]> git.ipfire.org Git - thirdparty/linux.git/blob - mm/slab.c
mm/swapfile.c: tmp is always smaller than max
[thirdparty/linux.git] / mm / slab.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
30 * slabs and you must pass objects with the same initializations to
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
54 * The c_cpuarray may not be read with enabled local interrupts -
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
59 * Several members in struct kmem_cache and struct slab never change, they
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
72 * The global cache-chain is protected by the mutex 'slab_mutex'.
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
88 */
89
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119 #include <linux/sched/task_stack.h>
120
121 #include <net/sock.h>
122
123 #include <asm/cacheflush.h>
124 #include <asm/tlbflush.h>
125 #include <asm/page.h>
126
127 #include <trace/events/kmem.h>
128
129 #include "internal.h"
130
131 #include "slab.h"
132
133 /*
134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
135 * 0 for faster, smaller code (especially in the critical paths).
136 *
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
139 *
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 */
142
143 #ifdef CONFIG_DEBUG_SLAB
144 #define DEBUG 1
145 #define STATS 1
146 #define FORCED_DEBUG 1
147 #else
148 #define DEBUG 0
149 #define STATS 0
150 #define FORCED_DEBUG 0
151 #endif
152
153 /* Shouldn't this be in a header file somewhere? */
154 #define BYTES_PER_WORD sizeof(void *)
155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156
157 #ifndef ARCH_KMALLOC_FLAGS
158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159 #endif
160
161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163
164 #if FREELIST_BYTE_INDEX
165 typedef unsigned char freelist_idx_t;
166 #else
167 typedef unsigned short freelist_idx_t;
168 #endif
169
170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171
172 /*
173 * struct array_cache
174 *
175 * Purpose:
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
179 *
180 * The limit is stored in the per-cpu structure to reduce the data cache
181 * footprint.
182 *
183 */
184 struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
189 void *entry[]; /*
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
192 * the entries.
193 */
194 };
195
196 struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
199 };
200
201 /*
202 * Need this for bootstrapping a per node allocator.
203 */
204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206 #define CACHE_CACHE 0
207 #define SIZE_NODE (MAX_NUMNODES)
208
209 static int drain_freelist(struct kmem_cache *cache,
210 struct kmem_cache_node *n, int tofree);
211 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 int node, struct list_head *list);
213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215 static void cache_reap(struct work_struct *unused);
216
217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219 static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
222 static int slab_early_init = 1;
223
224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225
226 static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 {
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
231 parent->total_slabs = 0;
232 parent->free_slabs = 0;
233 parent->shared = NULL;
234 parent->alien = NULL;
235 parent->colour_next = 0;
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239 }
240
241 #define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
245 } while (0)
246
247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
253
254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259 #define BATCHREFILL_LIMIT 16
260 /*
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
263 *
264 * OTOH the cpuarrays can contain lots of objects,
265 * which could lock up otherwise freeable slabs.
266 */
267 #define REAPTIMEOUT_AC (2*HZ)
268 #define REAPTIMEOUT_NODE (4*HZ)
269
270 #if STATS
271 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274 #define STATS_INC_GROWN(x) ((x)->grown++)
275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
276 #define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
281 #define STATS_INC_ERR(x) ((x)->errors++)
282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
285 #define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294 #else
295 #define STATS_INC_ACTIVE(x) do { } while (0)
296 #define STATS_DEC_ACTIVE(x) do { } while (0)
297 #define STATS_INC_ALLOCED(x) do { } while (0)
298 #define STATS_INC_GROWN(x) do { } while (0)
299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
300 #define STATS_SET_HIGH(x) do { } while (0)
301 #define STATS_INC_ERR(x) do { } while (0)
302 #define STATS_INC_NODEALLOCS(x) do { } while (0)
303 #define STATS_INC_NODEFREES(x) do { } while (0)
304 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
305 #define STATS_SET_FREEABLE(x, i) do { } while (0)
306 #define STATS_INC_ALLOCHIT(x) do { } while (0)
307 #define STATS_INC_ALLOCMISS(x) do { } while (0)
308 #define STATS_INC_FREEHIT(x) do { } while (0)
309 #define STATS_INC_FREEMISS(x) do { } while (0)
310 #endif
311
312 #if DEBUG
313
314 /*
315 * memory layout of objects:
316 * 0 : objp
317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
321 * redzone word.
322 * cachep->obj_offset: The real object.
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
325 * [BYTES_PER_WORD long]
326 */
327 static int obj_offset(struct kmem_cache *cachep)
328 {
329 return cachep->obj_offset;
330 }
331
332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
333 {
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
337 }
338
339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
340 {
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
343 return (unsigned long long *)(objp + cachep->size -
344 sizeof(unsigned long long) -
345 REDZONE_ALIGN);
346 return (unsigned long long *) (objp + cachep->size -
347 sizeof(unsigned long long));
348 }
349
350 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
351 {
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
354 }
355
356 #else
357
358 #define obj_offset(x) 0
359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363 #endif
364
365 /*
366 * Do not go above this order unless 0 objects fit into the slab or
367 * overridden on the command line.
368 */
369 #define SLAB_MAX_ORDER_HI 1
370 #define SLAB_MAX_ORDER_LO 0
371 static int slab_max_order = SLAB_MAX_ORDER_LO;
372 static bool slab_max_order_set __initdata;
373
374 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
375 unsigned int idx)
376 {
377 return page->s_mem + cache->size * idx;
378 }
379
380 #define BOOT_CPUCACHE_ENTRIES 1
381 /* internal cache of cache description objs */
382 static struct kmem_cache kmem_cache_boot = {
383 .batchcount = 1,
384 .limit = BOOT_CPUCACHE_ENTRIES,
385 .shared = 1,
386 .size = sizeof(struct kmem_cache),
387 .name = "kmem_cache",
388 };
389
390 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
391
392 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
393 {
394 return this_cpu_ptr(cachep->cpu_cache);
395 }
396
397 /*
398 * Calculate the number of objects and left-over bytes for a given buffer size.
399 */
400 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
401 slab_flags_t flags, size_t *left_over)
402 {
403 unsigned int num;
404 size_t slab_size = PAGE_SIZE << gfporder;
405
406 /*
407 * The slab management structure can be either off the slab or
408 * on it. For the latter case, the memory allocated for a
409 * slab is used for:
410 *
411 * - @buffer_size bytes for each object
412 * - One freelist_idx_t for each object
413 *
414 * We don't need to consider alignment of freelist because
415 * freelist will be at the end of slab page. The objects will be
416 * at the correct alignment.
417 *
418 * If the slab management structure is off the slab, then the
419 * alignment will already be calculated into the size. Because
420 * the slabs are all pages aligned, the objects will be at the
421 * correct alignment when allocated.
422 */
423 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
424 num = slab_size / buffer_size;
425 *left_over = slab_size % buffer_size;
426 } else {
427 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
428 *left_over = slab_size %
429 (buffer_size + sizeof(freelist_idx_t));
430 }
431
432 return num;
433 }
434
435 #if DEBUG
436 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
437
438 static void __slab_error(const char *function, struct kmem_cache *cachep,
439 char *msg)
440 {
441 pr_err("slab error in %s(): cache `%s': %s\n",
442 function, cachep->name, msg);
443 dump_stack();
444 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
445 }
446 #endif
447
448 /*
449 * By default on NUMA we use alien caches to stage the freeing of
450 * objects allocated from other nodes. This causes massive memory
451 * inefficiencies when using fake NUMA setup to split memory into a
452 * large number of small nodes, so it can be disabled on the command
453 * line
454 */
455
456 static int use_alien_caches __read_mostly = 1;
457 static int __init noaliencache_setup(char *s)
458 {
459 use_alien_caches = 0;
460 return 1;
461 }
462 __setup("noaliencache", noaliencache_setup);
463
464 static int __init slab_max_order_setup(char *str)
465 {
466 get_option(&str, &slab_max_order);
467 slab_max_order = slab_max_order < 0 ? 0 :
468 min(slab_max_order, MAX_ORDER - 1);
469 slab_max_order_set = true;
470
471 return 1;
472 }
473 __setup("slab_max_order=", slab_max_order_setup);
474
475 #ifdef CONFIG_NUMA
476 /*
477 * Special reaping functions for NUMA systems called from cache_reap().
478 * These take care of doing round robin flushing of alien caches (containing
479 * objects freed on different nodes from which they were allocated) and the
480 * flushing of remote pcps by calling drain_node_pages.
481 */
482 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
483
484 static void init_reap_node(int cpu)
485 {
486 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
487 node_online_map);
488 }
489
490 static void next_reap_node(void)
491 {
492 int node = __this_cpu_read(slab_reap_node);
493
494 node = next_node_in(node, node_online_map);
495 __this_cpu_write(slab_reap_node, node);
496 }
497
498 #else
499 #define init_reap_node(cpu) do { } while (0)
500 #define next_reap_node(void) do { } while (0)
501 #endif
502
503 /*
504 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
505 * via the workqueue/eventd.
506 * Add the CPU number into the expiration time to minimize the possibility of
507 * the CPUs getting into lockstep and contending for the global cache chain
508 * lock.
509 */
510 static void start_cpu_timer(int cpu)
511 {
512 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
513
514 if (reap_work->work.func == NULL) {
515 init_reap_node(cpu);
516 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
517 schedule_delayed_work_on(cpu, reap_work,
518 __round_jiffies_relative(HZ, cpu));
519 }
520 }
521
522 static void init_arraycache(struct array_cache *ac, int limit, int batch)
523 {
524 if (ac) {
525 ac->avail = 0;
526 ac->limit = limit;
527 ac->batchcount = batch;
528 ac->touched = 0;
529 }
530 }
531
532 static struct array_cache *alloc_arraycache(int node, int entries,
533 int batchcount, gfp_t gfp)
534 {
535 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
536 struct array_cache *ac = NULL;
537
538 ac = kmalloc_node(memsize, gfp, node);
539 /*
540 * The array_cache structures contain pointers to free object.
541 * However, when such objects are allocated or transferred to another
542 * cache the pointers are not cleared and they could be counted as
543 * valid references during a kmemleak scan. Therefore, kmemleak must
544 * not scan such objects.
545 */
546 kmemleak_no_scan(ac);
547 init_arraycache(ac, entries, batchcount);
548 return ac;
549 }
550
551 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
552 struct page *page, void *objp)
553 {
554 struct kmem_cache_node *n;
555 int page_node;
556 LIST_HEAD(list);
557
558 page_node = page_to_nid(page);
559 n = get_node(cachep, page_node);
560
561 spin_lock(&n->list_lock);
562 free_block(cachep, &objp, 1, page_node, &list);
563 spin_unlock(&n->list_lock);
564
565 slabs_destroy(cachep, &list);
566 }
567
568 /*
569 * Transfer objects in one arraycache to another.
570 * Locking must be handled by the caller.
571 *
572 * Return the number of entries transferred.
573 */
574 static int transfer_objects(struct array_cache *to,
575 struct array_cache *from, unsigned int max)
576 {
577 /* Figure out how many entries to transfer */
578 int nr = min3(from->avail, max, to->limit - to->avail);
579
580 if (!nr)
581 return 0;
582
583 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
584 sizeof(void *) *nr);
585
586 from->avail -= nr;
587 to->avail += nr;
588 return nr;
589 }
590
591 #ifndef CONFIG_NUMA
592
593 #define drain_alien_cache(cachep, alien) do { } while (0)
594 #define reap_alien(cachep, n) do { } while (0)
595
596 static inline struct alien_cache **alloc_alien_cache(int node,
597 int limit, gfp_t gfp)
598 {
599 return NULL;
600 }
601
602 static inline void free_alien_cache(struct alien_cache **ac_ptr)
603 {
604 }
605
606 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
607 {
608 return 0;
609 }
610
611 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
612 gfp_t flags)
613 {
614 return NULL;
615 }
616
617 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
618 gfp_t flags, int nodeid)
619 {
620 return NULL;
621 }
622
623 static inline gfp_t gfp_exact_node(gfp_t flags)
624 {
625 return flags & ~__GFP_NOFAIL;
626 }
627
628 #else /* CONFIG_NUMA */
629
630 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
631 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
632
633 static struct alien_cache *__alloc_alien_cache(int node, int entries,
634 int batch, gfp_t gfp)
635 {
636 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
637 struct alien_cache *alc = NULL;
638
639 alc = kmalloc_node(memsize, gfp, node);
640 if (alc) {
641 kmemleak_no_scan(alc);
642 init_arraycache(&alc->ac, entries, batch);
643 spin_lock_init(&alc->lock);
644 }
645 return alc;
646 }
647
648 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
649 {
650 struct alien_cache **alc_ptr;
651 int i;
652
653 if (limit > 1)
654 limit = 12;
655 alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
656 if (!alc_ptr)
657 return NULL;
658
659 for_each_node(i) {
660 if (i == node || !node_online(i))
661 continue;
662 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
663 if (!alc_ptr[i]) {
664 for (i--; i >= 0; i--)
665 kfree(alc_ptr[i]);
666 kfree(alc_ptr);
667 return NULL;
668 }
669 }
670 return alc_ptr;
671 }
672
673 static void free_alien_cache(struct alien_cache **alc_ptr)
674 {
675 int i;
676
677 if (!alc_ptr)
678 return;
679 for_each_node(i)
680 kfree(alc_ptr[i]);
681 kfree(alc_ptr);
682 }
683
684 static void __drain_alien_cache(struct kmem_cache *cachep,
685 struct array_cache *ac, int node,
686 struct list_head *list)
687 {
688 struct kmem_cache_node *n = get_node(cachep, node);
689
690 if (ac->avail) {
691 spin_lock(&n->list_lock);
692 /*
693 * Stuff objects into the remote nodes shared array first.
694 * That way we could avoid the overhead of putting the objects
695 * into the free lists and getting them back later.
696 */
697 if (n->shared)
698 transfer_objects(n->shared, ac, ac->limit);
699
700 free_block(cachep, ac->entry, ac->avail, node, list);
701 ac->avail = 0;
702 spin_unlock(&n->list_lock);
703 }
704 }
705
706 /*
707 * Called from cache_reap() to regularly drain alien caches round robin.
