]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/nommu.c
4f07b7ef0297444f359d4768db7a5b93eb8adb42
[thirdparty/linux.git] / mm / nommu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/nommu.c
4 *
5 * Replacement code for mm functions to support CPU's that don't
6 * have any form of memory management unit (thus no virtual memory).
7 *
8 * See Documentation/nommu-mmap.txt
9 *
10 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
11 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
12 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
13 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
14 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/mm.h>
21 #include <linux/sched/mm.h>
22 #include <linux/vmacache.h>
23 #include <linux/mman.h>
24 #include <linux/swap.h>
25 #include <linux/file.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>
28 #include <linux/slab.h>
29 #include <linux/vmalloc.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/compiler.h>
33 #include <linux/mount.h>
34 #include <linux/personality.h>
35 #include <linux/security.h>
36 #include <linux/syscalls.h>
37 #include <linux/audit.h>
38 #include <linux/printk.h>
39
40 #include <linux/uaccess.h>
41 #include <asm/tlb.h>
42 #include <asm/tlbflush.h>
43 #include <asm/mmu_context.h>
44 #include "internal.h"
45
46 void *high_memory;
47 EXPORT_SYMBOL(high_memory);
48 struct page *mem_map;
49 unsigned long max_mapnr;
50 EXPORT_SYMBOL(max_mapnr);
51 unsigned long highest_memmap_pfn;
52 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
53 int heap_stack_gap = 0;
54
55 atomic_long_t mmap_pages_allocated;
56
57 EXPORT_SYMBOL(mem_map);
58
59 /* list of mapped, potentially shareable regions */
60 static struct kmem_cache *vm_region_jar;
61 struct rb_root nommu_region_tree = RB_ROOT;
62 DECLARE_RWSEM(nommu_region_sem);
63
64 const struct vm_operations_struct generic_file_vm_ops = {
65 };
66
67 /*
68 * Return the total memory allocated for this pointer, not
69 * just what the caller asked for.
70 *
71 * Doesn't have to be accurate, i.e. may have races.
72 */
73 unsigned int kobjsize(const void *objp)
74 {
75 struct page *page;
76
77 /*
78 * If the object we have should not have ksize performed on it,
79 * return size of 0
80 */
81 if (!objp || !virt_addr_valid(objp))
82 return 0;
83
84 page = virt_to_head_page(objp);
85
86 /*
87 * If the allocator sets PageSlab, we know the pointer came from
88 * kmalloc().
89 */
90 if (PageSlab(page))
91 return ksize(objp);
92
93 /*
94 * If it's not a compound page, see if we have a matching VMA
95 * region. This test is intentionally done in reverse order,
96 * so if there's no VMA, we still fall through and hand back
97 * PAGE_SIZE for 0-order pages.
98 */
99 if (!PageCompound(page)) {
100 struct vm_area_struct *vma;
101
102 vma = find_vma(current->mm, (unsigned long)objp);
103 if (vma)
104 return vma->vm_end - vma->vm_start;
105 }
106
107 /*
108 * The ksize() function is only guaranteed to work for pointers
109 * returned by kmalloc(). So handle arbitrary pointers here.
110 */
111 return page_size(page);
112 }
113
114 /**
115 * follow_pfn - look up PFN at a user virtual address
116 * @vma: memory mapping
117 * @address: user virtual address
118 * @pfn: location to store found PFN
119 *
120 * Only IO mappings and raw PFN mappings are allowed.
121 *
122 * Returns zero and the pfn at @pfn on success, -ve otherwise.
123 */
124 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
125 unsigned long *pfn)
126 {
127 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
128 return -EINVAL;
129
130 *pfn = address >> PAGE_SHIFT;
131 return 0;
132 }
133 EXPORT_SYMBOL(follow_pfn);
134
135 LIST_HEAD(vmap_area_list);
136
137 void vfree(const void *addr)
138 {
139 kfree(addr);
140 }
141 EXPORT_SYMBOL(vfree);
142
143 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
144 {
145 /*
146 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
147 * returns only a logical address.
148 */
149 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
150 }
151 EXPORT_SYMBOL(__vmalloc);
152
153 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
154 {
155 return __vmalloc(size, flags, PAGE_KERNEL);
156 }
157
158 static void *__vmalloc_user_flags(unsigned long size, gfp_t flags)
159 {
160 void *ret;
161
162 ret = __vmalloc(size, flags, PAGE_KERNEL);
163 if (ret) {
164 struct vm_area_struct *vma;
165
166 down_write(&current->mm->mmap_sem);
167 vma = find_vma(current->mm, (unsigned long)ret);
168 if (vma)
169 vma->vm_flags |= VM_USERMAP;
170 up_write(&current->mm->mmap_sem);
171 }
172
173 return ret;
174 }
175
176 void *vmalloc_user(unsigned long size)
177 {
178 return __vmalloc_user_flags(size, GFP_KERNEL | __GFP_ZERO);
179 }
180 EXPORT_SYMBOL(vmalloc_user);
181
182 void *vmalloc_user_node_flags(unsigned long size, int node, gfp_t flags)
183 {
184 return __vmalloc_user_flags(size, flags | __GFP_ZERO);
185 }
186 EXPORT_SYMBOL(vmalloc_user_node_flags);
187
188 struct page *vmalloc_to_page(const void *addr)
189 {
190 return virt_to_page(addr);
191 }
192 EXPORT_SYMBOL(vmalloc_to_page);
193
194 unsigned long vmalloc_to_pfn(const void *addr)
195 {
196 return page_to_pfn(virt_to_page(addr));
197 }
198 EXPORT_SYMBOL(vmalloc_to_pfn);
199
200 long vread(char *buf, char *addr, unsigned long count)
201 {
202 /* Don't allow overflow */
203 if ((unsigned long) buf + count < count)
204 count = -(unsigned long) buf;
205
206 memcpy(buf, addr, count);
207 return count;
208 }
209
210 long vwrite(char *buf, char *addr, unsigned long count)
211 {
212 /* Don't allow overflow */
213 if ((unsigned long) addr + count < count)
214 count = -(unsigned long) addr;
215
216 memcpy(addr, buf, count);
217 return count;
218 }
219
220 /*
221 * vmalloc - allocate virtually contiguous memory
222 *
223 * @size: allocation size
224 *
225 * Allocate enough pages to cover @size from the page level
226 * allocator and map them into contiguous kernel virtual space.
227 *
228 * For tight control over page level allocator and protection flags
229 * use __vmalloc() instead.
230 */
231 void *vmalloc(unsigned long size)
232 {
233 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
234 }
235 EXPORT_SYMBOL(vmalloc);
236
237 /*
238 * vzalloc - allocate virtually contiguous memory with zero fill
239 *
240 * @size: allocation size
241 *
242 * Allocate enough pages to cover @size from the page level
243 * allocator and map them into contiguous kernel virtual space.
244 * The memory allocated is set to zero.
245 *
246 * For tight control over page level allocator and protection flags
247 * use __vmalloc() instead.
