]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/percpu.c
mm: remove the pgprot argument to __vmalloc
[thirdparty/linux.git] / mm / percpu.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/percpu.c - percpu memory allocator
4 *
5 * Copyright (C) 2009 SUSE Linux Products GmbH
6 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
7 *
8 * Copyright (C) 2017 Facebook Inc.
9 * Copyright (C) 2017 Dennis Zhou <dennis@kernel.org>
10 *
11 * The percpu allocator handles both static and dynamic areas. Percpu
12 * areas are allocated in chunks which are divided into units. There is
13 * a 1-to-1 mapping for units to possible cpus. These units are grouped
14 * based on NUMA properties of the machine.
15 *
16 * c0 c1 c2
17 * ------------------- ------------------- ------------
18 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
19 * ------------------- ...... ------------------- .... ------------
20 *
21 * Allocation is done by offsets into a unit's address space. Ie., an
22 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
23 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
24 * and even sparse. Access is handled by configuring percpu base
25 * registers according to the cpu to unit mappings and offsetting the
26 * base address using pcpu_unit_size.
27 *
28 * There is special consideration for the first chunk which must handle
29 * the static percpu variables in the kernel image as allocation services
30 * are not online yet. In short, the first chunk is structured like so:
31 *
32 * <Static | [Reserved] | Dynamic>
33 *
34 * The static data is copied from the original section managed by the
35 * linker. The reserved section, if non-zero, primarily manages static
36 * percpu variables from kernel modules. Finally, the dynamic section
37 * takes care of normal allocations.
38 *
39 * The allocator organizes chunks into lists according to free size and
40 * tries to allocate from the fullest chunk first. Each chunk is managed
41 * by a bitmap with metadata blocks. The allocation map is updated on
42 * every allocation and free to reflect the current state while the boundary
43 * map is only updated on allocation. Each metadata block contains
44 * information to help mitigate the need to iterate over large portions
45 * of the bitmap. The reverse mapping from page to chunk is stored in
46 * the page's index. Lastly, units are lazily backed and grow in unison.
47 *
48 * There is a unique conversion that goes on here between bytes and bits.
49 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk
50 * tracks the number of pages it is responsible for in nr_pages. Helper
51 * functions are used to convert from between the bytes, bits, and blocks.
52 * All hints are managed in bits unless explicitly stated.
53 *
54 * To use this allocator, arch code should do the following:
55 *
56 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
57 * regular address to percpu pointer and back if they need to be
58 * different from the default
59 *
60 * - use pcpu_setup_first_chunk() during percpu area initialization to
61 * setup the first chunk containing the kernel static percpu area
62 */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
66 #include <linux/bitmap.h>
67 #include <linux/memblock.h>
68 #include <linux/err.h>
69 #include <linux/lcm.h>
70 #include <linux/list.h>
71 #include <linux/log2.h>
72 #include <linux/mm.h>
73 #include <linux/module.h>
74 #include <linux/mutex.h>
75 #include <linux/percpu.h>
76 #include <linux/pfn.h>
77 #include <linux/slab.h>
78 #include <linux/spinlock.h>
79 #include <linux/vmalloc.h>
80 #include <linux/workqueue.h>
81 #include <linux/kmemleak.h>
82 #include <linux/sched.h>
83 #include <linux/sched/mm.h>
84
85 #include <asm/cacheflush.h>
86 #include <asm/sections.h>
87 #include <asm/tlbflush.h>
88 #include <asm/io.h>
89
90 #define CREATE_TRACE_POINTS
91 #include <trace/events/percpu.h>
92
93 #include "percpu-internal.h"
94
95 /* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
96 #define PCPU_SLOT_BASE_SHIFT 5
97 /* chunks in slots below this are subject to being sidelined on failed alloc */
98 #define PCPU_SLOT_FAIL_THRESHOLD 3
99
100 #define PCPU_EMPTY_POP_PAGES_LOW 2
101 #define PCPU_EMPTY_POP_PAGES_HIGH 4
102
103 #ifdef CONFIG_SMP
104 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
105 #ifndef __addr_to_pcpu_ptr
106 #define __addr_to_pcpu_ptr(addr) \
107 (void __percpu *)((unsigned long)(addr) - \
108 (unsigned long)pcpu_base_addr + \
109 (unsigned long)__per_cpu_start)
110 #endif
111 #ifndef __pcpu_ptr_to_addr
112 #define __pcpu_ptr_to_addr(ptr) \
113 (void __force *)((unsigned long)(ptr) + \
114 (unsigned long)pcpu_base_addr - \
115 (unsigned long)__per_cpu_start)
116 #endif
117 #else /* CONFIG_SMP */
118 /* on UP, it's always identity mapped */
119 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
120 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
121 #endif /* CONFIG_SMP */
122
123 static int pcpu_unit_pages __ro_after_init;
124 static int pcpu_unit_size __ro_after_init;
125 static int pcpu_nr_units __ro_after_init;
126 static int pcpu_atom_size __ro_after_init;
127 int pcpu_nr_slots __ro_after_init;
128 static size_t pcpu_chunk_struct_size __ro_after_init;
129
130 /* cpus with the lowest and highest unit addresses */
131 static unsigned int pcpu_low_unit_cpu __ro_after_init;
132 static unsigned int pcpu_high_unit_cpu __ro_after_init;
133
134 /* the address of the first chunk which starts with the kernel static area */
135 void *pcpu_base_addr __ro_after_init;
136 EXPORT_SYMBOL_GPL(pcpu_base_addr);
137
138 static const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */
139 const unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */
140
141 /* group information, used for vm allocation */
142 static int pcpu_nr_groups __ro_after_init;
143 static const unsigned long *pcpu_group_offsets __ro_after_init;
144 static const size_t *pcpu_group_sizes __ro_after_init;
145
146 /*
147 * The first chunk which always exists. Note that unlike other
148 * chunks, this one can be allocated and mapped in several different
149 * ways and thus often doesn't live in the vmalloc area.
150 */
151 struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
152
153 /*
154 * Optional reserved chunk. This chunk reserves part of the first
155 * chunk and serves it for reserved allocations. When the reserved
156 * region doesn't exist, the following variable is NULL.
157 */
158 struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
159
160 DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */
161 static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */
162
163 struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
164
165 /* chunks which need their map areas extended, protected by pcpu_lock */
166 static LIST_HEAD(pcpu_map_extend_chunks);
167
168 /*
169 * The number of empty populated pages, protected by pcpu_lock. The
170 * reserved chunk doesn't contribute to the count.
171 */
172 int pcpu_nr_empty_pop_pages;
173
174 /*
175 * The number of populated pages in use by the allocator, protected by
176 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets
177 * allocated/deallocated, it is allocated/deallocated in all units of a chunk
178 * and increments/decrements this count by 1).
179 */
180 static unsigned long pcpu_nr_populated;
181
182 /*
183 * Balance work is used to populate or destroy chunks asynchronously. We
184 * try to keep the number of populated free pages between
185 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
186 * empty chunk.
187 */
188 static void pcpu_balance_workfn(struct work_struct *work);
189 static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
190 static bool pcpu_async_enabled __read_mostly;
191 static bool pcpu_atomic_alloc_failed;
192
193 static void pcpu_schedule_balance_work(void)
194 {
195 if (pcpu_async_enabled)
196 schedule_work(&pcpu_balance_work);
197 }
198
199 /**
200 * pcpu_addr_in_chunk - check if the address is served from this chunk
201 * @chunk: chunk of interest
202 * @addr: percpu address
203 *
204 * RETURNS:
205 * True if the address is served from this chunk.
206 */
207 static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
208 {
209 void *start_addr, *end_addr;
210
211 if (!chunk)
212 return false;
213
214 start_addr = chunk->base_addr + chunk->start_offset;
215 end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
216 chunk->end_offset;
217
218 return addr >= start_addr && addr < end_addr;
219 }
220
221 static int __pcpu_size_to_slot(int size)
222 {
223 int highbit = fls(size); /* size is in bytes */
224 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
225 }
226
227 static int pcpu_size_to_slot(int size)
228 {
229 if (size == pcpu_unit_size)
230 return pcpu_nr_slots - 1;
231 return __pcpu_size_to_slot(size);
232 }
233
234 static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
235 {
236 const struct pcpu_block_md *chunk_md = &chunk->chunk_md;
237
238 if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE ||
239 chunk_md->contig_hint == 0)
240 return 0;
241
242 return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
243 }
244
245 /* set the pointer to a chunk in a page struct */
246 static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
247 {
248 page->index = (unsigned long)pcpu;
249 }
250
251 /* obtain pointer to a chunk from a page struct */
252 static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
253 {
254 return (struct pcpu_chunk *)page->index;
255 }
256
257 static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
258 {
259 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
260 }
261
262 static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
263 {
264 return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
265 }
266
267 static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
268 unsigned int cpu, int page_idx)
269 {
270 return (unsigned long)chunk->base_addr +
271 pcpu_unit_page_offset(cpu, page_idx);
272 }
273
274 /*
275 * The following are helper functions to help access bitmaps and convert
276 * between bitmap offsets to address offsets.
277 */
278 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
279 {
280 return chunk->alloc_map +
281 (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
282 }
283
284 static unsigned long pcpu_off_to_block_index(int off)
285 {
286 return off / PCPU_BITMAP_BLOCK_BITS;
287 }
288
289 static unsigned long pcpu_off_to_block_off(int off)
290 {
291 return off & (PCPU_BITMAP_BLOCK_BITS - 1);
292 }
293
294 static unsigned long pcpu_block_off_to_off(int index, int off)
295 {
296 return index * PCPU_BITMAP_BLOCK_BITS + off;
297 }
298
299 /*
300 * pcpu_next_hint - determine which hint to use
301 * @block: block of interest
302 * @alloc_bits: size of allocation
303 *
304 * This determines if we should scan based on the scan_hint or first_free.
305 * In general, we want to scan from first_free to fulfill allocations by
306 * first fit. However, if we know a scan_hint at position scan_hint_start
307 * cannot fulfill an allocation, we can begin scanning from there knowing
308 * the contig_hint will be our fallback.
309 */
310 static int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits)
311 {
312 /*
313 * The three conditions below determine if we can skip past the
314 * scan_hint. First, does the scan hint exist. Second, is the
315 * contig_hint after the scan_hint (possibly not true iff
316 * contig_hint == scan_hint). Third, is the allocation request
317 * larger than the scan_hint.
318 */
319 if (block->scan_hint &&
320 block->contig_hint_start > block->scan_hint_start &&
321 alloc_bits > block->scan_hint)
322 return block->scan_hint_start + block->scan_hint;
323
324 return block->first_free;
325 }
326
327 /**
328 * pcpu_next_md_free_region - finds the next hint free area
329 * @chunk: chunk of interest
330 * @bit_off: chunk offset
331 * @bits: size of free area
332 *
333 * Helper function for pcpu_for_each_md_free_region. It checks
334 * block->contig_hint and performs aggregation across blocks to find the
335 * next hint. It modifies bit_off and bits in-place to be consumed in the
336 * loop.
337 */
338 static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
339 int *bits)
340 {
341 int i = pcpu_off_to_block_index(*bit_off);
342 int block_off = pcpu_off_to_block_off(*bit_off);
343 struct pcpu_block_md *block;
344
345 *bits = 0;
346 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
347 block++, i++) {
348 /* handles contig area across blocks */
349 if (*bits) {
350 *bits += block->left_free;
351 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
352 continue;
353 return;
354 }
355
356 /*
357 * This checks three things. First is there a contig_hint to
358 * check. Second, have we checked this hint before by
359 * comparing the block_off. Third, is this the same as the
360 * right contig hint. In the last case, it spills over into
361 * the next block and should be handled by the contig area
362 * across blocks code.
363 */
364 *bits = block->contig_hint;
365 if (*bits && block->contig_hint_start >= block_off &&
366 *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
367 *bit_off = pcpu_block_off_to_off(i,
368 block->contig_hint_start);
369 return;
370 }
371 /* reset to satisfy the second predicate above */
372 block_off = 0;
373
374 *bits = block->right_free;
375 *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
376 }
377 }
378
379 /**
380 * pcpu_next_fit_region - finds fit areas for a given allocation request
381 * @chunk: chunk of interest
382 * @alloc_bits: size of allocation
383 * @align: alignment of area (max PAGE_SIZE)
384 * @bit_off: chunk offset
385 * @bits: size of free area
386 *
387 * Finds the next free region that is viable for use with a given size and
388 * alignment. This only returns if there is a valid area to be used for this
389 * allocation. block->first_free is returned if the allocation request fits
390 * within the block to see if the request can be fulfilled prior to the contig
391 * hint.