708 */
709 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
710 {
711 int node = __this_cpu_read(slab_reap_node);
712
713 if (n->alien) {
714 struct alien_cache *alc = n->alien[node];
715 struct array_cache *ac;
716
717 if (alc) {
718 ac = &alc->ac;
719 if (ac->avail && spin_trylock_irq(&alc->lock)) {
720 LIST_HEAD(list);
721
722 __drain_alien_cache(cachep, ac, node, &list);
723 spin_unlock_irq(&alc->lock);
724 slabs_destroy(cachep, &list);
725 }
726 }
727 }
728 }
729
730 static void drain_alien_cache(struct kmem_cache *cachep,
731 struct alien_cache **alien)
732 {
733 int i = 0;
734 struct alien_cache *alc;
735 struct array_cache *ac;
736 unsigned long flags;
737
738 for_each_online_node(i) {
739 alc = alien[i];
740 if (alc) {
741 LIST_HEAD(list);
742
743 ac = &alc->ac;
744 spin_lock_irqsave(&alc->lock, flags);
745 __drain_alien_cache(cachep, ac, i, &list);
746 spin_unlock_irqrestore(&alc->lock, flags);
747 slabs_destroy(cachep, &list);
748 }
749 }
750 }
751
752 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
753 int node, int page_node)
754 {
755 struct kmem_cache_node *n;
756 struct alien_cache *alien = NULL;
757 struct array_cache *ac;
758 LIST_HEAD(list);
759
760 n = get_node(cachep, node);
761 STATS_INC_NODEFREES(cachep);
762 if (n->alien && n->alien[page_node]) {
763 alien = n->alien[page_node];
764 ac = &alien->ac;
765 spin_lock(&alien->lock);
766 if (unlikely(ac->avail == ac->limit)) {
767 STATS_INC_ACOVERFLOW(cachep);
768 __drain_alien_cache(cachep, ac, page_node, &list);
769 }
770 ac->entry[ac->avail++] = objp;
771 spin_unlock(&alien->lock);
772 slabs_destroy(cachep, &list);
773 } else {
774 n = get_node(cachep, page_node);
775 spin_lock(&n->list_lock);
776 free_block(cachep, &objp, 1, page_node, &list);
777 spin_unlock(&n->list_lock);
778 slabs_destroy(cachep, &list);
779 }
780 return 1;
781 }
782
783 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
784 {
785 int page_node = page_to_nid(virt_to_page(objp));
786 int node = numa_mem_id();
787 /*
788 * Make sure we are not freeing a object from another node to the array
789 * cache on this cpu.
790 */
791 if (likely(node == page_node))
792 return 0;
793
794 return __cache_free_alien(cachep, objp, node, page_node);
795 }
796
797 /*
798 * Construct gfp mask to allocate from a specific node but do not reclaim or
799 * warn about failures.
800 */
801 static inline gfp_t gfp_exact_node(gfp_t flags)
802 {
803 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
804 }
805 #endif
806
807 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
808 {
809 struct kmem_cache_node *n;
810
811 /*
812 * Set up the kmem_cache_node for cpu before we can
813 * begin anything. Make sure some other cpu on this
814 * node has not already allocated this
815 */
816 n = get_node(cachep, node);
817 if (n) {
818 spin_lock_irq(&n->list_lock);
819 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
820 cachep->num;
821 spin_unlock_irq(&n->list_lock);
822
823 return 0;
824 }
825
826 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
827 if (!n)
828 return -ENOMEM;
829
830 kmem_cache_node_init(n);
831 n->next_reap = jiffies + REAPTIMEOUT_NODE +
832 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
833
834 n->free_limit =
835 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
836
837 /*
838 * The kmem_cache_nodes don't come and go as CPUs
839 * come and go. slab_mutex is sufficient
840 * protection here.
841 */
842 cachep->node[node] = n;
843
844 return 0;
845 }
846
847 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
848 /*
849 * Allocates and initializes node for a node on each slab cache, used for
850 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
851 * will be allocated off-node since memory is not yet online for the new node.
852 * When hotplugging memory or a cpu, existing node are not replaced if
853 * already in use.
854 *
855 * Must hold slab_mutex.
856 */
857 static int init_cache_node_node(int node)
858 {
859 int ret;
860 struct kmem_cache *cachep;
861
862 list_for_each_entry(cachep, &slab_caches, list) {
863 ret = init_cache_node(cachep, node, GFP_KERNEL);
864 if (ret)
865 return ret;
866 }
867
868 return 0;
869 }
870 #endif
871
872 static int setup_kmem_cache_node(struct kmem_cache *cachep,
873 int node, gfp_t gfp, bool force_change)
874 {
875 int ret = -ENOMEM;
876 struct kmem_cache_node *n;
877 struct array_cache *old_shared = NULL;
878 struct array_cache *new_shared = NULL;
879 struct alien_cache **new_alien = NULL;
880 LIST_HEAD(list);
881
882 if (use_alien_caches) {
883 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
884 if (!new_alien)
885 goto fail;
886 }
887
888 if (cachep->shared) {
889 new_shared = alloc_arraycache(node,
890 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
891 if (!new_shared)
892 goto fail;
893 }
894
895 ret = init_cache_node(cachep, node, gfp);
896 if (ret)
897 goto fail;
898
899 n = get_node(cachep, node);
900 spin_lock_irq(&n->list_lock);
901 if (n->shared && force_change) {
902 free_block(cachep, n->shared->entry,
903 n->shared->avail, node, &list);
904 n->shared->avail = 0;
905 }
906
907 if (!n->shared || force_change) {
908 old_shared = n->shared;
909 n->shared = new_shared;
910 new_shared = NULL;
911 }
912
913 if (!n->alien) {
914 n->alien = new_alien;
915 new_alien = NULL;
916 }
917
918 spin_unlock_irq(&n->list_lock);
919 slabs_destroy(cachep, &list);
920
921 /*
922 * To protect lockless access to n->shared during irq disabled context.
923 * If n->shared isn't NULL in irq disabled context, accessing to it is
924 * guaranteed to be valid until irq is re-enabled, because it will be
925 * freed after synchronize_rcu().
926 */
927 if (old_shared && force_change)
928 synchronize_rcu();
929
930 fail:
931 kfree(old_shared);
932 kfree(new_shared);
933 free_alien_cache(new_alien);
934
935 return ret;
936 }
937
938 #ifdef CONFIG_SMP
939
940 static void cpuup_canceled(long cpu)
941 {
942 struct kmem_cache *cachep;
943 struct kmem_cache_node *n = NULL;
944 int node = cpu_to_mem(cpu);
945 const struct cpumask *mask = cpumask_of_node(node);
946
947 list_for_each_entry(cachep, &slab_caches, list) {
948 struct array_cache *nc;
949 struct array_cache *shared;
950 struct alien_cache **alien;
951 LIST_HEAD(list);
952
953 n = get_node(cachep, node);
954 if (!n)
955 continue;
956
957 spin_lock_irq(&n->list_lock);
958
959 /* Free limit for this kmem_cache_node */
960 n->free_limit -= cachep->batchcount;
961
962 /* cpu is dead; no one can alloc from it. */
963 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
964 free_block(cachep, nc->entry, nc->avail, node, &list);
965 nc->avail = 0;
966
967 if (!cpumask_empty(mask)) {
968 spin_unlock_irq(&n->list_lock);
969 goto free_slab;
970 }
971
972 shared = n->shared;
973 if (shared) {
974 free_block(cachep, shared->entry,
975 shared->avail, node, &list);
976 n->shared = NULL;
977 }
978
979 alien = n->alien;
980 n->alien = NULL;
981
982 spin_unlock_irq(&n->list_lock);
983
984 kfree(shared);
985 if (alien) {
986 drain_alien_cache(cachep, alien);
987 free_alien_cache(alien);
988 }
989
990 free_slab:
991 slabs_destroy(cachep, &list);
992 }
993 /*
994 * In the previous loop, all the objects were freed to
995 * the respective cache's slabs, now we can go ahead and
996 * shrink each nodelist to its limit.
997 */
998 list_for_each_entry(cachep, &slab_caches, list) {
999 n = get_node(cachep, node);
1000 if (!n)
1001 continue;
1002 drain_freelist(cachep, n, INT_MAX);
1003 }
1004 }
1005
1006 static int cpuup_prepare(long cpu)
1007 {
1008 struct kmem_cache *cachep;
1009 int node = cpu_to_mem(cpu);
1010 int err;
1011
1012 /*
1013 * We need to do this right in the beginning since
1014 * alloc_arraycache's are going to use this list.
1015 * kmalloc_node allows us to add the slab to the right
1016 * kmem_cache_node and not this cpu's kmem_cache_node
1017 */
1018 err = init_cache_node_node(node);
1019 if (err < 0)
1020 goto bad;
1021
1022 /*
1023 * Now we can go ahead with allocating the shared arrays and
1024 * array caches
1025 */
1026 list_for_each_entry(cachep, &slab_caches, list) {
1027 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1028 if (err)
1029 goto bad;
1030 }
1031
1032 return 0;
1033 bad:
1034 cpuup_canceled(cpu);
1035 return -ENOMEM;
1036 }
1037
1038 int slab_prepare_cpu(unsigned int cpu)
1039 {
1040 int err;
1041
1042 mutex_lock(&slab_mutex);
1043 err = cpuup_prepare(cpu);
1044 mutex_unlock(&slab_mutex);
1045 return err;
1046 }
1047
1048 /*
1049 * This is called for a failed online attempt and for a successful
1050 * offline.
1051 *
1052 * Even if all the cpus of a node are down, we don't free the
1053 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1054 * a kmalloc allocation from another cpu for memory from the node of
1055 * the cpu going down. The list3 structure is usually allocated from
1056 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1057 */
1058 int slab_dead_cpu(unsigned int cpu)
1059 {
1060 mutex_lock(&slab_mutex);
1061 cpuup_canceled(cpu);
1062 mutex_unlock(&slab_mutex);
1063 return 0;
1064 }
1065 #endif
1066
1067 static int slab_online_cpu(unsigned int cpu)
1068 {
1069 start_cpu_timer(cpu);
1070 return 0;
1071 }
1072
1073 static int slab_offline_cpu(unsigned int cpu)
1074 {
1075 /*
1076 * Shutdown cache reaper. Note that the slab_mutex is held so
1077 * that if cache_reap() is invoked it cannot do anything
1078 * expensive but will only modify reap_work and reschedule the
1079 * timer.
1080 */
1081 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1082 /* Now the cache_reaper is guaranteed to be not running. */
1083 per_cpu(slab_reap_work, cpu).work.func = NULL;
1084 return 0;
1085 }
1086
1087 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1088 /*
1089 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1090 * Returns -EBUSY if all objects cannot be drained so that the node is not
1091 * removed.
1092 *
1093 * Must hold slab_mutex.
1094 */
1095 static int __meminit drain_cache_node_node(int node)
1096 {
1097 struct kmem_cache *cachep;
1098 int ret = 0;
1099
1100 list_for_each_entry(cachep, &slab_caches, list) {
1101 struct kmem_cache_node *n;
1102
1103 n = get_node(cachep, node);
1104 if (!n)
1105 continue;
1106
1107 drain_freelist(cachep, n, INT_MAX);
1108
1109 if (!list_empty(&n->slabs_full) ||
1110 !list_empty(&n->slabs_partial)) {
1111 ret = -EBUSY;
1112 break;
1113 }
1114 }
1115 return ret;
1116 }
1117
1118 static int __meminit slab_memory_callback(struct notifier_block *self,
1119 unsigned long action, void *arg)
1120 {
1121 struct memory_notify *mnb = arg;
1122 int ret = 0;
1123 int nid;
1124
1125 nid = mnb->status_change_nid;
1126 if (nid < 0)
1127 goto out;
1128
1129 switch (action) {
1130 case MEM_GOING_ONLINE:
1131 mutex_lock(&slab_mutex);
1132 ret = init_cache_node_node(nid);
1133 mutex_unlock(&slab_mutex);
1134 break;
1135 case MEM_GOING_OFFLINE:
1136 mutex_lock(&slab_mutex);
1137 ret = drain_cache_node_node(nid);
1138 mutex_unlock(&slab_mutex);
1139 break;
1140 case MEM_ONLINE:
1141 case MEM_OFFLINE:
1142 case MEM_CANCEL_ONLINE:
1143 case MEM_CANCEL_OFFLINE:
1144 break;
1145 }
1146 out:
1147 return notifier_from_errno(ret);
1148 }
1149 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1150
1151 /*
1152 * swap the static kmem_cache_node with kmalloced memory
1153 */
1154 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1155 int nodeid)
1156 {
1157 struct kmem_cache_node *ptr;
1158
1159 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1160 BUG_ON(!ptr);
1161
1162 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1163 /*
1164 * Do not assume that spinlocks can be initialized via memcpy:
1165 */
1166 spin_lock_init(&ptr->list_lock);
1167
1168 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1169 cachep->node[nodeid] = ptr;
1170 }
1171
1172 /*
1173 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1174 * size of kmem_cache_node.
1175 */
1176 static void __init set_up_node(struct kmem_cache *cachep, int index)
1177 {
1178 int node;
1179
1180 for_each_online_node(node) {
1181 cachep->node[node] = &init_kmem_cache_node[index + node];
1182 cachep->node[node]->next_reap = jiffies +
1183 REAPTIMEOUT_NODE +
1184 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1185 }
1186 }
1187
1188 /*
1189 * Initialisation. Called after the page allocator have been initialised and
1190 * before smp_init().
1191 */
1192 void __init kmem_cache_init(void)
1193 {
1194 int i;
1195
1196 kmem_cache = &kmem_cache_boot;
1197
1198 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1199 use_alien_caches = 0;
1200
1201 for (i = 0; i < NUM_INIT_LISTS; i++)
1202 kmem_cache_node_init(&init_kmem_cache_node[i]);
1203
1204 /*
1205 * Fragmentation resistance on low memory - only use bigger
1206 * page orders on machines with more than 32MB of memory if
1207 * not overridden on the command line.
1208 */
1209 if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
1210 slab_max_order = SLAB_MAX_ORDER_HI;
1211
1212 /* Bootstrap is tricky, because several objects are allocated
1213 * from caches that do not exist yet:
1214 * 1) initialize the kmem_cache cache: it contains the struct
1215 * kmem_cache structures of all caches, except kmem_cache itself:
1216 * kmem_cache is statically allocated.
1217 * Initially an __init data area is used for the head array and the
1218 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1219 * array at the end of the bootstrap.
1220 * 2) Create the first kmalloc cache.
1221 * The struct kmem_cache for the new cache is allocated normally.
1222 * An __init data area is used for the head array.
1223 * 3) Create the remaining kmalloc caches, with minimally sized
1224 * head arrays.
1225 * 4) Replace the __init data head arrays for kmem_cache and the first
1226 * kmalloc cache with kmalloc allocated arrays.
1227 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1228 * the other cache's with kmalloc allocated memory.
1229 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1230 */
1231
1232 /* 1) create the kmem_cache */
1233
1234 /*
1235 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1236 */
1237 create_boot_cache(kmem_cache, "kmem_cache",
1238 offsetof(struct kmem_cache, node) +
1239 nr_node_ids * sizeof(struct kmem_cache_node *),
1240 SLAB_HWCACHE_ALIGN, 0, 0);
1241 list_add(&kmem_cache->list, &slab_caches);
1242 memcg_link_cache(kmem_cache, NULL);
1243 slab_state = PARTIAL;
1244
1245 /*
1246 * Initialize the caches that provide memory for the kmem_cache_node
1247 * structures first. Without this, further allocations will bug.