248 */
249 void *vzalloc(unsigned long size)
250 {
251 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
252 PAGE_KERNEL);
253 }
254 EXPORT_SYMBOL(vzalloc);
255
256 /**
257 * vmalloc_node - allocate memory on a specific node
258 * @size: allocation size
259 * @node: numa node
260 *
261 * Allocate enough pages to cover @size from the page level
262 * allocator and map them into contiguous kernel virtual space.
263 *
264 * For tight control over page level allocator and protection flags
265 * use __vmalloc() instead.
266 */
267 void *vmalloc_node(unsigned long size, int node)
268 {
269 return vmalloc(size);
270 }
271 EXPORT_SYMBOL(vmalloc_node);
272
273 /**
274 * vzalloc_node - allocate memory on a specific node with zero fill
275 * @size: allocation size
276 * @node: numa node
277 *
278 * Allocate enough pages to cover @size from the page level
279 * allocator and map them into contiguous kernel virtual space.
280 * The memory allocated is set to zero.
281 *
282 * For tight control over page level allocator and protection flags
283 * use __vmalloc() instead.
284 */
285 void *vzalloc_node(unsigned long size, int node)
286 {
287 return vzalloc(size);
288 }
289 EXPORT_SYMBOL(vzalloc_node);
290
291 /**
292 * vmalloc_exec - allocate virtually contiguous, executable memory
293 * @size: allocation size
294 *
295 * Kernel-internal function to allocate enough pages to cover @size
296 * the page level allocator and map them into contiguous and
297 * executable kernel virtual space.
298 *
299 * For tight control over page level allocator and protection flags
300 * use __vmalloc() instead.
301 */
302
303 void *vmalloc_exec(unsigned long size)
304 {
305 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
306 }
307
308 /**
309 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
310 * @size: allocation size
311 *
312 * Allocate enough 32bit PA addressable pages to cover @size from the
313 * page level allocator and map them into contiguous kernel virtual space.
314 */
315 void *vmalloc_32(unsigned long size)
316 {
317 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
318 }
319 EXPORT_SYMBOL(vmalloc_32);
320
321 /**
322 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
323 * @size: allocation size
324 *
325 * The resulting memory area is 32bit addressable and zeroed so it can be
326 * mapped to userspace without leaking data.
327 *
328 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
329 * remap_vmalloc_range() are permissible.
330 */
331 void *vmalloc_32_user(unsigned long size)
332 {
333 /*
334 * We'll have to sort out the ZONE_DMA bits for 64-bit,
335 * but for now this can simply use vmalloc_user() directly.
336 */
337 return vmalloc_user(size);
338 }
339 EXPORT_SYMBOL(vmalloc_32_user);
340
341 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
342 {
343 BUG();
344 return NULL;
345 }
346 EXPORT_SYMBOL(vmap);
347
348 void vunmap(const void *addr)
349 {
350 BUG();
351 }
352 EXPORT_SYMBOL(vunmap);
353
354 void *vm_map_ram(struct page **pages, unsigned int count, int node)
355 {
356 BUG();
357 return NULL;
358 }
359 EXPORT_SYMBOL(vm_map_ram);
360
361 void vm_unmap_ram(const void *mem, unsigned int count)
362 {
363 BUG();
364 }
365 EXPORT_SYMBOL(vm_unmap_ram);
366
367 void vm_unmap_aliases(void)
368 {
369 }
370 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
371
372 /*
373 * Implement a stub for vmalloc_sync_[un]mapping() if the architecture
374 * chose not to have one.
375 */
376 void __weak vmalloc_sync_mappings(void)
377 {
378 }
379
380 void __weak vmalloc_sync_unmappings(void)
381 {
382 }
383
384 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
385 {
386 BUG();
387 return NULL;
388 }
389 EXPORT_SYMBOL_GPL(alloc_vm_area);
390
391 void free_vm_area(struct vm_struct *area)
392 {
393 BUG();
394 }
395 EXPORT_SYMBOL_GPL(free_vm_area);
396
397 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
398 struct page *page)
399 {
400 return -EINVAL;
401 }
402 EXPORT_SYMBOL(vm_insert_page);
403
404 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
405 unsigned long num)
406 {
407 return -EINVAL;
408 }
409 EXPORT_SYMBOL(vm_map_pages);
410
411 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
412 unsigned long num)
413 {
414 return -EINVAL;
415 }
416 EXPORT_SYMBOL(vm_map_pages_zero);
417
418 /*
419 * sys_brk() for the most part doesn't need the global kernel
420 * lock, except when an application is doing something nasty
421 * like trying to un-brk an area that has already been mapped
422 * to a regular file. in this case, the unmapping will need
423 * to invoke file system routines that need the global lock.
424 */
425 SYSCALL_DEFINE1(brk, unsigned long, brk)
426 {
427 struct mm_struct *mm = current->mm;
428
429 if (brk < mm->start_brk || brk > mm->context.end_brk)
430 return mm->brk;
431
432 if (mm->brk == brk)
433 return mm->brk;
434
435 /*
436 * Always allow shrinking brk
437 */
438 if (brk <= mm->brk) {
439 mm->brk = brk;
440 return brk;
441 }
442
443 /*
444 * Ok, looks good - let it rip.
