]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/page_alloc.c
mm: remove the pgprot argument to __vmalloc
[thirdparty/linux.git] / mm / page_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
76 #include "shuffle.h"
77 #include "page_reporting.h"
78
79 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
80 static DEFINE_MUTEX(pcp_batch_high_lock);
81 #define MIN_PERCPU_PAGELIST_FRACTION (8)
82
83 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
84 DEFINE_PER_CPU(int, numa_node);
85 EXPORT_PER_CPU_SYMBOL(numa_node);
86 #endif
87
88 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
89
90 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
91 /*
92 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
93 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
94 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
95 * defined in <linux/topology.h>.
96 */
97 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
98 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
99 #endif
100
101 /* work_structs for global per-cpu drains */
102 struct pcpu_drain {
103 struct zone *zone;
104 struct work_struct work;
105 };
106 static DEFINE_MUTEX(pcpu_drain_mutex);
107 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
108
109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110 volatile unsigned long latent_entropy __latent_entropy;
111 EXPORT_SYMBOL(latent_entropy);
112 #endif
113
114 /*
115 * Array of node states.
116 */
117 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 [N_POSSIBLE] = NODE_MASK_ALL,
119 [N_ONLINE] = { { [0] = 1UL } },
120 #ifndef CONFIG_NUMA
121 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
122 #ifdef CONFIG_HIGHMEM
123 [N_HIGH_MEMORY] = { { [0] = 1UL } },
124 #endif
125 [N_MEMORY] = { { [0] = 1UL } },
126 [N_CPU] = { { [0] = 1UL } },
127 #endif /* NUMA */
128 };
129 EXPORT_SYMBOL(node_states);
130
131 atomic_long_t _totalram_pages __read_mostly;
132 EXPORT_SYMBOL(_totalram_pages);
133 unsigned long totalreserve_pages __read_mostly;
134 unsigned long totalcma_pages __read_mostly;
135
136 int percpu_pagelist_fraction;
137 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
138 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
140 #else
141 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
142 #endif
143 EXPORT_SYMBOL(init_on_alloc);
144
145 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146 DEFINE_STATIC_KEY_TRUE(init_on_free);
147 #else
148 DEFINE_STATIC_KEY_FALSE(init_on_free);
149 #endif
150 EXPORT_SYMBOL(init_on_free);
151
152 static int __init early_init_on_alloc(char *buf)
153 {
154 int ret;
155 bool bool_result;
156
157 if (!buf)
158 return -EINVAL;
159 ret = kstrtobool(buf, &bool_result);
160 if (bool_result && page_poisoning_enabled())
161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
162 if (bool_result)
163 static_branch_enable(&init_on_alloc);
164 else
165 static_branch_disable(&init_on_alloc);
166 return ret;
167 }
168 early_param("init_on_alloc", early_init_on_alloc);
169
170 static int __init early_init_on_free(char *buf)
171 {
172 int ret;
173 bool bool_result;
174
175 if (!buf)
176 return -EINVAL;
177 ret = kstrtobool(buf, &bool_result);
178 if (bool_result && page_poisoning_enabled())
179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
180 if (bool_result)
181 static_branch_enable(&init_on_free);
182 else
183 static_branch_disable(&init_on_free);
184 return ret;
185 }
186 early_param("init_on_free", early_init_on_free);
187
188 /*
189 * A cached value of the page's pageblock's migratetype, used when the page is
190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192 * Also the migratetype set in the page does not necessarily match the pcplist
193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194 * other index - this ensures that it will be put on the correct CMA freelist.
195 */
196 static inline int get_pcppage_migratetype(struct page *page)
197 {
198 return page->index;
199 }
200
201 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
202 {
203 page->index = migratetype;
204 }
205
206 #ifdef CONFIG_PM_SLEEP
207 /*
208 * The following functions are used by the suspend/hibernate code to temporarily
209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210 * while devices are suspended. To avoid races with the suspend/hibernate code,
211 * they should always be called with system_transition_mutex held
212 * (gfp_allowed_mask also should only be modified with system_transition_mutex
213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214 * with that modification).
215 */
216
217 static gfp_t saved_gfp_mask;
218
219 void pm_restore_gfp_mask(void)
220 {
221 WARN_ON(!mutex_is_locked(&system_transition_mutex));
222 if (saved_gfp_mask) {
223 gfp_allowed_mask = saved_gfp_mask;
224 saved_gfp_mask = 0;
225 }
226 }
227
228 void pm_restrict_gfp_mask(void)
229 {
230 WARN_ON(!mutex_is_locked(&system_transition_mutex));
231 WARN_ON(saved_gfp_mask);
232 saved_gfp_mask = gfp_allowed_mask;
233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
234 }
235
236 bool pm_suspended_storage(void)
237 {
238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
239 return false;
240 return true;
241 }
242 #endif /* CONFIG_PM_SLEEP */
243
244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
245 unsigned int pageblock_order __read_mostly;
246 #endif
247
248 static void __free_pages_ok(struct page *page, unsigned int order);
249
250 /*
251 * results with 256, 32 in the lowmem_reserve sysctl:
252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253 * 1G machine -> (16M dma, 784M normal, 224M high)
254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
257 *
258 * TBD: should special case ZONE_DMA32 machines here - in those we normally
259 * don't need any ZONE_NORMAL reservation
260 */
261 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
262 #ifdef CONFIG_ZONE_DMA
263 [ZONE_DMA] = 256,
264 #endif
265 #ifdef CONFIG_ZONE_DMA32
266 [ZONE_DMA32] = 256,
267 #endif
268 [ZONE_NORMAL] = 32,
269 #ifdef CONFIG_HIGHMEM
270 [ZONE_HIGHMEM] = 0,
271 #endif
272 [ZONE_MOVABLE] = 0,
273 };
274
275 static char * const zone_names[MAX_NR_ZONES] = {
276 #ifdef CONFIG_ZONE_DMA
277 "DMA",
278 #endif
279 #ifdef CONFIG_ZONE_DMA32
280 "DMA32",
281 #endif
282 "Normal",
283 #ifdef CONFIG_HIGHMEM
284 "HighMem",
285 #endif
286 "Movable",
287 #ifdef CONFIG_ZONE_DEVICE
288 "Device",
289 #endif
290 };
291
292 const char * const migratetype_names[MIGRATE_TYPES] = {
293 "Unmovable",
294 "Movable",
295 "Reclaimable",
296 "HighAtomic",
297 #ifdef CONFIG_CMA
298 "CMA",
299 #endif
300 #ifdef CONFIG_MEMORY_ISOLATION
301 "Isolate",
302 #endif
303 };
304
305 compound_page_dtor * const compound_page_dtors[] = {
306 NULL,
307 free_compound_page,
308 #ifdef CONFIG_HUGETLB_PAGE
309 free_huge_page,
310 #endif
311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 free_transhuge_page,
313 #endif
314 };
315
316 int min_free_kbytes = 1024;
317 int user_min_free_kbytes = -1;
318 #ifdef CONFIG_DISCONTIGMEM
319 /*
320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321 * are not on separate NUMA nodes. Functionally this works but with
322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323 * quite small. By default, do not boost watermarks on discontigmem as in
324 * many cases very high-order allocations like THP are likely to be
325 * unsupported and the premature reclaim offsets the advantage of long-term
326 * fragmentation avoidance.
327 */
328 int watermark_boost_factor __read_mostly;
329 #else
330 int watermark_boost_factor __read_mostly = 15000;
331 #endif
332 int watermark_scale_factor = 10;
333
334 static unsigned long nr_kernel_pages __initdata;
335 static unsigned long nr_all_pages __initdata;
336 static unsigned long dma_reserve __initdata;
337
338 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
341 static unsigned long required_kernelcore __initdata;
342 static unsigned long required_kernelcore_percent __initdata;
343 static unsigned long required_movablecore __initdata;
344 static unsigned long required_movablecore_percent __initdata;
345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
346 static bool mirrored_kernelcore __meminitdata;
347
348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349 int movable_zone;
350 EXPORT_SYMBOL(movable_zone);
351 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
352
353 #if MAX_NUMNODES > 1
354 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
355 unsigned int nr_online_nodes __read_mostly = 1;
356 EXPORT_SYMBOL(nr_node_ids);
357 EXPORT_SYMBOL(nr_online_nodes);
358 #endif
359
360 int page_group_by_mobility_disabled __read_mostly;
361
362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
363 /*
364 * During boot we initialize deferred pages on-demand, as needed, but once
365 * page_alloc_init_late() has finished, the deferred pages are all initialized,
366 * and we can permanently disable that path.
367 */
368 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
369
370 /*
371 * Calling kasan_free_pages() only after deferred memory initialization
372 * has completed. Poisoning pages during deferred memory init will greatly
373 * lengthen the process and cause problem in large memory systems as the
374 * deferred pages initialization is done with interrupt disabled.
375 *
376 * Assuming that there will be no reference to those newly initialized
377 * pages before they are ever allocated, this should have no effect on
378 * KASAN memory tracking as the poison will be properly inserted at page
379 * allocation time. The only corner case is when pages are allocated by
380 * on-demand allocation and then freed again before the deferred pages
381 * initialization is done, but this is not likely to happen.
382 */
383 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
384 {
385 if (!static_branch_unlikely(&deferred_pages))
386 kasan_free_pages(page, order);
387 }
388
389 /* Returns true if the struct page for the pfn is uninitialised */
390 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
391 {
392 int nid = early_pfn_to_nid(pfn);
393
394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
395 return true;
396
397 return false;
398 }
399
400 /*
401 * Returns true when the remaining initialisation should be deferred until
402 * later in the boot cycle when it can be parallelised.
403 */
404 static bool __meminit
405 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
406 {
407 static unsigned long prev_end_pfn, nr_initialised;
408
409 /*
410 * prev_end_pfn static that contains the end of previous zone
411 * No need to protect because called very early in boot before smp_init.
412 */
413 if (prev_end_pfn != end_pfn) {
414 prev_end_pfn = end_pfn;
415 nr_initialised = 0;
416 }
417
418 /* Always populate low zones for address-constrained allocations */
419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
420 return false;
421
422 /*
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
425 */
426 nr_initialised++;
427 if ((nr_initialised > PAGES_PER_SECTION) &&
428 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 NODE_DATA(nid)->first_deferred_pfn = pfn;
430 return true;
431 }
432 return false;
433 }
434 #else
435 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
436
437 static inline bool early_page_uninitialised(unsigned long pfn)
438 {
439 return false;
440 }
441
442 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
443 {
444 return false;
445 }
446 #endif
447
448 /* Return a pointer to the bitmap storing bits affecting a block of pages */
449 static inline unsigned long *get_pageblock_bitmap(struct page *page,
450 unsigned long pfn)
451 {
452 #ifdef CONFIG_SPARSEMEM
453 return section_to_usemap(__pfn_to_section(pfn));
454 #else
455 return page_zone(page)->pageblock_flags;
456 #endif /* CONFIG_SPARSEMEM */
457 }
458
459 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
460 {
461 #ifdef CONFIG_SPARSEMEM
462 pfn &= (PAGES_PER_SECTION-1);
463 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
464 #else
465 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
467 #endif /* CONFIG_SPARSEMEM */
468 }
469
470 /**
471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
472 * @page: The page within the block of interest
473 * @pfn: The target page frame number
474 * @end_bitidx: The last bit of interest to retrieve
475 * @mask: mask of bits that the caller is interested in
476 *
477 * Return: pageblock_bits flags
478 */
479 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
480 unsigned long pfn,
481 unsigned long end_bitidx,
482 unsigned long mask)
483 {
484 unsigned long *bitmap;
485 unsigned long bitidx, word_bitidx;
486 unsigned long word;
487
488 bitmap = get_pageblock_bitmap(page, pfn);
489 bitidx = pfn_to_bitidx(page, pfn);
490 word_bitidx = bitidx / BITS_PER_LONG;
491 bitidx &= (BITS_PER_LONG-1);
492
493 word = bitmap[word_bitidx];
494 bitidx += end_bitidx;
495 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
496 }
497
498 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
499 unsigned long end_bitidx,
500 unsigned long mask)
501 {
502 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
503 }
504
505 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
506 {
507 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
508 }
509
510 /**
511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512 * @page: The page within the block of interest
513 * @flags: The flags to set
514 * @pfn: The target page frame number
515 * @end_bitidx: The last bit of interest
516 * @mask: mask of bits that the caller is interested in
517 */
518 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
519 unsigned long pfn,
520 unsigned long end_bitidx,
521 unsigned long mask)
522 {
523 unsigned long *bitmap;
524 unsigned long bitidx, word_bitidx;
525 unsigned long old_word, word;
526
527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
529
530 bitmap = get_pageblock_bitmap(page, pfn);
531 bitidx = pfn_to_bitidx(page, pfn);
532 word_bitidx = bitidx / BITS_PER_LONG;
533 bitidx &= (BITS_PER_LONG-1);
534
535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
536
537 bitidx += end_bitidx;
538 mask <<= (BITS_PER_LONG - bitidx - 1);
539 flags <<= (BITS_PER_LONG - bitidx - 1);
540
541 word = READ_ONCE(bitmap[word_bitidx]);
542 for (;;) {
543 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
544 if (word == old_word)
545 break;
546 word = old_word;
547 }
548 }
549
550 void set_pageblock_migratetype(struct page *page, int migratetype)
551 {
552 if (unlikely(page_group_by_mobility_disabled &&
553 migratetype < MIGRATE_PCPTYPES))
554 migratetype = MIGRATE_UNMOVABLE;
555
556 set_pageblock_flags_group(page, (unsigned long)migratetype,
557 PB_migrate, PB_migrate_end);
558 }
559
560 #ifdef CONFIG_DEBUG_VM
561 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
562 {
563 int ret = 0;
564 unsigned seq;
565 unsigned long pfn = page_to_pfn(page);
566 unsigned long sp, start_pfn;
567
568 do {
569 seq = zone_span_seqbegin(zone);
570 start_pfn = zone->zone_start_pfn;
571 sp = zone->spanned_pages;
572 if (!zone_spans_pfn(zone, pfn))
573 ret = 1;
574 } while (zone_span_seqretry(zone, seq));
575
576 if (ret)
577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
578 pfn, zone_to_nid(zone), zone->name,
579 start_pfn, start_pfn + sp);
580
581 return ret;
582 }
583
584 static int page_is_consistent(struct zone *zone, struct page *page)
585 {
586 if (!pfn_valid_within(page_to_pfn(page)))
587 return 0;
588 if (zone != page_zone(page))
589 return 0;
590
591 return 1;
592 }
593 /*
594 * Temporary debugging check for pages not lying within a given zone.
595 */
596 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
597 {
598 if (page_outside_zone_boundaries(zone, page))
599 return 1;
600 if (!page_is_consistent(zone, page))
601 return 1;
602
603 return 0;
604 }
605 #else
606 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
607 {
608 return 0;
609 }
610 #endif
611
612 static void bad_page(struct page *page, const char *reason,
613 unsigned long bad_flags)
614 {
615 static unsigned long resume;
616 static unsigned long nr_shown;
617 static unsigned long nr_unshown;
618
619 /*
620 * Allow a burst of 60 reports, then keep quiet for that minute;
621 * or allow a steady drip of one report per second.
622 */
623 if (nr_shown == 60) {
624 if (time_before(jiffies, resume)) {
625 nr_unshown++;
626 goto out;
627 }
628 if (nr_unshown) {
629 pr_alert(
630 "BUG: Bad page state: %lu messages suppressed\n",
631 nr_unshown);
632 nr_unshown = 0;
633 }
634 nr_shown = 0;
635 }
636 if (nr_shown++ == 0)
637 resume = jiffies + 60 * HZ;
638
639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
640 current->comm, page_to_pfn(page));
641 __dump_page(page, reason);
642 bad_flags &= page->flags;
643 if (bad_flags)
644 pr_alert("bad because of flags: %#lx(%pGp)\n",
645 bad_flags, &bad_flags);
646 dump_page_owner(page);
647
648 print_modules();
649 dump_stack();
650 out:
651 /* Leave bad fields for debug, except PageBuddy could make trouble */
652 page_mapcount_reset(page); /* remove PageBuddy */
653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
654 }
655
656 /*
657 * Higher-order pages are called "compound pages". They are structured thusly:
658 *
659 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
660 *
661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
663 *
664 * The first tail page's ->compound_dtor holds the offset in array of compound
665 * page destructors. See compound_page_dtors.
666 *
667 * The first tail page's ->compound_order holds the order of allocation.
668 * This usage means that zero-order pages may not be compound.
669 */
670
671 void free_compound_page(struct page *page)
672 {
673 mem_cgroup_uncharge(page);
674 __free_pages_ok(page, compound_order(page));
675 }
676
677 void prep_compound_page(struct page *page, unsigned int order)
678 {
679 int i;
680 int nr_pages = 1 << order;
681
682 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
683 set_compound_order(page, order);
684 __SetPageHead(page);
685 for (i = 1; i < nr_pages; i++) {
686 struct page *p = page + i;
687 set_page_count(p, 0);
688 p->mapping = TAIL_MAPPING;
689 set_compound_head(p, page);
690 }
691 atomic_set(compound_mapcount_ptr(page), -1);
692 if (hpage_pincount_available(page))
693 atomic_set(compound_pincount_ptr(page), 0);
694 }
695
696 #ifdef CONFIG_DEBUG_PAGEALLOC
697 unsigned int _debug_guardpage_minorder;
698
699 bool _debug_pagealloc_enabled_early __read_mostly
700 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
701 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
702 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
703 EXPORT_SYMBOL(_debug_pagealloc_enabled);
704
705 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
706
707 static int __init early_debug_pagealloc(char *buf)
708 {
709 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
710 }
711 early_param("debug_pagealloc", early_debug_pagealloc);
712
713 void init_debug_pagealloc(void)
714 {
715 if (!debug_pagealloc_enabled())
716 return;
717
718 static_branch_enable(&_debug_pagealloc_enabled);
719
720 if (!debug_guardpage_minorder())
721 return;
722
723 static_branch_enable(&_debug_guardpage_enabled);
724 }
725
726 static int __init debug_guardpage_minorder_setup(char *buf)
727 {
728 unsigned long res;
729
730 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
731 pr_err("Bad debug_guardpage_minorder value\n");
732 return 0;
733 }
734 _debug_guardpage_minorder = res;
735 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
736 return 0;
737 }
738 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
739
740 static inline bool set_page_guard(struct zone *zone, struct page *page,
741 unsigned int order, int migratetype)
742 {
743 if (!debug_guardpage_enabled())
744 return false;
745
746 if (order >= debug_guardpage_minorder())
747 return false;
748
749 __SetPageGuard(page);
750 INIT_LIST_HEAD(&page->lru);
751 set_page_private(page, order);
752 /* Guard pages are not available for any usage */
753 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
754
755 return true;
756 }
757
758 static inline void clear_page_guard(struct zone *zone, struct page *page,
759 unsigned int order, int migratetype)
760 {
761 if (!debug_guardpage_enabled())
762 return;
763
764 __ClearPageGuard(page);
765
766 set_page_private(page, 0);
767 if (!is_migrate_isolate(migratetype))
768 __mod_zone_freepage_state(zone, (1 << order), migratetype);
769 }
770 #else
771 static inline bool set_page_guard(struct zone *zone, struct page *page,
772 unsigned int order, int migratetype) { return false; }
773 static inline void clear_page_guard(struct zone *zone, struct page *page,
774 unsigned int order, int migratetype) {}
775 #endif
776
777 static inline void set_page_order(struct page *page, unsigned int order)
778 {
779 set_page_private(page, order);
780 __SetPageBuddy(page);
781 }
782
783 /*
784 * This function checks whether a page is free && is the buddy
785 * we can coalesce a page and its buddy if
786 * (a) the buddy is not in a hole (check before calling!) &&
787 * (b) the buddy is in the buddy system &&
788 * (c) a page and its buddy have the same order &&
789 * (d) a page and its buddy are in the same zone.
790 *
791 * For recording whether a page is in the buddy system, we set PageBuddy.
792 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
793 *
794 * For recording page's order, we use page_private(page).
795 */
796 static inline bool page_is_buddy(struct page *page, struct page *buddy,
797 unsigned int order)
798 {
799 if (!page_is_guard(buddy) && !PageBuddy(buddy))
800 return false;
801
802 if (page_order(buddy) != order)
803 return false;
804
805 /*
806 * zone check is done late to avoid uselessly calculating
807 * zone/node ids for pages that could never merge.
808 */
809 if (page_zone_id(page) != page_zone_id(buddy))
810 return false;
811
812 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
813
814 return true;
815 }
816
817 #ifdef CONFIG_COMPACTION
818 static inline struct capture_control *task_capc(struct zone *zone)
819 {
820 struct capture_control *capc = current->capture_control;
821
822 return capc &&
823 !(current->flags & PF_KTHREAD) &&
824 !capc->page &&
825 capc->cc->zone == zone &&
826 capc->cc->direct_compaction ? capc : NULL;
827 }
828
829 static inline bool
830 compaction_capture(struct capture_control *capc, struct page *page,
831 int order, int migratetype)
832 {
833 if (!capc || order != capc->cc->order)
834 return false;
835
836 /* Do not accidentally pollute CMA or isolated regions*/
837 if (is_migrate_cma(migratetype) ||
838 is_migrate_isolate(migratetype))
839 return false;
840
841 /*
842 * Do not let lower order allocations polluate a movable pageblock.
843 * This might let an unmovable request use a reclaimable pageblock
844 * and vice-versa but no more than normal fallback logic which can
845 * have trouble finding a high-order free page.
846 */
847 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
848 return false;
849
850 capc->page = page;
851 return true;
852 }
853
854 #else
855 static inline struct capture_control *task_capc(struct zone *zone)
856 {
857 return NULL;
858 }
859
860 static inline bool
861 compaction_capture(struct capture_control *capc, struct page *page,
862 int order, int migratetype)
863 {
864 return false;
865 }
866 #endif /* CONFIG_COMPACTION */
867
868 /* Used for pages not on another list */
869 static inline void add_to_free_list(struct page *page, struct zone *zone,
870 unsigned int order, int migratetype)
871 {
872 struct free_area *area = &zone->free_area[order];
873
874 list_add(&page->lru, &area->free_list[migratetype]);
875 area->nr_free++;
876 }
877
878 /* Used for pages not on another list */
879 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
880 unsigned int order, int migratetype)
881 {
882 struct free_area *area = &zone->free_area[order];
883
884 list_add_tail(&page->lru, &area->free_list[migratetype]);
885 area->nr_free++;
886 }
887
888 /* Used for pages which are on another list */
889 static inline void move_to_free_list(struct page *page, struct zone *zone,
890 unsigned int order, int migratetype)
891 {
892 struct free_area *area = &zone->free_area[order];
893
894 list_move(&page->lru, &area->free_list[migratetype]);
895 }
896
897 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
898 unsigned int order)
899 {
900 /* clear reported state and update reported page count */
901 if (page_reported(page))
902 __ClearPageReported(page);
903
904 list_del(&page->lru);
905 __ClearPageBuddy(page);
906 set_page_private(page, 0);
907 zone->free_area[order].nr_free--;
908 }
909
910 /*
911 * If this is not the largest possible page, check if the buddy
912 * of the next-highest order is free. If it is, it's possible
913 * that pages are being freed that will coalesce soon. In case,
914 * that is happening, add the free page to the tail of the list
915 * so it's less likely to be used soon and more likely to be merged
916 * as a higher order page
917 */
918 static inline bool
919 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
920 struct page *page, unsigned int order)
921 {
922 struct page *higher_page, *higher_buddy;
923 unsigned long combined_pfn;
924
925 if (order >= MAX_ORDER - 2)
926 return false;
927
928 if (!pfn_valid_within(buddy_pfn))
929 return false;
930
931 combined_pfn = buddy_pfn & pfn;
932 higher_page = page + (combined_pfn - pfn);
933 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
934 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
935
936 return pfn_valid_within(buddy_pfn) &&
937 page_is_buddy(higher_page, higher_buddy, order + 1);
938 }
939
940 /*
941 * Freeing function for a buddy system allocator.
942 *
943 * The concept of a buddy system is to maintain direct-mapped table
944 * (containing bit values) for memory blocks of various "orders".
945 * The bottom level table contains the map for the smallest allocatable
946 * units of memory (here, pages), and each level above it describes
947 * pairs of units from the levels below, hence, "buddies".
948 * At a high level, all that happens here is marking the table entry
949 * at the bottom level available, and propagating the changes upward
950 * as necessary, plus some accounting needed to play nicely with other
951 * parts of the VM system.
952 * At each level, we keep a list of pages, which are heads of continuous
953 * free pages of length of (1 << order) and marked with PageBuddy.
954 * Page's order is recorded in page_private(page) field.
955 * So when we are allocating or freeing one, we can derive the state of the
956 * other. That is, if we allocate a small block, and both were
957 * free, the remainder of the region must be split into blocks.
958 * If a block is freed, and its buddy is also free, then this
959 * triggers coalescing into a block of larger size.
960 *
961 * -- nyc
962 */
963
964 static inline void __free_one_page(struct page *page,
965 unsigned long pfn,
966 struct zone *zone, unsigned int order,
967 int migratetype, bool report)
968 {
969 struct capture_control *capc = task_capc(zone);
970 unsigned long uninitialized_var(buddy_pfn);
971 unsigned long combined_pfn;
972 unsigned int max_order;
973 struct page *buddy;
974 bool to_tail;
975
976 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
977
978 VM_BUG_ON(!zone_is_initialized(zone));
979 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
980
981 VM_BUG_ON(migratetype == -1);
982 if (likely(!is_migrate_isolate(migratetype)))
983 __mod_zone_freepage_state(zone, 1 << order, migratetype);
984
985 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
986 VM_BUG_ON_PAGE(bad_range(zone, page), page);
987
988 continue_merging:
989 while (order < max_order - 1) {
990 if (compaction_capture(capc, page, order, migratetype)) {
991 __mod_zone_freepage_state(zone, -(1 << order),
992 migratetype);
993 return;
994 }
995 buddy_pfn = __find_buddy_pfn(pfn, order);
996 buddy = page + (buddy_pfn - pfn);
997
998 if (!pfn_valid_within(buddy_pfn))
999 goto done_merging;
1000 if (!page_is_buddy(page, buddy, order))
1001 goto done_merging;
1002 /*
1003 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1004 * merge with it and move up one order.
1005 */
1006 if (page_is_guard(buddy))
1007 clear_page_guard(zone, buddy, order, migratetype);
1008 else
1009 del_page_from_free_list(buddy, zone, order);
1010 combined_pfn = buddy_pfn & pfn;
1011 page = page + (combined_pfn - pfn);
1012 pfn = combined_pfn;
1013 order++;
1014 }
1015 if (max_order < MAX_ORDER) {
1016 /* If we are here, it means order is >= pageblock_order.
1017 * We want to prevent merge between freepages on isolate
1018 * pageblock and normal pageblock. Without this, pageblock
1019 * isolation could cause incorrect freepage or CMA accounting.
1020 *
1021 * We don't want to hit this code for the more frequent
1022 * low-order merging.
1023 */
1024 if (unlikely(has_isolate_pageblock(zone))) {
1025 int buddy_mt;
1026
1027 buddy_pfn = __find_buddy_pfn(pfn, order);
1028 buddy = page + (buddy_pfn - pfn);
1029 buddy_mt = get_pageblock_migratetype(buddy);
1030
1031 if (migratetype != buddy_mt
1032 && (is_migrate_isolate(migratetype) ||
1033 is_migrate_isolate(buddy_mt)))
1034 goto done_merging;
1035 }
1036 max_order++;
1037 goto continue_merging;
1038 }
1039
1040 done_merging:
1041 set_page_order(page, order);
1042
1043 if (is_shuffle_order(order))
1044 to_tail = shuffle_pick_tail();
1045 else
1046 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1047
1048 if (to_tail)
1049 add_to_free_list_tail(page, zone, order, migratetype);
1050 else
1051 add_to_free_list(page, zone, order, migratetype);
1052
1053 /* Notify page reporting subsystem of freed page */
1054 if (report)
1055 page_reporting_notify_free(order);
1056 }
1057
1058 /*
1059 * A bad page could be due to a number of fields. Instead of multiple branches,
1060 * try and check multiple fields with one check. The caller must do a detailed
1061 * check if necessary.
1062 */
1063 static inline bool page_expected_state(struct page *page,
1064 unsigned long check_flags)
1065 {
1066 if (unlikely(atomic_read(&page->_mapcount) != -1))
1067 return false;
1068
1069 if (unlikely((unsigned long)page->mapping |
1070 page_ref_count(page) |
1071 #ifdef CONFIG_MEMCG
1072 (unsigned long)page->mem_cgroup |
1073 #endif
1074 (page->flags & check_flags)))
1075 return false;
1076
1077 return true;
1078 }
1079
1080 static void free_pages_check_bad(struct page *page)
1081 {
1082 const char *bad_reason;
1083 unsigned long bad_flags;
1084
1085 bad_reason = NULL;
1086 bad_flags = 0;
1087
1088 if (unlikely(atomic_read(&page->_mapcount) != -1))
1089 bad_reason = "nonzero mapcount";
1090 if (unlikely(page->mapping != NULL))
1091 bad_reason = "non-NULL mapping";
1092 if (unlikely(page_ref_count(page) != 0))
1093 bad_reason = "nonzero _refcount";
1094 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1095 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1096 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1097 }
1098 #ifdef CONFIG_MEMCG
1099 if (unlikely(page->mem_cgroup))
1100 bad_reason = "page still charged to cgroup";
1101 #endif
1102 bad_page(page, bad_reason, bad_flags);
1103 }
1104
1105 static inline int free_pages_check(struct page *page)
1106 {
1107 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1108 return 0;
1109
1110 /* Something has gone sideways, find it */
1111 free_pages_check_bad(page);
1112 return 1;
1113 }
1114
1115 static int free_tail_pages_check(struct page *head_page, struct page *page)
1116 {
1117 int ret = 1;
1118
1119 /*
1120 * We rely page->lru.next never has bit 0 set, unless the page
1121 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1122 */
1123 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1124
1125 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1126 ret = 0;
1127 goto out;
1128 }
1129 switch (page - head_page) {
1130 case 1:
1131 /* the first tail page: ->mapping may be compound_mapcount() */
1132 if (unlikely(compound_mapcount(page))) {
1133 bad_page(page, "nonzero compound_mapcount", 0);
1134 goto out;
1135 }
1136 break;
1137 case 2:
1138 /*
1139 * the second tail page: ->mapping is
1140 * deferred_list.next -- ignore value.
1141 */
1142 break;
1143 default:
1144 if (page->mapping != TAIL_MAPPING) {
1145 bad_page(page, "corrupted mapping in tail page", 0);
1146 goto out;
1147 }
1148 break;
1149 }
1150 if (unlikely(!PageTail(page))) {
1151 bad_page(page, "PageTail not set", 0);
1152 goto out;
1153 }
1154 if (unlikely(compound_head(page) != head_page)) {
1155 bad_page(page, "compound_head not consistent", 0);
1156 goto out;
1157 }
1158 ret = 0;
1159 out:
1160 page->mapping = NULL;
1161 clear_compound_head(page);
1162 return ret;
1163 }
1164
1165 static void kernel_init_free_pages(struct page *page, int numpages)
1166 {
1167 int i;
1168
1169 for (i = 0; i < numpages; i++)
1170 clear_highpage(page + i);
1171 }
1172
1173 static __always_inline bool free_pages_prepare(struct page *page,
1174 unsigned int order, bool check_free)
1175 {
1176 int bad = 0;
1177
1178 VM_BUG_ON_PAGE(PageTail(page), page);
1179
1180 trace_mm_page_free(page, order);
1181
1182 /*
1183 * Check tail pages before head page information is cleared to
1184 * avoid checking PageCompound for order-0 pages.
1185 */
1186 if (unlikely(order)) {
1187 bool compound = PageCompound(page);
1188 int i;
1189
1190 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1191
1192 if (compound)
1193 ClearPageDoubleMap(page);
1194 for (i = 1; i < (1 << order); i++) {
1195 if (compound)
1196 bad += free_tail_pages_check(page, page + i);
1197 if (unlikely(free_pages_check(page + i))) {
1198 bad++;
1199 continue;
1200 }
1201 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1202 }
1203 }
1204 if (PageMappingFlags(page))
1205 page->mapping = NULL;
1206 if (memcg_kmem_enabled() && PageKmemcg(page))
1207 __memcg_kmem_uncharge_page(page, order);
1208 if (check_free)
1209 bad += free_pages_check(page);
1210 if (bad)
1211 return false;
1212
1213 page_cpupid_reset_last(page);
1214 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1215 reset_page_owner(page, order);
1216
1217 if (!PageHighMem(page)) {
1218 debug_check_no_locks_freed(page_address(page),
1219 PAGE_SIZE << order);
1220 debug_check_no_obj_freed(page_address(page),
1221 PAGE_SIZE << order);
1222 }
1223 if (want_init_on_free())
1224 kernel_init_free_pages(page, 1 << order);
1225
1226 kernel_poison_pages(page, 1 << order, 0);
1227 /*
1228 * arch_free_page() can make the page's contents inaccessible. s390
1229 * does this. So nothing which can access the page's contents should
1230 * happen after this.