1248 */
1249 kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE] = create_kmalloc_cache(
1250 kmalloc_info[INDEX_NODE].name[KMALLOC_NORMAL],
1251 kmalloc_info[INDEX_NODE].size,
1252 ARCH_KMALLOC_FLAGS, 0,
1253 kmalloc_info[INDEX_NODE].size);
1254 slab_state = PARTIAL_NODE;
1255 setup_kmalloc_cache_index_table();
1256
1257 slab_early_init = 0;
1258
1259 /* 5) Replace the bootstrap kmem_cache_node */
1260 {
1261 int nid;
1262
1263 for_each_online_node(nid) {
1264 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1265
1266 init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
1267 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1268 }
1269 }
1270
1271 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1272 }
1273
1274 void __init kmem_cache_init_late(void)
1275 {
1276 struct kmem_cache *cachep;
1277
1278 /* 6) resize the head arrays to their final sizes */
1279 mutex_lock(&slab_mutex);
1280 list_for_each_entry(cachep, &slab_caches, list)
1281 if (enable_cpucache(cachep, GFP_NOWAIT))
1282 BUG();
1283 mutex_unlock(&slab_mutex);
1284
1285 /* Done! */
1286 slab_state = FULL;
1287
1288 #ifdef CONFIG_NUMA
1289 /*
1290 * Register a memory hotplug callback that initializes and frees
1291 * node.
1292 */
1293 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1294 #endif
1295
1296 /*
1297 * The reap timers are started later, with a module init call: That part
1298 * of the kernel is not yet operational.
1299 */
1300 }
1301
1302 static int __init cpucache_init(void)
1303 {
1304 int ret;
1305
1306 /*
1307 * Register the timers that return unneeded pages to the page allocator
1308 */
1309 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1310 slab_online_cpu, slab_offline_cpu);
1311 WARN_ON(ret < 0);
1312
1313 return 0;
1314 }
1315 __initcall(cpucache_init);
1316
1317 static noinline void
1318 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1319 {
1320 #if DEBUG
1321 struct kmem_cache_node *n;
1322 unsigned long flags;
1323 int node;
1324 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1325 DEFAULT_RATELIMIT_BURST);
1326
1327 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1328 return;
1329
1330 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1331 nodeid, gfpflags, &gfpflags);
1332 pr_warn(" cache: %s, object size: %d, order: %d\n",
1333 cachep->name, cachep->size, cachep->gfporder);
1334
1335 for_each_kmem_cache_node(cachep, node, n) {
1336 unsigned long total_slabs, free_slabs, free_objs;
1337
1338 spin_lock_irqsave(&n->list_lock, flags);
1339 total_slabs = n->total_slabs;
1340 free_slabs = n->free_slabs;
1341 free_objs = n->free_objects;
1342 spin_unlock_irqrestore(&n->list_lock, flags);
1343
1344 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1345 node, total_slabs - free_slabs, total_slabs,
1346 (total_slabs * cachep->num) - free_objs,
1347 total_slabs * cachep->num);
1348 }
1349 #endif
1350 }
1351
1352 /*
1353 * Interface to system's page allocator. No need to hold the
1354 * kmem_cache_node ->list_lock.
1355 *
1356 * If we requested dmaable memory, we will get it. Even if we
1357 * did not request dmaable memory, we might get it, but that
1358 * would be relatively rare and ignorable.
1359 */
1360 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1361 int nodeid)
1362 {
1363 struct page *page;
1364
1365 flags |= cachep->allocflags;
1366
1367 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1368 if (!page) {
1369 slab_out_of_memory(cachep, flags, nodeid);
1370 return NULL;
1371 }
1372
1373 if (charge_slab_page(page, flags, cachep->gfporder, cachep)) {
1374 __free_pages(page, cachep->gfporder);
1375 return NULL;
1376 }
1377
1378 __SetPageSlab(page);
1379 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1380 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1381 SetPageSlabPfmemalloc(page);
1382
1383 return page;
1384 }
1385
1386 /*
1387 * Interface to system's page release.
1388 */
1389 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1390 {
1391 int order = cachep->gfporder;
1392
1393 BUG_ON(!PageSlab(page));
1394 __ClearPageSlabPfmemalloc(page);
1395 __ClearPageSlab(page);
1396 page_mapcount_reset(page);
1397 page->mapping = NULL;
1398
1399 if (current->reclaim_state)
1400 current->reclaim_state->reclaimed_slab += 1 << order;
1401 uncharge_slab_page(page, order, cachep);
1402 __free_pages(page, order);
1403 }
1404
1405 static void kmem_rcu_free(struct rcu_head *head)
1406 {
1407 struct kmem_cache *cachep;
1408 struct page *page;
1409
1410 page = container_of(head, struct page, rcu_head);
1411 cachep = page->slab_cache;
1412
1413 kmem_freepages(cachep, page);
1414 }
1415
1416 #if DEBUG
1417 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1418 {
1419 if (debug_pagealloc_enabled_static() && OFF_SLAB(cachep) &&
1420 (cachep->size % PAGE_SIZE) == 0)
1421 return true;
1422
1423 return false;
1424 }
1425
1426 #ifdef CONFIG_DEBUG_PAGEALLOC
1427 static void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
1428 {
1429 if (!is_debug_pagealloc_cache(cachep))
1430 return;
1431
1432 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1433 }
1434
1435 #else
1436 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1437 int map) {}
1438
1439 #endif
1440
1441 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1442 {
1443 int size = cachep->object_size;
1444 addr = &((char *)addr)[obj_offset(cachep)];
1445
1446 memset(addr, val, size);
1447 *(unsigned char *)(addr + size - 1) = POISON_END;
1448 }
1449
1450 static void dump_line(char *data, int offset, int limit)
1451 {
1452 int i;
1453 unsigned char error = 0;
1454 int bad_count = 0;
1455
1456 pr_err("%03x: ", offset);
1457 for (i = 0; i < limit; i++) {
1458 if (data[offset + i] != POISON_FREE) {
1459 error = data[offset + i];
1460 bad_count++;
1461 }
1462 }
1463 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1464 &data[offset], limit, 1);
1465
1466 if (bad_count == 1) {
1467 error ^= POISON_FREE;
1468 if (!(error & (error - 1))) {
1469 pr_err("Single bit error detected. Probably bad RAM.\n");
1470 #ifdef CONFIG_X86
1471 pr_err("Run memtest86+ or a similar memory test tool.\n");
1472 #else
1473 pr_err("Run a memory test tool.\n");
1474 #endif
1475 }
1476 }
1477 }
1478 #endif
1479
1480 #if DEBUG
1481
1482 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1483 {
1484 int i, size;
1485 char *realobj;
1486
1487 if (cachep->flags & SLAB_RED_ZONE) {
1488 pr_err("Redzone: 0x%llx/0x%llx\n",
1489 *dbg_redzone1(cachep, objp),
1490 *dbg_redzone2(cachep, objp));
1491 }
1492
1493 if (cachep->flags & SLAB_STORE_USER)
1494 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1495 realobj = (char *)objp + obj_offset(cachep);
1496 size = cachep->object_size;
1497 for (i = 0; i < size && lines; i += 16, lines--) {
1498 int limit;
1499 limit = 16;
1500 if (i + limit > size)
1501 limit = size - i;
1502 dump_line(realobj, i, limit);
1503 }
1504 }
1505
1506 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1507 {
1508 char *realobj;
1509 int size, i;
1510 int lines = 0;
1511
1512 if (is_debug_pagealloc_cache(cachep))
1513 return;
1514
1515 realobj = (char *)objp + obj_offset(cachep);
1516 size = cachep->object_size;
1517
1518 for (i = 0; i < size; i++) {
1519 char exp = POISON_FREE;
1520 if (i == size - 1)
1521 exp = POISON_END;
1522 if (realobj[i] != exp) {
1523 int limit;
1524 /* Mismatch ! */
1525 /* Print header */
1526 if (lines == 0) {
1527 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1528 print_tainted(), cachep->name,
1529 realobj, size);
1530 print_objinfo(cachep, objp, 0);
1531 }
1532 /* Hexdump the affected line */
1533 i = (i / 16) * 16;
1534 limit = 16;
1535 if (i + limit > size)
1536 limit = size - i;
1537 dump_line(realobj, i, limit);
1538 i += 16;
1539 lines++;
1540 /* Limit to 5 lines */
1541 if (lines > 5)
1542 break;
1543 }
1544 }
1545 if (lines != 0) {
1546 /* Print some data about the neighboring objects, if they
1547 * exist:
1548 */
1549 struct page *page = virt_to_head_page(objp);
1550 unsigned int objnr;
1551
1552 objnr = obj_to_index(cachep, page, objp);
1553 if (objnr) {
1554 objp = index_to_obj(cachep, page, objnr - 1);
1555 realobj = (char *)objp + obj_offset(cachep);
1556 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1557 print_objinfo(cachep, objp, 2);
1558 }
1559 if (objnr + 1 < cachep->num) {
1560 objp = index_to_obj(cachep, page, objnr + 1);
1561 realobj = (char *)objp + obj_offset(cachep);
1562 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1563 print_objinfo(cachep, objp, 2);
1564 }
1565 }
1566 }
1567 #endif
1568
1569 #if DEBUG
1570 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1571 struct page *page)
1572 {
1573 int i;
1574
1575 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1576 poison_obj(cachep, page->freelist - obj_offset(cachep),
1577 POISON_FREE);
1578 }
1579
1580 for (i = 0; i < cachep->num; i++) {
1581 void *objp = index_to_obj(cachep, page, i);
1582
1583 if (cachep->flags & SLAB_POISON) {
1584 check_poison_obj(cachep, objp);
1585 slab_kernel_map(cachep, objp, 1);
1586 }
1587 if (cachep->flags & SLAB_RED_ZONE) {
1588 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1589 slab_error(cachep, "start of a freed object was overwritten");
1590 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1591 slab_error(cachep, "end of a freed object was overwritten");
1592 }
1593 }
1594 }
1595 #else
1596 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1597 struct page *page)
1598 {
1599 }
1600 #endif
1601
1602 /**
1603 * slab_destroy - destroy and release all objects in a slab
1604 * @cachep: cache pointer being destroyed
1605 * @page: page pointer being destroyed
1606 *
1607 * Destroy all the objs in a slab page, and release the mem back to the system.
1608 * Before calling the slab page must have been unlinked from the cache. The
1609 * kmem_cache_node ->list_lock is not held/needed.
1610 */
1611 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1612 {
1613 void *freelist;
1614
1615 freelist = page->freelist;
1616 slab_destroy_debugcheck(cachep, page);
1617 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1618 call_rcu(&page->rcu_head, kmem_rcu_free);
1619 else
1620 kmem_freepages(cachep, page);
1621
1622 /*
1623 * From now on, we don't use freelist
1624 * although actual page can be freed in rcu context
1625 */
1626 if (OFF_SLAB(cachep))
1627 kmem_cache_free(cachep->freelist_cache, freelist);
1628 }
1629
1630 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1631 {
1632 struct page *page, *n;
1633
1634 list_for_each_entry_safe(page, n, list, slab_list) {
1635 list_del(&page->slab_list);
1636 slab_destroy(cachep, page);
1637 }
1638 }
1639
1640 /**
1641 * calculate_slab_order - calculate size (page order) of slabs
1642 * @cachep: pointer to the cache that is being created
1643 * @size: size of objects to be created in this cache.
1644 * @flags: slab allocation flags
1645 *
1646 * Also calculates the number of objects per slab.
1647 *
1648 * This could be made much more intelligent. For now, try to avoid using
1649 * high order pages for slabs. When the gfp() functions are more friendly
1650 * towards high-order requests, this should be changed.
1651 *
1652 * Return: number of left-over bytes in a slab
1653 */
1654 static size_t calculate_slab_order(struct kmem_cache *cachep,
1655 size_t size, slab_flags_t flags)
1656 {
1657 size_t left_over = 0;
1658 int gfporder;
1659
1660 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1661 unsigned int num;
1662 size_t remainder;
1663
1664 num = cache_estimate(gfporder, size, flags, &remainder);
1665 if (!num)
1666 continue;
1667
1668 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1669 if (num > SLAB_OBJ_MAX_NUM)
1670 break;
1671
1672 if (flags & CFLGS_OFF_SLAB) {
1673 struct kmem_cache *freelist_cache;
1674 size_t freelist_size;
1675
1676 freelist_size = num * sizeof(freelist_idx_t);
1677 freelist_cache = kmalloc_slab(freelist_size, 0u);
1678 if (!freelist_cache)
1679 continue;
1680
1681 /*
1682 * Needed to avoid possible looping condition
1683 * in cache_grow_begin()
1684 */
1685 if (OFF_SLAB(freelist_cache))
1686 continue;
1687
1688 /* check if off slab has enough benefit */
1689 if (freelist_cache->size > cachep->size / 2)
1690 continue;
1691 }
1692
1693 /* Found something acceptable - save it away */
1694 cachep->num = num;
1695 cachep->gfporder = gfporder;
1696 left_over = remainder;
1697
1698 /*
1699 * A VFS-reclaimable slab tends to have most allocations
1700 * as GFP_NOFS and we really don't want to have to be allocating
1701 * higher-order pages when we are unable to shrink dcache.
1702 */
1703 if (flags & SLAB_RECLAIM_ACCOUNT)
1704 break;
1705
1706 /*
1707 * Large number of objects is good, but very large slabs are
1708 * currently bad for the gfp()s.
1709 */
1710 if (gfporder >= slab_max_order)
1711 break;
1712
1713 /*
1714 * Acceptable internal fragmentation?