445 */
446 flush_icache_range(mm->brk, brk);
447 return mm->brk = brk;
448 }
449
450 /*
451 * initialise the percpu counter for VM and region record slabs
452 */
453 void __init mmap_init(void)
454 {
455 int ret;
456
457 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
458 VM_BUG_ON(ret);
459 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
460 }
461
462 /*
463 * validate the region tree
464 * - the caller must hold the region lock
465 */
466 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
467 static noinline void validate_nommu_regions(void)
468 {
469 struct vm_region *region, *last;
470 struct rb_node *p, *lastp;
471
472 lastp = rb_first(&nommu_region_tree);
473 if (!lastp)
474 return;
475
476 last = rb_entry(lastp, struct vm_region, vm_rb);
477 BUG_ON(last->vm_end <= last->vm_start);
478 BUG_ON(last->vm_top < last->vm_end);
479
480 while ((p = rb_next(lastp))) {
481 region = rb_entry(p, struct vm_region, vm_rb);
482 last = rb_entry(lastp, struct vm_region, vm_rb);
483
484 BUG_ON(region->vm_end <= region->vm_start);
485 BUG_ON(region->vm_top < region->vm_end);
486 BUG_ON(region->vm_start < last->vm_top);
487
488 lastp = p;
489 }
490 }
491 #else
492 static void validate_nommu_regions(void)
493 {
494 }
495 #endif
496
497 /*
498 * add a region into the global tree
499 */
500 static void add_nommu_region(struct vm_region *region)
501 {
502 struct vm_region *pregion;
503 struct rb_node **p, *parent;
504
505 validate_nommu_regions();
506
507 parent = NULL;
508 p = &nommu_region_tree.rb_node;
509 while (*p) {
510 parent = *p;
511 pregion = rb_entry(parent, struct vm_region, vm_rb);
512 if (region->vm_start < pregion->vm_start)
513 p = &(*p)->rb_left;
514 else if (region->vm_start > pregion->vm_start)
515 p = &(*p)->rb_right;
516 else if (pregion == region)
517 return;
518 else
519 BUG();
520 }
521
522 rb_link_node(&region->vm_rb, parent, p);
523 rb_insert_color(&region->vm_rb, &nommu_region_tree);
524
525 validate_nommu_regions();
526 }
527
528 /*
529 * delete a region from the global tree
530 */
531 static void delete_nommu_region(struct vm_region *region)
532 {
533 BUG_ON(!nommu_region_tree.rb_node);
534
535 validate_nommu_regions();
536 rb_erase(&region->vm_rb, &nommu_region_tree);
537 validate_nommu_regions();
538 }
539
540 /*
541 * free a contiguous series of pages
542 */
543 static void free_page_series(unsigned long from, unsigned long to)
544 {
545 for (; from < to; from += PAGE_SIZE) {
546 struct page *page = virt_to_page(from);
547
548 atomic_long_dec(&mmap_pages_allocated);
549 put_page(page);
550 }
551 }
552
553 /*
554 * release a reference to a region
555 * - the caller must hold the region semaphore for writing, which this releases
556 * - the region may not have been added to the tree yet, in which case vm_top
557 * will equal vm_start
558 */
559 static void __put_nommu_region(struct vm_region *region)
560 __releases(nommu_region_sem)
561 {
562 BUG_ON(!nommu_region_tree.rb_node);
563
564 if (--region->vm_usage == 0) {
565 if (region->vm_top > region->vm_start)
566 delete_nommu_region(region);
567 up_write(&nommu_region_sem);
568
569 if (region->vm_file)
570 fput(region->vm_file);
571
572 /* IO memory and memory shared directly out of the pagecache
573 * from ramfs/tmpfs mustn't be released here */
574 if (region->vm_flags & VM_MAPPED_COPY)
575 free_page_series(region->vm_start, region->vm_top);
576 kmem_cache_free(vm_region_jar, region);
577 } else {
578 up_write(&nommu_region_sem);
579 }
580 }
581
582 /*
583 * release a reference to a region
584 */
585 static void put_nommu_region(struct vm_region *region)
586 {
587 down_write(&nommu_region_sem);
588 __put_nommu_region(region);
589 }
590
591 /*
592 * add a VMA into a process's mm_struct in the appropriate place in the list
593 * and tree and add to the address space's page tree also if not an anonymous
594 * page
595 * - should be called with mm->mmap_sem held writelocked
596 */
597 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
598 {
599 struct vm_area_struct *pvma, *prev;
600 struct address_space *mapping;
601 struct rb_node **p, *parent, *rb_prev;
602
603 BUG_ON(!vma->vm_region);
604
605 mm->map_count++;
606 vma->vm_mm = mm;
607
608 /* add the VMA to the mapping */
609 if (vma->vm_file) {
610 mapping = vma->vm_file->f_mapping;
611
612 i_mmap_lock_write(mapping);
613 flush_dcache_mmap_lock(mapping);
614 vma_interval_tree_insert(vma, &mapping->i_mmap);
615 flush_dcache_mmap_unlock(mapping);
616 i_mmap_unlock_write(mapping);
617 }
618
619 /* add the VMA to the tree */
620 parent = rb_prev = NULL;
621 p = &mm->mm_rb.rb_node;
622 while (*p) {
623 parent = *p;
624 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
625
626 /* sort by: start addr, end addr, VMA struct addr in that order
627 * (the latter is necessary as we may get identical VMAs) */
628 if (vma->vm_start < pvma->vm_start)
629 p = &(*p)->rb_left;
630 else if (vma->vm_start > pvma->vm_start) {
631 rb_prev = parent;
632 p = &(*p)->rb_right;
633 } else if (vma->vm_end < pvma->vm_end)
634 p = &(*p)->rb_left;
635 else if (vma->vm_end > pvma->vm_end) {
636 rb_prev = parent;
637 p = &(*p)->rb_right;
638 } else if (vma < pvma)
639 p = &(*p)->rb_left;
640 else if (vma > pvma) {
641 rb_prev = parent;
642 p = &(*p)->rb_right;
643 } else
644 BUG();
645 }
646
647 rb_link_node(&vma->vm_rb, parent, p);
648 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
649
650 /* add VMA to the VMA list also */
651 prev = NULL;
652 if (rb_prev)
653 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
654
655 __vma_link_list(mm, vma, prev);
656 }
657
658 /*
659 * delete a VMA from its owning mm_struct and address space
660 */
661 static void delete_vma_from_mm(struct vm_area_struct *vma)
662 {
663 int i;
664 struct address_space *mapping;
665 struct mm_struct *mm = vma->vm_mm;
666 struct task_struct *curr = current;
667
668 mm->map_count--;
669 for (i = 0; i < VMACACHE_SIZE; i++) {
670 /* if the vma is cached, invalidate the entire cache */
671 if (curr->vmacache.vmas[i] == vma) {
672 vmacache_invalidate(mm);
673 break;
674 }
675 }
676
677 /* remove the VMA from the mapping */
678 if (vma->vm_file) {
679 mapping = vma->vm_file->f_mapping;
680
681 i_mmap_lock_write(mapping);
682 flush_dcache_mmap_lock(mapping);
683 vma_interval_tree_remove(vma, &mapping->i_mmap);
684 flush_dcache_mmap_unlock(mapping);
685 i_mmap_unlock_write(mapping);
686 }
687
688 /* remove from the MM's tree and list */
