover @size from the page level
229 * allocator and map them into contiguous kernel virtual space.
230 *
231 * For tight control over page level allocator and protection flags
232 * use __vmalloc() instead.
233 */
234 void *vmalloc(unsigned long size)
235 {
236 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM);
237 }
238 EXPORT_SYMBOL(vmalloc);
239
240 /*
241 * vzalloc - allocate virtually contiguous memory with zero fill
242 *
243 * @size: allocation size
244 *
245 * Allocate enough pages to cover @size from the page level
246 * allocator and map them into contiguous kernel virtual space.
247 * The memory allocated is set to zero.
248 *
249 * For tight control over page level allocator and protection flags
250 * use __vmalloc() instead.
251 */
252 void *vzalloc(unsigned long size)
253 {
254 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO);
255 }
256 EXPORT_SYMBOL(vzalloc);
257
258 /**
259 * vmalloc_node - allocate memory on a specific node
260 * @size: allocation size
261 * @node: numa node
262 *
263 * Allocate enough pages to cover @size from the page level
264 * allocator and map them into contiguous kernel virtual space.
265 *
266 * For tight control over page level allocator and protection flags
267 * use __vmalloc() instead.
268 */
269 void *vmalloc_node(unsigned long size, int node)
270 {
271 return vmalloc(size);
272 }
273 EXPORT_SYMBOL(vmalloc_node);
274
275 /**
276 * vzalloc_node - allocate memory on a specific node with zero fill
277 * @size: allocation size
278 * @node: numa node
279 *
280 * Allocate enough pages to cover @size from the page level
281 * allocator and map them into contiguous kernel virtual space.
282 * The memory allocated is set to zero.
283 *
284 * For tight control over page level allocator and protection flags
285 * use __vmalloc() instead.
286 */
287 void *vzalloc_node(unsigned long size, int node)
288 {
289 return vzalloc(size);
290 }
291 EXPORT_SYMBOL(vzalloc_node);
292
293 /**
294 * vmalloc_exec - allocate virtually contiguous, executable memory
295 * @size: allocation size
296 *
297 * Kernel-internal function to allocate enough pages to cover @size
298 * the page level allocator and map them into contiguous and
299 * executable kernel virtual space.
300 *
301 * For tight control over page level allocator and protection flags
302 * use __vmalloc() instead.
303 */
304
305 void *vmalloc_exec(unsigned long size)
306 {
307 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM);
308 }
309
310 /**
311 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
312 * @size: allocation size
313 *
314 * Allocate enough 32bit PA addressable pages to cover @size from the
315 * page level allocator and map them into contiguous kernel virtual space.
316 */
317 void *vmalloc_32(unsigned long size)
318 {
319 return __vmalloc(size, GFP_KERNEL);
320 }
321 EXPORT_SYMBOL(vmalloc_32);
322
323 /**
324 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
325 * @size: allocation size
326 *
327 * The resulting memory area is 32bit addressable and zeroed so it can be
328 * mapped to userspace without leaking data.
329 *
330 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
331 * remap_vmalloc_range() are permissible.
332 */
333 void *vmalloc_32_user(unsigned long size)
334 {
335 /*
336 * We'll have to sort out the ZONE_DMA bits for 64-bit,
337 * but for now this can simply use vmalloc_user() directly.
338 */
339 return vmalloc_user(size);
340 }
341 EXPORT_SYMBOL(vmalloc_32_user);
342
343 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
344 {
345 BUG();
346 return NULL;
347 }
348 EXPORT_SYMBOL(vmap);
349
350 void vunmap(const void *addr)
351 {
352 BUG();
353 }
354 EXPORT_SYMBOL(vunmap);
355
356 void *vm_map_ram(struct page **pages, unsigned int count, int node)
357 {
358 BUG();
359 return NULL;
360 }
361 EXPORT_SYMBOL(vm_map_ram);
362
363 void vm_unmap_ram(const void *mem, unsigned int count)
364 {
365 BUG();
366 }
367 EXPORT_SYMBOL(vm_unmap_ram);
368
369 void vm_unmap_aliases(void)
370 {
371 }
372 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
373
374 /*
375 * Implement a stub for vmalloc_sync_[un]mapping() if the architecture
376 * chose not to have one.
377 */
378 void __weak vmalloc_sync_mappings(void)
379 {
380 }
381
382 void __weak vmalloc_sync_unmappings(void)
383 {
384 }
385
386 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
387 {
388 BUG();
389 return NULL;
390 }
391 EXPORT_SYMBOL_GPL(alloc_vm_area);
392
393 void free_vm_area(struct vm_struct *area)
394 {
395 BUG();
396 }
397 EXPORT_SYMBOL_GPL(free_vm_area);
398
399 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
400 struct page *page)
401 {
402 return -EINVAL;
403 }
404 EXPORT_SYMBOL(vm_insert_page);
405
406 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
407 unsigned long num)
408 {
409 return -EINVAL;
410 }
411 EXPORT_SYMBOL(vm_map_pages);
412
413 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
414 unsigned long num)
415 {
416 return -EINVAL;
417 }
418 EXPORT_SYMBOL(vm_map_pages_zero);
419
420 /*
421 * sys_brk() for the most part doesn't need the global kernel
422 * lock, except when an application is doing something nasty
423 * like trying to un-brk an area that has already been mapped
424 * to a regular file. in this case, the unmapping will need
425 * to invoke file system routines that need the global lock.
426 */
427 SYSCALL_DEFINE1(brk, unsigned long, brk)
428 {
429 struct mm_struct *mm = current->mm;
430
431 if (brk < mm->start_brk || brk > mm->context.end_brk)
432 return mm->brk;
433
434 if (mm->brk == brk)
435 return mm->brk;
436
437 /*
438 * Always allow shrinking brk
439 */
440 if (brk <= mm->brk) {
441 mm->brk = brk;
442 return brk;
443 }
444
445 /*
446 * Ok, looks good - let it rip.