1715 */
1716 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1717 break;
1718 }
1719 return left_over;
1720 }
1721
1722 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1723 struct kmem_cache *cachep, int entries, int batchcount)
1724 {
1725 int cpu;
1726 size_t size;
1727 struct array_cache __percpu *cpu_cache;
1728
1729 size = sizeof(void *) * entries + sizeof(struct array_cache);
1730 cpu_cache = __alloc_percpu(size, sizeof(void *));
1731
1732 if (!cpu_cache)
1733 return NULL;
1734
1735 for_each_possible_cpu(cpu) {
1736 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1737 entries, batchcount);
1738 }
1739
1740 return cpu_cache;
1741 }
1742
1743 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1744 {
1745 if (slab_state >= FULL)
1746 return enable_cpucache(cachep, gfp);
1747
1748 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1749 if (!cachep->cpu_cache)
1750 return 1;
1751
1752 if (slab_state == DOWN) {
1753 /* Creation of first cache (kmem_cache). */
1754 set_up_node(kmem_cache, CACHE_CACHE);
1755 } else if (slab_state == PARTIAL) {
1756 /* For kmem_cache_node */
1757 set_up_node(cachep, SIZE_NODE);
1758 } else {
1759 int node;
1760
1761 for_each_online_node(node) {
1762 cachep->node[node] = kmalloc_node(
1763 sizeof(struct kmem_cache_node), gfp, node);
1764 BUG_ON(!cachep->node[node]);
1765 kmem_cache_node_init(cachep->node[node]);
1766 }
1767 }
1768
1769 cachep->node[numa_mem_id()]->next_reap =
1770 jiffies + REAPTIMEOUT_NODE +
1771 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1772
1773 cpu_cache_get(cachep)->avail = 0;
1774 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1775 cpu_cache_get(cachep)->batchcount = 1;
1776 cpu_cache_get(cachep)->touched = 0;
1777 cachep->batchcount = 1;
1778 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1779 return 0;
1780 }
1781
1782 slab_flags_t kmem_cache_flags(unsigned int object_size,
1783 slab_flags_t flags, const char *name,
1784 void (*ctor)(void *))
1785 {
1786 return flags;
1787 }
1788
1789 struct kmem_cache *
1790 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1791 slab_flags_t flags, void (*ctor)(void *))
1792 {
1793 struct kmem_cache *cachep;
1794
1795 cachep = find_mergeable(size, align, flags, name, ctor);
1796 if (cachep) {
1797 cachep->refcount++;
1798
1799 /*
1800 * Adjust the object sizes so that we clear
1801 * the complete object on kzalloc.
1802 */
1803 cachep->object_size = max_t(int, cachep->object_size, size);
1804 }
1805 return cachep;
1806 }
1807
1808 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1809 size_t size, slab_flags_t flags)
1810 {
1811 size_t left;
1812
1813 cachep->num = 0;
1814
1815 /*
1816 * If slab auto-initialization on free is enabled, store the freelist
1817 * off-slab, so that its contents don't end up in one of the allocated
1818 * objects.
1819 */
1820 if (unlikely(slab_want_init_on_free(cachep)))
1821 return false;
1822
1823 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1824 return false;
1825
1826 left = calculate_slab_order(cachep, size,
1827 flags | CFLGS_OBJFREELIST_SLAB);
1828 if (!cachep->num)
1829 return false;
1830
1831 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1832 return false;
1833
1834 cachep->colour = left / cachep->colour_off;
1835
1836 return true;
1837 }
1838
1839 static bool set_off_slab_cache(struct kmem_cache *cachep,
1840 size_t size, slab_flags_t flags)
1841 {
1842 size_t left;
1843
1844 cachep->num = 0;
1845
1846 /*
1847 * Always use on-slab management when SLAB_NOLEAKTRACE
1848 * to avoid recursive calls into kmemleak.
1849 */
1850 if (flags & SLAB_NOLEAKTRACE)
1851 return false;
1852
1853 /*
1854 * Size is large, assume best to place the slab management obj
1855 * off-slab (should allow better packing of objs).
1856 */
1857 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1858 if (!cachep->num)
1859 return false;
1860
1861 /*
1862 * If the slab has been placed off-slab, and we have enough space then
1863 * move it on-slab. This is at the expense of any extra colouring.
1864 */
1865 if (left >= cachep->num * sizeof(freelist_idx_t))
1866 return false;
1867
1868 cachep->colour = left / cachep->colour_off;
1869
1870 return true;
1871 }
1872
1873 static bool set_on_slab_cache(struct kmem_cache *cachep,
1874 size_t size, slab_flags_t flags)
1875 {
1876 size_t left;
1877
1878 cachep->num = 0;
1879
1880 left = calculate_slab_order(cachep, size, flags);
1881 if (!cachep->num)
1882 return false;
1883
1884 cachep->colour = left / cachep->colour_off;
1885
1886 return true;
1887 }
1888
1889 /**
1890 * __kmem_cache_create - Create a cache.
1891 * @cachep: cache management descriptor
1892 * @flags: SLAB flags
1893 *
1894 * Returns a ptr to the cache on success, NULL on failure.
1895 * Cannot be called within a int, but can be interrupted.
1896 * The @ctor is run when new pages are allocated by the cache.
1897 *
1898 * The flags are
1899 *
1900 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1901 * to catch references to uninitialised memory.
1902 *
1903 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1904 * for buffer overruns.
1905 *
1906 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1907 * cacheline. This can be beneficial if you're counting cycles as closely
1908 * as davem.
1909 *
1910 * Return: a pointer to the created cache or %NULL in case of error
1911 */
1912 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1913 {
1914 size_t ralign = BYTES_PER_WORD;
1915 gfp_t gfp;
1916 int err;
1917 unsigned int size = cachep->size;
1918
1919 #if DEBUG
1920 #if FORCED_DEBUG
1921 /*
1922 * Enable redzoning and last user accounting, except for caches with
1923 * large objects, if the increased size would increase the object size
1924 * above the next power of two: caches with object sizes just above a
1925 * power of two have a significant amount of internal fragmentation.
1926 */
1927 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
1928 2 * sizeof(unsigned long long)))
1929 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1930 if (!(flags & SLAB_TYPESAFE_BY_RCU))
1931 flags |= SLAB_POISON;
1932 #endif
1933 #endif
1934
1935 /*
1936 * Check that size is in terms of words. This is needed to avoid
1937 * unaligned accesses for some archs when redzoning is used, and makes
1938 * sure any on-slab bufctl's are also correctly aligned.
1939 */
1940 size = ALIGN(size, BYTES_PER_WORD);
1941
1942 if (flags & SLAB_RED_ZONE) {
1943 ralign = REDZONE_ALIGN;
1944 /* If redzoning, ensure that the second redzone is suitably
1945 * aligned, by adjusting the object size accordingly. */
1946 size = ALIGN(size, REDZONE_ALIGN);
1947 }
1948
1949 /* 3) caller mandated alignment */
1950 if (ralign < cachep->align) {
1951 ralign = cachep->align;
1952 }
1953 /* disable debug if necessary */
1954 if (ralign > __alignof__(unsigned long long))
1955 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1956 /*
1957 * 4) Store it.
1958 */
1959 cachep->align = ralign;
1960 cachep->colour_off = cache_line_size();
1961 /* Offset must be a multiple of the alignment. */
1962 if (cachep->colour_off < cachep->align)
1963 cachep->colour_off = cachep->align;
1964
1965 if (slab_is_available())
1966 gfp = GFP_KERNEL;
1967 else
1968 gfp = GFP_NOWAIT;
1969
1970 #if DEBUG
1971
1972 /*
1973 * Both debugging options require word-alignment which is calculated
1974 * into align above.
1975 */
1976 if (flags & SLAB_RED_ZONE) {
1977 /* add space for red zone words */
1978 cachep->obj_offset += sizeof(unsigned long long);
1979 size += 2 * sizeof(unsigned long long);
1980 }
1981 if (flags & SLAB_STORE_USER) {
1982 /* user store requires one word storage behind the end of
1983 * the real object. But if the second red zone needs to be
1984 * aligned to 64 bits, we must allow that much space.
1985 */
1986 if (flags & SLAB_RED_ZONE)
1987 size += REDZONE_ALIGN;
1988 else
1989 size += BYTES_PER_WORD;
1990 }
1991 #endif
1992
1993 kasan_cache_create(cachep, &size, &flags);
1994
1995 size = ALIGN(size, cachep->align);
1996 /*
1997 * We should restrict the number of objects in a slab to implement
1998 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
1999 */
2000 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2001 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2002
2003 #if DEBUG
2004 /*
2005 * To activate debug pagealloc, off-slab management is necessary
2006 * requirement. In early phase of initialization, small sized slab
2007 * doesn't get initialized so it would not be possible. So, we need
2008 * to check size >= 256. It guarantees that all necessary small
2009 * sized slab is initialized in current slab initialization sequence.
2010 */
2011 if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) &&
2012 size >= 256 && cachep->object_size > cache_line_size()) {
2013 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2014 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2015
2016 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2017 flags |= CFLGS_OFF_SLAB;
2018 cachep->obj_offset += tmp_size - size;
2019 size = tmp_size;
2020 goto done;
2021 }
2022 }
2023 }
2024 #endif
2025
2026 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2027 flags |= CFLGS_OBJFREELIST_SLAB;
2028 goto done;
2029 }
2030
2031 if (set_off_slab_cache(cachep, size, flags)) {
2032 flags |= CFLGS_OFF_SLAB;
2033 goto done;
2034 }
2035
2036 if (set_on_slab_cache(cachep, size, flags))
2037 goto done;
2038
2039 return -E2BIG;
2040
2041 done:
2042 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2043 cachep->flags = flags;
2044 cachep->allocflags = __GFP_COMP;
2045 if (flags & SLAB_CACHE_DMA)
2046 cachep->allocflags |= GFP_DMA;
2047 if (flags & SLAB_CACHE_DMA32)
2048 cachep->allocflags |= GFP_DMA32;
2049 if (flags & SLAB_RECLAIM_ACCOUNT)
2050 cachep->allocflags |= __GFP_RECLAIMABLE;
2051 cachep->size = size;
2052 cachep->reciprocal_buffer_size = reciprocal_value(size);
2053
2054 #if DEBUG
2055 /*
2056 * If we're going to use the generic kernel_map_pages()
2057 * poisoning, then it's going to smash the contents of
2058 * the redzone and userword anyhow, so switch them off.
2059 */
2060 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2061 (cachep->flags & SLAB_POISON) &&
2062 is_debug_pagealloc_cache(cachep))
2063 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2064 #endif
2065
2066 if (OFF_SLAB(cachep)) {
2067 cachep->freelist_cache =
2068 kmalloc_slab(cachep->freelist_size, 0u);
2069 }
2070
2071 err = setup_cpu_cache(cachep, gfp);
2072 if (err) {
2073 __kmem_cache_release(cachep);
2074 return err;
2075 }
2076
2077 return 0;
2078 }
2079
2080 #if DEBUG
2081 static void check_irq_off(void)
2082 {
2083 BUG_ON(!irqs_disabled());
2084 }
2085
2086 static void check_irq_on(void)
2087 {
2088 BUG_ON(irqs_disabled());
2089 }
2090
2091 static void check_mutex_acquired(void)
2092 {
2093 BUG_ON(!mutex_is_locked(&slab_mutex));
2094 }
2095
2096 static void check_spinlock_acquired(struct kmem_cache *cachep)
2097 {
2098 #ifdef CONFIG_SMP
2099 check_irq_off();
2100 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2101 #endif
2102 }
2103
2104 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2105 {
2106 #ifdef CONFIG_SMP
2107 check_irq_off();
2108 assert_spin_locked(&get_node(cachep, node)->list_lock);
2109 #endif
2110 }
2111
2112 #else
2113 #define check_irq_off() do { } while(0)
2114 #define check_irq_on() do { } while(0)
2115 #define check_mutex_acquired() do { } while(0)
2116 #define check_spinlock_acquired(x) do { } while(0)
2117 #define check_spinlock_acquired_node(x, y) do { } while(0)
2118 #endif
2119
2120 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2121 int node, bool free_all, struct list_head *list)
2122 {
2123 int tofree;
2124
2125 if (!ac || !ac->avail)
2126 return;
2127
2128 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2129 if (tofree > ac->avail)
2130 tofree = (ac->avail + 1) / 2;
2131
2132 free_block(cachep, ac->entry, tofree, node, list);
2133 ac->avail -= tofree;
2134 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2135 }
2136
2137 static void do_drain(void *arg)
2138 {
2139 struct kmem_cache *cachep = arg;
2140 struct array_cache *ac;
2141 int node = numa_mem_id();
2142 struct kmem_cache_node *n;
2143 LIST_HEAD(list);
2144
2145 check_irq_off();
2146 ac = cpu_cache_get(cachep);
2147 n = get_node(cachep, node);
2148 spin_lock(&n->list_lock);
2149 free_block(cachep, ac->entry, ac->avail, node, &list);
2150 spin_unlock(&n->list_lock);
2151 slabs_destroy(cachep, &list);
2152 ac->avail = 0;
2153 }
2154
2155 static void drain_cpu_caches(struct kmem_cache *cachep)
2156 {
2157 struct kmem_cache_node *n;
2158 int node;
2159 LIST_HEAD(list);
2160
2161 on_each_cpu(do_drain, cachep, 1);
2162 check_irq_on();
2163 for_each_kmem_cache_node(cachep, node, n)
2164 if (n->alien)
2165 drain_alien_cache(cachep, n->alien);
2166
2167 for_each_kmem_cache_node(cachep, node, n) {
2168 spin_lock_irq(&n->list_lock);
2169 drain_array_locked(cachep, n->shared, node, true, &list);
2170 spin_unlock_irq(&n->list_lock);
2171
2172 slabs_destroy(cachep, &list);
2173 }
2174 }
2175
2176 /*
2177 * Remove slabs from the list of free slabs.
2178 * Specify the number of slabs to drain in tofree.
2179 *
2180 * Returns the actual number of slabs released.
2181 */
2182 static int drain_freelist(struct kmem_cache *cache,
2183 struct kmem_cache_node *n, int tofree)
2184 {
2185 struct list_head *p;
2186 int nr_freed;
2187 struct page *page;
2188
2189 nr_freed = 0;
2190 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2191
2192 spin_lock_irq(&n->list_lock);
2193 p = n->slabs_free.prev;
2194 if (p == &n->slabs_free) {
2195 spin_unlock_irq(&n->list_lock);
2196 goto out;
2197 }
2198
2199 page = list_entry(p, struct page, slab_list);
2200 list_del(&page->slab_list);
2201 n->free_slabs--;
2202 n->total_slabs--;
2203 /*
2204 * Safe to drop the lock. The slab is no longer linked
2205 * to the cache.