392 */
393 static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
394 int align, int *bit_off, int *bits)
395 {
396 int i = pcpu_off_to_block_index(*bit_off);
397 int block_off = pcpu_off_to_block_off(*bit_off);
398 struct pcpu_block_md *block;
399
400 *bits = 0;
401 for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
402 block++, i++) {
403 /* handles contig area across blocks */
404 if (*bits) {
405 *bits += block->left_free;
406 if (*bits >= alloc_bits)
407 return;
408 if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
409 continue;
410 }
411
412 /* check block->contig_hint */
413 *bits = ALIGN(block->contig_hint_start, align) -
414 block->contig_hint_start;
415 /*
416 * This uses the block offset to determine if this has been
417 * checked in the prior iteration.
418 */
419 if (block->contig_hint &&
420 block->contig_hint_start >= block_off &&
421 block->contig_hint >= *bits + alloc_bits) {
422 int start = pcpu_next_hint(block, alloc_bits);
423
424 *bits += alloc_bits + block->contig_hint_start -
425 start;
426 *bit_off = pcpu_block_off_to_off(i, start);
427 return;
428 }
429 /* reset to satisfy the second predicate above */
430 block_off = 0;
431
432 *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
433 align);
434 *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
435 *bit_off = pcpu_block_off_to_off(i, *bit_off);
436 if (*bits >= alloc_bits)
437 return;
438 }
439
440 /* no valid offsets were found - fail condition */
441 *bit_off = pcpu_chunk_map_bits(chunk);
442 }
443
444 /*
445 * Metadata free area iterators. These perform aggregation of free areas
446 * based on the metadata blocks and return the offset @bit_off and size in
447 * bits of the free area @bits. pcpu_for_each_fit_region only returns when
448 * a fit is found for the allocation request.
449 */
450 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
451 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
452 (bit_off) < pcpu_chunk_map_bits((chunk)); \
453 (bit_off) += (bits) + 1, \
454 pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
455
456 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \
457 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
458 &(bits)); \
459 (bit_off) < pcpu_chunk_map_bits((chunk)); \
460 (bit_off) += (bits), \
461 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
462 &(bits)))
463
464 /**
465 * pcpu_mem_zalloc - allocate memory
466 * @size: bytes to allocate
467 * @gfp: allocation flags
468 *
469 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
470 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
471 * This is to facilitate passing through whitelisted flags. The
472 * returned memory is always zeroed.
473 *
474 * RETURNS:
475 * Pointer to the allocated area on success, NULL on failure.
476 */
477 static void *pcpu_mem_zalloc(size_t size, gfp_t gfp)
478 {
479 if (WARN_ON_ONCE(!slab_is_available()))
480 return NULL;
481
482 if (size <= PAGE_SIZE)
483 return kzalloc(size, gfp);
484 else
485 return __vmalloc(size, gfp | __GFP_ZERO);
486 }
487
488 /**
489 * pcpu_mem_free - free memory
490 * @ptr: memory to free
491 *
492 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
493 */
494 static void pcpu_mem_free(void *ptr)
495 {
496 kvfree(ptr);
497 }
498
499 static void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot,
500 bool move_front)
501 {
502 if (chunk != pcpu_reserved_chunk) {
503 if (move_front)
504 list_move(&chunk->list, &pcpu_slot[slot]);
505 else
506 list_move_tail(&chunk->list, &pcpu_slot[slot]);
507 }
508 }
509
510 static void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot)
511 {
512 __pcpu_chunk_move(chunk, slot, true);
513 }
514
515 /**
516 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
517 * @chunk: chunk of interest
518 * @oslot: the previous slot it was on
519 *
520 * This function is called after an allocation or free changed @chunk.
521 * New slot according to the changed state is determined and @chunk is
522 * moved to the slot. Note that the reserved chunk is never put on
523 * chunk slots.
524 *
525 * CONTEXT:
526 * pcpu_lock.
527 */
528 static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
529 {
530 int nslot = pcpu_chunk_slot(chunk);
531
532 if (oslot != nslot)
533 __pcpu_chunk_move(chunk, nslot, oslot < nslot);
534 }
535
536 /*
537 * pcpu_update_empty_pages - update empty page counters
538 * @chunk: chunk of interest
539 * @nr: nr of empty pages
540 *
541 * This is used to keep track of the empty pages now based on the premise
542 * a md_block covers a page. The hint update functions recognize if a block
543 * is made full or broken to calculate deltas for keeping track of free pages.
544 */
545 static inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr)
546 {
547 chunk->nr_empty_pop_pages += nr;
548 if (chunk != pcpu_reserved_chunk)
549 pcpu_nr_empty_pop_pages += nr;
550 }
551
552 /*
553 * pcpu_region_overlap - determines if two regions overlap
554 * @a: start of first region, inclusive
555 * @b: end of first region, exclusive
556 * @x: start of second region, inclusive
557 * @y: end of second region, exclusive
558 *
559 * This is used to determine if the hint region [a, b) overlaps with the
560 * allocated region [x, y).
561 */
562 static inline bool pcpu_region_overlap(int a, int b, int x, int y)
563 {
564 return (a < y) && (x < b);
565 }
566
567 /**
568 * pcpu_block_update - updates a block given a free area
569 * @block: block of interest
570 * @start: start offset in block
571 * @end: end offset in block
572 *
573 * Updates a block given a known free area. The region [start, end) is
574 * expected to be the entirety of the free area within a block. Chooses
575 * the best starting offset if the contig hints are equal.
576 */
577 static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
578 {
579 int contig = end - start;
580
581 block->first_free = min(block->first_free, start);
582 if (start == 0)
583 block->left_free = contig;
584
585 if (end == block->nr_bits)
586 block->right_free = contig;
587
588 if (contig > block->contig_hint) {
589 /* promote the old contig_hint to be the new scan_hint */
590 if (start > block->contig_hint_start) {
591 if (block->contig_hint > block->scan_hint) {
592 block->scan_hint_start =
593 block->contig_hint_start;
594 block->scan_hint = block->contig_hint;
595 } else if (start < block->scan_hint_start) {
596 /*
597 * The old contig_hint == scan_hint. But, the
598 * new contig is larger so hold the invariant
599 * scan_hint_start < contig_hint_start.
600 */
601 block->scan_hint = 0;
602 }
603 } else {
604 block->scan_hint = 0;
605 }
606 block->contig_hint_start = start;
607 block->contig_hint = contig;
608 } else if (contig == block->contig_hint) {
609 if (block->contig_hint_start &&
610 (!start ||
611 __ffs(start) > __ffs(block->contig_hint_start))) {
612 /* start has a better alignment so use it */
613 block->contig_hint_start = start;
614 if (start < block->scan_hint_start &&
615 block->contig_hint > block->scan_hint)
616 block->scan_hint = 0;
617 } else if (start > block->scan_hint_start ||
618 block->contig_hint > block->scan_hint) {
619 /*
620 * Knowing contig == contig_hint, update the scan_hint
621 * if it is farther than or larger than the current
622 * scan_hint.
623 */
624 block->scan_hint_start = start;
625 block->scan_hint = contig;
626 }
627 } else {
628 /*
629 * The region is smaller than the contig_hint. So only update
630 * the scan_hint if it is larger than or equal and farther than
631 * the current scan_hint.
632 */
633 if ((start < block->contig_hint_start &&
634 (contig > block->scan_hint ||
635 (contig == block->scan_hint &&
636 start > block->scan_hint_start)))) {
637 block->scan_hint_start = start;
638 block->scan_hint = contig;
639 }
640 }
641 }
642
643 /*
644 * pcpu_block_update_scan - update a block given a free area from a scan
645 * @chunk: chunk of interest
646 * @bit_off: chunk offset
647 * @bits: size of free area
648 *
649 * Finding the final allocation spot first goes through pcpu_find_block_fit()
650 * to find a block that can hold the allocation and then pcpu_alloc_area()
651 * where a scan is used. When allocations require specific alignments,
652 * we can inadvertently create holes which will not be seen in the alloc
653 * or free paths.
654 *
655 * This takes a given free area hole and updates a block as it may change the
656 * scan_hint. We need to scan backwards to ensure we don't miss free bits
657 * from alignment.
658 */
659 static void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off,
660 int bits)
661 {
662 int s_off = pcpu_off_to_block_off(bit_off);
663 int e_off = s_off + bits;
664 int s_index, l_bit;
665 struct pcpu_block_md *block;
666
667 if (e_off > PCPU_BITMAP_BLOCK_BITS)
668 return;
669
670 s_index = pcpu_off_to_block_index(bit_off);
671 block = chunk->md_blocks + s_index;
672
673 /* scan backwards in case of alignment skipping free bits */
674 l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off);
675 s_off = (s_off == l_bit) ? 0 : l_bit + 1;
676
677 pcpu_block_update(block, s_off, e_off);
678 }
679
680 /**
681 * pcpu_chunk_refresh_hint - updates metadata about a chunk
682 * @chunk: chunk of interest
683 * @full_scan: if we should scan from the beginning
684 *
685 * Iterates over the metadata blocks to find the largest contig area.
686 * A full scan can be avoided on the allocation path as this is triggered
687 * if we broke the contig_hint. In doing so, the scan_hint will be before
688 * the contig_hint or after if the scan_hint == contig_hint. This cannot
689 * be prevented on freeing as we want to find the largest area possibly
690 * spanning blocks.
691 */
692 static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan)
693 {
694 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
695 int bit_off, bits;
696
697 /* promote scan_hint to contig_hint */
698 if (!full_scan && chunk_md->scan_hint) {
699 bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint;
700 chunk_md->contig_hint_start = chunk_md->scan_hint_start;
701 chunk_md->contig_hint = chunk_md->scan_hint;
702 chunk_md->scan_hint = 0;
703 } else {
704 bit_off = chunk_md->first_free;
705 chunk_md->contig_hint = 0;
706 }
707
708 bits = 0;
709 pcpu_for_each_md_free_region(chunk, bit_off, bits)
710 pcpu_block_update(chunk_md, bit_off, bit_off + bits);
711 }
712
713 /**
714 * pcpu_block_refresh_hint
715 * @chunk: chunk of interest
716 * @index: index of the metadata block
717 *
718 * Scans over the block beginning at first_free and updates the block
719 * metadata accordingly.
720 */
721 static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
722 {
723 struct pcpu_block_md *block = chunk->md_blocks + index;
724 unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
725 unsigned int rs, re, start; /* region start, region end */
726
727 /* promote scan_hint to contig_hint */
728 if (block->scan_hint) {
729 start = block->scan_hint_start + block->scan_hint;
730 block->contig_hint_start = block->scan_hint_start;
731 block->contig_hint = block->scan_hint;
732 block->scan_hint = 0;
733 } else {
734 start = block->first_free;
735 block->contig_hint = 0;
736 }
737
738 block->right_free = 0;
739
740 /* iterate over free areas and update the contig hints */
741 bitmap_for_each_clear_region(alloc_map, rs, re, start,
742 PCPU_BITMAP_BLOCK_BITS)
743 pcpu_block_update(block, rs, re);
744 }
745
746 /**
747 * pcpu_block_update_hint_alloc - update hint on allocation path
748 * @chunk: chunk of interest
749 * @bit_off: chunk offset
750 * @bits: size of request
751 *
752 * Updates metadata for the allocation path. The metadata only has to be
753 * refreshed by a full scan iff the chunk's contig hint is broken. Block level
754 * scans are required if the block's contig hint is broken.
755 */
756 static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
757 int bits)
758 {
759 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
760 int nr_empty_pages = 0;
761 struct pcpu_block_md *s_block, *e_block, *block;
762 int s_index, e_index; /* block indexes of the freed allocation */
763 int s_off, e_off; /* block offsets of the freed allocation */
764
765 /*
766 * Calculate per block offsets.
767 * The calculation uses an inclusive range, but the resulting offsets
768 * are [start, end). e_index always points to the last block in the
769 * range.
770 */
771 s_index = pcpu_off_to_block_index(bit_off);
772 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
773 s_off = pcpu_off_to_block_off(bit_off);
774 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
775
776 s_block = chunk->md_blocks + s_index;
777 e_block = chunk->md_blocks + e_index;
778
779 /*
780 * Update s_block.
781 * block->first_free must be updated if the allocation takes its place.
782 * If the allocation breaks the contig_hint, a scan is required to
783 * restore this hint.