447 */
448 flush_icache_range(mm->brk, brk);
449 return mm->brk = brk;
450 }
451
452 /*
453 * initialise the percpu counter for VM and region record slabs
454 */
455 void __init mmap_init(void)
456 {
457 int ret;
458
459 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
460 VM_BUG_ON(ret);
461 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
462 }
463
464 /*
465 * validate the region tree
466 * - the caller must hold the region lock
467 */
468 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
469 static noinline void validate_nommu_regions(void)
470 {
471 struct vm_region *region, *last;
472 struct rb_node *p, *lastp;
473
474 lastp = rb_first(&nommu_region_tree);
475 if (!lastp)
476 return;
477
478 last = rb_entry(lastp, struct vm_region, vm_rb);
479 BUG_ON(last->vm_end <= last->vm_start);
480 BUG_ON(last->vm_top < last->vm_end);
481
482 while ((p = rb_next(lastp))) {
483 region = rb_entry(p, struct vm_region, vm_rb);
484 last = rb_entry(lastp, struct vm_region, vm_rb);
485
486 BUG_ON(region->vm_end <= region->vm_start);
487 BUG_ON(region->vm_top < region->vm_end);
488 BUG_ON(region->vm_start < last->vm_top);
489
490 lastp = p;
491 }
492 }
493 #else
494 static void validate_nommu_regions(void)
495 {
496 }
497 #endif
498
499 /*
500 * add a region into the global tree
501 */
502 static void add_nommu_region(struct vm_region *region)
503 {
504 struct vm_region *pregion;
505 struct rb_node **p, *parent;
506
507 validate_nommu_regions();
508
509 parent = NULL;
510 p = &nommu_region_tree.rb_node;
511 while (*p) {
512 parent = *p;
513 pregion = rb_entry(parent, struct vm_region, vm_rb);
514 if (region->vm_start < pregion->vm_start)
515 p = &(*p)->rb_left;
516 else if (region->vm_start > pregion->vm_start)
517 p = &(*p)->rb_right;
518 else if (pregion == region)
519 return;
520 else
521 BUG();
522 }
523
524 rb_link_node(&region->vm_rb, parent, p);
525 rb_insert_color(&region->vm_rb, &nommu_region_tree);
526
527 validate_nommu_regions();
528 }
529
530 /*
531 * delete a region from the global tree
532 */
533 static void delete_nommu_region(struct vm_region *region)
534 {
535 BUG_ON(!nommu_region_tree.rb_node);
536
537 validate_nommu_regions();
538 rb_erase(&region->vm_rb, &nommu_region_tree);
539 validate_nommu_regions();
540 }
541
542 /*
543 * free a contiguous series of pages
544 */
545 static void free_page_series(unsigned long from, unsigned long to)
546 {
547 for (; from < to; from += PAGE_SIZE) {
548 struct page *page = virt_to_page(from);
549
550 atomic_long_dec(&mmap_pages_allocated);
551 put_page(page);
552 }
553 }
554
555 /*
556 * release a reference to a region
557 * - the caller must hold the region semaphore for writing, which this releases
558 * - the region may not have been added to the tree yet, in which case vm_top
559 * will equal vm_start
560 */
561 static void __put_nommu_region(struct vm_region *region)
562 __releases(nommu_region_sem)
563 {
564 BUG_ON(!nommu_region_tree.rb_node);
565
566 if (--region->vm_usage == 0) {
567 if (region->vm_top > region->vm_start)
568 delete_nommu_region(region);
569 up_write(&nommu_region_sem);
570
571 if (region->vm_file)
572 fput(region->vm_file);
573
574 /* IO memory and memory shared directly out of the pagecache
575 * from ramfs/tmpfs mustn't be released here */
576 if (region->vm_flags & VM_MAPPED_COPY)
577 free_page_series(region->vm_start, region->vm_top);
578 kmem_cache_free(vm_region_jar, region);
579 } else {
580 up_write(&nommu_region_sem);
581 }
582 }
583
584 /*
585 * release a reference to a region
586 */
587 static void put_nommu_region(struct vm_region *region)
588 {
589 down_write(&nommu_region_sem);
590 __put_nommu_region(region);
591 }
592
593 /*
594 * add a VMA into a process's mm_struct in the appropriate place in the list
595 * and tree and add to the address space's page tree also if not an anonymous
596 * page
597 * - should be called with mm->mmap_sem held writelocked
598 */
599 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
600 {
601 struct vm_area_struct *pvma, *prev;
602 struct address_space *mapping;
603 struct rb_node **p, *parent, *rb_prev;
604
605 BUG_ON(!vma->vm_region);
606
607 mm->map_count++;
608 vma->vm_mm = mm;
609
610 /* add the VMA to the mapping */
611 if (vma->vm_file) {
612 mapping = vma->vm_file->f_mapping;
613
614 i_mmap_lock_write(mapping);
615 flush_dcache_mmap_lock(mapping);
616 vma_interval_tree_insert(vma, &mapping->i_mmap);
617 flush_dcache_mmap_unlock(mapping);
618 i_mmap_unlock_write(mapping);
619 }
620
621 /* add the VMA to the tree */
622 parent = rb_prev = NULL;
623 p = &mm->mm_rb.rb_node;
624 while (*p) {
625 parent = *p;
626 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
627
628 /* sort by: start addr, end addr, VMA struct addr in that order
629 * (the latter is necessary as we may get identical VMAs) */
630 if (vma->vm_start < pvma->vm_start)
631 p = &(*p)->rb_left;
632 else if (vma->vm_start > pvma->vm_start) {
633 rb_prev = parent;
634 p = &(*p)->rb_right;
635 } else if (vma->vm_end < pvma->vm_end)
636 p = &(*p)->rb_left;
637 else if (vma->vm_end > pvma->vm_end) {
638 rb_prev = parent;
639 p = &(*p)->rb_right;
640 } else if (vma < pvma)
641 p = &(*p)->rb_left;
642 else if (vma > pvma) {
643 rb_prev = parent;
644 p = &(*p)->rb_right;
645 } else
646 BUG();
647 }
648
649 rb_link_node(&vma->vm_rb, parent, p);
650 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
651
652 /* add VMA to the VMA list also */
653 prev = NULL;
654 if (rb_prev)
655 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
656
657 __vma_link_list(mm, vma, prev);
658 }
659
660 /*
661 * delete a VMA from its owning mm_struct and address space
662 */