689 rb_erase(&vma->vm_rb, &mm->mm_rb);
690
691 __vma_unlink_list(mm, vma);
692 }
693
694 /*
695 * destroy a VMA record
696 */
697 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
698 {
699 if (vma->vm_ops && vma->vm_ops->close)
700 vma->vm_ops->close(vma);
701 if (vma->vm_file)
702 fput(vma->vm_file);
703 put_nommu_region(vma->vm_region);
704 vm_area_free(vma);
705 }
706
707 /*
708 * look up the first VMA in which addr resides, NULL if none
709 * - should be called with mm->mmap_sem at least held readlocked
710 */
711 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
712 {
713 struct vm_area_struct *vma;
714
715 /* check the cache first */
716 vma = vmacache_find(mm, addr);
717 if (likely(vma))
718 return vma;
719
720 /* trawl the list (there may be multiple mappings in which addr
721 * resides) */
722 for (vma = mm->mmap; vma; vma = vma->vm_next) {
723 if (vma->vm_start > addr)
724 return NULL;
725 if (vma->vm_end > addr) {
726 vmacache_update(addr, vma);
727 return vma;
728 }
729 }
730
731 return NULL;
732 }
733 EXPORT_SYMBOL(find_vma);
734
735 /*
736 * find a VMA
737 * - we don't extend stack VMAs under NOMMU conditions
738 */
739 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
740 {
741 return find_vma(mm, addr);
742 }
743
744 /*
745 * expand a stack to a given address
746 * - not supported under NOMMU conditions
747 */
748 int expand_stack(struct vm_area_struct *vma, unsigned long address)
749 {
750 return -ENOMEM;
751 }
752
753 /*
754 * look up the first VMA exactly that exactly matches addr
755 * - should be called with mm->mmap_sem at least held readlocked
756 */
757 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
758 unsigned long addr,
759 unsigned long len)
760 {
761 struct vm_area_struct *vma;
762 unsigned long end = addr + len;
763
764 /* check the cache first */
765 vma = vmacache_find_exact(mm, addr, end);
766 if (vma)
767 return vma;
768
769 /* trawl the list (there may be multiple mappings in which addr
770 * resides) */
771 for (vma = mm->mmap; vma; vma = vma->vm_next) {
772 if (vma->vm_start < addr)
773 continue;
774 if (vma->vm_start > addr)
775 return NULL;
776 if (vma->vm_end == end) {
777 vmacache_update(addr, vma);
778 return vma;
779 }
780 }
781
782 return NULL;
783 }
784
785 /*
786 * determine whether a mapping should be permitted and, if so, what sort of
787 * mapping we're capable of supporting
788 */
789 static int validate_mmap_request(struct file *file,
790 unsigned long addr,
791 unsigned long len,
792 unsigned long prot,
793 unsigned long flags,
794 unsigned long pgoff,
795 unsigned long *_capabilities)
796 {
797 unsigned long capabilities, rlen;
798 int ret;
799
800 /* do the simple checks first */
801 if (flags & MAP_FIXED)
802 return -EINVAL;
803
804 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
805 (flags & MAP_TYPE) != MAP_SHARED)
806 return -EINVAL;
807
808 if (!len)
809 return -EINVAL;
810
811 /* Careful about overflows.. */
812 rlen = PAGE_ALIGN(len);
813 if (!rlen || rlen > TASK_SIZE)
814 return -ENOMEM;
815
816 /* offset overflow? */
817 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
818 return -EOVERFLOW;
819
820 if (file) {
821 /* files must support mmap */
822 if (!file->f_op->mmap)
823 return -ENODEV;
824
825 /* work out if what we've got could possibly be shared
826 * - we support chardevs that provide their own "memory"
827 * - we support files/blockdevs that are memory backed
828 */
829 if (file->f_op->mmap_capabilities) {
830 capabilities = file->f_op->mmap_capabilities(file);
831 } else {
832 /* no explicit capabilities set, so assume some
833 * defaults */
834 switch (file_inode(file)->i_mode & S_IFMT) {
835 case S_IFREG:
836 case S_IFBLK:
837 capabilities = NOMMU_MAP_COPY;
838 break;
839
840 case S_IFCHR:
841 capabilities =
842 NOMMU_MAP_DIRECT |
843 NOMMU_MAP_READ |
844 NOMMU_MAP_WRITE;
845 break;
846
847 default:
848 return -EINVAL;
849 }
850 }
851
852 /* eliminate any capabilities that we can't support on this
853 * device */
854 if (!file->f_op->get_unmapped_area)
855 capabilities &= ~NOMMU_MAP_DIRECT;
856 if (!(file->f_mode & FMODE_CAN_READ))
857 capabilities &= ~NOMMU_MAP_COPY;
858
859 /* The file shall have been opened with read permission. */
860 if (!(file->f_mode & FMODE_READ))
861 return -EACCES;
862
863 if (flags & MAP_SHARED) {
864 /* do checks for writing, appending and locking */
865 if ((prot & PROT_WRITE) &&
866 !(file->f_mode & FMODE_WRITE))
867 return -EACCES;
868
869 if (IS_APPEND(file_inode(file)) &&
870 (file->f_mode & FMODE_WRITE))
871 return -EACCES;
872
873 if (locks_verify_locked(file))
874 return -EAGAIN;
875
876 if (!(capabilities & NOMMU_MAP_DIRECT))
877 return -ENODEV;
878
879 /* we mustn't privatise shared mappings */
880 capabilities &= ~NOMMU_MAP_COPY;
881 } else {
882 /* we're going to read the file into private memory we
883 * allocate */
884 if (!(capabilities & NOMMU_MAP_COPY))
885 return -ENODEV;
886
887 /* we don't permit a private writable mapping to be
888 * shared with the backing device */
889 if (prot & PROT_WRITE)
890 capabilities &= ~NOMMU_MAP_DIRECT;
891 }
892
893 if (capabilities & NOMMU_MAP_DIRECT) {
894 if (((prot & PROT_READ) && !(capabilities & NOMMU_MAP_READ)) ||
895 ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
896 ((prot & PROT_EXEC) && !(capabilities & NOMMU_MAP_EXEC))
897 ) {
898 capabilities &= ~NOMMU_MAP_DIRECT;
899 if (flags & MAP_SHARED) {
900 pr_warn("MAP_SHARED not completely supported on !MMU\n");
901 return -EINVAL;
902 }
903 }
904 }
905
906 /* handle executable mappings and implied executable
907 * mappings */
908 if (path_noexec(&file->f_path)) {
909 if (prot & PROT_EXEC)
910 return -EPERM;
911 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
912 /* handle implication of PROT_EXEC by PROT_READ */
913 if (current->personality & READ_IMPLIES_EXEC) {
914 if (capabilities & NOMMU_MAP_EXEC)
915 prot |= PROT_EXEC;
916 }
917 } else if ((prot & PROT_READ) &&
918 (prot & PROT_EXEC) &&
919 !(capabilities & NOMMU_MAP_EXEC)
920 ) {
921 /* backing file is not executable, try to copy */
922 capabilities &= ~NOMMU_MAP_DIRECT;
923 }
924 } else {
925 /* anonymous mappings are always memory backed and can be
926 * privately mapped
927 */
928 capabilities = NOMMU_MAP_COPY;
929
930 /* handle PROT_EXEC implication by PROT_READ */
931 if ((prot & PROT_READ) &&
932 (current->personality & READ_IMPLIES_EXEC))
933 prot |= PROT_EXEC;
934 }
935
936 /* allow the security API to have its say */