784 */
785 if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
786 nr_empty_pages++;
787
788 if (s_off == s_block->first_free)
789 s_block->first_free = find_next_zero_bit(
790 pcpu_index_alloc_map(chunk, s_index),
791 PCPU_BITMAP_BLOCK_BITS,
792 s_off + bits);
793
794 if (pcpu_region_overlap(s_block->scan_hint_start,
795 s_block->scan_hint_start + s_block->scan_hint,
796 s_off,
797 s_off + bits))
798 s_block->scan_hint = 0;
799
800 if (pcpu_region_overlap(s_block->contig_hint_start,
801 s_block->contig_hint_start +
802 s_block->contig_hint,
803 s_off,
804 s_off + bits)) {
805 /* block contig hint is broken - scan to fix it */
806 if (!s_off)
807 s_block->left_free = 0;
808 pcpu_block_refresh_hint(chunk, s_index);
809 } else {
810 /* update left and right contig manually */
811 s_block->left_free = min(s_block->left_free, s_off);
812 if (s_index == e_index)
813 s_block->right_free = min_t(int, s_block->right_free,
814 PCPU_BITMAP_BLOCK_BITS - e_off);
815 else
816 s_block->right_free = 0;
817 }
818
819 /*
820 * Update e_block.
821 */
822 if (s_index != e_index) {
823 if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS)
824 nr_empty_pages++;
825
826 /*
827 * When the allocation is across blocks, the end is along
828 * the left part of the e_block.
829 */
830 e_block->first_free = find_next_zero_bit(
831 pcpu_index_alloc_map(chunk, e_index),
832 PCPU_BITMAP_BLOCK_BITS, e_off);
833
834 if (e_off == PCPU_BITMAP_BLOCK_BITS) {
835 /* reset the block */
836 e_block++;
837 } else {
838 if (e_off > e_block->scan_hint_start)
839 e_block->scan_hint = 0;
840
841 e_block->left_free = 0;
842 if (e_off > e_block->contig_hint_start) {
843 /* contig hint is broken - scan to fix it */
844 pcpu_block_refresh_hint(chunk, e_index);
845 } else {
846 e_block->right_free =
847 min_t(int, e_block->right_free,
848 PCPU_BITMAP_BLOCK_BITS - e_off);
849 }
850 }
851
852 /* update in-between md_blocks */
853 nr_empty_pages += (e_index - s_index - 1);
854 for (block = s_block + 1; block < e_block; block++) {
855 block->scan_hint = 0;
856 block->contig_hint = 0;
857 block->left_free = 0;
858 block->right_free = 0;
859 }
860 }
861
862 if (nr_empty_pages)
863 pcpu_update_empty_pages(chunk, -nr_empty_pages);
864
865 if (pcpu_region_overlap(chunk_md->scan_hint_start,
866 chunk_md->scan_hint_start +
867 chunk_md->scan_hint,
868 bit_off,
869 bit_off + bits))
870 chunk_md->scan_hint = 0;
871
872 /*
873 * The only time a full chunk scan is required is if the chunk
874 * contig hint is broken. Otherwise, it means a smaller space
875 * was used and therefore the chunk contig hint is still correct.
876 */
877 if (pcpu_region_overlap(chunk_md->contig_hint_start,
878 chunk_md->contig_hint_start +
879 chunk_md->contig_hint,
880 bit_off,
881 bit_off + bits))
882 pcpu_chunk_refresh_hint(chunk, false);
883 }
884
885 /**
886 * pcpu_block_update_hint_free - updates the block hints on the free path
887 * @chunk: chunk of interest
888 * @bit_off: chunk offset
889 * @bits: size of request
890 *
891 * Updates metadata for the allocation path. This avoids a blind block
892 * refresh by making use of the block contig hints. If this fails, it scans
893 * forward and backward to determine the extent of the free area. This is
894 * capped at the boundary of blocks.
895 *
896 * A chunk update is triggered if a page becomes free, a block becomes free,
897 * or the free spans across blocks. This tradeoff is to minimize iterating
898 * over the block metadata to update chunk_md->contig_hint.
899 * chunk_md->contig_hint may be off by up to a page, but it will never be more
900 * than the available space. If the contig hint is contained in one block, it
901 * will be accurate.
902 */
903 static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
904 int bits)
905 {
906 int nr_empty_pages = 0;
907 struct pcpu_block_md *s_block, *e_block, *block;
908 int s_index, e_index; /* block indexes of the freed allocation */
909 int s_off, e_off; /* block offsets of the freed allocation */
910 int start, end; /* start and end of the whole free area */
911
912 /*
913 * Calculate per block offsets.
914 * The calculation uses an inclusive range, but the resulting offsets
915 * are [start, end). e_index always points to the last block in the
916 * range.
917 */
918 s_index = pcpu_off_to_block_index(bit_off);
919 e_index = pcpu_off_to_block_index(bit_off + bits - 1);
920 s_off = pcpu_off_to_block_off(bit_off);
921 e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;
922
923 s_block = chunk->md_blocks + s_index;
924 e_block = chunk->md_blocks + e_index;
925
926 /*
927 * Check if the freed area aligns with the block->contig_hint.
928 * If it does, then the scan to find the beginning/end of the
929 * larger free area can be avoided.
930 *
931 * start and end refer to beginning and end of the free area
932 * within each their respective blocks. This is not necessarily
933 * the entire free area as it may span blocks past the beginning
934 * or end of the block.
935 */
936 start = s_off;
937 if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
938 start = s_block->contig_hint_start;
939 } else {
940 /*
941 * Scan backwards to find the extent of the free area.
942 * find_last_bit returns the starting bit, so if the start bit
943 * is returned, that means there was no last bit and the
944 * remainder of the chunk is free.
945 */
946 int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
947 start);
948 start = (start == l_bit) ? 0 : l_bit + 1;
949 }
950
951 end = e_off;
952 if (e_off == e_block->contig_hint_start)
953 end = e_block->contig_hint_start + e_block->contig_hint;
954 else
955 end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
956 PCPU_BITMAP_BLOCK_BITS, end);
957
958 /* update s_block */
959 e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
960 if (!start && e_off == PCPU_BITMAP_BLOCK_BITS)
961 nr_empty_pages++;
962 pcpu_block_update(s_block, start, e_off);
963
964 /* freeing in the same block */
965 if (s_index != e_index) {
966 /* update e_block */
967 if (end == PCPU_BITMAP_BLOCK_BITS)
968 nr_empty_pages++;
969 pcpu_block_update(e_block, 0, end);
970
971 /* reset md_blocks in the middle */
972 nr_empty_pages += (e_index - s_index - 1);
973 for (block = s_block + 1; block < e_block; block++) {
974 block->first_free = 0;
975 block->scan_hint = 0;
976 block->contig_hint_start = 0;
977 block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
978 block->left_free = PCPU_BITMAP_BLOCK_BITS;
979 block->right_free = PCPU_BITMAP_BLOCK_BITS;
980 }
981 }
982
983 if (nr_empty_pages)
984 pcpu_update_empty_pages(chunk, nr_empty_pages);
985
986 /*
987 * Refresh chunk metadata when the free makes a block free or spans
988 * across blocks. The contig_hint may be off by up to a page, but if
989 * the contig_hint is contained in a block, it will be accurate with
990 * the else condition below.
991 */
992 if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index)
993 pcpu_chunk_refresh_hint(chunk, true);
994 else
995 pcpu_block_update(&chunk->chunk_md,
996 pcpu_block_off_to_off(s_index, start),
997 end);
998 }
999
1000 /**
1001 * pcpu_is_populated - determines if the region is populated
1002 * @chunk: chunk of interest
1003 * @bit_off: chunk offset
1004 * @bits: size of area
1005 * @next_off: return value for the next offset to start searching
1006 *
1007 * For atomic allocations, check if the backing pages are populated.
1008 *
1009 * RETURNS:
1010 * Bool if the backing pages are populated.
1011 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1012 */
1013 static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
1014 int *next_off)
1015 {
1016 unsigned int page_start, page_end, rs, re;
1017
1018 page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
1019 page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
1020
1021 rs = page_start;
1022 bitmap_next_clear_region(chunk->populated, &rs, &re, page_end);
1023 if (rs >= page_end)
1024 return true;
1025
1026 *next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
1027 return false;
1028 }
1029
1030 /**
1031 * pcpu_find_block_fit - finds the block index to start searching
1032 * @chunk: chunk of interest
1033 * @alloc_bits: size of request in allocation units
1034 * @align: alignment of area (max PAGE_SIZE bytes)
1035 * @pop_only: use populated regions only
1036 *
1037 * Given a chunk and an allocation spec, find the offset to begin searching
1038 * for a free region. This iterates over the bitmap metadata blocks to
1039 * find an offset that will be guaranteed to fit the requirements. It is
1040 * not quite first fit as if the allocation does not fit in the contig hint
1041 * of a block or chunk, it is skipped. This errs on the side of caution
1042 * to prevent excess iteration. Poor alignment can cause the allocator to
1043 * skip over blocks and chunks that have valid free areas.
1044 *
1045 * RETURNS:
1046 * The offset in the bitmap to begin searching.
1047 * -1 if no offset is found.
1048 */
1049 static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
1050 size_t align, bool pop_only)
1051 {
1052 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1053 int bit_off, bits, next_off;
1054
1055 /*
1056 * Check to see if the allocation can fit in the chunk's contig hint.
1057 * This is an optimization to prevent scanning by assuming if it
1058 * cannot fit in the global hint, there is memory pressure and creating
1059 * a new chunk would happen soon.
1060 */
1061 bit_off = ALIGN(chunk_md->contig_hint_start, align) -
1062 chunk_md->contig_hint_start;
1063 if (bit_off + alloc_bits > chunk_md->contig_hint)
1064 return -1;
1065
1066 bit_off = pcpu_next_hint(chunk_md, alloc_bits);
1067 bits = 0;
1068 pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
1069 if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
1070 &next_off))
1071 break;
1072
1073 bit_off = next_off;
1074 bits = 0;
1075 }
1076
1077 if (bit_off == pcpu_chunk_map_bits(chunk))
1078 return -1;
1079
1080 return bit_off;
1081 }
1082
1083 /*
1084 * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1085 * @map: the address to base the search on
1086 * @size: the bitmap size in bits
1087 * @start: the bitnumber to start searching at
1088 * @nr: the number of zeroed bits we're looking for
1089 * @align_mask: alignment mask for zero area
1090 * @largest_off: offset of the largest area skipped
1091 * @largest_bits: size of the largest area skipped
1092 *
1093 * The @align_mask should be one less than a power of 2.
1094 *
1095 * This is a modified version of bitmap_find_next_zero_area_off() to remember
1096 * the largest area that was skipped. This is imperfect, but in general is
1097 * good enough. The largest remembered region is the largest failed region
1098 * seen. This does not include anything we possibly skipped due to alignment.
1099 * pcpu_block_update_scan() does scan backwards to try and recover what was
1100 * lost to alignment. While this can cause scanning to miss earlier possible
1101 * free areas, smaller allocations will eventually fill those holes.
1102 */
1103 static unsigned long pcpu_find_zero_area(unsigned long *map,
1104 unsigned long size,
1105 unsigned long start,
1106 unsigned long nr,
1107 unsigned long align_mask,
1108 unsigned long *largest_off,
1109 unsigned long *largest_bits)
1110 {
1111 unsigned long index, end, i, area_off, area_bits;
1112 again:
1113 index = find_next_zero_bit(map, size, start);
1114
1115 /* Align allocation */
1116 index = __ALIGN_MASK(index, align_mask);
1117 area_off = index;
1118
1119 end = index + nr;
1120 if (end > size)
1121 return end;
1122 i = find_next_bit(map, end, index);
1123 if (i < end) {
1124 area_bits = i - area_off;
1125 /* remember largest unused area with best alignment */
1126 if (area_bits > *largest_bits ||
1127 (area_bits == *largest_bits && *largest_off &&
1128 (!area_off || __ffs(area_off) > __ffs(*largest_off)))) {
1129 *largest_off = area_off;
1130 *largest_bits = area_bits;
1131 }
1132
1133 start = i + 1;
1134 goto again;
1135 }
1136 return index;
1137 }
1138
1139 /**
1140 * pcpu_alloc_area - allocates an area from a pcpu_chunk
1141 * @chunk: chunk of interest
1142 * @alloc_bits: size of request in allocation units
1143 * @align: alignment of area (max PAGE_SIZE)
1144 * @start: bit_off to start searching
1145 *
1146 * This function takes in a @start offset to begin searching to fit an
1147 * allocation of @alloc_bits with alignment @align. It needs to scan
1148 * the allocation map because if it fits within the block's contig hint,
1149 * @start will be block->first_free. This is an attempt to fill the
1150 * allocation prior to breaking the contig hint. The allocation and
1151 * boundary maps are updated accordingly if it confirms a valid
1152 * free area.