663 static void delete_vma_from_mm(struct vm_area_struct *vma)
664 {
665 int i;
666 struct address_space *mapping;
667 struct mm_struct *mm = vma->vm_mm;
668 struct task_struct *curr = current;
669
670 mm->map_count--;
671 for (i = 0; i < VMACACHE_SIZE; i++) {
672 /* if the vma is cached, invalidate the entire cache */
673 if (curr->vmacache.vmas[i] == vma) {
674 vmacache_invalidate(mm);
675 break;
676 }
677 }
678
679 /* remove the VMA from the mapping */
680 if (vma->vm_file) {
681 mapping = vma->vm_file->f_mapping;
682
683 i_mmap_lock_write(mapping);
684 flush_dcache_mmap_lock(mapping);
685 vma_interval_tree_remove(vma, &mapping->i_mmap);
686 flush_dcache_mmap_unlock(mapping);
687 i_mmap_unlock_write(mapping);
688 }
689
690 /* remove from the MM's tree and list */
691 rb_erase(&vma->vm_rb, &mm->mm_rb);
692
693 __vma_unlink_list(mm, vma);
694 }
695
696 /*
697 * destroy a VMA record
698 */
699 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
700 {
701 if (vma->vm_ops && vma->vm_ops->close)
702 vma->vm_ops->close(vma);
703 if (vma->vm_file)
704 fput(vma->vm_file);
705 put_nommu_region(vma->vm_region);
706 vm_area_free(vma);
707 }
708
709 /*
710 * look up the first VMA in which addr resides, NULL if none
711 * - should be called with mm->mmap_sem at least held readlocked
712 */
713 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
714 {
715 struct vm_area_struct *vma;
716
717 /* check the cache first */
718 vma = vmacache_find(mm, addr);
719 if (likely(vma))
720 return vma;
721
722 /* trawl the list (there may be multiple mappings in which addr
723 * resides) */
724 for (vma = mm->mmap; vma; vma = vma->vm_next) {
725 if (vma->vm_start > addr)
726 return NULL;
727 if (vma->vm_end > addr) {
728 vmacache_update(addr, vma);
729 return vma;
730 }
731 }
732
733 return NULL;
734 }
735 EXPORT_SYMBOL(find_vma);
736
737 /*
738 * find a VMA
739 * - we don't extend stack VMAs under NOMMU conditions
740 */
741 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
742 {
743 return find_vma(mm, addr);
744 }
745
746 /*
747 * expand a stack to a given address
748 * - not supported under NOMMU conditions
749 */
750 int expand_stack(struct vm_area_struct *vma, unsigned long address)
751 {
752 return -ENOMEM;
753 }
754
755 /*
756 * look up the first VMA exactly that exactly matches addr
757 * - should be called with mm->mmap_sem at least held readlocked
758 */
759 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
760 unsigned long addr,
761 unsigned long len)
762 {
763 struct vm_area_struct *vma;
764 unsigned long end = addr + len;
765
766 /* check the cache first */
767 vma = vmacache_find_exact(mm, addr, end);
768 if (vma)
769 return vma;
770
771 /* trawl the list (there may be multiple mappings in which addr
772 * resides) */
773 for (vma = mm->mmap; vma; vma = vma->vm_next) {
774 if (vma->vm_start < addr)
775 continue;
776 if (vma->vm_start > addr)
777 return NULL;
778 if (vma->vm_end == end) {
779 vmacache_update(addr, vma);
780 return vma;
781 }
782 }
783
784 return NULL;
785 }
786
787 /*
788 * determine whether a mapping should be permitted and, if so, what sort of
789 * mapping we're capable of supporting
790 */
791 static int validate_mmap_request(struct file *file,
792 unsigned long addr,
793 unsigned long len,
794 unsigned long prot,
795 unsigned long flags,
796 unsigned long pgoff,
797 unsigned long *_capabilities)
798 {
799 unsigned long capabilities, rlen;
800 int ret;
801
802 /* do the simple checks first */
803 if (flags & MAP_FIXED)
804 return -EINVAL;
805
806 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
807 (flags & MAP_TYPE) != MAP_SHARED)
808 return -EINVAL;
809
810 if (!len)
811 return -EINVAL;
812
813 /* Careful about overflows.. */
814 rlen = PAGE_ALIGN(len);
815 if (!rlen || rlen > TASK_SIZE)
816 return -ENOMEM;
817
818 /* offset overflow? */
819 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
820 return -EOVERFLOW;
821
822 if (file) {
823 /* files must support mmap */
824 if (!file->f_op->mmap)
825 return -ENODEV;
826
827 /* work out if what we've got could possibly be shared
828 * - we support chardevs that provide their own "memory"
829 * - we support files/blockdevs that are memory backed
830 */
831 if (file->f_op->mmap_capabilities) {
832 capabilities = file->f_op->mmap_capabilities(file);
833 } else {
834 /* no explicit capabilities set, so assume some
835 * defaults */
836 switch (file_inode(file)->i_mode & S_IFMT) {
837 case S_IFREG:
838 case S_IFBLK:
839 capabilities = NOMMU_MAP_COPY;
840 break;
841
842 case S_IFCHR:
843 capabilities =
844 NOMMU_MAP_DIRECT |
845 NOMMU_MAP_READ |
846 NOMMU_MAP_WRITE;
847 break;
848
849 default:
850 return -EINVAL;
851 }
852 }
853
854 /* eliminate any capabilities that we can't support on this
855 * device */
856 if (!file->f_op->get_unmapped_area)
857 capabilities &= ~NOMMU_MAP_DIRECT;
858 if (!(file->f_mode & FMODE_CAN_READ))
859 capabilities &= ~NOMMU_MAP_COPY;
860
861 /* The file shall have been opened with read permission. */
862 if (!(file->f_mode & FMODE_READ))
863 return -EACCES;
864
865 if (flags & MAP_SHARED) {
866 /* do checks for writing, appending and locking */
867 if ((prot & PROT_WRITE) &&
868 !(file->f_mode & FMODE_WRITE))
869 return -EACCES;
870
871 if (IS_APPEND(file_inode(file)) &&
872 (file->f_mode & FMODE_WRITE))
873 return -EACCES;
874
875 if (locks_verify_locked(file))
876 return -EAGAIN;
877
878 if (!(capabilities & NOMMU_MAP_DIRECT))
879 return -ENODEV;
880
881 /* we mustn't privatise shared mappings */
882 capabilities &= ~NOMMU_MAP_COPY;
883 } else {
884 /* we're going to read the file into private memory we
885 * allocate */
886 if (!(capabilities & NOMMU_MAP_COPY))
887 return -ENODEV;