937 ret = security_mmap_addr(addr);
938 if (ret < 0)
939 return ret;
940
941 /* looks okay */
942 *_capabilities = capabilities;
943 return 0;
944 }
945
946 /*
947 * we've determined that we can make the mapping, now translate what we
948 * now know into VMA flags
949 */
950 static unsigned long determine_vm_flags(struct file *file,
951 unsigned long prot,
952 unsigned long flags,
953 unsigned long capabilities)
954 {
955 unsigned long vm_flags;
956
957 vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
958 /* vm_flags |= mm->def_flags; */
959
960 if (!(capabilities & NOMMU_MAP_DIRECT)) {
961 /* attempt to share read-only copies of mapped file chunks */
962 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
963 if (file && !(prot & PROT_WRITE))
964 vm_flags |= VM_MAYSHARE;
965 } else {
966 /* overlay a shareable mapping on the backing device or inode
967 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
968 * romfs/cramfs */
969 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
970 if (flags & MAP_SHARED)
971 vm_flags |= VM_SHARED;
972 }
973
974 /* refuse to let anyone share private mappings with this process if
975 * it's being traced - otherwise breakpoints set in it may interfere
976 * with another untraced process
977 */
978 if ((flags & MAP_PRIVATE) && current->ptrace)
979 vm_flags &= ~VM_MAYSHARE;
980
981 return vm_flags;
982 }
983
984 /*
985 * set up a shared mapping on a file (the driver or filesystem provides and
986 * pins the storage)
987 */
988 static int do_mmap_shared_file(struct vm_area_struct *vma)
989 {
990 int ret;
991
992 ret = call_mmap(vma->vm_file, vma);
993 if (ret == 0) {
994 vma->vm_region->vm_top = vma->vm_region->vm_end;
995 return 0;
996 }
997 if (ret != -ENOSYS)
998 return ret;
999
1000 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1001 * opposed to tried but failed) so we can only give a suitable error as
1002 * it's not possible to make a private copy if MAP_SHARED was given */
1003 return -ENODEV;
1004 }
1005
1006 /*
1007 * set up a private mapping or an anonymous shared mapping
1008 */
1009 static int do_mmap_private(struct vm_area_struct *vma,
1010 struct vm_region *region,
1011 unsigned long len,
1012 unsigned long capabilities)
1013 {
1014 unsigned long total, point;
1015 void *base;
1016 int ret, order;
1017
1018 /* invoke the file's mapping function so that it can keep track of
1019 * shared mappings on devices or memory
1020 * - VM_MAYSHARE will be set if it may attempt to share
1021 */
1022 if (capabilities & NOMMU_MAP_DIRECT) {
1023 ret = call_mmap(vma->vm_file, vma);
1024 if (ret == 0) {
1025 /* shouldn't return success if we're not sharing */
1026 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1027 vma->vm_region->vm_top = vma->vm_region->vm_end;
1028 return 0;
1029 }
1030 if (ret != -ENOSYS)
1031 return ret;
1032
1033 /* getting an ENOSYS error indicates that direct mmap isn't
1034 * possible (as opposed to tried but failed) so we'll try to
1035 * make a private copy of the data and map that instead */
1036 }
1037
1038
1039 /* allocate some memory to hold the mapping
1040 * - note that this may not return a page-aligned address if the object
1041 * we're allocating is smaller than a page
1042 */
1043 order = get_order(len);
1044 total = 1 << order;
1045 point = len >> PAGE_SHIFT;
1046
1047 /* we don't want to allocate a power-of-2 sized page set */
1048 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1049 total = point;
1050
1051 base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1052 if (!base)
1053 goto enomem;
1054
1055 atomic_long_add(total, &mmap_pages_allocated);
1056
1057 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1058 region->vm_start = (unsigned long) base;
1059 region->vm_end = region->vm_start + len;
1060 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1061
1062 vma->vm_start = region->vm_start;
1063 vma->vm_end = region->vm_start + len;
1064
1065 if (vma->vm_file) {
1066 /* read the contents of a file into the copy */
1067 loff_t fpos;
1068
1069 fpos = vma->vm_pgoff;
1070 fpos <<= PAGE_SHIFT;
1071
1072 ret = kernel_read(vma->vm_file, base, len, &fpos);
1073 if (ret < 0)
1074 goto error_free;
1075
1076 /* clear the last little bit */
1077 if (ret < len)
1078 memset(base + ret, 0, len - ret);
1079
1080 } else {
1081 vma_set_anonymous(vma);
1082 }
1083
1084 return 0;
1085
1086 error_free:
1087 free_page_series(region->vm_start, region->vm_top);
1088 region->vm_start = vma->vm_start = 0;
1089 region->vm_end = vma->vm_end = 0;
1090 region->vm_top = 0;
1091 return ret;
1092
1093 enomem:
1094 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1095 len, current->pid, current->comm);
1096 show_free_areas(0, NULL);
1097 return -ENOMEM;
1098 }
1099
1100 /*
1101 * handle mapping creation for uClinux
1102 */
1103 unsigned long do_mmap(struct file *file,
1104 unsigned long addr,
1105 unsigned long len,
1106 unsigned long prot,
1107 unsigned long flags,
1108 vm_flags_t vm_flags,
1109 unsigned long pgoff,
1110 unsigned long *populate,
1111 struct list_head *uf)
1112 {
1113 struct vm_area_struct *vma;
1114 struct vm_region *region;
1115 struct rb_node *rb;
1116 unsigned long capabilities, result;
1117 int ret;
1118
1119 *populate = 0;
1120
1121 /* decide whether we should attempt the mapping, and if so what sort of
1122 * mapping */
1123 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1124 &capabilities);
1125 if (ret < 0)
1126 return ret;
1127
1128 /* we ignore the address hint */
1129 addr = 0;
1130 len = PAGE_ALIGN(len);
1131
1132 /* we've determined that we can make the mapping, now translate what we
1133 * now know into VMA flags */
1134 vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1135
1136 /* we're going to need to record the mapping */
1137 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1138 if (!region)
1139 goto error_getting_region;
1140
1141 vma = vm_area_alloc(current->mm);
1142 if (!vma)
1143 goto error_getting_vma;
1144
1145 region->vm_usage = 1;
1146 region->vm_flags = vm_flags;
1147 region->vm_pgoff = pgoff;
1148
1149 vma->vm_flags = vm_flags;
1150 vma->vm_pgoff = pgoff;
1151
1152 if (file) {
1153 region->vm_file = get_file(file);
1154 vma->vm_file = get_file(file);
1155 }
1156
1157 down_write(&nommu_region_sem);
1158
1159 /* if we want to share, we need to check for regions created by other
1160 * mmap() calls that overlap with our proposed mapping
1161 * - we can only share with a superset match on most regular files