2206 */
2207 n->free_objects -= cache->num;
2208 spin_unlock_irq(&n->list_lock);
2209 slab_destroy(cache, page);
2210 nr_freed++;
2211 }
2212 out:
2213 return nr_freed;
2214 }
2215
2216 bool __kmem_cache_empty(struct kmem_cache *s)
2217 {
2218 int node;
2219 struct kmem_cache_node *n;
2220
2221 for_each_kmem_cache_node(s, node, n)
2222 if (!list_empty(&n->slabs_full) ||
2223 !list_empty(&n->slabs_partial))
2224 return false;
2225 return true;
2226 }
2227
2228 int __kmem_cache_shrink(struct kmem_cache *cachep)
2229 {
2230 int ret = 0;
2231 int node;
2232 struct kmem_cache_node *n;
2233
2234 drain_cpu_caches(cachep);
2235
2236 check_irq_on();
2237 for_each_kmem_cache_node(cachep, node, n) {
2238 drain_freelist(cachep, n, INT_MAX);
2239
2240 ret += !list_empty(&n->slabs_full) ||
2241 !list_empty(&n->slabs_partial);
2242 }
2243 return (ret ? 1 : 0);
2244 }
2245
2246 #ifdef CONFIG_MEMCG
2247 void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2248 {
2249 __kmem_cache_shrink(cachep);
2250 }
2251
2252 void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
2253 {
2254 }
2255 #endif
2256
2257 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2258 {
2259 return __kmem_cache_shrink(cachep);
2260 }
2261
2262 void __kmem_cache_release(struct kmem_cache *cachep)
2263 {
2264 int i;
2265 struct kmem_cache_node *n;
2266
2267 cache_random_seq_destroy(cachep);
2268
2269 free_percpu(cachep->cpu_cache);
2270
2271 /* NUMA: free the node structures */
2272 for_each_kmem_cache_node(cachep, i, n) {
2273 kfree(n->shared);
2274 free_alien_cache(n->alien);
2275 kfree(n);
2276 cachep->node[i] = NULL;
2277 }
2278 }
2279
2280 /*
2281 * Get the memory for a slab management obj.
2282 *
2283 * For a slab cache when the slab descriptor is off-slab, the
2284 * slab descriptor can't come from the same cache which is being created,
2285 * Because if it is the case, that means we defer the creation of
2286 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2287 * And we eventually call down to __kmem_cache_create(), which
2288 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2289 * This is a "chicken-and-egg" problem.
2290 *
2291 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2292 * which are all initialized during kmem_cache_init().
2293 */
2294 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2295 struct page *page, int colour_off,
2296 gfp_t local_flags, int nodeid)
2297 {
2298 void *freelist;
2299 void *addr = page_address(page);
2300
2301 page->s_mem = addr + colour_off;
2302 page->active = 0;
2303
2304 if (OBJFREELIST_SLAB(cachep))
2305 freelist = NULL;
2306 else if (OFF_SLAB(cachep)) {
2307 /* Slab management obj is off-slab. */
2308 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2309 local_flags, nodeid);
2310 if (!freelist)
2311 return NULL;
2312 } else {
2313 /* We will use last bytes at the slab for freelist */
2314 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2315 cachep->freelist_size;
2316 }
2317
2318 return freelist;
2319 }
2320
2321 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2322 {
2323 return ((freelist_idx_t *)page->freelist)[idx];
2324 }
2325
2326 static inline void set_free_obj(struct page *page,
2327 unsigned int idx, freelist_idx_t val)
2328 {
2329 ((freelist_idx_t *)(page->freelist))[idx] = val;
2330 }
2331
2332 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2333 {
2334 #if DEBUG
2335 int i;
2336
2337 for (i = 0; i < cachep->num; i++) {
2338 void *objp = index_to_obj(cachep, page, i);
2339
2340 if (cachep->flags & SLAB_STORE_USER)
2341 *dbg_userword(cachep, objp) = NULL;
2342
2343 if (cachep->flags & SLAB_RED_ZONE) {
2344 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2345 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2346 }
2347 /*
2348 * Constructors are not allowed to allocate memory from the same
2349 * cache which they are a constructor for. Otherwise, deadlock.
2350 * They must also be threaded.
2351 */
2352 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2353 kasan_unpoison_object_data(cachep,
2354 objp + obj_offset(cachep));
2355 cachep->ctor(objp + obj_offset(cachep));
2356 kasan_poison_object_data(
2357 cachep, objp + obj_offset(cachep));
2358 }
2359
2360 if (cachep->flags & SLAB_RED_ZONE) {
2361 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2362 slab_error(cachep, "constructor overwrote the end of an object");
2363 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2364 slab_error(cachep, "constructor overwrote the start of an object");
2365 }
2366 /* need to poison the objs? */
2367 if (cachep->flags & SLAB_POISON) {
2368 poison_obj(cachep, objp, POISON_FREE);
2369 slab_kernel_map(cachep, objp, 0);
2370 }
2371 }
2372 #endif
2373 }
2374
2375 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2376 /* Hold information during a freelist initialization */
2377 union freelist_init_state {
2378 struct {
2379 unsigned int pos;
2380 unsigned int *list;
2381 unsigned int count;
2382 };
2383 struct rnd_state rnd_state;
2384 };
2385
2386 /*
2387 * Initialize the state based on the randomization methode available.
2388 * return true if the pre-computed list is available, false otherwize.
2389 */
2390 static bool freelist_state_initialize(union freelist_init_state *state,
2391 struct kmem_cache *cachep,
2392 unsigned int count)
2393 {
2394 bool ret;
2395 unsigned int rand;
2396
2397 /* Use best entropy available to define a random shift */
2398 rand = get_random_int();
2399
2400 /* Use a random state if the pre-computed list is not available */
2401 if (!cachep->random_seq) {
2402 prandom_seed_state(&state->rnd_state, rand);
2403 ret = false;
2404 } else {
2405 state->list = cachep->random_seq;
2406 state->count = count;
2407 state->pos = rand % count;
2408 ret = true;
2409 }
2410 return ret;
2411 }
2412
2413 /* Get the next entry on the list and randomize it using a random shift */
2414 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2415 {
2416 if (state->pos >= state->count)
2417 state->pos = 0;
2418 return state->list[state->pos++];
2419 }
2420
2421 /* Swap two freelist entries */
2422 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2423 {
2424 swap(((freelist_idx_t *)page->freelist)[a],
2425 ((freelist_idx_t *)page->freelist)[b]);
2426 }
2427
2428 /*
2429 * Shuffle the freelist initialization state based on pre-computed lists.
2430 * return true if the list was successfully shuffled, false otherwise.
2431 */
2432 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2433 {
2434 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2435 union freelist_init_state state;
2436 bool precomputed;
2437
2438 if (count < 2)
2439 return false;
2440
2441 precomputed = freelist_state_initialize(&state, cachep, count);
2442
2443 /* Take a random entry as the objfreelist */
2444 if (OBJFREELIST_SLAB(cachep)) {
2445 if (!precomputed)
2446 objfreelist = count - 1;
2447 else
2448 objfreelist = next_random_slot(&state);
2449 page->freelist = index_to_obj(cachep, page, objfreelist) +
2450 obj_offset(cachep);
2451 count--;
2452 }
2453
2454 /*
2455 * On early boot, generate the list dynamically.
2456 * Later use a pre-computed list for speed.
2457 */
2458 if (!precomputed) {
2459 for (i = 0; i < count; i++)
2460 set_free_obj(page, i, i);
2461
2462 /* Fisher-Yates shuffle */
2463 for (i = count - 1; i > 0; i--) {
2464 rand = prandom_u32_state(&state.rnd_state);
2465 rand %= (i + 1);
2466 swap_free_obj(page, i, rand);
2467 }
2468 } else {
2469 for (i = 0; i < count; i++)
2470 set_free_obj(page, i, next_random_slot(&state));
2471 }
2472
2473 if (OBJFREELIST_SLAB(cachep))
2474 set_free_obj(page, cachep->num - 1, objfreelist);
2475
2476 return true;
2477 }
2478 #else
2479 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2480 struct page *page)
2481 {
2482 return false;
2483 }
2484 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2485
2486 static void cache_init_objs(struct kmem_cache *cachep,
2487 struct page *page)
2488 {
2489 int i;
2490 void *objp;
2491 bool shuffled;
2492
2493 cache_init_objs_debug(cachep, page);
2494
2495 /* Try to randomize the freelist if enabled */
2496 shuffled = shuffle_freelist(cachep, page);
2497
2498 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2499 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2500 obj_offset(cachep);
2501 }
2502
2503 for (i = 0; i < cachep->num; i++) {
2504 objp = index_to_obj(cachep, page, i);
2505 objp = kasan_init_slab_obj(cachep, objp);
2506
2507 /* constructor could break poison info */
2508 if (DEBUG == 0 && cachep->ctor) {
2509 kasan_unpoison_object_data(cachep, objp);
2510 cachep->ctor(objp);
2511 kasan_poison_object_data(cachep, objp);
2512 }
2513
2514 if (!shuffled)
2515 set_free_obj(page, i, i);
2516 }
2517 }
2518
2519 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2520 {
2521 void *objp;
2522
2523 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2524 page->active++;
2525
2526 return objp;
2527 }
2528
2529 static void slab_put_obj(struct kmem_cache *cachep,
2530 struct page *page, void *objp)
2531 {
2532 unsigned int objnr = obj_to_index(cachep, page, objp);
2533 #if DEBUG
2534 unsigned int i;
2535
2536 /* Verify double free bug */
2537 for (i = page->active; i < cachep->num; i++) {
2538 if (get_free_obj(page, i) == objnr) {
2539 pr_err("slab: double free detected in cache '%s', objp %px\n",
2540 cachep->name, objp);
2541 BUG();
2542 }
2543 }
2544 #endif
2545 page->active--;
2546 if (!page->freelist)
2547 page->freelist = objp + obj_offset(cachep);
2548
2549 set_free_obj(page, page->active, objnr);
2550 }
2551
2552 /*
2553 * Map pages beginning at addr to the given cache and slab. This is required
2554 * for the slab allocator to be able to lookup the cache and slab of a
2555 * virtual address for kfree, ksize, and slab debugging.
2556 */
2557 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2558 void *freelist)
2559 {
2560 page->slab_cache = cache;
2561 page->freelist = freelist;
2562 }
2563
2564 /*
2565 * Grow (by 1) the number of slabs within a cache. This is called by
2566 * kmem_cache_alloc() when there are no active objs left in a cache.
2567 */
2568 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2569 gfp_t flags, int nodeid)
2570 {
2571 void *freelist;
2572 size_t offset;
2573 gfp_t local_flags;
2574 int page_node;
2575 struct kmem_cache_node *n;
2576 struct page *page;
2577
2578 /*
2579 * Be lazy and only check for valid flags here, keeping it out of the
2580 * critical path in kmem_cache_alloc().
2581 */
2582 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2583 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2584 flags &= ~GFP_SLAB_BUG_MASK;
2585 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2586 invalid_mask, &invalid_mask, flags, &flags);
2587 dump_stack();
2588 }
2589 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2590 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2591
2592 check_irq_off();
2593 if (gfpflags_allow_blocking(local_flags))
2594 local_irq_enable();
2595
2596 /*
2597 * Get mem for the objs. Attempt to allocate a physical page from
2598 * 'nodeid'.
2599 */
2600 page = kmem_getpages(cachep, local_flags, nodeid);
2601 if (!page)
2602 goto failed;
2603
2604 page_node = page_to_nid(page);
2605 n = get_node(cachep, page_node);
2606
2607 /* Get colour for the slab, and cal the next value. */
2608 n->colour_next++;
2609 if (n->colour_next >= cachep->colour)
2610 n->colour_next = 0;
2611
2612 offset = n->colour_next;
2613 if (offset >= cachep->colour)
2614 offset = 0;
2615
2616 offset *= cachep->colour_off;
2617
2618 /*
2619 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
2620 * page_address() in the latter returns a non-tagged pointer,
2621 * as it should be for slab pages.
2622 */
2623 kasan_poison_slab(page);
2624
2625 /* Get slab management. */
2626 freelist = alloc_slabmgmt(cachep, page, offset,
2627 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2628 if (OFF_SLAB(cachep) && !freelist)
2629 goto opps1;
2630
2631 slab_map_pages(cachep, page, freelist);
2632
2633 cache_init_objs(cachep, page);
2634
2635 if (gfpflags_allow_blocking(local_flags))
2636 local_irq_disable();
2637
2638 return page;
2639
2640 opps1:
2641 kmem_freepages(cachep, page);
2642 failed:
2643 if (gfpflags_allow_blocking(local_flags))
2644 local_irq_disable();
2645 return NULL;
2646 }
2647
2648 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2649 {
2650 struct kmem_cache_node *n;
2651 void *list = NULL;
2652
2653 check_irq_off();
2654
2655 if (!page)
2656 return;
2657
2658 INIT_LIST_HEAD(&page->slab_list);
2659 n = get_node(cachep, page_to_nid(page));
2660
2661 spin_lock(&n->list_lock);
2662 n->total_slabs++;
2663 if (!page->active) {
2664 list_add_tail(&page->slab_list, &n->slabs_free);
2665 n->free_slabs++;
2666 } else
2667 fixup_slab_list(cachep, n, page, &list);
2668
2669 STATS_INC_GROWN(cachep);
2670 n->free_objects += cachep->num - page->active;
2671 spin_unlock(&n->list_lock);
2672
2673 fixup_objfreelist_debug(cachep, &list);
2674 }
2675
2676 #if DEBUG
2677
2678 /*
2679 * Perform extra freeing checks:
2680 * - detect bad pointers.
2681 * - POISON/RED_ZONE checking
2682 */
2683 static void kfree_debugcheck(const void *objp)
2684 {
2685 if (!virt_addr_valid(objp)) {
2686 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2687 (unsigned long)objp);
2688 BUG();
2689 }
2690 }
2691
2692 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2693 {
2694 unsigned long long redzone1, redzone2;
2695
2696 redzone1 = *dbg_redzone1(cache, obj);
2697 redzone2 = *dbg_redzone2(cache, obj);
2698
2699 /*
2700 * Redzone is ok.