888
889 /* we don't permit a private writable mapping to be
890 * shared with the backing device */
891 if (prot & PROT_WRITE)
892 capabilities &= ~NOMMU_MAP_DIRECT;
893 }
894
895 if (capabilities & NOMMU_MAP_DIRECT) {
896 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
897 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
898 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
899 ) {
900 capabilities &= ~NOMMU_MAP_DIRECT;
901 if (flags & MAP_SHARED) {
902 pr_warn("MAP_SHARED not completely supported on !MMU\n");
903 return -EINVAL;
904 }
905 }
906 }
907
908 /* handle executable mappings and implied executable
909 * mappings */
910 if (path_noexec(&file->f_path)) {
911 if (prot & PROT_EXEC)
912 return -EPERM;
913 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
914 /* handle implication of PROT_EXEC by PROT_READ */
915 if (current->personality & READ_IMPLIES_EXEC) {
916 if (capabilities & NOMMU_MAP_EXEC)
917 prot |= PROT_EXEC;
918 }
919 } else if ((prot & PROT_READ) &&
920 (prot & PROT_EXEC) &&
921 !(capabilities & NOMMU_MAP_EXEC)
922 ) {
923 /* backing file is not executable, try to copy */
924 capabilities &= ~NOMMU_MAP_DIRECT;
925 }
926 } else {
927 /* anonymous mappings are always memory backed and can be
928 * privately mapped
929 */
930 capabilities = NOMMU_MAP_COPY;
931
932 /* handle PROT_EXEC implication by PROT_READ */
933 if ((prot & PROT_READ) &&
934 (current->personality & READ_IMPLIES_EXEC))
935 prot |= PROT_EXEC;
936 }
937
938 /* allow the security API to have its say */
939 ret = security_mmap_addr(addr);
940 if (ret < 0)
941 return ret;
942
943 /* looks okay */
944 *_capabilities = capabilities;
945 return 0;
946 }
947
948 /*
949 * we've determined that we can make the mapping, now translate what we
950 * now know into VMA flags
951 */
952 static unsigned long determine_vm_flags(struct file *file,
953 unsigned long prot,
954 unsigned long flags,
955 unsigned long capabilities)
956 {
957 unsigned long vm_flags;
958
959 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
960 /* vm_flags |= mm->def_flags; */
961
962 if (!(capabilities & NOMMU_MAP_DIRECT)) {
963 /* attempt to share read-only copies of mapped file chunks */
964 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
965 if (file && !(prot & PROT_WRITE))
966 vm_flags |= VM_MAYSHARE;
967 } else {
968 /* overlay a shareable mapping on the backing device or inode
969 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
970 * romfs/cramfs */
971 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
972 if (flags & MAP_SHARED)
973 vm_flags |= VM_SHARED;
974 }
975
976 /* refuse to let anyone share private mappings with this process if
977 * it's being traced - otherwise breakpoints set in it may interfere
978 * with another untraced process
979 */
980 if ((flags & MAP_PRIVATE) && current->ptrace)
981 vm_flags &= ~VM_MAYSHARE;
982
983 return vm_flags;
984 }
985
986 /*
987 * set up a shared mapping on a file (the driver or filesystem provides and
988 * pins the storage)
989 */
990 static int do_mmap_shared_file(struct vm_area_struct *vma)
991 {
992 int ret;
993
994 ret = call_mmap(vma->vm_file, vma);
995 if (ret == 0) {
996 vma->vm_region->vm_top = vma->vm_region->vm_end;
997 return 0;
998 }
999 if (ret != -ENOSYS)
1000 return ret;
1001
1002 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1003 * opposed to tried but failed) so we can only give a suitable error as
1004 * it's not possible to make a private copy if MAP_SHARED was given */
1005 return -ENODEV;
1006 }
1007
1008 /*
1009 * set up a private mapping or an anonymous shared mapping
1010 */
1011 static int do_mmap_private(struct vm_area_struct *vma,
1012 struct vm_region *region,
1013 unsigned long len,
1014 unsigned long capabilities)
1015 {
1016 unsigned long total, point;
1017 void *base;
1018 int ret, order;
1019
1020 /* invoke the file's mapping function so that it can keep track of
1021 * shared mappings on devices or memory
1022 * - VM_MAYSHARE will be set if it may attempt to share
1023 */
1024 if (capabilities & NOMMU_MAP_DIRECT) {
1025 ret = call_mmap(vma->vm_file, vma);
1026 if (ret == 0) {
1027 /* shouldn't return success if we're not sharing */
1028 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1029 vma->vm_region->vm_top = vma->vm_region->vm_end;
1030 return 0;
1031 }
1032 if (ret != -ENOSYS)
1033 return ret;
1034
1035 /* getting an ENOSYS error indicates that direct mmap isn't
1036 * possible (as opposed to tried but failed) so we'll try to
1037 * make a private copy of the data and map that instead */
1038 }
1039
1040
1041 /* allocate some memory to hold the mapping
1042 * - note that this may not return a page-aligned address if the object
1043 * we're allocating is smaller than a page
1044 */
1045 order = get_order(len);
1046 total = 1 << order;
1047 point = len >> PAGE_SHIFT;
1048
1049 /* we don't want to allocate a power-of-2 sized page set */
1050 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1051 total = point;
1052
1053 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1054 if (!base)
1055 goto enomem;
1056
1057 atomic_long_add(total, &mmap_pages_allocated);
1058
1059 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1060 region->vm_start = (unsigned long) base;
1061 region->vm_end = region->vm_start + len;
1062 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1063
1064 vma->vm_start = region->vm_start;
1065 vma->vm_end = region->vm_start + len;
1066
1067 if (vma->vm_file) {
1068 /* read the contents of a file into the copy */
1069 loff_t fpos;
1070
1071 fpos = vma->vm_pgoff;
1072 fpos <<= PAGE_SHIFT;
1073
1074 ret = kernel_read(vma->vm_file, base, len, &fpos);
1075 if (ret < 0)