1153 *
1154 * RETURNS:
1155 * Allocated addr offset in @chunk on success.
1156 * -1 if no matching area is found.
1157 */
1158 static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
1159 size_t align, int start)
1160 {
1161 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1162 size_t align_mask = (align) ? (align - 1) : 0;
1163 unsigned long area_off = 0, area_bits = 0;
1164 int bit_off, end, oslot;
1165
1166 lockdep_assert_held(&pcpu_lock);
1167
1168 oslot = pcpu_chunk_slot(chunk);
1169
1170 /*
1171 * Search to find a fit.
1172 */
1173 end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS,
1174 pcpu_chunk_map_bits(chunk));
1175 bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits,
1176 align_mask, &area_off, &area_bits);
1177 if (bit_off >= end)
1178 return -1;
1179
1180 if (area_bits)
1181 pcpu_block_update_scan(chunk, area_off, area_bits);
1182
1183 /* update alloc map */
1184 bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
1185
1186 /* update boundary map */
1187 set_bit(bit_off, chunk->bound_map);
1188 bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
1189 set_bit(bit_off + alloc_bits, chunk->bound_map);
1190
1191 chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
1192
1193 /* update first free bit */
1194 if (bit_off == chunk_md->first_free)
1195 chunk_md->first_free = find_next_zero_bit(
1196 chunk->alloc_map,
1197 pcpu_chunk_map_bits(chunk),
1198 bit_off + alloc_bits);
1199
1200 pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1201
1202 pcpu_chunk_relocate(chunk, oslot);
1203
1204 return bit_off * PCPU_MIN_ALLOC_SIZE;
1205 }
1206
1207 /**
1208 * pcpu_free_area - frees the corresponding offset
1209 * @chunk: chunk of interest
1210 * @off: addr offset into chunk
1211 *
1212 * This function determines the size of an allocation to free using
1213 * the boundary bitmap and clears the allocation map.
1214 */
1215 static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
1216 {
1217 struct pcpu_block_md *chunk_md = &chunk->chunk_md;
1218 int bit_off, bits, end, oslot;
1219
1220 lockdep_assert_held(&pcpu_lock);
1221 pcpu_stats_area_dealloc(chunk);
1222
1223 oslot = pcpu_chunk_slot(chunk);
1224
1225 bit_off = off / PCPU_MIN_ALLOC_SIZE;
1226
1227 /* find end index */
1228 end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
1229 bit_off + 1);
1230 bits = end - bit_off;
1231 bitmap_clear(chunk->alloc_map, bit_off, bits);
1232
1233 /* update metadata */
1234 chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
1235
1236 /* update first free bit */
1237 chunk_md->first_free = min(chunk_md->first_free, bit_off);
1238
1239 pcpu_block_update_hint_free(chunk, bit_off, bits);
1240
1241 pcpu_chunk_relocate(chunk, oslot);
1242 }
1243
1244 static void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits)
1245 {
1246 block->scan_hint = 0;
1247 block->contig_hint = nr_bits;
1248 block->left_free = nr_bits;
1249 block->right_free = nr_bits;
1250 block->first_free = 0;
1251 block->nr_bits = nr_bits;
1252 }
1253
1254 static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
1255 {
1256 struct pcpu_block_md *md_block;
1257
1258 /* init the chunk's block */
1259 pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk));
1260
1261 for (md_block = chunk->md_blocks;
1262 md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
1263 md_block++)
1264 pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS);
1265 }
1266
1267 /**
1268 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1269 * @tmp_addr: the start of the region served
1270 * @map_size: size of the region served
1271 *
1272 * This is responsible for creating the chunks that serve the first chunk. The
1273 * base_addr is page aligned down of @tmp_addr while the region end is page
1274 * aligned up. Offsets are kept track of to determine the region served. All
1275 * this is done to appease the bitmap allocator in avoiding partial blocks.
1276 *
1277 * RETURNS:
1278 * Chunk serving the region at @tmp_addr of @map_size.
1279 */
1280 static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1281 int map_size)
1282 {
1283 struct pcpu_chunk *chunk;
1284 unsigned long aligned_addr, lcm_align;
1285 int start_offset, offset_bits, region_size, region_bits;
1286 size_t alloc_size;
1287
1288 /* region calculations */
1289 aligned_addr = tmp_addr & PAGE_MASK;
1290
1291 start_offset = tmp_addr - aligned_addr;
1292
1293 /*
1294 * Align the end of the region with the LCM of PAGE_SIZE and
1295 * PCPU_BITMAP_BLOCK_SIZE. One of these constants is a multiple of
1296 * the other.
1297 */
1298 lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
1299 region_size = ALIGN(start_offset + map_size, lcm_align);
1300
1301 /* allocate chunk */
1302 alloc_size = sizeof(struct pcpu_chunk) +
1303 BITS_TO_LONGS(region_size >> PAGE_SHIFT);
1304 chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1305 if (!chunk)
1306 panic("%s: Failed to allocate %zu bytes\n", __func__,
1307 alloc_size);
1308
1309 INIT_LIST_HEAD(&chunk->list);
1310
1311 chunk->base_addr = (void *)aligned_addr;
1312 chunk->start_offset = start_offset;
1313 chunk->end_offset = region_size - chunk->start_offset - map_size;
1314
1315 chunk->nr_pages = region_size >> PAGE_SHIFT;
1316 region_bits = pcpu_chunk_map_bits(chunk);
1317
1318 alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]);
1319 chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1320 if (!chunk->alloc_map)
1321 panic("%s: Failed to allocate %zu bytes\n", __func__,
1322 alloc_size);
1323
1324 alloc_size =
1325 BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]);
1326 chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1327 if (!chunk->bound_map)
1328 panic("%s: Failed to allocate %zu bytes\n", __func__,
1329 alloc_size);
1330
1331 alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]);
1332 chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
1333 if (!chunk->md_blocks)
1334 panic("%s: Failed to allocate %zu bytes\n", __func__,
1335 alloc_size);
1336
1337 pcpu_init_md_blocks(chunk);
1338
1339 /* manage populated page bitmap */
1340 chunk->immutable = true;
1341 bitmap_fill(chunk->populated, chunk->nr_pages);
1342 chunk->nr_populated = chunk->nr_pages;
1343 chunk->nr_empty_pop_pages = chunk->nr_pages;
1344
1345 chunk->free_bytes = map_size;
1346
1347 if (chunk->start_offset) {
1348 /* hide the beginning of the bitmap */
1349 offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
1350 bitmap_set(chunk->alloc_map, 0, offset_bits);
1351 set_bit(0, chunk->bound_map);
1352 set_bit(offset_bits, chunk->bound_map);
1353
1354 chunk->chunk_md.first_free = offset_bits;
1355
1356 pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1357 }
1358
1359 if (chunk->end_offset) {
1360 /* hide the end of the bitmap */
1361 offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
1362 bitmap_set(chunk->alloc_map,
1363 pcpu_chunk_map_bits(chunk) - offset_bits,
1364 offset_bits);
1365 set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
1366 chunk->bound_map);
1367 set_bit(region_bits, chunk->bound_map);
1368
1369 pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
1370 - offset_bits, offset_bits);
1371 }
1372
1373 return chunk;
1374 }
1375
1376 static struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp)
1377 {
1378 struct pcpu_chunk *chunk;
1379 int region_bits;
1380
1381 chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp);
1382 if (!chunk)
1383 return NULL;
1384
1385 INIT_LIST_HEAD(&chunk->list);
1386 chunk->nr_pages = pcpu_unit_pages;
1387 region_bits = pcpu_chunk_map_bits(chunk);
1388
1389 chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
1390 sizeof(chunk->alloc_map[0]), gfp);
1391 if (!chunk->alloc_map)
1392 goto alloc_map_fail;
1393
1394 chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
1395 sizeof(chunk->bound_map[0]), gfp);
1396 if (!chunk->bound_map)
1397 goto bound_map_fail;
1398
1399 chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
1400 sizeof(chunk->md_blocks[0]), gfp);
1401 if (!chunk->md_blocks)
1402 goto md_blocks_fail;
1403
1404 pcpu_init_md_blocks(chunk);
1405
1406 /* init metadata */
1407 chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1408
1409 return chunk;
1410
1411 md_blocks_fail:
1412 pcpu_mem_free(chunk->bound_map);
1413 bound_map_fail:
1414 pcpu_mem_free(chunk->alloc_map);
1415 alloc_map_fail:
1416 pcpu_mem_free(chunk);
1417
1418 return NULL;
1419 }
1420
1421 static void pcpu_free_chunk(struct pcpu_chunk *chunk)
1422 {
1423 if (!chunk)
1424 return;
1425 pcpu_mem_free(chunk->md_blocks);
1426 pcpu_mem_free(chunk->bound_map);
1427 pcpu_mem_free(chunk->alloc_map);
1428 pcpu_mem_free(chunk);
1429 }
1430
1431 /**
1432 * pcpu_chunk_populated - post-population bookkeeping
1433 * @chunk: pcpu_chunk which got populated
1434 * @page_start: the start page
1435 * @page_end: the end page
1436 *
1437 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
1438 * the bookkeeping information accordingly. Must be called after each
1439 * successful population.
1440 *
1441 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
1442 * is to serve an allocation in that area.
1443 */
1444 static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
1445 int page_end)
1446 {
1447 int nr = page_end - page_start;
1448
1449 lockdep_assert_held(&pcpu_lock);
1450
1451 bitmap_set(chunk->populated, page_start, nr);
1452 chunk->nr_populated += nr;
1453 pcpu_nr_populated += nr;
1454
1455 pcpu_update_empty_pages(chunk, nr);
1456 }
1457
1458 /**
1459 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1460 * @chunk: pcpu_chunk which got depopulated
1461 * @page_start: the start page
1462 * @page_end: the end page
1463 *
1464 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1465 * Update the bookkeeping information accordingly. Must be called after
1466 * each successful depopulation.
1467 */
1468 static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
1469 int page_start, int page_end)
1470 {
1471 int nr = page_end - page_start;
1472
1473 lockdep_assert_held(&pcpu_lock);
1474
1475 bitmap_clear(chunk->populated, page_start, nr);
1476 chunk->nr_populated -= nr;
1477 pcpu_nr_populated -= nr;
1478
1479 pcpu_update_empty_pages(chunk, -nr);
1480 }
1481
1482 /*
1483 * Chunk management implementation.
1484 *
1485 * To allow different implementations, chunk alloc/free and
1486 * [de]population are implemented in a separate file which is pulled
1487 * into this file and compiled together. The following functions
1488 * should be implemented.
1489 *
1490 * pcpu_populate_chunk - populate the specified range of a chunk
1491 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
1492 * pcpu_create_chunk - create a new chunk
1493 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1494 * pcpu_addr_to_page - translate address to physical address
1495 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
1496 */
1497 static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
1498 int page_start, int page_end, gfp_t gfp);
1499 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
1500 int page_start, int page_end);
1501 static struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp);
1502 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
1503 static struct page *pcpu_addr_to_page(void *addr);
1504 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1505
1506 #ifdef CONFIG_NEED_PER_CPU_KM
1507 #include "percpu-km.c"
1508 #else
1509 #include "percpu-vm.c"
1510 #endif
1511
1512 /**
1513 * pcpu_chunk_addr_search - determine chunk containing specified address
1514 * @addr: address for which the chunk needs to be determined.
1515 *
1516 * This is an internal function that handles all but static allocations.
1517 * Static percpu address values should never be passed into the allocator.
1518 *
1519 * RETURNS:
1520 * The address of the found chunk.
1521 */
1522 static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
1523 {
1524 /* is it in the dynamic region (first chunk)? */
1525 if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1526 return pcpu_first_chunk;
1527
1528 /* is it in the reserved region? */
1529 if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1530 return pcpu_reserved_chunk;
1531
1532 /*
1533 * The address is relative to unit0 which might be unused and
1534 * thus unmapped. Offset the address to the unit space of the
1535 * current processor before looking it up in the vmalloc
1536 * space. Note that any possible cpu id can be used here, so
1537 * there's no need to worry about preemption or cpu hotplug.