1231 */
1232 arch_free_page(page, order);
1233
1234 if (debug_pagealloc_enabled_static())
1235 kernel_map_pages(page, 1 << order, 0);
1236
1237 kasan_free_nondeferred_pages(page, order);
1238
1239 return true;
1240 }
1241
1242 #ifdef CONFIG_DEBUG_VM
1243 /*
1244 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1245 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1246 * moved from pcp lists to free lists.
1247 */
1248 static bool free_pcp_prepare(struct page *page)
1249 {
1250 return free_pages_prepare(page, 0, true);
1251 }
1252
1253 static bool bulkfree_pcp_prepare(struct page *page)
1254 {
1255 if (debug_pagealloc_enabled_static())
1256 return free_pages_check(page);
1257 else
1258 return false;
1259 }
1260 #else
1261 /*
1262 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1263 * moving from pcp lists to free list in order to reduce overhead. With
1264 * debug_pagealloc enabled, they are checked also immediately when being freed
1265 * to the pcp lists.
1266 */
1267 static bool free_pcp_prepare(struct page *page)
1268 {
1269 if (debug_pagealloc_enabled_static())
1270 return free_pages_prepare(page, 0, true);
1271 else
1272 return free_pages_prepare(page, 0, false);
1273 }
1274
1275 static bool bulkfree_pcp_prepare(struct page *page)
1276 {
1277 return free_pages_check(page);
1278 }
1279 #endif /* CONFIG_DEBUG_VM */
1280
1281 static inline void prefetch_buddy(struct page *page)
1282 {
1283 unsigned long pfn = page_to_pfn(page);
1284 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1285 struct page *buddy = page + (buddy_pfn - pfn);
1286
1287 prefetch(buddy);
1288 }
1289
1290 /*
1291 * Frees a number of pages from the PCP lists
1292 * Assumes all pages on list are in same zone, and of same order.
1293 * count is the number of pages to free.
1294 *
1295 * If the zone was previously in an "all pages pinned" state then look to
1296 * see if this freeing clears that state.
1297 *
1298 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1299 * pinned" detection logic.
1300 */
1301 static void free_pcppages_bulk(struct zone *zone, int count,
1302 struct per_cpu_pages *pcp)
1303 {
1304 int migratetype = 0;
1305 int batch_free = 0;
1306 int prefetch_nr = 0;
1307 bool isolated_pageblocks;
1308 struct page *page, *tmp;
1309 LIST_HEAD(head);
1310
1311 while (count) {
1312 struct list_head *list;
1313
1314 /*
1315 * Remove pages from lists in a round-robin fashion. A
1316 * batch_free count is maintained that is incremented when an
1317 * empty list is encountered. This is so more pages are freed
1318 * off fuller lists instead of spinning excessively around empty
1319 * lists
1320 */
1321 do {
1322 batch_free++;
1323 if (++migratetype == MIGRATE_PCPTYPES)
1324 migratetype = 0;
1325 list = &pcp->lists[migratetype];
1326 } while (list_empty(list));
1327
1328 /* This is the only non-empty list. Free them all. */
1329 if (batch_free == MIGRATE_PCPTYPES)
1330 batch_free = count;
1331
1332 do {
1333 page = list_last_entry(list, struct page, lru);
1334 /* must delete to avoid corrupting pcp list */
1335 list_del(&page->lru);
1336 pcp->count--;
1337
1338 if (bulkfree_pcp_prepare(page))
1339 continue;
1340
1341 list_add_tail(&page->lru, &head);
1342
1343 /*
1344 * We are going to put the page back to the global
1345 * pool, prefetch its buddy to speed up later access
1346 * under zone->lock. It is believed the overhead of
1347 * an additional test and calculating buddy_pfn here
1348 * can be offset by reduced memory latency later. To
1349 * avoid excessive prefetching due to large count, only
1350 * prefetch buddy for the first pcp->batch nr of pages.
1351 */
1352 if (prefetch_nr++ < pcp->batch)
1353 prefetch_buddy(page);
1354 } while (--count && --batch_free && !list_empty(list));
1355 }
1356
1357 spin_lock(&zone->lock);
1358 isolated_pageblocks = has_isolate_pageblock(zone);
1359
1360 /*
1361 * Use safe version since after __free_one_page(),
1362 * page->lru.next will not point to original list.
1363 */
1364 list_for_each_entry_safe(page, tmp, &head, lru) {
1365 int mt = get_pcppage_migratetype(page);
1366 /* MIGRATE_ISOLATE page should not go to pcplists */
1367 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1368 /* Pageblock could have been isolated meanwhile */
1369 if (unlikely(isolated_pageblocks))
1370 mt = get_pageblock_migratetype(page);
1371
1372 __free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
1373 trace_mm_page_pcpu_drain(page, 0, mt);
1374 }
1375 spin_unlock(&zone->lock);
1376 }
1377
1378 static void free_one_page(struct zone *zone,
1379 struct page *page, unsigned long pfn,
1380 unsigned int order,
1381 int migratetype)
1382 {
1383 spin_lock(&zone->lock);
1384 if (unlikely(has_isolate_pageblock(zone) ||
1385 is_migrate_isolate(migratetype))) {
1386 migratetype = get_pfnblock_migratetype(page, pfn);
1387 }
1388 __free_one_page(page, pfn, zone, order, migratetype, true);
1389 spin_unlock(&zone->lock);
1390 }
1391
1392 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1393 unsigned long zone, int nid)
1394 {
1395 mm_zero_struct_page(page);
1396 set_page_links(page, zone, nid, pfn);
1397 init_page_count(page);
1398 page_mapcount_reset(page);
1399 page_cpupid_reset_last(page);
1400 page_kasan_tag_reset(page);
1401
1402 INIT_LIST_HEAD(&page->lru);
1403 #ifdef WANT_PAGE_VIRTUAL
1404 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1405 if (!is_highmem_idx(zone))
1406 set_page_address(page, __va(pfn << PAGE_SHIFT));
1407 #endif
1408 }
1409
1410 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1411 static void __meminit init_reserved_page(unsigned long pfn)
1412 {
1413 pg_data_t *pgdat;
1414 int nid, zid;
1415
1416 if (!early_page_uninitialised(pfn))
1417 return;
1418
1419 nid = early_pfn_to_nid(pfn);
1420 pgdat = NODE_DATA(nid);
1421
1422 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1423 struct zone *zone = &pgdat->node_zones[zid];
1424
1425 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1426 break;
1427 }
1428 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1429 }
1430 #else
1431 static inline void init_reserved_page(unsigned long pfn)
1432 {
1433 }
1434 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1435
1436 /*
1437 * Initialised pages do not have PageReserved set. This function is
1438 * called for each range allocated by the bootmem allocator and
1439 * marks the pages PageReserved. The remaining valid pages are later
1440 * sent to the buddy page allocator.
1441 */
1442 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1443 {
1444 unsigned long start_pfn = PFN_DOWN(start);
1445 unsigned long end_pfn = PFN_UP(end);
1446
1447 for (; start_pfn < end_pfn; start_pfn++) {
1448 if (pfn_valid(start_pfn)) {
1449 struct page *page = pfn_to_page(start_pfn);
1450
1451 init_reserved_page(start_pfn);
1452
1453 /* Avoid false-positive PageTail() */
1454 INIT_LIST_HEAD(&page->lru);
1455
1456 /*
1457 * no need for atomic set_bit because the struct
1458 * page is not visible yet so nobody should
1459 * access it yet.
1460 */
1461 __SetPageReserved(page);
1462 }
1463 }
1464 }
1465
1466 static void __free_pages_ok(struct page *page, unsigned int order)
1467 {
1468 unsigned long flags;
1469 int migratetype;
1470 unsigned long pfn = page_to_pfn(page);
1471
1472 if (!free_pages_prepare(page, order, true))
1473 return;
1474
1475 migratetype = get_pfnblock_migratetype(page, pfn);
1476 local_irq_save(flags);
1477 __count_vm_events(PGFREE, 1 << order);
1478 free_one_page(page_zone(page), page, pfn, order, migratetype);
1479 local_irq_restore(flags);
1480 }
1481
1482 void __free_pages_core(struct page *page, unsigned int order)
1483 {
1484 unsigned int nr_pages = 1 << order;
1485 struct page *p = page;
1486 unsigned int loop;
1487
1488 prefetchw(p);
1489 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1490 prefetchw(p + 1);
1491 __ClearPageReserved(p);
1492 set_page_count(p, 0);
1493 }
1494 __ClearPageReserved(p);
1495 set_page_count(p, 0);
1496
1497 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1498 set_page_refcounted(page);
1499 __free_pages(page, order);
1500 }
1501
1502 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1503 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1504
1505 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1506
1507 int __meminit early_pfn_to_nid(unsigned long pfn)
1508 {
1509 static DEFINE_SPINLOCK(early_pfn_lock);
1510 int nid;
1511
1512 spin_lock(&early_pfn_lock);
1513 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1514 if (nid < 0)
1515 nid = first_online_node;
1516 spin_unlock(&early_pfn_lock);
1517
1518 return nid;
1519 }
1520 #endif
1521
1522 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1523 /* Only safe to use early in boot when initialisation is single-threaded */
1524 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1525 {
1526 int nid;
1527
1528 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1529 if (nid >= 0 && nid != node)
1530 return false;
1531 return true;
1532 }
1533
1534 #else
1535 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1536 {
1537 return true;
1538 }
1539 #endif
1540
1541
1542 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1543 unsigned int order)
1544 {
1545 if (early_page_uninitialised(pfn))
1546 return;
1547 __free_pages_core(page, order);
1548 }
1549
1550 /*
1551 * Check that the whole (or subset of) a pageblock given by the interval of
1552 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1553 * with the migration of free compaction scanner. The scanners then need to
1554 * use only pfn_valid_within() check for arches that allow holes within
1555 * pageblocks.
1556 *
1557 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1558 *
1559 * It's possible on some configurations to have a setup like node0 node1 node0
1560 * i.e. it's possible that all pages within a zones range of pages do not
1561 * belong to a single zone. We assume that a border between node0 and node1
1562 * can occur within a single pageblock, but not a node0 node1 node0
1563 * interleaving within a single pageblock. It is therefore sufficient to check
1564 * the first and last page of a pageblock and avoid checking each individual
1565 * page in a pageblock.
1566 */
1567 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1568 unsigned long end_pfn, struct zone *zone)
1569 {
1570 struct page *start_page;
1571 struct page *end_page;
1572
1573 /* end_pfn is one past the range we are checking */
1574 end_pfn--;
1575
1576 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1577 return NULL;
1578
1579 start_page = pfn_to_online_page(start_pfn);
1580 if (!start_page)
1581 return NULL;
1582
1583 if (page_zone(start_page) != zone)
1584 return NULL;
1585
1586 end_page = pfn_to_page(end_pfn);
1587
1588 /* This gives a shorter code than deriving page_zone(end_page) */
1589 if (page_zone_id(start_page) != page_zone_id(end_page))
1590 return NULL;
1591
1592 return start_page;
1593 }
1594
1595 void set_zone_contiguous(struct zone *zone)
1596 {
1597 unsigned long block_start_pfn = zone->zone_start_pfn;
1598 unsigned long block_end_pfn;
1599
1600 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1601 for (; block_start_pfn < zone_end_pfn(zone);
1602 block_start_pfn = block_end_pfn,
1603 block_end_pfn += pageblock_nr_pages) {
1604
1605 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1606
1607 if (!__pageblock_pfn_to_page(block_start_pfn,
1608 block_end_pfn, zone))
1609 return;
1610 cond_resched();
1611 }
1612
1613 /* We confirm that there is no hole */
1614 zone->contiguous = true;
1615 }
1616
1617 void clear_zone_contiguous(struct zone *zone)
1618 {
1619 zone->contiguous = false;
1620 }
1621
1622 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1623 static void __init deferred_free_range(unsigned long pfn,
1624 unsigned long nr_pages)
1625 {
1626 struct page *page;
1627 unsigned long i;
1628
1629 if (!nr_pages)
1630 return;
1631
1632 page = pfn_to_page(pfn);
1633
1634 /* Free a large naturally-aligned chunk if possible */
1635 if (nr_pages == pageblock_nr_pages &&
1636 (pfn & (pageblock_nr_pages - 1)) == 0) {
1637 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1638 __free_pages_core(page, pageblock_order);
1639 return;
1640 }
1641
1642 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1643 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1644 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1645 __free_pages_core(page, 0);
1646 }
1647 }
1648
1649 /* Completion tracking for deferred_init_memmap() threads */
1650 static atomic_t pgdat_init_n_undone __initdata;
1651 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1652
1653 static inline void __init pgdat_init_report_one_done(void)
1654 {
1655 if (atomic_dec_and_test(&pgdat_init_n_undone))
1656 complete(&pgdat_init_all_done_comp);
1657 }
1658
1659 /*
1660 * Returns true if page needs to be initialized or freed to buddy allocator.
1661 *
1662 * First we check if pfn is valid on architectures where it is possible to have
1663 * holes within pageblock_nr_pages. On systems where it is not possible, this
1664 * function is optimized out.
1665 *
1666 * Then, we check if a current large page is valid by only checking the validity
1667 * of the head pfn.
1668 */
1669 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1670 {
1671 if (!pfn_valid_within(pfn))
1672 return false;
1673 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1674 return false;
1675 return true;
1676 }
1677
1678 /*
1679 * Free pages to buddy allocator. Try to free aligned pages in
1680 * pageblock_nr_pages sizes.
1681 */
1682 static void __init deferred_free_pages(unsigned long pfn,
1683 unsigned long end_pfn)
1684 {
1685 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1686 unsigned long nr_free = 0;
1687
1688 for (; pfn < end_pfn; pfn++) {
1689 if (!deferred_pfn_valid(pfn)) {
1690 deferred_free_range(pfn - nr_free, nr_free);
1691 nr_free = 0;
1692 } else if (!(pfn & nr_pgmask)) {
1693 deferred_free_range(pfn - nr_free, nr_free);
1694 nr_free = 1;
1695 touch_nmi_watchdog();
1696 } else {
1697 nr_free++;
1698 }
1699 }
1700 /* Free the last block of pages to allocator */
1701 deferred_free_range(pfn - nr_free, nr_free);
1702 }
1703
1704 /*
1705 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1706 * by performing it only once every pageblock_nr_pages.
1707 * Return number of pages initialized.
1708 */
1709 static unsigned long __init deferred_init_pages(struct zone *zone,
1710 unsigned long pfn,
1711 unsigned long end_pfn)
1712 {
1713 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1714 int nid = zone_to_nid(zone);
1715 unsigned long nr_pages = 0;
1716 int zid = zone_idx(zone);
1717 struct page *page = NULL;
1718
1719 for (; pfn < end_pfn; pfn++) {
1720 if (!deferred_pfn_valid(pfn)) {
1721 page = NULL;
1722 continue;
1723 } else if (!page || !(pfn & nr_pgmask)) {
1724 page = pfn_to_page(pfn);
1725 touch_nmi_watchdog();
1726 } else {
1727 page++;
1728 }
1729 __init_single_page(page, pfn, zid, nid);
1730 nr_pages++;
1731 }
1732 return (nr_pages);
1733 }
1734
1735 /*
1736 * This function is meant to pre-load the iterator for the zone init.
1737 * Specifically it walks through the ranges until we are caught up to the
1738 * first_init_pfn value and exits there. If we never encounter the value we
1739 * return false indicating there are no valid ranges left.
1740 */
1741 static bool __init
1742 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1743 unsigned long *spfn, unsigned long *epfn,
1744 unsigned long first_init_pfn)
1745 {
1746 u64 j;
1747
1748 /*
1749 * Start out by walking through the ranges in this zone that have
1750 * already been initialized. We don't need to do anything with them
1751 * so we just need to flush them out of the system.
1752 */
1753 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1754 if (*epfn <= first_init_pfn)
1755 continue;
1756 if (*spfn < first_init_pfn)
1757 *spfn = first_init_pfn;
1758 *i = j;
1759 return true;
1760 }
1761
1762 return false;
1763 }
1764
1765 /*
1766 * Initialize and free pages. We do it in two loops: first we initialize
1767 * struct page, then free to buddy allocator, because while we are
1768 * freeing pages we can access pages that are ahead (computing buddy
1769 * page in __free_one_page()).
1770 *
1771 * In order to try and keep some memory in the cache we have the loop
1772 * broken along max page order boundaries. This way we will not cause
1773 * any issues with the buddy page computation.
1774 */
1775 static unsigned long __init
1776 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1777 unsigned long *end_pfn)
1778 {
1779 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1780 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1781 unsigned long nr_pages = 0;
1782 u64 j = *i;
1783
1784 /* First we loop through and initialize the page values */
1785 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1786 unsigned long t;
1787
1788 if (mo_pfn <= *start_pfn)
1789 break;
1790
1791 t = min(mo_pfn, *end_pfn);
1792 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1793
1794 if (mo_pfn < *end_pfn) {
1795 *start_pfn = mo_pfn;
1796 break;
1797 }
1798 }
1799
1800 /* Reset values and now loop through freeing pages as needed */
1801 swap(j, *i);
1802
1803 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1804 unsigned long t;
1805
1806 if (mo_pfn <= spfn)
1807 break;
1808
1809 t = min(mo_pfn, epfn);
1810 deferred_free_pages(spfn, t);
1811
1812 if (mo_pfn <= epfn)
1813 break;
1814 }
1815
1816 return nr_pages;
1817 }
1818
1819 /* Initialise remaining memory on a node */
1820 static int __init deferred_init_memmap(void *data)
1821 {
1822 pg_data_t *pgdat = data;
1823 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1824 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1825 unsigned long first_init_pfn, flags;
1826 unsigned long start = jiffies;
1827 struct zone *zone;
1828 int zid;
1829 u64 i;
1830
1831 /* Bind memory initialisation thread to a local node if possible */
1832 if (!cpumask_empty(cpumask))
1833 set_cpus_allowed_ptr(current, cpumask);
1834
1835 pgdat_resize_lock(pgdat, &flags);
1836 first_init_pfn = pgdat->first_deferred_pfn;
1837 if (first_init_pfn == ULONG_MAX) {
1838 pgdat_resize_unlock(pgdat, &flags);
1839 pgdat_init_report_one_done();
1840 return 0;
1841 }
1842
1843 /* Sanity check boundaries */
1844 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1845 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1846 pgdat->first_deferred_pfn = ULONG_MAX;
1847
1848 /* Only the highest zone is deferred so find it */
1849 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1850 zone = pgdat->node_zones + zid;
1851 if (first_init_pfn < zone_end_pfn(zone))
1852 break;
1853 }
1854
1855 /* If the zone is empty somebody else may have cleared out the zone */
1856 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1857 first_init_pfn))
1858 goto zone_empty;
1859
1860 /*
1861 * Initialize and free pages in MAX_ORDER sized increments so
1862 * that we can avoid introducing any issues with the buddy
1863 * allocator.
1864 */
1865 while (spfn < epfn)
1866 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1867 zone_empty:
1868 pgdat_resize_unlock(pgdat, &flags);
1869
1870 /* Sanity check that the next zone really is unpopulated */
1871 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1872
1873 pr_info("node %d initialised, %lu pages in %ums\n",
1874 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
1875
1876 pgdat_init_report_one_done();
1877 return 0;
1878 }
1879
1880 /*
1881 * If this zone has deferred pages, try to grow it by initializing enough
1882 * deferred pages to satisfy the allocation specified by order, rounded up to
1883 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1884 * of SECTION_SIZE bytes by initializing struct pages in increments of
1885 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1886 *
1887 * Return true when zone was grown, otherwise return false. We return true even
1888 * when we grow less than requested, to let the caller decide if there are
1889 * enough pages to satisfy the allocation.
1890 *
1891 * Note: We use noinline because this function is needed only during boot, and
1892 * it is called from a __ref function _deferred_grow_zone. This way we are
1893 * making sure that it is not inlined into permanent text section.
1894 */
1895 static noinline bool __init
1896 deferred_grow_zone(struct zone *zone, unsigned int order)
1897 {
1898 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1899 pg_data_t *pgdat = zone->zone_pgdat;
1900 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1901 unsigned long spfn, epfn, flags;
1902 unsigned long nr_pages = 0;
1903 u64 i;
1904
1905 /* Only the last zone may have deferred pages */
1906 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1907 return false;
1908
1909 pgdat_resize_lock(pgdat, &flags);
1910
1911 /*
1912 * If deferred pages have been initialized while we were waiting for
1913 * the lock, return true, as the zone was grown. The caller will retry
1914 * this zone. We won't return to this function since the caller also
1915 * has this static branch.
1916 */
1917 if (!static_branch_unlikely(&deferred_pages)) {
1918 pgdat_resize_unlock(pgdat, &flags);
1919 return true;
1920 }
1921
1922 /*
1923 * If someone grew this zone while we were waiting for spinlock, return
1924 * true, as there might be enough pages already.
1925 */
1926 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1927 pgdat_resize_unlock(pgdat, &flags);
1928 return true;
1929 }
1930
1931 /* If the zone is empty somebody else may have cleared out the zone */
1932 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1933 first_deferred_pfn)) {
1934 pgdat->first_deferred_pfn = ULONG_MAX;
1935 pgdat_resize_unlock(pgdat, &flags);
1936 /* Retry only once. */
1937 return first_deferred_pfn != ULONG_MAX;
1938 }
1939
1940 /*
1941 * Initialize and free pages in MAX_ORDER sized increments so
1942 * that we can avoid introducing any issues with the buddy
1943 * allocator.
1944 */
1945 while (spfn < epfn) {
1946 /* update our first deferred PFN for this section */
1947 first_deferred_pfn = spfn;
1948
1949 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1950
1951 /* We should only stop along section boundaries */
1952 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1953 continue;
1954
1955 /* If our quota has been met we can stop here */
1956 if (nr_pages >= nr_pages_needed)
1957 break;
1958 }
1959
1960 pgdat->first_deferred_pfn = spfn;
1961 pgdat_resize_unlock(pgdat, &flags);
1962
1963 return nr_pages > 0;
1964 }
1965
1966 /*
1967 * deferred_grow_zone() is __init, but it is called from
1968 * get_page_from_freelist() during early boot until deferred_pages permanently
1969 * disables this call. This is why we have refdata wrapper to avoid warning,
1970 * and to ensure that the function body gets unloaded.
1971 */
1972 static bool __ref
1973 _deferred_grow_zone(struct zone *zone, unsigned int order)
1974 {
1975 return deferred_grow_zone(zone, order);
1976 }
1977
1978 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1979
1980 void __init page_alloc_init_late(void)
1981 {
1982 struct zone *zone;
1983 int nid;
1984
1985 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1986
1987 /* There will be num_node_state(N_MEMORY) threads */
1988 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1989 for_each_node_state(nid, N_MEMORY) {
1990 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1991 }
1992
1993 /* Block until all are initialised */
1994 wait_for_completion(&pgdat_init_all_done_comp);
1995
1996 /*
1997 * The number of managed pages has changed due to the initialisation
1998 * so the pcpu batch and high limits needs to be updated or the limits
1999 * will be artificially small.
2000 */
2001 for_each_populated_zone(zone)
2002 zone_pcp_update(zone);
2003
2004 /*
2005 * We initialized the rest of the deferred pages. Permanently disable
2006 * on-demand struct page initialization.
2007 */
2008 static_branch_disable(&deferred_pages);
2009
2010 /* Reinit limits that are based on free pages after the kernel is up */
2011 files_maxfiles_init();
2012 #endif
2013
2014 /* Discard memblock private memory */
2015 memblock_discard();
2016
2017 for_each_node_state(nid, N_MEMORY)
2018 shuffle_free_memory(NODE_DATA(nid));
2019
2020 for_each_populated_zone(zone)
2021 set_zone_contiguous(zone);
2022 }
2023
2024 #ifdef CONFIG_CMA
2025 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2026 void __init init_cma_reserved_pageblock(struct page *page)
2027 {
2028 unsigned i = pageblock_nr_pages;
2029 struct page *p = page;
2030
2031 do {
2032 __ClearPageReserved(p);
2033 set_page_count(p, 0);
2034 } while (++p, --i);
2035
2036 set_pageblock_migratetype(page, MIGRATE_CMA);
2037
2038 if (pageblock_order >= MAX_ORDER) {
2039 i = pageblock_nr_pages;
2040 p = page;
2041 do {
2042 set_page_refcounted(p);
2043 __free_pages(p, MAX_ORDER - 1);
2044 p += MAX_ORDER_NR_PAGES;
2045 } while (i -= MAX_ORDER_NR_PAGES);
2046 } else {
2047 set_page_refcounted(page);
2048 __free_pages(page, pageblock_order);
2049 }
2050
2051 adjust_managed_page_count(page, pageblock_nr_pages);
2052 }
2053 #endif
2054
2055 /*
2056 * The order of subdivision here is critical for the IO subsystem.
2057 * Please do not alter this order without good reasons and regression
2058 * testing. Specifically, as large blocks of memory are subdivided,
2059 * the order in which smaller blocks are delivered depends on the order
2060 * they're subdivided in this function. This is the primary factor
2061 * influencing the order in which pages are delivered to the IO
2062 * subsystem according to empirical testing, and this is also justified
2063 * by considering the behavior of a buddy system containing a single
2064 * large block of memory acted on by a series of small allocations.
2065 * This behavior is a critical factor in sglist merging's success.
2066 *
2067 * -- nyc
2068 */
2069 static inline void expand(struct zone *zone, struct page *page,
2070 int low, int high, int migratetype)
2071 {
2072 unsigned long size = 1 << high;
2073
2074 while (high > low) {
2075 high--;
2076 size >>= 1;
2077 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2078
2079 /*
2080 * Mark as guard pages (or page), that will allow to
2081 * merge back to allocator when buddy will be freed.
2082 * Corresponding page table entries will not be touched,
2083 * pages will stay not present in virtual address space
2084 */
2085 if (set_page_guard(zone, &page[size], high, migratetype))
2086 continue;
2087
2088 add_to_free_list(&page[size], zone, high, migratetype);
2089 set_page_order(&page[size], high);
2090 }
2091 }
2092
2093 static void check_new_page_bad(struct page *page)
2094 {
2095 const char *bad_reason = NULL;
2096 unsigned long bad_flags = 0;
2097
2098 if (unlikely(atomic_read(&page->_mapcount) != -1))
2099 bad_reason = "nonzero mapcount";
2100 if (unlikely(page->mapping != NULL))
2101 bad_reason = "non-NULL mapping";
2102 if (unlikely(page_ref_count(page) != 0))
2103 bad_reason = "nonzero _refcount";
2104 if (unlikely(page->flags & __PG_HWPOISON)) {
2105 bad_reason = "HWPoisoned (hardware-corrupted)";
2106 bad_flags = __PG_HWPOISON;
2107 /* Don't complain about hwpoisoned pages */
2108 page_mapcount_reset(page); /* remove PageBuddy */
2109 return;
2110 }
2111 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2112 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2113 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2114 }
2115 #ifdef CONFIG_MEMCG
2116 if (unlikely(page->mem_cgroup))
2117 bad_reason = "page still charged to cgroup";
2118 #endif
2119 bad_page(page, bad_reason, bad_flags);
2120 }
2121
2122 /*
2123 * This page is about to be returned from the page allocator
2124 */
2125 static inline int check_new_page(struct page *page)
2126 {
2127 if (likely(page_expected_state(page,
2128 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2129 return 0;
2130
2131 check_new_page_bad(page);
2132 return 1;
2133 }
2134
2135 static inline bool free_pages_prezeroed(void)
2136 {
2137 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2138 page_poisoning_enabled()) || want_init_on_free();
2139 }
2140
2141 #ifdef CONFIG_DEBUG_VM
2142 /*
2143 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2144 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2145 * also checked when pcp lists are refilled from the free lists.
2146 */
2147 static inline bool check_pcp_refill(struct page *page)
2148 {
2149 if (debug_pagealloc_enabled_static())
2150 return check_new_page(page);
2151 else
2152 return false;
2153 }
2154
2155 static inline bool check_new_pcp(struct page *page)
2156 {
2157 return check_new_page(page);
2158 }
2159 #else
2160 /*
2161 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2162 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2163 * enabled, they are also checked when being allocated from the pcp lists.
2164 */
2165 static inline bool check_pcp_refill(struct page *page)
2166 {
2167 return check_new_page(page);
2168 }
2169 static inline bool check_new_pcp(struct page *page)
2170 {
2171 if (debug_pagealloc_enabled_static())
2172 return check_new_page(page);
2173 else
2174 return false;
2175 }
2176 #endif /* CONFIG_DEBUG_VM */
2177
2178 static bool check_new_pages(struct page *page, unsigned int order)
2179 {
2180 int i;
2181 for (i = 0; i < (1 << order); i++) {
2182 struct page *p = page + i;
2183
2184 if (unlikely(check_new_page(p)))
2185 return true;
2186 }
2187
2188 return false;
2189 }
2190
2191 inline void post_alloc_hook(struct page *page, unsigned int order,
2192 gfp_t gfp_flags)
2193 {
2194 set_page_private(page, 0);
2195 set_page_refcounted(page);
2196
2197 arch_alloc_page(page, order);
2198 if (debug_pagealloc_enabled_static())
2199 kernel_map_pages(page, 1 << order, 1);
2200 kasan_alloc_pages(page, order);
2201 kernel_poison_pages(page, 1 << order, 1);
2202 set_page_owner(page, order, gfp_flags);
2203 }
2204
2205 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2206 unsigned int alloc_flags)
2207 {
2208 post_alloc_hook(page, order, gfp_flags);
2209
2210 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2211 kernel_init_free_pages(page, 1 << order);
2212
2213 if (order && (gfp_flags & __GFP_COMP))
2214 prep_compound_page(page, order);
2215
2216 /*
2217 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2218 * allocate the page. The expectation is that the caller is taking
2219 * steps that will free more memory. The caller should avoid the page
2220 * being used for !PFMEMALLOC purposes.
2221 */
2222 if (alloc_flags & ALLOC_NO_WATERMARKS)
2223 set_page_pfmemalloc(page);
2224 else
2225 clear_page_pfmemalloc(page);
2226 }
2227
2228 /*
2229 * Go through the free lists for the given migratetype and remove
2230 * the smallest available page from the freelists
2231 */
2232 static __always_inline
2233 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2234 int migratetype)
2235 {
2236 unsigned int current_order;
2237 struct free_area *area;
2238 struct page *page;
2239
2240 /* Find a page of the appropriate size in the preferred list */
2241 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2242 area = &(zone->free_area[current_order]);
2243 page = get_page_from_free_area(area, migratetype);
2244 if (!page)
2245 continue;
2246 del_page_from_free_list(page, zone, current_order);
2247 expand(zone, page, order, current_order, migratetype);
2248 set_pcppage_migratetype(page, migratetype);
2249 return page;
2250 }
2251
2252 return NULL;
2253 }
2254
2255
2256 /*
2257 * This array describes the order lists are fallen back to when
2258 * the free lists for the desirable migrate type are depleted
2259 */
2260 static int fallbacks[MIGRATE_TYPES][4] = {
2261 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2262 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2263 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2264 #ifdef CONFIG_CMA
2265 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2266 #endif
2267 #ifdef CONFIG_MEMORY_ISOLATION
2268 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2269 #endif
2270 };
2271
2272 #ifdef CONFIG_CMA
2273 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2274 unsigned int order)
2275 {
2276 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2277 }
2278 #else
2279 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2280 unsigned int order) { return NULL; }
2281 #endif
2282
2283 /*
2284 * Move the free pages in a range to the free lists of the requested type.
2285 * Note that start_page and end_pages are not aligned on a pageblock
2286 * boundary. If alignment is required, use move_freepages_block()
2287 */
2288 static int move_freepages(struct zone *zone,
2289 struct page *start_page, struct page *end_page,
2290 int migratetype, int *num_movable)
2291 {
2292 struct page *page;
2293 unsigned int order;
2294 int pages_moved = 0;
2295
2296 for (page = start_page; page <= end_page;) {
2297 if (!pfn_valid_within(page_to_pfn(page))) {
2298 page++;
2299 continue;
2300 }
2301
2302 if (!PageBuddy(page)) {
2303 /*
2304 * We assume that pages that could be isolated for
2305 * migration are movable. But we don't actually try
2306 * isolating, as that would be expensive.