2701 */
2702 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2703 return;
2704
2705 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2706 slab_error(cache, "double free detected");
2707 else
2708 slab_error(cache, "memory outside object was overwritten");
2709
2710 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2711 obj, redzone1, redzone2);
2712 }
2713
2714 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2715 unsigned long caller)
2716 {
2717 unsigned int objnr;
2718 struct page *page;
2719
2720 BUG_ON(virt_to_cache(objp) != cachep);
2721
2722 objp -= obj_offset(cachep);
2723 kfree_debugcheck(objp);
2724 page = virt_to_head_page(objp);
2725
2726 if (cachep->flags & SLAB_RED_ZONE) {
2727 verify_redzone_free(cachep, objp);
2728 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2729 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2730 }
2731 if (cachep->flags & SLAB_STORE_USER)
2732 *dbg_userword(cachep, objp) = (void *)caller;
2733
2734 objnr = obj_to_index(cachep, page, objp);
2735
2736 BUG_ON(objnr >= cachep->num);
2737 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2738
2739 if (cachep->flags & SLAB_POISON) {
2740 poison_obj(cachep, objp, POISON_FREE);
2741 slab_kernel_map(cachep, objp, 0);
2742 }
2743 return objp;
2744 }
2745
2746 #else
2747 #define kfree_debugcheck(x) do { } while(0)
2748 #define cache_free_debugcheck(x,objp,z) (objp)
2749 #endif
2750
2751 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2752 void **list)
2753 {
2754 #if DEBUG
2755 void *next = *list;
2756 void *objp;
2757
2758 while (next) {
2759 objp = next - obj_offset(cachep);
2760 next = *(void **)next;
2761 poison_obj(cachep, objp, POISON_FREE);
2762 }
2763 #endif
2764 }
2765
2766 static inline void fixup_slab_list(struct kmem_cache *cachep,
2767 struct kmem_cache_node *n, struct page *page,
2768 void **list)
2769 {
2770 /* move slabp to correct slabp list: */
2771 list_del(&page->slab_list);
2772 if (page->active == cachep->num) {
2773 list_add(&page->slab_list, &n->slabs_full);
2774 if (OBJFREELIST_SLAB(cachep)) {
2775 #if DEBUG
2776 /* Poisoning will be done without holding the lock */
2777 if (cachep->flags & SLAB_POISON) {
2778 void **objp = page->freelist;
2779
2780 *objp = *list;
2781 *list = objp;
2782 }
2783 #endif
2784 page->freelist = NULL;
2785 }
2786 } else
2787 list_add(&page->slab_list, &n->slabs_partial);
2788 }
2789
2790 /* Try to find non-pfmemalloc slab if needed */
2791 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2792 struct page *page, bool pfmemalloc)
2793 {
2794 if (!page)
2795 return NULL;
2796
2797 if (pfmemalloc)
2798 return page;
2799
2800 if (!PageSlabPfmemalloc(page))
2801 return page;
2802
2803 /* No need to keep pfmemalloc slab if we have enough free objects */
2804 if (n->free_objects > n->free_limit) {
2805 ClearPageSlabPfmemalloc(page);
2806 return page;
2807 }
2808
2809 /* Move pfmemalloc slab to the end of list to speed up next search */
2810 list_del(&page->slab_list);
2811 if (!page->active) {
2812 list_add_tail(&page->slab_list, &n->slabs_free);
2813 n->free_slabs++;
2814 } else
2815 list_add_tail(&page->slab_list, &n->slabs_partial);
2816
2817 list_for_each_entry(page, &n->slabs_partial, slab_list) {
2818 if (!PageSlabPfmemalloc(page))
2819 return page;
2820 }
2821
2822 n->free_touched = 1;
2823 list_for_each_entry(page, &n->slabs_free, slab_list) {
2824 if (!PageSlabPfmemalloc(page)) {
2825 n->free_slabs--;
2826 return page;
2827 }
2828 }
2829
2830 return NULL;
2831 }
2832
2833 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2834 {
2835 struct page *page;
2836
2837 assert_spin_locked(&n->list_lock);
2838 page = list_first_entry_or_null(&n->slabs_partial, struct page,
2839 slab_list);
2840 if (!page) {
2841 n->free_touched = 1;
2842 page = list_first_entry_or_null(&n->slabs_free, struct page,
2843 slab_list);
2844 if (page)
2845 n->free_slabs--;
2846 }
2847
2848 if (sk_memalloc_socks())
2849 page = get_valid_first_slab(n, page, pfmemalloc);
2850
2851 return page;
2852 }
2853
2854 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2855 struct kmem_cache_node *n, gfp_t flags)
2856 {
2857 struct page *page;
2858 void *obj;
2859 void *list = NULL;
2860
2861 if (!gfp_pfmemalloc_allowed(flags))
2862 return NULL;
2863
2864 spin_lock(&n->list_lock);
2865 page = get_first_slab(n, true);
2866 if (!page) {
2867 spin_unlock(&n->list_lock);
2868 return NULL;
2869 }
2870
2871 obj = slab_get_obj(cachep, page);
2872 n->free_objects--;
2873
2874 fixup_slab_list(cachep, n, page, &list);
2875
2876 spin_unlock(&n->list_lock);
2877 fixup_objfreelist_debug(cachep, &list);
2878
2879 return obj;
2880 }
2881
2882 /*
2883 * Slab list should be fixed up by fixup_slab_list() for existing slab
2884 * or cache_grow_end() for new slab
2885 */
2886 static __always_inline int alloc_block(struct kmem_cache *cachep,
2887 struct array_cache *ac, struct page *page, int batchcount)
2888 {
2889 /*
2890 * There must be at least one object available for
2891 * allocation.
2892 */
2893 BUG_ON(page->active >= cachep->num);
2894
2895 while (page->active < cachep->num && batchcount--) {
2896 STATS_INC_ALLOCED(cachep);
2897 STATS_INC_ACTIVE(cachep);
2898 STATS_SET_HIGH(cachep);
2899
2900 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2901 }
2902
2903 return batchcount;
2904 }
2905
2906 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2907 {
2908 int batchcount;
2909 struct kmem_cache_node *n;
2910 struct array_cache *ac, *shared;
2911 int node;
2912 void *list = NULL;
2913 struct page *page;
2914
2915 check_irq_off();
2916 node = numa_mem_id();
2917
2918 ac = cpu_cache_get(cachep);
2919 batchcount = ac->batchcount;
2920 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2921 /*
2922 * If there was little recent activity on this cache, then
2923 * perform only a partial refill. Otherwise we could generate
2924 * refill bouncing.
2925 */
2926 batchcount = BATCHREFILL_LIMIT;
2927 }
2928 n = get_node(cachep, node);
2929
2930 BUG_ON(ac->avail > 0 || !n);
2931 shared = READ_ONCE(n->shared);
2932 if (!n->free_objects && (!shared || !shared->avail))
2933 goto direct_grow;
2934
2935 spin_lock(&n->list_lock);
2936 shared = READ_ONCE(n->shared);
2937
2938 /* See if we can refill from the shared array */
2939 if (shared && transfer_objects(ac, shared, batchcount)) {
2940 shared->touched = 1;
2941 goto alloc_done;
2942 }
2943
2944 while (batchcount > 0) {
2945 /* Get slab alloc is to come from. */
2946 page = get_first_slab(n, false);
2947 if (!page)
2948 goto must_grow;
2949
2950 check_spinlock_acquired(cachep);
2951
2952 batchcount = alloc_block(cachep, ac, page, batchcount);
2953 fixup_slab_list(cachep, n, page, &list);
2954 }
2955
2956 must_grow:
2957 n->free_objects -= ac->avail;
2958 alloc_done:
2959 spin_unlock(&n->list_lock);
2960 fixup_objfreelist_debug(cachep, &list);
2961
2962 direct_grow:
2963 if (unlikely(!ac->avail)) {
2964 /* Check if we can use obj in pfmemalloc slab */
2965 if (sk_memalloc_socks()) {
2966 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
2967
2968 if (obj)
2969 return obj;
2970 }
2971
2972 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
2973
2974 /*
2975 * cache_grow_begin() can reenable interrupts,
2976 * then ac could change.
2977 */
2978 ac = cpu_cache_get(cachep);
2979 if (!ac->avail && page)
2980 alloc_block(cachep, ac, page, batchcount);
2981 cache_grow_end(cachep, page);
2982
2983 if (!ac->avail)
2984 return NULL;
2985 }
2986 ac->touched = 1;
2987
2988 return ac->entry[--ac->avail];
2989 }
2990
2991 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2992 gfp_t flags)
2993 {
2994 might_sleep_if(gfpflags_allow_blocking(flags));
2995 }
2996
2997 #if DEBUG
2998 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2999 gfp_t flags, void *objp, unsigned long caller)
3000 {
3001 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
3002 if (!objp)
3003 return objp;
3004 if (cachep->flags & SLAB_POISON) {
3005 check_poison_obj(cachep, objp);
3006 slab_kernel_map(cachep, objp, 1);
3007 poison_obj(cachep, objp, POISON_INUSE);
3008 }
3009 if (cachep->flags & SLAB_STORE_USER)
3010 *dbg_userword(cachep, objp) = (void *)caller;
3011
3012 if (cachep->flags & SLAB_RED_ZONE) {
3013 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3014 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3015 slab_error(cachep, "double free, or memory outside object was overwritten");
3016 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3017 objp, *dbg_redzone1(cachep, objp),
3018 *dbg_redzone2(cachep, objp));
3019 }
3020 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3021 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3022 }
3023
3024 objp += obj_offset(cachep);
3025 if (cachep->ctor && cachep->flags & SLAB_POISON)
3026 cachep->ctor(objp);
3027 if (ARCH_SLAB_MINALIGN &&
3028 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3029 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3030 objp, (int)ARCH_SLAB_MINALIGN);
3031 }
3032 return objp;
3033 }
3034 #else
3035 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3036 #endif
3037
3038 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3039 {
3040 void *objp;
3041 struct array_cache *ac;
3042
3043 check_irq_off();
3044
3045 ac = cpu_cache_get(cachep);
3046 if (likely(ac->avail)) {
3047 ac->touched = 1;
3048 objp = ac->entry[--ac->avail];
3049
3050 STATS_INC_ALLOCHIT(cachep);
3051 goto out;
3052 }
3053
3054 STATS_INC_ALLOCMISS(cachep);
3055 objp = cache_alloc_refill(cachep, flags);
3056 /*
3057 * the 'ac' may be updated by cache_alloc_refill(),
3058 * and kmemleak_erase() requires its correct value.
3059 */
3060 ac = cpu_cache_get(cachep);
3061
3062 out:
3063 /*
3064 * To avoid a false negative, if an object that is in one of the
3065 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3066 * treat the array pointers as a reference to the object.
3067 */
3068 if (objp)
3069 kmemleak_erase(&ac->entry[ac->avail]);
3070 return objp;
3071 }
3072
3073 #ifdef CONFIG_NUMA
3074 /*
3075 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3076 *
3077 * If we are in_interrupt, then process context, including cpusets and
3078 * mempolicy, may not apply and should not be used for allocation policy.
3079 */
3080 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3081 {
3082 int nid_alloc, nid_here;
3083
3084 if (in_interrupt() || (flags & __GFP_THISNODE))
3085 return NULL;
3086 nid_alloc = nid_here = numa_mem_id();
3087 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3088 nid_alloc = cpuset_slab_spread_node();
3089 else if (current->mempolicy)
3090 nid_alloc = mempolicy_slab_node();
3091 if (nid_alloc != nid_here)
3092 return ____cache_alloc_node(cachep, flags, nid_alloc);
3093 return NULL;
3094 }
3095
3096 /*
3097 * Fallback function if there was no memory available and no objects on a
3098 * certain node and fall back is permitted. First we scan all the
3099 * available node for available objects. If that fails then we
3100 * perform an allocation without specifying a node. This allows the page
3101 * allocator to do its reclaim / fallback magic. We then insert the
3102 * slab into the proper nodelist and then allocate from it.
3103 */
3104 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3105 {
3106 struct zonelist *zonelist;
3107 struct zoneref *z;
3108 struct zone *zone;
3109 enum zone_type high_zoneidx = gfp_zone(flags);
3110 void *obj = NULL;
3111 struct page *page;
3112 int nid;
3113 unsigned int cpuset_mems_cookie;
3114
3115 if (flags & __GFP_THISNODE)
3116 return NULL;
3117
3118 retry_cpuset:
3119 cpuset_mems_cookie = read_mems_allowed_begin();
3120 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3121
3122 retry:
3123 /*
3124 * Look through allowed nodes for objects available
3125 * from existing per node queues.
3126 */
3127 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3128 nid = zone_to_nid(zone);
3129
3130 if (cpuset_zone_allowed(zone, flags) &&
3131 get_node(cache, nid) &&
3132 get_node(cache, nid)->free_objects) {
3133 obj = ____cache_alloc_node(cache,
3134 gfp_exact_node(flags), nid);
3135 if (obj)
3136 break;
3137 }
3138 }
3139
3140 if (!obj) {
3141 /*
3142 * This allocation will be performed within the constraints
3143 * of the current cpuset / memory policy requirements.
3144 * We may trigger various forms of reclaim on the allowed
3145 * set and go into memory reserves if necessary.
3146 */
3147 page = cache_grow_begin(cache, flags, numa_mem_id());
3148 cache_grow_end(cache, page);
3149 if (page) {
3150 nid = page_to_nid(page);
3151 obj = ____cache_alloc_node(cache,
3152 gfp_exact_node(flags), nid);
3153
3154 /*
3155 * Another processor may allocate the objects in
3156 * the slab since we are not holding any locks.
3157 */
3158 if (!obj)
3159 goto retry;
3160 }
3161 }
3162
3163 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3164 goto retry_cpuset;
3165 return obj;
3166 }
3167
3168 /*
3169 * A interface to enable slab creation on nodeid
3170 */
3171 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3172 int nodeid)
3173 {
3174 struct page *page;
3175 struct kmem_cache_node *n;
3176 void *obj = NULL;
3177 void *list = NULL;
3178
3179 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3180 n = get_node(cachep, nodeid);
3181 BUG_ON(!n);
3182
3183 check_irq_off();
3184 spin_lock(&n->list_lock);
3185 page = get_first_slab(n, false);
3186 if (!page)
3187 goto must_grow;
3188
3189 check_spinlock_acquired_node(cachep, nodeid);
3190
3191 STATS_INC_NODEALLOCS(cachep);
3192 STATS_INC_ACTIVE(cachep);
3193 STATS_SET_HIGH(cachep);
3194
3195 BUG_ON(page->active == cachep->num);
3196
3197 obj = slab_get_obj(cachep, page);
3198 n->free_objects--;
3199
3200 fixup_slab_list(cachep, n, page, &list);
3201
3202 spin_unlock(&n->list_lock);
3203 fixup_objfreelist_debug(cachep, &list);
3204 return obj;
3205
3206 must_grow:
3207 spin_unlock(&n->list_lock);
3208 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3209 if (page) {
3210 /* This slab isn't counted yet so don't update free_objects */
3211 obj = slab_get_obj(cachep, page);
3212 }
3213 cache_grow_end(cachep, page);
3214
3215 return obj ? obj : fallback_alloc(cachep, flags);
3216 }
3217
3218 static __always_inline void *
3219 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3220 unsigned long caller)
3221 {
3222 unsigned long save_flags;
3223 void *ptr;
3224 int slab_node = numa_mem_id();
3225
3226 flags &= gfp_allowed_mask;
3227 cachep = slab_pre_alloc_hook(cachep, flags);
3228 if (unlikely(!cachep))
3229 return NULL;
3230
3231 cache_alloc_debugcheck_before(cachep, flags);
3232 local_irq_save(save_flags);
3233
3234 if (nodeid == NUMA_NO_NODE)
3235 nodeid = slab_node;
3236
3237 if (unlikely(!get_node(cachep, nodeid))) {
3238 /* Node not bootstrapped yet */
3239 ptr = fallback_alloc(cachep, flags);
3240 goto out;
3241 }
3242
3243 if (nodeid == slab_node) {
3244 /*
3245 * Use the locally cached objects if possible.