1538 */
1539 addr += pcpu_unit_offsets[raw_smp_processor_id()];
1540 return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1541 }
1542
1543 /**
1544 * pcpu_alloc - the percpu allocator
1545 * @size: size of area to allocate in bytes
1546 * @align: alignment of area (max PAGE_SIZE)
1547 * @reserved: allocate from the reserved chunk if available
1548 * @gfp: allocation flags
1549 *
1550 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
1551 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1552 * then no warning will be triggered on invalid or failed allocation
1553 * requests.
1554 *
1555 * RETURNS:
1556 * Percpu pointer to the allocated area on success, NULL on failure.
1557 */
1558 static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
1559 gfp_t gfp)
1560 {
1561 gfp_t pcpu_gfp;
1562 bool is_atomic;
1563 bool do_warn;
1564 static int warn_limit = 10;
1565 struct pcpu_chunk *chunk, *next;
1566 const char *err;
1567 int slot, off, cpu, ret;
1568 unsigned long flags;
1569 void __percpu *ptr;
1570 size_t bits, bit_align;
1571
1572 gfp = current_gfp_context(gfp);
1573 /* whitelisted flags that can be passed to the backing allocators */
1574 pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN);
1575 is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
1576 do_warn = !(gfp & __GFP_NOWARN);
1577
1578 /*
1579 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1580 * therefore alignment must be a minimum of that many bytes.
1581 * An allocation may have internal fragmentation from rounding up
1582 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1583 */
1584 if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
1585 align = PCPU_MIN_ALLOC_SIZE;
1586
1587 size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1588 bits = size >> PCPU_MIN_ALLOC_SHIFT;
1589 bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
1590
1591 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
1592 !is_power_of_2(align))) {
1593 WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1594 size, align);
1595 return NULL;
1596 }
1597
1598 if (!is_atomic) {
1599 /*
1600 * pcpu_balance_workfn() allocates memory under this mutex,
1601 * and it may wait for memory reclaim. Allow current task
1602 * to become OOM victim, in case of memory pressure.
1603 */
1604 if (gfp & __GFP_NOFAIL)
1605 mutex_lock(&pcpu_alloc_mutex);
1606 else if (mutex_lock_killable(&pcpu_alloc_mutex))
1607 return NULL;
1608 }
1609
1610 spin_lock_irqsave(&pcpu_lock, flags);
1611
1612 /* serve reserved allocations from the reserved chunk if available */
1613 if (reserved && pcpu_reserved_chunk) {
1614 chunk = pcpu_reserved_chunk;
1615
1616 off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
1617 if (off < 0) {
1618 err = "alloc from reserved chunk failed";
1619 goto fail_unlock;
1620 }
1621
1622 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1623 if (off >= 0)
1624 goto area_found;
1625
1626 err = "alloc from reserved chunk failed";
1627 goto fail_unlock;
1628 }
1629
1630 restart:
1631 /* search through normal chunks */
1632 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1633 list_for_each_entry_safe(chunk, next, &pcpu_slot[slot], list) {
1634 off = pcpu_find_block_fit(chunk, bits, bit_align,
1635 is_atomic);
1636 if (off < 0) {
1637 if (slot < PCPU_SLOT_FAIL_THRESHOLD)
1638 pcpu_chunk_move(chunk, 0);
1639 continue;
1640 }
1641
1642 off = pcpu_alloc_area(chunk, bits, bit_align, off);
1643 if (off >= 0)
1644 goto area_found;
1645
1646 }
1647 }
1648
1649 spin_unlock_irqrestore(&pcpu_lock, flags);
1650
1651 /*
1652 * No space left. Create a new chunk. We don't want multiple
1653 * tasks to create chunks simultaneously. Serialize and create iff
1654 * there's still no empty chunk after grabbing the mutex.
1655 */
1656 if (is_atomic) {
1657 err = "atomic alloc failed, no space left";
1658 goto fail;
1659 }
1660
1661 if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
1662 chunk = pcpu_create_chunk(pcpu_gfp);
1663 if (!chunk) {
1664 err = "failed to allocate new chunk";
1665 goto fail;
1666 }
1667
1668 spin_lock_irqsave(&pcpu_lock, flags);
1669 pcpu_chunk_relocate(chunk, -1);
1670 } else {
1671 spin_lock_irqsave(&pcpu_lock, flags);
1672 }
1673
1674 goto restart;
1675
1676 area_found:
1677 pcpu_stats_area_alloc(chunk, size);
1678 spin_unlock_irqrestore(&pcpu_lock, flags);
1679
1680 /* populate if not all pages are already there */
1681 if (!is_atomic) {
1682 unsigned int page_start, page_end, rs, re;
1683
1684 page_start = PFN_DOWN(off);
1685 page_end = PFN_UP(off + size);
1686
1687 bitmap_for_each_clear_region(chunk->populated, rs, re,
1688 page_start, page_end) {
1689 WARN_ON(chunk->immutable);
1690
1691 ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp);
1692
1693 spin_lock_irqsave(&pcpu_lock, flags);
1694 if (ret) {
1695 pcpu_free_area(chunk, off);
1696 err = "failed to populate";
1697 goto fail_unlock;
1698 }
1699 pcpu_chunk_populated(chunk, rs, re);
1700 spin_unlock_irqrestore(&pcpu_lock, flags);
1701 }
1702
1703 mutex_unlock(&pcpu_alloc_mutex);
1704 }
1705
1706 if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
1707 pcpu_schedule_balance_work();
1708
1709 /* clear the areas and return address relative to base address */
1710 for_each_possible_cpu(cpu)
1711 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1712
1713 ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1714 kmemleak_alloc_percpu(ptr, size, gfp);
1715
1716 trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
1717 chunk->base_addr, off, ptr);
1718
1719 return ptr;
1720
1721 fail_unlock:
1722 spin_unlock_irqrestore(&pcpu_lock, flags);
1723 fail:
1724 trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);
1725
1726 if (!is_atomic && do_warn && warn_limit) {
1727 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1728 size, align, is_atomic, err);
1729 dump_stack();
1730 if (!--warn_limit)
1731 pr_info("limit reached, disable warning\n");
1732 }
1733 if (is_atomic) {
1734 /* see the flag handling in pcpu_blance_workfn() */
1735 pcpu_atomic_alloc_failed = true;
1736 pcpu_schedule_balance_work();
1737 } else {
1738 mutex_unlock(&pcpu_alloc_mutex);
1739 }
1740 return NULL;
1741 }
1742
1743 /**
1744 * __alloc_percpu_gfp - allocate dynamic percpu area
1745 * @size: size of area to allocate in bytes
1746 * @align: alignment of area (max PAGE_SIZE)
1747 * @gfp: allocation flags
1748 *
1749 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1750 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1751 * be called from any context but is a lot more likely to fail. If @gfp
1752 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
1753 * allocation requests.
1754 *
1755 * RETURNS:
1756 * Percpu pointer to the allocated area on success, NULL on failure.
1757 */
1758 void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
1759 {
1760 return pcpu_alloc(size, align, false, gfp);
1761 }
1762 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);
1763
1764 /**
1765 * __alloc_percpu - allocate dynamic percpu area
1766 * @size: size of area to allocate in bytes
1767 * @align: alignment of area (max PAGE_SIZE)
1768 *
1769 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1770 */
1771 void __percpu *__alloc_percpu(size_t size, size_t align)
1772 {
1773 return pcpu_alloc(size, align, false, GFP_KERNEL);
1774 }
1775 EXPORT_SYMBOL_GPL(__alloc_percpu);
1776
1777 /**
1778 * __alloc_reserved_percpu - allocate reserved percpu area
1779 * @size: size of area to allocate in bytes
1780 * @align: alignment of area (max PAGE_SIZE)
1781 *
1782 * Allocate zero-filled percpu area of @size bytes aligned at @align
1783 * from reserved percpu area if arch has set it up; otherwise,
1784 * allocation is served from the same dynamic area. Might sleep.
1785 * Might trigger writeouts.
1786 *
1787 * CONTEXT:
1788 * Does GFP_KERNEL allocation.
1789 *
1790 * RETURNS:
1791 * Percpu pointer to the allocated area on success, NULL on failure.
1792 */
1793 void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1794 {
1795 return pcpu_alloc(size, align, true, GFP_KERNEL);
1796 }
1797
1798 /**
1799 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1800 * @work: unused
1801 *
1802 * Reclaim all fully free chunks except for the first one. This is also
1803 * responsible for maintaining the pool of empty populated pages. However,
1804 * it is possible that this is called when physical memory is scarce causing
1805 * OOM killer to be triggered. We should avoid doing so until an actual
1806 * allocation causes the failure as it is possible that requests can be
1807 * serviced from already backed regions.
1808 */
1809 static void pcpu_balance_workfn(struct work_struct *work)
1810 {
1811 /* gfp flags passed to underlying allocators */
1812 const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN;
1813 LIST_HEAD(to_free);
1814 struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1815 struct pcpu_chunk *chunk, *next;
1816 int slot, nr_to_pop, ret;
1817
1818 /*
1819 * There's no reason to keep around multiple unused chunks and VM
1820 * areas can be scarce. Destroy all free chunks except for one.
1821 */
1822 mutex_lock(&pcpu_alloc_mutex);
1823 spin_lock_irq(&pcpu_lock);
1824
1825 list_for_each_entry_safe(chunk, next, free_head, list) {
1826 WARN_ON(chunk->immutable);
1827
1828 /* spare the first one */
1829 if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1830 continue;
1831
1832 list_move(&chunk->list, &to_free);
1833 }
1834
1835 spin_unlock_irq(&pcpu_lock);
1836
1837 list_for_each_entry_safe(chunk, next, &to_free, list) {
1838 unsigned int rs, re;
1839
1840 bitmap_for_each_set_region(chunk->populated, rs, re, 0,
1841 chunk->nr_pages) {
1842 pcpu_depopulate_chunk(chunk, rs, re);
1843 spin_lock_irq(&pcpu_lock);
1844 pcpu_chunk_depopulated(chunk, rs, re);
1845 spin_unlock_irq(&pcpu_lock);
1846 }
1847 pcpu_destroy_chunk(chunk);
1848 cond_resched();
1849 }
1850
1851 /*
1852 * Ensure there are certain number of free populated pages for
1853 * atomic allocs. Fill up from the most packed so that atomic
1854 * allocs don't increase fragmentation. If atomic allocation
1855 * failed previously, always populate the maximum amount. This
1856 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1857 * failing indefinitely; however, large atomic allocs are not
1858 * something we support properly and can be highly unreliable and
1859 * inefficient.
1860 */
1861 retry_pop:
1862 if (pcpu_atomic_alloc_failed) {
1863 nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
1864 /* best effort anyway, don't worry about synchronization */
1865 pcpu_atomic_alloc_failed = false;
1866 } else {
1867 nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
1868 pcpu_nr_empty_pop_pages,
1869 0, PCPU_EMPTY_POP_PAGES_HIGH);
1870 }
1871
1872 for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
1873 unsigned int nr_unpop = 0, rs, re;
1874
1875 if (!nr_to_pop)
1876 break;
1877
1878 spin_lock_irq(&pcpu_lock);
1879 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1880 nr_unpop = chunk->nr_pages - chunk->nr_populated;
1881 if (nr_unpop)
1882 break;
1883 }
1884 spin_unlock_irq(&pcpu_lock);
1885
1886 if (!nr_unpop)
1887 continue;
1888
1889 /* @chunk can't go away while pcpu_alloc_mutex is held */
1890 bitmap_for_each_clear_region(chunk->populated, rs, re, 0,
1891 chunk->nr_pages) {
1892 int nr = min_t(int, re - rs, nr_to_pop);
1893
1894 ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp);
1895 if (!ret) {
1896 nr_to_pop -= nr;
1897 spin_lock_irq(&pcpu_lock);
1898 pcpu_chunk_populated(chunk, rs, rs + nr);
1899 spin_unlock_irq(&pcpu_lock);
1900 } else {
1901 nr_to_pop = 0;
1902 }
1903
1904 if (!nr_to_pop)
1905 break;
1906 }
1907 }
1908
1909 if (nr_to_pop) {
1910 /* ran out of chunks to populate, create a new one and retry */
1911 chunk = pcpu_create_chunk(gfp);
1912 if (chunk) {
1913 spin_lock_irq(&pcpu_lock);
1914 pcpu_chunk_relocate(chunk, -1);
1915 spin_unlock_irq(&pcpu_lock);
1916 goto retry_pop;
1917 }
1918 }
1919
1920 mutex_unlock(&pcpu_alloc_mutex);
1921 }
1922
1923 /**
1924 * free_percpu - free percpu area
1925 * @ptr: pointer to area to free
1926 *
1927 * Free percpu area @ptr.