2307 */
2308 if (num_movable &&
2309 (PageLRU(page) || __PageMovable(page)))
2310 (*num_movable)++;
2311
2312 page++;
2313 continue;
2314 }
2315
2316 /* Make sure we are not inadvertently changing nodes */
2317 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2318 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2319
2320 order = page_order(page);
2321 move_to_free_list(page, zone, order, migratetype);
2322 page += 1 << order;
2323 pages_moved += 1 << order;
2324 }
2325
2326 return pages_moved;
2327 }
2328
2329 int move_freepages_block(struct zone *zone, struct page *page,
2330 int migratetype, int *num_movable)
2331 {
2332 unsigned long start_pfn, end_pfn;
2333 struct page *start_page, *end_page;
2334
2335 if (num_movable)
2336 *num_movable = 0;
2337
2338 start_pfn = page_to_pfn(page);
2339 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2340 start_page = pfn_to_page(start_pfn);
2341 end_page = start_page + pageblock_nr_pages - 1;
2342 end_pfn = start_pfn + pageblock_nr_pages - 1;
2343
2344 /* Do not cross zone boundaries */
2345 if (!zone_spans_pfn(zone, start_pfn))
2346 start_page = page;
2347 if (!zone_spans_pfn(zone, end_pfn))
2348 return 0;
2349
2350 return move_freepages(zone, start_page, end_page, migratetype,
2351 num_movable);
2352 }
2353
2354 static void change_pageblock_range(struct page *pageblock_page,
2355 int start_order, int migratetype)
2356 {
2357 int nr_pageblocks = 1 << (start_order - pageblock_order);
2358
2359 while (nr_pageblocks--) {
2360 set_pageblock_migratetype(pageblock_page, migratetype);
2361 pageblock_page += pageblock_nr_pages;
2362 }
2363 }
2364
2365 /*
2366 * When we are falling back to another migratetype during allocation, try to
2367 * steal extra free pages from the same pageblocks to satisfy further
2368 * allocations, instead of polluting multiple pageblocks.
2369 *
2370 * If we are stealing a relatively large buddy page, it is likely there will
2371 * be more free pages in the pageblock, so try to steal them all. For
2372 * reclaimable and unmovable allocations, we steal regardless of page size,
2373 * as fragmentation caused by those allocations polluting movable pageblocks
2374 * is worse than movable allocations stealing from unmovable and reclaimable
2375 * pageblocks.
2376 */
2377 static bool can_steal_fallback(unsigned int order, int start_mt)
2378 {
2379 /*
2380 * Leaving this order check is intended, although there is
2381 * relaxed order check in next check. The reason is that
2382 * we can actually steal whole pageblock if this condition met,
2383 * but, below check doesn't guarantee it and that is just heuristic
2384 * so could be changed anytime.
2385 */
2386 if (order >= pageblock_order)
2387 return true;
2388
2389 if (order >= pageblock_order / 2 ||
2390 start_mt == MIGRATE_RECLAIMABLE ||
2391 start_mt == MIGRATE_UNMOVABLE ||
2392 page_group_by_mobility_disabled)
2393 return true;
2394
2395 return false;
2396 }
2397
2398 static inline void boost_watermark(struct zone *zone)
2399 {
2400 unsigned long max_boost;
2401
2402 if (!watermark_boost_factor)
2403 return;
2404 /*
2405 * Don't bother in zones that are unlikely to produce results.
2406 * On small machines, including kdump capture kernels running
2407 * in a small area, boosting the watermark can cause an out of
2408 * memory situation immediately.
2409 */
2410 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2411 return;
2412
2413 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2414 watermark_boost_factor, 10000);
2415
2416 /*
2417 * high watermark may be uninitialised if fragmentation occurs
2418 * very early in boot so do not boost. We do not fall
2419 * through and boost by pageblock_nr_pages as failing
2420 * allocations that early means that reclaim is not going
2421 * to help and it may even be impossible to reclaim the
2422 * boosted watermark resulting in a hang.
2423 */
2424 if (!max_boost)
2425 return;
2426
2427 max_boost = max(pageblock_nr_pages, max_boost);
2428
2429 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2430 max_boost);
2431 }
2432
2433 /*
2434 * This function implements actual steal behaviour. If order is large enough,
2435 * we can steal whole pageblock. If not, we first move freepages in this
2436 * pageblock to our migratetype and determine how many already-allocated pages
2437 * are there in the pageblock with a compatible migratetype. If at least half
2438 * of pages are free or compatible, we can change migratetype of the pageblock
2439 * itself, so pages freed in the future will be put on the correct free list.
2440 */
2441 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2442 unsigned int alloc_flags, int start_type, bool whole_block)
2443 {
2444 unsigned int current_order = page_order(page);
2445 int free_pages, movable_pages, alike_pages;
2446 int old_block_type;
2447
2448 old_block_type = get_pageblock_migratetype(page);
2449
2450 /*
2451 * This can happen due to races and we want to prevent broken
2452 * highatomic accounting.
2453 */
2454 if (is_migrate_highatomic(old_block_type))
2455 goto single_page;
2456
2457 /* Take ownership for orders >= pageblock_order */
2458 if (current_order >= pageblock_order) {
2459 change_pageblock_range(page, current_order, start_type);
2460 goto single_page;
2461 }
2462
2463 /*
2464 * Boost watermarks to increase reclaim pressure to reduce the
2465 * likelihood of future fallbacks. Wake kswapd now as the node
2466 * may be balanced overall and kswapd will not wake naturally.
2467 */
2468 boost_watermark(zone);
2469 if (alloc_flags & ALLOC_KSWAPD)
2470 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2471
2472 /* We are not allowed to try stealing from the whole block */
2473 if (!whole_block)
2474 goto single_page;
2475
2476 free_pages = move_freepages_block(zone, page, start_type,
2477 &movable_pages);
2478 /*
2479 * Determine how many pages are compatible with our allocation.
2480 * For movable allocation, it's the number of movable pages which
2481 * we just obtained. For other types it's a bit more tricky.
2482 */
2483 if (start_type == MIGRATE_MOVABLE) {
2484 alike_pages = movable_pages;
2485 } else {
2486 /*
2487 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2488 * to MOVABLE pageblock, consider all non-movable pages as
2489 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2490 * vice versa, be conservative since we can't distinguish the
2491 * exact migratetype of non-movable pages.
2492 */
2493 if (old_block_type == MIGRATE_MOVABLE)
2494 alike_pages = pageblock_nr_pages
2495 - (free_pages + movable_pages);
2496 else
2497 alike_pages = 0;
2498 }
2499
2500 /* moving whole block can fail due to zone boundary conditions */
2501 if (!free_pages)
2502 goto single_page;
2503
2504 /*
2505 * If a sufficient number of pages in the block are either free or of
2506 * comparable migratability as our allocation, claim the whole block.
2507 */
2508 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2509 page_group_by_mobility_disabled)
2510 set_pageblock_migratetype(page, start_type);
2511
2512 return;
2513
2514 single_page:
2515 move_to_free_list(page, zone, current_order, start_type);
2516 }
2517
2518 /*
2519 * Check whether there is a suitable fallback freepage with requested order.
2520 * If only_stealable is true, this function returns fallback_mt only if
2521 * we can steal other freepages all together. This would help to reduce
2522 * fragmentation due to mixed migratetype pages in one pageblock.
2523 */
2524 int find_suitable_fallback(struct free_area *area, unsigned int order,
2525 int migratetype, bool only_stealable, bool *can_steal)
2526 {
2527 int i;
2528 int fallback_mt;
2529
2530 if (area->nr_free == 0)
2531 return -1;
2532
2533 *can_steal = false;
2534 for (i = 0;; i++) {
2535 fallback_mt = fallbacks[migratetype][i];
2536 if (fallback_mt == MIGRATE_TYPES)
2537 break;
2538
2539 if (free_area_empty(area, fallback_mt))
2540 continue;
2541
2542 if (can_steal_fallback(order, migratetype))
2543 *can_steal = true;
2544
2545 if (!only_stealable)
2546 return fallback_mt;
2547
2548 if (*can_steal)
2549 return fallback_mt;
2550 }
2551
2552 return -1;
2553 }
2554
2555 /*
2556 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2557 * there are no empty page blocks that contain a page with a suitable order
2558 */
2559 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2560 unsigned int alloc_order)
2561 {
2562 int mt;
2563 unsigned long max_managed, flags;
2564
2565 /*
2566 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2567 * Check is race-prone but harmless.
2568 */
2569 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2570 if (zone->nr_reserved_highatomic >= max_managed)
2571 return;
2572
2573 spin_lock_irqsave(&zone->lock, flags);
2574
2575 /* Recheck the nr_reserved_highatomic limit under the lock */
2576 if (zone->nr_reserved_highatomic >= max_managed)
2577 goto out_unlock;
2578
2579 /* Yoink! */
2580 mt = get_pageblock_migratetype(page);
2581 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2582 && !is_migrate_cma(mt)) {
2583 zone->nr_reserved_highatomic += pageblock_nr_pages;
2584 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2585 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2586 }
2587
2588 out_unlock:
2589 spin_unlock_irqrestore(&zone->lock, flags);
2590 }
2591
2592 /*
2593 * Used when an allocation is about to fail under memory pressure. This
2594 * potentially hurts the reliability of high-order allocations when under
2595 * intense memory pressure but failed atomic allocations should be easier
2596 * to recover from than an OOM.
2597 *
2598 * If @force is true, try to unreserve a pageblock even though highatomic
2599 * pageblock is exhausted.
2600 */
2601 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2602 bool force)
2603 {
2604 struct zonelist *zonelist = ac->zonelist;
2605 unsigned long flags;
2606 struct zoneref *z;
2607 struct zone *zone;
2608 struct page *page;
2609 int order;
2610 bool ret;
2611
2612 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2613 ac->nodemask) {
2614 /*
2615 * Preserve at least one pageblock unless memory pressure
2616 * is really high.
2617 */
2618 if (!force && zone->nr_reserved_highatomic <=
2619 pageblock_nr_pages)
2620 continue;
2621
2622 spin_lock_irqsave(&zone->lock, flags);
2623 for (order = 0; order < MAX_ORDER; order++) {
2624 struct free_area *area = &(zone->free_area[order]);
2625
2626 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2627 if (!page)
2628 continue;
2629
2630 /*
2631 * In page freeing path, migratetype change is racy so
2632 * we can counter several free pages in a pageblock
2633 * in this loop althoug we changed the pageblock type
2634 * from highatomic to ac->migratetype. So we should
2635 * adjust the count once.
2636 */
2637 if (is_migrate_highatomic_page(page)) {
2638 /*
2639 * It should never happen but changes to
2640 * locking could inadvertently allow a per-cpu
2641 * drain to add pages to MIGRATE_HIGHATOMIC
2642 * while unreserving so be safe and watch for
2643 * underflows.
2644 */
2645 zone->nr_reserved_highatomic -= min(
2646 pageblock_nr_pages,
2647 zone->nr_reserved_highatomic);
2648 }
2649
2650 /*
2651 * Convert to ac->migratetype and avoid the normal
2652 * pageblock stealing heuristics. Minimally, the caller
2653 * is doing the work and needs the pages. More
2654 * importantly, if the block was always converted to
2655 * MIGRATE_UNMOVABLE or another type then the number
2656 * of pageblocks that cannot be completely freed
2657 * may increase.
2658 */
2659 set_pageblock_migratetype(page, ac->migratetype);
2660 ret = move_freepages_block(zone, page, ac->migratetype,
2661 NULL);
2662 if (ret) {
2663 spin_unlock_irqrestore(&zone->lock, flags);
2664 return ret;
2665 }
2666 }
2667 spin_unlock_irqrestore(&zone->lock, flags);
2668 }
2669
2670 return false;
2671 }
2672
2673 /*
2674 * Try finding a free buddy page on the fallback list and put it on the free
2675 * list of requested migratetype, possibly along with other pages from the same
2676 * block, depending on fragmentation avoidance heuristics. Returns true if
2677 * fallback was found so that __rmqueue_smallest() can grab it.
2678 *
2679 * The use of signed ints for order and current_order is a deliberate
2680 * deviation from the rest of this file, to make the for loop
2681 * condition simpler.
2682 */
2683 static __always_inline bool
2684 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2685 unsigned int alloc_flags)
2686 {
2687 struct free_area *area;
2688 int current_order;
2689 int min_order = order;
2690 struct page *page;
2691 int fallback_mt;
2692 bool can_steal;
2693
2694 /*
2695 * Do not steal pages from freelists belonging to other pageblocks
2696 * i.e. orders < pageblock_order. If there are no local zones free,
2697 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2698 */
2699 if (alloc_flags & ALLOC_NOFRAGMENT)
2700 min_order = pageblock_order;
2701
2702 /*
2703 * Find the largest available free page in the other list. This roughly
2704 * approximates finding the pageblock with the most free pages, which
2705 * would be too costly to do exactly.
2706 */
2707 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2708 --current_order) {
2709 area = &(zone->free_area[current_order]);
2710 fallback_mt = find_suitable_fallback(area, current_order,
2711 start_migratetype, false, &can_steal);
2712 if (fallback_mt == -1)
2713 continue;
2714
2715 /*
2716 * We cannot steal all free pages from the pageblock and the
2717 * requested migratetype is movable. In that case it's better to
2718 * steal and split the smallest available page instead of the
2719 * largest available page, because even if the next movable
2720 * allocation falls back into a different pageblock than this
2721 * one, it won't cause permanent fragmentation.
2722 */
2723 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2724 && current_order > order)
2725 goto find_smallest;
2726
2727 goto do_steal;
2728 }
2729
2730 return false;
2731
2732 find_smallest:
2733 for (current_order = order; current_order < MAX_ORDER;
2734 current_order++) {
2735 area = &(zone->free_area[current_order]);
2736 fallback_mt = find_suitable_fallback(area, current_order,
2737 start_migratetype, false, &can_steal);
2738 if (fallback_mt != -1)
2739 break;
2740 }
2741
2742 /*
2743 * This should not happen - we already found a suitable fallback
2744 * when looking for the largest page.
2745 */
2746 VM_BUG_ON(current_order == MAX_ORDER);
2747
2748 do_steal:
2749 page = get_page_from_free_area(area, fallback_mt);
2750
2751 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2752 can_steal);
2753
2754 trace_mm_page_alloc_extfrag(page, order, current_order,
2755 start_migratetype, fallback_mt);
2756
2757 return true;
2758
2759 }
2760
2761 /*
2762 * Do the hard work of removing an element from the buddy allocator.
2763 * Call me with the zone->lock already held.
2764 */
2765 static __always_inline struct page *
2766 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2767 unsigned int alloc_flags)
2768 {
2769 struct page *page;
2770
2771 retry:
2772 page = __rmqueue_smallest(zone, order, migratetype);
2773 if (unlikely(!page)) {
2774 if (migratetype == MIGRATE_MOVABLE)
2775 page = __rmqueue_cma_fallback(zone, order);
2776
2777 if (!page && __rmqueue_fallback(zone, order, migratetype,
2778 alloc_flags))
2779 goto retry;
2780 }
2781
2782 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2783 return page;
2784 }
2785
2786 /*
2787 * Obtain a specified number of elements from the buddy allocator, all under
2788 * a single hold of the lock, for efficiency. Add them to the supplied list.
2789 * Returns the number of new pages which were placed at *list.
2790 */
2791 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2792 unsigned long count, struct list_head *list,
2793 int migratetype, unsigned int alloc_flags)
2794 {
2795 int i, alloced = 0;
2796
2797 spin_lock(&zone->lock);
2798 for (i = 0; i < count; ++i) {
2799 struct page *page = __rmqueue(zone, order, migratetype,
2800 alloc_flags);
2801 if (unlikely(page == NULL))
2802 break;
2803
2804 if (unlikely(check_pcp_refill(page)))
2805 continue;
2806
2807 /*
2808 * Split buddy pages returned by expand() are received here in
2809 * physical page order. The page is added to the tail of
2810 * caller's list. From the callers perspective, the linked list
2811 * is ordered by page number under some conditions. This is
2812 * useful for IO devices that can forward direction from the
2813 * head, thus also in the physical page order. This is useful
2814 * for IO devices that can merge IO requests if the physical
2815 * pages are ordered properly.
2816 */
2817 list_add_tail(&page->lru, list);
2818 alloced++;
2819 if (is_migrate_cma(get_pcppage_migratetype(page)))
2820 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2821 -(1 << order));
2822 }
2823
2824 /*
2825 * i pages were removed from the buddy list even if some leak due
2826 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2827 * on i. Do not confuse with 'alloced' which is the number of
2828 * pages added to the pcp list.
2829 */
2830 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2831 spin_unlock(&zone->lock);
2832 return alloced;
2833 }
2834
2835 #ifdef CONFIG_NUMA
2836 /*
2837 * Called from the vmstat counter updater to drain pagesets of this
2838 * currently executing processor on remote nodes after they have
2839 * expired.
2840 *
2841 * Note that this function must be called with the thread pinned to
2842 * a single processor.
2843 */
2844 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2845 {
2846 unsigned long flags;
2847 int to_drain, batch;
2848
2849 local_irq_save(flags);
2850 batch = READ_ONCE(pcp->batch);
2851 to_drain = min(pcp->count, batch);
2852 if (to_drain > 0)
2853 free_pcppages_bulk(zone, to_drain, pcp);
2854 local_irq_restore(flags);
2855 }
2856 #endif
2857
2858 /*
2859 * Drain pcplists of the indicated processor and zone.
2860 *
2861 * The processor must either be the current processor and the
2862 * thread pinned to the current processor or a processor that
2863 * is not online.
2864 */
2865 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2866 {
2867 unsigned long flags;
2868 struct per_cpu_pageset *pset;
2869 struct per_cpu_pages *pcp;
2870
2871 local_irq_save(flags);
2872 pset = per_cpu_ptr(zone->pageset, cpu);
2873
2874 pcp = &pset->pcp;
2875 if (pcp->count)
2876 free_pcppages_bulk(zone, pcp->count, pcp);
2877 local_irq_restore(flags);
2878 }
2879
2880 /*
2881 * Drain pcplists of all zones on the indicated processor.
2882 *
2883 * The processor must either be the current processor and the
2884 * thread pinned to the current processor or a processor that
2885 * is not online.
2886 */
2887 static void drain_pages(unsigned int cpu)
2888 {
2889 struct zone *zone;
2890
2891 for_each_populated_zone(zone) {
2892 drain_pages_zone(cpu, zone);
2893 }
2894 }
2895
2896 /*
2897 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2898 *
2899 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2900 * the single zone's pages.
2901 */
2902 void drain_local_pages(struct zone *zone)
2903 {
2904 int cpu = smp_processor_id();
2905
2906 if (zone)
2907 drain_pages_zone(cpu, zone);
2908 else
2909 drain_pages(cpu);
2910 }
2911
2912 static void drain_local_pages_wq(struct work_struct *work)
2913 {
2914 struct pcpu_drain *drain;
2915
2916 drain = container_of(work, struct pcpu_drain, work);
2917
2918 /*
2919 * drain_all_pages doesn't use proper cpu hotplug protection so
2920 * we can race with cpu offline when the WQ can move this from
2921 * a cpu pinned worker to an unbound one. We can operate on a different
2922 * cpu which is allright but we also have to make sure to not move to
2923 * a different one.
2924 */
2925 preempt_disable();
2926 drain_local_pages(drain->zone);
2927 preempt_enable();
2928 }
2929
2930 /*
2931 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2932 *
2933 * When zone parameter is non-NULL, spill just the single zone's pages.
2934 *
2935 * Note that this can be extremely slow as the draining happens in a workqueue.
2936 */
2937 void drain_all_pages(struct zone *zone)
2938 {
2939 int cpu;
2940
2941 /*
2942 * Allocate in the BSS so we wont require allocation in
2943 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2944 */
2945 static cpumask_t cpus_with_pcps;
2946
2947 /*
2948 * Make sure nobody triggers this path before mm_percpu_wq is fully
2949 * initialized.
2950 */
2951 if (WARN_ON_ONCE(!mm_percpu_wq))
2952 return;
2953
2954 /*
2955 * Do not drain if one is already in progress unless it's specific to
2956 * a zone. Such callers are primarily CMA and memory hotplug and need
2957 * the drain to be complete when the call returns.
2958 */
2959 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2960 if (!zone)
2961 return;
2962 mutex_lock(&pcpu_drain_mutex);
2963 }
2964
2965 /*
2966 * We don't care about racing with CPU hotplug event
2967 * as offline notification will cause the notified
2968 * cpu to drain that CPU pcps and on_each_cpu_mask
2969 * disables preemption as part of its processing
2970 */
2971 for_each_online_cpu(cpu) {
2972 struct per_cpu_pageset *pcp;
2973 struct zone *z;
2974 bool has_pcps = false;
2975
2976 if (zone) {
2977 pcp = per_cpu_ptr(zone->pageset, cpu);
2978 if (pcp->pcp.count)
2979 has_pcps = true;
2980 } else {
2981 for_each_populated_zone(z) {
2982 pcp = per_cpu_ptr(z->pageset, cpu);
2983 if (pcp->pcp.count) {
2984 has_pcps = true;
2985 break;
2986 }
2987 }
2988 }
2989
2990 if (has_pcps)
2991 cpumask_set_cpu(cpu, &cpus_with_pcps);
2992 else
2993 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2994 }
2995
2996 for_each_cpu(cpu, &cpus_with_pcps) {
2997 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2998
2999 drain->zone = zone;
3000 INIT_WORK(&drain->work, drain_local_pages_wq);
3001 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3002 }
3003 for_each_cpu(cpu, &cpus_with_pcps)
3004 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3005
3006 mutex_unlock(&pcpu_drain_mutex);
3007 }
3008
3009 #ifdef CONFIG_HIBERNATION
3010
3011 /*
3012 * Touch the watchdog for every WD_PAGE_COUNT pages.
3013 */
3014 #define WD_PAGE_COUNT (128*1024)
3015
3016 void mark_free_pages(struct zone *zone)
3017 {
3018 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3019 unsigned long flags;
3020 unsigned int order, t;
3021 struct page *page;
3022
3023 if (zone_is_empty(zone))
3024 return;
3025
3026 spin_lock_irqsave(&zone->lock, flags);
3027
3028 max_zone_pfn = zone_end_pfn(zone);
3029 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3030 if (pfn_valid(pfn)) {
3031 page = pfn_to_page(pfn);
3032
3033 if (!--page_count) {
3034 touch_nmi_watchdog();
3035 page_count = WD_PAGE_COUNT;
3036 }
3037
3038 if (page_zone(page) != zone)
3039 continue;
3040
3041 if (!swsusp_page_is_forbidden(page))
3042 swsusp_unset_page_free(page);
3043 }
3044
3045 for_each_migratetype_order(order, t) {
3046 list_for_each_entry(page,
3047 &zone->free_area[order].free_list[t], lru) {
3048 unsigned long i;
3049
3050 pfn = page_to_pfn(page);
3051 for (i = 0; i < (1UL << order); i++) {
3052 if (!--page_count) {
3053 touch_nmi_watchdog();
3054 page_count = WD_PAGE_COUNT;
3055 }
3056 swsusp_set_page_free(pfn_to_page(pfn + i));
3057 }
3058 }
3059 }
3060 spin_unlock_irqrestore(&zone->lock, flags);
3061 }
3062 #endif /* CONFIG_PM */
3063
3064 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3065 {
3066 int migratetype;
3067
3068 if (!free_pcp_prepare(page))
3069 return false;
3070
3071 migratetype = get_pfnblock_migratetype(page, pfn);
3072 set_pcppage_migratetype(page, migratetype);
3073 return true;
3074 }
3075
3076 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3077 {
3078 struct zone *zone = page_zone(page);
3079 struct per_cpu_pages *pcp;
3080 int migratetype;
3081
3082 migratetype = get_pcppage_migratetype(page);
3083 __count_vm_event(PGFREE);
3084
3085 /*
3086 * We only track unmovable, reclaimable and movable on pcp lists.
3087 * Free ISOLATE pages back to the allocator because they are being
3088 * offlined but treat HIGHATOMIC as movable pages so we can get those
3089 * areas back if necessary. Otherwise, we may have to free
3090 * excessively into the page allocator
3091 */
3092 if (migratetype >= MIGRATE_PCPTYPES) {
3093 if (unlikely(is_migrate_isolate(migratetype))) {
3094 free_one_page(zone, page, pfn, 0, migratetype);
3095 return;
3096 }
3097 migratetype = MIGRATE_MOVABLE;
3098 }
3099
3100 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3101 list_add(&page->lru, &pcp->lists[migratetype]);
3102 pcp->count++;
3103 if (pcp->count >= pcp->high) {
3104 unsigned long batch = READ_ONCE(pcp->batch);
3105 free_pcppages_bulk(zone, batch, pcp);
3106 }
3107 }
3108
3109 /*
3110 * Free a 0-order page
3111 */
3112 void free_unref_page(struct page *page)
3113 {
3114 unsigned long flags;
3115 unsigned long pfn = page_to_pfn(page);
3116
3117 if (!free_unref_page_prepare(page, pfn))
3118 return;
3119
3120 local_irq_save(flags);
3121 free_unref_page_commit(page, pfn);
3122 local_irq_restore(flags);
3123 }
3124
3125 /*
3126 * Free a list of 0-order pages
3127 */
3128 void free_unref_page_list(struct list_head *list)
3129 {
3130 struct page *page, *next;
3131 unsigned long flags, pfn;
3132 int batch_count = 0;
3133
3134 /* Prepare pages for freeing */
3135 list_for_each_entry_safe(page, next, list, lru) {
3136 pfn = page_to_pfn(page);
3137 if (!free_unref_page_prepare(page, pfn))
3138 list_del(&page->lru);
3139 set_page_private(page, pfn);
3140 }
3141
3142 local_irq_save(flags);
3143 list_for_each_entry_safe(page, next, list, lru) {
3144 unsigned long pfn = page_private(page);
3145
3146 set_page_private(page, 0);
3147 trace_mm_page_free_batched(page);
3148 free_unref_page_commit(page, pfn);
3149
3150 /*
3151 * Guard against excessive IRQ disabled times when we get
3152 * a large list of pages to free.
3153 */
3154 if (++batch_count == SWAP_CLUSTER_MAX) {
3155 local_irq_restore(flags);
3156 batch_count = 0;
3157 local_irq_save(flags);
3158 }
3159 }
3160 local_irq_restore(flags);
3161 }
3162
3163 /*
3164 * split_page takes a non-compound higher-order page, and splits it into
3165 * n (1<<order) sub-pages: page[0..n]
3166 * Each sub-page must be freed individually.
3167 *
3168 * Note: this is probably too low level an operation for use in drivers.
3169 * Please consult with lkml before using this in your driver.
3170 */
3171 void split_page(struct page *page, unsigned int order)
3172 {
3173 int i;
3174
3175 VM_BUG_ON_PAGE(PageCompound(page), page);
3176 VM_BUG_ON_PAGE(!page_count(page), page);
3177
3178 for (i = 1; i < (1 << order); i++)
3179 set_page_refcounted(page + i);
3180 split_page_owner(page, order);
3181 }
3182 EXPORT_SYMBOL_GPL(split_page);
3183
3184 int __isolate_free_page(struct page *page, unsigned int order)
3185 {
3186 unsigned long watermark;
3187 struct zone *zone;
3188 int mt;
3189
3190 BUG_ON(!PageBuddy(page));
3191
3192 zone = page_zone(page);
3193 mt = get_pageblock_migratetype(page);
3194
3195 if (!is_migrate_isolate(mt)) {
3196 /*
3197 * Obey watermarks as if the page was being allocated. We can
3198 * emulate a high-order watermark check with a raised order-0
3199 * watermark, because we already know our high-order page
3200 * exists.
3201 */
3202 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3203 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3204 return 0;
3205
3206 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3207 }
3208
3209 /* Remove page from free list */
3210
3211 del_page_from_free_list(page, zone, order);
3212
3213 /*
3214 * Set the pageblock if the isolated page is at least half of a
3215 * pageblock
3216 */
3217 if (order >= pageblock_order - 1) {
3218 struct page *endpage = page + (1 << order) - 1;
3219 for (; page < endpage; page += pageblock_nr_pages) {
3220 int mt = get_pageblock_migratetype(page);
3221 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3222 && !is_migrate_highatomic(mt))
3223 set_pageblock_migratetype(page,
3224 MIGRATE_MOVABLE);
3225 }
3226 }
3227
3228
3229 return 1UL << order;
3230 }
3231
3232 /**
3233 * __putback_isolated_page - Return a now-isolated page back where we got it
3234 * @page: Page that was isolated
3235 * @order: Order of the isolated page
3236 * @mt: The page's pageblock's migratetype
3237 *
3238 * This function is meant to return a page pulled from the free lists via
3239 * __isolate_free_page back to the free lists they were pulled from.
3240 */
3241 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3242 {
3243 struct zone *zone = page_zone(page);
3244
3245 /* zone lock should be held when this function is called */
3246 lockdep_assert_held(&zone->lock);
3247
3248 /* Return isolated page to tail of freelist. */
3249 __free_one_page(page, page_to_pfn(page), zone, order, mt, false);
3250 }
3251
3252 /*
3253 * Update NUMA hit/miss statistics
3254 *
3255 * Must be called with interrupts disabled.
3256 */
3257 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3258 {
3259 #ifdef CONFIG_NUMA
3260 enum numa_stat_item local_stat = NUMA_LOCAL;
3261
3262 /* skip numa counters update if numa stats is disabled */
3263 if (!static_branch_likely(&vm_numa_stat_key))
3264 return;
3265
3266 if (zone_to_nid(z) != numa_node_id())
3267 local_stat = NUMA_OTHER;
3268
3269 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3270 __inc_numa_state(z, NUMA_HIT);
3271 else {
3272 __inc_numa_state(z, NUMA_MISS);
3273 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3274 }
3275 __inc_numa_state(z, local_stat);
3276 #endif
3277 }
3278
3279 /* Remove page from the per-cpu list, caller must protect the list */
3280 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3281 unsigned int alloc_flags,
3282 struct per_cpu_pages *pcp,
3283 struct list_head *list)
3284 {
3285 struct page *page;
3286
3287 do {
3288 if (list_empty(list)) {
3289 pcp->count += rmqueue_bulk(zone, 0,
3290 pcp->batch, list,
3291 migratetype, alloc_flags);
3292 if (unlikely(list_empty(list)))
3293 return NULL;
3294 }
3295
3296 page = list_first_entry(list, struct page, lru);
3297 list_del(&page->lru);
3298 pcp->count--;
3299 } while (check_new_pcp(page));
3300
3301 return page;
3302 }
3303
3304 /* Lock and remove page from the per-cpu list */
3305 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3306 struct zone *zone, gfp_t gfp_flags,
3307 int migratetype, unsigned int alloc_flags)
3308 {
3309 struct per_cpu_pages *pcp;
3310 struct list_head *list;
3311 struct page *page;
3312 unsigned long flags;
3313
3314 local_irq_save(flags);
3315 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3316 list = &pcp->lists[migratetype];
3317 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3318 if (page) {
3319 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3320 zone_statistics(preferred_zone, zone);
3321 }
3322 local_irq_restore(flags);
3323 return page;
3324 }
3325
3326 /*
3327 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3328 */
3329 static inline
3330 struct page *rmqueue(struct zone *preferred_zone,
3331 struct zone *zone, unsigned int order,
3332 gfp_t gfp_flags, unsigned int alloc_flags,
3333 int migratetype)
3334 {
3335 unsigned long flags;
3336 struct page *page;
3337
3338 if (likely(order == 0)) {
3339 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3340 migratetype, alloc_flags);
3341 goto out;
3342 }
3343
3344 /*
3345 * We most definitely don't want callers attempting to
3346 * allocate greater than order-1 page units with __GFP_NOFAIL.
3347 */
3348 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3349 spin_lock_irqsave(&zone->lock, flags);
3350
3351 do {
3352 page = NULL;
3353 if (alloc_flags & ALLOC_HARDER) {
3354 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3355 if (page)
3356 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3357 }
3358 if (!page)
3359 page = __rmqueue(zone, order, migratetype, alloc_flags);
3360 } while (page && check_new_pages(page, order));
3361 spin_unlock(&zone->lock);
3362 if (!page)
3363 goto failed;
3364 __mod_zone_freepage_state(zone, -(1 << order),
3365 get_pcppage_migratetype(page));
3366
3367 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3368 zone_statistics(preferred_zone, zone);
3369 local_irq_restore(flags);
3370
3371 out:
3372 /* Separate test+clear to avoid unnecessary atomics */
3373 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3374 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3375 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3376 }
3377
3378 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3379 return page;
3380
3381 failed:
3382 local_irq_restore(flags);
3383 return NULL;
3384 }
3385
3386 #ifdef CONFIG_FAIL_PAGE_ALLOC
3387
3388 static struct {
3389 struct fault_attr attr;
3390
3391 bool ignore_gfp_highmem;
3392 bool ignore_gfp_reclaim;
3393 u32 min_order;
3394 } fail_page_alloc = {
3395 .attr = FAULT_ATTR_INITIALIZER,
3396 .ignore_gfp_reclaim = true,
3397 .ignore_gfp_highmem = true,
3398 .min_order = 1,
3399 };
3400
3401 static int __init setup_fail_page_alloc(char *str)
3402 {
3403 return setup_fault_attr(&fail_page_alloc.attr, str);
3404 }
3405 __setup("fail_page_alloc=", setup_fail_page_alloc);
3406
3407 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3408 {
3409 if (order < fail_page_alloc.min_order)
3410 return false;
3411 if (gfp_mask & __GFP_NOFAIL)
3412 return false;
3413 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3414 return false;
3415 if (fail_page_alloc.ignore_gfp_reclaim &&
3416 (gfp_mask & __GFP_DIRECT_RECLAIM))
3417 return false;
3418
3419 return should_fail(&fail_page_alloc.attr, 1 << order);
3420 }
3421
3422 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3423
3424 static int __init fail_page_alloc_debugfs(void)
3425 {
3426 umode_t mode = S_IFREG | 0600;
3427 struct dentry *dir;
3428
3429 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3430 &fail_page_alloc.attr);
3431
3432 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3433 &fail_page_alloc.ignore_gfp_reclaim);
3434 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3435 &fail_page_alloc.ignore_gfp_highmem);
3436 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3437
3438 return 0;
3439 }
3440
3441 late_initcall(fail_page_alloc_debugfs);
3442
3443 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3444
3445 #else /* CONFIG_FAIL_PAGE_ALLOC */
3446
3447 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3448 {
3449 return false;
3450 }
3451
3452 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3453
3454 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3455 {
3456 return __should_fail_alloc_page(gfp_mask, order);
3457 }
3458 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3459
3460 /*
3461 * Return true if free base pages are above 'mark'. For high-order checks it
3462 * will return true of the order-0 watermark is reached and there is at least
3463 * one free page of a suitable size. Checking now avoids taking the zone lock
3464 * to check in the allocation paths if no pages are free.