1076 goto error_free;
1077
1078 /* clear the last little bit */
1079 if (ret < len)
1080 memset(base + ret, 0, len - ret);
1081
1082 } else {
1083 vma_set_anonymous(vma);
1084 }
1085
1086 return 0;
1087
1088 error_free:
1089 free_page_series(region->vm_start, region->vm_top);
1090 region->vm_start = vma->vm_start = 0;
1091 region->vm_end = vma->vm_end = 0;
1092 region->vm_top = 0;
1093 return ret;
1094
1095 enomem:
1096 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1097 len, current->pid, current->comm);
1098 show_free_areas(0, NULL);
1099 return -ENOMEM;
1100 }
1101
1102 /*
1103 * handle mapping creation for uClinux
1104 */
1105 unsigned long do_mmap(struct file *file,
1106 unsigned long addr,
1107 unsigned long len,
1108 unsigned long prot,
1109 unsigned long flags,
1110 vm_flags_t vm_flags,
1111 unsigned long pgoff,
1112 unsigned long *populate,
1113 struct list_head *uf)
1114 {
1115 struct vm_area_struct *vma;
1116 struct vm_region *region;
1117 struct rb_node *rb;
1118 unsigned long capabilities, result;
1119 int ret;
1120
1121 *populate = 0;
1122
1123 /* decide whether we should attempt the mapping, and if so what sort of
1124 * mapping */
1125 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1126 &capabilities);
1127 if (ret < 0)
1128 return ret;
1129
1130 /* we ignore the address hint */
1131 addr = 0;
1132 len = PAGE_ALIGN(len);
1133
1134 /* we've determined that we can make the mapping, now translate what we
1135 * now know into VMA flags */
1136 vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1137
1138 /* we're going to need to record the mapping */
1139 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1140 if (!region)
1141 goto error_getting_region;
1142
1143 vma = vm_area_alloc(current->mm);
1144 if (!vma)
1145 goto error_getting_vma;
1146
1147 region->vm_usage = 1;
1148 region->vm_flags = vm_flags;
1149 region->vm_pgoff = pgoff;
1150
1151 vma->vm_flags = vm_flags;
1152 vma->vm_pgoff = pgoff;
1153
1154 if (file) {
1155 region->vm_file = get_file(file);
1156 vma->vm_file = get_file(file);
1157 }
1158
1159 down_write(&nommu_region_sem);
1160
1161 /* if we want to share, we need to check for regions created by other
1162 * mmap() calls that overlap with our proposed mapping
1163 * - we can only share with a superset match on most regular files
1164 * - shared mappings on character devices and memory backed files are
1165 * permitted to overlap inexactly as far as we are concerned for in
1166 * these cases, sharing is handled in the driver or filesystem rather
1167 * than here
1168 */
1169 if (vm_flags & VM_MAYSHARE) {
1170 struct vm_region *pregion;
1171 unsigned long pglen, rpglen, pgend, rpgend, start;
1172
1173 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1174 pgend = pgoff + pglen;
1175
1176 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1177 pregion = rb_entry(rb, struct vm_region, vm_rb);
1178
1179 if (!(pregion->vm_flags & VM_MAYSHARE))
1180 continue;
1181
1182 /* search for overlapping mappings on the same file */
1183 if (file_inode(pregion->vm_file) !=
1184 file_inode(file))
1185 continue;
1186
1187 if (pregion->vm_pgoff >= pgend)
1188 continue;
1189
1190 rpglen = pregion->vm_end - pregion->vm_start;
1191 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1192 rpgend = pregion->vm_pgoff + rpglen;
1193 if (pgoff >= rpgend)
1194 continue;
1195
1196 /* handle inexactly overlapping matches between
1197 * mappings */
1198 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1199 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1200 /* new mapping is not a subset of the region */
1201 if (!(capabilities & NOMMU_MAP_DIRECT))
1202 goto sharing_violation;
1203 continue;
1204 }
1205
1206 /* we've found a region we can share */
1207 pregion->vm_usage++;
1208 vma->vm_region = pregion;
1209 start = pregion->vm_start;
1210 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1211 vma->vm_start = start;
1212 vma->vm_end = start + len;
1213
1214 if (pregion->vm_flags & VM_MAPPED_COPY)
1215 vma->vm_flags |= VM_MAPPED_COPY;
1216 else {
1217 ret = do_mmap_shared_file(vma);
1218 if (ret < 0) {
1219 vma->vm_region = NULL;
1220 vma->vm_start = 0;
1221 vma->vm_end = 0;
1222 pregion->vm_usage--;
1223 pregion = NULL;
1224 goto error_just_free;
1225 }
1226 }
1227 fput(region->vm_file);
1228 kmem_cache_free(vm_region_jar, region);
1229 region = pregion;
1230 result = start;
1231 goto share;
1232 }
1233
1234 /* obtain the address at which to make a shared mapping
1235 * - this is the hook for quasi-memory character devices to
1236 * tell us the location of a shared mapping
1237 */
1238 if (capabilities & NOMMU_MAP_DIRECT) {
1239 addr = file->f_op->get_unmapped_area(file, addr, len,
1240 pgoff, flags);
1241 if (IS_ERR_VALUE(addr)) {
1242 ret = addr;
1243 if (ret != -ENOSYS)
1244 goto error_just_free;
1245
1246 /* the driver refused to tell us where to site
1247 * the mapping so we'll have to attempt to copy
1248 * it */
1249 ret = -ENODEV;
1250 if (!(capabilities & NOMMU_MAP_COPY))
1251 goto error_just_free;
1252
1253 capabilities &= ~NOMMU_MAP_DIRECT;
1254 } else {
1255 vma->vm_start = region->vm_start = addr;
1256 vma->vm_end = region->vm_end = addr + len;
1257 }
1258 }
1259 }
1260
1261 vma->vm_region = region;
1262
1263 /* set up the mapping
1264 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1265 */
1266 if (file && vma->vm_flags & VM_SHARED)
1267 ret = do_mmap_shared_file(vma);
1268 else
1269 ret = do_mmap_private(vma, region, len, capabilities);
1270 if (ret < 0)
1271 goto error_just_free;
1272 add_nommu_region(region);
1273
1274 /* clear anonymous mappings that don't ask for uninitialized data */
1275 if (!vma->vm_file &&