1162 * - shared mappings on character devices and memory backed files are
1163 * permitted to overlap inexactly as far as we are concerned for in
1164 * these cases, sharing is handled in the driver or filesystem rather
1165 * than here
1166 */
1167 if (vm_flags & VM_MAYSHARE) {
1168 struct vm_region *pregion;
1169 unsigned long pglen, rpglen, pgend, rpgend, start;
1170
1171 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1172 pgend = pgoff + pglen;
1173
1174 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1175 pregion = rb_entry(rb, struct vm_region, vm_rb);
1176
1177 if (!(pregion->vm_flags & VM_MAYSHARE))
1178 continue;
1179
1180 /* search for overlapping mappings on the same file */
1181 if (file_inode(pregion->vm_file) !=
1182 file_inode(file))
1183 continue;
1184
1185 if (pregion->vm_pgoff >= pgend)
1186 continue;
1187
1188 rpglen = pregion->vm_end - pregion->vm_start;
1189 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1190 rpgend = pregion->vm_pgoff + rpglen;
1191 if (pgoff >= rpgend)
1192 continue;
1193
1194 /* handle inexactly overlapping matches between
1195 * mappings */
1196 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1197 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1198 /* new mapping is not a subset of the region */
1199 if (!(capabilities & NOMMU_MAP_DIRECT))
1200 goto sharing_violation;
1201 continue;
1202 }
1203
1204 /* we've found a region we can share */
1205 pregion->vm_usage++;
1206 vma->vm_region = pregion;
1207 start = pregion->vm_start;
1208 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1209 vma->vm_start = start;
1210 vma->vm_end = start + len;
1211
1212 if (pregion->vm_flags & VM_MAPPED_COPY)
1213 vma->vm_flags |= VM_MAPPED_COPY;
1214 else {
1215 ret = do_mmap_shared_file(vma);
1216 if (ret < 0) {
1217 vma->vm_region = NULL;
1218 vma->vm_start = 0;
1219 vma->vm_end = 0;
1220 pregion->vm_usage--;
1221 pregion = NULL;
1222 goto error_just_free;
1223 }
1224 }
1225 fput(region->vm_file);
1226 kmem_cache_free(vm_region_jar, region);
1227 region = pregion;
1228 result = start;
1229 goto share;
1230 }
1231
1232 /* obtain the address at which to make a shared mapping
1233 * - this is the hook for quasi-memory character devices to
1234 * tell us the location of a shared mapping
1235 */
1236 if (capabilities & NOMMU_MAP_DIRECT) {
1237 addr = file->f_op->get_unmapped_area(file, addr, len,
1238 pgoff, flags);
1239 if (IS_ERR_VALUE(addr)) {
1240 ret = addr;
1241 if (ret != -ENOSYS)
1242 goto error_just_free;
1243
1244 /* the driver refused to tell us where to site
1245 * the mapping so we'll have to attempt to copy
1246 * it */
1247 ret = -ENODEV;
1248 if (!(capabilities & NOMMU_MAP_COPY))
1249 goto error_just_free;
1250
1251 capabilities &= ~NOMMU_MAP_DIRECT;
1252 } else {
1253 vma->vm_start = region->vm_start = addr;
1254 vma->vm_end = region->vm_end = addr + len;
1255 }
1256 }
1257 }
1258
1259 vma->vm_region = region;
1260
1261 /* set up the mapping
1262 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1263 */
1264 if (file && vma->vm_flags & VM_SHARED)
1265 ret = do_mmap_shared_file(vma);
1266 else
1267 ret = do_mmap_private(vma, region, len, capabilities);
1268 if (ret < 0)
1269 goto error_just_free;
1270 add_nommu_region(region);
1271
1272 /* clear anonymous mappings that don't ask for uninitialized data */
1273 if (!vma->vm_file &&
1274 (!IS_ENABLED(CONFIG_MMAP_ALLOW_UNINITIALIZED) ||
1275 !(flags & MAP_UNINITIALIZED)))
1276 memset((void *)region->vm_start, 0,
1277 region->vm_end - region->vm_start);
1278
1279 /* okay... we have a mapping; now we have to register it */
1280 result = vma->vm_start;
1281
1282 current->mm->total_vm += len >> PAGE_SHIFT;
1283
1284 share:
1285 add_vma_to_mm(current->mm, vma);
1286
1287 /* we flush the region from the icache only when the first executable
1288 * mapping of it is made */
1289 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1290 flush_icache_range(region->vm_start, region->vm_end);
1291 region->vm_icache_flushed = true;
1292 }
1293
1294 up_write(&nommu_region_sem);
1295
1296 return result;
1297
1298 error_just_free:
1299 up_write(&nommu_region_sem);
1300 error:
1301 if (region->vm_file)
1302 fput(region->vm_file);
1303 kmem_cache_free(vm_region_jar, region);
1304 if (vma->vm_file)
1305 fput(vma->vm_file);
1306 vm_area_free(vma);
1307 return ret;
1308
1309 sharing_violation:
1310 up_write(&nommu_region_sem);
1311 pr_warn("Attempt to share mismatched mappings\n");
1312 ret = -EINVAL;
1313 goto error;
1314
1315 error_getting_vma:
1316 kmem_cache_free(vm_region_jar, region);
1317 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1318 len, current->pid);
1319 show_free_areas(0, NULL);
1320 return -ENOMEM;
1321
1322 error_getting_region:
1323 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1324 len, current->pid);
1325 show_free_areas(0, NULL);
1326 return -ENOMEM;
1327 }
1328
1329 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1330 unsigned long prot, unsigned long flags,
1331 unsigned long fd, unsigned long pgoff)
1332 {
1333 struct file *file = NULL;
1334 unsigned long retval = -EBADF;
1335
1336 audit_mmap_fd(fd, flags);
1337 if (!(flags & MAP_ANONYMOUS)) {
1338 file = fget(fd);
1339 if (!file)
1340 goto out;
1341 }
1342
1343 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1344
1345 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1346
1347 if (file)
1348 fput(file);
1349 out:
1350 return retval;
1351 }
1352
1353 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1354 unsigned long, prot, unsigned long, flags,
1355 unsigned long, fd, unsigned long, pgoff)
1356 {
1357 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1358 }
1359
1360 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1361 struct mmap_arg_struct {
1362 unsigned long addr;
1363 unsigned long len;
1364 unsigned long prot;
1365 unsigned long flags;
1366 unsigned long fd;
1367 unsigned long offset;
1368 };
1369
1370 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1371 {
1372 struct mmap_arg_struct a;
1373
1374 if (copy_from_user(&a, arg, sizeof(a)))
1375 return -EFAULT;
1376 if (offset_in_page(a.offset))
1377 return -EINVAL;
1378
1379 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1380 a.offset >> PAGE_SHIFT);
1381 }
1382 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1383
1384 /*
1385 * split a vma into two pieces at address 'addr', a new vma is allocated either
1386 * for the first part or the tail.