3465 */
3466 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3467 int classzone_idx, unsigned int alloc_flags,
3468 long free_pages)
3469 {
3470 long min = mark;
3471 int o;
3472 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3473
3474 /* free_pages may go negative - that's OK */
3475 free_pages -= (1 << order) - 1;
3476
3477 if (alloc_flags & ALLOC_HIGH)
3478 min -= min / 2;
3479
3480 /*
3481 * If the caller does not have rights to ALLOC_HARDER then subtract
3482 * the high-atomic reserves. This will over-estimate the size of the
3483 * atomic reserve but it avoids a search.
3484 */
3485 if (likely(!alloc_harder)) {
3486 free_pages -= z->nr_reserved_highatomic;
3487 } else {
3488 /*
3489 * OOM victims can try even harder than normal ALLOC_HARDER
3490 * users on the grounds that it's definitely going to be in
3491 * the exit path shortly and free memory. Any allocation it
3492 * makes during the free path will be small and short-lived.
3493 */
3494 if (alloc_flags & ALLOC_OOM)
3495 min -= min / 2;
3496 else
3497 min -= min / 4;
3498 }
3499
3500
3501 #ifdef CONFIG_CMA
3502 /* If allocation can't use CMA areas don't use free CMA pages */
3503 if (!(alloc_flags & ALLOC_CMA))
3504 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3505 #endif
3506
3507 /*
3508 * Check watermarks for an order-0 allocation request. If these
3509 * are not met, then a high-order request also cannot go ahead
3510 * even if a suitable page happened to be free.
3511 */
3512 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3513 return false;
3514
3515 /* If this is an order-0 request then the watermark is fine */
3516 if (!order)
3517 return true;
3518
3519 /* For a high-order request, check at least one suitable page is free */
3520 for (o = order; o < MAX_ORDER; o++) {
3521 struct free_area *area = &z->free_area[o];
3522 int mt;
3523
3524 if (!area->nr_free)
3525 continue;
3526
3527 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3528 if (!free_area_empty(area, mt))
3529 return true;
3530 }
3531
3532 #ifdef CONFIG_CMA
3533 if ((alloc_flags & ALLOC_CMA) &&
3534 !free_area_empty(area, MIGRATE_CMA)) {
3535 return true;
3536 }
3537 #endif
3538 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3539 return true;
3540 }
3541 return false;
3542 }
3543
3544 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3545 int classzone_idx, unsigned int alloc_flags)
3546 {
3547 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3548 zone_page_state(z, NR_FREE_PAGES));
3549 }
3550
3551 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3552 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3553 {
3554 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3555 long cma_pages = 0;
3556
3557 #ifdef CONFIG_CMA
3558 /* If allocation can't use CMA areas don't use free CMA pages */
3559 if (!(alloc_flags & ALLOC_CMA))
3560 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3561 #endif
3562
3563 /*
3564 * Fast check for order-0 only. If this fails then the reserves
3565 * need to be calculated. There is a corner case where the check
3566 * passes but only the high-order atomic reserve are free. If
3567 * the caller is !atomic then it'll uselessly search the free
3568 * list. That corner case is then slower but it is harmless.
3569 */
3570 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3571 return true;
3572
3573 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3574 free_pages);
3575 }
3576
3577 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3578 unsigned long mark, int classzone_idx)
3579 {
3580 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3581
3582 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3583 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3584
3585 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3586 free_pages);
3587 }
3588
3589 #ifdef CONFIG_NUMA
3590 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3591 {
3592 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3593 node_reclaim_distance;
3594 }
3595 #else /* CONFIG_NUMA */
3596 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3597 {
3598 return true;
3599 }
3600 #endif /* CONFIG_NUMA */
3601
3602 /*
3603 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3604 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3605 * premature use of a lower zone may cause lowmem pressure problems that
3606 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3607 * probably too small. It only makes sense to spread allocations to avoid
3608 * fragmentation between the Normal and DMA32 zones.
3609 */
3610 static inline unsigned int
3611 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3612 {
3613 unsigned int alloc_flags;
3614
3615 /*
3616 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3617 * to save a branch.
3618 */
3619 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3620
3621 #ifdef CONFIG_ZONE_DMA32
3622 if (!zone)
3623 return alloc_flags;
3624
3625 if (zone_idx(zone) != ZONE_NORMAL)
3626 return alloc_flags;
3627
3628 /*
3629 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3630 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3631 * on UMA that if Normal is populated then so is DMA32.
3632 */
3633 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3634 if (nr_online_nodes > 1 && !populated_zone(--zone))
3635 return alloc_flags;
3636
3637 alloc_flags |= ALLOC_NOFRAGMENT;
3638 #endif /* CONFIG_ZONE_DMA32 */
3639 return alloc_flags;
3640 }
3641
3642 /*
3643 * get_page_from_freelist goes through the zonelist trying to allocate
3644 * a page.
3645 */
3646 static struct page *
3647 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3648 const struct alloc_context *ac)
3649 {
3650 struct zoneref *z;
3651 struct zone *zone;
3652 struct pglist_data *last_pgdat_dirty_limit = NULL;
3653 bool no_fallback;
3654
3655 retry:
3656 /*
3657 * Scan zonelist, looking for a zone with enough free.
3658 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3659 */
3660 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3661 z = ac->preferred_zoneref;
3662 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3663 ac->nodemask) {
3664 struct page *page;
3665 unsigned long mark;
3666
3667 if (cpusets_enabled() &&
3668 (alloc_flags & ALLOC_CPUSET) &&
3669 !__cpuset_zone_allowed(zone, gfp_mask))
3670 continue;
3671 /*
3672 * When allocating a page cache page for writing, we
3673 * want to get it from a node that is within its dirty
3674 * limit, such that no single node holds more than its
3675 * proportional share of globally allowed dirty pages.
3676 * The dirty limits take into account the node's
3677 * lowmem reserves and high watermark so that kswapd
3678 * should be able to balance it without having to
3679 * write pages from its LRU list.
3680 *
3681 * XXX: For now, allow allocations to potentially
3682 * exceed the per-node dirty limit in the slowpath
3683 * (spread_dirty_pages unset) before going into reclaim,
3684 * which is important when on a NUMA setup the allowed
3685 * nodes are together not big enough to reach the
3686 * global limit. The proper fix for these situations
3687 * will require awareness of nodes in the
3688 * dirty-throttling and the flusher threads.
3689 */
3690 if (ac->spread_dirty_pages) {
3691 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3692 continue;
3693
3694 if (!node_dirty_ok(zone->zone_pgdat)) {
3695 last_pgdat_dirty_limit = zone->zone_pgdat;
3696 continue;
3697 }
3698 }
3699
3700 if (no_fallback && nr_online_nodes > 1 &&
3701 zone != ac->preferred_zoneref->zone) {
3702 int local_nid;
3703
3704 /*
3705 * If moving to a remote node, retry but allow
3706 * fragmenting fallbacks. Locality is more important
3707 * than fragmentation avoidance.
3708 */
3709 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3710 if (zone_to_nid(zone) != local_nid) {
3711 alloc_flags &= ~ALLOC_NOFRAGMENT;
3712 goto retry;
3713 }
3714 }
3715
3716 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3717 if (!zone_watermark_fast(zone, order, mark,
3718 ac_classzone_idx(ac), alloc_flags)) {
3719 int ret;
3720
3721 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3722 /*
3723 * Watermark failed for this zone, but see if we can
3724 * grow this zone if it contains deferred pages.
3725 */
3726 if (static_branch_unlikely(&deferred_pages)) {
3727 if (_deferred_grow_zone(zone, order))
3728 goto try_this_zone;
3729 }
3730 #endif
3731 /* Checked here to keep the fast path fast */
3732 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3733 if (alloc_flags & ALLOC_NO_WATERMARKS)
3734 goto try_this_zone;
3735
3736 if (node_reclaim_mode == 0 ||
3737 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3738 continue;
3739
3740 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3741 switch (ret) {
3742 case NODE_RECLAIM_NOSCAN:
3743 /* did not scan */
3744 continue;
3745 case NODE_RECLAIM_FULL:
3746 /* scanned but unreclaimable */
3747 continue;
3748 default:
3749 /* did we reclaim enough */
3750 if (zone_watermark_ok(zone, order, mark,
3751 ac_classzone_idx(ac), alloc_flags))
3752 goto try_this_zone;
3753
3754 continue;
3755 }
3756 }
3757
3758 try_this_zone:
3759 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3760 gfp_mask, alloc_flags, ac->migratetype);
3761 if (page) {
3762 prep_new_page(page, order, gfp_mask, alloc_flags);
3763
3764 /*
3765 * If this is a high-order atomic allocation then check
3766 * if the pageblock should be reserved for the future
3767 */
3768 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3769 reserve_highatomic_pageblock(page, zone, order);
3770
3771 return page;
3772 } else {
3773 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3774 /* Try again if zone has deferred pages */
3775 if (static_branch_unlikely(&deferred_pages)) {
3776 if (_deferred_grow_zone(zone, order))
3777 goto try_this_zone;
3778 }
3779 #endif
3780 }
3781 }
3782
3783 /*
3784 * It's possible on a UMA machine to get through all zones that are
3785 * fragmented. If avoiding fragmentation, reset and try again.
3786 */
3787 if (no_fallback) {
3788 alloc_flags &= ~ALLOC_NOFRAGMENT;
3789 goto retry;
3790 }
3791
3792 return NULL;
3793 }
3794
3795 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3796 {
3797 unsigned int filter = SHOW_MEM_FILTER_NODES;
3798
3799 /*
3800 * This documents exceptions given to allocations in certain
3801 * contexts that are allowed to allocate outside current's set
3802 * of allowed nodes.
3803 */
3804 if (!(gfp_mask & __GFP_NOMEMALLOC))
3805 if (tsk_is_oom_victim(current) ||
3806 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3807 filter &= ~SHOW_MEM_FILTER_NODES;
3808 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3809 filter &= ~SHOW_MEM_FILTER_NODES;
3810
3811 show_mem(filter, nodemask);
3812 }
3813
3814 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3815 {
3816 struct va_format vaf;
3817 va_list args;
3818 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3819
3820 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3821 return;
3822
3823 va_start(args, fmt);
3824 vaf.fmt = fmt;
3825 vaf.va = &args;
3826 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3827 current->comm, &vaf, gfp_mask, &gfp_mask,
3828 nodemask_pr_args(nodemask));
3829 va_end(args);
3830
3831 cpuset_print_current_mems_allowed();
3832 pr_cont("\n");
3833 dump_stack();
3834 warn_alloc_show_mem(gfp_mask, nodemask);
3835 }
3836
3837 static inline struct page *
3838 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3839 unsigned int alloc_flags,
3840 const struct alloc_context *ac)
3841 {
3842 struct page *page;
3843
3844 page = get_page_from_freelist(gfp_mask, order,
3845 alloc_flags|ALLOC_CPUSET, ac);
3846 /*
3847 * fallback to ignore cpuset restriction if our nodes
3848 * are depleted
3849 */
3850 if (!page)
3851 page = get_page_from_freelist(gfp_mask, order,
3852 alloc_flags, ac);
3853
3854 return page;
3855 }
3856
3857 static inline struct page *
3858 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3859 const struct alloc_context *ac, unsigned long *did_some_progress)
3860 {
3861 struct oom_control oc = {
3862 .zonelist = ac->zonelist,
3863 .nodemask = ac->nodemask,
3864 .memcg = NULL,
3865 .gfp_mask = gfp_mask,
3866 .order = order,
3867 };
3868 struct page *page;
3869
3870 *did_some_progress = 0;
3871
3872 /*
3873 * Acquire the oom lock. If that fails, somebody else is
3874 * making progress for us.
3875 */
3876 if (!mutex_trylock(&oom_lock)) {
3877 *did_some_progress = 1;
3878 schedule_timeout_uninterruptible(1);
3879 return NULL;
3880 }
3881
3882 /*
3883 * Go through the zonelist yet one more time, keep very high watermark
3884 * here, this is only to catch a parallel oom killing, we must fail if
3885 * we're still under heavy pressure. But make sure that this reclaim
3886 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3887 * allocation which will never fail due to oom_lock already held.
3888 */
3889 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3890 ~__GFP_DIRECT_RECLAIM, order,
3891 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3892 if (page)
3893 goto out;
3894
3895 /* Coredumps can quickly deplete all memory reserves */
3896 if (current->flags & PF_DUMPCORE)
3897 goto out;
3898 /* The OOM killer will not help higher order allocs */
3899 if (order > PAGE_ALLOC_COSTLY_ORDER)
3900 goto out;
3901 /*
3902 * We have already exhausted all our reclaim opportunities without any
3903 * success so it is time to admit defeat. We will skip the OOM killer
3904 * because it is very likely that the caller has a more reasonable
3905 * fallback than shooting a random task.
3906 */
3907 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3908 goto out;
3909 /* The OOM killer does not needlessly kill tasks for lowmem */
3910 if (ac->high_zoneidx < ZONE_NORMAL)
3911 goto out;
3912 if (pm_suspended_storage())
3913 goto out;
3914 /*
3915 * XXX: GFP_NOFS allocations should rather fail than rely on
3916 * other request to make a forward progress.
3917 * We are in an unfortunate situation where out_of_memory cannot
3918 * do much for this context but let's try it to at least get
3919 * access to memory reserved if the current task is killed (see
3920 * out_of_memory). Once filesystems are ready to handle allocation
3921 * failures more gracefully we should just bail out here.
3922 */
3923
3924 /* The OOM killer may not free memory on a specific node */
3925 if (gfp_mask & __GFP_THISNODE)
3926 goto out;
3927
3928 /* Exhausted what can be done so it's blame time */
3929 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3930 *did_some_progress = 1;
3931
3932 /*
3933 * Help non-failing allocations by giving them access to memory
3934 * reserves
3935 */
3936 if (gfp_mask & __GFP_NOFAIL)
3937 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3938 ALLOC_NO_WATERMARKS, ac);
3939 }
3940 out:
3941 mutex_unlock(&oom_lock);
3942 return page;
3943 }
3944
3945 /*
3946 * Maximum number of compaction retries wit a progress before OOM
3947 * killer is consider as the only way to move forward.
3948 */
3949 #define MAX_COMPACT_RETRIES 16
3950
3951 #ifdef CONFIG_COMPACTION
3952 /* Try memory compaction for high-order allocations before reclaim */
3953 static struct page *
3954 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3955 unsigned int alloc_flags, const struct alloc_context *ac,
3956 enum compact_priority prio, enum compact_result *compact_result)
3957 {
3958 struct page *page = NULL;
3959 unsigned long pflags;
3960 unsigned int noreclaim_flag;
3961
3962 if (!order)
3963 return NULL;
3964
3965 psi_memstall_enter(&pflags);
3966 noreclaim_flag = memalloc_noreclaim_save();
3967
3968 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3969 prio, &page);
3970
3971 memalloc_noreclaim_restore(noreclaim_flag);
3972 psi_memstall_leave(&pflags);
3973
3974 /*
3975 * At least in one zone compaction wasn't deferred or skipped, so let's
3976 * count a compaction stall
3977 */
3978 count_vm_event(COMPACTSTALL);
3979
3980 /* Prep a captured page if available */
3981 if (page)
3982 prep_new_page(page, order, gfp_mask, alloc_flags);
3983
3984 /* Try get a page from the freelist if available */
3985 if (!page)
3986 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3987
3988 if (page) {
3989 struct zone *zone = page_zone(page);
3990
3991 zone->compact_blockskip_flush = false;
3992 compaction_defer_reset(zone, order, true);
3993 count_vm_event(COMPACTSUCCESS);
3994 return page;
3995 }
3996
3997 /*
3998 * It's bad if compaction run occurs and fails. The most likely reason
3999 * is that pages exist, but not enough to satisfy watermarks.
4000 */
4001 count_vm_event(COMPACTFAIL);
4002
4003 cond_resched();
4004
4005 return NULL;
4006 }
4007
4008 static inline bool
4009 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4010 enum compact_result compact_result,
4011 enum compact_priority *compact_priority,
4012 int *compaction_retries)
4013 {
4014 int max_retries = MAX_COMPACT_RETRIES;
4015 int min_priority;
4016 bool ret = false;
4017 int retries = *compaction_retries;
4018 enum compact_priority priority = *compact_priority;
4019
4020 if (!order)
4021 return false;
4022
4023 if (compaction_made_progress(compact_result))
4024 (*compaction_retries)++;
4025
4026 /*
4027 * compaction considers all the zone as desperately out of memory
4028 * so it doesn't really make much sense to retry except when the
4029 * failure could be caused by insufficient priority
4030 */
4031 if (compaction_failed(compact_result))
4032 goto check_priority;
4033
4034 /*
4035 * compaction was skipped because there are not enough order-0 pages
4036 * to work with, so we retry only if it looks like reclaim can help.
4037 */
4038 if (compaction_needs_reclaim(compact_result)) {
4039 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4040 goto out;
4041 }
4042
4043 /*
4044 * make sure the compaction wasn't deferred or didn't bail out early
4045 * due to locks contention before we declare that we should give up.
4046 * But the next retry should use a higher priority if allowed, so
4047 * we don't just keep bailing out endlessly.
4048 */
4049 if (compaction_withdrawn(compact_result)) {
4050 goto check_priority;
4051 }
4052
4053 /*
4054 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4055 * costly ones because they are de facto nofail and invoke OOM
4056 * killer to move on while costly can fail and users are ready
4057 * to cope with that. 1/4 retries is rather arbitrary but we
4058 * would need much more detailed feedback from compaction to
4059 * make a better decision.
4060 */
4061 if (order > PAGE_ALLOC_COSTLY_ORDER)
4062 max_retries /= 4;
4063 if (*compaction_retries <= max_retries) {
4064 ret = true;
4065 goto out;
4066 }
4067
4068 /*
4069 * Make sure there are attempts at the highest priority if we exhausted
4070 * all retries or failed at the lower priorities.
4071 */
4072 check_priority:
4073 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4074 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4075
4076 if (*compact_priority > min_priority) {
4077 (*compact_priority)--;
4078 *compaction_retries = 0;
4079 ret = true;
4080 }
4081 out:
4082 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4083 return ret;
4084 }
4085 #else
4086 static inline struct page *
4087 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4088 unsigned int alloc_flags, const struct alloc_context *ac,
4089 enum compact_priority prio, enum compact_result *compact_result)
4090 {
4091 *compact_result = COMPACT_SKIPPED;
4092 return NULL;
4093 }
4094
4095 static inline bool
4096 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4097 enum compact_result compact_result,
4098 enum compact_priority *compact_priority,
4099 int *compaction_retries)
4100 {
4101 struct zone *zone;
4102 struct zoneref *z;
4103
4104 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4105 return false;
4106
4107 /*
4108 * There are setups with compaction disabled which would prefer to loop
4109 * inside the allocator rather than hit the oom killer prematurely.
4110 * Let's give them a good hope and keep retrying while the order-0
4111 * watermarks are OK.
4112 */
4113 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4114 ac->nodemask) {
4115 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4116 ac_classzone_idx(ac), alloc_flags))
4117 return true;
4118 }
4119 return false;
4120 }
4121 #endif /* CONFIG_COMPACTION */
4122
4123 #ifdef CONFIG_LOCKDEP
4124 static struct lockdep_map __fs_reclaim_map =
4125 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4126
4127 static bool __need_fs_reclaim(gfp_t gfp_mask)
4128 {
4129 gfp_mask = current_gfp_context(gfp_mask);
4130
4131 /* no reclaim without waiting on it */
4132 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4133 return false;
4134
4135 /* this guy won't enter reclaim */
4136 if (current->flags & PF_MEMALLOC)
4137 return false;
4138
4139 /* We're only interested __GFP_FS allocations for now */
4140 if (!(gfp_mask & __GFP_FS))
4141 return false;
4142
4143 if (gfp_mask & __GFP_NOLOCKDEP)
4144 return false;
4145
4146 return true;
4147 }
4148
4149 void __fs_reclaim_acquire(void)
4150 {
4151 lock_map_acquire(&__fs_reclaim_map);
4152 }
4153
4154 void __fs_reclaim_release(void)
4155 {
4156 lock_map_release(&__fs_reclaim_map);
4157 }
4158
4159 void fs_reclaim_acquire(gfp_t gfp_mask)
4160 {
4161 if (__need_fs_reclaim(gfp_mask))
4162 __fs_reclaim_acquire();
4163 }
4164 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4165
4166 void fs_reclaim_release(gfp_t gfp_mask)
4167 {
4168 if (__need_fs_reclaim(gfp_mask))
4169 __fs_reclaim_release();
4170 }
4171 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4172 #endif
4173
4174 /* Perform direct synchronous page reclaim */
4175 static int
4176 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4177 const struct alloc_context *ac)
4178 {
4179 int progress;
4180 unsigned int noreclaim_flag;
4181 unsigned long pflags;
4182
4183 cond_resched();
4184
4185 /* We now go into synchronous reclaim */
4186 cpuset_memory_pressure_bump();
4187 psi_memstall_enter(&pflags);
4188 fs_reclaim_acquire(gfp_mask);
4189 noreclaim_flag = memalloc_noreclaim_save();
4190
4191 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4192 ac->nodemask);
4193
4194 memalloc_noreclaim_restore(noreclaim_flag);
4195 fs_reclaim_release(gfp_mask);
4196 psi_memstall_leave(&pflags);
4197
4198 cond_resched();
4199
4200 return progress;
4201 }
4202
4203 /* The really slow allocator path where we enter direct reclaim */
4204 static inline struct page *
4205 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4206 unsigned int alloc_flags, const struct alloc_context *ac,
4207 unsigned long *did_some_progress)
4208 {
4209 struct page *page = NULL;
4210 bool drained = false;
4211
4212 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4213 if (unlikely(!(*did_some_progress)))
4214 return NULL;
4215
4216 retry:
4217 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4218
4219 /*
4220 * If an allocation failed after direct reclaim, it could be because
4221 * pages are pinned on the per-cpu lists or in high alloc reserves.
4222 * Shrink them them and try again
4223 */
4224 if (!page && !drained) {
4225 unreserve_highatomic_pageblock(ac, false);
4226 drain_all_pages(NULL);
4227 drained = true;
4228 goto retry;
4229 }
4230
4231 return page;
4232 }
4233
4234 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4235 const struct alloc_context *ac)
4236 {
4237 struct zoneref *z;
4238 struct zone *zone;
4239 pg_data_t *last_pgdat = NULL;
4240 enum zone_type high_zoneidx = ac->high_zoneidx;
4241
4242 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4243 ac->nodemask) {
4244 if (last_pgdat != zone->zone_pgdat)
4245 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4246 last_pgdat = zone->zone_pgdat;
4247 }
4248 }
4249
4250 static inline unsigned int
4251 gfp_to_alloc_flags(gfp_t gfp_mask)
4252 {
4253 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4254
4255 /*
4256 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4257 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4258 * to save two branches.
4259 */
4260 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4261 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4262
4263 /*
4264 * The caller may dip into page reserves a bit more if the caller
4265 * cannot run direct reclaim, or if the caller has realtime scheduling
4266 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4267 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4268 */
4269 alloc_flags |= (__force int)
4270 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4271
4272 if (gfp_mask & __GFP_ATOMIC) {
4273 /*
4274 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4275 * if it can't schedule.
4276 */
4277 if (!(gfp_mask & __GFP_NOMEMALLOC))
4278 alloc_flags |= ALLOC_HARDER;
4279 /*
4280 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4281 * comment for __cpuset_node_allowed().
4282 */
4283 alloc_flags &= ~ALLOC_CPUSET;
4284 } else if (unlikely(rt_task(current)) && !in_interrupt())
4285 alloc_flags |= ALLOC_HARDER;
4286
4287 #ifdef CONFIG_CMA
4288 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4289 alloc_flags |= ALLOC_CMA;
4290 #endif
4291 return alloc_flags;
4292 }
4293
4294 static bool oom_reserves_allowed(struct task_struct *tsk)
4295 {
4296 if (!tsk_is_oom_victim(tsk))
4297 return false;
4298
4299 /*
4300 * !MMU doesn't have oom reaper so give access to memory reserves
4301 * only to the thread with TIF_MEMDIE set
4302 */
4303 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4304 return false;
4305
4306 return true;
4307 }
4308
4309 /*
4310 * Distinguish requests which really need access to full memory
4311 * reserves from oom victims which can live with a portion of it
4312 */
4313 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4314 {
4315 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4316 return 0;
4317 if (gfp_mask & __GFP_MEMALLOC)
4318 return ALLOC_NO_WATERMARKS;
4319 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4320 return ALLOC_NO_WATERMARKS;
4321 if (!in_interrupt()) {
4322 if (current->flags & PF_MEMALLOC)
4323 return ALLOC_NO_WATERMARKS;
4324 else if (oom_reserves_allowed(current))
4325 return ALLOC_OOM;
4326 }
4327
4328 return 0;
4329 }
4330
4331 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4332 {
4333 return !!__gfp_pfmemalloc_flags(gfp_mask);
4334 }
4335
4336 /*
4337 * Checks whether it makes sense to retry the reclaim to make a forward progress
4338 * for the given allocation request.
4339 *
4340 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4341 * without success, or when we couldn't even meet the watermark if we
4342 * reclaimed all remaining pages on the LRU lists.
4343 *
4344 * Returns true if a retry is viable or false to enter the oom path.
4345 */
4346 static inline bool
4347 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4348 struct alloc_context *ac, int alloc_flags,
4349 bool did_some_progress, int *no_progress_loops)
4350 {
4351 struct zone *zone;
4352 struct zoneref *z;
4353 bool ret = false;
4354
4355 /*
4356 * Costly allocations might have made a progress but this doesn't mean
4357 * their order will become available due to high fragmentation so
4358 * always increment the no progress counter for them
4359 */
4360 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4361 *no_progress_loops = 0;
4362 else
4363 (*no_progress_loops)++;
4364
4365 /*
4366 * Make sure we converge to OOM if we cannot make any progress
4367 * several times in the row.
4368 */
4369 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4370 /* Before OOM, exhaust highatomic_reserve */
4371 return unreserve_highatomic_pageblock(ac, true);
4372 }
4373
4374 /*
4375 * Keep reclaiming pages while there is a chance this will lead
4376 * somewhere. If none of the target zones can satisfy our allocation
4377 * request even if all reclaimable pages are considered then we are
4378 * screwed and have to go OOM.
4379 */
4380 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4381 ac->nodemask) {
4382 unsigned long available;
4383 unsigned long reclaimable;
4384 unsigned long min_wmark = min_wmark_pages(zone);
4385 bool wmark;
4386
4387 available = reclaimable = zone_reclaimable_pages(zone);
4388 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4389
4390 /*
4391 * Would the allocation succeed if we reclaimed all
4392 * reclaimable pages?
4393 */
4394 wmark = __zone_watermark_ok(zone, order, min_wmark,
4395 ac_classzone_idx(ac), alloc_flags, available);
4396 trace_reclaim_retry_zone(z, order, reclaimable,
4397 available, min_wmark, *no_progress_loops, wmark);
4398 if (wmark) {
4399 /*
4400 * If we didn't make any progress and have a lot of
4401 * dirty + writeback pages then we should wait for
4402 * an IO to complete to slow down the reclaim and
4403 * prevent from pre mature OOM
4404 */
4405 if (!did_some_progress) {
4406 unsigned long write_pending;
4407
4408 write_pending = zone_page_state_snapshot(zone,
4409 NR_ZONE_WRITE_PENDING);
4410
4411 if (2 * write_pending > reclaimable) {
4412 congestion_wait(BLK_RW_ASYNC, HZ/10);
4413 return true;
4414 }
4415 }
4416
4417 ret = true;
4418 goto out;
4419 }
4420 }
4421
4422 out:
4423 /*
4424 * Memory allocation/reclaim might be called from a WQ context and the
4425 * current implementation of the WQ concurrency control doesn't
4426 * recognize that a particular WQ is congested if the worker thread is
4427 * looping without ever sleeping. Therefore we have to do a short sleep
4428 * here rather than calling cond_resched().
4429 */
4430 if (current->flags & PF_WQ_WORKER)
4431 schedule_timeout_uninterruptible(1);
4432 else
4433 cond_resched();
4434 return ret;
4435 }
4436
4437 static inline bool
4438 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4439 {
4440 /*
4441 * It's possible that cpuset's mems_allowed and the nodemask from
4442 * mempolicy don't intersect. This should be normally dealt with by
4443 * policy_nodemask(), but it's possible to race with cpuset update in
4444 * such a way the check therein was true, and then it became false
4445 * before we got our cpuset_mems_cookie here.
4446 * This assumes that for all allocations, ac->nodemask can come only
4447 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4448 * when it does not intersect with the cpuset restrictions) or the
4449 * caller can deal with a violated nodemask.
4450 */
4451 if (cpusets_enabled() && ac->nodemask &&
4452 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4453 ac->nodemask = NULL;
4454 return true;
4455 }
4456
4457 /*
4458 * When updating a task's mems_allowed or mempolicy nodemask, it is
4459 * possible to race with parallel threads in such a way that our
4460 * allocation can fail while the mask is being updated. If we are about
4461 * to fail, check if the cpuset changed during allocation and if so,
4462 * retry.
4463 */
4464 if (read_mems_allowed_retry(cpuset_mems_cookie))
4465 return true;
4466
4467 return false;
4468 }
4469
4470 static inline struct page *
4471 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4472 struct alloc_context *ac)
4473 {
4474 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4475 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4476 struct page *page = NULL;
4477 unsigned int alloc_flags;
4478 unsigned long did_some_progress;
4479 enum compact_priority compact_priority;
4480 enum compact_result compact_result;
4481 int compaction_retries;
4482 int no_progress_loops;
4483 unsigned int cpuset_mems_cookie;
4484 int reserve_flags;
4485
4486 /*
4487 * We also sanity check to catch abuse of atomic reserves being used by
4488 * callers that are not in atomic context.
4489 */
4490 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4491 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4492 gfp_mask &= ~__GFP_ATOMIC;
4493
4494 retry_cpuset:
4495 compaction_retries = 0;
4496 no_progress_loops = 0;
4497 compact_priority = DEF_COMPACT_PRIORITY;
4498 cpuset_mems_cookie = read_mems_allowed_begin();
4499
4500 /*
4501 * The fast path uses conservative alloc_flags to succeed only until
4502 * kswapd needs to be woken up, and to avoid the cost of setting up
4503 * alloc_flags precisely. So we do that now.
4504 */
4505 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4506
4507 /*
4508 * We need to recalculate the starting point for the zonelist iterator
4509 * because we might have used different nodemask in the fast path, or
4510 * there was a cpuset modification and we are retrying - otherwise we
4511 * could end up iterating over non-eligible zones endlessly.
4512 */
4513 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4514 ac->high_zoneidx, ac->nodemask);
4515 if (!ac->preferred_zoneref->zone)
4516 goto nopage;
4517
4518 if (alloc_flags & ALLOC_KSWAPD)
4519 wake_all_kswapds(order, gfp_mask, ac);
4520
4521 /*
4522 * The adjusted alloc_flags might result in immediate success, so try
4523 * that first
4524 */
4525 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4526 if (page)
4527 goto got_pg;
4528
4529 /*
4530 * For costly allocations, try direct compaction first, as it's likely
4531 * that we have enough base pages and don't need to reclaim. For non-
4532 * movable high-order allocations, do that as well, as compaction will
4533 * try prevent permanent fragmentation by migrating from blocks of the
4534 * same migratetype.