1276 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1277 !(flags & MAP_UNINITIALIZED)))
1278 memset((void *)region->vm_start, 0,
1279 region->vm_end - region->vm_start);
1280
1281 /* okay... we have a mapping; now we have to register it */
1282 result = vma->vm_start;
1283
1284 current->mm->total_vm += len >> PAGE_SHIFT;
1285
1286 share:
1287 add_vma_to_mm(current->mm, vma);
1288
1289 /* we flush the region from the icache only when the first executable
1290 * mapping of it is made */
1291 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1292 flush_icache_range(region->vm_start, region->vm_end);
1293 region->vm_icache_flushed = true;
1294 }
1295
1296 up_write(&nommu_region_sem);
1297
1298 return result;
1299
1300 error_just_free:
1301 up_write(&nommu_region_sem);
1302 error:
1303 if (region->vm_file)
1304 fput(region->vm_file);
1305 kmem_cache_free(vm_region_jar, region);
1306 if (vma->vm_file)
1307 fput(vma->vm_file);
1308 vm_area_free(vma);
1309 return ret;
1310
1311 sharing_violation:
1312 up_write(&nommu_region_sem);
1313 pr_warn("Attempt to share mismatched mappings\n");
1314 ret = -EINVAL;
1315 goto error;
1316
1317 error_getting_vma:
1318 kmem_cache_free(vm_region_jar, region);
1319 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1320 len, current->pid);
1321 show_free_areas(0, NULL);
1322 return -ENOMEM;
1323
1324 error_getting_region:
1325 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1326 len, current->pid);
1327 show_free_areas(0, NULL);
1328 return -ENOMEM;
1329 }
1330
1331 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1332 unsigned long prot, unsigned long flags,
1333 unsigned long fd, unsigned long pgoff)
1334 {
1335 struct file *file = NULL;
1336 unsigned long retval = -EBADF;
1337
1338 audit_mmap_fd(fd, flags);
1339 if (!(flags & MAP_ANONYMOUS)) {
1340 file = fget(fd);
1341 if (!file)
1342 goto out;
1343 }
1344
1345 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1346
1347 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1348
1349 if (file)
1350 fput(file);
1351 out:
1352 return retval;
1353 }
1354
1355 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1356 unsigned long, prot, unsigned long, flags,
1357 unsigned long, fd, unsigned long, pgoff)
1358 {
1359 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1360 }
1361
1362 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1363 struct mmap_arg_struct {
1364 unsigned long addr;
1365 unsigned long len;
1366 unsigned long prot;
1367 unsigned long flags;
1368 unsigned long fd;
1369 unsigned long offset;
1370 };
1371
1372 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1373 {
1374 struct mmap_arg_struct a;
1375
1376 if (copy_from_user(&a, arg, sizeof(a)))
1377 return -EFAULT;
1378 if (offset_in_page(a.offset))
1379 return -EINVAL;
1380
1381 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1382 a.offset >> PAGE_SHIFT);
1383 }
1384 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1385
1386 /*
1387 * split a vma into two pieces at address 'addr', a new vma is allocated either
1388 * for the first part or the tail.
1389 */
1390 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1391 unsigned long addr, int new_below)
1392 {
1393 struct vm_area_struct *new;
1394 struct vm_region *region;
1395 unsigned long npages;
1396
1397 /* we're only permitted to split anonymous regions (these should have
1398 * only a single usage on the region) */
1399 if (vma->vm_file)
1400 return -ENOMEM;
1401
1402 if (mm->map_count >= sysctl_max_map_count)
1403 return -ENOMEM;
1404
1405 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1406 if (!region)
1407 return -ENOMEM;
1408
1409 new = vm_area_dup(vma);
1410 if (!new) {
1411 kmem_cache_free(vm_region_jar, region);
1412 return -ENOMEM;
1413 }
1414
1415 /* most fields are the same, copy all, and then fixup */
1416 *region = *vma->vm_region;
1417 new->vm_region = region;
1418
1419 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1420
1421 if (new_below) {
1422 region->vm_top = region->vm_end = new->vm_end = addr;
1423 } else {
1424 region->vm_start = new->vm_start = addr;
1425 region->vm_pgoff = new->vm_pgoff += npages;
1426 }
1427
1428 if (new->vm_ops && new->vm_ops->open)
1429 new->vm_ops->open(new);
1430
1431 delete_vma_from_mm(vma);
1432 down_write(&nommu_region_sem);
1433 delete_nommu_region(vma->vm_region);
1434 if (new_below) {
1435 vma->vm_region->vm_start = vma->vm_start = addr;
1436 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1437 } else {
1438 vma->vm_region->vm_end = vma->vm_end = addr;
1439 vma->vm_region->vm_top = addr;
1440 }
1441 add_nommu_region(vma->vm_region);
1442 add_nommu_region(new->vm_region);
1443 up_write(&nommu_region_sem);
1444 add_vma_to_mm(mm, vma);
1445 add_vma_to_mm(mm, new);
1446 return 0;
1447 }
1448
1449 /*
1450 * shrink a VMA by removing the specified chunk from either the beginning or
1451 * the end
1452 */
1453 static int shrink_vma(struct mm_struct *mm,
1454 struct vm_area_struct *vma,
1455 unsigned long from, unsigned long to)
1456 {
1457 struct vm_region *region;
1458
1459 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1460 * and list */
1461 delete_vma_from_mm(vma);
1462 if (from > vma->vm_start)
1463 vma->vm_end = from;
1464 else
1465 vma->vm_start = to;
1466 add_vma_to_mm(mm, vma);
1467
1468 /* cut the backing region down to size */
1469 region = vma->vm_region;
1470 BUG_ON(region->vm_usage != 1);
1471
1472 down_write(&nommu_region_sem);
1473 delete_nommu_region(region);
1474 if (from > region->vm_start) {
1475 to = region->vm_top;
1476 region->vm_top = region->vm_end = from;
1477 } else {
1478 region->vm_start = to;
1479 }
1480 add_nommu_region(region);