1387 */
1388 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1389 unsigned long addr, int new_below)
1390 {
1391 struct vm_area_struct *new;
1392 struct vm_region *region;
1393 unsigned long npages;
1394
1395 /* we're only permitted to split anonymous regions (these should have
1396 * only a single usage on the region) */
1397 if (vma->vm_file)
1398 return -ENOMEM;
1399
1400 if (mm->map_count >= sysctl_max_map_count)
1401 return -ENOMEM;
1402
1403 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1404 if (!region)
1405 return -ENOMEM;
1406
1407 new = vm_area_dup(vma);
1408 if (!new) {
1409 kmem_cache_free(vm_region_jar, region);
1410 return -ENOMEM;
1411 }
1412
1413 /* most fields are the same, copy all, and then fixup */
1414 *region = *vma->vm_region;
1415 new->vm_region = region;
1416
1417 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1418
1419 if (new_below) {
1420 region->vm_top = region->vm_end = new->vm_end = addr;
1421 } else {
1422 region->vm_start = new->vm_start = addr;
1423 region->vm_pgoff = new->vm_pgoff += npages;
1424 }
1425
1426 if (new->vm_ops && new->vm_ops->open)
1427 new->vm_ops->open(new);
1428
1429 delete_vma_from_mm(vma);
1430 down_write(&nommu_region_sem);
1431 delete_nommu_region(vma->vm_region);
1432 if (new_below) {
1433 vma->vm_region->vm_start = vma->vm_start = addr;
1434 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1435 } else {
1436 vma->vm_region->vm_end = vma->vm_end = addr;
1437 vma->vm_region->vm_top = addr;
1438 }
1439 add_nommu_region(vma->vm_region);
1440 add_nommu_region(new->vm_region);
1441 up_write(&nommu_region_sem);
1442 add_vma_to_mm(mm, vma);
1443 add_vma_to_mm(mm, new);
1444 return 0;
1445 }
1446
1447 /*
1448 * shrink a VMA by removing the specified chunk from either the beginning or
1449 * the end
1450 */
1451 static int shrink_vma(struct mm_struct *mm,
1452 struct vm_area_struct *vma,
1453 unsigned long from, unsigned long to)
1454 {
1455 struct vm_region *region;
1456
1457 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1458 * and list */
1459 delete_vma_from_mm(vma);
1460 if (from > vma->vm_start)
1461 vma->vm_end = from;
1462 else
1463 vma->vm_start = to;
1464 add_vma_to_mm(mm, vma);
1465
1466 /* cut the backing region down to size */
1467 region = vma->vm_region;
1468 BUG_ON(region->vm_usage != 1);
1469
1470 down_write(&nommu_region_sem);
1471 delete_nommu_region(region);
1472 if (from > region->vm_start) {
1473 to = region->vm_top;
1474 region->vm_top = region->vm_end = from;
1475 } else {
1476 region->vm_start = to;
1477 }
1478 add_nommu_region(region);
1479 up_write(&nommu_region_sem);
1480
1481 free_page_series(from, to);
1482 return 0;
1483 }
1484
1485 /*
1486 * release a mapping
1487 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1488 * VMA, though it need not cover the whole VMA
1489 */
1490 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1491 {
1492 struct vm_area_struct *vma;
1493 unsigned long end;
1494 int ret;
1495
1496 len = PAGE_ALIGN(len);
1497 if (len == 0)
1498 return -EINVAL;
1499
1500 end = start + len;
1501
1502 /* find the first potentially overlapping VMA */
1503 vma = find_vma(mm, start);
1504 if (!vma) {
1505 static int limit;
1506 if (limit < 5) {
1507 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1508 current->pid, current->comm,
1509 start, start + len - 1);
1510 limit++;
1511 }
1512 return -EINVAL;
1513 }
1514
1515 /* we're allowed to split an anonymous VMA but not a file-backed one */
1516 if (vma->vm_file) {
1517 do {
1518 if (start > vma->vm_start)
1519 return -EINVAL;
1520 if (end == vma->vm_end)
1521 goto erase_whole_vma;
1522 vma = vma->vm_next;
1523 } while (vma);
1524 return -EINVAL;
1525 } else {
1526 /* the chunk must be a subset of the VMA found */
1527 if (start == vma->vm_start && end == vma->vm_end)
1528 goto erase_whole_vma;
1529 if (start < vma->vm_start || end > vma->vm_end)
1530 return -EINVAL;
1531 if (offset_in_page(start))
1532 return -EINVAL;
1533 if (end != vma->vm_end && offset_in_page(end))
1534 return -EINVAL;
1535 if (start != vma->vm_start && end != vma->vm_end) {
1536 ret = split_vma(mm, vma, start, 1);
1537 if (ret < 0)
1538 return ret;
1539 }
1540 return shrink_vma(mm, vma, start, end);
1541 }
1542
1543 erase_whole_vma:
1544 delete_vma_from_mm(vma);
1545 delete_vma(mm, vma);
1546 return 0;
1547 }
1548 EXPORT_SYMBOL(do_munmap);
1549
1550 int vm_munmap(unsigned long addr, size_t len)
1551 {
1552 struct mm_struct *mm = current->mm;
1553 int ret;
1554
1555 down_write(&mm->mmap_sem);
1556 ret = do_munmap(mm, addr, len, NULL);
1557 up_write(&mm->mmap_sem);
1558 return ret;
1559 }
1560 EXPORT_SYMBOL(vm_munmap);
1561
1562 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1563 {
1564 return vm_munmap(addr, len);
1565 }
1566
1567 /*
1568 * release all the mappings made in a process's VM space
1569 */
1570 void exit_mmap(struct mm_struct *mm)
1571 {
1572 struct vm_area_struct *vma;
1573
1574 if (!mm)
1575 return;
1576
1577 mm->total_vm = 0;
1578
1579 while ((vma = mm->mmap)) {
1580 mm->mmap = vma->vm_next;
1581 delete_vma_from_mm(vma);
1582 delete_vma(mm, vma);
1583 cond_resched();
1584 }
1585 }
1586
1587 int vm_brk(unsigned long addr, unsigned long len)
1588 {
1589 return -ENOMEM;
1590 }
1591
1592 /*
1593 * expand (or shrink) an existing mapping, potentially moving it at the same
1594 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1595 *
1596 * under NOMMU conditions, we only permit changing a mapping's size, and only
1597 * as long as it stays within the region allocated by do_mmap_private() and the
1598 * block is not shareable
1599 *
1600 * MREMAP_FIXED is not supported under NOMMU conditions
1601 */
1602 static unsigned long do_mremap(unsigned long addr,
1603 unsigned long old_len, unsigned long new_len,
1604 unsigned long flags, unsigned long new_addr)
1605 {
1606 struct vm_area_struct *vma;
1607
1608 /* insanity checks first */
1609 old_len = PAGE_ALIGN(old_len);
1610 new_len = PAGE_ALIGN(new_len);
1611 if (old_len == 0 || new_len == 0)
1612 return (unsigned long) -EINVAL;
1613
1614 if (offset_in_page(addr))
1615 return -EINVAL;
1616
1617 if (flags & MREMAP_FIXED && new_addr != addr)
1618 return (unsigned long) -EINVAL;
1619
1620 vma = find_vma_exact(current->mm, addr, old_len);
1621 if (!vma)
1622 return (unsigned long) -EINVAL;
1623
1624 if (vma->vm_end != vma->vm_start + old_len)
1625 return (unsigned long) -EFAULT;
1626
1627 if (vma->vm_flags & VM_MAYSHARE)
1628 return (unsigned long) -EPERM;
1629
1630 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1631 return (unsigned long) -ENOMEM;
1632
1633 /* all checks complete - do it */
1634 vma->vm_end = vma->vm_start + new_len;
1635 return vma->vm_start;
1636 }
1637
1638 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1639 unsigned long, new_len, unsigned long, flags,
1640 unsigned long, new_addr)
1641 {
1642 unsigned long ret;
1643
1644 down_write(&current->mm->mmap_sem);
1645 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1646 up_write(&current->mm->mmap_sem);