4535 * Don't try this for allocations that are allowed to ignore
4536 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4537 */
4538 if (can_direct_reclaim &&
4539 (costly_order ||
4540 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4541 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4542 page = __alloc_pages_direct_compact(gfp_mask, order,
4543 alloc_flags, ac,
4544 INIT_COMPACT_PRIORITY,
4545 &compact_result);
4546 if (page)
4547 goto got_pg;
4548
4549 /*
4550 * Checks for costly allocations with __GFP_NORETRY, which
4551 * includes some THP page fault allocations
4552 */
4553 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4554 /*
4555 * If allocating entire pageblock(s) and compaction
4556 * failed because all zones are below low watermarks
4557 * or is prohibited because it recently failed at this
4558 * order, fail immediately unless the allocator has
4559 * requested compaction and reclaim retry.
4560 *
4561 * Reclaim is
4562 * - potentially very expensive because zones are far
4563 * below their low watermarks or this is part of very
4564 * bursty high order allocations,
4565 * - not guaranteed to help because isolate_freepages()
4566 * may not iterate over freed pages as part of its
4567 * linear scan, and
4568 * - unlikely to make entire pageblocks free on its
4569 * own.
4570 */
4571 if (compact_result == COMPACT_SKIPPED ||
4572 compact_result == COMPACT_DEFERRED)
4573 goto nopage;
4574
4575 /*
4576 * Looks like reclaim/compaction is worth trying, but
4577 * sync compaction could be very expensive, so keep
4578 * using async compaction.
4579 */
4580 compact_priority = INIT_COMPACT_PRIORITY;
4581 }
4582 }
4583
4584 retry:
4585 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4586 if (alloc_flags & ALLOC_KSWAPD)
4587 wake_all_kswapds(order, gfp_mask, ac);
4588
4589 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4590 if (reserve_flags)
4591 alloc_flags = reserve_flags;
4592
4593 /*
4594 * Reset the nodemask and zonelist iterators if memory policies can be
4595 * ignored. These allocations are high priority and system rather than
4596 * user oriented.
4597 */
4598 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4599 ac->nodemask = NULL;
4600 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4601 ac->high_zoneidx, ac->nodemask);
4602 }
4603
4604 /* Attempt with potentially adjusted zonelist and alloc_flags */
4605 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4606 if (page)
4607 goto got_pg;
4608
4609 /* Caller is not willing to reclaim, we can't balance anything */
4610 if (!can_direct_reclaim)
4611 goto nopage;
4612
4613 /* Avoid recursion of direct reclaim */
4614 if (current->flags & PF_MEMALLOC)
4615 goto nopage;
4616
4617 /* Try direct reclaim and then allocating */
4618 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4619 &did_some_progress);
4620 if (page)
4621 goto got_pg;
4622
4623 /* Try direct compaction and then allocating */
4624 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4625 compact_priority, &compact_result);
4626 if (page)
4627 goto got_pg;
4628
4629 /* Do not loop if specifically requested */
4630 if (gfp_mask & __GFP_NORETRY)
4631 goto nopage;
4632
4633 /*
4634 * Do not retry costly high order allocations unless they are
4635 * __GFP_RETRY_MAYFAIL
4636 */
4637 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4638 goto nopage;
4639
4640 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4641 did_some_progress > 0, &no_progress_loops))
4642 goto retry;
4643
4644 /*
4645 * It doesn't make any sense to retry for the compaction if the order-0
4646 * reclaim is not able to make any progress because the current
4647 * implementation of the compaction depends on the sufficient amount
4648 * of free memory (see __compaction_suitable)
4649 */
4650 if (did_some_progress > 0 &&
4651 should_compact_retry(ac, order, alloc_flags,
4652 compact_result, &compact_priority,
4653 &compaction_retries))
4654 goto retry;
4655
4656
4657 /* Deal with possible cpuset update races before we start OOM killing */
4658 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4659 goto retry_cpuset;
4660
4661 /* Reclaim has failed us, start killing things */
4662 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4663 if (page)
4664 goto got_pg;
4665
4666 /* Avoid allocations with no watermarks from looping endlessly */
4667 if (tsk_is_oom_victim(current) &&
4668 (alloc_flags == ALLOC_OOM ||
4669 (gfp_mask & __GFP_NOMEMALLOC)))
4670 goto nopage;
4671
4672 /* Retry as long as the OOM killer is making progress */
4673 if (did_some_progress) {
4674 no_progress_loops = 0;
4675 goto retry;
4676 }
4677
4678 nopage:
4679 /* Deal with possible cpuset update races before we fail */
4680 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4681 goto retry_cpuset;
4682
4683 /*
4684 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4685 * we always retry
4686 */
4687 if (gfp_mask & __GFP_NOFAIL) {
4688 /*
4689 * All existing users of the __GFP_NOFAIL are blockable, so warn
4690 * of any new users that actually require GFP_NOWAIT
4691 */
4692 if (WARN_ON_ONCE(!can_direct_reclaim))
4693 goto fail;
4694
4695 /*
4696 * PF_MEMALLOC request from this context is rather bizarre
4697 * because we cannot reclaim anything and only can loop waiting
4698 * for somebody to do a work for us
4699 */
4700 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4701
4702 /*
4703 * non failing costly orders are a hard requirement which we
4704 * are not prepared for much so let's warn about these users
4705 * so that we can identify them and convert them to something
4706 * else.
4707 */
4708 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4709
4710 /*
4711 * Help non-failing allocations by giving them access to memory
4712 * reserves but do not use ALLOC_NO_WATERMARKS because this
4713 * could deplete whole memory reserves which would just make
4714 * the situation worse
4715 */
4716 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4717 if (page)
4718 goto got_pg;
4719
4720 cond_resched();
4721 goto retry;
4722 }
4723 fail:
4724 warn_alloc(gfp_mask, ac->nodemask,
4725 "page allocation failure: order:%u", order);
4726 got_pg:
4727 return page;
4728 }
4729
4730 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4731 int preferred_nid, nodemask_t *nodemask,
4732 struct alloc_context *ac, gfp_t *alloc_mask,
4733 unsigned int *alloc_flags)
4734 {
4735 ac->high_zoneidx = gfp_zone(gfp_mask);
4736 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4737 ac->nodemask = nodemask;
4738 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4739
4740 if (cpusets_enabled()) {
4741 *alloc_mask |= __GFP_HARDWALL;
4742 if (!ac->nodemask)
4743 ac->nodemask = &cpuset_current_mems_allowed;
4744 else
4745 *alloc_flags |= ALLOC_CPUSET;
4746 }
4747
4748 fs_reclaim_acquire(gfp_mask);
4749 fs_reclaim_release(gfp_mask);
4750
4751 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4752
4753 if (should_fail_alloc_page(gfp_mask, order))
4754 return false;
4755
4756 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4757 *alloc_flags |= ALLOC_CMA;
4758
4759 return true;
4760 }
4761
4762 /* Determine whether to spread dirty pages and what the first usable zone */
4763 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4764 {
4765 /* Dirty zone balancing only done in the fast path */
4766 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4767
4768 /*
4769 * The preferred zone is used for statistics but crucially it is
4770 * also used as the starting point for the zonelist iterator. It
4771 * may get reset for allocations that ignore memory policies.
4772 */
4773 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4774 ac->high_zoneidx, ac->nodemask);
4775 }
4776
4777 /*
4778 * This is the 'heart' of the zoned buddy allocator.
4779 */
4780 struct page *
4781 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4782 nodemask_t *nodemask)
4783 {
4784 struct page *page;
4785 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4786 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4787 struct alloc_context ac = { };
4788
4789 /*
4790 * There are several places where we assume that the order value is sane
4791 * so bail out early if the request is out of bound.
4792 */
4793 if (unlikely(order >= MAX_ORDER)) {
4794 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4795 return NULL;
4796 }
4797
4798 gfp_mask &= gfp_allowed_mask;
4799 alloc_mask = gfp_mask;
4800 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4801 return NULL;
4802
4803 finalise_ac(gfp_mask, &ac);
4804
4805 /*
4806 * Forbid the first pass from falling back to types that fragment
4807 * memory until all local zones are considered.
4808 */
4809 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4810
4811 /* First allocation attempt */
4812 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4813 if (likely(page))
4814 goto out;
4815
4816 /*
4817 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4818 * resp. GFP_NOIO which has to be inherited for all allocation requests
4819 * from a particular context which has been marked by
4820 * memalloc_no{fs,io}_{save,restore}.
4821 */
4822 alloc_mask = current_gfp_context(gfp_mask);
4823 ac.spread_dirty_pages = false;
4824
4825 /*
4826 * Restore the original nodemask if it was potentially replaced with
4827 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4828 */
4829 ac.nodemask = nodemask;
4830
4831 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4832
4833 out:
4834 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4835 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
4836 __free_pages(page, order);
4837 page = NULL;
4838 }
4839
4840 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4841
4842 return page;
4843 }
4844 EXPORT_SYMBOL(__alloc_pages_nodemask);
4845
4846 /*
4847 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4848 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4849 * you need to access high mem.
4850 */
4851 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4852 {
4853 struct page *page;
4854
4855 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4856 if (!page)
4857 return 0;
4858 return (unsigned long) page_address(page);
4859 }
4860 EXPORT_SYMBOL(__get_free_pages);
4861
4862 unsigned long get_zeroed_page(gfp_t gfp_mask)
4863 {
4864 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4865 }
4866 EXPORT_SYMBOL(get_zeroed_page);
4867
4868 static inline void free_the_page(struct page *page, unsigned int order)
4869 {
4870 if (order == 0) /* Via pcp? */
4871 free_unref_page(page);
4872 else
4873 __free_pages_ok(page, order);
4874 }
4875
4876 void __free_pages(struct page *page, unsigned int order)
4877 {
4878 if (put_page_testzero(page))
4879 free_the_page(page, order);
4880 }
4881 EXPORT_SYMBOL(__free_pages);
4882
4883 void free_pages(unsigned long addr, unsigned int order)
4884 {
4885 if (addr != 0) {
4886 VM_BUG_ON(!virt_addr_valid((void *)addr));
4887 __free_pages(virt_to_page((void *)addr), order);
4888 }
4889 }
4890
4891 EXPORT_SYMBOL(free_pages);
4892
4893 /*
4894 * Page Fragment:
4895 * An arbitrary-length arbitrary-offset area of memory which resides
4896 * within a 0 or higher order page. Multiple fragments within that page
4897 * are individually refcounted, in the page's reference counter.
4898 *
4899 * The page_frag functions below provide a simple allocation framework for
4900 * page fragments. This is used by the network stack and network device
4901 * drivers to provide a backing region of memory for use as either an
4902 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4903 */
4904 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4905 gfp_t gfp_mask)
4906 {
4907 struct page *page = NULL;
4908 gfp_t gfp = gfp_mask;
4909
4910 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4911 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4912 __GFP_NOMEMALLOC;
4913 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4914 PAGE_FRAG_CACHE_MAX_ORDER);
4915 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4916 #endif
4917 if (unlikely(!page))
4918 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4919
4920 nc->va = page ? page_address(page) : NULL;
4921
4922 return page;
4923 }
4924
4925 void __page_frag_cache_drain(struct page *page, unsigned int count)
4926 {
4927 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4928
4929 if (page_ref_sub_and_test(page, count))
4930 free_the_page(page, compound_order(page));
4931 }
4932 EXPORT_SYMBOL(__page_frag_cache_drain);
4933
4934 void *page_frag_alloc(struct page_frag_cache *nc,
4935 unsigned int fragsz, gfp_t gfp_mask)
4936 {
4937 unsigned int size = PAGE_SIZE;
4938 struct page *page;
4939 int offset;
4940
4941 if (unlikely(!nc->va)) {
4942 refill:
4943 page = __page_frag_cache_refill(nc, gfp_mask);
4944 if (!page)
4945 return NULL;
4946
4947 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4948 /* if size can vary use size else just use PAGE_SIZE */
4949 size = nc->size;
4950 #endif
4951 /* Even if we own the page, we do not use atomic_set().
4952 * This would break get_page_unless_zero() users.
4953 */
4954 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4955
4956 /* reset page count bias and offset to start of new frag */
4957 nc->pfmemalloc = page_is_pfmemalloc(page);
4958 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4959 nc->offset = size;
4960 }
4961
4962 offset = nc->offset - fragsz;
4963 if (unlikely(offset < 0)) {
4964 page = virt_to_page(nc->va);
4965
4966 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4967 goto refill;
4968
4969 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4970 /* if size can vary use size else just use PAGE_SIZE */
4971 size = nc->size;
4972 #endif
4973 /* OK, page count is 0, we can safely set it */
4974 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4975
4976 /* reset page count bias and offset to start of new frag */
4977 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4978 offset = size - fragsz;
4979 }
4980
4981 nc->pagecnt_bias--;
4982 nc->offset = offset;
4983
4984 return nc->va + offset;
4985 }
4986 EXPORT_SYMBOL(page_frag_alloc);
4987
4988 /*
4989 * Frees a page fragment allocated out of either a compound or order 0 page.
4990 */
4991 void page_frag_free(void *addr)
4992 {
4993 struct page *page = virt_to_head_page(addr);
4994
4995 if (unlikely(put_page_testzero(page)))
4996 free_the_page(page, compound_order(page));
4997 }
4998 EXPORT_SYMBOL(page_frag_free);
4999
5000 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5001 size_t size)
5002 {
5003 if (addr) {
5004 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5005 unsigned long used = addr + PAGE_ALIGN(size);
5006
5007 split_page(virt_to_page((void *)addr), order);
5008 while (used < alloc_end) {
5009 free_page(used);
5010 used += PAGE_SIZE;
5011 }
5012 }
5013 return (void *)addr;
5014 }
5015
5016 /**
5017 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5018 * @size: the number of bytes to allocate
5019 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5020 *
5021 * This function is similar to alloc_pages(), except that it allocates the
5022 * minimum number of pages to satisfy the request. alloc_pages() can only
5023 * allocate memory in power-of-two pages.
5024 *
5025 * This function is also limited by MAX_ORDER.
5026 *
5027 * Memory allocated by this function must be released by free_pages_exact().
5028 *
5029 * Return: pointer to the allocated area or %NULL in case of error.
5030 */
5031 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5032 {
5033 unsigned int order = get_order(size);
5034 unsigned long addr;
5035
5036 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5037 gfp_mask &= ~__GFP_COMP;
5038
5039 addr = __get_free_pages(gfp_mask, order);
5040 return make_alloc_exact(addr, order, size);
5041 }
5042 EXPORT_SYMBOL(alloc_pages_exact);
5043
5044 /**
5045 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5046 * pages on a node.
5047 * @nid: the preferred node ID where memory should be allocated
5048 * @size: the number of bytes to allocate
5049 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5050 *
5051 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5052 * back.
5053 *
5054 * Return: pointer to the allocated area or %NULL in case of error.
5055 */
5056 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5057 {
5058 unsigned int order = get_order(size);
5059 struct page *p;
5060
5061 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5062 gfp_mask &= ~__GFP_COMP;
5063
5064 p = alloc_pages_node(nid, gfp_mask, order);
5065 if (!p)
5066 return NULL;
5067 return make_alloc_exact((unsigned long)page_address(p), order, size);
5068 }
5069
5070 /**
5071 * free_pages_exact - release memory allocated via alloc_pages_exact()
5072 * @virt: the value returned by alloc_pages_exact.
5073 * @size: size of allocation, same value as passed to alloc_pages_exact().
5074 *
5075 * Release the memory allocated by a previous call to alloc_pages_exact.
5076 */
5077 void free_pages_exact(void *virt, size_t size)
5078 {
5079 unsigned long addr = (unsigned long)virt;
5080 unsigned long end = addr + PAGE_ALIGN(size);
5081
5082 while (addr < end) {
5083 free_page(addr);
5084 addr += PAGE_SIZE;
5085 }
5086 }
5087 EXPORT_SYMBOL(free_pages_exact);
5088
5089 /**
5090 * nr_free_zone_pages - count number of pages beyond high watermark
5091 * @offset: The zone index of the highest zone
5092 *
5093 * nr_free_zone_pages() counts the number of pages which are beyond the
5094 * high watermark within all zones at or below a given zone index. For each
5095 * zone, the number of pages is calculated as:
5096 *
5097 * nr_free_zone_pages = managed_pages - high_pages
5098 *
5099 * Return: number of pages beyond high watermark.
5100 */
5101 static unsigned long nr_free_zone_pages(int offset)
5102 {
5103 struct zoneref *z;
5104 struct zone *zone;
5105
5106 /* Just pick one node, since fallback list is circular */
5107 unsigned long sum = 0;
5108
5109 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5110
5111 for_each_zone_zonelist(zone, z, zonelist, offset) {
5112 unsigned long size = zone_managed_pages(zone);
5113 unsigned long high = high_wmark_pages(zone);
5114 if (size > high)
5115 sum += size - high;
5116 }
5117
5118 return sum;
5119 }
5120
5121 /**
5122 * nr_free_buffer_pages - count number of pages beyond high watermark
5123 *
5124 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5125 * watermark within ZONE_DMA and ZONE_NORMAL.
5126 *
5127 * Return: number of pages beyond high watermark within ZONE_DMA and
5128 * ZONE_NORMAL.
5129 */
5130 unsigned long nr_free_buffer_pages(void)
5131 {
5132 return nr_free_zone_pages(gfp_zone(GFP_USER));
5133 }
5134 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5135
5136 /**
5137 * nr_free_pagecache_pages - count number of pages beyond high watermark
5138 *
5139 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5140 * high watermark within all zones.
5141 *
5142 * Return: number of pages beyond high watermark within all zones.
5143 */
5144 unsigned long nr_free_pagecache_pages(void)
5145 {
5146 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5147 }
5148
5149 static inline void show_node(struct zone *zone)
5150 {
5151 if (IS_ENABLED(CONFIG_NUMA))
5152 printk("Node %d ", zone_to_nid(zone));
5153 }
5154
5155 long si_mem_available(void)
5156 {
5157 long available;
5158 unsigned long pagecache;
5159 unsigned long wmark_low = 0;
5160 unsigned long pages[NR_LRU_LISTS];
5161 unsigned long reclaimable;
5162 struct zone *zone;
5163 int lru;
5164
5165 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5166 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5167
5168 for_each_zone(zone)
5169 wmark_low += low_wmark_pages(zone);
5170
5171 /*
5172 * Estimate the amount of memory available for userspace allocations,
5173 * without causing swapping.
5174 */
5175 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5176
5177 /*
5178 * Not all the page cache can be freed, otherwise the system will
5179 * start swapping. Assume at least half of the page cache, or the
5180 * low watermark worth of cache, needs to stay.
5181 */
5182 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5183 pagecache -= min(pagecache / 2, wmark_low);
5184 available += pagecache;
5185
5186 /*
5187 * Part of the reclaimable slab and other kernel memory consists of
5188 * items that are in use, and cannot be freed. Cap this estimate at the
5189 * low watermark.
5190 */
5191 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5192 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5193 available += reclaimable - min(reclaimable / 2, wmark_low);
5194
5195 if (available < 0)
5196 available = 0;
5197 return available;
5198 }
5199 EXPORT_SYMBOL_GPL(si_mem_available);
5200
5201 void si_meminfo(struct sysinfo *val)
5202 {
5203 val->totalram = totalram_pages();
5204 val->sharedram = global_node_page_state(NR_SHMEM);
5205 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5206 val->bufferram = nr_blockdev_pages();
5207 val->totalhigh = totalhigh_pages();
5208 val->freehigh = nr_free_highpages();
5209 val->mem_unit = PAGE_SIZE;
5210 }
5211
5212 EXPORT_SYMBOL(si_meminfo);
5213
5214 #ifdef CONFIG_NUMA
5215 void si_meminfo_node(struct sysinfo *val, int nid)
5216 {
5217 int zone_type; /* needs to be signed */
5218 unsigned long managed_pages = 0;
5219 unsigned long managed_highpages = 0;
5220 unsigned long free_highpages = 0;
5221 pg_data_t *pgdat = NODE_DATA(nid);
5222
5223 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5224 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5225 val->totalram = managed_pages;
5226 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5227 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5228 #ifdef CONFIG_HIGHMEM
5229 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5230 struct zone *zone = &pgdat->node_zones[zone_type];
5231
5232 if (is_highmem(zone)) {
5233 managed_highpages += zone_managed_pages(zone);
5234 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5235 }
5236 }
5237 val->totalhigh = managed_highpages;
5238 val->freehigh = free_highpages;
5239 #else
5240 val->totalhigh = managed_highpages;
5241 val->freehigh = free_highpages;
5242 #endif
5243 val->mem_unit = PAGE_SIZE;
5244 }
5245 #endif
5246
5247 /*
5248 * Determine whether the node should be displayed or not, depending on whether
5249 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5250 */
5251 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5252 {
5253 if (!(flags & SHOW_MEM_FILTER_NODES))
5254 return false;
5255
5256 /*
5257 * no node mask - aka implicit memory numa policy. Do not bother with
5258 * the synchronization - read_mems_allowed_begin - because we do not
5259 * have to be precise here.
5260 */
5261 if (!nodemask)
5262 nodemask = &cpuset_current_mems_allowed;
5263
5264 return !node_isset(nid, *nodemask);
5265 }
5266
5267 #define K(x) ((x) << (PAGE_SHIFT-10))
5268
5269 static void show_migration_types(unsigned char type)
5270 {
5271 static const char types[MIGRATE_TYPES] = {
5272 [MIGRATE_UNMOVABLE] = 'U',
5273 [MIGRATE_MOVABLE] = 'M',
5274 [MIGRATE_RECLAIMABLE] = 'E',
5275 [MIGRATE_HIGHATOMIC] = 'H',
5276 #ifdef CONFIG_CMA
5277 [MIGRATE_CMA] = 'C',
5278 #endif
5279 #ifdef CONFIG_MEMORY_ISOLATION
5280 [MIGRATE_ISOLATE] = 'I',
5281 #endif
5282 };
5283 char tmp[MIGRATE_TYPES + 1];
5284 char *p = tmp;
5285 int i;
5286
5287 for (i = 0; i < MIGRATE_TYPES; i++) {
5288 if (type & (1 << i))
5289 *p++ = types[i];
5290 }
5291
5292 *p = '\0';
5293 printk(KERN_CONT "(%s) ", tmp);
5294 }
5295
5296 /*
5297 * Show free area list (used inside shift_scroll-lock stuff)
5298 * We also calculate the percentage fragmentation. We do this by counting the
5299 * memory on each free list with the exception of the first item on the list.
5300 *
5301 * Bits in @filter:
5302 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5303 * cpuset.
5304 */
5305 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5306 {
5307 unsigned long free_pcp = 0;
5308 int cpu;
5309 struct zone *zone;
5310 pg_data_t *pgdat;
5311
5312 for_each_populated_zone(zone) {
5313 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5314 continue;
5315
5316 for_each_online_cpu(cpu)
5317 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5318 }
5319
5320 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5321 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5322 " unevictable:%lu dirty:%lu writeback:%lu\n"
5323 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5324 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5325 " free:%lu free_pcp:%lu free_cma:%lu\n",
5326 global_node_page_state(NR_ACTIVE_ANON),
5327 global_node_page_state(NR_INACTIVE_ANON),
5328 global_node_page_state(NR_ISOLATED_ANON),
5329 global_node_page_state(NR_ACTIVE_FILE),
5330 global_node_page_state(NR_INACTIVE_FILE),
5331 global_node_page_state(NR_ISOLATED_FILE),
5332 global_node_page_state(NR_UNEVICTABLE),
5333 global_node_page_state(NR_FILE_DIRTY),
5334 global_node_page_state(NR_WRITEBACK),
5335 global_node_page_state(NR_SLAB_RECLAIMABLE),
5336 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5337 global_node_page_state(NR_FILE_MAPPED),
5338 global_node_page_state(NR_SHMEM),
5339 global_zone_page_state(NR_PAGETABLE),
5340 global_zone_page_state(NR_BOUNCE),
5341 global_zone_page_state(NR_FREE_PAGES),
5342 free_pcp,
5343 global_zone_page_state(NR_FREE_CMA_PAGES));
5344
5345 for_each_online_pgdat(pgdat) {
5346 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5347 continue;
5348
5349 printk("Node %d"
5350 " active_anon:%lukB"
5351 " inactive_anon:%lukB"
5352 " active_file:%lukB"
5353 " inactive_file:%lukB"
5354 " unevictable:%lukB"
5355 " isolated(anon):%lukB"
5356 " isolated(file):%lukB"
5357 " mapped:%lukB"
5358 " dirty:%lukB"
5359 " writeback:%lukB"
5360 " shmem:%lukB"
5361 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5362 " shmem_thp: %lukB"
5363 " shmem_pmdmapped: %lukB"
5364 " anon_thp: %lukB"
5365 #endif
5366 " writeback_tmp:%lukB"
5367 " all_unreclaimable? %s"
5368 "\n",
5369 pgdat->node_id,
5370 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5371 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5372 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5373 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5374 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5375 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5376 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5377 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5378 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5379 K(node_page_state(pgdat, NR_WRITEBACK)),
5380 K(node_page_state(pgdat, NR_SHMEM)),
5381 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5382 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5383 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5384 * HPAGE_PMD_NR),
5385 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5386 #endif
5387 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5388 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5389 "yes" : "no");
5390 }
5391
5392 for_each_populated_zone(zone) {
5393 int i;
5394
5395 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5396 continue;
5397
5398 free_pcp = 0;
5399 for_each_online_cpu(cpu)
5400 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5401
5402 show_node(zone);
5403 printk(KERN_CONT
5404 "%s"
5405 " free:%lukB"
5406 " min:%lukB"
5407 " low:%lukB"
5408 " high:%lukB"
5409 " reserved_highatomic:%luKB"
5410 " active_anon:%lukB"
5411 " inactive_anon:%lukB"
5412 " active_file:%lukB"
5413 " inactive_file:%lukB"
5414 " unevictable:%lukB"
5415 " writepending:%lukB"
5416 " present:%lukB"
5417 " managed:%lukB"
5418 " mlocked:%lukB"
5419 " kernel_stack:%lukB"
5420 " pagetables:%lukB"
5421 " bounce:%lukB"
5422 " free_pcp:%lukB"
5423 " local_pcp:%ukB"
5424 " free_cma:%lukB"
5425 "\n",
5426 zone->name,
5427 K(zone_page_state(zone, NR_FREE_PAGES)),
5428 K(min_wmark_pages(zone)),
5429 K(low_wmark_pages(zone)),
5430 K(high_wmark_pages(zone)),
5431 K(zone->nr_reserved_highatomic),
5432 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5433 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5434 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5435 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5436 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5437 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5438 K(zone->present_pages),
5439 K(zone_managed_pages(zone)),
5440 K(zone_page_state(zone, NR_MLOCK)),
5441 zone_page_state(zone, NR_KERNEL_STACK_KB),
5442 K(zone_page_state(zone, NR_PAGETABLE)),
5443 K(zone_page_state(zone, NR_BOUNCE)),
5444 K(free_pcp),
5445 K(this_cpu_read(zone->pageset->pcp.count)),
5446 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5447 printk("lowmem_reserve[]:");
5448 for (i = 0; i < MAX_NR_ZONES; i++)
5449 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5450 printk(KERN_CONT "\n");
5451 }
5452
5453 for_each_populated_zone(zone) {
5454 unsigned int order;
5455 unsigned long nr[MAX_ORDER], flags, total = 0;
5456 unsigned char types[MAX_ORDER];
5457
5458 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5459 continue;
5460 show_node(zone);
5461 printk(KERN_CONT "%s: ", zone->name);
5462
5463 spin_lock_irqsave(&zone->lock, flags);
5464 for (order = 0; order < MAX_ORDER; order++) {
5465 struct free_area *area = &zone->free_area[order];
5466 int type;
5467
5468 nr[order] = area->nr_free;
5469 total += nr[order] << order;
5470
5471 types[order] = 0;
5472 for (type = 0; type < MIGRATE_TYPES; type++) {
5473 if (!free_area_empty(area, type))
5474 types[order] |= 1 << type;
5475 }
5476 }
5477 spin_unlock_irqrestore(&zone->lock, flags);
5478 for (order = 0; order < MAX_ORDER; order++) {
5479 printk(KERN_CONT "%lu*%lukB ",
5480 nr[order], K(1UL) << order);
5481 if (nr[order])
5482 show_migration_types(types[order]);
5483 }
5484 printk(KERN_CONT "= %lukB\n", K(total));
5485 }
5486
5487 hugetlb_show_meminfo();
5488
5489 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5490
5491 show_swap_cache_info();
5492 }
5493
5494 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5495 {
5496 zoneref->zone = zone;
5497 zoneref->zone_idx = zone_idx(zone);
5498 }
5499
5500 /*
5501 * Builds allocation fallback zone lists.
5502 *
5503 * Add all populated zones of a node to the zonelist.
5504 */
5505 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5506 {
5507 struct zone *zone;
5508 enum zone_type zone_type = MAX_NR_ZONES;
5509 int nr_zones = 0;
5510
5511 do {
5512 zone_type--;
5513 zone = pgdat->node_zones + zone_type;
5514 if (managed_zone(zone)) {
5515 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5516 check_highest_zone(zone_type);
5517 }
5518 } while (zone_type);
5519
5520 return nr_zones;
5521 }
5522
5523 #ifdef CONFIG_NUMA
5524
5525 static int __parse_numa_zonelist_order(char *s)
5526 {
5527 /*
5528 * We used to support different zonlists modes but they turned
5529 * out to be just not useful. Let's keep the warning in place
5530 * if somebody still use the cmd line parameter so that we do
5531 * not fail it silently
5532 */
5533 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5534 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5535 return -EINVAL;
5536 }
5537 return 0;
5538 }
5539
5540 static __init int setup_numa_zonelist_order(char *s)
5541 {
5542 if (!s)
5543 return 0;
5544
5545 return __parse_numa_zonelist_order(s);
5546 }
5547 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5548
5549 char numa_zonelist_order[] = "Node";
5550
5551 /*
5552 * sysctl handler for numa_zonelist_order
5553 */
5554 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5555 void __user *buffer, size_t *length,
5556 loff_t *ppos)
5557 {
5558 char *str;
5559 int ret;
5560
5561 if (!write)
5562 return proc_dostring(table, write, buffer, length, ppos);
5563 str = memdup_user_nul(buffer, 16);
5564 if (IS_ERR(str))
5565 return PTR_ERR(str);
5566
5567 ret = __parse_numa_zonelist_order(str);
5568 kfree(str);
5569 return ret;
5570 }
5571
5572
5573 #define MAX_NODE_LOAD (nr_online_nodes)
5574 static int node_load[MAX_NUMNODES];
5575
5576 /**
5577 * find_next_best_node - find the next node that should appear in a given node's fallback list
5578 * @node: node whose fallback list we're appending
5579 * @used_node_mask: nodemask_t of already used nodes
5580 *
5581 * We use a number of factors to determine which is the next node that should
5582 * appear on a given node's fallback list. The node should not have appeared
5583 * already in @node's fallback list, and it should be the next closest node
5584 * according to the distance array (which contains arbitrary distance values
5585 * from each node to each node in the system), and should also prefer nodes
5586 * with no CPUs, since presumably they'll have very little allocation pressure
5587 * on them otherwise.
5588 *
5589 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5590 */
5591 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5592 {
5593 int n, val;
5594 int min_val = INT_MAX;
5595 int best_node = NUMA_NO_NODE;
5596 const struct cpumask *tmp = cpumask_of_node(0);
5597
5598 /* Use the local node if we haven't already */
5599 if (!node_isset(node, *used_node_mask)) {
5600 node_set(node, *used_node_mask);
5601 return node;
5602 }
5603
5604 for_each_node_state(n, N_MEMORY) {
5605
5606 /* Don't want a node to appear more than once */
5607 if (node_isset(n, *used_node_mask))
5608 continue;
5609
5610 /* Use the distance array to find the distance */
5611 val = node_distance(node, n);
5612
5613 /* Penalize nodes under us ("prefer the next node") */
5614 val += (n < node);
5615
5616 /* Give preference to headless and unused nodes */
5617 tmp = cpumask_of_node(n);
5618 if (!cpumask_empty(tmp))
5619 val += PENALTY_FOR_NODE_WITH_CPUS;
5620
5621 /* Slight preference for less loaded node */
5622 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5623 val += node_load[n];
5624
5625 if (val < min_val) {
5626 min_val = val;
5627 best_node = n;
5628 }
5629 }
5630
5631 if (best_node >= 0)
5632 node_set(best_node, *used_node_mask);
5633
5634 return best_node;
5635 }
5636
5637
5638 /*
5639 * Build zonelists ordered by node and zones within node.
5640 * This results in maximum locality--normal zone overflows into local
5641 * DMA zone, if any--but risks exhausting DMA zone.