1481 up_write(&nommu_region_sem);
1482
1483 free_page_series(from, to);
1484 return 0;
1485 }
1486
1487 /*
1488 * release a mapping
1489 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1490 * VMA, though it need not cover the whole VMA
1491 */
1492 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1493 {
1494 struct vm_area_struct *vma;
1495 unsigned long end;
1496 int ret;
1497
1498 len = PAGE_ALIGN(len);
1499 if (len == 0)
1500 return -EINVAL;
1501
1502 end = start + len;
1503
1504 /* find the first potentially overlapping VMA */
1505 vma = find_vma(mm, start);
1506 if (!vma) {
1507 static int limit;
1508 if (limit < 5) {
1509 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1510 current->pid, current->comm,
1511 start, start + len - 1);
1512 limit++;
1513 }
1514 return -EINVAL;
1515 }
1516
1517 /* we're allowed to split an anonymous VMA but not a file-backed one */
1518 if (vma->vm_file) {
1519 do {
1520 if (start > vma->vm_start)
1521 return -EINVAL;
1522 if (end == vma->vm_end)
1523 goto erase_whole_vma;
1524 vma = vma->vm_next;
1525 } while (vma);
1526 return -EINVAL;
1527 } else {
1528 /* the chunk must be a subset of the VMA found */
1529 if (start == vma->vm_start && end == vma->vm_end)
1530 goto erase_whole_vma;
1531 if (start < vma->vm_start || end > vma->vm_end)
1532 return -EINVAL;
1533 if (offset_in_page(start))
1534 return -EINVAL;
1535 if (end != vma->vm_end && offset_in_page(end))
1536 return -EINVAL;
1537 if (start != vma->vm_start && end != vma->vm_end) {
1538 ret = split_vma(mm, vma, start, 1);
1539 if (ret < 0)
1540 return ret;
1541 }
1542 return shrink_vma(mm, vma, start, end);
1543 }
1544
1545 erase_whole_vma:
1546 delete_vma_from_mm(vma);
1547 delete_vma(mm, vma);
1548 return 0;
1549 }
1550 EXPORT_SYMBOL(do_munmap);
1551
1552 int vm_munmap(unsigned long addr, size_t len)
1553 {
1554 struct mm_struct *mm = current->mm;
1555 int ret;
1556
1557 down_write(&mm->mmap_sem);
1558 ret = do_munmap(mm, addr, len, NULL);
1559 up_write(&mm->mmap_sem);
1560 return ret;
1561 }
1562 EXPORT_SYMBOL(vm_munmap);
1563
1564 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1565 {
1566 return vm_munmap(addr, len);
1567 }
1568
1569 /*
1570 * release all the mappings made in a process's VM space
1571 */
1572 void exit_mmap(struct mm_struct *mm)
1573 {
1574 struct vm_area_struct *vma;
1575
1576 if (!mm)
1577 return;
1578
1579 mm->total_vm = 0;
1580
1581 while ((vma = mm->mmap)) {
1582 mm->mmap = vma->vm_next;
1583 delete_vma_from_mm(vma);
1584 delete_vma(mm, vma);
1585 cond_resched();
1586 }
1587 }
1588
1589 int vm_brk(unsigned long addr, unsigned long len)
1590 {
1591 return -ENOMEM;
1592 }
1593
1594 /*
1595 * expand (or shrink) an existing mapping, potentially moving it at the same
1596 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1597 *
1598 * under NOMMU conditions, we only permit changing a mapping's size, and only
1599 * as long as it stays within the region allocated by do_mmap_private() and the
1600 * block is not shareable
1601 *
1602 * MREMAP_FIXED is not supported under NOMMU conditions
1603 */
1604 static unsigned long do_mremap(unsigned long addr,
1605 unsigned long old_len, unsigned long new_len,
1606 unsigned long flags, unsigned long new_addr)
1607 {
1608 struct vm_area_struct *vma;
1609
1610 /* insanity checks first */
1611 old_len = PAGE_ALIGN(old_len);
1612 new_len = PAGE_ALIGN(new_len);
1613 if (old_len == 0 || new_len == 0)
1614 return (unsigned long) -EINVAL;
1615
1616 if (offset_in_page(addr))
1617 return -EINVAL;
1618
1619 if (flags & MREMAP_FIXED && new_addr != addr)
1620 return (unsigned long) -EINVAL;
1621
1622 vma = find_vma_exact(current->mm, addr, old_len);
1623 if (!vma)
1624 return (unsigned long) -EINVAL;
1625
1626 if (vma->vm_end != vma->vm_start + old_len)
1627 return (unsigned long) -EFAULT;
1628
1629 if (vma->vm_flags & VM_MAYSHARE)
1630 return (unsigned long) -EPERM;
1631
1632 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1633 return (unsigned long) -ENOMEM;
1634
1635 /* all checks complete - do it */
1636 vma->vm_end = vma->vm_start + new_len;
1637 return vma->vm_start;
1638 }
1639
1640 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1641 unsigned long, new_len, unsigned long, flags,
1642 unsigned long, new_addr)
1643 {
1644 unsigned long ret;
1645
1646 down_write(&current->mm->mmap_sem);
1647 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1648 up_write(&current->mm->mmap_sem);
1649 return ret;
1650 }
1651
1652 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1653 unsigned int foll_flags)
1654 {
1655 return NULL;
1656 }
1657
1658 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1659 unsigned long pfn, unsigned long size, pgprot_t prot)
1660 {
1661 if (addr != (pfn << PAGE_SHIFT))
1662 return -EINVAL;
1663
1664 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1665 return 0;
1666 }
1667 EXPORT_SYMBOL(remap_pfn_range);
1668
1669 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1670 {
1671 unsigned long pfn = start >> PAGE_SHIFT;
1672 unsigned long vm_len = vma->vm_end - vma->vm_start;
1673
1674 pfn += vma->vm_pgoff;
1675 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1676 }
1677 EXPORT_SYMBOL(vm_iomap_memory);
1678
1679 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1680 unsigned long pgoff)
1681 {
1682 unsigned int size = vma->vm_end - vma->vm_start;
1683
1684 if (!(vma->vm_flags & VM_USERMAP))
1685 return -EINVAL;
1686
1687 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1688 vma->vm_end = vma->vm_start + size;
1689
1690 return 0;
1691 }
1692 EXPORT_SYMBOL(remap_vmalloc_range);
1693
1694 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1695 unsigned long len, unsigned long pgoff, unsigned long flags)