1928 *
1929 * CONTEXT:
1930 * Can be called from atomic context.
1931 */
1932 void free_percpu(void __percpu *ptr)
1933 {
1934 void *addr;
1935 struct pcpu_chunk *chunk;
1936 unsigned long flags;
1937 int off;
1938 bool need_balance = false;
1939
1940 if (!ptr)
1941 return;
1942
1943 kmemleak_free_percpu(ptr);
1944
1945 addr = __pcpu_ptr_to_addr(ptr);
1946
1947 spin_lock_irqsave(&pcpu_lock, flags);
1948
1949 chunk = pcpu_chunk_addr_search(addr);
1950 off = addr - chunk->base_addr;
1951
1952 pcpu_free_area(chunk, off);
1953
1954 /* if there are more than one fully free chunks, wake up grim reaper */
1955 if (chunk->free_bytes == pcpu_unit_size) {
1956 struct pcpu_chunk *pos;
1957
1958 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1959 if (pos != chunk) {
1960 need_balance = true;
1961 break;
1962 }
1963 }
1964
1965 trace_percpu_free_percpu(chunk->base_addr, off, ptr);
1966
1967 spin_unlock_irqrestore(&pcpu_lock, flags);
1968
1969 if (need_balance)
1970 pcpu_schedule_balance_work();
1971 }
1972 EXPORT_SYMBOL_GPL(free_percpu);
1973
1974 bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1975 {
1976 #ifdef CONFIG_SMP
1977 const size_t static_size = __per_cpu_end - __per_cpu_start;
1978 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
1979 unsigned int cpu;
1980
1981 for_each_possible_cpu(cpu) {
1982 void *start = per_cpu_ptr(base, cpu);
1983 void *va = (void *)addr;
1984
1985 if (va >= start && va < start + static_size) {
1986 if (can_addr) {
1987 *can_addr = (unsigned long) (va - start);
1988 *can_addr += (unsigned long)
1989 per_cpu_ptr(base, get_boot_cpu_id());
1990 }
1991 return true;
1992 }
1993 }
1994 #endif
1995 /* on UP, can't distinguish from other static vars, always false */
1996 return false;
1997 }
1998
1999 /**
2000 * is_kernel_percpu_address - test whether address is from static percpu area
2001 * @addr: address to test
2002 *
2003 * Test whether @addr belongs to in-kernel static percpu area. Module
2004 * static percpu areas are not considered. For those, use
2005 * is_module_percpu_address().
2006 *
2007 * RETURNS:
2008 * %true if @addr is from in-kernel static percpu area, %false otherwise.
2009 */
2010 bool is_kernel_percpu_address(unsigned long addr)
2011 {
2012 return __is_kernel_percpu_address(addr, NULL);
2013 }
2014
2015 /**
2016 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2017 * @addr: the address to be converted to physical address
2018 *
2019 * Given @addr which is dereferenceable address obtained via one of
2020 * percpu access macros, this function translates it into its physical
2021 * address. The caller is responsible for ensuring @addr stays valid
2022 * until this function finishes.
2023 *
2024 * percpu allocator has special setup for the first chunk, which currently
2025 * supports either embedding in linear address space or vmalloc mapping,
2026 * and, from the second one, the backing allocator (currently either vm or
2027 * km) provides translation.
2028 *
2029 * The addr can be translated simply without checking if it falls into the
2030 * first chunk. But the current code reflects better how percpu allocator
2031 * actually works, and the verification can discover both bugs in percpu
2032 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2033 * code.
2034 *
2035 * RETURNS:
2036 * The physical address for @addr.
2037 */
2038 phys_addr_t per_cpu_ptr_to_phys(void *addr)
2039 {
2040 void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
2041 bool in_first_chunk = false;
2042 unsigned long first_low, first_high;
2043 unsigned int cpu;
2044
2045 /*
2046 * The following test on unit_low/high isn't strictly
2047 * necessary but will speed up lookups of addresses which
2048 * aren't in the first chunk.
2049 *
2050 * The address check is against full chunk sizes. pcpu_base_addr
2051 * points to the beginning of the first chunk including the
2052 * static region. Assumes good intent as the first chunk may
2053 * not be full (ie. < pcpu_unit_pages in size).
2054 */
2055 first_low = (unsigned long)pcpu_base_addr +
2056 pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
2057 first_high = (unsigned long)pcpu_base_addr +
2058 pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
2059 if ((unsigned long)addr >= first_low &&
2060 (unsigned long)addr < first_high) {
2061 for_each_possible_cpu(cpu) {
2062 void *start = per_cpu_ptr(base, cpu);
2063
2064 if (addr >= start && addr < start + pcpu_unit_size) {
2065 in_first_chunk = true;
2066 break;
2067 }
2068 }
2069 }
2070
2071 if (in_first_chunk) {
2072 if (!is_vmalloc_addr(addr))
2073 return __pa(addr);
2074 else
2075 return page_to_phys(vmalloc_to_page(addr)) +
2076 offset_in_page(addr);
2077 } else
2078 return page_to_phys(pcpu_addr_to_page(addr)) +
2079 offset_in_page(addr);
2080 }
2081
2082 /**
2083 * pcpu_alloc_alloc_info - allocate percpu allocation info
2084 * @nr_groups: the number of groups
2085 * @nr_units: the number of units
2086 *
2087 * Allocate ai which is large enough for @nr_groups groups containing
2088 * @nr_units units. The returned ai's groups[0].cpu_map points to the
2089 * cpu_map array which is long enough for @nr_units and filled with
2090 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
2091 * pointer of other groups.
2092 *
2093 * RETURNS:
2094 * Pointer to the allocated pcpu_alloc_info on success, NULL on
2095 * failure.
2096 */
2097 struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
2098 int nr_units)
2099 {
2100 struct pcpu_alloc_info *ai;
2101 size_t base_size, ai_size;
2102 void *ptr;
2103 int unit;
2104
2105 base_size = ALIGN(struct_size(ai, groups, nr_groups),
2106 __alignof__(ai->groups[0].cpu_map[0]));
2107 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
2108
2109 ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE);
2110 if (!ptr)
2111 return NULL;
2112 ai = ptr;
2113 ptr += base_size;
2114
2115 ai->groups[0].cpu_map = ptr;
2116
2117 for (unit = 0; unit < nr_units; unit++)
2118 ai->groups[0].cpu_map[unit] = NR_CPUS;
2119
2120 ai->nr_groups = nr_groups;
2121 ai->__ai_size = PFN_ALIGN(ai_size);
2122
2123 return ai;
2124 }
2125
2126 /**
2127 * pcpu_free_alloc_info - free percpu allocation info
2128 * @ai: pcpu_alloc_info to free
2129 *
2130 * Free @ai which was allocated by pcpu_alloc_alloc_info().
2131 */
2132 void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
2133 {
2134 memblock_free_early(__pa(ai), ai->__ai_size);
2135 }
2136
2137 /**
2138 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2139 * @lvl: loglevel
2140 * @ai: allocation info to dump
2141 *
2142 * Print out information about @ai using loglevel @lvl.
2143 */
2144 static void pcpu_dump_alloc_info(const char *lvl,
2145 const struct pcpu_alloc_info *ai)
2146 {
2147 int group_width = 1, cpu_width = 1, width;
2148 char empty_str[] = "--------";
2149 int alloc = 0, alloc_end = 0;
2150 int group, v;
2151 int upa, apl; /* units per alloc, allocs per line */
2152
2153 v = ai->nr_groups;
2154 while (v /= 10)
2155 group_width++;
2156
2157 v = num_possible_cpus();
2158 while (v /= 10)
2159 cpu_width++;
2160 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
2161
2162 upa = ai->alloc_size / ai->unit_size;
2163 width = upa * (cpu_width + 1) + group_width + 3;
2164 apl = rounddown_pow_of_two(max(60 / width, 1));
2165
2166 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2167 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
2168 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
2169
2170 for (group = 0; group < ai->nr_groups; group++) {
2171 const struct pcpu_group_info *gi = &ai->groups[group];
2172 int unit = 0, unit_end = 0;
2173
2174 BUG_ON(gi->nr_units % upa);
2175 for (alloc_end += gi->nr_units / upa;
2176 alloc < alloc_end; alloc++) {
2177 if (!(alloc % apl)) {
2178 pr_cont("\n");
2179 printk("%spcpu-alloc: ", lvl);
2180 }
2181 pr_cont("[%0*d] ", group_width, group);
2182
2183 for (unit_end += upa; unit < unit_end; unit++)
2184 if (gi->cpu_map[unit] != NR_CPUS)
2185 pr_cont("%0*d ",
2186 cpu_width, gi->cpu_map[unit]);
2187 else
2188 pr_cont("%s ", empty_str);
2189 }
2190 }
2191 pr_cont("\n");
2192 }
2193
2194 /**
2195 * pcpu_setup_first_chunk - initialize the first percpu chunk
2196 * @ai: pcpu_alloc_info describing how to percpu area is shaped
2197 * @base_addr: mapped address
2198 *
2199 * Initialize the first percpu chunk which contains the kernel static
2200 * percpu area. This function is to be called from arch percpu area
2201 * setup path.
2202 *
2203 * @ai contains all information necessary to initialize the first
2204 * chunk and prime the dynamic percpu allocator.
2205 *
2206 * @ai->static_size is the size of static percpu area.
2207 *
2208 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
2209 * reserve after the static area in the first chunk. This reserves
2210 * the first chunk such that it's available only through reserved
2211 * percpu allocation. This is primarily used to serve module percpu
2212 * static areas on architectures where the addressing model has
2213 * limited offset range for symbol relocations to guarantee module
2214 * percpu symbols fall inside the relocatable range.
2215 *
2216 * @ai->dyn_size determines the number of bytes available for dynamic
2217 * allocation in the first chunk. The area between @ai->static_size +
2218 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2219 *
2220 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2221 * and equal to or larger than @ai->static_size + @ai->reserved_size +
2222 * @ai->dyn_size.
2223 *
2224 * @ai->atom_size is the allocation atom size and used as alignment
2225 * for vm areas.
2226 *
2227 * @ai->alloc_size is the allocation size and always multiple of
2228 * @ai->atom_size. This is larger than @ai->atom_size if
2229 * @ai->unit_size is larger than @ai->atom_size.
2230 *
2231 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2232 * percpu areas. Units which should be colocated are put into the
2233 * same group. Dynamic VM areas will be allocated according to these
2234 * groupings. If @ai->nr_groups is zero, a single group containing
2235 * all units is assumed.
2236 *
2237 * The caller should have mapped the first chunk at @base_addr and
2238 * copied static data to each unit.
2239 *
2240 * The first chunk will always contain a static and a dynamic region.
2241 * However, the static region is not managed by any chunk. If the first
2242 * chunk also contains a reserved region, it is served by two chunks -
2243 * one for the reserved region and one for the dynamic region. They
2244 * share the same vm, but use offset regions in the area allocation map.
2245 * The chunk serving the dynamic region is circulated in the chunk slots
2246 * and available for dynamic allocation like any other chunk.