5642 */
5643 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5644 unsigned nr_nodes)
5645 {
5646 struct zoneref *zonerefs;
5647 int i;
5648
5649 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5650
5651 for (i = 0; i < nr_nodes; i++) {
5652 int nr_zones;
5653
5654 pg_data_t *node = NODE_DATA(node_order[i]);
5655
5656 nr_zones = build_zonerefs_node(node, zonerefs);
5657 zonerefs += nr_zones;
5658 }
5659 zonerefs->zone = NULL;
5660 zonerefs->zone_idx = 0;
5661 }
5662
5663 /*
5664 * Build gfp_thisnode zonelists
5665 */
5666 static void build_thisnode_zonelists(pg_data_t *pgdat)
5667 {
5668 struct zoneref *zonerefs;
5669 int nr_zones;
5670
5671 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5672 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5673 zonerefs += nr_zones;
5674 zonerefs->zone = NULL;
5675 zonerefs->zone_idx = 0;
5676 }
5677
5678 /*
5679 * Build zonelists ordered by zone and nodes within zones.
5680 * This results in conserving DMA zone[s] until all Normal memory is
5681 * exhausted, but results in overflowing to remote node while memory
5682 * may still exist in local DMA zone.
5683 */
5684
5685 static void build_zonelists(pg_data_t *pgdat)
5686 {
5687 static int node_order[MAX_NUMNODES];
5688 int node, load, nr_nodes = 0;
5689 nodemask_t used_mask;
5690 int local_node, prev_node;
5691
5692 /* NUMA-aware ordering of nodes */
5693 local_node = pgdat->node_id;
5694 load = nr_online_nodes;
5695 prev_node = local_node;
5696 nodes_clear(used_mask);
5697
5698 memset(node_order, 0, sizeof(node_order));
5699 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5700 /*
5701 * We don't want to pressure a particular node.
5702 * So adding penalty to the first node in same
5703 * distance group to make it round-robin.
5704 */
5705 if (node_distance(local_node, node) !=
5706 node_distance(local_node, prev_node))
5707 node_load[node] = load;
5708
5709 node_order[nr_nodes++] = node;
5710 prev_node = node;
5711 load--;
5712 }
5713
5714 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5715 build_thisnode_zonelists(pgdat);
5716 }
5717
5718 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5719 /*
5720 * Return node id of node used for "local" allocations.
5721 * I.e., first node id of first zone in arg node's generic zonelist.
5722 * Used for initializing percpu 'numa_mem', which is used primarily
5723 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5724 */
5725 int local_memory_node(int node)
5726 {
5727 struct zoneref *z;
5728
5729 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5730 gfp_zone(GFP_KERNEL),
5731 NULL);
5732 return zone_to_nid(z->zone);
5733 }
5734 #endif
5735
5736 static void setup_min_unmapped_ratio(void);
5737 static void setup_min_slab_ratio(void);
5738 #else /* CONFIG_NUMA */
5739
5740 static void build_zonelists(pg_data_t *pgdat)
5741 {
5742 int node, local_node;
5743 struct zoneref *zonerefs;
5744 int nr_zones;
5745
5746 local_node = pgdat->node_id;
5747
5748 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5749 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5750 zonerefs += nr_zones;
5751
5752 /*
5753 * Now we build the zonelist so that it contains the zones
5754 * of all the other nodes.
5755 * We don't want to pressure a particular node, so when
5756 * building the zones for node N, we make sure that the
5757 * zones coming right after the local ones are those from
5758 * node N+1 (modulo N)
5759 */
5760 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5761 if (!node_online(node))
5762 continue;
5763 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5764 zonerefs += nr_zones;
5765 }
5766 for (node = 0; node < local_node; node++) {
5767 if (!node_online(node))
5768 continue;
5769 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5770 zonerefs += nr_zones;
5771 }
5772
5773 zonerefs->zone = NULL;
5774 zonerefs->zone_idx = 0;
5775 }
5776
5777 #endif /* CONFIG_NUMA */
5778
5779 /*
5780 * Boot pageset table. One per cpu which is going to be used for all
5781 * zones and all nodes. The parameters will be set in such a way
5782 * that an item put on a list will immediately be handed over to
5783 * the buddy list. This is safe since pageset manipulation is done
5784 * with interrupts disabled.
5785 *
5786 * The boot_pagesets must be kept even after bootup is complete for
5787 * unused processors and/or zones. They do play a role for bootstrapping
5788 * hotplugged processors.
5789 *
5790 * zoneinfo_show() and maybe other functions do
5791 * not check if the processor is online before following the pageset pointer.
5792 * Other parts of the kernel may not check if the zone is available.
5793 */
5794 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5795 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5796 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5797
5798 static void __build_all_zonelists(void *data)
5799 {
5800 int nid;
5801 int __maybe_unused cpu;
5802 pg_data_t *self = data;
5803 static DEFINE_SPINLOCK(lock);
5804
5805 spin_lock(&lock);
5806
5807 #ifdef CONFIG_NUMA
5808 memset(node_load, 0, sizeof(node_load));
5809 #endif
5810
5811 /*
5812 * This node is hotadded and no memory is yet present. So just
5813 * building zonelists is fine - no need to touch other nodes.
5814 */
5815 if (self && !node_online(self->node_id)) {
5816 build_zonelists(self);
5817 } else {
5818 for_each_online_node(nid) {
5819 pg_data_t *pgdat = NODE_DATA(nid);
5820
5821 build_zonelists(pgdat);
5822 }
5823
5824 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5825 /*
5826 * We now know the "local memory node" for each node--
5827 * i.e., the node of the first zone in the generic zonelist.
5828 * Set up numa_mem percpu variable for on-line cpus. During
5829 * boot, only the boot cpu should be on-line; we'll init the
5830 * secondary cpus' numa_mem as they come on-line. During
5831 * node/memory hotplug, we'll fixup all on-line cpus.
5832 */
5833 for_each_online_cpu(cpu)
5834 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5835 #endif
5836 }
5837
5838 spin_unlock(&lock);
5839 }
5840
5841 static noinline void __init
5842 build_all_zonelists_init(void)
5843 {
5844 int cpu;
5845
5846 __build_all_zonelists(NULL);
5847
5848 /*
5849 * Initialize the boot_pagesets that are going to be used
5850 * for bootstrapping processors. The real pagesets for
5851 * each zone will be allocated later when the per cpu
5852 * allocator is available.
5853 *
5854 * boot_pagesets are used also for bootstrapping offline
5855 * cpus if the system is already booted because the pagesets
5856 * are needed to initialize allocators on a specific cpu too.
5857 * F.e. the percpu allocator needs the page allocator which
5858 * needs the percpu allocator in order to allocate its pagesets
5859 * (a chicken-egg dilemma).
5860 */
5861 for_each_possible_cpu(cpu)
5862 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5863
5864 mminit_verify_zonelist();
5865 cpuset_init_current_mems_allowed();
5866 }
5867
5868 /*
5869 * unless system_state == SYSTEM_BOOTING.
5870 *
5871 * __ref due to call of __init annotated helper build_all_zonelists_init
5872 * [protected by SYSTEM_BOOTING].
5873 */
5874 void __ref build_all_zonelists(pg_data_t *pgdat)
5875 {
5876 if (system_state == SYSTEM_BOOTING) {
5877 build_all_zonelists_init();
5878 } else {
5879 __build_all_zonelists(pgdat);
5880 /* cpuset refresh routine should be here */
5881 }
5882 vm_total_pages = nr_free_pagecache_pages();
5883 /*
5884 * Disable grouping by mobility if the number of pages in the
5885 * system is too low to allow the mechanism to work. It would be
5886 * more accurate, but expensive to check per-zone. This check is
5887 * made on memory-hotadd so a system can start with mobility
5888 * disabled and enable it later
5889 */
5890 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5891 page_group_by_mobility_disabled = 1;
5892 else
5893 page_group_by_mobility_disabled = 0;
5894
5895 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5896 nr_online_nodes,
5897 page_group_by_mobility_disabled ? "off" : "on",
5898 vm_total_pages);
5899 #ifdef CONFIG_NUMA
5900 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5901 #endif
5902 }
5903
5904 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5905 static bool __meminit
5906 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5907 {
5908 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5909 static struct memblock_region *r;
5910
5911 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5912 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5913 for_each_memblock(memory, r) {
5914 if (*pfn < memblock_region_memory_end_pfn(r))
5915 break;
5916 }
5917 }
5918 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5919 memblock_is_mirror(r)) {
5920 *pfn = memblock_region_memory_end_pfn(r);
5921 return true;
5922 }
5923 }
5924 #endif
5925 return false;
5926 }
5927
5928 #ifdef CONFIG_SPARSEMEM
5929 /* Skip PFNs that belong to non-present sections */
5930 static inline __meminit unsigned long next_pfn(unsigned long pfn)
5931 {
5932 const unsigned long section_nr = pfn_to_section_nr(++pfn);
5933
5934 if (present_section_nr(section_nr))
5935 return pfn;
5936 return section_nr_to_pfn(next_present_section_nr(section_nr));
5937 }
5938 #else
5939 static inline __meminit unsigned long next_pfn(unsigned long pfn)
5940 {
5941 return pfn++;
5942 }
5943 #endif
5944
5945 /*
5946 * Initially all pages are reserved - free ones are freed
5947 * up by memblock_free_all() once the early boot process is
5948 * done. Non-atomic initialization, single-pass.
5949 */
5950 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5951 unsigned long start_pfn, enum memmap_context context,
5952 struct vmem_altmap *altmap)
5953 {
5954 unsigned long pfn, end_pfn = start_pfn + size;
5955 struct page *page;
5956
5957 if (highest_memmap_pfn < end_pfn - 1)
5958 highest_memmap_pfn = end_pfn - 1;
5959
5960 #ifdef CONFIG_ZONE_DEVICE
5961 /*
5962 * Honor reservation requested by the driver for this ZONE_DEVICE
5963 * memory. We limit the total number of pages to initialize to just
5964 * those that might contain the memory mapping. We will defer the
5965 * ZONE_DEVICE page initialization until after we have released
5966 * the hotplug lock.
5967 */
5968 if (zone == ZONE_DEVICE) {
5969 if (!altmap)
5970 return;
5971
5972 if (start_pfn == altmap->base_pfn)
5973 start_pfn += altmap->reserve;
5974 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5975 }
5976 #endif
5977
5978 for (pfn = start_pfn; pfn < end_pfn; ) {
5979 /*
5980 * There can be holes in boot-time mem_map[]s handed to this
5981 * function. They do not exist on hotplugged memory.
5982 */
5983 if (context == MEMMAP_EARLY) {
5984 if (!early_pfn_valid(pfn)) {
5985 pfn = next_pfn(pfn);
5986 continue;
5987 }
5988 if (!early_pfn_in_nid(pfn, nid)) {
5989 pfn++;
5990 continue;
5991 }
5992 if (overlap_memmap_init(zone, &pfn))
5993 continue;
5994 if (defer_init(nid, pfn, end_pfn))
5995 break;
5996 }
5997
5998 page = pfn_to_page(pfn);
5999 __init_single_page(page, pfn, zone, nid);
6000 if (context == MEMMAP_HOTPLUG)
6001 __SetPageReserved(page);
6002
6003 /*
6004 * Mark the block movable so that blocks are reserved for
6005 * movable at startup. This will force kernel allocations
6006 * to reserve their blocks rather than leaking throughout
6007 * the address space during boot when many long-lived
6008 * kernel allocations are made.
6009 *
6010 * bitmap is created for zone's valid pfn range. but memmap
6011 * can be created for invalid pages (for alignment)
6012 * check here not to call set_pageblock_migratetype() against
6013 * pfn out of zone.
6014 */
6015 if (!(pfn & (pageblock_nr_pages - 1))) {
6016 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6017 cond_resched();
6018 }
6019 pfn++;
6020 }
6021 }
6022
6023 #ifdef CONFIG_ZONE_DEVICE
6024 void __ref memmap_init_zone_device(struct zone *zone,
6025 unsigned long start_pfn,
6026 unsigned long nr_pages,
6027 struct dev_pagemap *pgmap)
6028 {
6029 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6030 struct pglist_data *pgdat = zone->zone_pgdat;
6031 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6032 unsigned long zone_idx = zone_idx(zone);
6033 unsigned long start = jiffies;
6034 int nid = pgdat->node_id;
6035
6036 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6037 return;
6038
6039 /*
6040 * The call to memmap_init_zone should have already taken care
6041 * of the pages reserved for the memmap, so we can just jump to
6042 * the end of that region and start processing the device pages.
6043 */
6044 if (altmap) {
6045 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6046 nr_pages = end_pfn - start_pfn;
6047 }
6048
6049 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6050 struct page *page = pfn_to_page(pfn);
6051
6052 __init_single_page(page, pfn, zone_idx, nid);
6053
6054 /*
6055 * Mark page reserved as it will need to wait for onlining
6056 * phase for it to be fully associated with a zone.
6057 *
6058 * We can use the non-atomic __set_bit operation for setting
6059 * the flag as we are still initializing the pages.
6060 */
6061 __SetPageReserved(page);
6062
6063 /*
6064 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6065 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6066 * ever freed or placed on a driver-private list.
6067 */
6068 page->pgmap = pgmap;
6069 page->zone_device_data = NULL;
6070
6071 /*
6072 * Mark the block movable so that blocks are reserved for
6073 * movable at startup. This will force kernel allocations
6074 * to reserve their blocks rather than leaking throughout
6075 * the address space during boot when many long-lived
6076 * kernel allocations are made.
6077 *
6078 * bitmap is created for zone's valid pfn range. but memmap
6079 * can be created for invalid pages (for alignment)
6080 * check here not to call set_pageblock_migratetype() against
6081 * pfn out of zone.
6082 *
6083 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6084 * because this is done early in section_activate()
6085 */
6086 if (!(pfn & (pageblock_nr_pages - 1))) {
6087 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6088 cond_resched();
6089 }
6090 }
6091
6092 pr_info("%s initialised %lu pages in %ums\n", __func__,
6093 nr_pages, jiffies_to_msecs(jiffies - start));
6094 }
6095
6096 #endif
6097 static void __meminit zone_init_free_lists(struct zone *zone)
6098 {
6099 unsigned int order, t;
6100 for_each_migratetype_order(order, t) {
6101 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6102 zone->free_area[order].nr_free = 0;
6103 }
6104 }
6105
6106 void __meminit __weak memmap_init(unsigned long size, int nid,
6107 unsigned long zone, unsigned long start_pfn)
6108 {
6109 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
6110 }
6111
6112 static int zone_batchsize(struct zone *zone)
6113 {
6114 #ifdef CONFIG_MMU
6115 int batch;
6116
6117 /*
6118 * The per-cpu-pages pools are set to around 1000th of the
6119 * size of the zone.
6120 */
6121 batch = zone_managed_pages(zone) / 1024;
6122 /* But no more than a meg. */
6123 if (batch * PAGE_SIZE > 1024 * 1024)
6124 batch = (1024 * 1024) / PAGE_SIZE;
6125 batch /= 4; /* We effectively *= 4 below */
6126 if (batch < 1)
6127 batch = 1;
6128
6129 /*
6130 * Clamp the batch to a 2^n - 1 value. Having a power
6131 * of 2 value was found to be more likely to have
6132 * suboptimal cache aliasing properties in some cases.
6133 *
6134 * For example if 2 tasks are alternately allocating
6135 * batches of pages, one task can end up with a lot
6136 * of pages of one half of the possible page colors
6137 * and the other with pages of the other colors.
6138 */
6139 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6140
6141 return batch;
6142
6143 #else
6144 /* The deferral and batching of frees should be suppressed under NOMMU
6145 * conditions.
6146 *
6147 * The problem is that NOMMU needs to be able to allocate large chunks
6148 * of contiguous memory as there's no hardware page translation to
6149 * assemble apparent contiguous memory from discontiguous pages.
6150 *
6151 * Queueing large contiguous runs of pages for batching, however,
6152 * causes the pages to actually be freed in smaller chunks. As there
6153 * can be a significant delay between the individual batches being
6154 * recycled, this leads to the once large chunks of space being
6155 * fragmented and becoming unavailable for high-order allocations.
6156 */
6157 return 0;
6158 #endif
6159 }
6160
6161 /*
6162 * pcp->high and pcp->batch values are related and dependent on one another:
6163 * ->batch must never be higher then ->high.
6164 * The following function updates them in a safe manner without read side
6165 * locking.
6166 *
6167 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6168 * those fields changing asynchronously (acording the the above rule).
6169 *
6170 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6171 * outside of boot time (or some other assurance that no concurrent updaters
6172 * exist).
6173 */
6174 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6175 unsigned long batch)
6176 {
6177 /* start with a fail safe value for batch */
6178 pcp->batch = 1;
6179 smp_wmb();
6180
6181 /* Update high, then batch, in order */
6182 pcp->high = high;
6183 smp_wmb();
6184
6185 pcp->batch = batch;
6186 }
6187
6188 /* a companion to pageset_set_high() */
6189 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6190 {
6191 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6192 }
6193
6194 static void pageset_init(struct per_cpu_pageset *p)
6195 {
6196 struct per_cpu_pages *pcp;
6197 int migratetype;
6198
6199 memset(p, 0, sizeof(*p));
6200
6201 pcp = &p->pcp;
6202 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6203 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6204 }
6205
6206 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6207 {
6208 pageset_init(p);
6209 pageset_set_batch(p, batch);
6210 }
6211
6212 /*
6213 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6214 * to the value high for the pageset p.
6215 */
6216 static void pageset_set_high(struct per_cpu_pageset *p,
6217 unsigned long high)
6218 {
6219 unsigned long batch = max(1UL, high / 4);
6220 if ((high / 4) > (PAGE_SHIFT * 8))
6221 batch = PAGE_SHIFT * 8;
6222
6223 pageset_update(&p->pcp, high, batch);
6224 }
6225
6226 static void pageset_set_high_and_batch(struct zone *zone,
6227 struct per_cpu_pageset *pcp)
6228 {
6229 if (percpu_pagelist_fraction)
6230 pageset_set_high(pcp,
6231 (zone_managed_pages(zone) /
6232 percpu_pagelist_fraction));
6233 else
6234 pageset_set_batch(pcp, zone_batchsize(zone));
6235 }
6236
6237 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6238 {
6239 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6240
6241 pageset_init(pcp);
6242 pageset_set_high_and_batch(zone, pcp);
6243 }
6244
6245 void __meminit setup_zone_pageset(struct zone *zone)
6246 {
6247 int cpu;
6248 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6249 for_each_possible_cpu(cpu)
6250 zone_pageset_init(zone, cpu);
6251 }
6252
6253 /*
6254 * Allocate per cpu pagesets and initialize them.
6255 * Before this call only boot pagesets were available.
6256 */
6257 void __init setup_per_cpu_pageset(void)
6258 {
6259 struct pglist_data *pgdat;
6260 struct zone *zone;
6261
6262 for_each_populated_zone(zone)
6263 setup_zone_pageset(zone);
6264
6265 for_each_online_pgdat(pgdat)
6266 pgdat->per_cpu_nodestats =
6267 alloc_percpu(struct per_cpu_nodestat);
6268 }
6269
6270 static __meminit void zone_pcp_init(struct zone *zone)
6271 {
6272 /*
6273 * per cpu subsystem is not up at this point. The following code
6274 * relies on the ability of the linker to provide the
6275 * offset of a (static) per cpu variable into the per cpu area.
6276 */
6277 zone->pageset = &boot_pageset;
6278
6279 if (populated_zone(zone))
6280 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6281 zone->name, zone->present_pages,
6282 zone_batchsize(zone));
6283 }
6284
6285 void __meminit init_currently_empty_zone(struct zone *zone,
6286 unsigned long zone_start_pfn,
6287 unsigned long size)
6288 {
6289 struct pglist_data *pgdat = zone->zone_pgdat;
6290 int zone_idx = zone_idx(zone) + 1;
6291
6292 if (zone_idx > pgdat->nr_zones)
6293 pgdat->nr_zones = zone_idx;
6294
6295 zone->zone_start_pfn = zone_start_pfn;
6296
6297 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6298 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6299 pgdat->node_id,
6300 (unsigned long)zone_idx(zone),
6301 zone_start_pfn, (zone_start_pfn + size));
6302
6303 zone_init_free_lists(zone);
6304 zone->initialized = 1;
6305 }
6306
6307 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6308 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6309
6310 /*
6311 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6312 */
6313 int __meminit __early_pfn_to_nid(unsigned long pfn,
6314 struct mminit_pfnnid_cache *state)
6315 {
6316 unsigned long start_pfn, end_pfn;
6317 int nid;
6318
6319 if (state->last_start <= pfn && pfn < state->last_end)
6320 return state->last_nid;
6321
6322 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6323 if (nid != NUMA_NO_NODE) {
6324 state->last_start = start_pfn;
6325 state->last_end = end_pfn;
6326 state->last_nid = nid;
6327 }
6328
6329 return nid;
6330 }
6331 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6332
6333 /**
6334 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6335 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6336 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6337 *
6338 * If an architecture guarantees that all ranges registered contain no holes
6339 * and may be freed, this this function may be used instead of calling
6340 * memblock_free_early_nid() manually.
6341 */
6342 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6343 {
6344 unsigned long start_pfn, end_pfn;
6345 int i, this_nid;
6346
6347 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6348 start_pfn = min(start_pfn, max_low_pfn);
6349 end_pfn = min(end_pfn, max_low_pfn);
6350
6351 if (start_pfn < end_pfn)
6352 memblock_free_early_nid(PFN_PHYS(start_pfn),
6353 (end_pfn - start_pfn) << PAGE_SHIFT,
6354 this_nid);
6355 }
6356 }
6357
6358 /**
6359 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6360 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6361 *
6362 * If an architecture guarantees that all ranges registered contain no holes and may
6363 * be freed, this function may be used instead of calling memory_present() manually.
6364 */
6365 void __init sparse_memory_present_with_active_regions(int nid)
6366 {
6367 unsigned long start_pfn, end_pfn;
6368 int i, this_nid;
6369
6370 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6371 memory_present(this_nid, start_pfn, end_pfn);
6372 }
6373
6374 /**
6375 * get_pfn_range_for_nid - Return the start and end page frames for a node
6376 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6377 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6378 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6379 *
6380 * It returns the start and end page frame of a node based on information
6381 * provided by memblock_set_node(). If called for a node
6382 * with no available memory, a warning is printed and the start and end
6383 * PFNs will be 0.
6384 */
6385 void __init get_pfn_range_for_nid(unsigned int nid,
6386 unsigned long *start_pfn, unsigned long *end_pfn)
6387 {
6388 unsigned long this_start_pfn, this_end_pfn;
6389 int i;
6390
6391 *start_pfn = -1UL;
6392 *end_pfn = 0;
6393
6394 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6395 *start_pfn = min(*start_pfn, this_start_pfn);
6396 *end_pfn = max(*end_pfn, this_end_pfn);
6397 }
6398
6399 if (*start_pfn == -1UL)
6400 *start_pfn = 0;
6401 }
6402
6403 /*
6404 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6405 * assumption is made that zones within a node are ordered in monotonic
6406 * increasing memory addresses so that the "highest" populated zone is used
6407 */
6408 static void __init find_usable_zone_for_movable(void)
6409 {
6410 int zone_index;
6411 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6412 if (zone_index == ZONE_MOVABLE)
6413 continue;
6414
6415 if (arch_zone_highest_possible_pfn[zone_index] >
6416 arch_zone_lowest_possible_pfn[zone_index])
6417 break;
6418 }
6419
6420 VM_BUG_ON(zone_index == -1);
6421 movable_zone = zone_index;
6422 }
6423
6424 /*
6425 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6426 * because it is sized independent of architecture. Unlike the other zones,
6427 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6428 * in each node depending on the size of each node and how evenly kernelcore
6429 * is distributed. This helper function adjusts the zone ranges
6430 * provided by the architecture for a given node by using the end of the
6431 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6432 * zones within a node are in order of monotonic increases memory addresses
6433 */
6434 static void __init adjust_zone_range_for_zone_movable(int nid,
6435 unsigned long zone_type,
6436 unsigned long node_start_pfn,
6437 unsigned long node_end_pfn,
6438 unsigned long *zone_start_pfn,
6439 unsigned long *zone_end_pfn)
6440 {
6441 /* Only adjust if ZONE_MOVABLE is on this node */
6442 if (zone_movable_pfn[nid]) {
6443 /* Size ZONE_MOVABLE */
6444 if (zone_type == ZONE_MOVABLE) {
6445 *zone_start_pfn = zone_movable_pfn[nid];
6446 *zone_end_pfn = min(node_end_pfn,
6447 arch_zone_highest_possible_pfn[movable_zone]);
6448
6449 /* Adjust for ZONE_MOVABLE starting within this range */
6450 } else if (!mirrored_kernelcore &&
6451 *zone_start_pfn < zone_movable_pfn[nid] &&
6452 *zone_end_pfn > zone_movable_pfn[nid]) {
6453 *zone_end_pfn = zone_movable_pfn[nid];
6454
6455 /* Check if this whole range is within ZONE_MOVABLE */
6456 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6457 *zone_start_pfn = *zone_end_pfn;
6458 }
6459 }
6460
6461 /*
6462 * Return the number of pages a zone spans in a node, including holes
6463 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6464 */
6465 static unsigned long __init zone_spanned_pages_in_node(int nid,
6466 unsigned long zone_type,
6467 unsigned long node_start_pfn,
6468 unsigned long node_end_pfn,
6469 unsigned long *zone_start_pfn,
6470 unsigned long *zone_end_pfn,
6471 unsigned long *ignored)
6472 {
6473 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6474 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6475 /* When hotadd a new node from cpu_up(), the node should be empty */
6476 if (!node_start_pfn && !node_end_pfn)
6477 return 0;
6478
6479 /* Get the start and end of the zone */
6480 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6481 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6482 adjust_zone_range_for_zone_movable(nid, zone_type,
6483 node_start_pfn, node_end_pfn,
6484 zone_start_pfn, zone_end_pfn);
6485
6486 /* Check that this node has pages within the zone's required range */
6487 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6488 return 0;
6489
6490 /* Move the zone boundaries inside the node if necessary */
6491 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6492 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6493
6494 /* Return the spanned pages */
6495 return *zone_end_pfn - *zone_start_pfn;
6496 }
6497
6498 /*
6499 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6500 * then all holes in the requested range will be accounted for.
6501 */
6502 unsigned long __init __absent_pages_in_range(int nid,
6503 unsigned long range_start_pfn,
6504 unsigned long range_end_pfn)
6505 {
6506 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6507 unsigned long start_pfn, end_pfn;
6508 int i;
6509
6510 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6511 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6512 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6513 nr_absent -= end_pfn - start_pfn;
6514 }
6515 return nr_absent;
6516 }
6517
6518 /**
6519 * absent_pages_in_range - Return number of page frames in holes within a range
6520 * @start_pfn: The start PFN to start searching for holes
6521 * @end_pfn: The end PFN to stop searching for holes
6522 *
6523 * Return: the number of pages frames in memory holes within a range.
6524 */
6525 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6526 unsigned long end_pfn)
6527 {
6528 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6529 }
6530
6531 /* Return the number of page frames in holes in a zone on a node */
6532 static unsigned long __init zone_absent_pages_in_node(int nid,
6533 unsigned long zone_type,
6534 unsigned long node_start_pfn,
6535 unsigned long node_end_pfn,
6536 unsigned long *ignored)
6537 {
6538 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6539 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6540 unsigned long zone_start_pfn, zone_end_pfn;
6541 unsigned long nr_absent;
6542
6543 /* When hotadd a new node from cpu_up(), the node should be empty */
6544 if (!node_start_pfn && !node_end_pfn)
6545 return 0;
6546
6547 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6548 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6549
6550 adjust_zone_range_for_zone_movable(nid, zone_type,
6551 node_start_pfn, node_end_pfn,
6552 &zone_start_pfn, &zone_end_pfn);
6553 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6554
6555 /*
6556 * ZONE_MOVABLE handling.
6557 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6558 * and vice versa.
6559 */
6560 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6561 unsigned long start_pfn, end_pfn;
6562 struct memblock_region *r;
6563
6564 for_each_memblock(memory, r) {
6565 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6566 zone_start_pfn, zone_end_pfn);
6567 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6568 zone_start_pfn, zone_end_pfn);
6569
6570 if (zone_type == ZONE_MOVABLE &&
6571 memblock_is_mirror(r))
6572 nr_absent += end_pfn - start_pfn;
6573
6574 if (zone_type == ZONE_NORMAL &&
6575 !memblock_is_mirror(r))
6576 nr_absent += end_pfn - start_pfn;
6577 }
6578 }
6579
6580 return nr_absent;
6581 }
6582
6583 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6584 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6585 unsigned long zone_type,
6586 unsigned long node_start_pfn,
6587 unsigned long node_end_pfn,
6588 unsigned long *zone_start_pfn,
6589 unsigned long *zone_end_pfn,
6590 unsigned long *zones_size)
6591 {
6592 unsigned int zone;
6593
6594 *zone_start_pfn = node_start_pfn;
6595 for (zone = 0; zone < zone_type; zone++)
6596 *zone_start_pfn += zones_size[zone];
6597
6598 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6599
6600 return zones_size[zone_type];
6601 }
6602
6603 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6604 unsigned long zone_type,
6605 unsigned long node_start_pfn,
6606 unsigned long node_end_pfn,
6607 unsigned long *zholes_size)
6608 {
6609 if (!zholes_size)
6610 return 0;
6611
6612 return zholes_size[zone_type];
6613 }
6614
6615 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6616
6617 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6618 unsigned long node_start_pfn,
6619 unsigned long node_end_pfn,
6620 unsigned long *zones_size,
6621 unsigned long *zholes_size)
6622 {
6623 unsigned long realtotalpages = 0, totalpages = 0;
6624 enum zone_type i;
6625
6626 for (i = 0; i < MAX_NR_ZONES; i++) {
6627 struct zone *zone = pgdat->node_zones + i;
6628 unsigned long zone_start_pfn, zone_end_pfn;
6629 unsigned long size, real_size;
6630
6631 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6632 node_start_pfn,
6633 node_end_pfn,
6634 &zone_start_pfn,
6635 &zone_end_pfn,
6636 zones_size);
6637 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6638 node_start_pfn, node_end_pfn,
6639 zholes_size);
6640 if (size)
6641 zone->zone_start_pfn = zone_start_pfn;
6642 else
6643 zone->zone_start_pfn = 0;
6644 zone->spanned_pages = size;
6645 zone->present_pages = real_size;
6646
6647 totalpages += size;
6648 realtotalpages += real_size;
6649 }
6650
6651 pgdat->node_spanned_pages = totalpages;
6652 pgdat->node_present_pages = realtotalpages;
6653 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6654 realtotalpages);
6655 }
6656
6657 #ifndef CONFIG_SPARSEMEM
6658 /*
6659 * Calculate the size of the zone->blockflags rounded to an unsigned long
6660 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6661 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6662 * round what is now in bits to nearest long in bits, then return it in
6663 * bytes.
6664 */
6665 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6666 {
6667 unsigned long usemapsize;
6668
6669 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6670 usemapsize = roundup(zonesize, pageblock_nr_pages);
6671 usemapsize = usemapsize >> pageblock_order;
6672 usemapsize *= NR_PAGEBLOCK_BITS;
6673 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6674
6675 return usemapsize / 8;
6676 }
6677
6678 static void __ref setup_usemap(struct pglist_data *pgdat,
6679 struct zone *zone,
6680 unsigned long zone_start_pfn,
6681 unsigned long zonesize)
6682 {
6683 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6684 zone->pageblock_flags = NULL;
6685 if (usemapsize) {
6686 zone->pageblock_flags =
6687 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6688 pgdat->node_id);
6689 if (!zone->pageblock_flags)
6690 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6691 usemapsize, zone->name, pgdat->node_id);
6692 }
6693 }
6694 #else
6695 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6696 unsigned long zone_start_pfn, unsigned long zonesize) {}
6697 #endif /* CONFIG_SPARSEMEM */
6698
6699 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6700
6701 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6702 void __init set_pageblock_order(void)
6703 {
6704 unsigned int order;
6705
6706 /* Check that pageblock_nr_pages has not already been setup */
6707 if (pageblock_order)
6708 return;
6709
6710 if (HPAGE_SHIFT > PAGE_SHIFT)
6711 order = HUGETLB_PAGE_ORDER;
6712 else
6713 order = MAX_ORDER - 1;
6714
6715 /*
6716 * Assume the largest contiguous order of interest is a huge page.
6717 * This value may be variable depending on boot parameters on IA64 and
6718 * powerpc.
6719 */
6720 pageblock_order = order;
6721 }
6722 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6723
6724 /*
6725 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6726 * is unused as pageblock_order is set at compile-time. See
6727 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6728 * the kernel config
6729 */
6730 void __init set_pageblock_order(void)
6731 {
6732 }
6733
6734 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6735
6736 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6737 unsigned long present_pages)
6738 {
6739 unsigned long pages = spanned_pages;
6740
6741 /*
6742 * Provide a more accurate estimation if there are holes within
6743 * the zone and SPARSEMEM is in use. If there are holes within the
6744 * zone, each populated memory region may cost us one or two extra
6745 * memmap pages due to alignment because memmap pages for each
6746 * populated regions may not be naturally aligned on page boundary.