1647 return ret;
1648 }
1649
1650 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1651 unsigned int foll_flags)
1652 {
1653 return NULL;
1654 }
1655
1656 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1657 unsigned long pfn, unsigned long size, pgprot_t prot)
1658 {
1659 if (addr != (pfn << PAGE_SHIFT))
1660 return -EINVAL;
1661
1662 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1663 return 0;
1664 }
1665 EXPORT_SYMBOL(remap_pfn_range);
1666
1667 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1668 {
1669 unsigned long pfn = start >> PAGE_SHIFT;
1670 unsigned long vm_len = vma->vm_end - vma->vm_start;
1671
1672 pfn += vma->vm_pgoff;
1673 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1674 }
1675 EXPORT_SYMBOL(vm_iomap_memory);
1676
1677 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1678 unsigned long pgoff)
1679 {
1680 unsigned int size = vma->vm_end - vma->vm_start;
1681
1682 if (!(vma->vm_flags & VM_USERMAP))
1683 return -EINVAL;
1684
1685 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1686 vma->vm_end = vma->vm_start + size;
1687
1688 return 0;
1689 }
1690 EXPORT_SYMBOL(remap_vmalloc_range);
1691
1692 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1693 unsigned long len, unsigned long pgoff, unsigned long flags)
1694 {
1695 return -ENOMEM;
1696 }
1697
1698 vm_fault_t filemap_fault(struct vm_fault *vmf)
1699 {
1700 BUG();
1701 return 0;
1702 }
1703 EXPORT_SYMBOL(filemap_fault);
1704
1705 void filemap_map_pages(struct vm_fault *vmf,
1706 pgoff_t start_pgoff, pgoff_t end_pgoff)
1707 {
1708 BUG();
1709 }
1710 EXPORT_SYMBOL(filemap_map_pages);
1711
1712 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1713 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1714 {
1715 struct vm_area_struct *vma;
1716 int write = gup_flags & FOLL_WRITE;
1717
1718 if (down_read_killable(&mm->mmap_sem))
1719 return 0;
1720
1721 /* the access must start within one of the target process's mappings */
1722 vma = find_vma(mm, addr);
1723 if (vma) {
1724 /* don't overrun this mapping */
1725 if (addr + len >= vma->vm_end)
1726 len = vma->vm_end - addr;
1727
1728 /* only read or write mappings where it is permitted */
1729 if (write && vma->vm_flags & VM_MAYWRITE)
1730 copy_to_user_page(vma, NULL, addr,
1731 (void *) addr, buf, len);
1732 else if (!write && vma->vm_flags & VM_MAYREAD)
1733 copy_from_user_page(vma, NULL, addr,
1734 buf, (void *) addr, len);
1735 else
1736 len = 0;
1737 } else {
1738 len = 0;
1739 }
1740
1741 up_read(&mm->mmap_sem);
1742
1743 return len;
1744 }
1745
1746 /**
1747 * access_remote_vm - access another process' address space
1748 * @mm: the mm_struct of the target address space
1749 * @addr: start address to access
1750 * @buf: source or destination buffer
1751 * @len: number of bytes to transfer
1752 * @gup_flags: flags modifying lookup behaviour
1753 *
1754 * The caller must hold a reference on @mm.
1755 */
1756 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1757 void *buf, int len, unsigned int gup_flags)
1758 {
1759 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1760 }
1761
1762 /*
1763 * Access another process' address space.
1764 * - source/target buffer must be kernel space
1765 */
1766 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1767 unsigned int gup_flags)
1768 {
1769 struct mm_struct *mm;
1770
1771 if (addr + len < addr)
1772 return 0;
1773
1774 mm = get_task_mm(tsk);
1775 if (!mm)
1776 return 0;
1777
1778 len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1779
1780 mmput(mm);
1781 return len;
1782 }
1783 EXPORT_SYMBOL_GPL(access_process_vm);
1784
1785 /**
1786 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1787 * @inode: The inode to check
1788 * @size: The current filesize of the inode
1789 * @newsize: The proposed filesize of the inode
1790 *
1791 * Check the shared mappings on an inode on behalf of a shrinking truncate to
1792 * make sure that that any outstanding VMAs aren't broken and then shrink the
1793 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1794 * automatically grant mappings that are too large.
1795 */
1796 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1797 size_t newsize)
1798 {
1799 struct vm_area_struct *vma;
1800 struct vm_region *region;
1801 pgoff_t low, high;
1802 size_t r_size, r_top;
1803
1804 low = newsize >> PAGE_SHIFT;
1805 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1806
1807 down_write(&nommu_region_sem);
1808 i_mmap_lock_read(inode->i_mapping);
1809
1810 /* search for VMAs that fall within the dead zone */
1811 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1812 /* found one - only interested if it's shared out of the page
1813 * cache */
1814 if (vma->vm_flags & VM_SHARED) {
1815 i_mmap_unlock_read(inode->i_mapping);
1816 up_write(&nommu_region_sem);
1817 return -ETXTBSY; /* not quite true, but near enough */
1818 }
1819 }
1820
1821 /* reduce any regions that overlap the dead zone - if in existence,
1822 * these will be pointed to by VMAs that don't overlap the dead zone
1823 *
1824 * we don't check for any regions that start beyond the EOF as there
1825 * shouldn't be any
1826 */
1827 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1828 if (!(vma->vm_flags & VM_SHARED))
1829 continue;
1830
1831 region = vma->vm_region;
1832 r_size = region->vm_top - region->vm_start;
1833 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1834
1835 if (r_top > newsize) {
1836 region->vm_top -= r_top - newsize;
1837 if (region->vm_end > region->vm_top)
1838 region->vm_end = region->vm_top;
1839 }
1840 }
1841
1842 i_mmap_unlock_read(inode->i_mapping);
1843 up_write(&nommu_region_sem);
1844 return 0;
1845 }
1846
1847 /*
1848 * Initialise sysctl_user_reserve_kbytes.
1849 *
1850 * This is intended to prevent a user from starting a single memory hogging
1851 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1852 * mode.
1853 *
1854 * The default value is min(3% of free memory, 128MB)
1855 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1856 */
1857 static int __meminit init_user_reserve(void)
1858 {
1859 unsigned long free_kbytes;
1860
1861 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1862
1863 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1864 return 0;
1865 }
1866 subsys_initcall(init_user_reserve);
1867
1868 /*
1869 * Initialise sysctl_admin_reserve_kbytes.
1870 *
1871 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1872 * to log in and kill a memory hogging process.
1873 *
1874 * Systems with more than 256MB will reserve 8MB, enough to recover
1875 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1876 * only reserve 3% of free pages by default.
1877 */
1878 static int __meminit init_admin_reserve(void)
1879 {
1880 unsigned long free_kbytes;
1881
1882 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1883
1884 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1885 return 0;
1886 }
1887 subsys_initcall(init_admin_reserve);