2247 */
2248 void __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
2249 void *base_addr)
2250 {
2251 size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2252 size_t static_size, dyn_size;
2253 struct pcpu_chunk *chunk;
2254 unsigned long *group_offsets;
2255 size_t *group_sizes;
2256 unsigned long *unit_off;
2257 unsigned int cpu;
2258 int *unit_map;
2259 int group, unit, i;
2260 int map_size;
2261 unsigned long tmp_addr;
2262 size_t alloc_size;
2263
2264 #define PCPU_SETUP_BUG_ON(cond) do { \
2265 if (unlikely(cond)) { \
2266 pr_emerg("failed to initialize, %s\n", #cond); \
2267 pr_emerg("cpu_possible_mask=%*pb\n", \
2268 cpumask_pr_args(cpu_possible_mask)); \
2269 pcpu_dump_alloc_info(KERN_EMERG, ai); \
2270 BUG(); \
2271 } \
2272 } while (0)
2273
2274 /* sanity checks */
2275 PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2276 #ifdef CONFIG_SMP
2277 PCPU_SETUP_BUG_ON(!ai->static_size);
2278 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2279 #endif
2280 PCPU_SETUP_BUG_ON(!base_addr);
2281 PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2282 PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2283 PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2284 PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2285 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2286 PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2287 PCPU_SETUP_BUG_ON(!ai->dyn_size);
2288 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2289 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
2290 IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2291 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2292
2293 /* process group information and build config tables accordingly */
2294 alloc_size = ai->nr_groups * sizeof(group_offsets[0]);
2295 group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2296 if (!group_offsets)
2297 panic("%s: Failed to allocate %zu bytes\n", __func__,
2298 alloc_size);
2299
2300 alloc_size = ai->nr_groups * sizeof(group_sizes[0]);
2301 group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2302 if (!group_sizes)
2303 panic("%s: Failed to allocate %zu bytes\n", __func__,
2304 alloc_size);
2305
2306 alloc_size = nr_cpu_ids * sizeof(unit_map[0]);
2307 unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2308 if (!unit_map)
2309 panic("%s: Failed to allocate %zu bytes\n", __func__,
2310 alloc_size);
2311
2312 alloc_size = nr_cpu_ids * sizeof(unit_off[0]);
2313 unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
2314 if (!unit_off)
2315 panic("%s: Failed to allocate %zu bytes\n", __func__,
2316 alloc_size);
2317
2318 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2319 unit_map[cpu] = UINT_MAX;
2320
2321 pcpu_low_unit_cpu = NR_CPUS;
2322 pcpu_high_unit_cpu = NR_CPUS;
2323
2324 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
2325 const struct pcpu_group_info *gi = &ai->groups[group];
2326
2327 group_offsets[group] = gi->base_offset;
2328 group_sizes[group] = gi->nr_units * ai->unit_size;
2329
2330 for (i = 0; i < gi->nr_units; i++) {
2331 cpu = gi->cpu_map[i];
2332 if (cpu == NR_CPUS)
2333 continue;
2334
2335 PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2336 PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
2337 PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2338
2339 unit_map[cpu] = unit + i;
2340 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
2341
2342 /* determine low/high unit_cpu */
2343 if (pcpu_low_unit_cpu == NR_CPUS ||
2344 unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
2345 pcpu_low_unit_cpu = cpu;
2346 if (pcpu_high_unit_cpu == NR_CPUS ||
2347 unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
2348 pcpu_high_unit_cpu = cpu;
2349 }
2350 }
2351 pcpu_nr_units = unit;
2352
2353 for_each_possible_cpu(cpu)
2354 PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
2355
2356 /* we're done parsing the input, undefine BUG macro and dump config */
2357 #undef PCPU_SETUP_BUG_ON
2358 pcpu_dump_alloc_info(KERN_DEBUG, ai);
2359
2360 pcpu_nr_groups = ai->nr_groups;
2361 pcpu_group_offsets = group_offsets;
2362 pcpu_group_sizes = group_sizes;
2363 pcpu_unit_map = unit_map;
2364 pcpu_unit_offsets = unit_off;
2365
2366 /* determine basic parameters */
2367 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2368 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2369 pcpu_atom_size = ai->atom_size;
2370 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
2371 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
2372
2373 pcpu_stats_save_ai(ai);
2374
2375 /*
2376 * Allocate chunk slots. The additional last slot is for
2377 * empty chunks.
2378 */
2379 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2380 pcpu_slot = memblock_alloc(pcpu_nr_slots * sizeof(pcpu_slot[0]),
2381 SMP_CACHE_BYTES);
2382 if (!pcpu_slot)
2383 panic("%s: Failed to allocate %zu bytes\n", __func__,
2384 pcpu_nr_slots * sizeof(pcpu_slot[0]));
2385 for (i = 0; i < pcpu_nr_slots; i++)
2386 INIT_LIST_HEAD(&pcpu_slot[i]);
2387
2388 /*
2389 * The end of the static region needs to be aligned with the
2390 * minimum allocation size as this offsets the reserved and
2391 * dynamic region. The first chunk ends page aligned by
2392 * expanding the dynamic region, therefore the dynamic region
2393 * can be shrunk to compensate while still staying above the
2394 * configured sizes.
2395 */
2396 static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
2397 dyn_size = ai->dyn_size - (static_size - ai->static_size);
2398
2399 /*
2400 * Initialize first chunk.
2401 * If the reserved_size is non-zero, this initializes the reserved
2402 * chunk. If the reserved_size is zero, the reserved chunk is NULL
2403 * and the dynamic region is initialized here. The first chunk,
2404 * pcpu_first_chunk, will always point to the chunk that serves
2405 * the dynamic region.
2406 */
2407 tmp_addr = (unsigned long)base_addr + static_size;
2408 map_size = ai->reserved_size ?: dyn_size;
2409 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2410
2411 /* init dynamic chunk if necessary */
2412 if (ai->reserved_size) {
2413 pcpu_reserved_chunk = chunk;
2414
2415 tmp_addr = (unsigned long)base_addr + static_size +
2416 ai->reserved_size;
2417 map_size = dyn_size;
2418 chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2419 }
2420
2421 /* link the first chunk in */
2422 pcpu_first_chunk = chunk;
2423 pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2424 pcpu_chunk_relocate(pcpu_first_chunk, -1);
2425
2426 /* include all regions of the first chunk */
2427 pcpu_nr_populated += PFN_DOWN(size_sum);
2428
2429 pcpu_stats_chunk_alloc();
2430 trace_percpu_create_chunk(base_addr);
2431
2432 /* we're done */
2433 pcpu_base_addr = base_addr;
2434 }
2435
2436 #ifdef CONFIG_SMP
2437
2438 const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2439 [PCPU_FC_AUTO] = "auto",
2440 [PCPU_FC_EMBED] = "embed",
2441 [PCPU_FC_PAGE] = "page",
2442 };
2443
2444 enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2445
2446 static int __init percpu_alloc_setup(char *str)
2447 {
2448 if (!str)
2449 return -EINVAL;
2450
2451 if (0)
2452 /* nada */;
2453 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2454 else if (!strcmp(str, "embed"))
2455 pcpu_chosen_fc = PCPU_FC_EMBED;
2456 #endif
2457 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2458 else if (!strcmp(str, "page"))
2459 pcpu_chosen_fc = PCPU_FC_PAGE;
2460 #endif
2461 else
2462 pr_warn("unknown allocator %s specified\n", str);
2463
2464 return 0;
2465 }
2466 early_param("percpu_alloc", percpu_alloc_setup);
2467
2468 /*
2469 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2470 * Build it if needed by the arch config or the generic setup is going
2471 * to be used.
2472 */
2473 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2474 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2475 #define BUILD_EMBED_FIRST_CHUNK
2476 #endif
2477
2478 /* build pcpu_page_first_chunk() iff needed by the arch config */
2479 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2480 #define BUILD_PAGE_FIRST_CHUNK
2481 #endif
2482
2483 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2484 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2485 /**
2486 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2487 * @reserved_size: the size of reserved percpu area in bytes
2488 * @dyn_size: minimum free size for dynamic allocation in bytes
2489 * @atom_size: allocation atom size
2490 * @cpu_distance_fn: callback to determine distance between cpus, optional
2491 *
2492 * This function determines grouping of units, their mappings to cpus
2493 * and other parameters considering needed percpu size, allocation
2494 * atom size and distances between CPUs.
2495 *
2496 * Groups are always multiples of atom size and CPUs which are of
2497 * LOCAL_DISTANCE both ways are grouped together and share space for
2498 * units in the same group. The returned configuration is guaranteed
2499 * to have CPUs on different nodes on different groups and >=75% usage
2500 * of allocated virtual address space.
2501 *
2502 * RETURNS:
2503 * On success, pointer to the new allocation_info is returned. On
2504 * failure, ERR_PTR value is returned.
2505 */
2506 static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
2507 size_t reserved_size, size_t dyn_size,
2508 size_t atom_size,
2509 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
2510 {
2511 static int group_map[NR_CPUS] __initdata;
2512 static int group_cnt[NR_CPUS] __initdata;
2513 const size_t static_size = __per_cpu_end - __per_cpu_start;
2514 int nr_groups = 1, nr_units = 0;
2515 size_t size_sum, min_unit_size, alloc_size;
2516 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
2517 int last_allocs, group, unit;
2518 unsigned int cpu, tcpu;
2519 struct pcpu_alloc_info *ai;
2520 unsigned int *cpu_map;
2521
2522 /* this function may be called multiple times */
2523 memset(group_map, 0, sizeof(group_map));
2524 memset(group_cnt, 0, sizeof(group_cnt));
2525
2526 /* calculate size_sum and ensure dyn_size is enough for early alloc */
2527 size_sum = PFN_ALIGN(static_size + reserved_size +
2528 max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
2529 dyn_size = size_sum - static_size - reserved_size;
2530
2531 /*
2532 * Determine min_unit_size, alloc_size and max_upa such that
2533 * alloc_size is multiple of atom_size and is the smallest
2534 * which can accommodate 4k aligned segments which are equal to
2535 * or larger than min_unit_size.
2536 */
2537 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
2538
2539 /* determine the maximum # of units that can fit in an allocation */
2540 alloc_size = roundup(min_unit_size, atom_size);
2541 upa = alloc_size / min_unit_size;
2542 while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2543 upa--;
2544 max_upa = upa;
2545
2546 /* group cpus according to their proximity */
2547 for_each_possible_cpu(cpu) {
2548 group = 0;
2549 next_group:
2550 for_each_possible_cpu(tcpu) {
2551 if (cpu == tcpu)
2552 break;
2553 if (group_map[tcpu] == group && cpu_distance_fn &&
2554 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
2555 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
2556 group++;
2557 nr_groups = max(nr_groups, group + 1);
2558 goto next_group;
2559 }
2560 }
2561 group_map[cpu] = group;
2562 group_cnt[group]++;
2563 }
2564
2565 /*
2566 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2567 * Expand the unit_size until we use >= 75% of the units allocated.
2568 * Related to atom_size, which could be much larger than the unit_size.
2569 */
2570 last_allocs = INT_MAX;
2571 for (upa = max_upa; upa; upa--) {
2572 int allocs = 0, wasted = 0;
2573
2574 if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2575 continue;
2576
2577 for (group = 0; group < nr_groups; group++) {
2578 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
2579 allocs += this_allocs;
2580 wasted += this_allocs * upa - group_cnt[group];
2581 }
2582
2583 /*
2584 * Don't accept if wastage is over 1/3. The
2585 * greater-than comparison ensures upa==1 always
2586 * passes the following check.
2587 */
2588 if (wasted > num_possible_cpus() / 3)
2589 continue;
2590
2591 /* and then don't consume more memory */
2592 if (allocs > last_allocs)
2593 break;
2594 last_allocs = allocs;
2595 best_upa = upa;
2596 }
2597 upa = best_upa;
2598
2599 /* allocate and fill alloc_info */
2600 for (group = 0; group < nr_groups; group++)
2601 nr_units += roundup(group_cnt[group], upa);
2602
2603 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
2604 if (!ai)
2605 return ERR_PTR(-ENOMEM);
2606 cpu_map = ai->groups[0].cpu_map;
2607
2608 for (group = 0; group < nr_groups; group++) {
2609 ai->groups[group].cpu_map = cpu_map;
2610 cpu_map += roundup(group_cnt[group], upa);
2611 }
2612
2613 ai->static_size = static_size;
2614 ai->reserved_size = reserved_size;
2615 ai->dyn_size = dyn_size;
2616 ai->unit_size = alloc_size / upa;
2617 ai->atom_size = atom_size;
2618 ai->alloc_size = alloc_size;
2619
2620 for (group = 0, unit = 0; group < nr_groups; group++) {
2621 struct pcpu_group_info *gi = &ai->groups[group];
2622
2623 /*
2624 * Initialize base_offset as if all groups are located
2625 * back-to-back. The caller should update this to
2626 * reflect actual allocation.
2627 */
2628 gi->base_offset = unit * ai->unit_size;
2629
2630 for_each_possible_cpu(cpu)
2631 if (group_map[cpu] == group)
2632 gi->cpu_map[gi->nr_units++] = cpu;
2633 gi->nr_units = roundup(gi->nr_units, upa);
2634 unit += gi->nr_units;
2635 }
2636 BUG_ON(unit != nr_units);
2637
2638 return ai;
2639 }
2640 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2641
2642 #if defined(BUILD_EMBED_FIRST_CHUNK)
2643 /**
2644 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2645 * @reserved_size: the size of reserved percpu area in bytes
2646 * @dyn_size: minimum free size for dynamic allocation in bytes
2647 * @atom_size: allocation atom size
2648 * @cpu_distance_fn: callback to determine distance between cpus, optional
2649 * @alloc_fn: function to allocate percpu page
2650 * @free_fn: function to free percpu page
2651 *
2652 * This is a helper to ease setting up embedded first percpu chunk and
2653 * can be called where pcpu_setup_first_chunk() is expected.