6747 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6748 */
6749 if (spanned_pages > present_pages + (present_pages >> 4) &&
6750 IS_ENABLED(CONFIG_SPARSEMEM))
6751 pages = present_pages;
6752
6753 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6754 }
6755
6756 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6757 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6758 {
6759 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6760
6761 spin_lock_init(&ds_queue->split_queue_lock);
6762 INIT_LIST_HEAD(&ds_queue->split_queue);
6763 ds_queue->split_queue_len = 0;
6764 }
6765 #else
6766 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6767 #endif
6768
6769 #ifdef CONFIG_COMPACTION
6770 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6771 {
6772 init_waitqueue_head(&pgdat->kcompactd_wait);
6773 }
6774 #else
6775 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6776 #endif
6777
6778 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6779 {
6780 pgdat_resize_init(pgdat);
6781
6782 pgdat_init_split_queue(pgdat);
6783 pgdat_init_kcompactd(pgdat);
6784
6785 init_waitqueue_head(&pgdat->kswapd_wait);
6786 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6787
6788 pgdat_page_ext_init(pgdat);
6789 spin_lock_init(&pgdat->lru_lock);
6790 lruvec_init(&pgdat->__lruvec);
6791 }
6792
6793 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6794 unsigned long remaining_pages)
6795 {
6796 atomic_long_set(&zone->managed_pages, remaining_pages);
6797 zone_set_nid(zone, nid);
6798 zone->name = zone_names[idx];
6799 zone->zone_pgdat = NODE_DATA(nid);
6800 spin_lock_init(&zone->lock);
6801 zone_seqlock_init(zone);
6802 zone_pcp_init(zone);
6803 }
6804
6805 /*
6806 * Set up the zone data structures
6807 * - init pgdat internals
6808 * - init all zones belonging to this node
6809 *
6810 * NOTE: this function is only called during memory hotplug
6811 */
6812 #ifdef CONFIG_MEMORY_HOTPLUG
6813 void __ref free_area_init_core_hotplug(int nid)
6814 {
6815 enum zone_type z;
6816 pg_data_t *pgdat = NODE_DATA(nid);
6817
6818 pgdat_init_internals(pgdat);
6819 for (z = 0; z < MAX_NR_ZONES; z++)
6820 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6821 }
6822 #endif
6823
6824 /*
6825 * Set up the zone data structures:
6826 * - mark all pages reserved
6827 * - mark all memory queues empty
6828 * - clear the memory bitmaps
6829 *
6830 * NOTE: pgdat should get zeroed by caller.
6831 * NOTE: this function is only called during early init.
6832 */
6833 static void __init free_area_init_core(struct pglist_data *pgdat)
6834 {
6835 enum zone_type j;
6836 int nid = pgdat->node_id;
6837
6838 pgdat_init_internals(pgdat);
6839 pgdat->per_cpu_nodestats = &boot_nodestats;
6840
6841 for (j = 0; j < MAX_NR_ZONES; j++) {
6842 struct zone *zone = pgdat->node_zones + j;
6843 unsigned long size, freesize, memmap_pages;
6844 unsigned long zone_start_pfn = zone->zone_start_pfn;
6845
6846 size = zone->spanned_pages;
6847 freesize = zone->present_pages;
6848
6849 /*
6850 * Adjust freesize so that it accounts for how much memory
6851 * is used by this zone for memmap. This affects the watermark
6852 * and per-cpu initialisations
6853 */
6854 memmap_pages = calc_memmap_size(size, freesize);
6855 if (!is_highmem_idx(j)) {
6856 if (freesize >= memmap_pages) {
6857 freesize -= memmap_pages;
6858 if (memmap_pages)
6859 printk(KERN_DEBUG
6860 " %s zone: %lu pages used for memmap\n",
6861 zone_names[j], memmap_pages);
6862 } else
6863 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6864 zone_names[j], memmap_pages, freesize);
6865 }
6866
6867 /* Account for reserved pages */
6868 if (j == 0 && freesize > dma_reserve) {
6869 freesize -= dma_reserve;
6870 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6871 zone_names[0], dma_reserve);
6872 }
6873
6874 if (!is_highmem_idx(j))
6875 nr_kernel_pages += freesize;
6876 /* Charge for highmem memmap if there are enough kernel pages */
6877 else if (nr_kernel_pages > memmap_pages * 2)
6878 nr_kernel_pages -= memmap_pages;
6879 nr_all_pages += freesize;
6880
6881 /*
6882 * Set an approximate value for lowmem here, it will be adjusted
6883 * when the bootmem allocator frees pages into the buddy system.
6884 * And all highmem pages will be managed by the buddy system.
6885 */
6886 zone_init_internals(zone, j, nid, freesize);
6887
6888 if (!size)
6889 continue;
6890
6891 set_pageblock_order();
6892 setup_usemap(pgdat, zone, zone_start_pfn, size);
6893 init_currently_empty_zone(zone, zone_start_pfn, size);
6894 memmap_init(size, nid, j, zone_start_pfn);
6895 }
6896 }
6897
6898 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6899 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6900 {
6901 unsigned long __maybe_unused start = 0;
6902 unsigned long __maybe_unused offset = 0;
6903
6904 /* Skip empty nodes */
6905 if (!pgdat->node_spanned_pages)
6906 return;
6907
6908 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6909 offset = pgdat->node_start_pfn - start;
6910 /* ia64 gets its own node_mem_map, before this, without bootmem */
6911 if (!pgdat->node_mem_map) {
6912 unsigned long size, end;
6913 struct page *map;
6914
6915 /*
6916 * The zone's endpoints aren't required to be MAX_ORDER
6917 * aligned but the node_mem_map endpoints must be in order
6918 * for the buddy allocator to function correctly.
6919 */
6920 end = pgdat_end_pfn(pgdat);
6921 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6922 size = (end - start) * sizeof(struct page);
6923 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6924 pgdat->node_id);
6925 if (!map)
6926 panic("Failed to allocate %ld bytes for node %d memory map\n",
6927 size, pgdat->node_id);
6928 pgdat->node_mem_map = map + offset;
6929 }
6930 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6931 __func__, pgdat->node_id, (unsigned long)pgdat,
6932 (unsigned long)pgdat->node_mem_map);
6933 #ifndef CONFIG_NEED_MULTIPLE_NODES
6934 /*
6935 * With no DISCONTIG, the global mem_map is just set as node 0's
6936 */
6937 if (pgdat == NODE_DATA(0)) {
6938 mem_map = NODE_DATA(0)->node_mem_map;
6939 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6940 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6941 mem_map -= offset;
6942 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6943 }
6944 #endif
6945 }
6946 #else
6947 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6948 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6949
6950 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6951 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6952 {
6953 pgdat->first_deferred_pfn = ULONG_MAX;
6954 }
6955 #else
6956 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6957 #endif
6958
6959 void __init free_area_init_node(int nid, unsigned long *zones_size,
6960 unsigned long node_start_pfn,
6961 unsigned long *zholes_size)
6962 {
6963 pg_data_t *pgdat = NODE_DATA(nid);
6964 unsigned long start_pfn = 0;
6965 unsigned long end_pfn = 0;
6966
6967 /* pg_data_t should be reset to zero when it's allocated */
6968 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6969
6970 pgdat->node_id = nid;
6971 pgdat->node_start_pfn = node_start_pfn;
6972 pgdat->per_cpu_nodestats = NULL;
6973 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6974 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6975 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6976 (u64)start_pfn << PAGE_SHIFT,
6977 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6978 #else
6979 start_pfn = node_start_pfn;
6980 #endif
6981 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6982 zones_size, zholes_size);
6983
6984 alloc_node_mem_map(pgdat);
6985 pgdat_set_deferred_range(pgdat);
6986
6987 free_area_init_core(pgdat);
6988 }
6989
6990 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6991 /*
6992 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6993 * PageReserved(). Return the number of struct pages that were initialized.
6994 */
6995 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
6996 {
6997 unsigned long pfn;
6998 u64 pgcnt = 0;
6999
7000 for (pfn = spfn; pfn < epfn; pfn++) {
7001 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
7002 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
7003 + pageblock_nr_pages - 1;
7004 continue;
7005 }
7006 /*
7007 * Use a fake node/zone (0) for now. Some of these pages
7008 * (in memblock.reserved but not in memblock.memory) will
7009 * get re-initialized via reserve_bootmem_region() later.
7010 */
7011 __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
7012 __SetPageReserved(pfn_to_page(pfn));
7013 pgcnt++;
7014 }
7015
7016 return pgcnt;
7017 }
7018
7019 /*
7020 * Only struct pages that are backed by physical memory are zeroed and
7021 * initialized by going through __init_single_page(). But, there are some
7022 * struct pages which are reserved in memblock allocator and their fields
7023 * may be accessed (for example page_to_pfn() on some configuration accesses
7024 * flags). We must explicitly initialize those struct pages.
7025 *
7026 * This function also addresses a similar issue where struct pages are left
7027 * uninitialized because the physical address range is not covered by
7028 * memblock.memory or memblock.reserved. That could happen when memblock
7029 * layout is manually configured via memmap=, or when the highest physical
7030 * address (max_pfn) does not end on a section boundary.
7031 */
7032 static void __init init_unavailable_mem(void)
7033 {
7034 phys_addr_t start, end;
7035 u64 i, pgcnt;
7036 phys_addr_t next = 0;
7037
7038 /*
7039 * Loop through unavailable ranges not covered by memblock.memory.
7040 */
7041 pgcnt = 0;
7042 for_each_mem_range(i, &memblock.memory, NULL,
7043 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
7044 if (next < start)
7045 pgcnt += init_unavailable_range(PFN_DOWN(next),
7046 PFN_UP(start));
7047 next = end;
7048 }
7049
7050 /*
7051 * Early sections always have a fully populated memmap for the whole
7052 * section - see pfn_valid(). If the last section has holes at the
7053 * end and that section is marked "online", the memmap will be
7054 * considered initialized. Make sure that memmap has a well defined
7055 * state.
7056 */
7057 pgcnt += init_unavailable_range(PFN_DOWN(next),
7058 round_up(max_pfn, PAGES_PER_SECTION));
7059
7060 /*
7061 * Struct pages that do not have backing memory. This could be because
7062 * firmware is using some of this memory, or for some other reasons.
7063 */
7064 if (pgcnt)
7065 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
7066 }
7067 #else
7068 static inline void __init init_unavailable_mem(void)
7069 {
7070 }
7071 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7072
7073 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
7074
7075 #if MAX_NUMNODES > 1
7076 /*
7077 * Figure out the number of possible node ids.
7078 */
7079 void __init setup_nr_node_ids(void)
7080 {
7081 unsigned int highest;
7082
7083 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7084 nr_node_ids = highest + 1;
7085 }
7086 #endif
7087
7088 /**
7089 * node_map_pfn_alignment - determine the maximum internode alignment
7090 *
7091 * This function should be called after node map is populated and sorted.
7092 * It calculates the maximum power of two alignment which can distinguish
7093 * all the nodes.
7094 *
7095 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7096 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7097 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7098 * shifted, 1GiB is enough and this function will indicate so.
7099 *
7100 * This is used to test whether pfn -> nid mapping of the chosen memory
7101 * model has fine enough granularity to avoid incorrect mapping for the
7102 * populated node map.
7103 *
7104 * Return: the determined alignment in pfn's. 0 if there is no alignment
7105 * requirement (single node).
7106 */
7107 unsigned long __init node_map_pfn_alignment(void)
7108 {
7109 unsigned long accl_mask = 0, last_end = 0;
7110 unsigned long start, end, mask;
7111 int last_nid = NUMA_NO_NODE;
7112 int i, nid;
7113
7114 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7115 if (!start || last_nid < 0 || last_nid == nid) {
7116 last_nid = nid;
7117 last_end = end;
7118 continue;
7119 }
7120
7121 /*
7122 * Start with a mask granular enough to pin-point to the
7123 * start pfn and tick off bits one-by-one until it becomes
7124 * too coarse to separate the current node from the last.
7125 */
7126 mask = ~((1 << __ffs(start)) - 1);
7127 while (mask && last_end <= (start & (mask << 1)))
7128 mask <<= 1;
7129
7130 /* accumulate all internode masks */
7131 accl_mask |= mask;
7132 }
7133
7134 /* convert mask to number of pages */
7135 return ~accl_mask + 1;
7136 }
7137
7138 /* Find the lowest pfn for a node */
7139 static unsigned long __init find_min_pfn_for_node(int nid)
7140 {
7141 unsigned long min_pfn = ULONG_MAX;
7142 unsigned long start_pfn;
7143 int i;
7144
7145 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7146 min_pfn = min(min_pfn, start_pfn);
7147
7148 if (min_pfn == ULONG_MAX) {
7149 pr_warn("Could not find start_pfn for node %d\n", nid);
7150 return 0;
7151 }
7152
7153 return min_pfn;
7154 }
7155
7156 /**
7157 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7158 *
7159 * Return: the minimum PFN based on information provided via
7160 * memblock_set_node().
7161 */
7162 unsigned long __init find_min_pfn_with_active_regions(void)
7163 {
7164 return find_min_pfn_for_node(MAX_NUMNODES);
7165 }
7166
7167 /*
7168 * early_calculate_totalpages()
7169 * Sum pages in active regions for movable zone.
7170 * Populate N_MEMORY for calculating usable_nodes.
7171 */
7172 static unsigned long __init early_calculate_totalpages(void)
7173 {
7174 unsigned long totalpages = 0;
7175 unsigned long start_pfn, end_pfn;
7176 int i, nid;
7177
7178 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7179 unsigned long pages = end_pfn - start_pfn;
7180
7181 totalpages += pages;
7182 if (pages)
7183 node_set_state(nid, N_MEMORY);
7184 }
7185 return totalpages;
7186 }
7187
7188 /*
7189 * Find the PFN the Movable zone begins in each node. Kernel memory
7190 * is spread evenly between nodes as long as the nodes have enough
7191 * memory. When they don't, some nodes will have more kernelcore than
7192 * others
7193 */
7194 static void __init find_zone_movable_pfns_for_nodes(void)
7195 {
7196 int i, nid;
7197 unsigned long usable_startpfn;
7198 unsigned long kernelcore_node, kernelcore_remaining;
7199 /* save the state before borrow the nodemask */
7200 nodemask_t saved_node_state = node_states[N_MEMORY];
7201 unsigned long totalpages = early_calculate_totalpages();
7202 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7203 struct memblock_region *r;
7204
7205 /* Need to find movable_zone earlier when movable_node is specified. */
7206 find_usable_zone_for_movable();
7207
7208 /*
7209 * If movable_node is specified, ignore kernelcore and movablecore
7210 * options.
7211 */
7212 if (movable_node_is_enabled()) {
7213 for_each_memblock(memory, r) {
7214 if (!memblock_is_hotpluggable(r))
7215 continue;
7216
7217 nid = r->nid;
7218
7219 usable_startpfn = PFN_DOWN(r->base);
7220 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7221 min(usable_startpfn, zone_movable_pfn[nid]) :
7222 usable_startpfn;
7223 }
7224
7225 goto out2;
7226 }
7227
7228 /*
7229 * If kernelcore=mirror is specified, ignore movablecore option
7230 */
7231 if (mirrored_kernelcore) {
7232 bool mem_below_4gb_not_mirrored = false;
7233
7234 for_each_memblock(memory, r) {
7235 if (memblock_is_mirror(r))
7236 continue;
7237
7238 nid = r->nid;
7239
7240 usable_startpfn = memblock_region_memory_base_pfn(r);
7241
7242 if (usable_startpfn < 0x100000) {
7243 mem_below_4gb_not_mirrored = true;
7244 continue;
7245 }
7246
7247 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7248 min(usable_startpfn, zone_movable_pfn[nid]) :
7249 usable_startpfn;
7250 }
7251
7252 if (mem_below_4gb_not_mirrored)
7253 pr_warn("This configuration results in unmirrored kernel memory.");
7254
7255 goto out2;
7256 }
7257
7258 /*
7259 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7260 * amount of necessary memory.
7261 */
7262 if (required_kernelcore_percent)
7263 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7264 10000UL;
7265 if (required_movablecore_percent)
7266 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7267 10000UL;
7268
7269 /*
7270 * If movablecore= was specified, calculate what size of
7271 * kernelcore that corresponds so that memory usable for
7272 * any allocation type is evenly spread. If both kernelcore
7273 * and movablecore are specified, then the value of kernelcore
7274 * will be used for required_kernelcore if it's greater than
7275 * what movablecore would have allowed.
7276 */
7277 if (required_movablecore) {
7278 unsigned long corepages;
7279
7280 /*
7281 * Round-up so that ZONE_MOVABLE is at least as large as what
7282 * was requested by the user
7283 */
7284 required_movablecore =
7285 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7286 required_movablecore = min(totalpages, required_movablecore);
7287 corepages = totalpages - required_movablecore;
7288
7289 required_kernelcore = max(required_kernelcore, corepages);
7290 }
7291
7292 /*
7293 * If kernelcore was not specified or kernelcore size is larger
7294 * than totalpages, there is no ZONE_MOVABLE.
7295 */
7296 if (!required_kernelcore || required_kernelcore >= totalpages)
7297 goto out;
7298
7299 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7300 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7301
7302 restart:
7303 /* Spread kernelcore memory as evenly as possible throughout nodes */
7304 kernelcore_node = required_kernelcore / usable_nodes;
7305 for_each_node_state(nid, N_MEMORY) {
7306 unsigned long start_pfn, end_pfn;
7307
7308 /*
7309 * Recalculate kernelcore_node if the division per node
7310 * now exceeds what is necessary to satisfy the requested
7311 * amount of memory for the kernel
7312 */
7313 if (required_kernelcore < kernelcore_node)
7314 kernelcore_node = required_kernelcore / usable_nodes;
7315
7316 /*
7317 * As the map is walked, we track how much memory is usable
7318 * by the kernel using kernelcore_remaining. When it is
7319 * 0, the rest of the node is usable by ZONE_MOVABLE
7320 */
7321 kernelcore_remaining = kernelcore_node;
7322
7323 /* Go through each range of PFNs within this node */
7324 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7325 unsigned long size_pages;
7326
7327 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7328 if (start_pfn >= end_pfn)
7329 continue;
7330
7331 /* Account for what is only usable for kernelcore */
7332 if (start_pfn < usable_startpfn) {
7333 unsigned long kernel_pages;
7334 kernel_pages = min(end_pfn, usable_startpfn)
7335 - start_pfn;
7336
7337 kernelcore_remaining -= min(kernel_pages,
7338 kernelcore_remaining);
7339 required_kernelcore -= min(kernel_pages,
7340 required_kernelcore);
7341
7342 /* Continue if range is now fully accounted */
7343 if (end_pfn <= usable_startpfn) {
7344
7345 /*
7346 * Push zone_movable_pfn to the end so
7347 * that if we have to rebalance
7348 * kernelcore across nodes, we will
7349 * not double account here
7350 */
7351 zone_movable_pfn[nid] = end_pfn;
7352 continue;
7353 }
7354 start_pfn = usable_startpfn;
7355 }
7356
7357 /*
7358 * The usable PFN range for ZONE_MOVABLE is from
7359 * start_pfn->end_pfn. Calculate size_pages as the
7360 * number of pages used as kernelcore
7361 */
7362 size_pages = end_pfn - start_pfn;
7363 if (size_pages > kernelcore_remaining)
7364 size_pages = kernelcore_remaining;
7365 zone_movable_pfn[nid] = start_pfn + size_pages;
7366
7367 /*
7368 * Some kernelcore has been met, update counts and
7369 * break if the kernelcore for this node has been
7370 * satisfied
7371 */
7372 required_kernelcore -= min(required_kernelcore,
7373 size_pages);
7374 kernelcore_remaining -= size_pages;
7375 if (!kernelcore_remaining)
7376 break;
7377 }
7378 }
7379
7380 /*
7381 * If there is still required_kernelcore, we do another pass with one
7382 * less node in the count. This will push zone_movable_pfn[nid] further
7383 * along on the nodes that still have memory until kernelcore is
7384 * satisfied
7385 */
7386 usable_nodes--;
7387 if (usable_nodes && required_kernelcore > usable_nodes)
7388 goto restart;
7389
7390 out2:
7391 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7392 for (nid = 0; nid < MAX_NUMNODES; nid++)
7393 zone_movable_pfn[nid] =
7394 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7395
7396 out:
7397 /* restore the node_state */
7398 node_states[N_MEMORY] = saved_node_state;
7399 }
7400
7401 /* Any regular or high memory on that node ? */
7402 static void check_for_memory(pg_data_t *pgdat, int nid)
7403 {
7404 enum zone_type zone_type;
7405
7406 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7407 struct zone *zone = &pgdat->node_zones[zone_type];
7408 if (populated_zone(zone)) {
7409 if (IS_ENABLED(CONFIG_HIGHMEM))
7410 node_set_state(nid, N_HIGH_MEMORY);
7411 if (zone_type <= ZONE_NORMAL)
7412 node_set_state(nid, N_NORMAL_MEMORY);
7413 break;
7414 }
7415 }
7416 }
7417
7418 /**
7419 * free_area_init_nodes - Initialise all pg_data_t and zone data
7420 * @max_zone_pfn: an array of max PFNs for each zone
7421 *
7422 * This will call free_area_init_node() for each active node in the system.
7423 * Using the page ranges provided by memblock_set_node(), the size of each
7424 * zone in each node and their holes is calculated. If the maximum PFN
7425 * between two adjacent zones match, it is assumed that the zone is empty.
7426 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7427 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7428 * starts where the previous one ended. For example, ZONE_DMA32 starts
7429 * at arch_max_dma_pfn.
7430 */
7431 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7432 {
7433 unsigned long start_pfn, end_pfn;
7434 int i, nid;
7435
7436 /* Record where the zone boundaries are */
7437 memset(arch_zone_lowest_possible_pfn, 0,
7438 sizeof(arch_zone_lowest_possible_pfn));
7439 memset(arch_zone_highest_possible_pfn, 0,
7440 sizeof(arch_zone_highest_possible_pfn));
7441
7442 start_pfn = find_min_pfn_with_active_regions();
7443
7444 for (i = 0; i < MAX_NR_ZONES; i++) {
7445 if (i == ZONE_MOVABLE)
7446 continue;
7447
7448 end_pfn = max(max_zone_pfn[i], start_pfn);
7449 arch_zone_lowest_possible_pfn[i] = start_pfn;
7450 arch_zone_highest_possible_pfn[i] = end_pfn;
7451
7452 start_pfn = end_pfn;
7453 }
7454
7455 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7456 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7457 find_zone_movable_pfns_for_nodes();
7458
7459 /* Print out the zone ranges */
7460 pr_info("Zone ranges:\n");
7461 for (i = 0; i < MAX_NR_ZONES; i++) {
7462 if (i == ZONE_MOVABLE)
7463 continue;
7464 pr_info(" %-8s ", zone_names[i]);
7465 if (arch_zone_lowest_possible_pfn[i] ==
7466 arch_zone_highest_possible_pfn[i])
7467 pr_cont("empty\n");
7468 else
7469 pr_cont("[mem %#018Lx-%#018Lx]\n",
7470 (u64)arch_zone_lowest_possible_pfn[i]
7471 << PAGE_SHIFT,
7472 ((u64)arch_zone_highest_possible_pfn[i]
7473 << PAGE_SHIFT) - 1);
7474 }
7475
7476 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7477 pr_info("Movable zone start for each node\n");
7478 for (i = 0; i < MAX_NUMNODES; i++) {
7479 if (zone_movable_pfn[i])
7480 pr_info(" Node %d: %#018Lx\n", i,
7481 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7482 }
7483
7484 /*
7485 * Print out the early node map, and initialize the
7486 * subsection-map relative to active online memory ranges to
7487 * enable future "sub-section" extensions of the memory map.
7488 */
7489 pr_info("Early memory node ranges\n");
7490 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7491 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7492 (u64)start_pfn << PAGE_SHIFT,
7493 ((u64)end_pfn << PAGE_SHIFT) - 1);
7494 subsection_map_init(start_pfn, end_pfn - start_pfn);
7495 }
7496
7497 /* Initialise every node */
7498 mminit_verify_pageflags_layout();
7499 setup_nr_node_ids();
7500 init_unavailable_mem();
7501 for_each_online_node(nid) {
7502 pg_data_t *pgdat = NODE_DATA(nid);
7503 free_area_init_node(nid, NULL,
7504 find_min_pfn_for_node(nid), NULL);
7505
7506 /* Any memory on that node */
7507 if (pgdat->node_present_pages)
7508 node_set_state(nid, N_MEMORY);
7509 check_for_memory(pgdat, nid);
7510 }
7511 }
7512
7513 static int __init cmdline_parse_core(char *p, unsigned long *core,
7514 unsigned long *percent)
7515 {
7516 unsigned long long coremem;
7517 char *endptr;
7518
7519 if (!p)
7520 return -EINVAL;
7521
7522 /* Value may be a percentage of total memory, otherwise bytes */
7523 coremem = simple_strtoull(p, &endptr, 0);
7524 if (*endptr == '%') {
7525 /* Paranoid check for percent values greater than 100 */
7526 WARN_ON(coremem > 100);
7527
7528 *percent = coremem;
7529 } else {
7530 coremem = memparse(p, &p);
7531 /* Paranoid check that UL is enough for the coremem value */
7532 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7533
7534 *core = coremem >> PAGE_SHIFT;
7535 *percent = 0UL;
7536 }
7537 return 0;
7538 }
7539
7540 /*
7541 * kernelcore=size sets the amount of memory for use for allocations that
7542 * cannot be reclaimed or migrated.
7543 */
7544 static int __init cmdline_parse_kernelcore(char *p)
7545 {
7546 /* parse kernelcore=mirror */
7547 if (parse_option_str(p, "mirror")) {
7548 mirrored_kernelcore = true;
7549 return 0;
7550 }
7551
7552 return cmdline_parse_core(p, &required_kernelcore,
7553 &required_kernelcore_percent);
7554 }
7555
7556 /*
7557 * movablecore=size sets the amount of memory for use for allocations that
7558 * can be reclaimed or migrated.
7559 */
7560 static int __init cmdline_parse_movablecore(char *p)
7561 {
7562 return cmdline_parse_core(p, &required_movablecore,
7563 &required_movablecore_percent);
7564 }
7565
7566 early_param("kernelcore", cmdline_parse_kernelcore);
7567 early_param("movablecore", cmdline_parse_movablecore);
7568
7569 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7570
7571 void adjust_managed_page_count(struct page *page, long count)
7572 {
7573 atomic_long_add(count, &page_zone(page)->managed_pages);
7574 totalram_pages_add(count);
7575 #ifdef CONFIG_HIGHMEM
7576 if (PageHighMem(page))
7577 totalhigh_pages_add(count);
7578 #endif
7579 }
7580 EXPORT_SYMBOL(adjust_managed_page_count);
7581
7582 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7583 {
7584 void *pos;
7585 unsigned long pages = 0;
7586
7587 start = (void *)PAGE_ALIGN((unsigned long)start);
7588 end = (void *)((unsigned long)end & PAGE_MASK);
7589 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7590 struct page *page = virt_to_page(pos);
7591 void *direct_map_addr;
7592
7593 /*
7594 * 'direct_map_addr' might be different from 'pos'
7595 * because some architectures' virt_to_page()
7596 * work with aliases. Getting the direct map
7597 * address ensures that we get a _writeable_
7598 * alias for the memset().
7599 */
7600 direct_map_addr = page_address(page);
7601 if ((unsigned int)poison <= 0xFF)
7602 memset(direct_map_addr, poison, PAGE_SIZE);
7603
7604 free_reserved_page(page);
7605 }
7606
7607 if (pages && s)
7608 pr_info("Freeing %s memory: %ldK\n",
7609 s, pages << (PAGE_SHIFT - 10));
7610
7611 return pages;
7612 }
7613
7614 #ifdef CONFIG_HIGHMEM
7615 void free_highmem_page(struct page *page)
7616 {
7617 __free_reserved_page(page);
7618 totalram_pages_inc();
7619 atomic_long_inc(&page_zone(page)->managed_pages);
7620 totalhigh_pages_inc();
7621 }
7622 #endif
7623
7624
7625 void __init mem_init_print_info(const char *str)
7626 {
7627 unsigned long physpages, codesize, datasize, rosize, bss_size;
7628 unsigned long init_code_size, init_data_size;
7629
7630 physpages = get_num_physpages();
7631 codesize = _etext - _stext;
7632 datasize = _edata - _sdata;
7633 rosize = __end_rodata - __start_rodata;
7634 bss_size = __bss_stop - __bss_start;
7635 init_data_size = __init_end - __init_begin;
7636 init_code_size = _einittext - _sinittext;
7637
7638 /*
7639 * Detect special cases and adjust section sizes accordingly:
7640 * 1) .init.* may be embedded into .data sections
7641 * 2) .init.text.* may be out of [__init_begin, __init_end],
7642 * please refer to arch/tile/kernel/vmlinux.lds.S.
7643 * 3) .rodata.* may be embedded into .text or .data sections.
7644 */
7645 #define adj_init_size(start, end, size, pos, adj) \
7646 do { \
7647 if (start <= pos && pos < end && size > adj) \
7648 size -= adj; \
7649 } while (0)
7650
7651 adj_init_size(__init_begin, __init_end, init_data_size,
7652 _sinittext, init_code_size);
7653 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7654 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7655 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7656 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7657
7658 #undef adj_init_size
7659
7660 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7661 #ifdef CONFIG_HIGHMEM
7662 ", %luK highmem"
7663 #endif
7664 "%s%s)\n",
7665 nr_free_pages() << (PAGE_SHIFT - 10),
7666 physpages << (PAGE_SHIFT - 10),
7667 codesize >> 10, datasize >> 10, rosize >> 10,
7668 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7669 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7670 totalcma_pages << (PAGE_SHIFT - 10),
7671 #ifdef CONFIG_HIGHMEM
7672 totalhigh_pages() << (PAGE_SHIFT - 10),
7673 #endif
7674 str ? ", " : "", str ? str : "");
7675 }
7676
7677 /**
7678 * set_dma_reserve - set the specified number of pages reserved in the first zone
7679 * @new_dma_reserve: The number of pages to mark reserved
7680 *
7681 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7682 * In the DMA zone, a significant percentage may be consumed by kernel image
7683 * and other unfreeable allocations which can skew the watermarks badly. This
7684 * function may optionally be used to account for unfreeable pages in the
7685 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7686 * smaller per-cpu batchsize.
7687 */
7688 void __init set_dma_reserve(unsigned long new_dma_reserve)
7689 {
7690 dma_reserve = new_dma_reserve;
7691 }
7692
7693 void __init free_area_init(unsigned long *zones_size)
7694 {
7695 init_unavailable_mem();
7696 free_area_init_node(0, zones_size,
7697 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7698 }
7699
7700 static int page_alloc_cpu_dead(unsigned int cpu)
7701 {
7702
7703 lru_add_drain_cpu(cpu);
7704 drain_pages(cpu);
7705
7706 /*
7707 * Spill the event counters of the dead processor
7708 * into the current processors event counters.
7709 * This artificially elevates the count of the current
7710 * processor.
7711 */
7712 vm_events_fold_cpu(cpu);
7713
7714 /*
7715 * Zero the differential counters of the dead processor
7716 * so that the vm statistics are consistent.
7717 *
7718 * This is only okay since the processor is dead and cannot
7719 * race with what we are doing.
7720 */
7721 cpu_vm_stats_fold(cpu);
7722 return 0;
7723 }
7724
7725 #ifdef CONFIG_NUMA
7726 int hashdist = HASHDIST_DEFAULT;
7727
7728 static int __init set_hashdist(char *str)
7729 {
7730 if (!str)
7731 return 0;
7732 hashdist = simple_strtoul(str, &str, 0);
7733 return 1;
7734 }
7735 __setup("hashdist=", set_hashdist);
7736 #endif
7737
7738 void __init page_alloc_init(void)
7739 {
7740 int ret;
7741
7742 #ifdef CONFIG_NUMA
7743 if (num_node_state(N_MEMORY) == 1)
7744 hashdist = 0;
7745 #endif
7746
7747 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7748 "mm/page_alloc:dead", NULL,
7749 page_alloc_cpu_dead);
7750 WARN_ON(ret < 0);
7751 }
7752
7753 /*
7754 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7755 * or min_free_kbytes changes.
7756 */
7757 static void calculate_totalreserve_pages(void)
7758 {
7759 struct pglist_data *pgdat;
7760 unsigned long reserve_pages = 0;
7761 enum zone_type i, j;
7762
7763 for_each_online_pgdat(pgdat) {
7764
7765 pgdat->totalreserve_pages = 0;
7766
7767 for (i = 0; i < MAX_NR_ZONES; i++) {
7768 struct zone *zone = pgdat->node_zones + i;
7769 long max = 0;
7770 unsigned long managed_pages = zone_managed_pages(zone);
7771
7772 /* Find valid and maximum lowmem_reserve in the zone */
7773 for (j = i; j < MAX_NR_ZONES; j++) {
7774 if (zone->lowmem_reserve[j] > max)
7775 max = zone->lowmem_reserve[j];
7776 }
7777
7778 /* we treat the high watermark as reserved pages. */
7779 max += high_wmark_pages(zone);
7780
7781 if (max > managed_pages)
7782 max = managed_pages;
7783
7784 pgdat->totalreserve_pages += max;
7785
7786 reserve_pages += max;
7787 }
7788 }
7789 totalreserve_pages = reserve_pages;
7790 }
7791
7792 /*
7793 * setup_per_zone_lowmem_reserve - called whenever
7794 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7795 * has a correct pages reserved value, so an adequate number of
7796 * pages are left in the zone after a successful __alloc_pages().