1696 {
1697 return -ENOMEM;
1698 }
1699
1700 vm_fault_t filemap_fault(struct vm_fault *vmf)
1701 {
1702 BUG();
1703 return 0;
1704 }
1705 EXPORT_SYMBOL(filemap_fault);
1706
1707 void filemap_map_pages(struct vm_fault *vmf,
1708 pgoff_t start_pgoff, pgoff_t end_pgoff)
1709 {
1710 BUG();
1711 }
1712 EXPORT_SYMBOL(filemap_map_pages);
1713
1714 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1715 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1716 {
1717 struct vm_area_struct *vma;
1718 int write = gup_flags & FOLL_WRITE;
1719
1720 if (down_read_killable(&mm->mmap_sem))
1721 return 0;
1722
1723 /* the access must start within one of the target process's mappings */
1724 vma = find_vma(mm, addr);
1725 if (vma) {
1726 /* don't overrun this mapping */
1727 if (addr + len >= vma->vm_end)
1728 len = vma->vm_end - addr;
1729
1730 /* only read or write mappings where it is permitted */
1731 if (write && vma->vm_flags & VM_MAYWRITE)
1732 copy_to_user_page(vma, NULL, addr,
1733 (void *) addr, buf, len);
1734 else if (!write && vma->vm_flags & VM_MAYREAD)
1735 copy_from_user_page(vma, NULL, addr,
1736 buf, (void *) addr, len);
1737 else
1738 len = 0;
1739 } else {
1740 len = 0;
1741 }
1742
1743 up_read(&mm->mmap_sem);
1744
1745 return len;
1746 }
1747
1748 /**
1749 * access_remote_vm - access another process' address space
1750 * @mm: the mm_struct of the target address space
1751 * @addr: start address to access
1752 * @buf: source or destination buffer
1753 * @len: number of bytes to transfer
1754 * @gup_flags: flags modifying lookup behaviour
1755 *
1756 * The caller must hold a reference on @mm.
1757 */
1758 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1759 void *buf, int len, unsigned int gup_flags)
1760 {
1761 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1762 }
1763
1764 /*
1765 * Access another process' address space.
1766 * - source/target buffer must be kernel space
1767 */
1768 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1769 unsigned int gup_flags)
1770 {
1771 struct mm_struct *mm;
1772
1773 if (addr + len < addr)
1774 return 0;
1775
1776 mm = get_task_mm(tsk);
1777 if (!mm)
1778 return 0;
1779
1780 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1781
1782 mmput(mm);
1783 return len;
1784 }
1785 EXPORT_SYMBOL_GPL(access_process_vm);
1786
1787 /**
1788 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1789 * @inode: The inode to check
1790 * @size: The current filesize of the inode
1791 * @newsize: The proposed filesize of the inode
1792 *
1793 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1794 * make sure that that any outstanding VMAs aren't broken and then shrink the
1795 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1796 * automatically grant mappings that are too large.
1797 */
1798 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1799 size_t newsize)
1800 {
1801 struct vm_area_struct *vma;
1802 struct vm_region *region;
1803 pgoff_t low, high;
1804 size_t r_size, r_top;
1805
1806 low = newsize >> PAGE_SHIFT;
1807 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1808
1809 down_write(&nommu_region_sem);
1810 i_mmap_lock_read(inode->i_mapping);
1811
1812 /* search for VMAs that fall within the dead zone */
1813 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1814 /* found one - only interested if it's shared out of the page
1815 * cache */
1816 if (vma->vm_flags & VM_SHARED) {
1817 i_mmap_unlock_read(inode->i_mapping);
1818 up_write(&nommu_region_sem);
1819 return -ETXTBSY; /* not quite true, but near enough */
1820 }
1821 }
1822
1823 /* reduce any regions that overlap the dead zone - if in existence,
1824 * these will be pointed to by VMAs that don't overlap the dead zone
1825 *
1826 * we don't check for any regions that start beyond the EOF as there
1827 * shouldn't be any
1828 */
1829 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1830 if (!(vma->vm_flags & VM_SHARED))
1831 continue;
1832
1833 region = vma->vm_region;
1834 r_size = region->vm_top - region->vm_start;
1835 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1836
1837 if (r_top > newsize) {
1838 region->vm_top -= r_top - newsize;
1839 if (region->vm_end > region->vm_top)
1840 region->vm_end = region->vm_top;
1841 }
1842 }
1843
1844 i_mmap_unlock_read(inode->i_mapping);
1845 up_write(&nommu_region_sem);
1846 return 0;
1847 }
1848
1849 /*
1850 * Initialise sysctl_user_reserve_kbytes.
1851 *
1852 * This is intended to prevent a user from starting a single memory hogging
1853 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1854 * mode.
1855 *
1856 * The default value is min(3% of free memory, 128MB)
1857 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1858 */
1859 static int __meminit init_user_reserve(void)
1860 {
1861 unsigned long free_kbytes;
1862
1863 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1864
1865 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1866 return 0;
1867 }
1868 subsys_initcall(init_user_reserve);
1869
1870 /*
1871 * Initialise sysctl_admin_reserve_kbytes.
1872 *
1873 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1874 * to log in and kill a memory hogging process.
1875 *
1876 * Systems with more than 256MB will reserve 8MB, enough to recover
1877 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1878 * only reserve 3% of free pages by default.
1879 */
1880 static int __meminit init_admin_reserve(void)
1881 {
1882 unsigned long free_kbytes;
1883
1884 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1885
1886 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1887 return 0;
1888 }
1889 subsys_initcall(init_admin_reserve);