3246 * However ____cache_alloc does not allow fallback
3247 * to other nodes. It may fail while we still have
3248 * objects on other nodes available.
3249 */
3250 ptr = ____cache_alloc(cachep, flags);
3251 if (ptr)
3252 goto out;
3253 }
3254 /* ___cache_alloc_node can fall back to other nodes */
3255 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3256 out:
3257 local_irq_restore(save_flags);
3258 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3259
3260 if (unlikely(slab_want_init_on_alloc(flags, cachep)) && ptr)
3261 memset(ptr, 0, cachep->object_size);
3262
3263 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3264 return ptr;
3265 }
3266
3267 static __always_inline void *
3268 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3269 {
3270 void *objp;
3271
3272 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3273 objp = alternate_node_alloc(cache, flags);
3274 if (objp)
3275 goto out;
3276 }
3277 objp = ____cache_alloc(cache, flags);
3278
3279 /*
3280 * We may just have run out of memory on the local node.
3281 * ____cache_alloc_node() knows how to locate memory on other nodes
3282 */
3283 if (!objp)
3284 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3285
3286 out:
3287 return objp;
3288 }
3289 #else
3290
3291 static __always_inline void *
3292 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3293 {
3294 return ____cache_alloc(cachep, flags);
3295 }
3296
3297 #endif /* CONFIG_NUMA */
3298
3299 static __always_inline void *
3300 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3301 {
3302 unsigned long save_flags;
3303 void *objp;
3304
3305 flags &= gfp_allowed_mask;
3306 cachep = slab_pre_alloc_hook(cachep, flags);
3307 if (unlikely(!cachep))
3308 return NULL;
3309
3310 cache_alloc_debugcheck_before(cachep, flags);
3311 local_irq_save(save_flags);
3312 objp = __do_cache_alloc(cachep, flags);
3313 local_irq_restore(save_flags);
3314 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3315 prefetchw(objp);
3316
3317 if (unlikely(slab_want_init_on_alloc(flags, cachep)) && objp)
3318 memset(objp, 0, cachep->object_size);
3319
3320 slab_post_alloc_hook(cachep, flags, 1, &objp);
3321 return objp;
3322 }
3323
3324 /*
3325 * Caller needs to acquire correct kmem_cache_node's list_lock
3326 * @list: List of detached free slabs should be freed by caller
3327 */
3328 static void free_block(struct kmem_cache *cachep, void **objpp,
3329 int nr_objects, int node, struct list_head *list)
3330 {
3331 int i;
3332 struct kmem_cache_node *n = get_node(cachep, node);
3333 struct page *page;
3334
3335 n->free_objects += nr_objects;
3336
3337 for (i = 0; i < nr_objects; i++) {
3338 void *objp;
3339 struct page *page;
3340
3341 objp = objpp[i];
3342
3343 page = virt_to_head_page(objp);
3344 list_del(&page->slab_list);
3345 check_spinlock_acquired_node(cachep, node);
3346 slab_put_obj(cachep, page, objp);
3347 STATS_DEC_ACTIVE(cachep);
3348
3349 /* fixup slab chains */
3350 if (page->active == 0) {
3351 list_add(&page->slab_list, &n->slabs_free);
3352 n->free_slabs++;
3353 } else {
3354 /* Unconditionally move a slab to the end of the
3355 * partial list on free - maximum time for the
3356 * other objects to be freed, too.
3357 */
3358 list_add_tail(&page->slab_list, &n->slabs_partial);
3359 }
3360 }
3361
3362 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3363 n->free_objects -= cachep->num;
3364
3365 page = list_last_entry(&n->slabs_free, struct page, slab_list);
3366 list_move(&page->slab_list, list);
3367 n->free_slabs--;
3368 n->total_slabs--;
3369 }
3370 }
3371
3372 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3373 {
3374 int batchcount;
3375 struct kmem_cache_node *n;
3376 int node = numa_mem_id();
3377 LIST_HEAD(list);
3378
3379 batchcount = ac->batchcount;
3380
3381 check_irq_off();
3382 n = get_node(cachep, node);
3383 spin_lock(&n->list_lock);
3384 if (n->shared) {
3385 struct array_cache *shared_array = n->shared;
3386 int max = shared_array->limit - shared_array->avail;
3387 if (max) {
3388 if (batchcount > max)
3389 batchcount = max;
3390 memcpy(&(shared_array->entry[shared_array->avail]),
3391 ac->entry, sizeof(void *) * batchcount);
3392 shared_array->avail += batchcount;
3393 goto free_done;
3394 }
3395 }
3396
3397 free_block(cachep, ac->entry, batchcount, node, &list);
3398 free_done:
3399 #if STATS
3400 {
3401 int i = 0;
3402 struct page *page;
3403
3404 list_for_each_entry(page, &n->slabs_free, slab_list) {
3405 BUG_ON(page->active);
3406
3407 i++;
3408 }
3409 STATS_SET_FREEABLE(cachep, i);
3410 }
3411 #endif
3412 spin_unlock(&n->list_lock);
3413 slabs_destroy(cachep, &list);
3414 ac->avail -= batchcount;
3415 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3416 }
3417
3418 /*
3419 * Release an obj back to its cache. If the obj has a constructed state, it must
3420 * be in this state _before_ it is released. Called with disabled ints.
3421 */
3422 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3423 unsigned long caller)
3424 {
3425 /* Put the object into the quarantine, don't touch it for now. */
3426 if (kasan_slab_free(cachep, objp, _RET_IP_))
3427 return;
3428
3429 ___cache_free(cachep, objp, caller);
3430 }
3431
3432 void ___cache_free(struct kmem_cache *cachep, void *objp,
3433 unsigned long caller)
3434 {
3435 struct array_cache *ac = cpu_cache_get(cachep);
3436
3437 check_irq_off();
3438 if (unlikely(slab_want_init_on_free(cachep)))
3439 memset(objp, 0, cachep->object_size);
3440 kmemleak_free_recursive(objp, cachep->flags);
3441 objp = cache_free_debugcheck(cachep, objp, caller);
3442
3443 /*
3444 * Skip calling cache_free_alien() when the platform is not numa.
3445 * This will avoid cache misses that happen while accessing slabp (which
3446 * is per page memory reference) to get nodeid. Instead use a global
3447 * variable to skip the call, which is mostly likely to be present in
3448 * the cache.
3449 */
3450 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3451 return;
3452
3453 if (ac->avail < ac->limit) {
3454 STATS_INC_FREEHIT(cachep);
3455 } else {
3456 STATS_INC_FREEMISS(cachep);
3457 cache_flusharray(cachep, ac);
3458 }
3459
3460 if (sk_memalloc_socks()) {
3461 struct page *page = virt_to_head_page(objp);
3462
3463 if (unlikely(PageSlabPfmemalloc(page))) {
3464 cache_free_pfmemalloc(cachep, page, objp);
3465 return;
3466 }
3467 }
3468
3469 ac->entry[ac->avail++] = objp;
3470 }
3471
3472 /**
3473 * kmem_cache_alloc - Allocate an object
3474 * @cachep: The cache to allocate from.
3475 * @flags: See kmalloc().
3476 *
3477 * Allocate an object from this cache. The flags are only relevant
3478 * if the cache has no available objects.
3479 *
3480 * Return: pointer to the new object or %NULL in case of error
3481 */
3482 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3483 {
3484 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3485
3486 trace_kmem_cache_alloc(_RET_IP_, ret,
3487 cachep->object_size, cachep->size, flags);
3488
3489 return ret;
3490 }
3491 EXPORT_SYMBOL(kmem_cache_alloc);
3492
3493 static __always_inline void
3494 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3495 size_t size, void **p, unsigned long caller)
3496 {
3497 size_t i;
3498
3499 for (i = 0; i < size; i++)
3500 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3501 }
3502
3503 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3504 void **p)
3505 {
3506 size_t i;
3507
3508 s = slab_pre_alloc_hook(s, flags);
3509 if (!s)
3510 return 0;
3511
3512 cache_alloc_debugcheck_before(s, flags);
3513
3514 local_irq_disable();
3515 for (i = 0; i < size; i++) {
3516 void *objp = __do_cache_alloc(s, flags);
3517
3518 if (unlikely(!objp))
3519 goto error;
3520 p[i] = objp;
3521 }
3522 local_irq_enable();
3523
3524 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3525
3526 /* Clear memory outside IRQ disabled section */
3527 if (unlikely(slab_want_init_on_alloc(flags, s)))
3528 for (i = 0; i < size; i++)
3529 memset(p[i], 0, s->object_size);
3530
3531 slab_post_alloc_hook(s, flags, size, p);
3532 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3533 return size;
3534 error:
3535 local_irq_enable();
3536 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3537 slab_post_alloc_hook(s, flags, i, p);
3538 __kmem_cache_free_bulk(s, i, p);
3539 return 0;
3540 }
3541 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3542
3543 #ifdef CONFIG_TRACING
3544 void *
3545 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3546 {
3547 void *ret;
3548
3549 ret = slab_alloc(cachep, flags, _RET_IP_);
3550
3551 ret = kasan_kmalloc(cachep, ret, size, flags);
3552 trace_kmalloc(_RET_IP_, ret,
3553 size, cachep->size, flags);
3554 return ret;
3555 }
3556 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3557 #endif
3558
3559 #ifdef CONFIG_NUMA
3560 /**
3561 * kmem_cache_alloc_node - Allocate an object on the specified node
3562 * @cachep: The cache to allocate from.
3563 * @flags: See kmalloc().
3564 * @nodeid: node number of the target node.
3565 *
3566 * Identical to kmem_cache_alloc but it will allocate memory on the given
3567 * node, which can improve the performance for cpu bound structures.
3568 *
3569 * Fallback to other node is possible if __GFP_THISNODE is not set.
3570 *
3571 * Return: pointer to the new object or %NULL in case of error
3572 */
3573 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3574 {
3575 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3576
3577 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3578 cachep->object_size, cachep->size,
3579 flags, nodeid);
3580
3581 return ret;
3582 }
3583 EXPORT_SYMBOL(kmem_cache_alloc_node);
3584
3585 #ifdef CONFIG_TRACING
3586 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3587 gfp_t flags,
3588 int nodeid,
3589 size_t size)
3590 {
3591 void *ret;
3592
3593 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3594
3595 ret = kasan_kmalloc(cachep, ret, size, flags);
3596 trace_kmalloc_node(_RET_IP_, ret,
3597 size, cachep->size,
3598 flags, nodeid);
3599 return ret;
3600 }
3601 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3602 #endif
3603
3604 static __always_inline void *
3605 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3606 {
3607 struct kmem_cache *cachep;
3608 void *ret;
3609
3610 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3611 return NULL;
3612 cachep = kmalloc_slab(size, flags);
3613 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3614 return cachep;
3615 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3616 ret = kasan_kmalloc(cachep, ret, size, flags);
3617
3618 return ret;
3619 }
3620
3621 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3622 {
3623 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3624 }
3625 EXPORT_SYMBOL(__kmalloc_node);
3626
3627 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3628 int node, unsigned long caller)
3629 {
3630 return __do_kmalloc_node(size, flags, node, caller);
3631 }
3632 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3633 #endif /* CONFIG_NUMA */
3634
3635 /**
3636 * __do_kmalloc - allocate memory
3637 * @size: how many bytes of memory are required.
3638 * @flags: the type of memory to allocate (see kmalloc).
3639 * @caller: function caller for debug tracking of the caller
3640 *
3641 * Return: pointer to the allocated memory or %NULL in case of error
3642 */
3643 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3644 unsigned long caller)
3645 {
3646 struct kmem_cache *cachep;
3647 void *ret;
3648
3649 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3650 return NULL;
3651 cachep = kmalloc_slab(size, flags);
3652 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3653 return cachep;
3654 ret = slab_alloc(cachep, flags, caller);
3655
3656 ret = kasan_kmalloc(cachep, ret, size, flags);
3657 trace_kmalloc(caller, ret,
3658 size, cachep->size, flags);
3659
3660 return ret;
3661 }
3662
3663 void *__kmalloc(size_t size, gfp_t flags)
3664 {
3665 return __do_kmalloc(size, flags, _RET_IP_);
3666 }
3667 EXPORT_SYMBOL(__kmalloc);
3668
3669 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3670 {
3671 return __do_kmalloc(size, flags, caller);
3672 }
3673 EXPORT_SYMBOL(__kmalloc_track_caller);
3674
3675 /**
3676 * kmem_cache_free - Deallocate an object
3677 * @cachep: The cache the allocation was from.
3678 * @objp: The previously allocated object.
3679 *
3680 * Free an object which was previously allocated from this
3681 * cache.
3682 */
3683 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3684 {
3685 unsigned long flags;
3686 cachep = cache_from_obj(cachep, objp);
3687 if (!cachep)
3688 return;
3689
3690 local_irq_save(flags);
3691 debug_check_no_locks_freed(objp, cachep->object_size);
3692 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3693 debug_check_no_obj_freed(objp, cachep->object_size);
3694 __cache_free(cachep, objp, _RET_IP_);
3695 local_irq_restore(flags);
3696
3697 trace_kmem_cache_free(_RET_IP_, objp);
3698 }
3699 EXPORT_SYMBOL(kmem_cache_free);
3700
3701 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3702 {
3703 struct kmem_cache *s;
3704 size_t i;
3705
3706 local_irq_disable();
3707 for (i = 0; i < size; i++) {
3708 void *objp = p[i];
3709
3710 if (!orig_s) /* called via kfree_bulk */
3711 s = virt_to_cache(objp);
3712 else
3713 s = cache_from_obj(orig_s, objp);
3714 if (!s)
3715 continue;
3716
3717 debug_check_no_locks_freed(objp, s->object_size);
3718 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3719 debug_check_no_obj_freed(objp, s->object_size);
3720
3721 __cache_free(s, objp, _RET_IP_);
3722 }
3723 local_irq_enable();
3724
3725 /* FIXME: add tracing */
3726 }
3727 EXPORT_SYMBOL(kmem_cache_free_bulk);
3728
3729 /**
3730 * kfree - free previously allocated memory
3731 * @objp: pointer returned by kmalloc.
3732 *
3733 * If @objp is NULL, no operation is performed.
3734 *
3735 * Don't free memory not originally allocated by kmalloc()
3736 * or you will run into trouble.
3737 */
3738 void kfree(const void *objp)
3739 {
3740 struct kmem_cache *c;
3741 unsigned long flags;
3742
3743 trace_kfree(_RET_IP_, objp);
3744
3745 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3746 return;
3747 local_irq_save(flags);
3748 kfree_debugcheck(objp);
3749 c = virt_to_cache(objp);
3750 if (!c) {
3751 local_irq_restore(flags);
3752 return;
3753 }
3754 debug_check_no_locks_freed(objp, c->object_size);
3755
3756 debug_check_no_obj_freed(objp, c->object_size);
3757 __cache_free(c, (void *)objp, _RET_IP_);
3758 local_irq_restore(flags);
3759 }
3760 EXPORT_SYMBOL(kfree);
3761
3762 /*
3763 * This initializes kmem_cache_node or resizes various caches for all nodes.