2654 *
2655 * If this function is used to setup the first chunk, it is allocated
2656 * by calling @alloc_fn and used as-is without being mapped into
2657 * vmalloc area. Allocations are always whole multiples of @atom_size
2658 * aligned to @atom_size.
2659 *
2660 * This enables the first chunk to piggy back on the linear physical
2661 * mapping which often uses larger page size. Please note that this
2662 * can result in very sparse cpu->unit mapping on NUMA machines thus
2663 * requiring large vmalloc address space. Don't use this allocator if
2664 * vmalloc space is not orders of magnitude larger than distances
2665 * between node memory addresses (ie. 32bit NUMA machines).
2666 *
2667 * @dyn_size specifies the minimum dynamic area size.
2668 *
2669 * If the needed size is smaller than the minimum or specified unit
2670 * size, the leftover is returned using @free_fn.
2671 *
2672 * RETURNS:
2673 * 0 on success, -errno on failure.
2674 */
2675 int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2676 size_t atom_size,
2677 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
2678 pcpu_fc_alloc_fn_t alloc_fn,
2679 pcpu_fc_free_fn_t free_fn)
2680 {
2681 void *base = (void *)ULONG_MAX;
2682 void **areas = NULL;
2683 struct pcpu_alloc_info *ai;
2684 size_t size_sum, areas_size;
2685 unsigned long max_distance;
2686 int group, i, highest_group, rc = 0;
2687
2688 ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
2689 cpu_distance_fn);
2690 if (IS_ERR(ai))
2691 return PTR_ERR(ai);
2692
2693 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2694 areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2695
2696 areas = memblock_alloc(areas_size, SMP_CACHE_BYTES);
2697 if (!areas) {
2698 rc = -ENOMEM;
2699 goto out_free;
2700 }
2701
2702 /* allocate, copy and determine base address & max_distance */
2703 highest_group = 0;
2704 for (group = 0; group < ai->nr_groups; group++) {
2705 struct pcpu_group_info *gi = &ai->groups[group];
2706 unsigned int cpu = NR_CPUS;
2707 void *ptr;
2708
2709 for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
2710 cpu = gi->cpu_map[i];
2711 BUG_ON(cpu == NR_CPUS);
2712
2713 /* allocate space for the whole group */
2714 ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
2715 if (!ptr) {
2716 rc = -ENOMEM;
2717 goto out_free_areas;
2718 }
2719 /* kmemleak tracks the percpu allocations separately */
2720 kmemleak_free(ptr);
2721 areas[group] = ptr;
2722
2723 base = min(ptr, base);
2724 if (ptr > areas[highest_group])
2725 highest_group = group;
2726 }
2727 max_distance = areas[highest_group] - base;
2728 max_distance += ai->unit_size * ai->groups[highest_group].nr_units;
2729
2730 /* warn if maximum distance is further than 75% of vmalloc space */
2731 if (max_distance > VMALLOC_TOTAL * 3 / 4) {
2732 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
2733 max_distance, VMALLOC_TOTAL);
2734 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2735 /* and fail if we have fallback */
2736 rc = -EINVAL;
2737 goto out_free_areas;
2738 #endif
2739 }
2740
2741 /*
2742 * Copy data and free unused parts. This should happen after all
2743 * allocations are complete; otherwise, we may end up with
2744 * overlapping groups.
2745 */
2746 for (group = 0; group < ai->nr_groups; group++) {
2747 struct pcpu_group_info *gi = &ai->groups[group];
2748 void *ptr = areas[group];
2749
2750 for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
2751 if (gi->cpu_map[i] == NR_CPUS) {
2752 /* unused unit, free whole */
2753 free_fn(ptr, ai->unit_size);
2754 continue;
2755 }
2756 /* copy and return the unused part */
2757 memcpy(ptr, __per_cpu_load, ai->static_size);
2758 free_fn(ptr + size_sum, ai->unit_size - size_sum);
2759 }
2760 }
2761
2762 /* base address is now known, determine group base offsets */
2763 for (group = 0; group < ai->nr_groups; group++) {
2764 ai->groups[group].base_offset = areas[group] - base;
2765 }
2766
2767 pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
2768 PFN_DOWN(size_sum), ai->static_size, ai->reserved_size,
2769 ai->dyn_size, ai->unit_size);
2770
2771 pcpu_setup_first_chunk(ai, base);
2772 goto out_free;
2773
2774 out_free_areas:
2775 for (group = 0; group < ai->nr_groups; group++)
2776 if (areas[group])
2777 free_fn(areas[group],
2778 ai->groups[group].nr_units * ai->unit_size);
2779 out_free:
2780 pcpu_free_alloc_info(ai);
2781 if (areas)
2782 memblock_free_early(__pa(areas), areas_size);
2783 return rc;
2784 }
2785 #endif /* BUILD_EMBED_FIRST_CHUNK */
2786
2787 #ifdef BUILD_PAGE_FIRST_CHUNK
2788 /**
2789 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2790 * @reserved_size: the size of reserved percpu area in bytes
2791 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2792 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2793 * @populate_pte_fn: function to populate pte
2794 *
2795 * This is a helper to ease setting up page-remapped first percpu
2796 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2797 *
2798 * This is the basic allocator. Static percpu area is allocated
2799 * page-by-page into vmalloc area.
2800 *
2801 * RETURNS:
2802 * 0 on success, -errno on failure.
2803 */
2804 int __init pcpu_page_first_chunk(size_t reserved_size,
2805 pcpu_fc_alloc_fn_t alloc_fn,
2806 pcpu_fc_free_fn_t free_fn,
2807 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2808 {
2809 static struct vm_struct vm;
2810 struct pcpu_alloc_info *ai;
2811 char psize_str[16];
2812 int unit_pages;
2813 size_t pages_size;
2814 struct page **pages;
2815 int unit, i, j, rc = 0;
2816 int upa;
2817 int nr_g0_units;
2818
2819 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
2820
2821 ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2822 if (IS_ERR(ai))
2823 return PTR_ERR(ai);
2824 BUG_ON(ai->nr_groups != 1);
2825 upa = ai->alloc_size/ai->unit_size;
2826 nr_g0_units = roundup(num_possible_cpus(), upa);
2827 if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) {
2828 pcpu_free_alloc_info(ai);
2829 return -EINVAL;
2830 }
2831
2832 unit_pages = ai->unit_size >> PAGE_SHIFT;
2833
2834 /* unaligned allocations can't be freed, round up to page size */
2835 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2836 sizeof(pages[0]));
2837 pages = memblock_alloc(pages_size, SMP_CACHE_BYTES);
2838 if (!pages)
2839 panic("%s: Failed to allocate %zu bytes\n", __func__,
2840 pages_size);
2841
2842 /* allocate pages */
2843 j = 0;
2844 for (unit = 0; unit < num_possible_cpus(); unit++) {
2845 unsigned int cpu = ai->groups[0].cpu_map[unit];
2846 for (i = 0; i < unit_pages; i++) {
2847 void *ptr;
2848
2849 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2850 if (!ptr) {
2851 pr_warn("failed to allocate %s page for cpu%u\n",
2852 psize_str, cpu);
2853 goto enomem;
2854 }
2855 /* kmemleak tracks the percpu allocations separately */
2856 kmemleak_free(ptr);
2857 pages[j++] = virt_to_page(ptr);
2858 }
2859 }
2860
2861 /* allocate vm area, map the pages and copy static data */
2862 vm.flags = VM_ALLOC;
2863 vm.size = num_possible_cpus() * ai->unit_size;
2864 vm_area_register_early(&vm, PAGE_SIZE);
2865
2866 for (unit = 0; unit < num_possible_cpus(); unit++) {
2867 unsigned long unit_addr =
2868 (unsigned long)vm.addr + unit * ai->unit_size;
2869
2870 for (i = 0; i < unit_pages; i++)
2871 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
2872
2873 /* pte already populated, the following shouldn't fail */
2874 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2875 unit_pages);
2876 if (rc < 0)
2877 panic("failed to map percpu area, err=%d\n", rc);
2878
2879 /*
2880 * FIXME: Archs with virtual cache should flush local
2881 * cache for the linear mapping here - something
2882 * equivalent to flush_cache_vmap() on the local cpu.
2883 * flush_cache_vmap() can't be used as most supporting
2884 * data structures are not set up yet.
2885 */
2886
2887 /* copy static data */
2888 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2889 }
2890
2891 /* we're ready, commit */
2892 pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
2893 unit_pages, psize_str, ai->static_size,
2894 ai->reserved_size, ai->dyn_size);
2895
2896 pcpu_setup_first_chunk(ai, vm.addr);
2897 goto out_free_ar;
2898
2899 enomem:
2900 while (--j >= 0)
2901 free_fn(page_address(pages[j]), PAGE_SIZE);
2902 rc = -ENOMEM;
2903 out_free_ar:
2904 memblock_free_early(__pa(pages), pages_size);
2905 pcpu_free_alloc_info(ai);
2906 return rc;
2907 }
2908 #endif /* BUILD_PAGE_FIRST_CHUNK */
2909
2910 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2911 /*
2912 * Generic SMP percpu area setup.
2913 *
2914 * The embedding helper is used because its behavior closely resembles
2915 * the original non-dynamic generic percpu area setup. This is
2916 * important because many archs have addressing restrictions and might
2917 * fail if the percpu area is located far away from the previous
2918 * location. As an added bonus, in non-NUMA cases, embedding is
2919 * generally a good idea TLB-wise because percpu area can piggy back
2920 * on the physical linear memory mapping which uses large page
2921 * mappings on applicable archs.
2922 */
2923 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2924 EXPORT_SYMBOL(__per_cpu_offset);
2925
2926 static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2927 size_t align)
2928 {
2929 return memblock_alloc_from(size, align, __pa(MAX_DMA_ADDRESS));
2930 }
2931
2932 static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2933 {
2934 memblock_free_early(__pa(ptr), size);
2935 }
2936
2937 void __init setup_per_cpu_areas(void)
2938 {
2939 unsigned long delta;
2940 unsigned int cpu;
2941 int rc;
2942
2943 /*
2944 * Always reserve area for module percpu variables. That's
2945 * what the legacy allocator did.
2946 */
2947 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2948 PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2949 pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2950 if (rc < 0)
2951 panic("Failed to initialize percpu areas.");
2952
2953 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2954 for_each_possible_cpu(cpu)
2955 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2956 }
2957 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2958
2959 #else /* CONFIG_SMP */
2960
2961 /*
2962 * UP percpu area setup.
2963 *
2964 * UP always uses km-based percpu allocator with identity mapping.
2965 * Static percpu variables are indistinguishable from the usual static
2966 * variables and don't require any special preparation.
2967 */
2968 void __init setup_per_cpu_areas(void)
2969 {
2970 const size_t unit_size =
2971 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
2972 PERCPU_DYNAMIC_RESERVE));
2973 struct pcpu_alloc_info *ai;
2974 void *fc;
2975
2976 ai = pcpu_alloc_alloc_info(1, 1);
2977 fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
2978 if (!ai || !fc)
2979 panic("Failed to allocate memory for percpu areas.");
2980 /* kmemleak tracks the percpu allocations separately */
2981 kmemleak_free(fc);
2982
2983 ai->dyn_size = unit_size;
2984 ai->unit_size = unit_size;
2985 ai->atom_size = unit_size;
2986 ai->alloc_size = unit_size;
2987 ai->groups[0].nr_units = 1;
2988 ai->groups[0].cpu_map[0] = 0;
2989
2990 pcpu_setup_first_chunk(ai, fc);
2991 pcpu_free_alloc_info(ai);
2992 }
2993
2994 #endif /* CONFIG_SMP */
2995
2996 /*
2997 * pcpu_nr_pages - calculate total number of populated backing pages
2998 *
2999 * This reflects the number of pages populated to back chunks. Metadata is
3000 * excluded in the number exposed in meminfo as the number of backing pages
3001 * scales with the number of cpus and can quickly outweigh the memory used for
3002 * metadata. It also keeps this calculation nice and simple.
3003 *
3004 * RETURNS:
3005 * Total number of populated backing pages in use by the allocator.
3006 */
3007 unsigned long pcpu_nr_pages(void)
3008 {
3009 return pcpu_nr_populated * pcpu_nr_units;
3010 }
3011
3012 /*
3013 * Percpu allocator is initialized early during boot when neither slab or
3014 * workqueue is available. Plug async management until everything is up
3015 * and running.
3016 */
3017 static int __init percpu_enable_async(void)
3018 {
3019 pcpu_async_enabled = true;
3020 return 0;
3021 }
3022 subsys_initcall(percpu_enable_async);