7797 */
7798 static void setup_per_zone_lowmem_reserve(void)
7799 {
7800 struct pglist_data *pgdat;
7801 enum zone_type j, idx;
7802
7803 for_each_online_pgdat(pgdat) {
7804 for (j = 0; j < MAX_NR_ZONES; j++) {
7805 struct zone *zone = pgdat->node_zones + j;
7806 unsigned long managed_pages = zone_managed_pages(zone);
7807
7808 zone->lowmem_reserve[j] = 0;
7809
7810 idx = j;
7811 while (idx) {
7812 struct zone *lower_zone;
7813
7814 idx--;
7815 lower_zone = pgdat->node_zones + idx;
7816
7817 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7818 sysctl_lowmem_reserve_ratio[idx] = 0;
7819 lower_zone->lowmem_reserve[j] = 0;
7820 } else {
7821 lower_zone->lowmem_reserve[j] =
7822 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7823 }
7824 managed_pages += zone_managed_pages(lower_zone);
7825 }
7826 }
7827 }
7828
7829 /* update totalreserve_pages */
7830 calculate_totalreserve_pages();
7831 }
7832
7833 static void __setup_per_zone_wmarks(void)
7834 {
7835 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7836 unsigned long lowmem_pages = 0;
7837 struct zone *zone;
7838 unsigned long flags;
7839
7840 /* Calculate total number of !ZONE_HIGHMEM pages */
7841 for_each_zone(zone) {
7842 if (!is_highmem(zone))
7843 lowmem_pages += zone_managed_pages(zone);
7844 }
7845
7846 for_each_zone(zone) {
7847 u64 tmp;
7848
7849 spin_lock_irqsave(&zone->lock, flags);
7850 tmp = (u64)pages_min * zone_managed_pages(zone);
7851 do_div(tmp, lowmem_pages);
7852 if (is_highmem(zone)) {
7853 /*
7854 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7855 * need highmem pages, so cap pages_min to a small
7856 * value here.
7857 *
7858 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7859 * deltas control async page reclaim, and so should
7860 * not be capped for highmem.
7861 */
7862 unsigned long min_pages;
7863
7864 min_pages = zone_managed_pages(zone) / 1024;
7865 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7866 zone->_watermark[WMARK_MIN] = min_pages;
7867 } else {
7868 /*
7869 * If it's a lowmem zone, reserve a number of pages
7870 * proportionate to the zone's size.
7871 */
7872 zone->_watermark[WMARK_MIN] = tmp;
7873 }
7874
7875 /*
7876 * Set the kswapd watermarks distance according to the
7877 * scale factor in proportion to available memory, but
7878 * ensure a minimum size on small systems.
7879 */
7880 tmp = max_t(u64, tmp >> 2,
7881 mult_frac(zone_managed_pages(zone),
7882 watermark_scale_factor, 10000));
7883
7884 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7885 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7886 zone->watermark_boost = 0;
7887
7888 spin_unlock_irqrestore(&zone->lock, flags);
7889 }
7890
7891 /* update totalreserve_pages */
7892 calculate_totalreserve_pages();
7893 }
7894
7895 /**
7896 * setup_per_zone_wmarks - called when min_free_kbytes changes
7897 * or when memory is hot-{added|removed}
7898 *
7899 * Ensures that the watermark[min,low,high] values for each zone are set
7900 * correctly with respect to min_free_kbytes.
7901 */
7902 void setup_per_zone_wmarks(void)
7903 {
7904 static DEFINE_SPINLOCK(lock);
7905
7906 spin_lock(&lock);
7907 __setup_per_zone_wmarks();
7908 spin_unlock(&lock);
7909 }
7910
7911 /*
7912 * Initialise min_free_kbytes.
7913 *
7914 * For small machines we want it small (128k min). For large machines
7915 * we want it large (64MB max). But it is not linear, because network
7916 * bandwidth does not increase linearly with machine size. We use
7917 *
7918 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7919 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7920 *
7921 * which yields
7922 *
7923 * 16MB: 512k
7924 * 32MB: 724k
7925 * 64MB: 1024k
7926 * 128MB: 1448k
7927 * 256MB: 2048k
7928 * 512MB: 2896k
7929 * 1024MB: 4096k
7930 * 2048MB: 5792k
7931 * 4096MB: 8192k
7932 * 8192MB: 11584k
7933 * 16384MB: 16384k
7934 */
7935 int __meminit init_per_zone_wmark_min(void)
7936 {
7937 unsigned long lowmem_kbytes;
7938 int new_min_free_kbytes;
7939
7940 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7941 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7942
7943 if (new_min_free_kbytes > user_min_free_kbytes) {
7944 min_free_kbytes = new_min_free_kbytes;
7945 if (min_free_kbytes < 128)
7946 min_free_kbytes = 128;
7947 if (min_free_kbytes > 262144)
7948 min_free_kbytes = 262144;
7949 } else {
7950 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7951 new_min_free_kbytes, user_min_free_kbytes);
7952 }
7953 setup_per_zone_wmarks();
7954 refresh_zone_stat_thresholds();
7955 setup_per_zone_lowmem_reserve();
7956
7957 #ifdef CONFIG_NUMA
7958 setup_min_unmapped_ratio();
7959 setup_min_slab_ratio();
7960 #endif
7961
7962 return 0;
7963 }
7964 core_initcall(init_per_zone_wmark_min)
7965
7966 /*
7967 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7968 * that we can call two helper functions whenever min_free_kbytes
7969 * changes.
7970 */
7971 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7972 void __user *buffer, size_t *length, loff_t *ppos)
7973 {
7974 int rc;
7975
7976 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7977 if (rc)
7978 return rc;
7979
7980 if (write) {
7981 user_min_free_kbytes = min_free_kbytes;
7982 setup_per_zone_wmarks();
7983 }
7984 return 0;
7985 }
7986
7987 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7988 void __user *buffer, size_t *length, loff_t *ppos)
7989 {
7990 int rc;
7991
7992 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7993 if (rc)
7994 return rc;
7995
7996 return 0;
7997 }
7998
7999 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8000 void __user *buffer, size_t *length, loff_t *ppos)
8001 {
8002 int rc;
8003
8004 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8005 if (rc)
8006 return rc;
8007
8008 if (write)
8009 setup_per_zone_wmarks();
8010
8011 return 0;
8012 }
8013
8014 #ifdef CONFIG_NUMA
8015 static void setup_min_unmapped_ratio(void)
8016 {
8017 pg_data_t *pgdat;
8018 struct zone *zone;
8019
8020 for_each_online_pgdat(pgdat)
8021 pgdat->min_unmapped_pages = 0;
8022
8023 for_each_zone(zone)
8024 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8025 sysctl_min_unmapped_ratio) / 100;
8026 }
8027
8028
8029 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8030 void __user *buffer, size_t *length, loff_t *ppos)
8031 {
8032 int rc;
8033
8034 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8035 if (rc)
8036 return rc;
8037
8038 setup_min_unmapped_ratio();
8039
8040 return 0;
8041 }
8042
8043 static void setup_min_slab_ratio(void)
8044 {
8045 pg_data_t *pgdat;
8046 struct zone *zone;
8047
8048 for_each_online_pgdat(pgdat)
8049 pgdat->min_slab_pages = 0;
8050
8051 for_each_zone(zone)
8052 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8053 sysctl_min_slab_ratio) / 100;
8054 }
8055
8056 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8057 void __user *buffer, size_t *length, loff_t *ppos)
8058 {
8059 int rc;
8060
8061 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8062 if (rc)
8063 return rc;
8064
8065 setup_min_slab_ratio();
8066
8067 return 0;
8068 }
8069 #endif
8070
8071 /*
8072 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8073 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8074 * whenever sysctl_lowmem_reserve_ratio changes.
8075 *
8076 * The reserve ratio obviously has absolutely no relation with the
8077 * minimum watermarks. The lowmem reserve ratio can only make sense
8078 * if in function of the boot time zone sizes.
8079 */
8080 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8081 void __user *buffer, size_t *length, loff_t *ppos)
8082 {
8083 proc_dointvec_minmax(table, write, buffer, length, ppos);
8084 setup_per_zone_lowmem_reserve();
8085 return 0;
8086 }
8087
8088 static void __zone_pcp_update(struct zone *zone)
8089 {
8090 unsigned int cpu;
8091
8092 for_each_possible_cpu(cpu)
8093 pageset_set_high_and_batch(zone,
8094 per_cpu_ptr(zone->pageset, cpu));
8095 }
8096
8097 /*
8098 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8099 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8100 * pagelist can have before it gets flushed back to buddy allocator.
8101 */
8102 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8103 void __user *buffer, size_t *length, loff_t *ppos)
8104 {
8105 struct zone *zone;
8106 int old_percpu_pagelist_fraction;
8107 int ret;
8108
8109 mutex_lock(&pcp_batch_high_lock);
8110 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8111
8112 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8113 if (!write || ret < 0)
8114 goto out;
8115
8116 /* Sanity checking to avoid pcp imbalance */
8117 if (percpu_pagelist_fraction &&
8118 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8119 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8120 ret = -EINVAL;
8121 goto out;
8122 }
8123
8124 /* No change? */
8125 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8126 goto out;
8127
8128 for_each_populated_zone(zone)
8129 __zone_pcp_update(zone);
8130 out:
8131 mutex_unlock(&pcp_batch_high_lock);
8132 return ret;
8133 }
8134
8135 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8136 /*
8137 * Returns the number of pages that arch has reserved but
8138 * is not known to alloc_large_system_hash().
8139 */
8140 static unsigned long __init arch_reserved_kernel_pages(void)
8141 {
8142 return 0;
8143 }
8144 #endif
8145
8146 /*
8147 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8148 * machines. As memory size is increased the scale is also increased but at
8149 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8150 * quadruples the scale is increased by one, which means the size of hash table
8151 * only doubles, instead of quadrupling as well.
8152 * Because 32-bit systems cannot have large physical memory, where this scaling
8153 * makes sense, it is disabled on such platforms.
8154 */
8155 #if __BITS_PER_LONG > 32
8156 #define ADAPT_SCALE_BASE (64ul << 30)
8157 #define ADAPT_SCALE_SHIFT 2
8158 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8159 #endif
8160
8161 /*
8162 * allocate a large system hash table from bootmem
8163 * - it is assumed that the hash table must contain an exact power-of-2
8164 * quantity of entries
8165 * - limit is the number of hash buckets, not the total allocation size
8166 */
8167 void *__init alloc_large_system_hash(const char *tablename,
8168 unsigned long bucketsize,
8169 unsigned long numentries,
8170 int scale,
8171 int flags,
8172 unsigned int *_hash_shift,
8173 unsigned int *_hash_mask,
8174 unsigned long low_limit,
8175 unsigned long high_limit)
8176 {
8177 unsigned long long max = high_limit;
8178 unsigned long log2qty, size;
8179 void *table = NULL;
8180 gfp_t gfp_flags;
8181 bool virt;
8182
8183 /* allow the kernel cmdline to have a say */
8184 if (!numentries) {
8185 /* round applicable memory size up to nearest megabyte */
8186 numentries = nr_kernel_pages;
8187 numentries -= arch_reserved_kernel_pages();
8188
8189 /* It isn't necessary when PAGE_SIZE >= 1MB */
8190 if (PAGE_SHIFT < 20)
8191 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8192
8193 #if __BITS_PER_LONG > 32
8194 if (!high_limit) {
8195 unsigned long adapt;
8196
8197 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8198 adapt <<= ADAPT_SCALE_SHIFT)
8199 scale++;
8200 }
8201 #endif
8202
8203 /* limit to 1 bucket per 2^scale bytes of low memory */
8204 if (scale > PAGE_SHIFT)
8205 numentries >>= (scale - PAGE_SHIFT);
8206 else
8207 numentries <<= (PAGE_SHIFT - scale);
8208
8209 /* Make sure we've got at least a 0-order allocation.. */
8210 if (unlikely(flags & HASH_SMALL)) {
8211 /* Makes no sense without HASH_EARLY */
8212 WARN_ON(!(flags & HASH_EARLY));
8213 if (!(numentries >> *_hash_shift)) {
8214 numentries = 1UL << *_hash_shift;
8215 BUG_ON(!numentries);
8216 }
8217 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8218 numentries = PAGE_SIZE / bucketsize;
8219 }
8220 numentries = roundup_pow_of_two(numentries);
8221
8222 /* limit allocation size to 1/16 total memory by default */
8223 if (max == 0) {
8224 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8225 do_div(max, bucketsize);
8226 }
8227 max = min(max, 0x80000000ULL);
8228
8229 if (numentries < low_limit)
8230 numentries = low_limit;
8231 if (numentries > max)
8232 numentries = max;
8233
8234 log2qty = ilog2(numentries);
8235
8236 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8237 do {
8238 virt = false;
8239 size = bucketsize << log2qty;
8240 if (flags & HASH_EARLY) {
8241 if (flags & HASH_ZERO)
8242 table = memblock_alloc(size, SMP_CACHE_BYTES);
8243 else
8244 table = memblock_alloc_raw(size,
8245 SMP_CACHE_BYTES);
8246 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8247 table = __vmalloc(size, gfp_flags);
8248 virt = true;
8249 } else {
8250 /*
8251 * If bucketsize is not a power-of-two, we may free
8252 * some pages at the end of hash table which
8253 * alloc_pages_exact() automatically does
8254 */
8255 table = alloc_pages_exact(size, gfp_flags);
8256 kmemleak_alloc(table, size, 1, gfp_flags);
8257 }
8258 } while (!table && size > PAGE_SIZE && --log2qty);
8259
8260 if (!table)
8261 panic("Failed to allocate %s hash table\n", tablename);
8262
8263 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8264 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8265 virt ? "vmalloc" : "linear");
8266
8267 if (_hash_shift)
8268 *_hash_shift = log2qty;
8269 if (_hash_mask)
8270 *_hash_mask = (1 << log2qty) - 1;
8271
8272 return table;
8273 }
8274
8275 /*
8276 * This function checks whether pageblock includes unmovable pages or not.
8277 *
8278 * PageLRU check without isolation or lru_lock could race so that
8279 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8280 * check without lock_page also may miss some movable non-lru pages at
8281 * race condition. So you can't expect this function should be exact.
8282 *
8283 * Returns a page without holding a reference. If the caller wants to
8284 * dereference that page (e.g., dumping), it has to make sure that that it
8285 * cannot get removed (e.g., via memory unplug) concurrently.
8286 *
8287 */
8288 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8289 int migratetype, int flags)
8290 {
8291 unsigned long iter = 0;
8292 unsigned long pfn = page_to_pfn(page);
8293
8294 /*
8295 * TODO we could make this much more efficient by not checking every
8296 * page in the range if we know all of them are in MOVABLE_ZONE and
8297 * that the movable zone guarantees that pages are migratable but
8298 * the later is not the case right now unfortunatelly. E.g. movablecore
8299 * can still lead to having bootmem allocations in zone_movable.
8300 */
8301
8302 if (is_migrate_cma_page(page)) {
8303 /*
8304 * CMA allocations (alloc_contig_range) really need to mark
8305 * isolate CMA pageblocks even when they are not movable in fact
8306 * so consider them movable here.
8307 */
8308 if (is_migrate_cma(migratetype))
8309 return NULL;
8310
8311 return page;
8312 }
8313
8314 for (; iter < pageblock_nr_pages; iter++) {
8315 if (!pfn_valid_within(pfn + iter))
8316 continue;
8317
8318 page = pfn_to_page(pfn + iter);
8319
8320 if (PageReserved(page))
8321 return page;
8322
8323 /*
8324 * If the zone is movable and we have ruled out all reserved
8325 * pages then it should be reasonably safe to assume the rest
8326 * is movable.
8327 */
8328 if (zone_idx(zone) == ZONE_MOVABLE)
8329 continue;
8330
8331 /*
8332 * Hugepages are not in LRU lists, but they're movable.
8333 * THPs are on the LRU, but need to be counted as #small pages.
8334 * We need not scan over tail pages because we don't
8335 * handle each tail page individually in migration.
8336 */
8337 if (PageHuge(page) || PageTransCompound(page)) {
8338 struct page *head = compound_head(page);
8339 unsigned int skip_pages;
8340
8341 if (PageHuge(page)) {
8342 if (!hugepage_migration_supported(page_hstate(head)))
8343 return page;
8344 } else if (!PageLRU(head) && !__PageMovable(head)) {
8345 return page;
8346 }
8347
8348 skip_pages = compound_nr(head) - (page - head);
8349 iter += skip_pages - 1;
8350 continue;
8351 }
8352
8353 /*
8354 * We can't use page_count without pin a page
8355 * because another CPU can free compound page.
8356 * This check already skips compound tails of THP
8357 * because their page->_refcount is zero at all time.
8358 */
8359 if (!page_ref_count(page)) {
8360 if (PageBuddy(page))
8361 iter += (1 << page_order(page)) - 1;
8362 continue;
8363 }
8364
8365 /*
8366 * The HWPoisoned page may be not in buddy system, and
8367 * page_count() is not 0.
8368 */
8369 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8370 continue;
8371
8372 if (__PageMovable(page) || PageLRU(page))
8373 continue;
8374
8375 /*
8376 * If there are RECLAIMABLE pages, we need to check
8377 * it. But now, memory offline itself doesn't call
8378 * shrink_node_slabs() and it still to be fixed.
8379 */
8380 /*
8381 * If the page is not RAM, page_count()should be 0.
8382 * we don't need more check. This is an _used_ not-movable page.
8383 *
8384 * The problematic thing here is PG_reserved pages. PG_reserved
8385 * is set to both of a memory hole page and a _used_ kernel
8386 * page at boot.
8387 */
8388 return page;
8389 }
8390 return NULL;
8391 }
8392
8393 #ifdef CONFIG_CONTIG_ALLOC
8394 static unsigned long pfn_max_align_down(unsigned long pfn)
8395 {
8396 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8397 pageblock_nr_pages) - 1);
8398 }
8399
8400 static unsigned long pfn_max_align_up(unsigned long pfn)
8401 {
8402 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8403 pageblock_nr_pages));
8404 }
8405
8406 /* [start, end) must belong to a single zone. */
8407 static int __alloc_contig_migrate_range(struct compact_control *cc,
8408 unsigned long start, unsigned long end)
8409 {
8410 /* This function is based on compact_zone() from compaction.c. */
8411 unsigned long nr_reclaimed;
8412 unsigned long pfn = start;
8413 unsigned int tries = 0;
8414 int ret = 0;
8415
8416 migrate_prep();
8417
8418 while (pfn < end || !list_empty(&cc->migratepages)) {
8419 if (fatal_signal_pending(current)) {
8420 ret = -EINTR;
8421 break;
8422 }
8423
8424 if (list_empty(&cc->migratepages)) {
8425 cc->nr_migratepages = 0;
8426 pfn = isolate_migratepages_range(cc, pfn, end);
8427 if (!pfn) {
8428 ret = -EINTR;
8429 break;
8430 }
8431 tries = 0;
8432 } else if (++tries == 5) {
8433 ret = ret < 0 ? ret : -EBUSY;
8434 break;
8435 }
8436
8437 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8438 &cc->migratepages);
8439 cc->nr_migratepages -= nr_reclaimed;
8440
8441 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8442 NULL, 0, cc->mode, MR_CONTIG_RANGE);
8443 }
8444 if (ret < 0) {
8445 putback_movable_pages(&cc->migratepages);
8446 return ret;
8447 }
8448 return 0;
8449 }
8450
8451 /**
8452 * alloc_contig_range() -- tries to allocate given range of pages
8453 * @start: start PFN to allocate
8454 * @end: one-past-the-last PFN to allocate
8455 * @migratetype: migratetype of the underlaying pageblocks (either
8456 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8457 * in range must have the same migratetype and it must
8458 * be either of the two.
8459 * @gfp_mask: GFP mask to use during compaction
8460 *
8461 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8462 * aligned. The PFN range must belong to a single zone.
8463 *
8464 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8465 * pageblocks in the range. Once isolated, the pageblocks should not
8466 * be modified by others.
8467 *
8468 * Return: zero on success or negative error code. On success all
8469 * pages which PFN is in [start, end) are allocated for the caller and
8470 * need to be freed with free_contig_range().
8471 */
8472 int alloc_contig_range(unsigned long start, unsigned long end,
8473 unsigned migratetype, gfp_t gfp_mask)
8474 {
8475 unsigned long outer_start, outer_end;
8476 unsigned int order;
8477 int ret = 0;
8478
8479 struct compact_control cc = {
8480 .nr_migratepages = 0,
8481 .order = -1,
8482 .zone = page_zone(pfn_to_page(start)),
8483 .mode = MIGRATE_SYNC,
8484 .ignore_skip_hint = true,
8485 .no_set_skip_hint = true,
8486 .gfp_mask = current_gfp_context(gfp_mask),
8487 .alloc_contig = true,
8488 };
8489 INIT_LIST_HEAD(&cc.migratepages);
8490
8491 /*
8492 * What we do here is we mark all pageblocks in range as
8493 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8494 * have different sizes, and due to the way page allocator
8495 * work, we align the range to biggest of the two pages so
8496 * that page allocator won't try to merge buddies from
8497 * different pageblocks and change MIGRATE_ISOLATE to some
8498 * other migration type.
8499 *
8500 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8501 * migrate the pages from an unaligned range (ie. pages that
8502 * we are interested in). This will put all the pages in
8503 * range back to page allocator as MIGRATE_ISOLATE.
8504 *
8505 * When this is done, we take the pages in range from page
8506 * allocator removing them from the buddy system. This way
8507 * page allocator will never consider using them.
8508 *
8509 * This lets us mark the pageblocks back as
8510 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8511 * aligned range but not in the unaligned, original range are
8512 * put back to page allocator so that buddy can use them.
8513 */
8514
8515 ret = start_isolate_page_range(pfn_max_align_down(start),
8516 pfn_max_align_up(end), migratetype, 0);
8517 if (ret < 0)
8518 return ret;
8519
8520 /*
8521 * In case of -EBUSY, we'd like to know which page causes problem.
8522 * So, just fall through. test_pages_isolated() has a tracepoint
8523 * which will report the busy page.
8524 *
8525 * It is possible that busy pages could become available before
8526 * the call to test_pages_isolated, and the range will actually be
8527 * allocated. So, if we fall through be sure to clear ret so that
8528 * -EBUSY is not accidentally used or returned to caller.
8529 */
8530 ret = __alloc_contig_migrate_range(&cc, start, end);
8531 if (ret && ret != -EBUSY)
8532 goto done;
8533 ret =0;
8534
8535 /*
8536 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8537 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8538 * more, all pages in [start, end) are free in page allocator.
8539 * What we are going to do is to allocate all pages from
8540 * [start, end) (that is remove them from page allocator).
8541 *
8542 * The only problem is that pages at the beginning and at the
8543 * end of interesting range may be not aligned with pages that
8544 * page allocator holds, ie. they can be part of higher order
8545 * pages. Because of this, we reserve the bigger range and
8546 * once this is done free the pages we are not interested in.
8547 *
8548 * We don't have to hold zone->lock here because the pages are
8549 * isolated thus they won't get removed from buddy.
8550 */
8551
8552 lru_add_drain_all();
8553
8554 order = 0;
8555 outer_start = start;
8556 while (!PageBuddy(pfn_to_page(outer_start))) {
8557 if (++order >= MAX_ORDER) {
8558 outer_start = start;
8559 break;
8560 }
8561 outer_start &= ~0UL << order;
8562 }
8563
8564 if (outer_start != start) {
8565 order = page_order(pfn_to_page(outer_start));
8566
8567 /*
8568 * outer_start page could be small order buddy page and
8569 * it doesn't include start page. Adjust outer_start
8570 * in this case to report failed page properly
8571 * on tracepoint in test_pages_isolated()
8572 */
8573 if (outer_start + (1UL << order) <= start)
8574 outer_start = start;
8575 }
8576
8577 /* Make sure the range is really isolated. */
8578 if (test_pages_isolated(outer_start, end, 0)) {
8579 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8580 __func__, outer_start, end);
8581 ret = -EBUSY;
8582 goto done;
8583 }
8584
8585 /* Grab isolated pages from freelists. */
8586 outer_end = isolate_freepages_range(&cc, outer_start, end);
8587 if (!outer_end) {
8588 ret = -EBUSY;
8589 goto done;
8590 }
8591
8592 /* Free head and tail (if any) */
8593 if (start != outer_start)
8594 free_contig_range(outer_start, start - outer_start);
8595 if (end != outer_end)
8596 free_contig_range(end, outer_end - end);
8597
8598 done:
8599 undo_isolate_page_range(pfn_max_align_down(start),
8600 pfn_max_align_up(end), migratetype);
8601 return ret;
8602 }
8603
8604 static int __alloc_contig_pages(unsigned long start_pfn,
8605 unsigned long nr_pages, gfp_t gfp_mask)
8606 {
8607 unsigned long end_pfn = start_pfn + nr_pages;
8608
8609 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8610 gfp_mask);
8611 }
8612
8613 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8614 unsigned long nr_pages)
8615 {
8616 unsigned long i, end_pfn = start_pfn + nr_pages;
8617 struct page *page;
8618
8619 for (i = start_pfn; i < end_pfn; i++) {
8620 page = pfn_to_online_page(i);
8621 if (!page)
8622 return false;
8623
8624 if (page_zone(page) != z)
8625 return false;
8626
8627 if (PageReserved(page))
8628 return false;
8629
8630 if (page_count(page) > 0)
8631 return false;
8632
8633 if (PageHuge(page))
8634 return false;
8635 }
8636 return true;
8637 }
8638
8639 static bool zone_spans_last_pfn(const struct zone *zone,
8640 unsigned long start_pfn, unsigned long nr_pages)
8641 {
8642 unsigned long last_pfn = start_pfn + nr_pages - 1;
8643
8644 return zone_spans_pfn(zone, last_pfn);
8645 }
8646
8647 /**
8648 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8649 * @nr_pages: Number of contiguous pages to allocate
8650 * @gfp_mask: GFP mask to limit search and used during compaction
8651 * @nid: Target node
8652 * @nodemask: Mask for other possible nodes
8653 *
8654 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8655 * on an applicable zonelist to find a contiguous pfn range which can then be
8656 * tried for allocation with alloc_contig_range(). This routine is intended
8657 * for allocation requests which can not be fulfilled with the buddy allocator.
8658 *
8659 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8660 * power of two then the alignment is guaranteed to be to the given nr_pages
8661 * (e.g. 1GB request would be aligned to 1GB).
8662 *
8663 * Allocated pages can be freed with free_contig_range() or by manually calling
8664 * __free_page() on each allocated page.
8665 *
8666 * Return: pointer to contiguous pages on success, or NULL if not successful.
8667 */
8668 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8669 int nid, nodemask_t *nodemask)
8670 {
8671 unsigned long ret, pfn, flags;
8672 struct zonelist *zonelist;
8673 struct zone *zone;
8674 struct zoneref *z;
8675
8676 zonelist = node_zonelist(nid, gfp_mask);
8677 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8678 gfp_zone(gfp_mask), nodemask) {
8679 spin_lock_irqsave(&zone->lock, flags);
8680
8681 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8682 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8683 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8684 /*
8685 * We release the zone lock here because
8686 * alloc_contig_range() will also lock the zone
8687 * at some point. If there's an allocation
8688 * spinning on this lock, it may win the race
8689 * and cause alloc_contig_range() to fail...
8690 */
8691 spin_unlock_irqrestore(&zone->lock, flags);
8692 ret = __alloc_contig_pages(pfn, nr_pages,
8693 gfp_mask);
8694 if (!ret)
8695 return pfn_to_page(pfn);
8696 spin_lock_irqsave(&zone->lock, flags);
8697 }
8698 pfn += nr_pages;
8699 }
8700 spin_unlock_irqrestore(&zone->lock, flags);
8701 }
8702 return NULL;
8703 }
8704 #endif /* CONFIG_CONTIG_ALLOC */
8705
8706 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8707 {
8708 unsigned int count = 0;
8709
8710 for (; nr_pages--; pfn++) {
8711 struct page *page = pfn_to_page(pfn);
8712
8713 count += page_count(page) != 1;
8714 __free_page(page);
8715 }
8716 WARN(count != 0, "%d pages are still in use!\n", count);
8717 }
8718
8719 /*
8720 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8721 * page high values need to be recalulated.
8722 */
8723 void __meminit zone_pcp_update(struct zone *zone)
8724 {
8725 mutex_lock(&pcp_batch_high_lock);
8726 __zone_pcp_update(zone);
8727 mutex_unlock(&pcp_batch_high_lock);
8728 }
8729
8730 void zone_pcp_reset(struct zone *zone)
8731 {
8732 unsigned long flags;
8733 int cpu;
8734 struct per_cpu_pageset *pset;
8735
8736 /* avoid races with drain_pages() */
8737 local_irq_save(flags);
8738 if (zone->pageset != &boot_pageset) {
8739 for_each_online_cpu(cpu) {
8740 pset = per_cpu_ptr(zone->pageset, cpu);
8741 drain_zonestat(zone, pset);
8742 }
8743 free_percpu(zone->pageset);
8744 zone->pageset = &boot_pageset;
8745 }
8746 local_irq_restore(flags);
8747 }
8748
8749 #ifdef CONFIG_MEMORY_HOTREMOVE
8750 /*
8751 * All pages in the range must be in a single zone and isolated
8752 * before calling this.
8753 */
8754 unsigned long
8755 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8756 {
8757 struct page *page;
8758 struct zone *zone;
8759 unsigned int order;
8760 unsigned long pfn;
8761 unsigned long flags;
8762 unsigned long offlined_pages = 0;
8763
8764 /* find the first valid pfn */
8765 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8766 if (pfn_valid(pfn))
8767 break;
8768 if (pfn == end_pfn)
8769 return offlined_pages;
8770
8771 offline_mem_sections(pfn, end_pfn);
8772 zone = page_zone(pfn_to_page(pfn));
8773 spin_lock_irqsave(&zone->lock, flags);
8774 pfn = start_pfn;
8775 while (pfn < end_pfn) {
8776 if (!pfn_valid(pfn)) {
8777 pfn++;
8778 continue;
8779 }
8780 page = pfn_to_page(pfn);
8781 /*
8782 * The HWPoisoned page may be not in buddy system, and
8783 * page_count() is not 0.
8784 */
8785 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8786 pfn++;
8787 offlined_pages++;
8788 continue;
8789 }
8790
8791 BUG_ON(page_count(page));
8792 BUG_ON(!PageBuddy(page));
8793 order = page_order(page);
8794 offlined_pages += 1 << order;
8795 del_page_from_free_list(page, zone, order);
8796 pfn += (1 << order);
8797 }
8798 spin_unlock_irqrestore(&zone->lock, flags);
8799
8800 return offlined_pages;
8801 }
8802 #endif
8803
8804 bool is_free_buddy_page(struct page *page)
8805 {
8806 struct zone *zone = page_zone(page);
8807 unsigned long pfn = page_to_pfn(page);
8808 unsigned long flags;
8809 unsigned int order;
8810
8811 spin_lock_irqsave(&zone->lock, flags);
8812 for (order = 0; order < MAX_ORDER; order++) {
8813 struct page *page_head = page - (pfn & ((1 << order) - 1));
8814
8815 if (PageBuddy(page_head) && page_order(page_head) >= order)
8816 break;
8817 }
8818 spin_unlock_irqrestore(&zone->lock, flags);
8819
8820 return order < MAX_ORDER;
8821 }
8822
8823 #ifdef CONFIG_MEMORY_FAILURE
8824 /*
8825 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8826 * test is performed under the zone lock to prevent a race against page
8827 * allocation.
8828 */
8829 bool set_hwpoison_free_buddy_page(struct page *page)
8830 {
8831 struct zone *zone = page_zone(page);
8832 unsigned long pfn = page_to_pfn(page);
8833 unsigned long flags;
8834 unsigned int order;
8835 bool hwpoisoned = false;
8836
8837 spin_lock_irqsave(&zone->lock, flags);
8838 for (order = 0; order < MAX_ORDER; order++) {
8839 struct page *page_head = page - (pfn & ((1 << order) - 1));
8840
8841 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8842 if (!TestSetPageHWPoison(page))
8843 hwpoisoned = true;
8844 break;
8845 }
8846 }
8847 spin_unlock_irqrestore(&zone->lock, flags);
8848
8849 return hwpoisoned;
8850 }
8851 #endif