3764 */
3765 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3766 {
3767 int ret;
3768 int node;
3769 struct kmem_cache_node *n;
3770
3771 for_each_online_node(node) {
3772 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3773 if (ret)
3774 goto fail;
3775
3776 }
3777
3778 return 0;
3779
3780 fail:
3781 if (!cachep->list.next) {
3782 /* Cache is not active yet. Roll back what we did */
3783 node--;
3784 while (node >= 0) {
3785 n = get_node(cachep, node);
3786 if (n) {
3787 kfree(n->shared);
3788 free_alien_cache(n->alien);
3789 kfree(n);
3790 cachep->node[node] = NULL;
3791 }
3792 node--;
3793 }
3794 }
3795 return -ENOMEM;
3796 }
3797
3798 /* Always called with the slab_mutex held */
3799 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3800 int batchcount, int shared, gfp_t gfp)
3801 {
3802 struct array_cache __percpu *cpu_cache, *prev;
3803 int cpu;
3804
3805 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3806 if (!cpu_cache)
3807 return -ENOMEM;
3808
3809 prev = cachep->cpu_cache;
3810 cachep->cpu_cache = cpu_cache;
3811 /*
3812 * Without a previous cpu_cache there's no need to synchronize remote
3813 * cpus, so skip the IPIs.
3814 */
3815 if (prev)
3816 kick_all_cpus_sync();
3817
3818 check_irq_on();
3819 cachep->batchcount = batchcount;
3820 cachep->limit = limit;
3821 cachep->shared = shared;
3822
3823 if (!prev)
3824 goto setup_node;
3825
3826 for_each_online_cpu(cpu) {
3827 LIST_HEAD(list);
3828 int node;
3829 struct kmem_cache_node *n;
3830 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3831
3832 node = cpu_to_mem(cpu);
3833 n = get_node(cachep, node);
3834 spin_lock_irq(&n->list_lock);
3835 free_block(cachep, ac->entry, ac->avail, node, &list);
3836 spin_unlock_irq(&n->list_lock);
3837 slabs_destroy(cachep, &list);
3838 }
3839 free_percpu(prev);
3840
3841 setup_node:
3842 return setup_kmem_cache_nodes(cachep, gfp);
3843 }
3844
3845 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3846 int batchcount, int shared, gfp_t gfp)
3847 {
3848 int ret;
3849 struct kmem_cache *c;
3850
3851 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3852
3853 if (slab_state < FULL)
3854 return ret;
3855
3856 if ((ret < 0) || !is_root_cache(cachep))
3857 return ret;
3858
3859 lockdep_assert_held(&slab_mutex);
3860 for_each_memcg_cache(c, cachep) {
3861 /* return value determined by the root cache only */
3862 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3863 }
3864
3865 return ret;
3866 }
3867
3868 /* Called with slab_mutex held always */
3869 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3870 {
3871 int err;
3872 int limit = 0;
3873 int shared = 0;
3874 int batchcount = 0;
3875
3876 err = cache_random_seq_create(cachep, cachep->num, gfp);
3877 if (err)
3878 goto end;
3879
3880 if (!is_root_cache(cachep)) {
3881 struct kmem_cache *root = memcg_root_cache(cachep);
3882 limit = root->limit;
3883 shared = root->shared;
3884 batchcount = root->batchcount;
3885 }
3886
3887 if (limit && shared && batchcount)
3888 goto skip_setup;
3889 /*
3890 * The head array serves three purposes:
3891 * - create a LIFO ordering, i.e. return objects that are cache-warm
3892 * - reduce the number of spinlock operations.
3893 * - reduce the number of linked list operations on the slab and
3894 * bufctl chains: array operations are cheaper.
3895 * The numbers are guessed, we should auto-tune as described by
3896 * Bonwick.
3897 */
3898 if (cachep->size > 131072)
3899 limit = 1;
3900 else if (cachep->size > PAGE_SIZE)
3901 limit = 8;
3902 else if (cachep->size > 1024)
3903 limit = 24;
3904 else if (cachep->size > 256)
3905 limit = 54;
3906 else
3907 limit = 120;
3908
3909 /*
3910 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3911 * allocation behaviour: Most allocs on one cpu, most free operations
3912 * on another cpu. For these cases, an efficient object passing between
3913 * cpus is necessary. This is provided by a shared array. The array
3914 * replaces Bonwick's magazine layer.
3915 * On uniprocessor, it's functionally equivalent (but less efficient)
3916 * to a larger limit. Thus disabled by default.
3917 */
3918 shared = 0;
3919 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3920 shared = 8;
3921
3922 #if DEBUG
3923 /*
3924 * With debugging enabled, large batchcount lead to excessively long
3925 * periods with disabled local interrupts. Limit the batchcount
3926 */
3927 if (limit > 32)
3928 limit = 32;
3929 #endif
3930 batchcount = (limit + 1) / 2;
3931 skip_setup:
3932 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3933 end:
3934 if (err)
3935 pr_err("enable_cpucache failed for %s, error %d\n",
3936 cachep->name, -err);
3937 return err;
3938 }
3939
3940 /*
3941 * Drain an array if it contains any elements taking the node lock only if
3942 * necessary. Note that the node listlock also protects the array_cache
3943 * if drain_array() is used on the shared array.
3944 */
3945 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
3946 struct array_cache *ac, int node)
3947 {
3948 LIST_HEAD(list);
3949
3950 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
3951 check_mutex_acquired();
3952
3953 if (!ac || !ac->avail)
3954 return;
3955
3956 if (ac->touched) {
3957 ac->touched = 0;
3958 return;
3959 }
3960
3961 spin_lock_irq(&n->list_lock);
3962 drain_array_locked(cachep, ac, node, false, &list);
3963 spin_unlock_irq(&n->list_lock);
3964
3965 slabs_destroy(cachep, &list);
3966 }
3967
3968 /**
3969 * cache_reap - Reclaim memory from caches.
3970 * @w: work descriptor
3971 *
3972 * Called from workqueue/eventd every few seconds.
3973 * Purpose:
3974 * - clear the per-cpu caches for this CPU.
3975 * - return freeable pages to the main free memory pool.
3976 *
3977 * If we cannot acquire the cache chain mutex then just give up - we'll try
3978 * again on the next iteration.
3979 */
3980 static void cache_reap(struct work_struct *w)
3981 {
3982 struct kmem_cache *searchp;
3983 struct kmem_cache_node *n;
3984 int node = numa_mem_id();
3985 struct delayed_work *work = to_delayed_work(w);
3986
3987 if (!mutex_trylock(&slab_mutex))
3988 /* Give up. Setup the next iteration. */
3989 goto out;
3990
3991 list_for_each_entry(searchp, &slab_caches, list) {
3992 check_irq_on();
3993
3994 /*
3995 * We only take the node lock if absolutely necessary and we
3996 * have established with reasonable certainty that
3997 * we can do some work if the lock was obtained.
3998 */
3999 n = get_node(searchp, node);
4000
4001 reap_alien(searchp, n);
4002
4003 drain_array(searchp, n, cpu_cache_get(searchp), node);
4004
4005 /*
4006 * These are racy checks but it does not matter
4007 * if we skip one check or scan twice.
4008 */
4009 if (time_after(n->next_reap, jiffies))
4010 goto next;
4011
4012 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4013
4014 drain_array(searchp, n, n->shared, node);
4015
4016 if (n->free_touched)
4017 n->free_touched = 0;
4018 else {
4019 int freed;
4020
4021 freed = drain_freelist(searchp, n, (n->free_limit +
4022 5 * searchp->num - 1) / (5 * searchp->num));
4023 STATS_ADD_REAPED(searchp, freed);
4024 }
4025 next:
4026 cond_resched();
4027 }
4028 check_irq_on();
4029 mutex_unlock(&slab_mutex);
4030 next_reap_node();
4031 out:
4032 /* Set up the next iteration */
4033 schedule_delayed_work_on(smp_processor_id(), work,
4034 round_jiffies_relative(REAPTIMEOUT_AC));
4035 }
4036
4037 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4038 {
4039 unsigned long active_objs, num_objs, active_slabs;
4040 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4041 unsigned long free_slabs = 0;
4042 int node;
4043 struct kmem_cache_node *n;
4044
4045 for_each_kmem_cache_node(cachep, node, n) {
4046 check_irq_on();
4047 spin_lock_irq(&n->list_lock);
4048
4049 total_slabs += n->total_slabs;
4050 free_slabs += n->free_slabs;
4051 free_objs += n->free_objects;
4052
4053 if (n->shared)
4054 shared_avail += n->shared->avail;
4055
4056 spin_unlock_irq(&n->list_lock);
4057 }
4058 num_objs = total_slabs * cachep->num;
4059 active_slabs = total_slabs - free_slabs;
4060 active_objs = num_objs - free_objs;
4061
4062 sinfo->active_objs = active_objs;
4063 sinfo->num_objs = num_objs;
4064 sinfo->active_slabs = active_slabs;
4065 sinfo->num_slabs = total_slabs;
4066 sinfo->shared_avail = shared_avail;
4067 sinfo->limit = cachep->limit;
4068 sinfo->batchcount = cachep->batchcount;
4069 sinfo->shared = cachep->shared;
4070 sinfo->objects_per_slab = cachep->num;
4071 sinfo->cache_order = cachep->gfporder;
4072 }
4073
4074 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4075 {
4076 #if STATS
4077 { /* node stats */
4078 unsigned long high = cachep->high_mark;
4079 unsigned long allocs = cachep->num_allocations;
4080 unsigned long grown = cachep->grown;
4081 unsigned long reaped = cachep->reaped;
4082 unsigned long errors = cachep->errors;
4083 unsigned long max_freeable = cachep->max_freeable;
4084 unsigned long node_allocs = cachep->node_allocs;
4085 unsigned long node_frees = cachep->node_frees;
4086 unsigned long overflows = cachep->node_overflow;
4087
4088 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4089 allocs, high, grown,
4090 reaped, errors, max_freeable, node_allocs,
4091 node_frees, overflows);
4092 }
4093 /* cpu stats */
4094 {
4095 unsigned long allochit = atomic_read(&cachep->allochit);
4096 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4097 unsigned long freehit = atomic_read(&cachep->freehit);
4098 unsigned long freemiss = atomic_read(&cachep->freemiss);
4099
4100 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4101 allochit, allocmiss, freehit, freemiss);
4102 }
4103 #endif
4104 }
4105
4106 #define MAX_SLABINFO_WRITE 128
4107 /**
4108 * slabinfo_write - Tuning for the slab allocator
4109 * @file: unused
4110 * @buffer: user buffer
4111 * @count: data length
4112 * @ppos: unused
4113 *
4114 * Return: %0 on success, negative error code otherwise.
4115 */
4116 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4117 size_t count, loff_t *ppos)
4118 {
4119 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4120 int limit, batchcount, shared, res;
4121 struct kmem_cache *cachep;
4122
4123 if (count > MAX_SLABINFO_WRITE)
4124 return -EINVAL;
4125 if (copy_from_user(&kbuf, buffer, count))
4126 return -EFAULT;
4127 kbuf[MAX_SLABINFO_WRITE] = '\0';
4128
4129 tmp = strchr(kbuf, ' ');
4130 if (!tmp)
4131 return -EINVAL;
4132 *tmp = '\0';
4133 tmp++;
4134 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4135 return -EINVAL;
4136
4137 /* Find the cache in the chain of caches. */
4138 mutex_lock(&slab_mutex);
4139 res = -EINVAL;
4140 list_for_each_entry(cachep, &slab_caches, list) {
4141 if (!strcmp(cachep->name, kbuf)) {
4142 if (limit < 1 || batchcount < 1 ||
4143 batchcount > limit || shared < 0) {
4144 res = 0;
4145 } else {
4146 res = do_tune_cpucache(cachep, limit,
4147 batchcount, shared,
4148 GFP_KERNEL);
4149 }
4150 break;
4151 }
4152 }
4153 mutex_unlock(&slab_mutex);
4154 if (res >= 0)
4155 res = count;
4156 return res;
4157 }
4158
4159 #ifdef CONFIG_HARDENED_USERCOPY
4160 /*
4161 * Rejects incorrectly sized objects and objects that are to be copied
4162 * to/from userspace but do not fall entirely within the containing slab
4163 * cache's usercopy region.
4164 *
4165 * Returns NULL if check passes, otherwise const char * to name of cache
4166 * to indicate an error.
4167 */
4168 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4169 bool to_user)
4170 {
4171 struct kmem_cache *cachep;
4172 unsigned int objnr;
4173 unsigned long offset;
4174
4175 ptr = kasan_reset_tag(ptr);
4176
4177 /* Find and validate object. */
4178 cachep = page->slab_cache;
4179 objnr = obj_to_index(cachep, page, (void *)ptr);
4180 BUG_ON(objnr >= cachep->num);
4181
4182 /* Find offset within object. */
4183 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4184
4185 /* Allow address range falling entirely within usercopy region. */
4186 if (offset >= cachep->useroffset &&
4187 offset - cachep->useroffset <= cachep->usersize &&
4188 n <= cachep->useroffset - offset + cachep->usersize)
4189 return;
4190
4191 /*
4192 * If the copy is still within the allocated object, produce
4193 * a warning instead of rejecting the copy. This is intended
4194 * to be a temporary method to find any missing usercopy
4195 * whitelists.
4196 */
4197 if (usercopy_fallback &&
4198 offset <= cachep->object_size &&
4199 n <= cachep->object_size - offset) {
4200 usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4201 return;
4202 }
4203
4204 usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4205 }
4206 #endif /* CONFIG_HARDENED_USERCOPY */
4207
4208 /**
4209 * __ksize -- Uninstrumented ksize.
4210 * @objp: pointer to the object
4211 *
4212 * Unlike ksize(), __ksize() is uninstrumented, and does not provide the same
4213 * safety checks as ksize() with KASAN instrumentation enabled.
4214 *
4215 * Return: size of the actual memory used by @objp in bytes
4216 */
4217 size_t __ksize(const void *objp)
4218 {
4219 struct kmem_cache *c;
4220 size_t size;
4221
4222 BUG_ON(!objp);
4223 if (unlikely(objp == ZERO_SIZE_PTR))
4224 return 0;
4225
4226 c = virt_to_cache(objp);
4227 size = c ? c->object_size : 0;
4228
4229 return size;
4230 }
4231 EXPORT_SYMBOL(__ksize);